

SOFTWARE DEVELOPMENT FOR MULTI-LEVEL PETRI NET

BASED DESIGN INFERENCE NETWORK

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ÇAĞDAŞ COŞKUN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

MECHANICAL ENGINEERING

JULY 2004

Approval of the Graduate School of Natural and Applied Sciences

 Prof. Dr. Canan Özgen
 Director

I certify that this thesis satisfies all the requirements as a thesis for the
degree of Master of Science.

 Prof. Dr. Kemal İder
 Head of Department

This is to certify that we have read this thesis and that in our opinion it is
fully adequate, in scope and quality, as a thesis for the degree of Master of
Science.

 Prof. Dr. Abdülkadir Erden
 Supervisor

Examining Committee Members:

Prof. Dr. Bülent Platin Emre METU, ME

Prof. Dr. Abdülkadir Erden METU, ME

Asst. Prof. Dr. Zühal Erden ATILIM UNV., IE

Prof. Dr. Metin Akkök METU, ME

Prof. Dr. Sç Engin Kılıç METU, ME

ii

I hereby declare that all information in this document has been
obtained and presented in accordance with academic rules and ethical
conduct. I also declare that, as required by these rules and conduct, I
have fully cited and referenced all material and results that are not
original to this work.

 Name, Last name : Çağdaş Coşkun

Signature :

iii

ABSTRACT

SOFTWARE DEVELOPMENT FOR MULTI-LEVEL PETRI NET

BASED DESIGN INFERENCE NETWORK

COŞKUN, Çağdaş

M.S., Department of Mechanical Engineering

Supervisor : Prof. Dr. Abdülkadir ERDEN

July 2004, 118 Pages

This thesis presents the computer implementation of a multi resolutional

concurrent, design inference network, whose nodes are refined by PNDN

(Petri Net Based Design Inference Network) modules. The extended design

network is named as N-PNDN and consists of several embedded PNDN

modules which models the information flow on a functional basis to

facilitate the design automation at the conceptual design phase of an

engineering design.

Information flow in N-PNDN occurs between parent and child PNDN

modules in a hierarchical structure and is provided by the token flow

between the modules. In this study, computer implementation of the design

network construction and token flow algorithms for the N-PNDN structure

is restored and therefore the previous DNS (Design Network Simulator) is

adapted for the multi layer design and decomposition of mechatronic

iv

products. The related algorithms are developed by using an object oriented,

visual programming environment. The graphical user interface is also

modified. The further developed DNS has been used for the application of

the N-PNDN structure in the conceptual design of 5 mechatronic systems.

In the guidance of this study, it has been understood that the further

developed DNS is a powerful tool for designers coming from different

engineering disciplines in order to interchange their ideas.

Keywords: Design Network Simulator (DNS), Petri Net, Modularity,

Functional Decomposition, Mechatronic Design

v

ÖZ

ÇOK KATMANLI PETRİ NET TABANLI TASARIM-ÇIKARIM AĞI

İÇİN ALGORİTMA GELİŞTİRİLMESİ

COŞKUN, Çağdaş

M.S., Department of Mechanical Engineering

Supervisor : Prof. Dr.Abdülkadir ERDEN

Temmuz 2004, 118 Sayfa

Bu tezde düğümleri PNDN modülleriyle modellenmiş çok katmanlı, eş

zamanlı bir tasarım çıkarım ağının bilgisayar uygulaması sunulmaktadır. Bu

tasarım ağı PNDN modüllerinden oluşan ağ anlamında N-PNDN olarak

adlandırılmıştır ve PNDN ağının içine gömülmüş pek çok PNDN

modülünden oluşmakta olup, bir mühendislik tasarımında kavramsal tasarım

otomasyonunu kolaylaştımak amacıyla bilgi akışı fonksiyonel temelde

modellenmiştir.

N-PNDN’de bilgi akışı üst ve alt PNDN modülleri arasında

gerçekleşmektedir, bu sebeple yapı hiyerarşiktir. Modüller arası bilgi akışı

simge akışı ile gösterilmektedir. Bu tez çalışmasında çok katmanlı tasarım-

çıkarım ağının kurulması ve bu ağdaki bilgi akışının bilgisayar uygulaması

yeniden yapılandırılmıştır. Bu nedenle, bir önceki Petri net tabanlı tasarım

vi

çıkarım ağı için geliştirilen algoritma, mekatronik ürünlerin çok katmanlı ve

işlevsel tasarımına imkan verecek hale getirilmiştir. İlgili algoritmalar bir

nesneye yönelik görsel programlama ortamı kullanılarak tamamlanmıştır.

Buna ek olarak grafik kullanıcı arayüzü de son yapılan değişikliklere uygun

hale getirilmiştir. Geliştirilmiş DNS, 5 mekatronik sistemin kavramsal

tasarımında N-PNDN mimarisinin uygulaması için kullanılmıştır.

Bu çalışmaların sonucunda, DNS’in tasarımcılar arasındaki fikir alışverişini

kolaylaştıran, görsel zeminde detaylı bir arayüz sunduğu gözlemlenmiştir.

Anahtar Kelimeler: Tasarım Ağı Benzetimcisi (DNS), Petri Net,

Modülerlik, İşlevsel Tasarım, Mekatronik Tasarım

vii

TO MY FAMILY

viii

ACKNOWLEDGMENTS

I would like to express sincere appreciation to Prof. Dr. Abdülkadir Erden

for his valuable guidance, encouragement, insight and patience throughout

the study. I would also like to thank Dr. Zühal Erden for conducting a

doctoral thesis on such an interesting and challenging topic, and for

providing me the knowledge.

I am grateful to Serkan Güroğlu for his continuous help, encouragement,

creative ideas and support.

Finally I would like to thank my mother and sister for their never ending

love, support and patience in every stage of my life as well as throughout

this study.

ix

TABLE OF CONTENTS

ABSTRACT ...iv

ÖZ...vi

DEDICATION ... vii

ACKNOWLEDGEMENTS .. ix

TABLE OF CONTENTS ..x

LIST OF TABLES. ... xiii

LIST OF FIGURES... xiv

LIST OF SYMBOLS.. xvii

CHAPTERS

1. INTRODUCTION...1

2. LITERATURE SURVEY ...8

2.1 Literature Survey on the Conceptual Mechatronic
 Design...8

2.2 Functional Representation Schemes...12

 2.2.1 Functional Block Diagram ..12

 2.2.2 AND/OR Tree ...12

 2.2.3 Functional Design Tree ...12

 2.2.4 FR/DP Tree..13

 2.2.5 Function/Means Tree...14

x

2.3 Behavioral Design ..14

 2.3.1 Finite Automata...15

 2.3.2 Hybrid Automata..15

 2.3.3 Discrete Event System Modeling ..15

 2.3.4 Petri Nets ...15

2.4 Previous Petri Net Tools...16

 2.4.1 Petri Tool..16

 2.4.2 Cabarnet...17

 2.4.3 Alpha / Sim..17

 2.4.4 PNDN..17

 2.4.5 N-PNDN..17

2.5 Evaluation of Literature Survey ...18

3. BASICS OF N-PNDN...19

3.1 Architecture of N-PNDN..19

3.1.1 Definition of Functional State Set20

3.1.2 Definition of Variables ...22

3.1.3 Definition of Instantiations...23

3.1.4 Definition of Decision Functions24

3.1.5 Definition of I-Mappings..25

3.1.6 Definition of O-Mappings ..27

3.2 Token Flow in N-PNDN ...31

 3.3 Evaluation of features of PNDN ...34

xi

4. THE DESIGN NETWORK SIMULATOR FOR THE
 IMPROVED N-PNDN THEORY...36

4.1 An Overview of Further Developed DNS.................................... .36

4.1.1 Programming Environment ...36

4.1.2 Structure of the Software Package37

4.2 Graphical User Interface ...38

 4.3 Software Modules of DNS ..43

4.1.1 Creation of Design Network..43

4.1.2 Token Flow in N-PNDN (Simulation)49

5. CASE STUDIES ..60

5.1 N-PNDN Model of a Mouse ...60

5.2 N-PNDN Model of CD player...69

5.3 N-PNDN Model of Coffee Machine ...76

5.4 N-PNDN Model of Lathe ..82

5.5 Evaluation of Case Studies..91

6. CONCLUSIONS..93

 6.1 Future Work ..97

REFERENCES..99

APPENDICES

A. Petri Net Tool Survey...106

xii

LIST OF TABLES

TABLES

A.1 Existing Tools for the Petri Nets ..106

xiii

LIST OF FIGURES

FIGURES

3.1 The Functional Design Tree of Dish Machine ..22

3.2 N-PNDN of the Dish Machine, the top most level of Dish
 Machine ...29

3.3 The Sub-Layer of the Functional State of Dish Machine
 and its Functional decomposition..30

3.4 The Sub-Layer of the Functional State of Take Water-In
 and its Functional decomposition..30

3.5 Token Flow..32

3.5 Token Flow (continued) ..32

3.6 Token Flow (continued) ..32

3.7 Token Flow (continued) ..32

3.8 Token Flow (continued) ..32

3.9 Token Flow (continued) ..33

3.10 Token Flow (continued) ..33

3.11 Token Flow (continued) ..33

3.12 Token Flow (continued) ..33

4.1 Architecture of Design Network Simulator...37

4.2 Graphical User Interface ...39

4.3 Object Inspector of DNS ...40

4.4 The tool bar of the DNS ..41

xiv

4.5 The control panel of DNS ...42

4.6 Algorithm for the Creation for N-PNDN ...46

4.7 Creation of N-PNDN for the dish machine ..46

4.8 Creation of N-PNDN for the dish machine (continued)...........................47

4.9 Creation of N-PNDN for the dish machine (continued)...........................47

4.10 The algorithm for Deterministic Token Flow in N-PNDN48

4.11 Token Flow in N-PNDN ...48

4.12 Token Flow in N-PNDN ...49

4.13 Token Flow (continued) ..51

4.14 Token Flow (continued) ..52

4.15 Token Flow (continued) ..53

4.16 Token Flow (continued) ..53

4.17 Token Flow (continued) ..54

4.18 Token Flow (continued) ..55

4.19 Token Flow (continued) ..55

4.20 Token Flow (continued) ..56

4.21 Token Flow (continued) ..57

4.22 Token Flow (continued) ..58

4.23 Token Flow (continued) ..58

4.24 Token Flow (continued) ..59

5.1 Functional Design Tree of Mouse ..61

5.2 PNDN of Mouse at the first level decomposition68

5.3 PNDN model of Mouse for the second level ..69

xv

5.4 Functional Design Tree of CD player ...70

5.5 PNDN model of CD player ...75

5.6 PNDN model of “Rotate CD” subfunction ...75

5.7 Functional Design Tree of Coffee Machine ..76

5.8 PNDN of. Coffee Machine..81

5.9 PNDN of Coffee Machine (continued) ...82

5.10 Functional Design Tree Lathe ...83

5.11 PNDN model for Lathe ...90

5.12 PNDN model of “Rotate Workpiece” subfunction91

xvi

LIST OF SYMBOLS

CD Compact Disc

dfi Decision function

DNS Design Network Simulator

FDT Functional Design Tree

Fi Functional State

FS Functional State Set

GUI Graphical User Interface

I Input Mapping

MI Instantiation Marking

Mv Variable Marking

PNDN Petri Net Based Design

 Inference Network

O Output Mapping

xvii

CHAPTER 1

INTRODUCTION

Automation of design process is being imposed as an imperative enrollment

in engineering applications and this feature necessitates development of new

tools in order to achieve a faster and more successful design process.

Design automation aims to minimize the human involvement at each step of

design process by the help of systematic computer implementation where

necessary. This automation provides guidance to the human designer and

makes it easy to create various design alternatives. These alternatives can be

handled faster leading to better designs with improved functionality, low

cost and better quality which means a better and pretentious place in the

competitive market.

If the flow of work in engineering design is considered, the phases are:

1. Clarification of the task – determines the definition of the problem,

requirements to be fulfilled and the constraints.

2. Conceptual Design – involves client requirements and constraints,

the evaluation of concept variants against design objectives, the

definition of function structures and creation of design alternatives.

1

3. Embodiment Design – selects the proper standard elements in order

to perform these functions together with the determination of layout

and development of a technical product or system.

4. Detail Design and Documentation – is the phase where all

production documents are prepared for the technical and economical

calculations.

It can easily be seen that the conceptual design phase is the vital stage for

the automation of design phase and it differs from traditional detailed design

in the aspect of faster and efficient designs.

The conceptual design is used for evaluating the contents of a potential

production project in an early phase, thus providing the customer with the

best possible input for deciding on the future of the project and makes it

possible to assess different solutions and thereby create a broad and sound

foundation for making decisions with regard to time, solutions, and price. It

also combines both engineering creativity and human intelligence. In

addition to those advantages, the conceptual design phase provides an

information transfer to the embodiment design, detail design and

documentation phases. Therefore it plays the most important role in the

automation and a special emphasis should be given.

The automation in engineering design is achieved to a certain extend in

detail design and documentation, through the use of commercial software

packages like MATHCAD MATLAB, ANSYS, etc...While those software

programs have dramatically decreased the time required to move a new

concept from design through manufacture and production, there are few

tools that specialize in driving that process at the earliest phases of design.

Engineers need innovative engineering tools to increase their productivity

2

during the conceptual design phase rather than the core detailed design

through manufacturing process.

A functional and task independent design model was previously developed

and applied to mechatronic design problems in order to accomplish this

automation. This function based design architecture is called PNDN (Petri

Net Based Design Network) (Erden, 1999). It is a design inference network

that supports domain integration for the conceptual design of mechatronic

products. It is based on the Petri Net theory (Reisig, 1985; Reisig, 1992).

Hybrid Automata (Alur et al., 1994) while considering those engineering

systems are hybrid systems that consist of both discrete and continuous

behaviors. It provides a mathematical model that combines the discrete

dynamics of finite automation with the continuous dynamics of a dynamical

system. While designing network model, the hybrid automata is used as an

intermediate framework to support automatic transition from the functional

representation of a system to the PNDN of the same system.

PNDN has following features:

1. Engineers from different engineering disciplines do not have time

for training and must become productive rapidly without learning

specialized skills. Therefore team members can easily use this tool.

2. It gives the ability to evaluate a number of functional design

alternatives in a short time.

3. It supports the information flow.

4. Uncertainties can be handled and can be reduced during the

information flow.

The information flow is represented by a token flow in PNDN and this

token flow is applicable to both deterministic and non-deterministic PNDN.

3

PNDN theory provided an important progress in the automation of

conceptual design phase. On the other hand, during the detail design

automation and manufacturing automation, the relevant design phase needs

a computer implementation. The computer implementation of PNDN is

accomplished (DNS - Design Network Simulator) and has been developed

in Borland C++ Builder integrated development environment (Güroğlu,

1999).

With the introduction of DNS (Design Network Simulator), the information

flow and interchange of different design alternatives among team members,

simulation functionality both for deterministic and non-deterministic token

flow models, easy manipulation of previously created designs, have been

accomplished.

PNDN can also handle the lower functional hierarchy levels of mechatronic

products. A network of N-PNDN - defined as multi resolutional design

inference network which is based on the modularity feature of PNDN and

understanding of Function-Subfunction structure existing in the functional

decomposition, (Korkmazel, 2001) - modules are used to model the product

in every resolution level. In this model the structure of information flow

between modules of PNDN fits into a hierarchical definition that makes the

vertical communication between subordinate and super-ordinate modules

possible. This is a good way of controlling the complexity of systems and

therefore the information flow is utilized in N-PNDN.

This thesis focuses on computer implementation of N-PNDN theory which

consists of design network creation of those N-PNDN modules.

The software will be the modification of DNS (Güroğlu, 1999) software for

the N-PNDN theory and it should support the following features:

4

1. N-PNDN modules should be constructed separately and for every

resolution level.

2. The N-PNDN modules should be independent of each other.

3. It should allow modeling the complex systems and therefore high

resolution levels can easily be handled.

4. The information flow which is represented by token flow in each

level and from one level to another should be provided.

5. The modified software can easily be used with minimum computer

hardware resources.

6. The software should support the easy manipulation of previously

created designs.

7. The software should give the possibility of further modifications

other than information flow like material and energy flow at lower

levels of resolution.

SCOPE OF THE RESEARCH

The main objective of the present research is to develop a new algorithm for

the improved N-PNDN theory (Korkmazel, 2001) in order to implement the

modular and multi level resolution of functional states in a computer

environment.

In this thesis the algorithm and implementation of this algorithm for

deterministic token flow simulation and analysis parts for N-PNDN modules

are developed and case studies are carried out to evaluate and verify the

range of applicability of the N-PNDN model.

While decomposing the functional model of mechatronic products, a

vertical hierarchical design tree is considered. Therefore models can be

thought as a collection of sub models and the process of hierarchically

5

decomposing of a model into a more detailed and complex sub models is

called hierarchical refinement. If the refinement is accomplished by

substituting models with the same functionality but with more detailed and

accurate results then this refinement is called as a horizontal refinement.

One of the main criteria, in order to accomplish a complete conceptual

design network using PNDN theory, is the vertical refinement for the

modeling. Both in PNDN and N-PNDN theories this criterion is taken into

account during functional modeling of the products.

While developing the algorithm for the N-PNDN, the modularity feature is

also considered which aims to identify independent, standardized

interchangeable units. Function modules help to implement technical

functions independently or with other functions. Function modules are

classified as basic, auxiliary, adaptive, and non modules according to (Pahl

and Beitz, 1988).

The goals of research as follows:

1. Developing an algorithm for the construction of a multi-level PNDN

structure.

2. Developing an algorithm for the token flow in the multi level

resolution.

3. Developing an algorithm for the transition from one level to another

without loosing the related data which belongs to the previous

design or level.

4. Providing a user friendly GUI (Graphical User Interface) so that the

people coming from different engineering disciplines can easily use

the software package.

This thesis is composed of 6 chapters. Chapter 2 deals with the literature

survey of previous studies about PNDN and N-PNDN. Chapter 3

6

concentrates on the N-PNDN theory and the methodology of representation

of mechatronic products and their computer implementations. Chapter 4

involves the detailed understanding and explanation of further developed

DNS software for the improved PNDN theory. The algorithms that are

developed for the N-PNDN modules are presented. Chapter 5 includes the

case studies and explanations. Finally, discussions, conclusions and

recommendations for future work are provided in Chapter 6.

7

CHAPTER 2

LITERATURE SURVEY

This thesis focuses on the computer implementation of a multi-resolution

functional model of mechatronic products by N-PNDN structure. Since N-

PNDN is an inheritance of PNDN (Erden, 1999) the structure, literature

survey of design concepts, previous algorithms of conceptual mechatronic

design and Petri Nets will be handled respectively.

2.1 LITERATURE SURVEY ON THE CONCEPTUAL

MECHATRONIC DESIGN

The involvement of faster microprocessors and developments in computer

technology contributes the evolution of a new concept called mechatronics.

In order to perform required functions, this new discipline involves the

synergistic integration of software based control systems, electronic devices

and mechanical structures in the same product (Fraser and Milne, 1994;

Buur, 1992; Acar, 1993). At the same time, this integration plays a crucial

role for further development of mechanical elements, machines, and

precision mechanics toward mechatronic systems (R. Isermann, 1996).

According to (Amerongen, 2003), design of a mechatronic system covers

design of the mechanical structure and its embedded control system.

Therefore, previously developed design strategies for other engineering

disciplines, are not applicable for the development of mechatronic products.

8

Pahl and Beitz (Pahl and Beitz, 1988), who had performed one of the

important previous efforts to systematize design process of products, give

the generally accepted flow of work definition throughout the design as

follows:

• Clarification of the task,

• Conceptual design,

• Embodiment design,

• Detail design

Conceptual design phase, which determines the working principles of a

product, is the major concern of this literature survey.

During conceptual design, the aim is not to complete a final design, but

rather to identify the performance-limiting factors of the design proposal(s)

and to choose satisfactory specifications for these factors (Coelingh, 2002).

According to (Rzevski, 2003), conceptual design is an early stage of

design in which designers select concepts that will be employed in solving a

given design problem and decide how to interconnect these concepts into an

appropriate system architecture. For theoretical functional modeling to be

applied early in design, the work-flow must always go from global or

abstract to detailed or particular design specifications (Aleixos, Company,

Contero, 2004). This avoids undertaking different design alternatives by

reducing the uncertainty in a controlled manner and delays to have a

particular design solution at the beginning of the design process.

Another definition of the conceptual design phase states that it is an early

stage of the product development process having characteristics of fuzzy

9

problems, tolerating a high degree of uncertainty (Quin, Harrison, West,

Jordanov, Wright, 2003).

As an example for design automation tool, Schemebuilder Mechatronics

(Porter, Council, 1998), is an intelligent knowledge-based computer

software for the conceptual design of mechatronic systems. The software is

the combination of expert knowledge (rules) with object oriented

representation together with simulation module where the expert knowledge

depends on design principles that consist of physical understanding, design

rules and observations. The knowledge base enables to resuse of previously

generated design information and to infer new design rules by interacting

with the user (Porter, 2002). In software package the modeling of designs

(schemes) is achieved by creating models from object oriented descriptions

of conceptual models. The objects which represents the real physical objects

are connected with Bond Graph type ports. Schemebuilder represents

designs as schemes based on the Function/Means Tree approach. In this

approach functions are represented as the leaves of the tree. However, the

function definition of this study is not flexible and abstract enough.

Therefore it restricts the designer and prevents to think independently.

The system theory (Boardman, 1990) explains the basics of the

mechatronics by a set of rules for abstract modeling of technical artifacts

and hierarchically decomposed form of those artifacts as subsystems. A

decomposition hierarchy places a partial ordering on the systems and their

interrelationships such that higher level systems and their relationships are

compositions of lower level systems and relationships (Kannapan and

Marshek, 1991). Decomposition approach reduces the complexity of the

system by dividing it into sub modules which means easy management and

implementation.

10

Hierarchical decomposition approach is applied at the two levels of

mechatronic systems, yielding “Functional Decomposition” and “Structural

Decomposition” concepts be developed (Korkmazel, 2001).

Functional decomposition is defined as partitioning a given complex

functional structure hierarchically into more manageable functions such that

it is easier to match design concepts with these functions and arrive at a

solution to the problem (Korkmazel, 2001). At the same time, structural

decomposition approach is used in redesign procedure or in reverse

engineering problems which leads to restrict the solution and design process

in a small sub module of the system.

The literature search has revealed that automation of conceptual design

phase of mechatronic products necessitates a functional approach to the

problem in order to develop a systematic design process. Considering the

importance of conceptual design which generates design alternatives, design

automation requires system functions to accomplish for given task.

Therefore different functional decomposition approaches besides functional

design tree are used for to define functional structure of mechatronic

systems.

From the mathematical point of view, functions can be divided into two as

continuous and discontinuous. The mechatronic system is composed of both

continuous and discontinuous behaviors (Erden, 1999). For this reason an

integrated view, which comprises from these behaviors, is required. In order

to satisfy this need PNDN (Petri Net Based Design Inference Network) has

been developed by Erden (Erden et. al., 1999).

11

2.2 FUNCTIONAL REPRESENTATION SCHEMES

In order to create the functional structure of a system, different

representation schemes are used. These are Functional Block Diagrams,

Functional Decomposition Tree, Function/Means Trees, FR/DP (Functional

Requirement Design Parameters) and AND/OR Trees.

2.2.1 Functional Block Diagram

According to (Pahl and Beitz, 1988) and (Blanchard and Fabrycky, 1998)

functional block diagram is mentioned as a convenient mechanism for

communicating the functional information of an artifact. They structure the

system requirements and represent them as functions in a sequence together

with their series and parallel interrelationships. Since the sequences of

functions are not primarily considered in PNDN approach, the FBD

(Functional Block Diagram) methodology is not appropriate for this study.

2.2.2 AND/OR Tree

AND/OR tree defines design requirements and design specifications in the

form of a hierarchy (Kusiak et al., 1991). A desired requirement is divided

into sub requirements until it matches its corresponding function.

Unfortunately this methodology needs the rules of passing from functional

domain to physical domain; therefore it is not suitable for this study.

2.2.3 Functional Design Tree

The functional structure of a system is presented hierarchically in

“Functional Design Tree (FDT)” with the definitions of “Functional Cells

(FC)” and “Atomic Functional Cells (AFC)” (Erden, 1996; Erden, 1999). In

this hierarchic structure “Functional Cells” and “Atomic Functional Cells”

12

correspond to subfunctions of the system at different levels and leaves of the

tree respectively. Towards the leaves of the tree, in other words from more

abstract representation to a particular solution, FCs gain precision and AFCs

find their interpretation as a component of a machine element or a formula

based representation. However FDT lacks of means for each function which

is necessary for further decomposition and embodiment design.

2.2.4 FR/DP Tree

According to (Suh, 1998), the system is defined as the assemblage of sub-

systems, hardware and software components, and people designed to

perform a set of tasks to satisfy specified functional requirements and

constraints. The first step in design process of a system is determining the

customer needs and the functional requirements (a minimum set of

independent requirements that completely characterizes the functional needs

of the product (or software, organizations, systems, etc.) in the functional

domain) together with constraints of the system (Suh, 1998). The functional

requirements should be specified without thinking the solution in the sense

of creativity and close to the customer needs. Next step is the

conceptualization process which is to map the FRs of the functional domain

into physical domain by identifying the design parameters (DP) that

characterize the design. Design Parameters can be a mechanical component,

a sensor or a computer code depending on the design. Having chosen the

design parameters, process variables (PV) should be identified that generate

the specified design parameters.

The mapping should support the independence axiom which quarentees the

independence of functional requirements. An ideal design is the design that

has equal FRs and DPs. According to the information axiom the design with

least information is the best design. The information axiom guides the

designer to select the DPs and helps the designer to select the best design

13

among others. It is the best tool when there are more than one functional

solution.

2.2.5 Function/Means Tree

The Function/Means tree is a graphical representation (Andreasen, 1980)

based on the Hubka’s “Law of Vertical Causality” (Hubka and Eder, 1988).

The “Law of Vertical Causality” states that the decomposition of a

particular function into subfunctions is only possible, when a means has

been chosen to realize the function (Andreasen, 1980). Means can be a

particular solution to a problem, an organ, a machine part, a detailed

component which can realize the function. Number of alternative means can

be proposed once the function is identified. According to the “Law of

Vertical Causality”, there should be a causal relationship between the

functions and means that realize them. As the decomposition proceeds, the

means becomes simpler and that results in less complex modules.

Function/Means tree is a practical tool for analysis work and one can

visualize the design alternatives in more effective way. It supports the

designer in thinking about his/her design in an axiomatic way (Suh, 1998),

which enables some quick feedback concerning the completeness and

quality (clarity) of a design (Ringstad, 1997).

2.3 BEHAVIORAL DESIGN

As a definition behavior is the response of an artifact to its environment. In

the same manner, behavioral design aims to define states and state change

conditions of the considered design. The following sections mention some

behavioral design techniques in literature namely, Finite Automata, Hybrid

Automata, Discrete Event System Modeling and Petri Nets.

14

2.3.1 Finite Automata

A finite automaton is defined as an abstract model describing a synchronous

sequential machine (Kohavi, 1978; Hopcroft and Ullman, 1979; Lewis and

Papadimitriu, 1981) where network outputs at any given time are functions

of the external inputs and stored information at that time. The continuous

behavior of the machine is not modeled and is described as a sequence of

discrete events instead of continuous state changes (Erden, 1999).

2.3.2 Hybrid Automata

A hybrid automaton is a formal model for a hybrid system which can be

described as a dynamic system with discrete and continuous components.

(Henziger et al., 1995; Puri and Varaiya, 1994; Puri and Varaiya, 1995).

2.3.3 Discrete Event System Modeling

A discrete event system (DES) is a dynamic system that evolves in

accordance with the abrupt occurrence, at possibly unknown irregular

intervals, of physical events (Ramadage and Wonham, 1989; Mortazavian

and Lin, 1991; Zeigler, 1989).

2.3.4 Petri Nets

Petri Nets are models for procedures, organizations and devices where

regulated flows, in particular information flows play an important role

(Reisig, 1985; Reisig, 1992; Tabak and Levis, 1985). As another definition

Petri Nets are bipartite directed multi-graphs, which are used to model

procedures, organizations and devices (systems in general), in which

regulated flow of objects and information occurs (Andreadakis, 1988;

Reisig, 1985; Reisig, 1992).

15

Petri Nets are under development since Carl Adam Petri has firstly defined

language in 60’s. It is the first system that discrete parallel system is defined

and it is a generalization of automata theory such that the concept of

concurrently occurring events can be expressed. By this way it is possible to

model the dynamic behavior of the systems. Modeling, Control and

Performance Analysis, Intelligent Task Planning, Management of

Manufacturing Systems are the most common application areas of Petri

Nets.

Petri Nets consist of passive components, active components and directed

links. Passive components are the places which are denoted by circles (O).

The active components are the transitions and denoted by boxes ().

Directed links represent the abstract relationships between components.

2.4 Previous Petri Net Tools

Some of the previous Petri tools and their properties are given below.

Additional and detailed information about Petri Tools can be found in

Appendix.

2.4.1 Petri Tool

Petri Tool (Brink, 1996) was written in Java and it is one of the few tools

which was developed in Java. Java is an Object Oriented language and at

the same time it is an interpreted language. Therefore any machine with

Java Virtual Machine can run this software providing a high portability

feature.

16

2.4.2 Cabarnet

Cabarnet (Computer Aided software engineering environment Based on

ERNETs) was developed for the real time systems. Robot Arm control was

one of its strong application area. This tool was written in C++ in UNIX

environment as operating system.

2.4.3 Alpha/Sim

ALPHA/Sim is a general purpose graphical discrete-event simulation tool

based on Petri Nets. Communication networks and computer, flexible

manufacturing systems are the basic application areas (AlphaTech, 2004).

2.4.4 PNDN

PNDN is a Petri Net-based Design Network which was developed by

(Erden, 1999) and developed for the representation and analysis of the

functions and their interrelationships through information flow for the

conceptual design stage of engineering systems and at the first level of

design. PNDN structure accomplished a great improvement in the

automation of conceptual design phase. The computer implementation of

PNDN was accomplished for the first decomposition level in Borland C++

Builder IDE (Integrated Development Environment) which was called DNS

(Güroğlu, 1999).

2.4.5 N-PNDN

N-PNDN is the extension of PNDN (Korkmazel, 2001) which is an

improved model and obtained multi-resolutional feature in terms of

functionality and modeling. Functional decomposition rules were utilized in

the extended design inference network, N-PNDN, were provided. Details of

17

computer implementation of N-PNDN and the contributions of this study

will be given in the next chapters.

2.5 Evaluation of Literature Survey

In the light of the facts mentioned in previous sections, Function/Means

Trees are more useful for representing different design alternatives during

the conceptual design phase. Function/Means tree can model and represent

the whole design process from the most abstract level representation to the

specific descriptions of the solutions to problems. It enables the designer to

evaluate different design alternatives by providing various kinds of means

for each subfunction. Therefore, designer’s ability to select functions and

subfunctions independently results in high engineering creativity. Passing

from functional domain to physical domain is easier than the other

functional approaches.

The above mentioned Petri Net tools support only Petri Nets which is based

on Place-Transition Nets or time dependent Petri Nets. On the other hand

PNDN reveals a new approach to design modeling and defines new network

elements. This entails to develop a new design modeling tool for the

mechatronic products. The survey on Petri Net tools showed that the new

developed tool should not need additional programming effort. Moreover,

Windows or a X-Windows based operating system is much more convenient

to use and these operating system environments present a sophisticated

graphical user interface which one can not find at other operating systems.

In addition to those major facilities of the software package such as printing,

saving, griding properties should be developed. The survey showed that the

recent software packages lack of these properties. Finally token flow feature

should be provided in the new design tool in order to model the dynamic

behavior of a system in multi level representation since multi level modeling

is also a missing part of the current Petri Net software packages.

18

CHAPTER 3

BASICS OF N-PNDN

PNDN is a design inference network developed for the representation and

analysis of the function and their interrelationship through information flow

for the conceptual design stage of engineering systems in order to facilitate

design automation. (Erden et al., 1998). The formal structure is based on the

theory of Petri Nets and Hybrid Automata. Therefore the extended design

network is named as the network of PNDN modules, N-PNDN, and consists

of embedded PNDN modules in the topmost level PNDN network.

3.1 ARCHITECTURE OF N-PNDN

The N-PNDN theory handles the functional decomposition phase of the

mechatronic products in multi resolutional level. For this reason it will be

more convenient to give a design application of a mechatronic product in

order to go to deep of the design details. Dish machine is taken as the

sample mechatronic device to illustrate the procedure using N-PNDN in

multi resolution levels.

Creation of N-PNDN consists of following steps:

 Functional Representation Using Functional Design Tree.

 Definition of Variables

 Definition of Instantiation of Variables

 Definition of Decision of Functions

 Definition of Input Mappings

19

 Definition of Output Mappings

 Repeat The Steps Given Above For Each Resolution Level of Each

Functional State.

 Create and STOP Functional State for the each sub level of

Functional State in order to finish the performance of the relevant

function during token flow.

3.1.1 DEFINITION OF FUNCTIONAL STATE SET

The first step for the functional representation of a system is to establish a

functional design tree, a hierarchical structure that involves sub-functions of

systems at various levels of resolution where top most nod is to satisfy the

required function.

F(S) = {F1 , F2 , …………FN } where ;

F(S) = Overall function of the required system.

Fi = Sub-function of the system at the first level of functional decomposition

N = Number of sub-functions

The functional states in Petri Nets are represented by transitions and denoted

by (T). As mentioned before, the dish machine will be designed by N-

PNDN and will consist of different layers. Therefore each layer of

resolution involves different functional states. For the first layer and the sub

layer the functional states are follows:

FIRST LEVEL:

F (S) = { F1 , F2 , F3 , F4 }

F1 = START (CLEAN DISHES)

F2 = LOAD – UNLOAD DISHES

F3 = WASH DISHES

F4 = DRY

20

F5 = STOP

SECOND LEVEL

The functional state Wash Dishes can be decomposed to the following

functional states:

F1= WASH DISHES

F2 = TAKE WATER IN

F3 = HEAT WATER

F4 = SUPPLY WATER TO PROPOLLER

F5 = ROTATE PROPOLLER

F6 = TAKE DETERGENT

F7 = TAKE WATER-OUT

F8 = STOP

THIRD LEVEL

The functional state “TAKE WATER IN” can also be decomposed into one

more layer and the functional states follows

F1 = TAKE WATER IN

F2 = OPEN THE INLET VALVE

F3 = STOP

The functional design tree of the dish machine is given in the following

page.

21

Figure 3.1 The Functional Design Tree of Dish Machine
(Korkmazel, 2001)

3.1.2 DEFINITION OF VARIABLES

Variable sets are grouped into 2:

 Continuous Variable Set (CVS): represents the cont. behavior of the

system.

 Discrete Variable Set (DVS): represents the type of configuration

based information that is required to be perceived and controlled by

the system to be designed.

In PNDN variables are defines as finite set of places and they are

represented by the symbol (O)

Based on this information the variables have been given below for the each

level of functional decomposition.

FIRST LEVEL

22

p10 = button (information about the start button, on or off)

p20 = clean (information about the cleanliness of the dishes)

p30 = door (information about the door of the machine, close or open

SECOND LEVEL

p10 = detergent (information for the amount of detergent)

p20 = water – temp (information for the water temperature)

p30 = water level (information for the water level)

THIRD LEVEL

p10 = water condition

p20 = filter

3.1.3 DEFINITION OF INSTANTIATIONS

Instantiations of the continuous variables are obtained by defining a

threshold value to the continuous variables. They can take 1 or 0 in

deterministic case and a value which varies between 0 and 1 for the non-

deterministic case. They are also represented by the symbol (O) In dish

machine design case:

FIRST LEVEL

p11 = on (button pressed)

p12 = off (button not pressed)

p21 = water – temp (dishes are clean)

p22 = water level (dishes are dirty)

p31=closed (door is closed)

p32 = open (door is open)

23

SECOND LEVEL

p11 = det (there is detergent in the machine)

p12 = nodet (there is no detergent in the machine)

p21 = T>Ts (water temperature is higher than washing temperature)

p22 = T<Ts (water temperature is lower than washing temperature)

p23 = T=Ts (water temperature is equal to washing temperature)

p31 = excess (there is excess water in the machine)

p32 = enough (there is enough water in the machine)

p33 = not enough (there is not enough water in the machine)

p34 = none (there is no water in the machine)

THIRD LEVEL

p11 = good

p12 = nogood

p21= notfull

p22 = full

3.1.4 DEFINITION OF DECISION FUNCTIONS

In PNDN, decision functions are represented as switches, which are the

special form of transitions (Tabak and Levis, 1985). They are used in order

to decide which instantiation is going to be fired and to process the

corresponding variable.

In the dish machine example:

FIRST LEVEL

24

DF={df1 , df2 , df3 }

df1 = Decision Function for button variable

df2 = Decision Function for clean variable

df3 = Decision Function for door variable

SECOND LEVEL

DF={df1 , df2 , df3 }

df1 = Decision Function for detergent variable

df2 = Decision Function for water-temp variable

df3 = Decision Function for water level variable

THIRD LEVEL

DF={df1 , df2 }

df1 = Decision Function for water-cond variable

df2 = Decision Function for filter variable

3.1.5 DEFINITION OF I – MAPPINGS

By definition it is the mapping from places to transitions and represented by

0 and 1. There are 2 types of I-Mappings.

 Type 1 : I-Mapping from variables to its decision functions

 Type 2 : I-Mapping from instantiations to Functional states

The I-Mapping for the top and sub levels are given below:

25

FIRST LEVEL

Type 1

I (button, df1) = 1 I(clean, df2) =1 I (door, df3) = 1

Type2

I (on, F3) = 1 I (off, F2) = 1 I (closed, F3) = 1

I (on, F4) = 1 I (clean, F4) = 1 I (closed, F4) = 1

I (on, F5) = 1 I (dirty, F3) = 1 I (open, F2) = 1

I (open, F5)=1

SECOND LEVEL

Type1

I (detergent, df1) = 1 I(water temp, df2) =1 I (water level, df3) = 1

Type 2

I (det, F6) = 1 I (nodet, F7) = 1 I (none, F8) = 1

I (T<Ts, F3) = 1 I (nodet, F8) = 1 I (nenough, F4) = 1

I (T>Ts, F2) = 1 I (nenough, F2) = 1 I (enough, F2) = 1

THIRD LEVEL

Type 1

I (water cond, df1) = 1 I(filter, df2) =1 I (good, F2) = 1

26

Type 2

I (nogood, F2) = 1 I (nogood, F3) = 1 I (notfull, F2) = 1

I (notfull, F3) = 1 I (full, F8) = 1

3.1.6 DEFINITION OF O-MAPPINGS

By definition it is the mapping from transitions to places and represented by

0 and 1. There are 2 types of O-Mappings.

 Type 1 - O-Mapping from decision functions to instantiations

 Type 2 - O-Mapping of functional states

FIRST LEVEL

Type 1

O (df1,on) = 1 O(df2, clean) =1 O (df3, closed) = 1

O (df1,off) = 1 O(df2, dirty) =1 O (df3, open) = 1

Type 2

O(F1, button) = 1 O(F2, button) = 1 O(F3, button) = 1

O(F1, clean) = 1 O(F2, clean) = 1 O(F3, clean) = 1

O(F1, door) = 1 O(F2, door) = 1 O(F3, door) = 1

O(F4, button) = 1 O(F4, clean) = 1 O(F4, door) = 1

SECOND LEVEL

Type 1

27

O (df1,det) = 1 O(df2, T<Ts) =1 O (df3, enough) = 1

O (df1,nodet) = 1 O(df2, T=Ts) =1 O (df3, nenough) = 1

O (df2,T>Ts) = 1 O(df3, excess) =1 O (df3, none) = 1

Type 2

O(F1, detergent) = 1 O(F1, water temp) = 1 O(F1, water level) = 1

O(F2, detergent) = 1 O(F2, water temp) = 1 O(F2, water level) = 1

O(F3, detergent) = 1 O(F3, water temp) = 1 O(F3, water level) = 1

O(F4, detergent) = 1 O(F4, water temp) = 1 O(F4, water level) = 1

O(F5, detergent) = 1 O(F5, water temp) = 1 O(F5, water level) = 1

O(F6, detergent) = 1 O(F6, water temp) = 1 O(F6, water level) = 1

O(F7, detergent) = 1 O(F7, water temp) = 1 O(F7, water level) = 1

THIRD LEVEL

Type 1

O (df1,good) = 1 O(df2, nogood) =1 O (df3, notfull) = 1

O (df1, full) = 1

Type 2

O(F1, water cond) = 1 O(F2, water cond) = 1 O(F3, water cond) = 1

O(F1, filter) = 1 O(F2, filter) = 1 O(F3, filter) = 1

Having defined the O-Mapping, the N-PNDN construction is completed for

the dish machine design. As a result the NPNDN for the dish machine is

given in Figure 3.2, Figure 3.3 and Figure 3.4

28

At the first level of clean dishes functional state decomposed into “Load-

Unload”, “Wash Dishes”, “Dry”, “Stop” functional states. The variables

“Button”, “Clean”, “Door” and the relevant instantiations have been

connected through decision functions. At the second level “Wash Dishes”

functional state decomposed into “Take Water In”, “Heat Water”, “Bring

Water to Propeller”, “Rotate Propeller”, “Take Detergent”, “Take Water

Out” and “Stop” functional states. Finally at the third level “Take Water In”

functional state decomposed to “Open Inlet Valve”, “Actuate Water

Condition Unit” and “Stop” functional states together with their variables

which are denoted by place sets and instantiations.

CLEAN
DISHES

DRY

STOP

WASH DISHES

 P11

 P21

 P12

 P22

 P31

 P32

on

off

clean

dirty

closed

open

Button

Clean

Door

LOAD - UNLOAD
DISHES

df1

df2

df3

Figure 3.2 N-PNDN of the Dish Machine, the top most level of Dish

Machine, (Korkmazel, 2001)

29

W A S H
D IS H E S

H E A T W A T E R

 P 1 1

 P 2 1

 P 1 2

 P 2 2

 P 3 2

 P 3 3

T A K E W A T E R - IN

 P 3 1

 P 3 4

 P 2 3

B R IG W A T E R T O
P R O P E L L E R

R O T A T E
P R O P E L L E R

T A K E
D E T E R G E N T

T A K E W A T E R -
O U T

S T O P

n o d e t

d e t

T > T s

T < T s

T = T s

e x c e s s

e n o u g h

n e n o u g h

n o n e

W a te r L e v e l

W a te r -T e m p

d e te rg e n t

Figure 3.3 The sub-layer of the functional state Wash Dishes and its

functional decomposition, (Korkmazel, 2001)

TAKE
WATER IN

STOP

ACTUATE WATER
COND. UNIT

 P11

 P21

 P12

 P22

OPEN INLET
VALVE

Water Cond

Filter

good

nogood

full

not-full

Figure 3.4 The sub-layer of the functional state Take Water - In and its

functional decomposition, (Korkmazel, 2001)

30

3.2 TOKEN FLOW IN N-PNDN

The token flow in N-PNDN is the same with the PNDN; however token

flow in each level is independent from other levels. Therefore the token

flows are uncorrelated from each other. In order to understand the details of

token flow in N-PNDN, some basic definitions should be explained.

In order to enable a decision function, it’s input places should have token

and all of its output places should have a token. This is called variable

marking (MV). If those conditions prevail, the enabled decision functions

fire simultaneously by removing the input tokens from their places and then

putting it in one of its transitions. This is called instantiation marking (MI).

Instantiation marking makes the transitions enable which means that all the

instantiations (places) of the relevant transition have tokens on them. When

a transition fires, it removes the token on its transitions and inserts it on its

relevant places. This results in also variable marking (MV). In N-PNDN

structure if one of the functional state or in other words if one of the enabled

transition has sub layer, the token goes through the start transition of the sub

– layer and the token flow on the upper layer stops for a while until the

token flow at the sub-level finishes. The termination criterion in order to

finish a token flow is the visit of the token to the STOP transition. This

means that the relevant function perform has finished and it is time to back

to the upper layer. This goes on and repeats until all token flow at sub levels

have finished, including every resolution level. Later on the token flow goes

on like the single layer PNDN structure and the program restarts. Having

first inserted and started the token flow from CLEAN DISHES transition,

variable marking for dish machine is given starting from Figure 3.5 to

Figure 3.12 step by step. Figure 3.5 shows variable (MV) marking for dish

machine at the top most level. Figure 3.6 gives Token Flow through

decision functions to instantiations of variable places. In Figure 3.7 “WASH

DISHES” transition fires and the token flows through the sub level of that

31

transition which is given in Figure 3.8. The token will come back to the top

most level when it visits the stop transitions of its sub levels. When the

WASH DISHES transition is fired, the variable marking automatically takes

place and the token flows to the variable places of child PNDN of the

WASH DISHES functional state. The variable marking is given in Figure

3.8 for the second level. The token flows through the decision functions to

instantiation of variable places and is given in Figure 3.9. In Figure 3.10

“Take Water In” transition is fired (Korkmazel, 2001).

CLEAN
DISHES

DRY

STOP

WASH DISHES

 P11

 P21

 P12

 P22

 P31

 P32

on

off

clean

dirty

closed

open

Button

Clean

Door

LOAD - UNLOAD
DISHES

df1

df2

df3

CLEAN
DISHES

DRY

STOP

WASH DISHES

on

off

clean

dirty

closed

open

Button

Clean

Door

LOAD - UNLOAD
DISHES

df1

df2

df3

 Figure 3.5 Token Flow Figure 3.6 Token Flow
 First Step for Dish Machine Second Step for Dish Machine

(Korkmazel, 2001) (Korkmazel, 2001)

CLEAN
DISHES

DRY

STOP

WASH DISHES

on

off

clean

dirty

closed

open

Button

Clean

Door

LOAD - UNLOAD
DISHES

df1

df2

df3

WASH
DISHES

HEAT W ATER

 P11

 P21

 P12

 P22

 P32

 P33

TAKE W ATER - IN

 P31

 P34

 P23

BRING W ATER TO
PROPOLLER

ROTATE
PROPOLLER

TAKE
DETERGENT

TAKE WATER-
OUT

STOP

nodet

det

T>Ts

T<Ts

T=Ts

excess

enough

nenough

none

Water Level

W ater-Temp

detergent

 Figure 3.7 Token Flow Figure 3.8 Token Flow
 Third Step for Dish Machine Fourth Step for Dish Machine
 (Korkmazel, 2001) (Korkmazel, 2001)

32

W A S H
D IS H E S

H E A T W A T E R

T A K E W A T E R - IN

B R IN G W A T E R T O
P R O P O L L E R

R O T A T E
P R O P O L L E R

T A K E
D E T E R G E N T

T A K E W A T E R -
O U T

S T O P

n o d e t

d e t

T > T s

T < T s

T = T s

e x c e s s

e n o u g h

n e n o u g h

n o n e

W a te r L e v e l

W a te r -T e m p

d e te rg e n t

W ASH
DISHES

HE AT W ATER

TAKE W ATER - IN

BRING WA TER TO
PROP OLLER

ROTATE
PROP OLLER

TAKE
DETERGENT

T AKE WA TER-
OUT

STOP

nodet

det

T>Ts

T<Ts

T=Ts

excess

enough

nenough

none

Water Level

Water-Temp

detergent

 Figure 3.9 Token Flow Figure 3.10 Token Flow
 Fifth Step for Dish Machine Sixth Step for Dish Machine
 (Korkmazel, 2001) (Korkmazel, 2001)

Since the “Take Water In” transition has also a sub level the token will go

through the sub level of the fired transition and the token flow starts at the

final resolution level by variable marking (MV) which is shown in Figure

3.11. Later on as shown in Figure 3.12 instantiation marking. The token

flow will continue here unless the token visits the STOP transition. This is

shown in Figure 3.13. When this happens the considered task for the

functional state TAKE WATER – IN finishes and the token returns back

again to its upper layer where first the TAKE WATER – IN transition has

been fired and token flow restarts as shown in Figure 3.14.

TAKE
WATER IN

STOP

ACTUATE WATER
COND. UNIT

OPEN INLET
VALVE

Water Cond

Filter

good

nogood

full

not-full

W ASH
D ISHES

HEAT W ATER

TAK E W ATER - IN

BR ING W ATER TO
PRO PO LLER

ROTATE
PRO PO LLER

TAKE
DETERG ENT

TAKE W ATE R-
OUT

STOP

nodet

det

T>Ts

T<Ts

T=Ts

excess

enough

nenough

none

W ater Level

W ater-Tem p

detergent

 Figure 3.11 Token Flow Figure 3.12 Token Flow
 Seventh Step for Dish Machine Eight Step for Dish Machine
 (Korkmazel, 2001) (Korkmazel, 2001)

33

3.3 Evaluation of features of PNDN

In this section it has been shown that PNDN is a module which can be used

to model every resolution level in the functional decomposition of

mechatronic products. This modularity concept is used and as an application

of this feature dish machine example is given. The term “Modularity” is

used to describe the use of common units to create different products and it

represents a common modeling unit for the different subfunctions of the

system. Modularity is a powerful way of representing the flow of

information contained within every subfunction of the system. Hence the

subfunctions of the system are uncoupled which constitutes the functional

independence. Using the common modeling approach following benefits has

been provided:

Incrementability : The current functional model does not need any

modification when it is necessary to add a new subfunction.

Modifiability: Each subfunction model is independent of each other so new

replacements can be made independently.

Transparency: The whole subfunction structure makes the system

understandable and the user can analyze the internal structure of subfunction

modules easily.

Those modularity features of PNDN and therefore N-PNDN are explored by

information flow between levels in dish machine example. For the

modularity of PNDN, the “START” transition is replaced with another

transition named after the subfunction it represents. This is the modification

which is made in PNDN theory and that establishes the N-PNDN.

34

Mechatronic systems consist of sensory, cognitive and motoric subsystems.

Assuming that mechatronic systems are the formation of function tree, each

function is fulfilled by the typical sensory, motoric, cognitive subsystems.

Those sub systems compromises a mechatronic module. If we consider the

dish machine example; transitions represent subfunctions or activities of a

mechatronic system, places represent the sensory information coming from

environment and decision functions represent processor which possesses the

sensory information coming from the environment.

35

CHAPTER 4

THE DESIGN NETWORK SIMULATOR FOR THE IMPROVED

N-PNDN THEORY

The Design Network Simulator (Güroğlu, 1999) is further developed for the

N-PNDN theory which enables us to decompose and represent a

mechatronic product in multi level form. As mentioned before each level is

based on PNDN theory and independent of each other.

In this chapter an overview of the software package will be given.

Furthermore the algorithm developed for the construction of N-PNDN and

the algorithm for the token flow of N-PNDN will be presented.

4.1 AN OVERVIEW OF FURTHER DEVELOPED DNS

4.1.1 Programming Environment

The visual programming environment of Design Network Simulator makes

it possible to decompose the mechatronic systems into its functional states.

The integrated development environment (IDE) of Borland C++ Builder is

used during the development of the program. The fundamental elements of

N-PNDN (transitions, place sets, I/O Mapping and switches) are designed as

separate elements, and creating new layer for each transition is enabled. For

convenience, the above mentioned features are combined and the user does

not need any additional programming.

36

4.1.2 Structure of the Software Package

DNS is composed of two parts.

• Graphical User Interface

• Software Modules

Graphical User Interface

Graphical User Interface consists of the design window, the tool bar and the

control panel.

Software Modules

Software modules are subdivided into three parts which are shown in the

Figure 4.1. The creation and simulation of N-PNDN is also involved in

modules and will be investigated in the next section of this chapter.

DNS

DESIGN NETWORK
CREATION

DETERMINISTIC NON-
DETERMINISTIC

SIMULATION (TOKEN
FLOW) ANALYSIS

 Figure 4.1 Architecture of Design Network Simulator.

37

4.2 GRAPHICAL USER INTERFACE

The Graphical User Interface should support both for single and multi level

network creation. In addition to this, it should also support storing,

retrieving and printing designs. GUI includes design window, object

inspector, tool bar, control panel, help part.

Design Window

Design window is a basic form which is provided by Borland C++ Builder

IDE (Integrated Development Environment). In this form the user can place

the transitions, place sets, switches and create links between the net

elements in order to create the design network.

When it is necessary the user can also change the locations of the elements

of net by dragging. For the further applications, the created design network

can be saved as text file in a directory and can be regenerated by retrieving

it.

Furthermore DNS allows to print the design network and those basic

features are all combined in Design Window. It is also possible to divide the

design window into grids and therefore the user can align the elements of

the design network. This provides a more tidy structure. When the user

clicks an element to put on the design window, the upper left corner of the

element is attached on the selected grid.

When the program first executes, the base form appears on the screen with

control panel and tool bar. The user should open a new design window or

retrieve a design which is saved before. At the same time object inspector

window also appears near to the design window in order to inform the user

about the elements.

38

In Figure 4.2 the screen shot of the main screen of DNS is given.

Figure 4.2 Graphical User Interface

Object Inspector

Object Inspector window is used for data access for the network elements.

The user can easily edit or enter the information for the related network

element. Figure 4.3 shows the screen shot of the object inspector window

for the on off button component of dish machine.

39

Figure 4.3 Object Inspector of DNS

The first row of the object inspector window indicates the name of the

component clicked on. In the second row, for convenience, the caption can

be replaced by an abbreviation which makes easy to inform the user. The

third row determines the type of the component such as Transition, Place

Set and Switch and is defined automatically. Any attempt to change the

name, number and sub number property of the network components are not

allowed. The primary index which has been given in the fourth row is only

defined for the transitions (functional states), place sets (variables and

instantiations), switches (decision functions). On the other hand the

secondary index is only defined for the place sets of the design network and

used to distinguish the variables and the instantiations. Info tab of the

component is used for the information access and that access is done by text

box.

40

Tool Bar

The tool bar is the part on which the buttons are offered for the network

construction operations and located on the left hand side of the design

window. Figure 4.4 shows the tool bar and its buttons.

Add FS

Add Instantiation

Connect

OR Link

Move

Remove FS
Output

Place Tokens

Edit

Add Variable

Open
New Layer

Disconnect

Erase

Add FS Output

Show Girds

Remove Token

Figure 4.4 . The tool bar of the DNS

41

The edit button calls for the object inspector window and enables the user to

do the events that are explained in the previous part. The basic components

of design network are created by clicking once on functional state, add

variable, add instantiation button. In order to create a new layer to the

selected transition the user should click on the open new layer button.

Connect, Or link and Disconnect buttons are used for creating and removing

input and output mappings between the components of the design network.

Erase button is used in order to delete a component. Once a component is

deleted, it is impossible to recall the deleted item. Move button is for

dragging the selected items to the desired location of the design window. If

we want to establish or remove a functional output then one should click on

the Add FS output or Remove FS output buttons respectively. As mentioned

before if the user wants to divide the design window into grids, one should

click on the grid button. During the simulation the token insertion is done by

clicking on the place token button and vice versa is done by clicking on the

remove token button.

Control Panel

Control panel presents the basic facilities to the user like new, open save,

print commands. Other than these commands are explained below. The

Figure 4.5 shows the control panel of DNS.

New ExitHelpSave

Print WordOpen MATLAB

Run

Stop

Non -
DeterministicPause

Deterministic

Figure 4.5 – The control panel of DNS

42

As shown above, the first group indicates the “new”, “open”, “save”, “print”

buttons. Later on “run”, “stop” and “pause” buttons come for which, one

uses during the simulation and therefore token flow.

Deterministic and non-deterministic buttons determine the simulation type

and also indicate which type of simulation is valid through the run time of

program. The MsWord and MatLab icons open those program interfaces.

Exit button terminates the program execution.

4.3 SOFTWARE MODULES OF DNS

4.3.1 Creation of Design Network

Creation of design network starts with placement of the start transition on

the design window. The caption of the first transition is “START”. The

second step is place the variables. When the user clicks on the variable

button and then clicks on the design window a variable is automatically

created. At the same time the O-Mapping of the START transition is also

established by DNS.

In addition to that, having placed the variables of the design network,

decision functions of the related variables are also placed with their I-

Mappings automatically.

In the following step one should define the instantiation of the variables and

O-Mapping for decision functions. When this is done, the O-Mappings for

decision functions are also created automatically.

As last step, by placing the other functional states which are represented by

transitions and after creating the following I/O Mappings, the first layer

PNDN network is completed.

43

Now if one wants to expand and decompose a functional state, “Open

NewLayer” button should be clicked. When this is done, the valid design

window is saved as text file and then removed from stack in order to avoid

stack overflow. Later on DNS opens a new design window and makes it

possible to create a new PNDN network for the relevant functional state. In

this case a new button with a caption “BACK” appears on the left bottom

corner of the new created design window. The user can return to the one

upper level by clicking this button when he desires. The point on which the

user should give his attention that; a “STOP” transition in each sub level

should be created since the aim is to return the token to the upper level

during simulation. The algorithm for the creation of N-PNDN is given

Figure 4.6:

44

 Figure 4.6 Algorithm for the Creation for N-PNDN

45

In this algorithm;

i is a counter for Variables

N is the number of Variables

K is a counter of Instantiations

Si is the number of Instantiations for the ith Variable

H is a counter for Functional States,

M is the number of Functional States.

L is the counter for level

The algorithm is applied to the dish machine example. As mentioned before

the first step is to place the “START” transition on the design window. The

O-Mapping of START transition; Decision Functions and I-Mappings for

decision functions are created automatically.

 Figure 4.7 Creation of N-PNDN for the dish machine

46

 Figure 4.8 Creation of N-PNDN for the dish machine (continued)

 Figure 4.9 Creation of N-PNDN for the dish machine (continued)

47

Figure 4.10 Creation of N-PNDN for the dish machine (continued)

 Figure 4.11 Creation of N-PNDN for the dish machine (continued)

48

 Figure 4.12 Creation of N-PNDN for the dish machine (continued)

Figure 4.7–4.12 illustrates the creation of N-PNDN modeling of dish

machine example. As it can be seen easily each time when a new level is

created a button with a caption “BACK” is automatically created in order to

return to the upper level during construction.

4.3.2 Token Flow in N-PNDN (Simulation)

Having modeled the product in N-PNDN, it is easy to simulate and model

the dynamic behavior of the design. The main purpose in modeling is the

information flow between the network elements. The DNS presents two

types of token flow. Those are deterministic and non-deterministic token

flows. DNS enables both type of token flow for the single level

decomposition. However the developed algorithm supports only

deterministic token flow for the multi-level decomposition of mechatronic

products.

49

Deterministic Token Flow

The new developed algorithm for the deterministic token flow is given

below in Figure 4.10. The simulation begins with placing the tokens on the

place sets. This variable marking, MV, enables the decision functions. When

the token flow starts, enabled decision functions fire and tokens are re-

placed in one of the instantiations of their variables.

After the instantiation marking, the functional states which have tokens in

their instantiations are enabled. This means that the enabled transitions can

fire during the token flow.

When one or more of the transitions have sub levels, the design window that

carries the PNDN structure of that transition opens and the present design

window is saved and deleted from stack. As the new design window opens,

the token passes to the start transition of the sub level and the token flow is

restarted by the user. At this stage, the back button doesn’t appear since the

token flow is active and DNS does not allow the user to return to the upper

level.

In the sub level of DNS, the token flow goes on till the stop transition fires

and the PNDN rules prevail also in this level. The firing of “STOP”

transition means that the function of the decomposed transition is finished

and the token can pass to the upper level. If the existing transitions have also

sub levels in the active window, the process goes on till the token visits all

the stop transitions of the relevant level. The N-PNDN structure is time

independent. Therefore the token, flows only through the active design

window.

When the stop transition fires, the active design window is saved as text file

by DNS. The token passes to the upper level and places again in the

50

transition where token flow is lastly interrupted because of the sub level

decomposition of that transition.

Create Petri

Net

Place Tokens
in M v

Start Token
Flow

i=1

For dfi, is there a
token in pi0

Rem ove token from pi0,
and put token one of its

alternartives

i=k?

J=1

For F j, is there a token in
each input place

Fire Fj

Fire dfi

L++

L=0

For F j, is there a
sublayer?

Put Token in
the START

Transition of
the sublayer

Y

Y

Y

Is F j return
Transition

Go to the related
upper layer and put

token to each
output place of the

fired Transition

N

N
N

L--

Y

i++ N

Remove token from
each input place Fj

and put token to
each output place

of F j

STOPY
Is Fj STOP

?

j=m ?

N

J++ N

Y

N

Y

Figure 4.13 The algorithm for Deterministic Token Flow in N-PNDN

Figure 4.13 shows the deterministic Token Flow on N-PNDN of dish

Machine and the firing of “START” transition. The user should place the

token in the variables which is called variable marking.

51

The user places the tokens on the selected variables. Figure 4.14 shows that

the variables “BUTTON”, “CLEAN” and “DOOR” have tokens and the

DNS gives the message of “Please place the tokens on instantiations”.

After this stage as it is shown in Figure 4.14, DNS is waiting the user to

place the tokens on one of its instantiations. The instantiations of “ON”,

“DIRTY” and “CLOSED” are selected by placing tokens on them in order

to fire the “WASH DISHES” functional state. As it is mentioned in previous

chapter the “WASH DISHES” functional state has multi level

decomposition.

 Figure 4.14 Token Flow in N-PNDN

52

 Figure 4.15 Token Flow in N-PNDN (continued)

 Figure 4.16 Token Flow in N-PNDN (continued)

53

 Figure 4.17 Token Flow (continued)

When the functional state of “WASH DISHES” is fired, the new design

window and the sub level of the functional state are automatically retrieved

as seen in Figure 4.17. Now the user should start the token flow again. This

is done by clicking the run button and a token is placed on the “START”

transition. Therefore the token flow starts for the “WASH DISHES”

functional state as shown in Figure 4.17

Then DNS waits the user to place the tokens on the variables and gives the

related message. After placing the tokens on variables the next step is again

to place the tokens on the desired instantiations as shown in Figure 4.18.

54

 Figure 4.18 Token Flow (continued)

 Figure 4.19 Token Flow (continued)

The instantiations of “DET”, “T>Ts” and “NOT ENOUGH” are selected in

order to fire the “TAKE WATER” functional state as shown in Figure 4.19.

The “TAKE WATER” functional state has sub level and the information

55

flow will go on till the token reaches to the final resolution level of the

related functional state.

When the “TAKE WATER” functional state is fired the active design

window is closed and the sub level of “TAKE WATER” functional state is

opened. The PNDN structure of that functional state is given in Figure 4.20

and the user should start the token flow and therefore the information flow

by placing the token in “START” transition.

 Figure 4.20 Token Flow (continued)

56

 Figure 4.21 Token Flow (continued)

After placing the tokens on the “WATER CONDITION” and “FILTER”

place sets, the DNS waits the designer to place the tokens on one of the

instantiations of the relevant place sets as shown in the Figure 4.21.

In Figure 4.22, having placed the tokens on the instantiations, the “STOP”

transition is fired in order to finish the token flow and therefore the

information flow for the “TAKE WATER IN” functional state.

When the STOP transition is fired the active design window is closed which

indicates the end of token flow for the active design window.

57

 Figure 4.22 Token Flow (continued)

 Figure 4.23 Token Flow Figure (continued)

In Figure 4.24 the upper level and therefore the PNDN structure of “WASH

DISHES” is opened.

58

Now DNS is waiting for the user again to place the tokens in one the

instantiation of the place sets and so the token flow restarts.

 Figure 4.24 Token Flow

59

CHAPTER 5

CASE STUDIES

In this chapter 4 case studies have been given and note that FDT is

dependent on the designer. This means that different designers can form

different functional models which yields different physical systems based on

decisions made by different designers.

5.1 N-PNDN Model of Mouse

The N-PNDN model of mouse has “Change Position of Cursor in 2D”,

“Detect and measure changes in X & Y”, “Send Data”, “Apply Control

Gain”, “Stop” transitions in the first level of decomposition.

The functional state of “Detect and measure changes in X & Y”, is

decomposed as “Generate light pulses”, “Convert into X and Y movement”

and “Stop” transition in the second level of decomposition. “Control Gain”

functional state is decomposed as “D/A Conversion” and “Apply Gain” and

“Stop” transition. Finally the functional state “Send Data” is decomposed as

“A/D Conversion”, “Generate IR Signal”, “Receive IR signal” and “Stop”

transition. The functional design tree of mouse is given in Figure 5.1 and the

following computer implementation of mouse is given in Figure 5.2 and

Figure 5.3.

60

 Figure 5.1 Functional Design Tree of Mouse

Definition of Functional States

FIRST LEVEL:

F (S) = { F1 , F2 , F3 , F4, F5 }

F1 = Change Position of Cursor in 2D,

F2 = Detect and measure changes in X & Y,

F3 = Send Data (distance / direction / speed) to Computer

F4 = Apply Control Gain

F5 = Stop

61

SECOND LEVEL

Functional decomposition of the functional state “F2-Detect and measure

changes in X & Y”

F (S) = {F1, F2, F3, F4}

F1= Generate Light Pulses

F2 = Convert Pulses into X and Y movement

F3 = Stop

The decomposition of the functional state “F3-Send data

distance/direction/speed to Computer” as follows:

F (S) = {F1 , F2 , F3 , F4}

F1= Analog/Digital Conversion (Convert Pos. Info to IR Signal)

F2 = Generate IR signal

F3 = Receive IR signal

F4 = Stop

The decomposition of the functional state “F4-Apply Control Gain” as

follows:

F (S) = { F1 , F2 , F3)

F1= Digital/Analog Conversion (Convert IR Signal to Position Signal)

F2 = Apply Gain

F3 = Stop

Definition of Variables

FIRST LEVEL

62

p10 = movement (information about existence of movement)

p20 = RS data (information about information in serial port)

SECOND LEVEL

The variables for the sub-level of the functional state “Detect & Measure”:

p10 = motion movement (information about existence of motion)

p20 = pulse check

The variables for the sub-level of the functional state “Send Data”:

p10 = Measurement Info

p20 = pulse check (the information about the existence of the pulse)

The variables for the sub-level of the functional state “Control Gain”:

p10 = signal (is there any signal or not)

p20 = Gain (the amount of gain to be applied)

Instantiations of Variables

FIRST LEVEL

p11 = mov (there is movement

p12 = nomov (there is no movement)

p21 = data (there is information in serial port)

p22 = nodata (there is no information in serial port)

63

SECOND LEVEL

The instantiation variables for the sub-level of the functional state “Detect &

Measure”:

p11 = motion (motion is detected)

p12 = no motion (no motion is detected)

p21 = Exist (pulse exist)

p22 = No Exist (no pulse exist)

The instantiation variables for the sub-level of the functional state “Send

Data”:

p11 = info (there is info)

p12 = no-info (there is no info)

p21 = signal (there is signal)

p22 = no-signal (there is no signal)

The instantiation variables for the sub-level of the functional state “Control

Gain”:

p11 = signal exist(there is signal)

p12 = no-signal (there is no signal)

p21 = gain 1 (apply gain G1)

p22 = gain 2 (apply gain G2)

p23= gain 3 (apply gain G3)

64

Decision Functions

FIRST LEVEL

DF={df1 , df2 }

df1= decision function for the movement variable

df2= decision function for the serial port

SECOND LEVEL

The decision functions for the sub level of the function state “Detect &

Measure” follows:

DF={df1, df2}

df1= decision function for the motion variable

df2= decision function for the pulse check

The decision functions for the sub level of the function state “Send Data”

follows:

DF={df1, df2}

df1= decision function for the measurement info variable

df2= decision function for the signal variable

65

The decision functions for the sub level of the function state “Control Gain”

follows:

DF={df1, df2}

df1= decision function for the measurement info variable

df2= decision function for the signal variable

DEFINITION OF I – MAPPINGS

FIRST LEVEL

I (movement, df1) = 1 I(data, df2) =1

I (mov, F1) = 1 I (nomov, F4) = 1

I (data, F3) = 1 I (nodata, F4) = 1 I (mov, F2) = 1

SECOND LEVEL

The I-Mappings in the sub level of the functional state of “Detect &

Measure”:

I (motion, df1) = 1 I (pulse check, df2) =1

I (motion, F1) =1 I (notexist, F1) =1

I (exist, F2) =1 I (no motion, F3) =1

The I-Mappings in the sub level of the functional state of “Send Data”:

I (measure info, df1) = 1 I(signal, df2) =1

I (info, F1) = 1 I (no signal, F2) = 1

I (info, F2) = 1 I (signal, F3) = 1

66

I (no info, F4) = 1

The I-Mappings in the sub level of the functional state of “Control Gain”:

I (signal, df1) = 1 I (gain, df2) =1

I (signal exist, F1) = 1 I (signal exist, F2) = 1

I (gain 1, F2) = 1 I (gain 2, F2) = 1

I (gain 3, F2) = 1 I (no signal, F3) = 1

DEFINITION OF O – MAPPINGS

FIRST LEVEL

O (df1, mov) = 1 O(df2, data) =1 O (F3, movement) = 1

O (df1, nomov) = 1 O(df2, nodata) = 1 O(F3, RSdata) = 1

O(F1, movement) = 1 O(F2, movement) = 1 O(F4, movement) = 1

O(F1, RSdata) = 1 O(F2, RSdata) = 1 O(F4, RSdata) = 1

SECOND LEVEL

The O-Mappings of sub level of the functional state of “Detect & Measure”:

O (df1, motion) = 1 O(df1, no motion)=1 O (df2, Exist) = 1

O(df2, no exist)=1 O(F1,Motion) = 1 O(F2,Pulse Check) = 1

O(F1, Pulse Check) = 1 O(F2, Motion) = 1

The O-Mappings of sub level of the functional state of “Send Data”:

O (df1, info) = 1 O(df1, no info)=1 O (df2, Signal) = 1

O (df2, no signal) = 1 O(F1,Measure Info)=1 O(F2,Measure Info)=1

67

O(F3,Measure Info)=1 O(F1,Signal)=1 O(F2,Signal)=1

O(F3,Signal)=1

The O-Mappings of sub level of the functional state of “Control Gain”:

O (df1,signal) = 1 O(df1, no signal) =1

O(df2, gain 1) = 1 O(df2, gain 2) = 1 O(df2, gain 3) = 1

O(F1, A signal) = 1 O(F2, Signal) = 1

O(F1, gain) = 1 O(F2, gain) = 1

 Figure 5.2 PNDN of Mouse at the first level decomposition

68

 Figure 5.3 PNDN model of Mouse for the second level

5.2 N-PNDN Model of CD player

In the N-PNDN model of CD player “Start”, “Import CD”, “Rotate CD”,

“Read Data on CD”, “STOP/ Export CD” come in the first decomposition

level. The functional state “Import CD” is decomposed to “Import

Electricity”, “Actuate Electricity” and “Convert Electricity” and “Stop”

functional states in the second level. In addition to that, the functional state

in the first level “Rotate CD” is decomposed into “Import Electricity”,

“Convert Electrical energy into Mechanical Energy” and “Stop” functional

states. The functional state in the first level “Read Data on CD” is

decomposed into “Import Electricity”, “Convert Electrical Energy into

Optic Energy”, “Send out Optic Energy”, “Collect the Reflected Energy”,

“Analog to Digital Conversion” and “Stop” functional states in the second

69

level. Lastly the functional state “Export CD” in the first level is

decomposed into “Import Electricity”, “Actuate Electricity”, “Convert

Electricity” and “Stop” functional states.

 The relevant functional design tree is given in Figure 5.4. The following

computer implementation of CD player is given in Figure 5.5 and Figure

5.6. The figures show the first level decomposition and the sub level of the

functional state “Rotate CD”.

 Figure 5.4 Functional Design Tree of CD player

Definition of Functional States

FIRST LEVEL:

70

F (S) = { F1 , F2 , F3 , F4, F5 }

F1 = Import CD

F2 = Rotate CD

F3 = Read data on CD

F4 = Export CD / Stop

SECOND LEVEL

Functional decomposition of the functional state “Import CD” into its

subfunctions follows:

F (S) = { F1 , F2 , F3 , F4 }

F1= import Electrical Energy

F2 = actuate electricity

F3 =convert electric energy to mechanical energy

F4= transfer mechanical energy

F5=Stop

Functional decomposition of the functional state “Rotate CD” into its

subfunctions follows:

F (S) = { F1 , F2 , F3 , F4 }

F1= import Electricity

F2 =convert electric energy to mechanic energy

F3 =transfer mechanical energy

F4= Stop

Functional decomposition of the functional state “Read Data on CD” into its

subfunctions follows:

F (S) = { F1 , F2 , F3 , F4 }

F1= import electricity

71

F2 =convert electric energy to optic energy

F3 =send out optic energy

F4= collect reflected energy

F5= analog to digital conversion

F6= Stop

Definition of Variables

FIRST LEVEL

p10 = availability of CD

p20 = Play command

SECOND LEVEL

The variables for the sub level of the functional state of “Rotate CD”:

p10 = command

p20 = availability of CD

Instantiations of Variables

FIRST LEVEL

p11=yes (there is CD inside)

p12=no(there is no CD inside)

SECOND LEVEL

The instantiation variables for the sub-level of the functional state “Rotate

CD”:

72

p21=yes (play the CD)

p22=no(do not play the CD)

Decision Functions

FIRST LEVEL

DF={df1 , df2 , df3 }

df1= decision function for availability of CD

df2= decision function for play command

SECOND LEVEL

The decision functions for the sub level of the function state “Rotate CD”

follows:

DF={df1, df2}

df1= decision function for command

df2= decision function for availability of CD

DEFINITION OF I – MAPPINGS

FIRST LEVEL

I (availability, df1)=1 I(play, df2)=1

I(av. yes,F2)=1 I(av. yes, F3)=1 I(av. no, F1)=1

I(pl. yes, F1)=1 I(pl. yes, F2)=1 I(pl. yes,F3)=1

I(pl. no,F4)=1

SECOND LEVEL

73

The I-Mappings for the sub level of the functional state “Rotate CD”

I(command, df1)=1 I(availability, df2)=1

I(comm. yes, F1)=1 I(comm. yes, F2)=1

I(comm. yes, F3)=1 I(comm. no, F4)=1 I(avail. yes, F2)=1

I(avail. yes, F3)=1 I(avail. no, F4)=1

DEFINITION OF O – MAPPINGS

FIRST LEVEL

O(df1, av. yes)=1 O(df2, play yes)=1 O(F1, av. of CD)=1

O(df1, av. no)=1 O(df2,play no)=1 O(F2, av. of CD)=1

O(F3, av. of CD)=1 O(F1, play com.)=1 O(F2, play com.)=1

O(F3, play com.)=1

SECOND LEVEL

The O-Mappings for the sub level of the functional state “Rotate CD”

O(df1,yes)=1 O(df1, no)=1 O(df2,yes)=1

O(df2, no)=1 O(F1,command)=1 O(F2, command)=1

O(F3, command)=1 O(F1,av. of CD)=1 O(F2, av. of CD)=1

O(F3, av. of CD)=1

74

 Figure 5.5 PNDN model of CD player

 Figure 5.6 PNDN model of “Rotate CD” subfunction

75

5.3 N-PNDN Model of Coffee Machine

In the N-PNDN model of Coffee Machine “Start”, “Import Water”, “Import

Coffee”, “Generate Heat”, “Mix Coffee and Water” come in the first

decomposition level. The functional state “Generate Heat” is decomposed to

“Import Electricity”, “Convert Electricity to Heat” and “Sense Heat” and “

Stop” functional states in the second level. In addition to that, the functional

state in the first level “Mix Hot water and Coffee” is decomposed into

“Guide Water” and “Generate Mixture” and “Stop” functional states. The

relevant functional design tree is given in Figure 5.11. The following

computer implementation of coffee machine is given in Figure 5.12 and

Figure 5.13. The figures show the first level decomposition and the sub

level of the functional state “Generate Heat”.

 Figure 5.7 Functional Design Tree of Coffee Machine

Definition of Functional States

FIRST LEVEL:

76

F (S) = { F1 , F2 , F3 , F4, F5 }

F1 = Import Water

F2 = Import Coffee

F3 = Generate Heat

F4 = Mix Hot Water and Coffee

F5 = Stop

SECOND LEVEL

Functional decomposition of the functional state “Generate Heat” into its

subfunctions follows:

F (S) = { F1 , F2 , F3 , F4 }

F1= Import Electricity

F2 =Convert Electricity to Heat

F3 =Stop

Functional decomposition of the state “Mix Hot Water and Coffee” in to its

subfunctions follows:

F (S) = { F1 , F2 , F3 , F4 }

F1= Guide Water

F2 =Generate Mixture

F3 =Stop

Definition of Variables

FIRST LEVEL

p10 = Check Water (information about existence of water)

p20 = Check Coffee (information about coffee in the machine)

77

p30 = Electricity (is electricity actuated or not?)

SECOND LEVEL

The variables for the sub-level of the functional state “Generate Heat”:

p10 =command (on or off)

p20 = Thermostat (is the water temperature is less or greater than 70)

The variables for the sub-level of the functional state “Mix Hot Water and

Coffee”:

p10 =water flow (yes or no)

p20 = Filter (yes or no)

Instantiations of Variables

FIRST LEVEL

p11 = yes (there is water)

p12 = no (there is no water)

p21 = yes (there is coffee)

p22 = no (there is no coffee)

p31 = yes (electricity is actuated)

p32 = no (electricity is not actuated)

SECOND LEVEL

The instantiation variables for the sub-level of the functional state “Generate

Heat”:

78

p11 = on

p12 = off

p21 = T<70 (temperature is below 70 C)

p22 = T>70 (temperature above70 C)

The instantiation variables for the sub-level of the functional state “Mix Hot

Water and Coffee”:

p11 = yes-there is water flow)

p12 = no- there is no water flow

p21 = yes-coffee in filter

p22 = no-no coffee in filter

Decision Functions

FIRST LEVEL

DF={df1 , df2, df3 }

df1 = decision function for the water

df2 = decision function for the coffee

df3 = decision function for the electricity

SECOND LEVEL

Decision functions for the sub level of the functional state “Generate Heat”

DF={df1, df2 }

df1= decision function for the water

df2= decision function for the filter

Decision functions for the functional state “Mix Hot Water and Coffee”

79

DF={df1, df2 }

df1= decision function for the command

df2= decision function for the thermostat

DEFINITION OF I – MAPPINGS

FIRST LEVEL

I (check water, df1) = 1 I(check coffee, df2) =1 I(electricity, df3) =1

I(yes, F3) = 1 I (no, F1) = 1 I(yes, F3) = 1

I(no, F2) = 1 I (yes, F3) = 1 I (yes, F4) = 1

I (no, F5) = 1

SECOND LEVEL

The I-Mappings for the sub level of the functional state “Generate Heat”

I(on, F1) =1 I(on F2) =1

I(off, F3) =1 I (T<70, F1) = 1 I (T<70, F2) = 1

I (T>70, F2) = 1

The I-Mappings for the sub level of the functional state “Mix Hot Water aod

Coffee”

I(yes, F1) =1 I(yes F2) =1

I(no, F3) =1 I (yes, F2) = 1 I (no, F1) = 1

DEFINITION OF O – MAPPINGS

FIRST LEVEL

O (df1,yes) = 1 O(df2, yes) =1 O (df3, yes) = 1

80

O(df1, no) = 1 O(df2, no) = 1 O(df3, no) = 1

O(F1, check water) = 1 O(F1, check coffee) = 1

O(F1, electricity) = 1 O(F1, check water) = 1

O(F2, check coffee) = 1 O(F2, electricity) = 1

O(F3, check water) = 1 O(F3, check coffee) = 1

O(F3, electricity) = 1

SECOND LEVEL

The O-Mappings of the sub level of functional state “Generate Heat”

O (df1,on) = 1 O (df1,off) = 1

O(df1, T>70)=1 O (df1,T<70) = 1

O(F1, command) = 1 O(F1, Thermostat) = 1

O(F2, command) = 1 O(F2, Thermostat) = 1

 Figure 5.8 PNDN of. Coffee Machine

81

 Figure 5.9 PNDN of Coffee Machine (continued)

5.4 N-PNDN Model of Lathe

In the N-PNDN model of Lathe (Korkmazel, 2001) “Start”, “Rotate

Workpiece”, “Change Rotational Speed”, “Position the Tool”, “Feed The

Tool” come in the first decomposition level. The functional state “Rotate

Workpiece” is decomposed to “Rotate Counter Wise”, “Rotate Counter

Clock Wise” and “Stop” functional states in the second level. In addition to

that, the functional state in the first level “Change Rotational Speed” is

decomposed into “Increase”, “Decrease” and “Stop” functional states. The

functional state “Position the tool”, “Feed the Tool” is decomposed into “X-

Dir”, “Y-Dir” and “Stop” functional states. The relevant functional design

tree is given in Figure 5.11. The following computer implementation of

coffee machine is given in Figure 5.12 and Figure 5.13. The figures show

the first level decomposition and the sub level of the functional state “Rotate

Work Piece”.

82

 Figure 5.10 Functional Design Tree Lathe

Definition of Functional States

FIRST LEVEL:

F (S) = { F1 , F2 , F3 , F4, F5 }

F1 = Rotate Work piece

F2 = Change Rotational Speed

F3 = Position the tool

F4 = Feed the tool

F5 = Stop

SECOND LEVEL

Functional decomposition of the functional state “Rotate Work Piece” into

its subfunctions follows:

83

F (S) = { F1 , F2 , F3 , F4 }

F1= Rotate Work piece

F2 =Rotate CW

F3 =Rotate CCW

F4= Stop

Functional decomposition of the functional state “Change Rotational Speed”

into its subfunctions follows:

F (S) = { F1 , F2 , F3 , F4 }

F1= Change Speed

F2 =Increase speed

F3 =Decrease speed

F4= Stop

Functional decomposition of the functional state “Position the Tool” into its

subfunctions follows:

F (S) = { F1 , F2 , F3 , F4 }

F1= Position tool

F2 =Move toolpost in X-dir

F3 =Move toolpost in Y-dir

F4= Stop

Definition of Variables

FIRST LEVEL

p10 = Rotation

p20 = Speed

84

p30 = Position

SECOND LEVEL

The variables for the sub level of the functional state of “Rotate Work

Piece”:

p10 = Rotate

p20 = Direct

The variables for the sub level of the functional state of “Change Speed”:

p10 = Sp.

p20 = Sit

The variables for the sub level of the functional state of “Position Tool”:

p10 = pos

p20 = xpos

p30 = ypos

Instantiations of Variables

FIRST LEVEL

p11: rot=0

p12: rot =1

p21: sp=0

p22: sp=1

p31: rot=0

p32: rot=1

85

SECOND LEVEL

The instantiation variables for the sub-level of the functional state “Rotate

Work piece”:

p11: rot=0

p12: rot =1

p21: dir=0

p22: dir=1

The instantiation variables for the sub-level of the functional state “Change

Speed”:

p11: SP=0

p12: SP =1

p21: increase

p22: decrease

The instantiation variables for the sub-level of the functional state “Position

Tool”:

p11: pos=0

p12: pos=1

p21: xpos=0

p22: xpos=1

p31: ypos=0

p32: ypos=1

Decision Functions

FIRST LEVEL

86

DF={df1 , df2 , df3 }

df1= decision function for rotation

df2= decision function for speed

df2= decision function for position

SECOND LEVEL

The decision functions for the sub level of the function state “Rotate Work

piece” follows:

DF={df1, df2}

df1= decision function for rotation

df2= decision function for direction

The decision functions for the sub level of the function state “Change

Speed” follows:

DF={df1, df2}

df1= decision function for speed increment

df2= decision function for speed reduction

The decision functions for the sub level of the function state “Position the

tool” follows:

DF={df1, df2, df3}

df1= decision function for position

87

df2= decision function for x position

df3= decision function for y position

DEFINITION OF I – MAPPINGS

FIRST LEVEL

I (Rotation, df1)=1 I(Speed, df2)=1 I(Position, df3)=1

I(rot=0,F6)=1 I(rot, F2)=1 I(rot=1, F3)=1

I(rot=1, F5)=1 I(speed=0, F5)=1 I(speed=1,F3)=1

I(pos=0,F5)=1 I(pos=1,F4)=1

SECOND LEVEL

The I-Mappings for the sub level of the functional state “Rotate Work

piece”

I(Rotation, df1)=1 I(Direct, df2)=1

I(Rot=0, F2)=1 I(Rot=1, F3)=1

I(Rot=0, F4)=1 I(Dir=0, F3)=1 I(Dir=1, F2)=1

The I-Mappings for the sub level of the functional state “Change Rotational

Speed”

I(SP, df1)=1 I(Sit, df2)=1

I(SP=1, F2)=1 I(SP=1, F3)=1

I(SP=0, F4)=1 I(inc, F2)=1 I(dec, F3)=1

The I-Mappings for the sub level of the functional state “Position Tool”

I(pos, df1)=1 I(xpos, df1)=1 I(ypos, df3)=1

I(pos=1, F2)=1 I(pos=1, F3)=1 I(pos=0, F4)=1

88

I(xpos=0, F4)=1 I(xpos=1, F2)=1 I(ypos=0,F4)=1

I(ypos=1, F3)=1

DEFINITION OF O – MAPPINGS

FIRST LEVEL

O(df1,rot=0)=1 O(df2,speed)=1 O(F3,Rotation)=1

O(df1,rot=1)=1 O(df2,speed)=1 O(F3,Speed)=1

O(F1,Rotation)=1 O(F2,Rotation)=1 O(F4,Rotation)=1

O(F1,Speed)=1 O(F2,Speed)=1 O(F4,Speed)=1

O(F5,Rotation)=1 O(F5,Speed)=1

SECOND LEVEL

The O-Mappings for the sub level of the functional state “Rotate Work

piece”

O(df1,rot=0)=1 O(df2,Dir=0)=1 O(df1,Rot=1)=1

O(df2,Dir=1)=1 O(F1,Rot)=1 O(F2,Rot)=1

(F1,Direct)=1 O(F2,Speed)=1 O(F3,Rot)=1

O(F3,Direct)=1

The O-Mappings for the sub level of the functional state “Change Speed”

O(df1,SP)=1 O(df2,inc)=1 O(df1,SP=1)=1

O(df2,dec)=1 O(F1,SP)=1 O(F2,SP)=1

(F1,Sit)=1 O(F2,Sit)=1 O(F3,SP)=1

O(F3,Sit)=1

The O-Mappings for the sub level of the functional state “Position Tool”

89

O(df1,pos=1)=1 O(df2, xpos=1)=1 O(df3,ypos=1)=1

O(df1,pos=0)=1 O(df2, xpos=0)=1 O(df3, ypos=0)=1

O(F1,pos)=1 O(F2,pos)=1 O(F3,pos)=1

O(F1,xpos)=1 O(F2,xpos)=1 O(F3,xpos)=1

O(F1,ypos)=1 O(F3,ypos)=1 O(F3,ypos)=1

Figure 5.11 PNDN model for Lathe

90

Figure 5.12 PNDN model of “Rotate Workpiece” subfunction

5.5 Evaluation of Case Studies

In this thesis with the computer implementation of N-PNDN, mechatronic

systems are modeled as a network of embedded modules. In application N-

PNDN brings the PNDN modules together with sub modules and therefore

the functions of the system are modeled in every resolution level. While

developing the algorithms for N-PNDN no modification is made on the

original PNDN formalism other than the replacement of START transition

with the sub PNDN modules which reveals the N-PNDN formalism. As it is

expected PNDN modules in N-PNDN possessed the following properties:

1. Reachability: As a definition reachability is the set of all possible

markings that can be reachable from an initial marking, M0
V, in a

PNDN therefore in N-PNDN. This property is used to check if the

91

all functional states are reachable from an initial marking to provide

the use of related functional states. The PNDN modules in N-PNDN

have also reachability property.

2. Concurrency: Concurrency is accomplished in the network through

the development of N-PNDN as suggested by (Erden, 1999). In N-

PNDN, firing transition can denote a child PNDN which means the

machine has another state for the relevant subfunction. This has been

shown in different case studies.

3. Liveness: PNDN and therefore N-PNDN is said to be live if one

functional state fires under any reachable instantiation marking MI.

Liveness of N-PNDN guarantees dead-lock free operations in which

two or more transitions are not allowed to fire simultaneously. This

property is accomplished and supported by the program in all level

of decomposition.

92

CHAPTER 6

CONCLUSIONS

N-PNDN is a design artifact modeling tool which models the mechatronic

products at the multi level of functionality and is based on the PNDN

theory. The architecture of N-PNDN is developed at the functional level

since the computerized conceptual design tools need formal representation

of functions and their relationships. This functional representation enables

designers to find the best conceptual design solution in a more efficient way

and in shorter time independent of any specific domain.

In general functionality of the system follows the functional decomposition

hierarchy and subfunctions are related with the overall function. The theory

of PNDN and therefore N-PNDN makes it possible to integrate local

inferences and it models this integration. For this reason it is a suitable tool

for modeling mechatronic products which consist of multidisciplinary

engineering aspects.

The network structure makes it possible to define system subfunctions and

also enables to model information, material and energy flows. In this study,

PNDN formalism is conserved and this structure is extended in a network

structure by replacing the upper level transitions with their sub PNDN

modules. As a result N-PNDN is created and implemented. N-PNDN is a

concurrent design modeling tool for the mechatronic products, and this

criterion is considered while developing the algorithm. By definition

concurrency is defined as a machine accomplishing more than one of its

subfunctions simultaneously. With the introduction of N-PNDN multi

resolution of mechatronic products together with concurrency is

93

incorporated in PNDN (Erden, 1999). This concludes that N-PNDN

provides a concurrent structure since the systems consists of upper and

lower level states.

In case studies functional decomposition hierarchy which is called

Functional Design Tree in different resolution levels are investigated and

applied to various mechatronic products. It has been realized that an

important condition has to be satisfied that the means of accomplishing

function should be specified in order to decompose the functions into

subfunctions. This law was proposed as “Law of Vertical Causality” (Hubka

1976, Andreasen 1980) which states that the decomposition of a particular

function into subfunctions is possible when a mean has been chosen to

realize the function.

Another reason for the functional decomposition is to provide the

modularity of the system since functional decomposition hierarchy is

composed of function-subfunction structures at each abstract level.

Therefore this structure can be considered as a functional module in

functional design tree. Thus PNDN (also N-PNDN) has a modular structure

and function subfunction modules can be represented in every resolution of

FDT by this powerful tool.

N-PNDN’s modularity feature enables us to model the mechatronic modules

which consist of sensor, processing unit and an actuator. Those modules can

find their physical representations in N-PNDN structure. These

representations are places, decision functions, transitions which refer to

sensor, processing, actuator respectively. Information flow is modeled in a

structure that begins from upper level PNDN to lower level PNDN and no

information flow is allowed in the same layer.

94

In this study, computer implementation of N-PNDN theory, the further

development of DNS , is achieved successfully. The goals which had been

specified in Chapter 1 and scope of the research part were:

1. Developing a new algorithm for the multi level PNDN.

2. Developing a new algorithm which enables the token flow between

layers.

3. Transition from one level to another without loosing the previous

design window.

4. User friendly graphical user interface

5. Exploring the modularity features of PNDN

At the end of this thesis the achieved targets which have been mentioned

above:

1. Developing an algorithm for the construction of multi-level PNDN

structure.

2. Constructing the N-PNDN modules separately and for every

resolution level independent of each other which enables to model

the complex systems and therefore high resolution levels can easily

be handled.

3. Developing algorithm for the token flow in the multi level resolution

which represents the information flow between the levels.

4. Developing an algorithm for the transition from one level to another

without loosing the related data which belongs to the previous

design or level.

5. Providing a user friendly GUI so that the people coming from

different engineering disciplines can easily use the software package.

6. Supporting and manipulating of previously created designs.

95

Through the guidance of those achievements, the main contributions of this

thesis work are:

1. It has been showed that PNDN is a modeling module for the

mechatronic products and modules.

2. N-PNDN structure is applied and modeled to different products.

3. Modularity features of PNDN are explored.

4. Functional decomposition is used in N-PNDN

5. Multi resolutional features are incorporated in the program.

6. Concurrency is integrated and implemented by N-PNDN

Summarizing the advantages of N-PNDN yields:

1. N-PNDN allows us to create and model mechatronic modules which

have different engineering components where these modules can

find their interpretations.

2. N-PNDN facilitates the creation and modeling of mechatronic

modules.

3. N-PNDN shortens the design time and gives the designer to evaluate

the different design alternatives.

4. N-PNDN is a tool for visualization and simulation for the dynamic

behavior of the system.

5. N-PNDN brings modularity which provides transparency,

modifiability and incrementability.

The further developed DNS software has tool bar and control panel which

provides the user to place the transitions, place sets, decision functions, in

other words enables the user to access the tools that are used in network

creation, token game and displaying the information dialog boxes for the

network elements. It has also warning features for the users by text

messages. In addition to that the tool tip feature which is provided by

96

Borland C++ Builder is also added to the program. A detailed user manual

is also available in the help part of the software.

The goal of rapid multi level network creation is achieved by further

developed DNS. The further developed DNS has the same rules for all

applications and those are the automatically created functional states, links,

and decision functions. Therefore the user does not need to redefine the

elements during the design phase and this makes it easy to handle the

networks and this results in faster and more efficient network network

creation.

Having built on those features, during the design of the DNS, the operating

system called Windows compatibility has been also taken into account. Like

the all windows programs, the DNS has also “Open”, “Save” and “Print”

basic features. As mentioned before all created networks are saved as text

file and it enables the user for the further modifications by any text editor.

One other factor in this study is the simulation feature. The token flow

which represents the information flow through the all network resolution

levels is achieved. Computer implementation of deterministic token flow for

the N-PNDN is completed and the non-deterministic part is left for the

future study. The N-PNDN theory is in progress and therefore the further

developed DNS, which is the main study of this thesis, is not final version.

6.1 FUTURE WORK

 Implementation of non-deterministic part for N-PNDN

 Developing the analysis part

 Developing for the modules for the information and energy flow

through network in both single and multi level

97

The uncertainties in N-PNDN can be handled by using non deterministic

token flow. Therefore computer implementation of the non deterministic

part is also needed.

Analysis part of Petri Net simulation is also an important feature which has

to be implemented to the program. This consists of “performance analysis”

and “structural analysis”. Performance type of analysis is valid only for

timed Petri Nets and therefore it is not suitable for DNS since PNDN theory

is independent of time. ON the other hand PNDN has some properties like

liveness or reachability which are inherited from the Petri Net theory. These

properties are important for the analysis part hence it would result in

improvements to add those features.

In this thesis after the applications, some improvements are made but it also

needs some more application in order to have a better performance and

reliability. Finally after completing these new implementations on DNS, it

will be a more powerful software package for the automation of conceptual

design phase.

98

REFERENCES

1) Acar, M., Mechatronics Education and Training, 1st International

Workshop on Mechatronic Design and Production, 15-19 November

1993, METU, Ankara, Turkey, 1993.

2) Aleixos, N., Company, P., Contero, M., Integrated modeling with

top-down approach in subsidiary industries, Computers in Industry

53, pp 97-116, 2004.

3) “Alpha/Sim” (2004) [Online] Available :

 http://www.alphatech.com/secondary/techpro/alphasim/alphasim

4) Alur, R. et al., The Algorithmic Analysis of Hybrid Systems,

Proc.11th International Conf. On Analysis and Optimization of

Discrete Event Systems, Lecture Notes in Control and Information

Sciences 199, Springer – Verlag, pp 331-351, 1994.

5) Amerongen, J., Mechatronic Design, Mechatronics 13, pp.1045-

1066, 2003.

6) Andreadakis, S. K., Analysis and Synthesis of Decision Making

Organizations, Ph.D. Thesis, MIT, USA, 1988.

7) Andreasen M. M., Machine Design and development, Ph.D.

Dissertation in Danish, Lund University, Lund, 1980.

8) Blanchard B. S. and Fabrycky W. J., Systems Engineering and

Analysis, 3rd Ed., Prentice Hall, NJ, USA, 1998.

99

9) Boardaman, J., Systems Engineering, Prentice Hall International

Ltd., Cambridge, UK., 1990..

10) Brink, S. R., A Petri Net Design Simulation and Verification Tool,

M.Sc Thesis, Department of Computer Engineering College of

Engineering Rochester Institute of Technology, Rochester, New

York, 1996.

11) Buur, J., Mechatronics, A Theoretical Approach to Mechatronics

Design, Ph.D Thesis, Technical University of Denmark, IK

Publication 90.74A, Lyngby, Denmark, 1990.

12) Buur, J., Mechatronics Design Methodology, NATO ASI Workshop

on the The Advancements and Applications of Mechatronics Design

in Textile Engineering, 5-16 April 1992, Side, Turkey, 1992.

13) Calvert, C., Charlie Calvert’s Borland C++ Builder, MacMillan

Computer Publishing, USA, 1997.

14) Coeling, Erik, J. A. Theo, Assessment of Mechatronic System

Performance at an Early Design Stage, IEEE/ASME Transactions

on Mechatronics, The Netherlands, Vol. 7, No. 3, September, 2002.

15) Counsell, J.M., Porter, I. Schemebuilder Mechatronics: Design

Principles for Controller Design, in accepted for Bath Workshop on

Power Transmission & Motion Control, Bath, 1998.

16) Eckel, Bruce, Thinking in C++, Prentice Hall, Second Edition,USA,

1996.

100

17) Erden, Z., A Petri Net Based Inference Network for Design

Automation at Functional Level Applied to Mechatronic Systems,

Ph.D. Thesis, Mechanical Engineering. Dept. METU, Türkiye, 1999.

18) Erden Z., Erkmen A. M., Erden A., Generation of Functional Cells

for a Mechatronic Design Network, Proceedings of the Third

International Conference on Mechatronics and Machine Vision in

Practice, Volume 1, pp 233-238, 1996.

19) Erden Z., Erkmen A. M., Erden A., Structuring of the SMDMnet: A

design Inference Network for Mechatronic Systems, Proc. The 2nd

Int. Symposium on Intelligent Manufacturing Systems. 1998.

20) Erden Z., Erkmen A. and Erden A., Automation of Conceptual

Design: An implementation of Petri – Net on Mechatronic Design(I),

Endüstri & Otomasyon, Vol.13, pp. 16-19, 1998.

21) Erden Z., Erkmen A. and Erden A., Automation of Conceptual

Design: An implementation of Petri – Net on Mechatronic

Design(II), Endüstri & Otomasyon, Vol.14, pp. 16-20, 1998.

22) Erden Z., Erkmen A. and Erden A, A Petri Net Based Design

Network with Applications to Mechatronic Systems, SDPS

Transactions: Journal of Integrated Design and Process Science,

Vol.2, No:3, pp. 32-48, 1998.

23) Fraser, C. and Milne J., Integrated Electrical and Electronic

Engineering for Mechanical Engineers, McGraw-Hill International

Limited, Cambridge, UK, 1994.

101

24) Güroğlu S., Implementation of an Algorithm for a Petri Net Based

Design Inference Network, M.S. Thesis, Mechanical Engineering

Department, METU, Türkiye, 1999.

25) Henziger, T. A., Kopke, P. W., Puri, A. and Varaiya, P., What is

Decidable About Hybrid Automata, Proc. 27th Annual Symposium

on The Theory of computing ACM Press, pp 373-382, 1995.

26) Hopcroft, J. E. and Ullman, J. D., Introduction to Automata Theory,

Languages and Computation, Addison Wesley Publ. Co. Inc.,1979.

27) Hubka V., Theorie der Konstruktionprozesse, Springer Verlag,

Berlin, 1976.

28) Hubka V., Andreasen M. M. and Eder W. E., Practical Studies in

Systmatic Design, Butterworth & Co Publishers, UK, 1988.

29) Iserman, R. Modeling and Design Methodology for Mechatronic

Systems. IEEE/ASME Trans. on Mechatronics, vol. 1, no. 1, pp. 16-

28, 1996.

30) Kannapan S. M., Marshek K. M., Design Synthetic Reasoning: A

Methodology for Mechanical Design, Research in Engineering

Design, Volume2, pp.221-238, 1991.

31) Kohavi, Z., Switiching and Finite Automata Theory, TATA,

McGraw- Hill Publishing Company Ltd., India, 1978.

32) Korkmazel M., Development of Multi Level Petri Net Based Design

Inference Network, M.S. Thesis, Mechanical Engineering

Department, METU, Türkiye, 2001

102

33) Kusiak A., Szczerbicki E., Park K., A Novel Approach to

Decomposition of Design Specifications and Search for Solutions,

International Journal on Production Research, Volume 29, No. 7, pp.

1391-1406, 1991

34) Lewis, H. R. and Papadimitriu, C. H., Elements of Theory of

Computation, Prentice Hall Inc., Australia, 1981.

35) Mortazavian, H. and Lin, F., Foundations of a Logical Theory of

Modeling and Control of Discrete Event Systems, Proc. IFAC Int.

Symposium on Distributed Intelligent Systems, DIS’ 91, Arlington,

VA, USA, 1991.

36) Oh, V. K., et al., A Generic Framework for the Description of

Components in the Design and Simulation of Mechatronic Products,

Proceedings of the Joint Hungarian-British International

Mechatronics Conference, 21-23 September 1994, Budapest,

Hungary, pp.515-520, 1994.

37) Pahl G., and Beitz W., Engineering Design-A Systematic Approach,

The Design Council, London, UK, 1988.

38) “Petri Net Tools Database Quick Overview” (2004) [Online]

Available :

http://www.daimi.au.dk/PetriNets/tools/quick.html, 2004

39) Porter, I. Schemebuilder Mechatronics, Accepted for Engineering

Design Conference, Brunel University, 1998.

103

40) Porter, I. Schemebuilder Mechatronics, Engineering Design Center,

Lancaster University, UK, 2002.

41) Puri, A. and Varaiya, P., Decidability of Hybrid Systems with

Rectangular Differential Inclusions, Proc. 6th Workshop on

Computer Aided Verification, LNCS 818, Springer-Verlag, pp.95-

104, 1994.

42) Puri, A. and Varaiya, P., Verification of Hybrid Systems Using

Abstractions, Hybrid Systems Iii LNCS 999, Springer Verlag, 1995.

43) Quin, S., F., Harrison, R., West, A., A., Jordanov, I., R., Wright, D.,

K., A framework of web-based conceptual design, Computers in

Industry, pp 153 – 164, 2003.

44) Ramadge, P. J. G. and Wonham, W. M., the Control of Discrete

Event Systems, Proc IEEE, Vol.77, No.1, pp.81-89, 1989.

45) Reisig, W., Petri Nets: An Introduction, Springer Verlag, Germany,

1985.

46) Reisig, W., A Primer in Petri Net Design, Springer Verlag,

Germany, 1992.

47) Ringstad P., A Comparison of Two Approaches for Functional

Decomposition the Function/Means Tree and the Axiomatic

Approach, Proceedings of the International Conference on

Engineering Design, Volume 2, pp. 57-64, 1997.

48) Rzevski, G., On conceptual design of intelligent mechatronic

systems, Mechatronics 13, pp.1023-1044, 2003

104

49) Suh, N., Axiomatic Design Theory for Systems, Research in

Engineering Design, Springer Verlag, London, pp 189-209, 1998.

50) Tabak, D. and Levis, A. H., Petri Net Representation of Decision

Models, IEEE Transactions on Systems, Man, and Cybernetics, Part

A, Vol. SMC-15, No.6, pp.812-818, 1985.

51) Tokuz, C. L. and Jones, J. R., A Representation for Hybrid

Machines-Bond Graphs, Proceedings of the 6th International

Machine and Design Production Conference, 21-23 September

1994, Ankara, Turkey, pp.199-208, 1994.

52) Zeigler, B. P., DEVS Representation of Dynamical Systems: Event-

Based Intelligent Control, Proc. IEEE, Vol.77, No.1, pp.72-80,

1989.

105

APPENDIX A

PETRI NET TOOL SURVEY

The existing tools, the Petri Net type that they support and the operating

system that they are used in as environment are given below Table A.1

which is taken from

Table A.1 Existing Tools for the Petri Nets

Features Overview

PN Supported Components

Environments

ALPHA/Sim

High-level Petri
Nets
Petri Nets with
Time

Graphical Editor
Token Game
Animation
Fast Simulation
Simple
Performance
Analysis

SunOS
Solaris
MS Windows
NT

ARP

Place/Transition
Nets
Petri Nets with
Time

Fast Simulation
State Spaces
Place Invariants
Transition
Invariants
Structural
Analysis
Simple
Performance
Analysis

MS DOS

Artifex

Object-oriented
PNs
High-level Petri
Nets
Place/Transition

Graphical Editor
Token Game
Animation
Fast Simulation
Structural

Sun, SunOS
HP, HP-UX
Silicon Graphics,
IRIX
PC, Linux

106

Nets
Petri Nets with
Time

Analysis
Advanced
Performance
Analysis

PC, MS
Windows NT
PC, MS
Windows 2000
PC, MS
Windows XP

CoopnTools

High-level Petri
Nets

Graphical Editor
Fast Simulation
Structural
Analysis

Java

CPN-AMI

High-level Petri
Nets
Place/Transition
Nets

Graphical Editor
Fast Simulation
State Spaces
Place Invariants
Transition
Invariants
Structural
Analysis
services for
modular
modeling

Sun
Linux
Macintosh

CPN Tools

High-level Petri
Nets
Petri Nets with
Time

Graphical Editor
Token Game
Animation
Fast Simulation
State Spaces
Simple
Performance
Analysis
Interchange File
Format

PC, MS
Windows 2000
PC, MS
Windows XP

Design/CPN

High-level Petri
Nets
Petri Nets with
Time

Graphical Editor
Token Game
Animation
Fast Simulation
State Spaces
Simple
Performance
Analysis
Interchange File
Format

Sun
HP
Silicon Graphics
Linux

107

DPNSchematic

Place/Transition
Nets

D-extended PN

Graphical Editor
Fast Simulation

Schematic Tool

PC, MS
Windows 98
PC, MS
Windows NT
PC, MS
Windows 2000
PC, MS
Windows XP

EDS Petri Net
Tool

Place/Transition
Nets
Stochastic Petri
Nets
Petri Nets with
Time

Colored Nets

Graphical Editor
Token Game
Animation
Fast Simulation
Structural
Analysis
Simple
Performance
Analysis
Interchange File
Format

Transition
programming
language

MS Windows

ExSpect

High-level Petri
Nets
Place/Transition
Nets
Stochastic Petri
Nets
Petri Nets with
Time

Hierarchy in
modeling

Graphical Editor
Token Game
Animation
Fast Simulation
Simple
Performance
Analysis
Advanced
Performance
Analysis

Simulation
engine available
as COM
component

MS Windows

F-net

Stochastic Petri
Nets
Petri Nets with
Time

Graphical Editor
Token Game
Animation
Fast Simulation
State Spaces
Place Invariants
Transition
Invariants

MS Windows
OS/2

108

Structural
Analysis
Simple
Performance
Analysis
Advanced
Performance
Analysis

GDToolkit

High-level Petri
Nets
Place/Transition
Nets

Automatic layout Sun
Linux
MS Windows

GreatSPN

High-level Petri
Nets
Stochastic Petri
Nets
Petri Nets with
Time

Graphical Editor
Token Game
Animation
Fast Simulation
State Spaces
Condensed State
Spaces
Place Invariants
Transition
Invariants
Structural
Analysis
Advanced
Performance
Analysis

Sun
Linux

HiQPN-Tool

High-level Petri
NetsStochastic
Petri Nets

Graphical Editor
Token Game
Animation
State Spaces
Place Invariants
Transition
Invariants
Advanced
Performance
Analysis
Interchange File
Format

Sun

HPSim

Place/Transition
Nets
Stochastic Petri

Graphical Editor
Token Game
Animation

PC, MS
Windows 95
PC, MS

109

Nets
Petri Nets with
Time

Fast Simulation
Simple
Performance
Analysis

Windows 98
PC, MS
Windows NT
PC, MS
Windows 2000
PC, MS
Windows XP

INA

High-level Petri
Nets
Place/Transition
Nets
Petri Nets with
Time

State Spaces
Condensed State
Spaces
Place Invariants
Transition
Invariants
Net Reductions
Structural
Analysis
Simple
Performance
Analysis
Advanced
Performance
Analysis
Interchange File
Format

CTL-based
model checker

Sun
Linux
MS Windows

INCOME
Process
Designer

High-level Petri
Nets
Place/Transition
Nets
Petri Nets with
Time

Graphical Editor
Token Game
Animation
Fast Simulation

Sun, SunOS
HP, HP-UX
PC, Linux
PC, MS
Windows 2000
Java

JARP

Place/Transition
Nets

Graphical Editor
Token Game
Animation
State Spaces
Interchange File
Format

Java

JFern

Object-oriented
PNs
High-level Petri
Nets

Graphical Editor
Token Game
Animation
Fast Simulation

Java

110

 Place/Transition
Nets
Petri Nets with
Time

State Spaces
Simple
Performance
Analysis
Interchange File
Format

Maria

High-level Petri
Nets
Place/Transition
Nets
Modular high-
level nets
Labeled state
transition systems

Token Game
Animation
Fast Simulation
State Spaces

Modular state
spaces
LTL model
checker with
fairness
assumptions
Very high-level
data types and
operations

Sun, SunOS 5.7
and 5.8 (32-bit
and 64-bit)
Digital, UNIX
4.0
Silicon Graphics,
IRIX 6.5 (32-bit
and 64-bit)
HP-UX 11.22
NetBSD,
FreeBSD,
OpenBSD
PC, Linux
PC, MS
Windows 95 and
later
Apple, Mac OS
X 10.1

Marigold

Place/Transition
Nets

Data flow
constructs

Graphical Editor Java

MISS-RdP

High-level Petri
Nets
Place/Transition
Nets
Stochastic Petri
Nets
Petri Nets with
Time

Hybrid model
(continuous and
discontinuous)

Graphical Editor
Token Game
Animation
Fast Simulation
Advanced
Performance
Analysis

Sun
MS Windows

The Model-
Checking Kit

High-level Petri
Nets
Place/Transition

State Spaces
Condensed State
Spaces

Sun
Linux

111

Nets CTL-/LTL-
Model-
Checking,
Deadlock-
Checking,
Reachability-
Checking

Nevod

Inhibitor Petri nets Graphical Editor
Token Game
Animation
Fast Simulation

MS DOS

Opera

Petri Nets with
Time

Graphical Editor
Token Game
Animation
Fast Simulation
State Spaces
Condensed State
Spaces
Place Invariants
Transition
Invariants
Net Reductions
Structural
Analysis
Simple
Performance
Analysis
Advanced
Performance
Analysis
Interchange File
Format

MS DOS

PACE

High-level Petri
Nets
Place/Transition
Nets
Stochastic Petri
Nets
Petri Nets with
Time

Attributed Petri
Nets

Graphical Editor
Token Game
Animation
Fast Simulation
Net Reductions

Fuzzy Technics,
Net
Optimizations

PC, MS
Windows 95
PC, MS
Windows 98
PC, MS
Windows NT
PC, MS
Windows 2000
PC, MS
Windows XP

112

PED

Place/Transition
Nets
Petri Nets with
Time

Graphical Editor Sun
Linux

PEP

High-level Petri
Nets
Place/Transition
Nets
Petri Nets with
Time

Graphical Editor
Token Game
Animation
State Spaces
Condensed State
Spaces
Place Invariants
Transition
Invariants
Net Reductions
Structural
Analysis
Interchange File
Format
Model Checking
Petri Net
Generators

Sun
Linux

Petrigen

Place/Transition
Nets

Graphical Editor
Token Game
Animation

synthesis

PC, Linux
PC, MS
Windows 95
PC, MS
Windows 98
PC, MS
Windows NT
PC, MS
Windows 2000
PC, MS
Windows XP

Petri Net
Kernel

High-level Petri
Nets
Place/Transition
Nets

DAWN-Nets
User definable

Graphical Editor
Token Game
Animation
Interchange File
Format

INA-pilot
User definable

Java

Petri Net
Toolbox

Place/Transition
Nets
Stochastic Petri
Nets
Petri Nets with

Graphical Editor
Token Game
Animation
Fast Simulation
State Spaces

113

 Time

GSPN

Place Invariants
Transition
Invariants
Structural
Analysis
Simple
Performance
Analysis
Advanced
Performance
Analysis
Interchange File
Format

PetriSim

High-level Petri
Nets
Place/Transition
Nets
Petri Nets with
Time

Graphical Editor
Fast Simulation

MS DOS

Platform
Independent
Petri Net
Editor

Place/Transition
Nets

Graphical Editor
Token Game
Animation
Fast Simulation
State Spaces
Condensed State
Spaces
Place Invariants
Transition
Invariants
Structural
Analysis
Simple
Performance
Analysis
Interchange File
Format

Extensible
Analysis
Modules and File
Formats

Java

PNSim

Place/Transition
Nets

Graphical Editor
Token Game
Animation

MS Windows
Java

114

Structural
Analysis

Simple Net
Analysis

PNtalk

High-level Petri
Nets
Petri Nets with
Time

Graphical Editor
Token Game
Animation
Fast Simulation
Simple
Performance
Analysis

Sun
MS Windows

Poses++

High-level Petri
Nets

Fast Simulation Sun
Linux
MS Windows

Predator

Place/Transition
Nets
Stochastic Petri
Nets

hierarchical Petri
Nets (Subnets)

Graphical Editor
Place Invariants
Transition
Invariants
Interchange File
Format

Dynamic
Loading of
Analysis
modules

Java

PROD

High-level Petri
Nets
Place/Transition
Nets

State Spaces
Condensed State
Spaces

LTL Model
Checking, CTL
Model Checking

Sun, SunOS
HP, HP-UX
PC, Linux
PC, MS
Windows 95
PC, MS
Windows NT

Renew

Object-oriented
PNs
High-level Petri
Nets
Place/Transition
Nets
Petri Nets with
Time

Graphical Editor
Token Game
Animation
Fast Simulation
Interchange File
Format

Java

Romeo

Petri Nets with
Time

Graphical Editor
State Spaces

PC, Linux
Macintosh, Mac
OS X

115

SEA

High-level Petri
Nets
Petri Nets with
Time

Graphical Editor
Token Game
Animation
Fast Simulation

Abstract
Graphical
Visualization

Sun

SIPN-Editor

Interpreted Petri
Nets

Graphical Editor

Code Generation
for PLC,
Translation into
SMV Code

Java

SimulaWorks

Place/Transition
Nets
Stochastic Petri
Nets
Petri Nets with
Time

Graphical Editor
Token Game
Animation
Fast Simulation

PC, MS
Windows 95
PC, MS
Windows 98
PC, MS
Windows NT
PC, MS
Windows 2000
PC, MS
Windows XP

SPNP

High-level Petri
Nets
Stochastic Petri
Nets

Advanced
Performance
Analysis

PC, MS
Windows 98

StpnPlay

Stochastic Petri
Nets
Petri Nets with
Time

Graphical Editor
Fast Simulation
Simple
Performance
Analysis
Interchange File
Format

PC, MS
Windows 95
PC, MS
Windows 98
PC, MS
Windows NT
PC, MS
Windows 2000
PC, MS
Windows XP

SYROCO

High-level Petri
Nets
Petri Nets with
Time

Graphical Editor
Fast Simulation
Simple
Performance
Analysis

C++

116

Dynamic
instantiation of
nets, C++ code
associated to
transitions and
places, priority

Interchange File
Format

C++ code
generation

TimeNET

High-level Petri
Nets
Place/Transition
Nets
Stochastic Petri
Nets
Petri Nets with
Time

Graphical Editor
Token Game
Animation
Fast Simulation
State Spaces
Place Invariants
Structural
Analysis
Simple
Performance
Analysis
Advanced
Performance
Analysis
Interchange File
Format

Sun
Linux

Tina

Place/Transition
Nets
Petri Nets with
Time

Time Petri Nets

Graphical Editor
State Spaces
Condensed State
Spaces
Place Invariants
Transition
Invariants
Structural
Analysis

State Class
Spaces

Sun
Linux
MS Windows

Visual Object
Net ++

Place/Transition
Nets
Petri Nets with
Time

Hybrid Dynamic
Nets and Hybrid
Object Nets

Graphical Editor
Token Game
Animation
Fast Simulation
Structural
Analysis
Simple
Performance
Analysis

supports object

MS Windows

117

hierarchies
WebSPN

Stochastic Petri
Nets

Graphical Editor
Token Game
Animation
Advanced
Performance
Analysis

prd, prs, pri
memory policies

Java

WINSIM

Generalized
Evaluation Nets
Extended Petri
nets

Fast Simulation PC, MS
Windows 98
PC, MS
Windows NT
PC, MS
Windows 2000
PC,Windows XP

 Table A.1 Existing Tools for the Petri Nets

118

	SCOPE OF THE RESEARCH
	LITERATURE SURVEY

	2.1 LITERATURE SURVEY ON THE CONCEPTUAL MECHATRONIC DESIGN
	2.3.1 Finite Automata
	2.3.4 Petri Nets
	2.5 Evaluation of Literature Survey
	CHAPTER 3
	BASICS OF N-PNDN

	3.1 ARCHITECTURE OF N-PNDN
	3.3 Evaluation of features of PNDN
	CHAPTER 4
	Object Inspector

	5.5 Evaluation of Case Studies
	N-PNDN is a design artifact modeling tool which models the m
	6.1 FUTURE WORK
	APPENDIX A
	PETRI NET TOOL SURVEY
	PN Supported
	Components

