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ABSTRACT 

 

UNDESIRABLE AND SEMI-DESIRABLE FACILITY  

LOCATION PROBLEMS 

 

Nadirler, Deniz 

M.S., Department of Industrial Engineering 

Supervisor: Assist. Prof. Dr. Esra Karasakal 

 

July 2004, 170 pages 

 

In this thesis, single undesirable and semi-desirable facility location problems are 

analyzed in a continuous planar region considering the interaction between the 

facility and the existing demand points. In both problems, the distance between the 

facility and the demand points is measured with the rectilinear metric. The aim in 

the first part where the location of a pure undesirable facility is considered, is to 

maximize the distance of the facility from the closest demand point. In the second 

part, where the location of a semi-desirable facility is considered, a conflicting 

objective measuring the service cost of the facility is added to the problem of the 

first part. For the solution of the first problem, a mixed integer programming 

model is used. In order to increase the solution efficiency of the model, new 

branch and bound strategies and bounding schemes are suggested. In addition, a 

geometrical method is presented which is based on upper and lower bounds. For 

the biobjective problem, a three-phase interactive geometrical branch and bound 

algorithm is suggested to find the most preferred efficient solution. 

 

Keywords: Location, Undesirable, Semi-desirable, Multiobjective Decision 

Making, Interactive Approach 
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ÖZ 

 
�STENMEYEN VE YARI-�STENEN TES�S YERLE��M 

PROBLEMLER� 

 

Nadirler, Deniz 

M.S., Endüstri Mühendisli�i Bölümü 

Tez Yöneticisi: Y. Doç. Dr. Esra Karasakal 

 

Temmuz 2004, 170 sayfa 

 

Bu çalı�mada, istenmeyen ve yarı istenen tesis yerle�im problemleri, sürekli bir 

düzlemde, tesisin varolan talep noktaları ile etkile�imi göz önüne alınarak 

incelenmi�tir. Her iki problemde de tesis ve talep noktaları arasındaki uzaklık 

rektilineer metrik ile ölçülmü�tür. �stenmeyen tesis yerle�iminin ele alındı�ı ilk 

kısmın amacı, tesisin en yakın talep noktasından uzaklı�ını en çoklamaktır. Yarı-

istenen tesis yerle�iminin ele alındı�ı ikinci kısımda, ilk probleme, servis 

maliyetini ölçen ama ilk amaçla çeli�en bir amaç eklenmi�tir. �lk problemin 

çözümü için karı�ık tamsayılı do�rusal bir model kullanılmı�tır. Modelin çözüm 

verimlili�ini artırmak amacı ile yeni dal-sınır algoritma stratejileri ve sınırlama 

teknikleri kullanılmı�tır. Buna ek olarak, alt ve üst sınırlara dayanan geometrik bir 

metod önerilmi�tir. �ki amaçlı problemde, en çok tercih edilen etkin noktanın 

bulunması için, üç fazlı etkile�imli bir geometrik dal-sınır algoritması önerilmi�tir. 

 

Anahtar Kelimeler: Yerle�im Problemi, �stenmeyen, Yarı-istenen, Çok Amaçlı 

Karar Verme, Etkile�imli Yakla�ım 
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CHAPTER 1 

 

 

INTRODUCTION 
 

 

Location problems are among the first optimization problems ever studied and 

evaded many researchers’ attention for many centuries. The essence of the 

traditional location problems has been the location of service facilities with 

minimization objectives where the speed and the cost of service are the main 

concerns. This type of problems has been studied in a great extent in the theory of 

location because they are generally easy to state and understand but not that easy 

to solve. Warehouses, fire stations, blood centers, post offices, courier service 

centers, police stations and ambulance facilities can be given as examples of such 

facilities that provide services to population centers where the interaction generally 

occurs through travel distances. The main objective in the location of such 

traditional facilities is to locate them so that some distance function is minimized 

for providing the least cost service. For example, in the location of a distribution 

system, the main goal is generally to minimize the total distance of the facility 

from the existing demand points. On the other hand, in the location of facilities 

like fire stations or ambulance facilities, the main aim is to minimize the distance 

of the facility from the farthest demand point that receives the lowest quality of 

service. 

 

Since the second half of the last century, recent advances and innovations in 

technology and industry created facilities like chemical plants, nuclear reactors, 

wastewater treatment plants and solid waste disposal areas having strong negative 



 2

externalities on the surrounding population centers which are generally attributed 

with long term polluting effects. In parallel with the ever growing technology, 

environmental concern is increasing everyday with new regulations and stringent 

requirements. With these changes, researchers’ interest shifted towards the 

location of this type of facilities starting from the early 1980’s.  

 

This new research area created a new terminology in the location theory in which 

the facilities with a disservice to existing population centers are called ‘undesirable 

facilities’. The term is generally used for both ‘noxious’ facilities which are 

detrimental or hazardous to human beings and ‘obnoxious’ facilities that possess a 

threat to lifestyle through discomfort. Meanwhile, it should be noted that the 

solution methodologies suggested for undesirable facilities are generally valid for 

both types.  

 

An interesting point is that, in spite of the undesirable effects, most of these 

facilities have become a vital part of our lives and the only alternative is to find 

ways to locate them in a way which minimizes the negative externalities on the 

people living around them. Considering that the undesirable effect of such 

facilities is a decreasing function of the travel distances, the simplest way is to 

locate them as far as possible from the population centers to minimize the 

disservice cost.  

 

From another point of view, if undesirable facilities are of concern somehow and if 

there are many studies attempted to find ways to locate them, they are desirable in 

some extent through their service to the society, otherwise there would be no 

incentive to locate them. In other words, they are necessary but the long term 

disservice cost generally outweighs their service cost. On the other hand, it is 

recently realized that many facilities that have been considered as desirable so far 
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have also some underestimated undesirable effects on people and the environment 

in real life situations.  

 

As an example, recently, there is an ever-growing problem of garbage disposal and 

location of dump sites considering that a person living in a big city produces 

approximately one ton of garbage annually. According to Environmental 

Protection Agency (EPA) reports, there are many topographical, climatic, 

geological and hydrological factors that should be considered while locating a 

solid waste disposal area to a city. However, besides all these, keeping the cost of 

garbage collection low through transportation is one of the most important factors 

that municipalities often consider alone. On the other hand, no one wants to live 

close to any solid waste disposal area that is often located far from city centers 

because of the danger of garbage gases, unpleasant odors and noise. 

 

The above mentioned facts triggered the definition of a new problem i.e. ‘semi-

desirable facility location’ which balances public concerns and environmental 

requirements with the needs of facility planners in a sense that both nearness to a 

facility and protection from them are valued simultaneously.  

 

In this thesis, we study the location of semi-desirable facilities with the motivation 

that inclusion of this type of facilities to our lives will continue to rise. Besides, to 

our knowledge, there are very few studies in this very important research area. 

 

With this motivation, we suggest an interactive approach in which we use 

multiobjective decision making tools that (we believe) have been underutilized in 

this research area until now. Before going into details of the semi-desirable facility 

location problem, we first study pure undesirable facilities in order to have 

necessary insights that will construct a base for our solution approach to semi-

desirable facility location problem.  
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In addition to all of the above, it should be noted that any solution methodology 

developed for undesirable facility location problems may apply to any problem in 

which a dispersed set of points is to be generated (White, 1996). For example, in 

multicriteria decision making, generation of a discrete set of efficient solutions that 

represents efficient faces (see e.g., Steuer and Harris, 1980; Karasakal and 

Koksalan, 2001; Sayin, 2003) is desirable with the motivation that presentation of 

all the efficient faces or efficient extreme points may cause information overload 

on the decision maker (Steuer, 1986, p.245). Sayin (2003) generated representative 

efficient points by solving a mixed integer programming (MIP) model iteratively. 

In another study, Sayin (2000) measured the quality of the representative set which 

is called coverage error using the same MIP model. In a recent work, Sayin (2000) 

illustrated that the MIP model used to generate representative points and measure 

the coverage error can be adapted to the problem of locating a single undesirable 

facility. In this thesis, we aim to improve the computational performance of the 

MIP model proposed by Sayin (2000, 2003). Hence, the improvements achieved in 

this study will be useful in finding the coverage error of a discrete representative 

set and generating representative efficient points.     

 

A different example for the use of undesirable facility location models outside the 

location area belongs to Erkut and Neuman (1989). They mentioned that the 

models in undesirable facility location area can be used when a new product is to 

be positioned into the market, since planners generally try to design new products 

as different as possible from the existing products in the market. 

  

The organization of the thesis is as follows: After a brief review of the existing 

literature in Chapter 2, we go into details of pure undesirable single facility 

location problem in Chapter 3. In this chapter, we present our assumptions that 

constitute the base of the mathematical model, explain the model in detail and 
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present some computational results. We illustrate the solution approaches on some 

example problems. 

 

In Chapter 4, we present our assumptions for the biobjective model. The chapter is 

finalized with the presentation of an interactive geometrical branch and bound 

algorithm based on the findings of Chapter 3. The algorithm is presented on some 

example problems including a real life one from the literature.    

 

Final remarks, conclusions and directions for future research are given in Chapter 

5. 
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CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

The aim of this chapter is to briefly review the existing studies in the literature 

suggested for the solution of undesirable and semi-desirable facility location 

problems. 

 

2.1 UNDESIRABLE FACILITY LOCATION PROBLEMS   
 

Before presenting the literature review for undesirable facility location problems, 

we would like to give the general classification of the problems according to four 

criteria as seen below: 

 

(1) Number of facilities to be located 

 

��single facility 

��multiple facilities 

 

(2) Feasible region 

 

��discrete 

��continuous  

��network 
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(3) Distance metric 

 

��euclidean 

��rectilinear 

 

(4) Objective function 

 

��maximin 

��maxisum 

 

Regarding the first criterion, because of the solution complexity of the multiple 

facility location models, most of the studies in the literature are dedicated to single 

undesirable facility location, several of which we overview in this chapter.  

 

The second criterion is the type of the feasible region. There are mainly three types 

that can be observed in the models of this area, namely; discrete, continuous and 

network. 

 

��Discrete location models are used when a facility is to be located to a site 

chosen among a discrete set of predetermined alternative sites. The 

solution methodologies for these problems are generally based on integer 

and combinatorial optimization techniques.  

 

��Continuous location models are the ones where a facility is located in a 

m-dimensional space, Rm. The solution methodologies are mainly based 

on geometrical and mathematical analysis, linear and non-linear 

programming and global optimization methods. 
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�� Network location models try to site a facility to a node or an edge of a 

graph, the edges representing the transportation links. The solution 

methodologies mainly rely on graph theory. 

 

The third criterion is the distance metric used. Early models in this area generally 

measure the distance by using euclidean metric with the idea that pollution spreads 

continuously over a region. After the 1980s rectilinear metric has been introduced 

to the literature. In the location theory, this measure of distance is generally used 

when the travel between points is assumed to happen through network of streets 

that it is often termed Manhattan distance.  

 

The objective function used is the fourth classification criterion. As mentioned in 

the previous chapter, the simplest way of locating an undesirable facility is to site 

it as far as possible from the population centers (demand points) to minimize its 

disservice cost based on the fact that undesirable effects are decreasing function of 

travel distances. Different objective functions have been used in the literature for 

this purpose; which are all based on two main types. The first is the well-known 

maximin objective which maximizes the distance of the facility from the closest 

demand point. Indeed, this objective provides the highest protection on the 

demand point that is most influenced by the undesirable effects of the facility. The 

second is the maxisum objective which considers the aggregate effect of the 

facility on the entire set of demand points by maximizing the total distance 

between them. This objective can be thought as the minimization of the disservice 

cost of the facility on the whole society. 

 

A more detailed classification of the problems can be found in Erkut and Neuman 

(1989).  
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In relation to our focus in the thesis, we would like to concentrate on the part of 

the literature dedicated to the problem of locating a single undesirable facility in a 

continuous feasible region in which distances are measured either with euclidean 

or rectilinear metrics. Throughout this chapter, the terms 1-maximin and 1-

maxisum are used to refer to this problem along with the objective pointed. It 

should be noted that the solution complexity of these problems depends on the 

objective function defined and the distance metric used.  

 

Since 1-maximin problem is nonlinear and nonconvex with both euclidean and 

rectilinear distances, it is difficult to solve and several local optima exist. On the 

other hand, 1-maxisum problem is convex with any lp distance, the solution of 

which is simpler than the former one. Hence, most of the research has been 

focused on the solution approaches of several versions of 1-maximin problem. As 

for the distance metric used, rectilinear distance is piecewise linear, hence any 

model including this distance can be linearized in several ways. Therefore, the 

solution techniques are based on the extraction and solution of LP subproblems. 

However, this is not the case for euclidean distance since the nonlinearity cannot 

be removed from the model by common techniques. Hence, the approaches for this 

problem are generally based on geometrical means and the general theorems valid 

for nonlinear programming problems.  

 

Depending on the above, we would like to review the studies on 1-maximin 

problem briefly for euclidean and rectilinear cases first. After this, we turn our 

attention to the literature dedicated to 1-maxisum problem. The section ends with 

the presentation of a general study that is applicable to all types of single facility 

location problems and can be adapted to the undesirable facility location problem.   
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2.1.1 1-MAXIMIN PROBLEM WITH EUCLIDEAN METRIC 

 

The first related studies are Shamos (1975) and Shamos and Hoey (1975). These 

two studies considered the problem in one and two-dimensional space and 

attempted to find the optimal point in the convex hull of n demand points. In two 

dimensions, they constructed Voronoi polygons. These polygons, centered at each 

demand point, are formed by the lines that are composed of feasible points equally 

spaced from the demand point pairs (i.e. the bisectors of demand point pairs). They 

developed an algorithm based on the properties of Voronoi polygons.  

 

Dasarathy and White (1980) considered the 1- maximin problem within a convex 

polyhedron. They proved the existence of finite candidate solutions in m-

dimension and suggested algorithms for two and three dimensions. They attempted 

to find the largest hypersphere in the feasible region that does not contain any 

demand point, with the idea that the center point of this hypersphere is the optimal 

point with the objective function equal to the radius of that hypersphere. For 

finding this hypersphere, they used a nonconvex, nonlinear programming 

formulation, where the local optima were searched by an algorithm based on 

Kuhn-Tucker (K-T) conditions. A Lagrangian upper bound and an iteratively 

developed lower bound on the radius of the largest hypersphere were used to 

increase the efficiency of the algorithm. For the two-dimensional case they 

constructed Voronoi polygons, and searched the optimal point with a simpler 

algorithm. 

 

Drezner and Wesolowsky (1980) dealt with 1-maximin problem within a two-

dimensional continuous region. The feasible region is the intersection of the circles 

representing the prespecified maximum distance constraints of each demand point. 

In other words, the feasible region is defined by the constraints ensuring the 

location of the facility to be in prespecified distance of the demand points. A 
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numerical bisection method was presented up to a prespecified precision. The aim 

of the study was to find the last feasible point that is not covered by any circle 

drawn from each demand point iteratively. They have used upper and lower 

bounds updated in each step of the algorithm, the difference of which determines 

whether to cease the algorithm. 

 

Hansen et al. (1981) studied 1-maximin problem with a general metric in a union 

of finite number of polygons in R2. They assumed a decreasing and continuous 

nuisance cost function. The models suggested were constructed to minimize the 

total nuisance cost and the maximum nuisance cost. These problems were defined 

as Anti-Weber and Anti-Rawls problems respectively the properties of which are 

exactly the same as those of the 1-maxisum and 1-maximin problems if the 

nuisance cost function is linear. For Anti-Rawls problem they suggested a simple 

geometrical method which they term ‘Black and White Method’ based on the 

elimination of parts of the feasible region with the help of incumbent values of 

some selected points.  

 

Melachrinoudis and Cullinane (1985) studied the problem in a polygon in R2, 

where the existing demand points were assumed to have forbidden regions around 

them. This assumption actually provides realism to the problem, which can be the 

case in most real life location problems considering the geographical barriers lying 

on the surface of the earth. They presented some properties of the possible location 

of the optimal point in the resulted nonconvex feasible region relying on K-T 

conditions. Based on these properties they have constructed an algorithm, which 

they presented on a real life application. 

 

In a later study, Melachrinoudis and Cullinane (1986) studied the problem on a 

polygon in R2. They have proved that the optimal point is either at the boundary of 

the feasible region or in the convex hull of demand points. In the latter case they 
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proved that the optimal point is equidistant from at least three points, which was 

first proved by Dasarathy and White (1980) for the same problem in Rm. With this 

fact, they constructed a geometrical algorithm to search the feasible region; the 

average complexity of which is O (n3), where n is the number of demand points. 

 

Erkut and Neuman (1989) and Plastria (1996) reviewed the literature on the 

location of undesirable facilities, enlightening the unexplored areas of the problem 

and the possible areas for future studies. 

  

Fernandez et al. (1997) have studied the same problem with Melachrinoudis and 

Cullinane (1985), where the feasible region was a convex polyhedron and there 

were protected zones surrounding each demand point. The enumeration of 

candidate locations for the optimal point was made possible by (K-T) optimality 

conditions. However, since the cardinality of candidate locations is too large, a 

geometrical approach was proposed, and shown on a real life example.   

 

2.1.2 1-MAXIMIN PROBLEM WITH RECTILINEAR METRIC 

 

To our knowledge the first study on the problem was carried out by Drezner and 

Wesolowsky (1983). They presented two approaches on a convex planar region 

based on the fact that optimal solution is either at the boundary or located in the 

interior points which lie on equirectilinear line of two demand points. Based on 

this finding, they have constructed their first algorithm based on a boundary search 

followed by an interior search. The idea of the second algorithm was to partition 

the feasible region by horizontal and vertical lines passing through each demand 

point. With this idea, they came up with a great number of LP’s, which should be 

solved for each subregion resulting in O(n2) problems, where n is the number of 

demand points. They proposed the use of an upper bound for each region to 

decrease the number of LP’s to be solved in some extent. 
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Melachrinoudis and Cullinane (1986) studied the problem on a polygon in R2 

along with the euclidean version mentioned above. They presented three properties 

of the problem which enlightens the possible locations of the optimal point. Based 

on these properties, they suggested a geometrical algorithm the average 

complexity of which is O (n2) where n is the number of demand points.  

 

In another study, Melachrinoudis (1988) proved the properties suggested in the 

former research. A similar algorithm with Drezner and Wesolowsky’s (1983) was 

presented. The same linearization technique was used which is partitioning of the 

feasible region from each demand point with two perpendicular lines parallel to 

the x and y axes. The upper bound that was used is the same as the one proposed 

by Drezner and Wesolowsky (1983). The only difference in their geometrical 

algorithm was that they solved the dual of the generated LP’s with a great 

reduction in the size of the constraint set.  

  

The above mentioned approaches were improved by Mehrez et al. (1986) and 

Appa and Giannikos (1994). In the former study, an interesting improvement was 

that the number of LP’s constructed for each region is reduced by an approach 

called ‘closest point approach’. They used a new upper bound calculated with the 

closest points which decreases the number of LP’s by the elimination of some 

subregions. In the latter study, the authors showed that the enhancement suggested 

by Mehrez et al. (1986) can be further improved by exploiting the possible 

locations of the optimal solution. With this way, some regions can be eliminated, 

removing the need for storing data for each region and the optimal point for the 

remaining regions can be found without even using linear programming. However, 

the search for the optimal point is carried out in all the bisectors of demand point 

couples, therefore the complexity of the algorithm is directly related with the 

number of demand points. 
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In the above studies, the problem has been well studied assuming that the feasible 

region is in R2. White (1996) removed the necessity for the feasible region to be a 

polygon and the studied the problem in Rm. He suggested the use of an algorithm 

that finds partial optimal solutions. The deficiency of the algorithm was due to the 

dependence of the final solution to the initial seed point. Besides, he presented a 

new upper bound valid in Rm which was proved to be better than the upper bound 

suggested by Drezner and Wesolowsky (1983). He noted that the upper bound can 

be used to check the result of the algorithm and to control initial seed values.  

 

Sayin (2000) suggested a new solution approach to the problem with a MIP model 

which can be solved by any standard MIP solver. She found out that the model 

resulted in affordable computational times for problems of decent size. She also 

suggested the use of an upper bound which was the dual version of the bound 

suggested by White (1996).  

 

2.1.3  1-MAXISUM PROBLEM  

 

In their study, Hansen et al. (1981) suggested a geometrical branch and bound 

algorithm called ‘Big Square Small Square Method’ (BSSS) that deals with Anti-

Weber problem where summation of some function of distances of the facility 

from the demand points measured with a general metric is minimized. Since the 

idea in this simple algorithm has been used in several studies further in the 

literature for different types of problems, we would like to explain the algorithm 

briefly. The branching consists of partitioning a square covering the feasible 

region with sides parallel to the axes into four equal subsquares. They suggested 

the use of a bound calculated with the distance of the farthest feasible points to the 

existing points. The elimination was made possible by the comparison of the 

bound with the function value of an incumbent point which is improved in each 

iteration. The algorithm stops when the side length reached a prespecified stopping 
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value. Although they proved that the solution to the Anti-Weber problem is either 

at the convex hull of the existing points or the points of the feasible region remote 

from the convex hull, they have not incorporated this finding into their algorithm. 

In the case of a linear nuisance cost function, they proved that the optimal solution 

should be investigated at the extreme points of the feasible region remote from the 

convex hull of the existing points.  

 

Melachrinoudis and Cullinane (1986) studied the problem on a polygon in R2. 

Since they have not used any social cost function, and directly used the maxisum 

formulation, it was simple to prove that the optimal point should be searched at the 

extreme points of the feasible region both for euclidean and rectilinear case. 

 

2.1.4  A GENERAL SOLUTION METHODOLOGY 

 

Plastria (1992) has presented a modified version of the BSSS algorithm, named as 

‘Generalized Big Square Small Square Algorithm’ (GBSSS) that generalizes the 

application of BSSS algorithm to all types of planar single facility location 

problems by assuming that the objective function is continuous and boxwise 

optimizable (i.e. ‘both the minimal and maximal value of the objective function on 

any box can be determined without too much effort’) without concerning whether 

the objective is a maximization or minimization in nature. 

 

The main differences between GBSSS and BSSS algorithm are as follows: BSSS 

algorithm stops when the squares have a prespecified side length while GBSSS is 

a two-phase algorithm, based on finding the optimal value up to a prespecified 

relative precision in Phase 1, and a region of near optimality in Phase 2. Phase 2 of 

the algorithm is completely new compared to BSSS. The BSSS algorithm cuts all 

the feasible regions at hand into four simultaneously to simplify the list keeping 

operation leading the storage of unnecessary data. On the other hand, in GBSSS a 
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single region with the best bound is divided at each step similar to the best-bound 

search in the standard branch and bound algorithm. It should be realized that 

GBSSS has several advantages over BSSS. However, the bounds that is used in 

the algorithm is exactly the same as in BSSS. We believe that the bounds should 

be improved depending on the objective function used.  

 

2.2 SEMI-DESIRABLE FACILITY LOCATION PROBLEMS   
 

Semi-desirable facility location problems are the ones that balance the desirable 

and undesirable aspects of any facility on some existing demand points. This type 

of problems is rarely studied in the literature, since the definition of semi-desirable 

facility is relatively new compared to that of undesirable facility. These problems 

have been defined as biobjective problems including the two conflicting 

objectives, where the complexity of the solution methodologies are obviously 

based on the objective function pairs selected and the distance metric used. As 

explained in the beginning of the chapter in detail, there are two types of objective 

functions that represent the undesirable aspects of the facility, namely, maximin 

and maxsum. For centuries, desirable facilities are located so as to minimize the 

total or the maximum distance of the facility from the demand points which are 

referred to as minsum and minmax respectively.   

 

The first study we have found is by Mehrez et. al. (1983). They defined a problem 

on a square feasible region with maximin and minmax objectives using the 

rectilinear distances. They assumed that the decision maker’s objective is to find 

the location which minimizes the weighted combination of the maximin and 

minmax objectives. Based on this assumption, they suggested an algorithm to find 

an optimal solution to the weighted maximin-minmax rectilinear distance problem. 

They found out that the optimal points are either on the intersection points of 

bisectors or on the boundary of the feasible region, which was proved for any 
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polygonal region in this study. It should be noted that a bisector of two demand 

points is a line formed by the points equally spaced from these two demand points. 

Their algorithm specifies the intersection points of concern with the help of some 

geometrical findings. Some points can be eliminated from further consideration as 

a result of the comparison with the other points. They pointed out that the 

algorithm has significant advantage of providing ranges for optimal solution 

values for all possible ranges of weights. However, they have not mentioned the 

efficiency of the algorithm in the existence of big sample of demand points in 

which case the enumaration of the candidate optimal points requires great effort.  

 

Morales et.al. (1997) developed a global optimization approach with a global 

objective function including two cost functions, the first of which is nonincreasing 

function of distances measuring for the social cost of the facility and the second is 

a nondecreasing function measuring the transportation cost. These two functions 

are based on the total distance of the facility to all the demand points. Actually, the 

social cost function is equivalent to the function of Anti-Weber problem defined 

by Hansen et. al (1981) and the transportation function is the function used in the 

well known Weber problem. Their solution algorithm is based on the BSSS 

algorithm suggested by Hansen et. al. (1981) with an improvement in bounding 

scheme. They obtained an upper bound with the Lagrangian Relaxation of some 

constraints. They have not calculated the optimal Lagrangian multiplier; instead, 

they have conducted a few iterations with sub-gradient method.  They have 

performed computational tests to see the effect of the new bound, and come up 

with the fact that it requires much less computational effort. However, we believe 

that as the number of demand points increases, the number of Lagrangian 

multipliers is expected to increase, making even small number of sub-gradient 

iterations computationally prohibitive. 
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Brimberg and Juel (1998) studied the problem with the following two cost 

functions. The one for transportation cost is the weighted sum of all the distances 

to the facility as in the Weber problem, while the social cost function is the 

minsum objective, where euclidean distance raised to a negative power. This latter 

objective is a new type used for the undesirable facility location problem. The 

authors stated that this function minimizes the combined effect of the facility on 

the demand points, while the decreasing marginal rates of return of distances are 

also taken into account, which they claimed more realistic compared to the general 

objectives. For this social cost function, they have proved that the optimal point is 

either in the convex hull of the demand points, or at the boundary, and elimination 

of some regions based on this fact were suggested. Since the social cost function is 

indeed neither convex, nor concave, they argued that several local minima exist. 

Their solution approach is based on the minimization of the weighted sum of the 

two functions as in Mehrez et al. (1983). A trajectory of efficient points is defined 

by a system of differential equations. The deficiency of the method is in the 

detection of the discontinuities of the efficient trajectory, which requires some 

effort.  

 

In another study, Brimberg and Juel (1998) proposed a different approach for the 

solution of the unconstrained version of the problem. They used the minimization 

of the total weighted distance of the facility from the demand points for measuring 

the transportation cost by using a general metric. The social profit is maximized by 

maximizing the weighted euclidean distance of the facility from the closest 

demand point. For finding the efficient set they used two formulations the first of 

which is a parametric model where the sum of the weighted distances is minimized 

subject to constraints ensuring that the distance from the demand points must 

exceed some value. The minimum of this value is found by calculating the social 

profit of the point which minimizes the transportation cost function. They proved 

that the parametric solution of the model yields the efficient set. The second 
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formulation was based on a standard procedure in multi-criteria analysis which is 

the construction of the weighted sum of the functions and minimizing it. They 

suggested a geometrical method for the solution.   

 

The maximin-minsum objective pair with rectilinear distance metric first appeared 

in the study of Melachrinoudis (1999). He assumed that the feasible region is 

rectangular. His solution method for the nonlinear nonconvex biobjective problem 

was based on partitioning the feasible region into n2 subregions where n is the 

number of demand points as suggested by Drezner and Wesolowsky (1983). By 

this partitioning, one can eliminate the nonlinearity for each objective and have n2 

LP’s. Additionally, the closest point approach for the maximin objective 

considering the four neighboring region of each subregion suggested by Mehrez et 

al. (1986) was used in this study. Indeed, Drezner and Wesolowsky (1983), 

Melachrinoudis (1988), Mehrez et al. (1986) and Appa and Giannikos (1994) used 

this linearization technique, considering a single maximin objective. In this study 

Melachrinoudis (1999) included a conflicting objective in the same approach 

which is the minimization of transportation cost with minsum objective. For the 

adaptation of this objective, small LP’s generated by partitioning the feasible 

region are solved as biobjective problems. When the closest point approach was 

used, the number of constraints for maximin objective decreased dramatically 

which triggered the author to use Fourier-Motzkin Elimination. With this method, 

n2 rectangular subregions are generated, so that the LP’s can be constructed in 

O(n2) time. Although, the size of the LP’s are very small, and they can be solved 

efficiently, the number of subregions is too large which we believe makes the 

algorithm affordable just for decent size problems.  

 

Carrizosa and Plastria (1999) have presented a literature review on the models 

suggested for the solution of semi-desirable facilities. 
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Skriver and Andersen (2003) studied the same problem with Brimberg and Juel 

(1998) where the social cost function is the sum of the weighted euclidean 

distances powered with a negative integer, and the transportation cost is 

represented as the sum of the weighted euclidean distances. They studied the 

problem in both planar and network cases.  They followed the suggestions of 

Brimberg and Juel (1998) for planar problem and proposed the biobjective 

adaptation of the BSSS algorithm. In every branching lower bounds are found for 

each objective corresponding to the subregions. Subregions are eliminated 

whenever these lower bound pairs are dominated by any incumbent point. They 

presented that in some cases the optimal minsum value for a subregion can be 

found by checking the negative gradient at each corner point which is valid only 

when the direction of steepest decent points is away from the square. This finding 

supported the BSSS algorithm. However, they stated that most of the time this 

approach does not work, and in this case the bounds suggested by Hansen et. al. 

(1981) are used. They illustrated their solution approaches both for planar and 

network models on a real life example.      

 

Melachrinoudis et. al. (2003) is the most recent study we found in the literature. 

They studied the maximin-minsum objective pair in a planar region with euclidean 

distances. In their study, they partitioned the feasible region into Voronoi polygons 

which was first suggested by Shamos and Hoey (1975) and developed by 

Dasarathy and White (1980). The complete trajectory of efficient solutions was 

obtained by using the Karush-Kuhn-Tucker (K-K-T) conditions along with the 

geometrical properties of Voronoi diagrams. They reduced the search region for 

efficient solutions to the points lying on the bisectors which maximize distance 

from a demand point to minsum contours, parts of Voronoi edges and parts of the 

edges of the feasible region.  
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CHAPTER 3 
 

 

UNDESIRABLE FACILITY LOCATION PROBLEM 
  

 

In this chapter, we define the problem of locating a single undesirable facility and 

explain the basic assumptions. We present our solution approaches and report the 

results of the computational experiments.  

 

3.1 PROBLEM DEFINITION AND ASSUMPTIONS 
 

Undesirable facilities are the facilities having negative externalities on the people 

living in the vicinity. Undesirable facility location problems attempt to locate such 

facilities as far from the population centers as possible so as to minimize their 

social cost.   

 

Single undesirable facility location problems can be differentiated according to the 

basic assumptions regarding the underlying feasible region, the distance metric 

used and the objective function defined as highlighted in Section 2.1 in detail. We 

will explain our assumptions below. 
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3.1.1 FEASIBLE REGION  

 

As mentioned in Section 2.1, there are mainly three types of feasible regions used 

in this area, namely; discrete, continuous and network. 

 

Erkut and Neuman (1989) claimed that any solution methodology suggested for 

the undesirable facility location problem should both include a ‘site generating’ 

and a ‘site selection’ step. In discrete location problems one first needs to screen 

the candidate sites considering some factors such as geography and economy, or 

first needs to generate a near-optimality region from which some discrete points 

can be selected. Hence, discrete models can be used for site selection after the 

generation of several candidate sites. 

 

Network models are appropriate when there is an existing road network 

eliminating the need of construction of any when a facility is to be located. 

However, when any undesirability is of concern, the network models are not 

realistic, with the idea that pollution does not spread through road networks. 

 

Although the right choice of the feasible region actually depends on the type of the 

facility to be located, we believe that interaction between an undesirable facility 

and a community generally happens in continuous regions, hence this assumption 

is the most realistic in a general modeling framework. 

 

In this study, we assume that, feasible region is continuous, and defined as a 

convex polygon in R2 with k constraints.  

 

{ }2
1 2:     for 1,...,S R e x f x g j kj j j= ∈ + ≤ =x  
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This is a realistic assumption considering that any particular shape of convex 

region can be approximated by a convex polygon, and facility planners in real life 

situations are generally faced with project layouts which happen in two 

dimensional space.  

 

3.1.2  DISTANCE METRIC 

 

It is a general claim that the distance metric should be determined considering the 

continuous spread of the undesirable effects; therefore network or rectilinear 

metrics may directly be ruled out. With this idea, euclidean metric is selected as 

the most appropriate measure by many researchers besides its solution complexity.  

 

Although the general trend is the utilization of euclidean metric, we believe that 

this is also not realistic to model the undesirable effects like noise and air 

pollution. Hence, the solution complexity caused by this metric may not be worth 

studying in many situations considering the various factors involved in the spread 

of such effects like wind, geographical barriers etc. On the other hand, from our 

point of view, the use of rectilinear metric should not to be ruled out directly, 

because it can be realistic depending on the application of concern. For example, 

as indicated in Melachrinoudis (1999), the unpleasant effects of a facility generally 

spread through rectangular isles in a factory including walls. Indeed, rectilinear 

metric is quite widely used in the literature along with the Euclidean metric. For 

instance 1-maximin problem with rectilinear distance has been studied recently by 

White (1996) and Sayin (2000). In this study, we assume that the distance metric is 

rectilinear, and the distance between any two points x and y is calculated as 

follows: 

 

1 1 2 2( , )d x y x y= − + −x y  
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3.1.3 OBJECTIVE FUNCTION ‘Measuring the Social Cost’ 

 

As indicated in Section 2.1, the most famous objective functions that are used to 

measure the social cost associated by an undesirable facility are maximin and 

maxisum objectives. The first objective maximizes the protection on the demand 

point which is the most effected, while the latter maximizes the aggregate 

protection on a whole community.  However, maxisum objective may result in a 

solution which is in the immediate neighborhood of any demand point, making 

this objective not preferable in most of the situations. Hence, many studies are 

dedicated to location models with maximin objective.  

 

However, measurement of the social cost is too difficult that sometimes people 

may see the effects of a nuclear power plant after tens of years after the first 

interaction. As also indicated by Erkut and Neuman (1989), for a more accurate 

representation, the decreasing marginal rate of social cost should be considered  

which may level off to zero at some sufficiently far point from the demand points. 

With this claim, objectives consisting of linear functions of distances turned out to 

be unrealistic.  

 

We believe that efforts in the utilization of objective functions measuring 

decreasing marginal rates of return and long term effects are justifiable only when 

the problem involves a facility with specific type of undesirability since the 

character of the social cost changes from one facility to another. Hence, from our 

point of view, well- known maximin or maxisum objectives are appropriate for a 

general modeling frame. Knowing that maxisum objective may result in an 

optimal location in the immediate neighborhood of a demand point which is not 

preferred in real life situations, we will use the most generally used one, maximin 

objective function.   

 



 25

3.2 MATHEMATICAL MODEL 

 

Let 1 2( , ) for i=1,...,Ni ib b=ib be the coordinates of the existing demand points and 

1 2( , )F x x  be the rectilinear distance between a facility located at 1 2( , )x x and the 

closest demand point to it.  

 

{ }1 2 1,..., 1 1 2 2( , ) min i i
i NF x x x b x b== − + −

 

The problem then is to maximize this distance within a given convex polygon. 

 

1 2

1 2

(M-1)
               ( , )

               to
                for  1,...,j j j

Max F x x

subject

e x f x g j k+ ≤ =

 

 

where je , jf and jg are constants that define the linear constraints. Since the 

objective function is not concave, the global optimal point cannot be guaranteed.  

 

The model can be reformulated as follows; 

 

 

 

where L is the distance of the facility from the closest demand point. 

*

1 1 2 2

1 2

 (M-2)

                L  L
                 to

                ( )   for 1,...,    (1)

                e                 for 1,...,     (2)

i i

j j j

Max

subject

L x b x b i N

x f x g j k

=

≤ − + − =

+ ≤ =
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Besides its nonconvexity, the model is nonlinear. The nonlinearity is because of 

the absolute values in the first constraint set. As explained in Chapter 2 in detail, 

Drezner et al. (1983) and Melachrinoudis (1988) proposed the partitioning of the 

feasible region into rectangular segments, by drawing vertical and horizontal lines 

from each demand point for the purpose of linearization. Then, to find the optimal 

point, (N+1)2 linear programs should be solved for each subrectangle.  

 

To linearize the problem, we use the mixed integer mathematical model proposed 

by Sayin (2000) in which rectilinear distance is calculated by a set of constraints 

controlled by integer variables.  

 

Let ( , )d jx b be the rectilinear distance between the two points 2R∈jx,b  

  

2
1 1 2 2( , ) j jd x b x b R= − + − ∈j jx b     x,b  

 

Let j
i i ia x b= −  for i = 1, 2  is the ith component of ( , )d jx b and can be calculated 

as; 

 

{ }max ( ), ( )j j
i i i i ia x b x b= − − +  for i = 1, 2 

 

Then it is true that  

 
j

i i i

j
i i i

a x b

a x b

≥ −

≥ − +
 

 

Since the objective is maximization, these two constraints have to be controlled 

somehow to guarantee that one of the inequalities holds as equality; otherwise the 
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program would be unbounded. For this purpose, the surplus variables ui and oi are 

introduced one of which should be forced to zero. 

 

 

 

When the following constraints including binary variables are added to the above 

set, the rectilinear distance can be measured. M is a sufficiently big number.  

 

1         

0    

0    

i i

i i

i i

t z

u Mt

o Mz

+ ≤
− ≤
− ≤

  

 

Below model is the two-dimensional version of the MIP model suggested by Sayin 

(2000) which uses the set of constraints presented above for the calculation of 

rectilinear distance. 

 

  j
i i i i

j
i i i i

a u x b

a o x b

− = −

− = − +
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Parameters: 

 
j

ib   : Coordinate of the jth demand point in ith dimension 

M  : Sufficiently big number 

je , jf � jg   : Constants that define the feasible region 

 

Decision Variables: 

 

jd  : Rectilinear distance of the facility from the jth  demand point 

j
ia  : ith component of dj  where 1 2

j j
jd a a= +  

1 2( , )x x : Coordinates of the facility  

j
iu , j

io  : Surplus variables associated with the jth demand point in ith    

                       dimension   

j
it  :       0 if ix   > j

ib �

                             1 otherwise 
j

iz  :       0 if j
ib  > ix  

     otherwise  

 

Above mixed integer program maximizes the distance of the facility from the 

closest demand point which is found by the constraint set (2). Constraint set (3) 

ensures that absolute distance is calculated as: 1 2 1 1 2 2
j j j j

jd a a x b x b= + = − + − . 

Constraint sets (4)-(8) guarantee the calculation of rectilinear distance as explained 

before. Constraint set (9) defines the feasible region. 

 

(Maximin-l1) has (3 + 7N) continuous variables, (4N) binary variables and (k + 

12N) constraints. Clearly, the solution complexity increases with increasing 

number of demand points. 
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3.3 COMPUTATIONAL EXPERIMENTS ON (Maximin-l1)  

WITH DEFAULT BRANCH AND BOUND STRATEGIES  

OF CPLEX 
 

In this part, (Maximin-l1) model is tested to see the rate of increase of the solution 

time with increasing number of demand points. The feasible region is a 100 x 100 

square in R2 defined by the constraints 0≤ x1 ≤100 and 0≤ x2 ≤100. The location of 

demand points was generated according to uniform distribution in the interval 

[0,100]. The demand points were assumed to have equal weights based on the 

results of the computational experiments given in Sayin (2000) because the 

solution time of the weighted version of (Maximin-l1) was found out to be shorter 

compared to the unweighted one (i.e. equal weighted version). We have used 

seven different problem sizes and 10 randomly generated problems were solved 

for each category.  

 

The computational experiments were conducted on Pentium IV personal computer 

with 256 MB random access memory (RAM). The optimization models were 

solved in GAMS Version 20.2. The computer code that calls optimization 

programs was written in BORLAND C++ BUILDER Version 3. CPLEX Version 

7.5 operating under GAMS Version 20.2 was used as the MIP solver. Table 3.1 

illustrates the average number of branch and bound nodes and the average CPU 

time for each problem category. The results of all runs can be seen in Appendix-

A. 

 

As the problem size gets bigger, solution time of the model increases 

exponentially as observed from Table 3.1.The following numbers give an idea 

about the increase in the number of variables and constraints with the increasing 

number of demand points. In the case of 3000 demand points; there are 21,003 

continuous variables, 12,000 binary variables and 36,002 constraints. 
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Table 3.1- Computational Results  

 
 

  

 

As stated in Sayin (2000) and as evident from Table 3.1, (Maximin-l1) can be 

solved using�a standard MIP solver in reasonable computation times for small size 

problems; however, when the number of demand points increases, the solution 

time increases exponentially; which weakens the model compared to the ones 

suggested in the literature. 

 

3.4  SOLUTION APPROACHES 

 
3.4.1 INVESTIGATION OF THE DIFFERENT BRANCH AND BOUND 

STRATEGIES OF CPLEX 

 

Although (Maximin-l1) has a poor performance for big sample of demand points, 

we believe that the model is very practical and useful and it can also be adapted to 

other objective functions.  

 

Number of 

Demand Points 

Number of 

Branch and Bound 

Nodes 

CPU Time 

(sec) 

25 44.50 0.77 

50 77.70 1.78 

100 138.30 5.04 

500 692.30 132.98 

1000 1112.50 494.61 

2000 1728.10 1779.67 

3000 2779.40 4969.56 
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As mentioned before, (Maximin-l1) is not only used in the location literature but 

also used in multiobjective mathematical programming context to measure the 

coverage error of a discrete set, which is a representation of continuous efficient 

faces, or used iteratively in the generation of this representative set. However, its 

poor computational performance for large problems causes a serious problem in 

the application of the model.  

 

Moreover, in the second part of this study, we will add another objective to 

(Maximin-l1) to model the semi-desirable facility location problem. Hence, being 

able to solve (Maximin-l1)�fast even for big size problems is very important for the 

generation of efficient points when the biobjective problem is of concern.  

 

As mentioned before, we used CPLEX 7.5 as the MIP solver operating under 

GAMS 20.2. The default MIP strategy settings intend to solve a vast majority of 

MIP models with the minimum solution time. However, difficult models exist 

which may benefit from revision of performance measures of branch and bound 

algorithm (CPLEX, 1998). At this point, we attempt to see the effects of different 

branch and bound strategies on the solution time of (Maximin-l1). 

 

There are several CPLEX strategies�that directly affect the solution performance of 

the model. The most basic and well-known strategies of branch and bound 

algorithm are the selection of a node to branch on (NODESEL) and the selection 

of a variable to fix at each branching (VARSEL). Depending on the relative 

degradation of the objective function value at any node compared to the parent 

node, the solver backtracks to the pool of unexplored nodes. At this point, it can 

either select the last processed candidate node or any node with best bound or with 

best estimate function value. Once the branching node is selected, to decide on the 

variable to branch on is also important. Maximum or minimum infeasibility, 

pseudo costs or strong branching are the options for this strategy.  
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Gregory (2003) stated that although default settings of simplex method are 

difficult to be improved, in models with excessive iterations, pricing method can 

make a difference with parameter DPRIIND.  

 

In addition, at each subproblem, CPLEX MIP solver generates and adds several 

types of cuts to restrict the feasible region to eliminate finding noninteger solutions 

that would otherwise be the solution of the subproblems. The solver repeats the 

process of adding cuts at a node until it finds no further effective cuts. Depending 

on the structure of the problem, sometimes adding cuts takes a long time without a 

considerable improvement in the solution efficiency (CPLEX, 1998).  

 

On the other hand, there is a very important parameter, MIPEMPHASIS which 

decides on the orientation of the solver towards either to find succession of 

improving integer feasible solutions or to work toward a proof of optimality. 

Although the suggested default value for the majority of the models is the use of 

the latter one, emphasis on feasibility eliminates frequent backtracking within the 

tree producing faster sequence of integer solutions. Gregory (2003) stated that this 

may save time eliminating the need for various analysis steps performed early in 

the optimization. 

 

When MIPEMPHASIS parameter is set in conjunction with other CPLEX 

parameters like selection of down or upward branch with command BRDIR, 

selection of pricing strategy with command DPRIIND or turning off all cuts with 

command CUTS, the resulting performance may be more productive or counter-

productive (CPLEX, 1998). In most cases, the effect of the MIPEMPHASIS 

parameter increases when used with one of the above.  

 

We first conducted a preliminary analysis to select strategies which may increase 

the computational performance of (Maximin-l1) and then performed experiments 
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with the selected strategies. The brief explanation of the tested strategies and their 

default values in CPLEX solver can be seen in Table 3.2.  

 

Table 3.2 – Tested CPLEX Strategies and Their Default Values  

 
STRATEGY EXPLANATION 

 
VARSEL Sets the rule for selecting the branching variable at the branching node 

Default = 0 CPLEX selects the best rule based on the problem and its 

progress   

-1 Branch on minimum infeasibility 

 1  Branch on maximum infeasibility 

 3 Strong branching, CPLEX solves a number of subproblems to see which 

branch is most promising 

CUTS Turns off the generation of all cuts at once 

Default = YES Cut generation is allowed 

 No Turn off all types of cuts 

DPRIIND Defines the pricing strategy for dual simplex method 

Default = 0 CPLEX selects the best rule based on the problem and its 

progress   

1 Standard dual pricing 

2  Steepest edge pricing 

MIPEMPHASIS Controls the tactics of the solution, whether emphasize feasibility or 

optimality 

Default = 0 Emphasize finding a proven optimal solution as quickly as 

possible 

 1 Emphasize finding feasible solutions at the expense of spending the time 

required to find a proven optimal solution 

BRDIR Decides which branch should be processed first 

Default = 0 CPLEX selects the best rule based on the problem and its 

progress   

-1 Down branch selected first 

1 Up branch selected first 
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Table 3.2 – (cont’d) 

 
NODESEL Sets the rule for selecting the next node to process when backtracking 

occurs 

Default = 1 Best-bound search 

0 Depth-first search. Chooses the most recently created node 

2 Best-estimate search. Chooses the node with best estimate integer objective 

3 Alternate best-estimate search 

PRIORITY Gives a priority to integer variables 

Ref: (CPLEX, 1998).�

�

 

At this stage, we used four different problem sizes, and for each problem size, 10 

randomly generated problems were solved using each CPLEX strategy to test the 

effect of the strategies on the solution time of (Maximin-l1)��Problem parameters 

and the computation environment were as in the previous tests. Average of the 10 

runs can be seen in Table 3.3 and Table 3.4. The details of all these runs are 

presented in Appendix- B. 

 

According to the results obtained, changing some of the CPLEX default strategies 

resulted in considerable saving in the solution time of (Maximin-l1)� Although 

strong branching (VARSEL=3) reduced the problem size in a great extent, it 

increased the solution time because it partially solved a number of subproblems for 

variable selection at each branching node (CPLEX, 1998). Setting the variable 

selection strategy to 1 (VARSEL=1) worked very well in all of the samples. 

Actually, this rule causes larger changes in the branch and bound tree which 

produces faster overall solution times (CPLEX, 1998). 

 

 

 



 35

Table 3.3 – Results of Tested Strategies for 100 and 500 Demand Points 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It seems that changing the tactic of the branch and bound algorithm to find better 

integer solutions with (MIPEMPHASIS=1), turning off cut constraints with 

(CUTS=NO), fixing the pricing strategy with (DPRIIND=1), changing the node 

selection strategy with (NODESEL=0, 2, 3),  branching on maximum infeasibility 

(VARSEL= 1) and giving a priority order to one of the integer variables with 

PRIORITY bring considerable improvement.  
 

 

 

Number of Demand Points 
 

100 500 

CPLEX Strategy 

Used 

Number of 

Branch and 

Bound Nodes 

CPU Time 

(sec) 

Number of 

Branch and 

Bound 

Nodes 

CPU Time 

(sec) 

DEFAULT 138.30 5.04 692.30 132.98 

VARSEL –1 140.90 2.50 686.30 100.20 

VARSEL 1 170.40 3.20 937.30 95.50 

VARSEL 3 86.20 6.00 542.00 164.30 

CUTS NO 143.90 3.20 523.30 63.30 

DPRIIND 1 139.50 4.50 820.30 81.80 

DPRIIND 2 165.30 7.90 768.80 246.90 

MIPEMPHASIS 1 117.00 2.40 498.20 42.80 

BRDIR –1 154.50 5.30 556.60 128.70 

BRDIR 1 131.60 5.20 682.70 143.80 

NODESEL 0 128.10 4.50 449.40 95.10 

NODESEL 2 123.50 4.70 721.30 135.30 

NODESEL 3 108.90 4.50 367.00 91.20 

PRIORITY 135.10 4.10 653.80 108.80 
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Table 3.4 – Results of Tested Strategies for 1000 and 3000 Demand Points 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In contrast with strong branching, it is observed that when some strategies were 

used, the number of branch and bound nodes increased although the solution time 

decreased compared to the default case. For instance, when variable selection was 

based on maximum or minimum infeasibility (VARSEL=-1 and 1), the number of 

branch and bound nodes increased in the case of 3000 demand points, while the 

solution time decreased. The same situation can be observed in some other cases.  

Number of Demand Points 
 

1000 3000 

CPLEX Strategy 

Used 

Number of 

Branch and 

Bound 

Nodes 

CPU Time 

(sec) 

Number of 

Branch and 

Bound 

Nodes 

CPU Time 

(sec) 

DEFAULT 1112.50 494.61 2779.40 4969.56 

VARSEL –1 1714.20 557.60 3356.78 3592.11 

VARSEL 1 1720.50 356.50 3507.78 2750.56 

VARSEL 3 1190.30 720.40 2425.11 5358.67 

CUTS NO 687.10 255.50 1303.67 3037.78 

DPRIIND 1 1221.60 270.30 2284.22 1828.44 

DPRIIND 2 1318.00 1179.90 1900.56 8836.78 

MIPEMPHASIS 1 829.00 184.30 2078.89 1944.67 

BRDIR –1 1227.80 529.90 2324.00 4569.89 

BRDIR 1 1213.90 517.80 2389.56 4466.22 

NODESEL 0 985.50 404.10 1876.78 3073.00 

NODESEL 2 1060.00 475.10 2246.33 4081.56 

NODESEL 3 867.40 397.80 1606.89 3037.89 

PRIORITY 1310.00 466.30 2518.22 3557.44 
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The reason may be that some strategies make the branch and bound algorithm 

more productive by fixing some decisions that would otherwise cost CPLEX to 

make some more iterations or solve partial problems at the default settings.  

 

Indeed, CPLEX tries to make the most promising decisions to decrease the branch 

and bound tree size and the solution time together. However, in our case, since the 

branch and bound tree size is very big, making extra iterations prior to the 

decisions results in an increase in the computation time.  

 

For instance, CPLEX does not solve any partial problem to select a variable at 

each node with (VARSEL=-1 and 1), which means it does not try to find out the 

most promising branch. This increased the number of branch and bound nodes. On 

the other hand, since the problem size is very big, when the number of demand 

points increases, elimination of the need for solving partial problems decreased the 

solution time considerably. 

 

Although the results improved when the above mentioned strategies were used 

alone, their combined effect should also be tested. However, combining the 

strategies at once may be misleading to test this effect due to the fact that some 

strategies may honor the others while some of them may be counter productive 

together. Hence, we have tested all of the above mentioned strategies by 

combining them one by one. The tested combinations can be seen in Table 3.5 
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Table 3.5 – Tested Combination of Strategies 
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MIPEMPHASIS 1 � � � � � � � 

CUTS NO � � � � � � � 

DPRIIND 1  � � � � � � 

VARSEL 1   � � � � � 

NODESEL 0    �    

NODESEL 2     �   

NODESEL 3      �  

PRIORITY       � 

 

10 randomly generated problems were solved for each problem type and strategy 

combination to test the effect of the combinations of strategies (given in Table 3.5) 

on the computational performance of� (Maximin-l1). The results are reported in 

Table 3.6. Parameters and computational environment were as in the previous 

runs.  

  

As seen in Table 3.6, combined strategies 2-7 decreased the solution time of 

(Maximin-l1)� model with the default strategies approximately 10 times. For 

example, in the case of 3000 demand points; we solved (Maximin-l1) model with 

21,003 continuous variables, 12,000 binary variables and 36,002 constraints in 

approximately 6 minutes. These combinations make the Sayin’s proposed model 

practical even for very large problems. Since the effects of these combinations, 

especially combinations 3-7, were close to each other, we could select any 

combination among them. We have decided to use the strategy combination 3 and 

in the rest of the thesis we solved (Maximin-l1) using this combination. 
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Table 3.6 – Results of Tested Strategy Combinations 

 
Number of Demand Points 

 
100 500 

CPLEX Strategy 

Used 

Number of 

Branch and 

Bound Nodes 

CPU Time 

(sec) 

Number of 

Branch and 

Bound Nodes 

CPU Time 

(sec) 

DEFAULT 138.30 5.04 692.30 132.98 

Combination#1 107.70 1.10 476.50 27.20 

Combination#2 122.00 1.10 462.90 13.70 

Combination#3 101.90 1.10 405.50 11.50 

Combination#4 100.40 1.00 405.50 12.00 

Combination#5 101.90 1.00 405.50 11.80 

Combination#6 100.40 1.00 403.90 11.40 

Combination#7 97.80 1.00 396.10 12.20 

Number of Demand Points 
 

1000 3000 

CPLEX 

Strategy Used 

Number of 

Branch and 

Bound Nodes 

CPU Time 

(sec) 

Number of 

Branch and 

Bound Nodes 

CPU Time 

(sec) 

DEFAULT 1112.50 494.61 2779.40 4969.56 

Combination#1 766.00 118.90 1828.60 1518.20 

Combination#2 735.30 49.10 1609.50 429.50 

Combination#3 671.10 41.30 1643.40 342.40 

Combination#4 665.40 41.20 1766.80 355.10 

Combination#5 671.10 40.80 1643.40 342.20 

Combination#6 679.00 41.00 1641.00 333.60 

Combination#7 683.40 41.70 1727.90 366.10 
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3.4.2 UPPER AND LOWER BOUNDING STRATEGIES 

 

It is of common knowledge that application of bounds to any MIP model generally 

decreases the solution time. Keeping this in mind, we have gone through literature 

with the aim of finding bounds to the optimal value of (Maximin-l1), but could 

only find three types of upper bounds.  

 

1) Upper Bound Suggested by Drezner and Wesolowsky (1983) 

 

The optimal value of (Maximin-l1) can be written as 

 

{ }
1 2

*
1 1 2 21,...,( , )

max min ( i i

i Nx x S
L x b x b

=∈
= − + − �

where  S is the feasible region and 1 2( , )i ib b �is the coordinates of ith demand point. 

It follows that 

 

{ }
1 2

*
1 1 2 21,..., ( , )

min max ( i i

i N x x S
L x b x b

= ∈
≤ − + −

 

Since any lp distance�is convex, it attains its maximum at some vertex of S. 

 

Let V denote the set of vertices.  

 

{ }
1 2

*
1 1 2 21,..., ( , )

min max ( )i i

i N x x V
L x b x b

= ∈
= − + −

�

where *L is the upper bound on *L  

 

This upper bound was used by Drezner and Wesolowsky (1983) and 

Melachrinoudis and Cullinane (1986).  



 41

2) Upper Bound Suggested by White (1996) 

  

{ }
1 2 1 2

*
1 1 2 2 1 1 2 21,...,( , ) ( , )

1,...,

min max ( ) min max ( )i i i i
i i Nx x S x x S

i N

L x b x b x b x b
λ

λ
∈∧ =∈ ∈=

� �� �� �≤ − + − ≤ − + −� �� 	
� �
 �� 


�
�

where �
1..

: 1N
i

i N

Rλ λ+
=

� �∧ = ∈ =� �
� 


�  

 

The proof of the above inequality can be found in White (1996). This upper bound 

is tighter compared to the upper bound suggested by Drezner and Wesolowsky 

(1983).  

 

3) Upper Bound Suggested by Morales at al. (1997) 

 

Morales et al. (1997) used the Lagrangian relaxation of (M-1) (see Section 3.2) as 

an upper bound. However, the optimal Lagrangian multiplier was not calculated, 

instead, a fixed number of iterations have been performed.  

 

From the above upper bounds, the first is used in many related studies. The second 

upper bound suggested is tighter than the first one as proved by White (1996). 

However, neither its quality was tested nor it has been used in any of the 

algorithms in the literature. Recently, Sayin (2000) has suggested the same bound 

as White (1996), by giving the proof for the dual of the upper bound formulation.  

 

Provided that the coordinates of the extreme points and the demand points are 

known, White’s upper bound can be found by the following model, UB(Maximin-

l1)  regardless of the distance metric used (Sayin, 2000).  
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where  

 

vj : jth extreme point of S 

jλ � :�weight associated to each extreme point.  

 

Since the coordinates of the extreme points are known, ( , )j id v b  is just a 

parameter. Constraint set (3) holds provided that the feasible region is convex. 

Constraint set (4) defines the feasible region. 

 

As mentioned above, to our knowledge the quality of White’s upper bound has not 

yet been tested in the literature though it is tighter than the upper bound suggested 

by Drezner and Wesolowsky (1983).  

 

In this study, we tested the performance of White’s upper bound, with the idea that 

we could reduce the solution time of our model (Maximin-l1) further by the 

application of an upper bound to the branch and bound tree in addition to the 
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revised strategies. Along with questioning the quality and effect of an upper bound 

on our model, another aim here was to test the effect of a lower bound.  

 

For finding a lower bound, we picked T random points from the feasible region, 

and selected the function value of the one whose distance to the closest demand 

point was the maximum. 

 

{ }1,...,  1 1 2 21,...,
max min (    i j i j

i T j N
LB x b x b= =

= − + − �

 

where i
jx  is the jth coordinate of xi. 

 

We used nine different problem sizes and 10 randomly generated problems were 

solved for each category. Problems were solved with and without bounds using the 

strategy combination 3. For finding lower bounds, 100 points were picked from 

each region. The results of the first set of problems are presented in Table 3.7.  

 

Table 3.7- Results of the 1st Set of Problems 

 

Number of Points Optimal Value Optimal Point LB UB 

25 43.86 [100,0] 43.86 100 

50 30.79 [83.99,50.87] 29.42 100 

100 22.42 [31.17,100] 22.27 100 

500 10.15 [0,40.79] 9.55 100 

1000 8.97 [0,39.61] 8.65 100 

2000 6.09 [0,36.73] 5.32 100 

3000 4.97 [0,37.85] 4.88 100 

4000 4.56 [0,100] 4.56 100 

5000 3.97 [24.17,100] 3.93 100 
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Evident from the above table, UB(Maximin-l1)�model�gave the same value, the side 

length of the feasible region, regardless of the number and the location of demand 

points. UB(Maximin-l1)� generally found the center point as the optimal. 

 

In the remaining 9 problem sets, the upper bound was exactly the same as above. It 

was very loose and in all the problems it was found same as the side length of the 

feasible region. 

 

Table 3.8 summarizes the results of 10 problem sets and reports the average 

percent deviation of both bounds from the optimal objective function value. As 

depicted in the table, the maximum average percent deviation of the lower bound 

is 8.84, while maximum average percent deviation is 96.11 for the upper bound.  

 

Table 3.8 – Deviation of Bounds from the Optimal 

 

Number 

of  

Demand Points 

Average Percent  

Deviation 

of Lower Bound from 

the Optimal 

Average Percent 

Deviation 

of Upper Bound from 

the Optimal 

25 0.85 59.73 

50 1.73 69.33 

100 2.03 76.77 

500 7.18 89.18 

1000 4.77 92.31 

2000 8.84 94.27 

3000 7.12 95.23 

4000 8.78 95.70 

5000 6.12 96.11 
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Although the quality of the White’s upper bound did not seem good, we conducted 

our runs to find out the effect of this bound on our model (Maximin-l1) along with 

the lower bound. 

 

The effect of bounds on the number of branch and bound nodes, iterations and on 

the CPU time can be observed from Table 3.9. 10 randomly generated problems 

were solved for each problem type. The detailed results of all test problems are 

given in Appendix-C. As seen from the table, incorporation of the lower bound 

into the model decreased the number of branch and bound nodes as well as number 

of iterations. On the other hand, when the upper bound was utilized, the number of 

branch and bound nodes increased in the samples of 1000, 2000, 4000 and 5000 

demand points. After the examination of the outputs of branch and bound trees of 

some test problems, it was found out that the initial node changed with the 

utilization of the upper bound. It showed that when the upper bound was defined, 

the initial solution and consequently the sequence of nodes visited in the branch 

and bound tree has changed. This may sometimes result in an increase in the 

number of branch and bound nodes when the bound is not tight. It should be noted 

that in spite of the increase in the number of nodes in the above mentioned 

problems with the utilization of the upper bound, the overall number of simplex 

iterations decreased. When the CPU times were examined, it can be observed that 

the usage of both bounds had a decreasing effect on the solution time. Since the 

upper bound was loose in all of the runs, its additional effect was small compared 

to the sole effect of the lower bound. However, when the problem size got bigger 

(e.g. 3000, 4000 and 5000), we observed that even this loose upper bound had a 

considerable effect on the solution time.  

 

 

 

 



 46

 

Table 3.9 – Effect of Bounds  

 

�

�

�

�

�Below table shows the effects of bounds on the solution time of (Maximin-l1) as 

percent reduction in CPU time. Although the quality of the upper bound was very 

low and it was very loose in all test problems, its additional effect on the solution 

time was considerable. 

�

�

�

�
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25 38 29 24 795 621 551 0.47 0.40 0.37 

50 61 50 30 1844 1458 1158 0.56 0.51 0.43 

100 102 87 62 4486 3576 3188 1.18 0.88 0.87 

500 406 383 370 37273 32926 29541 11.98 10.39 9.21 

1000 671 650 685 87974 79949 69432 40.07 36.61 33.88 

2000 1142 1106 1232 217171 198546 173141 150.32 134.42 129.45 

3000 1643 1589 1568 407596 374645 296019 342.57 305.45 260.38 

4000 1867 1832 2000 552080 519485 439273 547.32 502.16 459.08 

5000 2166 2153 2267 778154 751155 600135 864.11 795.66 688.67 
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�

Table 3.10 – Percent Reduction in the Solution Time with Bounds 

 

 

 

 

 

For example, the additional effect of the upper bound was higher than the sole 

effect of the lower bound in the case of 3000 demand points where the lower 

bound was 7.12 % deviated and the upper bound was 95.23 % deviated from the 

optimal value on the average. These results showed that even a very loose upper 

bound had an effect on the solution time and results in considerable savings. 

 

3.4.3 CUT AND PRUNE METHOD 

 

In this section, we tried to solve (Maximin-l1) with a geometrical approach which 

is called ‘Cut and Prune Method’. The idea is the division of the smallest rectangle 

covering the feasible region into subsections and elimination of some regions with 

the help of upper and lower bounds. Every time the region is divided, upper bound 

decreases, while the lower bound increases in return. The elimination of the 

Number 

of Demand 

Points 

Sole Effect of  

Lower Bound  

(%) 

Additional Effect of 

Upper Bound  

(%) 

Combined Effect 

(%) 

25 15.68 6.57 22.25 

50 9.61 14.59 24.20 

100 25.59 1.27 26.86 

500 13.29 9.82 23.11 

1000 8.64 6.81 15.46 

2000 10.58 3.31 13.89 

3000 10.84 13.16 23.99 

4000 8.25 7.87 16.12 

5000 7.92 12.38 20.30 
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regions occurs when the worst possible function value of any region is better than 

the best possible value of some others. Indeed, the efficiency of the approach 

totally depends on the quality of the bounds.  

 

In the previous section we came up with the fact that in contrast with the lower 

bound, White’s upper bound was very loose. However, we think that this 

performance may have depended on some problem parameters. After having 

solved many problems, it was observed that this condition was observed most 

probably due to the uniformity of the generated demand point samples. Because, 

even if the sample size was very big, if there was a nonuniformity in the demand 

points, UB(Maximin-l1)  program found other points than the center as the optimal 

point, and therefore found other objective function values than side length which 

were generally much closer to the optimal value.  

 

Based on the above, we use White’s upper bound in the ‘Cut and Prune Method’. 

In cases where this bound fails to be tight, we propose the use of a supplementary 

upper bound for the subregions which is found by solving (Maximin-l1) only with 

the internal demand points. This does not seem as a practical upper bound at first 

glance. However, as shown in Section 3.4.1 the solution time of (Maximin-l1) 

decreases considerably with the new branch and bound strategies; therefore when 

the internal points are taken into consideration alone, the calculation of the upper 

bound is not expected to take much time. It should be noted that, in the proposed 

method, both of the above mentioned upper bounds are calculated and the smallest 

of them is used. The lower bound is calculated as in Section 3.4.2. 

 

When the feasible region is divided, we eliminate some of the subregions by using 

above mentioned bounds. After this elimination, some subregions are left that may 

contain the optimal point. It should be noted that at this stage of the method, we 

can also select some feasible points from the remaining regions and try to further 
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eliminate regions. At this point, the optimal solution can be found solving the 

model (Maximin-l1) for the remaining regions. It should be noted that if the 

remaining regions are partly feasible then the feasibility constraints of the initial 

region should be added to (Maximin-l1). When we iterate further, the solution time 

of our MIP model is reduced. Indeed, when the special combined branch and 

bound strategies are used, the solution time is expected to reduce further. We 

claim that with this approach the overall solution time will decrease compared to 

the case where the problem is solved with (Maximin-l1) directly.  

 

In addition to all these, we believe that in order to find the optimal of a subregion, 

all the demand points need not be involved. In order to increase the efficiency of 

the approach, they can be filtered. The idea is that the demand points having their 

smallest distance to the feasible region grater than the upper bound are obviously 

redundant to (Maximin-l1) because they just increase the number of binary, 

continuous variables and constraints without having any effect on the problem.  

 

If a general lp norm is used, it has been shown in Hansen et al. (1981) that the 

smallest distance can be calculated by extending the sides of a rectangle into 

straight lines, cutting the plane into 9 regions, namely, N(orth), S(outh), W(est), 

E(ast), NW, NE, SW, SE and the rectangle itself (see Figure 3.1). If a demand 

point is in the north side of a rectangle as in 1b  in the below figure, then the 

smallest distance is calculated by projecting the point onto the rectangle. 

Symmetrically, this is valid for South, East and West parts. If a demand point is 

located in the corner regions as in 2b  in the figure, then the smallest distance is 

calculated with the corner point of the rectangle in that region. 

 

In order to illustrate the approach, two example problems are solved, the first of 

which has a small, nonuniform sample of demand points, while the other has a big, 

uniform one. 
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Figure 3.1-Finding the Smallest Distance 

 

 

 

Example.1 

 

Consider the undesirable single facility location problem with 7 demand points. 

The feasible region is a 30 x 30 square. 

 

 

Table 3.11 – Coordinates of Demand Points  

 
j 1 2 3 4 5 6 7 

bj (5,20) (18,8) (2,16) (14,17) (7,2) (5,15) (12,4) 

 

 

 

 

 

 
 

S 
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When the feasible region was divided into 4, the upper and lower bounds of the 4 

subregions are calculated. (see Table 3.12) 

 

 

 

Table 3.12 – Upper and Lower Bounds Obtained in Subregions 

 
 

 

 

 

Squares 1,2 and 3 can be eliminated since the lower bound of Square 4 is greater 

than the upper bound of these regions. The optimal point is in Square 4 which is 

the corner point: (30,30) with an objective function value of 29. 

 

Example 2 

 

Consider the undesirable single facility location problem with 2000 demand points 

generated uniformly in the interval (0,100). The feasible region is a 100x100 

square. 

 

In this problem when the feasible region was divided into 4, no elimination 

occurred; therefore we further divided the region into 16. With this division, the 

subregions have the following bounds. It should be noted that the upper bounds are 

Square No White’s Upper Bound 
Upper Bound with 

Interior Points 

Lower Bound 

(100 Points) 

1 20 15 11 

2 20 20 20 

3 16 18.33 15.50 

4 29 - 29 
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calculated by solving (Maximin-l1) model with the interior demand points since the 

White’s upper bound gave the side length for all subregions (see Table 3.13). 

 

 

 

Table 3.13 – Bounds Obtained in Subregions 

 

Square No White’s Upper Bound 
Upper Bound with 

Interior Points 

Lower Bound 

(100 points) 

1 25 5.35 5.17 

2 25 5.61 4.78 

3 25 6.11 3.63 

4 25 4.40 4.32 

5 25 6.10 6.04 

6 25 4.80 3.58 

7 25 5.47 3.85 

8 25 5.75 5.64 

9 25 6.45 5.34 

10 25 6.56 4.67 

11 25 4.84 4.06 

12 25 5.37 4.32 

13 25 5.39 5.21 

14 25 4.84 4.83 

15 25 5.56 4.60 

16 25 6.90 4.60 

 

 

 

The execution time of this step is recorded as 24.57 seconds. After elimination 

with bounds we were left with 5 squares (see Table 3.14), as can be seen from 

Figure 3.2. 
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Table 3.14 – Subsquares Remained After Elimination 

 
Square No Upper Bound Lower Bound 

3 6.11 3.63 

5 6.10 6.04 

9 6.45 5.34 

10 6.56 4.67 

16 6.90 4.60 
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Figure 3.2 – Remaining Regions after the Elimination  
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For the remaining squares, the demand points are filtered as mentioned before. 

(Maximin-l1) model is solved with the filtered demand points to find the optimal 

point in each subregion. The details of this step can be seen from the below table. 

 

 

 

Table 3.15 – Results   

 

Square 

No 
Upper Bound Lower Bound 

Number of 

Demand 

Points after 

Filtration 

Optimal Point 
Optimal 

Value 

CPU 

Time (sec) 

3 6.11 3.63 229 [52.95,0] 3.95 1.86 

5 6.10 6.04 214 [0,36.73] 6.09 1.02 

9 6.45 5.34 220 [0,50] 5.34 1.39 

10 6.56 4.67 271 [25.28,51.18] 4.87 2.00 

16 6.90 4.60 196 [76.15,80.81] 4.89 0.97 

 

Total Execution Time 

 

7.24 

      

 

The optimal point is found to be located in Square 5. Along with the previous step 

the overall execution time is 31.81 seconds. 

 

For comparison, for the same 2000 demand points, (Maximin-l1) model with the 

default strategies was solved in 1779.67 seconds; with the special combined 

strategy it was solved in 150.32 seconds. Incorporation of upper and lower bounds 

further decreased the solution time to 129.45. Now, with the suggested approach 

of this section, the optimal could be found in 31.81 seconds. 
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CHAPTER 4 
 

 

SEMI-DESIRABLE FACILITY  

LOCATION PROBLEM 

 

 
The second part of our study focuses on the problem of locating a single semi-

desirable facility. In the following sections, problem definition is given; an 

interactive solution algorithm is presented and illustrated on some example 

problems. 

 

4.1 PROBLEM DEFINITION 
 

A facility can be defined as semi-desirable if it has both undesirable and desirable 

effects to the people living in the vicinity. Although need for such facilities has 

been increasing rapidly, there has been not much work on the semi-desirable 

facility location in the literature.  

 

The assumptions on the feasible region and the distance metric remain the same as 

in the undesirable facility location problem (see Chapter 3). An objective that 

measures the desirable aspects of the facility to be located is defined in addition to 

the objective used in the undesirable facility location problem. To summarize, in 

this problem we assume that; 
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��Feasible region S is a convex polygon in R2 defined by k constraints 

 

{ }2
1 2:     for 1,...,S R e x f x g j kj j j= ∈ + ≤ =x   

 

��The distance metric is rectilinear,  

 

1 1 2 2( )d , x y x y= − + −x y  

 

��There are N demand points with coordinates,  

 

1 2( , )   for i 1,...,i ib b N= =ib  

 

��The first objective function used to model the undesirable effects is 

maximin which maximizes the distance of the facility from the closest 

demand point.  

 

{ }
1 2

*
1 1 2 21,...,( , )

( ) max min ( i i

i Nx x S
L S x b x b

=∈
= − + − �

�

��The second objective function used to model the desirable effects is 

minsum which minimizes the total distance of the facility from the demand 

points.  

 

1 2

*
1 1 2 2( , )

1

( ) min ( )
N

i i

x x S
i

W S x b x b
∈ =

� �= − + −� �
� �
�

�
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The assumptions of the problem had already been discussed in Chapter 3. In this 

section however, a new objective is added for measuring the service cost. For this 

purpose, there are two objective functions used in the literature, namely minimax 

and minsum. The minimax function, which minimizes the maximum distance of 

the facility from the demand points, is applied specifically to emergency facilities 

like fire stations and hospitals that should be sited as close as possible to the point 

receiving the lowest quality of service. The minsum function on the other hand, is 

the most widely used in the literature for general service facilities and minimizes 

the sum of the distances between the facility and the demand points. It measures 

the service cost as the cost of locating the facility far from the set of demand points 

which is generally called transportation cost. Service cost is generally measured 

with minsum objective in semi-desirable facility location problems, e.g. Morales et 

al. (1997), Brimberg and Juel (1998), Melachrinoudis (1999), Skriver and 

Andersen (2003), Melachrinoudis et. al. (2003) have all used minsum objective. In 

this study, we use the minsum objective, since we believe that for most of the 

facilities service cost generally occurs through transportation cost. 

 

The mathematical model for the undesirable facility location problem with 

maximin objective has already been presented along with the solution approaches 

in Chapter 3. Before focusing on the biobjective problem, we would like to 

construct a mathematical model with minsum objective based on the mentioned 

assumptions. 

   

The model (M-1) of Section 3.2 can be adapted for minsum objective as follows. 
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(M-3) 

1

1 1 2 2

1 2

 

                    

                   

                                  1,...,

                                             1,...,

N

i
i

i i
i

j j j

Min L

subject to

L x b x b for i N

e x f x g for j k

=

= − + − =

+ ≤ =

�

 

Parameters: 

 
i
jb   : Coordinate of the ith demand point in the jth dimension 

je , jf � jg   : Constants that define the feasible region 

 

 

 

Decision Variables: 

 

Li          :  Rectilinear distance of the facility from the ith demand point 

ix � � : ith coordinate of the facility 

 

Absolute values in the distance constraints make the model nonlinear. The model 

is linearized as shown below. The rectilinear distance is calculated as follows.  

 

Let 

 

2
1 1 2 2( , ) j jd x b x b R= − + − ∈j jx b     x,b  
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j
i i ia x b= −  for i = 1, 2  is the ith component of ( , )d jx b and can be calculated as; 

{ }max ( ), ( )j j
i i i i ia x b x b= − − +  

 

Then it is true that  

 
j

i i i

j
i i i

a x b

a x b

≥ −

≥ − +
 

 

Since the objective is minimization, there is no need to control the above two 

constraints with integer variables as in the case of (Maximin-l1) while constructing 

the linear model. Hence, when these two constraints are used along with a 

minimization objective, it is guaranteed that one of them holds as equality. Thus, 

our mathematical program is as follows: 

 

 

 
1

1

1 2

( )

                                                         (1)

      

     +             1, ...,                (2)

                   1, ...,  1, 2

N

j
j

j j
j

j j
i i i

M insum l

M in d

subject to

d a a for j N
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−

= =

≥ − = =

�

1 2

    (3)

                   1, ...,  1, 2     (4 )
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i i i

j j j

j
j
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Parameters: 

 
j

ib   : Coordinate of the jth demand point in the ith dimension 

je , jf � jg  : Constants that define the feasible region 

 

 

Decision Variables: 

 

jd   : Rectilinear distance of the facility from the jth demand point 

j
ia   : ith component of dj  where 1 2

j j
jd a a= +  

ix � � : ith coordinate of the facility  

 

 

Minimization of objective function (1) ensures that a facility which minimizes the 

total distance of the facility from the demand points is selected as the optimal 

solution. Constraint set (2) ensures that absolute distance is calculated as 

1 2 1 1 2 2
j j j j

jd a a x b x b= + = − + − . Constraint sets (3) and (4) guarantee the 

calculation of rectilinear distance as explained before. Constraint set (5) defines 

the feasible region. Since in the semi-desirable facility location problem we 

consider maximin and minsum objective functions, the following biobjective 

mathematical model is formulated by combining models (Maximin-l1)� and 

(Minsum-l1.). 
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�

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where,  

 

L :  Distance of the facility from the closest demand point.�

W :  Total distance between the facility and the demand points 

 

The other variables and parameters have already been defined in (Maximin-l1) in 

Section 3.2. 

 

 

 

1

* 

*

( )                                                    

                                                             (1)

                                                     

Biobjective l

L Max L

W Min W

−

=
=

1

      (2)
                                                                   

                                                              (3)

                                

N

j
j

j

subject to

W d

L d for j
=

=

≤ =

�

1 2

1,...,                (4)

                       1,...,              (5)

                1,...,  1,2    (6)

                1,...,  1, 2    (7)

    

j j
j

j j j
i i i i

j j j
i i i i

N

d a a for j N

a u x b for j N i

a o b x for j N i

= + =

− = − = =

− = − = =

1 2

                       1,...,  1,2    (8)

                          1,...,  1,2     (9)

     1                   1,...,  1, 2     (10)

            

j j
i i

j j
i i

j j
i i

u Mt for j N i

o Mz for j N i

t z for j N i

e x f x gj j j

≤ = =

≤ = =

+ ≤ = =
+ ≤  1,...,                  (11)

     , , , 0         1,...,                                   

     , {0,1}              1,...,                                    

j j j
j

j j

for j k

d a u o for j N

t z for j N

=

≥ =

∈ =



 62

Let 

 

{ }1 1 2 21,...,

1 1 2 2
1

( ) min (

( ) ( )

i j i j

j N

N
i j i j

j

L x b x b

W x b x b

=

=

= − + −

� �
= − + −� �
� �
�

i

i

x

x
  

In accordance with Multicriteria Decision Making (MCDM) terminology, 

1 2( , )x x=x can be referred to as a decision vector. The vector of objective function 

values z(x) = (L(x), W(x)) belonging to x is named as an objective (criterion) 

vector. Feasible region, S, containing decision vectors is called the feasible 

decision region. It is a subset of the decision space, R2. Feasible objective 

(criterion) region is defined as the image of the feasible decision region in the two 

objective functions. It is a subset of the objective (criterion) space, R2. Throughout 

the thesis, words “feasible region” and “feasible decision region” will be used 

interchangeably. 

 

In the presence of two objectives, the main concern is to find the set of efficient 

solutions the definition of which is given below. 

 

Definition 4.1 

 

A feasible solution x to (Biobjective-l1) is efficient if and only if there does not 

exist another feasible solution xi such that L(xi) ≥ L(x), W(xi) � W(x) and 

(L(xi),W(xi)) � (L(x),W(x)). A feasible solution x is weakly efficient if and only if 

there does not exist another feasible solution xi such that L(xi) > L(x), W(xi) < 

W(x). 
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The set of all efficient solutions is called the efficient frontier. 

 

Definition 4.2 

 

A solution is approximately efficient if and only if it is efficient with respect to a 

large set of known solutions. 

 

Efficiency is defined in the decision space; image of any efficient solution in the 

objective space is a nondominated objective vector. 

 

Let Z define the feasible objective region;  

 

{ }2( )  ( )  ( ( ), ( )),  S R L W= ∈ = ∈Z z x z x x x x  

 

Definition 4.3 

 

z(x) ∈ Z is a nondominated objective vector if and only if x is an efficient solution 

to (Biobjective-l1). Otherwise, it is dominated. 

 

In parallel with Skriver and Andersen (2003) we use a geometrical branch and 

bound algorithm to solve (Biobjective-l1). The difference is that we try to adapt the 

new version of the BSSS method, ‘Generalized Big Square Small Square Method’ 

(GBSSS) suggested by Plastria (1992) to the semi-desirable facility location 

problem and we develop an algorithm in which a Decision Maker (DM) is 

involved interactively.  

 

Indeed, the main idea of the methods (BSSS and GBSSS) is to eliminate some 

parts of the feasible region up to a prespecified precision. The elimination occurs 

when the inefficiency of a subregion is proved with the help of bounds. To our 
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knowledge, this idea is used for the biobjective problem only in Skriver and 

Andersen (2003) in which the feasible region is reduced by an algorithm until it 

reaches a predetermined size. 

  

In fact, any solution approach to semi-desirable facility location problem should be 

supported with a multiobjective decision aid. For instance, we may consider the 

problem of determining the location of a landfill in a city. Hence, the approaches 

that end up with the complete trajectory of efficient points or the areas that may 

contain efficient points may not help the DM in real life situations.  

 

In this framework, we suggest an additional phase to GBSSS, in which we guide 

the DM in selecting a single location at the end, based on her/his preferences. The 

aim of this phase is to search the subregions that we cannot prove as inefficient 

interactively with the involvement of the DM. 

  

Typically multiobjective optimization methods assume that a multiobjective 

problem is converted into a parametric single-objective problem whose solution 

provides an efficient point. Different conversions can be observed in the literature; 

reference point approach introduced by Wierzbicki (1980) is the most well-known 

approach.  

 

For the interactive search phase of our solution approach, basically we propose the 

use of the reference point approach, which projects any point in the objective 

space to the efficient frontier of the region of concern.  

 

Let R(S) represents the ideal objective vector of region S and Q(S) denotes the 

nadir objective vector corresponding to the efficient solutions of S. It should be 

noted that throughout the thesis, an approximation to the nadir objective vector 

will be used, since nadir objective vectors are difficult to obtain. 
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R1(S)   = Maxx∈S {L(x)}, R2 (S) = Minx∈S  {W(x)}  

 

Q1 (S) = Minx∈E {L(x)}, Q2 (S) = Maxx∈E {W(x)}  

 

where E represents the set of efficient solutions in S. 

 

The model that adapts our problem to Wierzbicki’s (1980) reference point idea is 

called ‘Achievement Scalarizing Program’ (ASP). The (ASP) operates in the 

objective space and minimizes the maximum deviation of objectives from the 

levels specified with a reference point. In other words, the program finds the 

closest efficient point to the reference point in the Tchebycheff metric. The (ASP) 

is presented below. 
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where, 

 

G0  : Reference point 

α  : Maximum deviation of the solution objective vector from  

the reference point  

ρ  : Sufficiently small constant 

w0= (w1
0,w2

0) : Weights associated with each objective 

 

Minimization of the objective function (1) ensures that a point which minimizes 

the maximum deviation from the levels specified with a reference point Go is 

determined as the optimal solution. The second term in (1) prevents the program 

finding weakly efficient solutions by giving a slight slope to the contours of the 

objective function with a sufficiently small positive constant, ρ . Constraints (2) 

and (3) calculate the weighted Tchebycheff distance between the reference point 

and the solution vector which are normalized with the ideal value of maximin 

objective and the approximate nadir value of minsum objective. Both objectives 

are given weights by the DM considering their relative importance. Constraint (4) 

and constraint set (5) calculate the sum and the minimum of the rectilinear 

distance of the facility from the demand points. Constraint set 6 ensures that the 

absolute distance is calculated as: 1 2 1 1 2 2
j j j j

jd a a x b x b= + = − + − . Constraint 

sets (6)-(11) guarantee the calculation of rectilinear distance as explained in 

Section 3.2. Constraint set (12) defines the feasible region. 

 

However, as in (Maximin-l1), there are binary variables in the (ASP) to control the 

calculation of the rectilinear distance. The number of binary variables increases 

with increasing number of demand points, which directly increases the solution 

time exponentially. This fact, as elaborated in Chapter 3, makes the (ASP) 

inefficient for big sample of demand points. Since the binary structure of (ASP) is 

the same as that of (Maximin-l1), we believe the use of the suggested strategy 
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combination for (Maximin-l1) in Section 3.4.1 will increase the efficiency of the 

model. With this idea, we have conducted an experimental study. The feasible 

region was defined in R2, which is a 100x100 square defined by the constraints 0≤ 

x1 ≤100 and 0≤ x2 ≤100. We conducted three experiments using 1000, 3000 and 

5000 demand points (10 randomly generated problems were solved in each 

experiment). The locations of the demand points were generated according to 

uniform distribution in the interval [0,100]. We assumed that both objectives were 

attributed with equal weights. The reference point was assumed to be the ideal 

point in each problem. The runs were conducted on Pentium IV personal computer 

with 256 MB random access memory (RAM). The optimization models were 

solved in GAMS Version 20.2. The computer code that calls optimization 

programs was written in Borland C++ Builder Version 3. CPLEX Version 7.5 

operating under GAMS Version 20.2 was used as the MIP solver. Table 4.1 

reports the average CPU for each problem set. 

 

Table 4.1- Computational Results  

 
 CPU Time(sec) 

Number of Demand 

Points 
Default Strategies Strategy Combination 3 

% Reduction in 

CPU Time 

1000 27.7 10.2 63 

3000 164.5 50.5 69 

5000 430 129 70 

 

As evident from Table 4.1, the solution time obtained for different sample sizes 

decreased considerably with the strategies as estimated. Although a great saving is 

achieved in the solution time of the (ASP) with the new branch and bound 

strategies, we also use the idea suggested by Karaivanova et al. (1995) for the 

solution of multiple objective integer linear programs. They proposed the use of a 

two-phase continuous/integer method in their study. In the first phase, the method 
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operates in the relaxed continuous space parametrically to find a number of 

nondominated continuous solutions iteratively. Once the most preferred 

continuous solution is determined, the closest integer solution is found with the 

help of the (ASP). The rationale behind this hybrid approach is that in mixed 

integer linear programs, computation time increases exponentially with the number 

of integer variables. Therefore, the number of mixed integer linear programs to be 

solved should be decreased. In fact, the logic is that it is not reasonable to generate 

precise nondominated integer solutions in the early iterations, when the DM is 

searching regions far from the most preferred solution.  

 

For the search in the nondominated continuous objective region, basically there are 

two alternative approaches used in this study. First of them is the reference point - 

reference direction approach, in which, we solve the LP relaxation of the (ASP) to 

find an initial nondominated continuous solution yo. Here, it should be noted that 

the continuous solution is very sensitive to the choice of M. Although, minsum 

objective forces constraints (7) and (8) to measure the true rectilinear distance 

even in the LP relaxation, when the integrality requirements are relaxed, both u 

and o are free to take positive values which directly depend on the value of M by 

constraints (9) and (10). Therefore, value of M should be selected with care at its 

possible minimum level. It should be noted that in all our examples and test 

problems throughout the thesis, it is chosen as small as possible. 

 

Once the initial nondominated continuous solution is found, the nondominated 

continuous objective region is searched by a parametric linear program similar to 

the (ASP). Suggested by Korhonen and Laakso (1986), this method iteratively 

projects a line segment in the objective space onto the nondominated surface of the 

feasible objective region. This method is adapted to our problem with the below 

model that we call ‘Achievement Scalarizing Parametric Linear Program’ 

(ASPLP).  
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In this model, all parameters and variables are as in the (ASP) except y0 and ∆∆∆∆d 

which stands for the reference point and the reference direction respectively. After 

foundation of y0 by the solution of the relaxed version of the (ASP), ∆∆∆∆d is 

determined by the DM based on his direction of preferences. p is a scalar which 

decides the number of points projected onto the efficient frontier in the determined 

direction.  

 

The second approach for searching the nondominated continuous objective region 

is based on the perturbation of the initial reference point (Wierzbicki, 1980). In 

this approach, the first continuous solution (point A in Figure 4.1) is found by 

projecting the reference point (point B) to the efficient frontier with the LP 

relaxation of the (ASP) as in the previous approach. Then, by using the percent 

deviation of Point A from Point B, we perturb the reference point in each objective 
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while generating a number of vectors decided by the DM. The perturbation 

amount is determined with the deviation of the reference point from the continuous 

solution found. The projection of the perturbed reference points (Points C and D) 

generates points E and F and these points give the DM a chance to perceive the 

efficient frontier better since she/he finds the opportunity to see a number of 

continuous solutions that differ from each other as the reference point gets far 

from the efficient frontier. 

 

 

(Perturbed Reference Point)

W (minsum)

L (maximin)
(Perturbed Reference Point)

E

A

F
D

BC (First Reference Point)

 
 

 
 
    Figure 4.1- Altering the Reference Point  

 

 

After the interactive search in the candidate efficient regions, the DM is most 

probably left with a number of alternative solutions. At this point, we propose the 

use of an outranking method when she/he can not decide between the alternatives.  
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We believe that our algorithm will serve as a decision support system to real life 

semi-desirable facility location problems. The detailed version of our algorithm is 

presented in the next section. 

 

4.2 INTERACTIVE BIG SQUARE SMALL SQUARE (IBSSS) 

ALGORITHM  

 
In this section, we present an interactive geometrical branch and bound algorithm 

for the solution of a single semi-desirable facility location problem. Our algorithm 

consists of three main phases which are highlighted below. 

 

In the first two phases of the algorithm, we try to prove that some parts of the 

feasible region are inefficient and can be fathomed from further consideration with 

the help of incumbent points. In the last phase, we search the reduced feasible 

region with the involvement of the DM.  

 

Phase 1: Rough Cut Phase 

 

In this phase, the upper bound on the optimal maximin objective value and the 

optimal minsum objective value are used with the idea that this pair of values for a 

region is always better than the ideal point of that region and if any incumbent 

point dominates this pair, obviously there is no point in the region that is better 

than this incumbent point. Hence the region is proved to be inefficient and can be 

discarded from further consideration. Indeed, the purpose of this rough phase is to 

get rid of  some subregions that can be eliminated with the help of an upper bound 

on the maximin objective without requiring the optimal value, since it is time 

consuming to find the optimal solution to (Maximin-l1) especially for big sample 

of demand points.  
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The idea of branching in the algorithm is to improve the bounds of the regions, 

since after every division, the optimal maximin objective value decreases so does 

the upper bound; while the optimal minsum objective increases. At the same time, 

new incumbent points are added in each branching. Considering these two facts, it 

is obvious that the chance to eliminate regions increases in every branching. 

 

The algorithm is obviously a geometrical branch and bound algorithm. As in the 

standard branch and bound algorithm, one of the most important parameters 

determines how to select the next region to branch on. This decision actually 

changes the character of the algorithm totally. In our algorithm, we use the best 

bound search. Every time we look for a region to branch on, the region with the 

highest upper bound / optimal maximin objective value or the region with the 

lowest optimal minsum objective value is selected to be divided. The rationale 

behind is that the regions with best bounds are difficult to eliminate with 

incumbent points because of its good objective values; hence it is reasonable to 

branch them first. In addition, every time we divide a region, a number of points 

are picked from it. Therefore, by best bound search, priority in branching is given 

to the regions whose elimination is difficult and from where good incumbent 

points can be obtained. By doing this, we increase the chance to eliminate regions 

with worse objective values without branching them much. Since, every branching 

means storing more new data; it directly affects the efficiency of the algorithm.  

 

Skriver and Andersen (2003) use the branching style developed in Hansen et. al. 

(1981) which proposes the division of all the regions at the same time into four 

equal subregions which makes all the regions identical at each iteration. Our claim 

is that, this style of branching results in unnecessary large amount of data to be 

stored and it actually does not utilize the possibility of eliminating big regions at 

once.   
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Phase 2: Precise Cut Phase 

 

After branching up to a predetermined size in Phase 1, the optimal maximin 

objective values are found for the remaining subregions in Phase 2. For finding the 

optimal maximin values, we again use the idea that the demand points, whose 

shortest distance to the region of concern is greater than the upper bound of that 

region on maximin objective, have no effect in finding the optimal solution with 

(Maximin-l1), thus should be filtered. It should be noted that every time (Maximin-

l1) is solved; the strategy combination suggested in Section 3.4.1 is used. 

 

By finding the optimal value on the maximin objective, we have the chance to 

compare the ideal objective vector of the regions with the incumbent points for 

any possible further elimination. In this phase, we allow the DM to branch the 

remaining squares further with the optimal values. Since the regions are already 

divided up to a prespecified side length in Phase 1, branching with optimal values 

is expected to take reasonable time. 

 

With Phase 1 and Phase 2, some parts of the feasible region that are proved to 

contain only inefficient points are eliminated. The remaining subregions after 

these phases may contain efficient points together with inefficient points.  

 

Phase 3: Interactive Search Phase 

 

This phase of the algorithm is the beginning of the interactive search with the DM. 

In this part, we develop two procedures; one is exact and the other is an 

approximate procedure.  

 

The exact procedure is based on the reference point approach which guarantees to 

find an efficient point at the end. In this procedure, the remaining subregions after 
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the first two phases are presented to the DM along with ideal and nadir objective 

vectors. Each time a region is selected to be searched, the DM is asked to specify 

aspiration levels in both objectives (i.e. reference point) based on her/his 

preferences and the (ASP) is solved to project this reference point to the efficient 

frontier of the selected subregion with the selected weight set. The solution found 

is efficient with respect to the region from which it is generated, but it may be 

dominated by the solutions in the other regions (i.e. it is approximately efficient). 

Therefore, each time a reference point is projected onto the efficient frontier of the 

selected region, we need to check whether there exist solutions in the other 

subregions which dominate the one at hand. For this check, we again use the idea 

of the (ASP) with which the solution at hand is projected onto the efficient frontier 

of the other regions with the initial weight set. If there is no solution dominating 

the one at hand, then it is proved to be nondominated. If any dominating or 

approximately efficient solution is found, then the DM is given the chance to pass 

to the region from which it is produced and continue the search from that region. 

The DM continues to generate solutions in the same manner from the subregions 

she/he selected by identifying reference points. When the DM stops searching the 

subregions, he is asked to select the most preferred solution from the resulting 

nondominated objective vectors according to her/his preferences.    

 

The approximate procedure is also based on the reference point approach. This 

procedure can be used when the DM wants to see both efficient and approximately 

efficient solutions instead of finding guaranteed efficient solutions which is 

computationally cumbersome. In this procedure, the interactive search is carried 

out in the subregions that the DM selects. The procedure guarantees to find 

efficient solutions for the selected subregion. However, the solution may be 

inefficient with respect to the other regions. Hence, each time a solution is found, 

it is compared to the other solutions already generated (i.e. solutions in the List of 

Candidate Location Points (LCLP) and the List of Incumbent Function Values 
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(LIFV)). Hence, the chance to obtain an inefficient final solution decreases 

considerably with these comparisons and the approach finds approximately 

efficient solutions.     

 

In the approximate procedure, the remaining subregions after the first two phases 

are presented to the DM along with ideal and nadir objective vectors. Each time a 

region is selected to be searched, the DM is asked to specify aspiration levels in 

both objectives (i.e. reference point). Similar to Phase 1 and Phase 2, a rough 

approach is used in the beginning and continuous solutions are generated. The 

findings of this approach are used to generate integer solutions. In the beginning, 

the LP relaxation of the (ASP) is solved which minimizes the maximum deviation 

from the reference point. This program with an augmentation constant guarantees 

to find a nondominated continuous solution for the region under search. With this 

solution at hand, we present two ways to the DM. She/he may find the closest 

integer solution to the continuous one, or she/he can continue to search for other 

continuous solutions.  

 

If the latter is selected, alternative continuous solutions are found with two 

different ways. In the first one, we use the percent deviation of the first continuous 

solution from the reference point, and we perturb the reference point in each 

objective. While doing this, we produce a number of solutions which is determined 

by the DM. Then, we project the perturbed reference points to the efficient frontier 

again with the LP relaxation of the (ASP). We claim that the DM has a better 

understanding about the efficient frontier with this approach. Once the DM is 

satisfied with a continuous solution, an integer solution closest to it is found with 

the (ASP) and kept as an objective vector of a candidate location point.  

 

In the second approach, the DM is asked to specify a reference direction. The 

continuous nondominated solutions closest to the points on this direction are found 
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with solving the (ASPLP). Once the DM is satisfied with a continuous solution, an 

integer solution closest to it is found with the (ASP) and kept as an objective 

vector of a candidate location point. 

 

When the algorithm is completed and if the DM cannot decide between the 

candidate location alternatives, they are ranked with an outranking method (e.g. 

Promethee II, (Brans and Philippe Vincke, 1985)). Promethee II is based on 

ranking of the alternatives based on the entering and leaving flows calculated 

according to the indifference and preference thresholds determined by the DM. 

This method yields a unique, complete preorder.   

 

The short version of the algorithm is presented below. The detailed version can be 

seen from Appendix D. 

 

4.2.1 THE ALGORITHM  

 

FINDING CANDIDATE EFFICIENT SQUARES 

�

Phase 1: Pruning with UB(Maximin-l1) and (Minsum-l1)  

 

Branching the Initial Square 

 

��Find a square approximation of the feasible region.  

 

��Ask the DM to specify a stopping side length. 

 

��Pick T feasible points {x1, x2,.., xT} from the divided region. 
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��Evaluate maximin and minsum function values for these T points. 
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��Add these points to the LIFV after a dominance check.  

 

Add (L(xi), W(xi)) to the LIFV if and only if there does not exist another 

objective vector (L(xj), W(xj)) ∈ LIFV ∋ L(xj) ≥ L(xi), W(xj) ≤W(xi) and (L(xi), 

W(xi)) ≠ (L(xj), W(xj)). 

 

If any element of the LIFV (L(xj), W(xj)) is dominated by the newly added 

objective vector (L(xi), W(xi)) ∋ L(xi) ≥ L(xj), W(xi) ≤W(xj) and (L(xi), W(xi)) 

≠ (L(xj), W(xj)) delete (L(xj), W(xj)) from LIFV. 

 

��Divide the initial square into 4 equal subsquares by two perpendicular lines 

passing from the center.   

 

��In order to find the upper bound on maximin objective value for each 

subsquare, solve, 

 

��UB(Maximin-l1) with all existing demand points  

 

��(Maximin-l1) with demand points located inside the square  

 

Choose the smallest of the above as the upper bound on maximin objective. 
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��In order to find the optimal minsum objective value for each subsquare, 

solve (Minsum-l1). 

 

��Compare the recently generated squares with the LIFV. 

 

��If any incumbent point has a maximin objective greater than the upper 

bound of some subsquare and has a minsum value less than the minsum 

optimal value of that square at the same time, then obviously, the ideal 

point of the square is dominated by this incumbent solution. Square is 

clearly inefficient and can be deleted.  

 

��Keep the nondominated squares in the List of Candidate Efficient Squares 

(LCES). 

 

��If the stopping side length is not reached, then select where to branch next, 

else stop Phase 1 and go to Phase 2. 

 

Selecting Where to Branch Next  

 

��Check the LCES. Choose the square either with the highest upper bound on 

maximin or with the lowest optimal minsum objective value to branch on.  

 

��Pick T feasible points from the selected region. 

 

��Update the LIFV after every branching.  

 

��Update the LCES after every branching by comparing the upper bound on 

optimal maximin objective and optimal minsum objective value of the 

squares with the recently generated incumbent value vectors. 
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��Check each recently generated square. Add the squares which are not 

dominated by any incumbent value vector of the LIFV to the LCES. 

 

��Repeat the process until the maximum side length of the squares reaches 

the stopping side length.  

 

Phase 2: Pruning with (Maximin-l1) and (Minsum-l1)  

�

Finding Optimal Maximin Objective with Filtered Demand Points 

 

For all squares in the LCES; 

 

��Check the smallest distance of the demand points to the square as shown in 

Figure 3.1. 

 

��Keep the demand points with the smallest distance to the square is smaller 

than the upper bound on the optimal maximin objective value of that 

square in the List of Filtered Demand Points (LFDP). 

 

��Solve (Maximin-l1) by using the filtered demand points. Obtain the ideal 

objective vector.   

 

��Compare the ideal objective vector of the square with the LIFV. 

 

��If there is any square whose ideal objective vector is dominated by an 

element of the LIFV then delete this from the LCES. 
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Stopping or Dividing Further 

 

��Ask the DM if she/he wants to divide the regions further, if so, determine a 

stopping side length for Phase 2.  

 

��Divide all the squares into 4 simultaneously until the stopping side length 

is reached. Prune with comparing ideal objective vectors with the LIFV. 

 

��If the DM wants to stop Phase 2, then combine the remaining squares in 

appropriate regions.  

 

SEARCH IN THE CANDIDATE EFFICIENT REGIONS 

 

Phase 3: Interactive Search  

 

��Ask the DM which procedure she/he wants to use: Exact or approximate. 

 

A. Exact Procedure 

 

��Present each region to the DM with its ideal and nadir objective vector.   

 

��Ask the DM to choose a region for starting the search.  

 

��Ask the DM to set her/his aspiration levels in both objectives. Let this 

vector be the reference point in the objective space. 

 

��Ask the DM which objective is more important and how much. Set the 

weights accordingly. 
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��Solve the (ASP) for the selected region. If the solution at hand is feasible, 

check whether it is nondominated or not. For this, compare it with the 

LIFV and the LCLP. If it is not proved to be dominated then project it to 

the other regions by solving the (ASP) with the same weight set. If the 

solution at hand is not dominated by one of the produced solutions than 

add it to the LCLP. Also check whether the produced solutions are 

approximately efficient. Add the approximately efficient ones to the List of 

Candidate Nondominated Vectors (LCNV).    

 

��If it is dominated, check the resulting dominating and approximately 

efficient solutions. Add these to the List of Candidate Nondominated 

Vectors (LCNV). Ask the DM if he wants to select one of the solutions in 

LCNV and check whether it is a nondominated solution. If so repeat this 

step for the selected solution. If not, the DM either can pass to other 

regions or stop the search. 

 

��Present the LCLP to the DM. Ask the DM if she/he can select the most 

preferred solution among the solutions, if so stop Phase 3, if not rank the 

alternatives with Promethee II. 

 

��In each step, every time a solution is found, check whether the ideal point 

of any region is dominated by it, if so delete the region from further 

consideration. 

 

B. Approximate Procedure  

 
Starting the Search 

 

��Present each region to the DM with its ideal and nadir objective vector.   



 82

 

��Ask the DM to choose a region for starting the search.  

 
 
Finding a Starting Efficient Continuous Solution 

 

��Ask the DM to set her/his aspiration levels in both criteria. Let this vector 

be the reference point in the objective space. 

 

��Ask the DM which objective is more important and how much. Set the 

weights accordingly. 

��Solve the LP relaxation of the (ASP) to find a starting continuous solution 

closest to the reference point.   

 

��If the DM likes the solution, find the closest integer solution by the (ASP). 

Otherwise, search the nondominated continuous objective region using one 

of the below approaches. 

 

Generating Alternative Nondominated Continuous Solutions 

 

Approach 1: Better Perception of the Efficient Frontier with Perturbed 

Reference Points 

 

��Find the total percent deviation of the reference point from the starting 

continuous solution in both objectives. 

 

��Ask the DM to determine the number of solutions that she/he wants to see. 

 

��Generate the perturbed reference points by changing the reference point in 

each objective by using the percent deviation found. 
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��Solve the LP relaxation of the (ASP) with perturbed reference points to find 

additional continuous nondominated solutions.  

 

��Present the nondominated solutions to the DM. If she/he does not like the 

solutions then ask her/him to change his first reference point. Else ask him 

to select the most promising continuous solution for which she/he wants to 

see the closest integer solution.  

 

 

Approach 2:  Reference Direction Approach 

 

��Ask the DM to specify a reference direction. 

 

��Ask the DM the number of solution that she/he wants to see. 

 

��Solve the (ASPLP) to find the closest nondominated continuous solutions 

in the region to the initial continuous solution and to the solutions that lie 

in the determined reference direction. 

 

��Present the nondominated solutions to the DM. If she/he does not like the 

solutions then ask her/him to change his first reference point. Else ask him 

to select the most promising continuous solution for which she/he wants to 

see the closest integer solution.  

 

Finding an Approximately Efficient Integer Solution 

 

��Find the closest integer solution to the selected continuous solution by 

solving the (ASP).  
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��Check the integer solution if it is infeasible; dominated by any incumbent 

objective vector of the LIFV or the LCLP. If it is dominated, ask the DM if 

she/he likes to continue searching this region further. If so, then ask 

her/him to change his first reference point. Otherwise, she/he either can 

pass to other regions or stop the search. If the solution is not dominated and 

preferred by the DM, add it to the LCLP. 

 

��Every time an integer solution is found, check whether the ideal point of 

any region is dominated by it, if so delete the region from further 

consideration. 

 

Continue to search the regions until the DM is satisfied with the location 

alternatives and wants to stop searching.  

 

Selection among the Discrete Set of Alternatives 

 

��Present the LCLP to the DM.  

 

��If the DM is satisfied with the presented alternatives and can select one of 

them as the most promising solution then stop the algorithm. 

 

��If she/he has a difficulty in selecting a final solution from the presented list 

then outrank the alternatives with Promethee II. 
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Outranking of the Alternatives with Promethee II  

 

��Ask the DM to set indifference (qi), preference (pi) thresholds and weights 

for each objective.  

 

��For each alternative pair a, b in the LCLP, calculate the outranking degree 

as  
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where, 

 

wi   : Weight associated with each objective  

W  : Total weight (W = w1 + w2) 

Fi(a,b)  : Function taking values between 0 and 1.  

 

 

We assume the form of the function Fi(a,b) as follows: 
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��Calculate the leaving and entering flow and rank the alternatives 

decreasing order of number ( )φ a . 
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where, 

 

( )+φ a : Leaving flow, represents the importance of the  

alternatives outranked by a 

( )−φ a : Entering flow, represents the importance of the  

alternatives outranking a 

 

��Rank the alternatives in the decreasing order of ( )φ a which is a unique 

complete preorder. 

 

��Present the alternatives to the DM as the candidate location points in the 

order of preference. 
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4.3 EXAMPLES 

 

Example 4.1. Consider a single semi-desirable facility location problem in a 100 x 

100 square. Suppose there are 6 demand points with below coordinates; 

 
 

Table 4.2 – Demand Points of Example 4.1 

 
i 1 2 3 4 5 6 

bi (50,20) (18,80) (2,16) (75,68) (90,100) (85,10) 

 

We assume that the DM has an underlying quasiconcave utility function which we 

pretend that we do not know. 
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where, 

 

U : Utility function 

Ri : ith coordinate of the ideal objective vector 

zi : ith coordinate of an objective vector 

 

Parameters 

 

Branch and Bound Strategies = Strategy Combination 3 

M = 200 

α = 12.5 

ρ = 10-3 

T = 100 
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Phase 1 

 

Table 4.3 shows the LCES along with the upper bound of the squares on the 

maximin objective and their optimal minsum objective value at the end of Phase 1.  

 

Table 4.3 – LCES at the End of Phase 1 

 
i UB(Si) W*(Si) 

12 49.00 412.00 

20 42.50 382.00 

24 46.44 432.00 

30 46.00 382.00 

32 40.00 382.00 

36 42.00 396.00 

 

Table 4.4 shows the LIFV. At each branching 100 points are selected. After doing 

a dominance check at each step, 11 points are left.    

 

Table 4.4 – LIFV at the End of Phase 1 

 
I xi L(xi) W(xi) 

1 [50.00,56.50] 36.50 382.00 

2 [48.75,56.25] 37.50 384.50 

3 [47.50,56.25] 38.75 387.00 

4 [46.25,56.25] 40.00 389.50 

5 [45.00,57.50] 40.50 392.00 

6 [42.50,56.25] 43.75 397.00 

7 [41.25,56.25] 45.00 399.50 

8 [40.00,56.50] 46.00 402.00 

9 [97.50,43.75] 46.25 467.00 

10 [98.75,43.75] 47.50 474.50 

11 [100.00,43.75] 48.75 482.00 
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Figure 4.2 - Reduced Feasible Region at the End of Phase 1 
 

Shaded areas in Figure 4.2 shows the regions eliminated at the end of Phase 1. 

 

Phase 2 

 

In this phase, the optimal maximin objective values for each square in the LCES 

(see Table 4.3) are found. As seen from the below table, when the optimal 

maximin values are found, square 24 is dominated by an element of LIFV, x8 (see 

Table 4.4). 

 
Table 4.5 – Elimination in the LCES at Phase 2 

 
i L*(Si) UB(Si) W*(Si) Status 

12 49.00 49.00 412.00 CANDIDATE 

20 42.50 42.50 382.00 CANDIDATE 

24 46.00 46.44 432.00 DOMINATED 

30 46.00 46.00 382.00 CANDIDATE 

32 40.00 40.00 382.00 CANDIDATE 

36 42.00 42.00 396.00 CANDIDATE 
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Figure 4.3 - Reduced Feasible Region at the End of Phase 2 

 

 

 

Figure 4.3 shows the elimination achieved in Phase 1 and Phase 2 and the below 

table shows the percent eliminations achieved in Phase 1 and Phase 2. At the end 

of Phase 2, 92.19 % of the decision region is proved to be inefficient. 7.81 % of 

the region remains containing both efficient and inefficient points (see Figure 4.3). 

 

 

 

Table 4.6 – Percent Elimination Achieved 

 
Phase 1 Phase 2 Overall 

90.63 1.56 92.19 

 

We assume that the DM wants to start the search. 

 



 91

Phase 3 

 

Squares 20, 30 and 32 are combined as a single region and 3 regions are presented 

to the DM (see Figure 4.3). The data related with the regions can be seen in Table 

4.7. 

 

It should be noted that had we known the underlying utility function, we could 

maximize the utility function on the feasible objective region and obtain the best 

solution as L = 39 and W = 387 with the decision vector x = (47.5, 56.5) and the 

utility value U = –62.5. 

 

Suppose that the DM wants to use the approximate procedure. 

 

 

Table 4.7 – Region’s Data 

 

Region Constraints 

Optimal 

Solution to 

(Maximin-l1) 

Optimal 

Solution to 

(Minsum-l1) 

Ideal 

Objective 

Vector 

Nadir 

Objective 

Vector 

I 
37.5<x1<50 

  37.5<x2<75 
[37.5,53.5] [50,69] [46,382] [26,407] 

II 
50<x1<62.5 

75<x2<87.5 
[52.5,87.5] [50,75] [42,396] [32,436] 

III 
87.5<x1<100 

 37.5<x2<50 
[100,44] [87.5,37.5] [49,412] [30,482] 

 

 
 
Suppose the DM wants to start the search from Region I.  
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Region I 

  

R   =  (46, 382)  

Q   =   (26, 407) 

 

Assume that the DM specifies G0 = (32, 390) as the reference point and w0 = (0.8, 

0.2) as the weight vector.  

 

By solving the relaxed version of the (ASP), the first continuous solution is found 

as yo = (36.5, 382) with the decision vector x0 = (50, 56.5). 

 

Suppose that the DM is not sure about the continuous solution and wants to see 

some alternative solutions. For finding these, she/he wants to use the direction 

search in Approach 2. Let the direction vector is ∆∆∆∆d =  (3.5, 2) with  p = 2. 

 

p = 1, G1 = (40, 384)      y1 = (39.87, 388.73)   x1 = (50, 59.87) U(y1) = - 64.32 

p = 2, G2 = (43.5, 386)   y2 = (43.23, 395.47)   x2 = (50, 63.23) U(y2) = - 107.37           

 

The most preferred continuous vector is K = y1 = (39.87, 388.73). The closest 

integer nondominated vector is C1 = (39.87, 388.73) with x = (46.63, 56.5). 

Suppose the DM likes the solution. Since C1 is not dominated by any vector in 

LIFV, it is added to the LCLP as a candidate location point.  

 

Suppose that the DM wants to continue the search in Region II. 

 

Region II 

  

R   =  (42, 396)  

Q  =   (32, 436) 
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Assume that the DM specifies G0 = (35, 410) as the reference point and w0 = (0.3, 

0.7) as the weight vector. The first continuous solution is yo = (37.02, 401.03) with 

the decision vector x0 = (50, 75). 

 

Suppose that the DM is not sure about the continuous solution and wants to see 

some alternative continuous solutions. For finding these, she/he wants to use the 

direction search in Approach 1.  

 

Percent deviation of the first continuous solution from the first reference points is 

found as 8 %. 

 

d  = (2.02 / 35) + (8.97 / 410) = 0.058  + 0.022  = 0.08 

 

When we perturb G0 in both coordinates with this deviation with P = 2, the 

resulting reference points and the nondominated continuous objective vectors 

associated are as below. 

 

i = 1, G1 = (32.2, 410)        y1 = (34.73, 398.73)    x1 = (50, 75)   U(y1) = -241.76 

i = 2, G2 = (33.6, 410)        y2 = (35.88, 399.88)    x2 = (50, 75)   U(y2) = -245.91 

i = 3, G3 = (35, 442.8)        y3 = (42.10, 411.20)    x3 = (50, 75)   U(y3) = -450.13 

i = 4, G4 = (35, 426.4)        y4 = (39.56, 406.12)    x4 = (50, 75)    U(y4) = -335.44 

  

The most preferred continuous vector is K = y1 = (34.73, 398.73). The closest 

integer nondominated vector is C2 = (34.31, 400.61) with x = (50, 77.31). 

Obviously, C2 is dominated by C1 and deleted from further consideration.  

 

Suppose that the DM wants to stop the search. The final candidate location point is 

the single element of the LCLP which is C1 = (39.87, 388.73). Hence, the semi-
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desirable facility should be located at x = (46.63, 56.5). In this case the facility is 

39.87 distance measure far from the closest demand point, while it has a total 

distance of 388.73 from all the demand points. 

 

Example 4.2. Consider a single semi-desirable facility location problem in a 100 x 

100 square. Suppose that there are 2000 demand points uniformly generated in the 

interval [0,100].  

 

We assume that the DM has an underlying general monotone utility function: 
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U : Utility function 

Ri : ith coordinate of the ideal objective vector 

Qi : ith coordinate of the nadir objective vector 

zi : ith coordinate of an objective vector 

 

Parameters 

 

Branch and Bound Strategies: Combination 3 

M = 200 

α = 12.5 

ρ = 10-3 

T = 100 
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In this example, since the demand points are uniformly generated, function values 

of incumbent points are expected to be close to each other. Besides, the upper and 

lower bounds on the objective functions are expected to be similar in the regions. 

Hence, obviously, for any elimination, the feasible region should be divided more 

compared to the previous example.In addition, as a result of the uniformity in the 

demand points it will be difficult to eliminate big regions at once. Based on these, 

the resulting elimination pattern is expected to be more uniform and slower. 

 

Phase 1 

 

Table 4.8 shows the LCES along with the upper bound of squares on maximin 

objective and their optimal minsum objective value at the end of Phase 1.  

 

Table 4.8 - LCES at the End of Phase 1 

 
i UB(Si) W*(Si) i UB(Si) W*(Si) 

9 6.87 132240.42 48 5.59 102330.42 

11 5.75 129212.78 54 5.56 114068.56 

18 6.47 130740.82 56 5.29 129560.04 

20 5.03 127713.18 57 6.90 123975.66 

25 5.34 129215.68 58 4.97 139486.76 

26 6.45 112859.26 59 6.14 112204.98 

29 6.13 140986.36 60 7.03 127716.08 

30 5.02 124629.94 61 4.86 115047.56 

32 7.64 140121.42 62 5.92 99462.10 

33 6.56 157262.58 63 4.91 102297.88 

34 4.96 140906.16 64 4.27 102304.68 

36 5.15 125041.50 65 5.18 105140.46 

38 4.66 111258.52 66 4.82 102486.84 

40 6.38 126750.00 67 4.81 105322.62 

41 5.61 130985.62 68 5.56 99459.20 

42 6.36 127534.74 69 5.47 102294.98 
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Table 4.8 – (cnt’d) 

 
44 4.43 111670.08 70 6.11 127509.00 

45 6.56 102938.72 73 5.05 114480.12 

46 4.25 99487.84 74 4.80 105963.46 

47 5.15 105781.30 76 4.14 102935.82 

   77 4.84 99484.94 

 

Table 4.9 shows the LIFV at the end of Phase 1. At each branching 100 points are 

selected. After making a dominance check at each step, 31 points are left.    

 

Table 4.9 – LIFV at the End of Phase  

 

 

 

i xi L(xi)  W(xi) i xi L(xi)  W(xi) 

1 [51.00,49.50] 1.62 99459.35 16 [25.50,51.25] 4.58 112381.02 

2 [51.00,49.00] 2.12 99467.99 17 [25.25,51.00] 4.65 112626.17 

3 [50.50,49.00] 2.61 99475.92 18 [25.25,51.25] 4.83 112639.00 

4 [51.25,46.75] 2.98 99628.81 19 [77.00,80.00] 4.85 131492.13 

5 [51.50,46.25] 3.13 99700.84 20 [2.19,38.12] 4.88    149866.23 

6 [51.50,46.00] 3.38 99740.29 21 [2.22,37.78] 4.92 149964.83 

7 [50.00,58.00] 3.41 100668.79 22 [2.19,37.81] 4.99 150014.76 

8 [59.00,59.75] 3.66 102536.23 23 [1.88,37.81] 5.00 150614.51 

9 [59.25,60.00] 3.69 102713.02 24 [0.31,49.69] 5.13 150791.76 

10 [62.25,62.50] 3.81 105014.31 25 [0.00,49.69] 5.44 151414.99 

11 [62.50,62.50] 4.06 105140.16 26 [99.75,36.75] 5.48 152478.23 

12 [62.75,62.50] 4.21 105269.38 27 [100.00,37.0] 5.52 152851.22 

13 [62.75,62.75] 4.26 105383.51 28 [100.00,36.75]   5.73 152977.36 

14 [25.75,51.25] 4.33 112126.25 29 [0.00,37.00] 5.82 154691.89 

15 [25.50,51.00] 4.46 112368.19 30 [0.00,36.88] 5.95 154754.79 

    31 [0.00,36.67] 6.04 154860.21  
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Figure 4.4 - Reduced Feasible Region at the End of Phase 1 

 

 

 

Figure 4.4 shows the elimination pattern achieved in Phase 1. 

 

Phase 2 

 

In this phase, the optimal maximin objective values for each square in the LCES 

(see Table 4.8) are found. As seen from the below table, when the optimal 

maximin values are found, it is observed that 21 squares are dominated by LIFV. 
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Table 4.10 – 1st Elimination in LCES at Phase 2 

 
i L*(Si) UB(Si) W*(Si) Status 

9 6.09 6.87 132240.42 CANDIDATE 

11 5.55 5.75 129212.78 CANDIDATE 

18 5.75 6.47 130740.82 CANDIDATE 

20 5.03 5.03 127713.18 CANDIDATE 

25 5.34 5.34 129215.68 CANDIDATE 

26 4.87 6.45 112859.26 CANDIDATE 

29 4.39 6.13 140986.36 DOMINATED 

30 3.29 5.02 124629.94 DOMINATED 

32 4.97 7.64 140121.42 CANDIDATE 

33 5.35 6.56 157262.58 DOMINATED 

34 4.08 4.96 140906.16 DOMINATED 

36 3.87 5.15 125041.50 DOMINATED 

38 3.61 4.66 111258.52 DOMINATED 

40 4.38 6.38 126750.00 DOMINATED 

41 4.81 5.61 130985.62 DOMINATED 

42 3.96 6.36 127534.74 DOMINATED 

44 3.45 4.43 111670.08 DOMINATED 

45 4.86 6.56 102938.72 CANDIDATE 

46 3.42 4.25 99487.84 CANDIDATE 

47 3.10 5.15 105781.30 DOMINATED 

48 3.41 5.59 102330.42 DOMINATED 

54 4.89 5.56 114068.56 CANDIDATE 

56 4.03 5.29 129560.04 DOMINATED 

57 4.89 6.90 123975.66 CANDIDATE 

58 3.47 4.97 139486.76 DOMINATED 

59 3.82 6.14 112204.98 DOMINATED 

60 4.39 7.03 127716.08 DOMINATED 

61 3.59 4.86 115047.56 DOMINATED 

62 4.07 5.92 99462.10 CANDIDATE 

63 4.27 4.91 102297.88 CANDIDATE 
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Table 4.10 – (cnt’d) 

 
64 4.17 4.27 102304.68 CANDIDATE 

65 4.36 5.18 105140.46 CANDIDATE 

66 3.65 4.82 102486.84 CANDIDATE 

67 3.89 4.81 105322.62 DOMINATED 

68 3.53 5.56 99459.20 CANDIDATE 

69 3.89 5.47 102294.98 CANDIDATE 

70 3.95 6.11 127509.00 DOMINATED 

73 3.61 5.05 114480.12 DOMINATED 

74 3.43 4.80 105963.46 DOMINATED 

76 4.14 4.14 102935.82 CANDIDATE 

77 3.47 4.84 99484.94 CANDIDATE 

 
 
 
 

 

 

Figure 4.5 - Reduced Feasible Region at the End of Phase 2 (First Elimination) 
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After the eliminations in Phase 1 and Phase 2, 20 squares remain (see Figure 4.5). 

At this point, the DM is asked whether she/he wants to divide the regions for any 

further elimination. Suppose the answer is yes with the second phase stopping side 

length (β) = 6.25.  

 

With this further division, 80 additional squares are generated. At this step, 62 of 

them are eliminated with the optimal values and the same incumbent value list. 

Table 4.11 shows the percent elimination achieved in two phases. Table 4.12 

shows the optimal maximin and minsum values of the remaining squares. 

 

Table 4.11 – Percent Elimination Achieved 

 
Phase 1 Phase 2 Overall 

First Elimination Second Elimination  

35.94 32.81 24.22 

 

92.97 

 

Table 4.12 – LCES at the End of Phase 2 

 
i L(Si) W*(Si) I L(Si) W*(Si) 

80 6.10 142697.00 122 4.86 107074.02 

89 5.75 140860.82 127 2.67 99487.84 

90 5.32 140400.04 129 3.42 100220.20 

92 5.55 139669.36 130 2.79 99462.10 

101 3.10 99484.94 132 3.42 100194.46 

104 3.53 99459.20 133 4.07 100751.36 

111 5.03 138563.86 136 4.27 103030.24 

114 5.34 139672.26 139 4.17 102861.58 

119 4.87 112859.26 142 4.37 105140.46 

 

Figure 4.6 shows the feasible region after the second elimination in Phase 2.  
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Figure 4.6 - Reduced Feasible Region at the End of Phase 2  

(Second Elimination) 

 

 
 
Phase 3 

 
As seen from Figure 4.6, the remaining squares can be considered as 5 regions. 

The data related with the regions are given in Table 4.13. Suppose that the DM 

wants to use the approximate procedure.  
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Table 4.13 – Region’s Data 

 

Region Constraints 

Optimal 

Solution to 

(Maximin-l1) 

Optimal 

Solution to 

(Minsum-l1) 

Ideal  

Objective 

Vector 

Nadir  

Objective 

Vector 

I 
     0<x1<6.25 

31.25<x2<56.25 
[0,36.73] [6.25,49.56] [6.09,139669.36] [2.03,154828.16] 

II 
18.75<x1<31.25 

     50<x2<56.25 
[24.9,51.57] [31.25,50] [4.87,107074.02] [1.15,113024.49] 

III 
43.75<x1<56.25 

43.75<x2<62.5 
[51.53,45.89] [51.25,49.56] [3.53,99459.20] [1.31,99758.55] 

IV 
56.25<x1<68.75 

56.25<x2<68.75 
[62.71,62.61] [56.25,56.25] [4.37,100751.36] [2.46,105298.47] 

V 
93.75<x1<100 

 31.25<x2<43.75 
[100,36.78] [93.75,43.75] [5.75,138563.86] 

 

[0.92, 152962.18] 

 

 

Region I 

 

R   =  (6.09, 139669.36)  

Q  =   (2.03, 154828.16) 

 

Assume that the DM specifies G0 = (5, 140000) as the reference point and w0 = 

(0.5, 0.5) as the weight vector. The first continuous solution is yo = (5.01, 

139676.07) with the decision vector x0 = (6.25, 49.66). 

 

Suppose that the DM is not sure about the continuous solution and wants to see 

some alternative solutions. For finding these, she/he wants to use the direction 

search in Approach 2. Let the direction vector is ∆∆∆∆d =  (0.5, 5000) with p = 2. 
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when; 

 

p = 1, G1 = (5.51, 144676.07)   y1 = (5.71, 139681.21)    

x1 = (6.25, 49.68)    U(y1) = 114715040.54 

 

p = 2, G2 = (6.01, 149676.07)   y2 = (6.4, 139687.71)     

x2 = (6.25, 49.66)          U(y2) =114616619.74 

 

K = y1 = (5.71, 139681.21) is selected by the DM. The closest integer 

nondominated vector is C1 = (3.06, 139692.82) with x = (6.25, 48.54). Since C1 is 

dominated by x5 in LIFV, it is deleted.  

 

Region IV 

 

R   =   (4.37, 100751.36)  

Q  =    (2.46, 105298.47) 

 

Assume that the DM specifies G0 = (4.2, 104000) as the reference point and w0 = 

(0.9, 0.1) as the weight vector.  

 

Suppose that the DM wants to see closest integer nondominated vector to Go 

directly. It is found as C4 = (3.49, 102479.02) with x = (58.88, 59.70). 

 

We assume that she/he likes the solution. C4 is added to LCLP as a candidate 

location point.  

 

The final candidate location point is the single element of LCLP which is C4 = 

(3.49, 102479.02). Hence, the semi-desirable facility should be located at x = 
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(58.88, 59.70). In this case, the facility is 3.49 distance measure far from the 

closest demand point, while it has a total distance of 102479.02 from all the 

demand points. 

 

Example 4.3. In this example, we would like to solve the rectilinear version of the 

real life example given by Skriver and Andersen (2003).  

 

The problem is to solve the uncertainty on where to locate a new international 

airport in Jutland, Denmark replacing the old one with the fact that the new airport 

is attractive to a lot of companies and people living nearby the city Arhus.  

 

The region for potential locations is with the x1-coordinates between 60 and 140; 

and x2-coordinates between 100 and 180. In addition, Jutland area is divided into 

three weighting zones, 100 % zone, 50% zone and 20% zone which reflect the fact 

that the customers far from the stated region will use the new airport less 

frequently compared with the customers living closer or inside the region. (see 

Figure 4.7) 

 

Until now, we have not attributed weights to the demand points while solving 

(Maximin-l1). However, in this example, we will use the following weights in 

coordination with Skriver and Andersen (2003)  

 

wj
1 = ‘population in city j’   

 

To give more importance to larger cities  

 

wj
2 = ‘population in city j multiplied by the weight of the zone’  

 

To give more importance to larger cities and the cities nearby Arhus 
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The authors have chosen 42 cities to represent the demand points in Jutland the 

coordinates of which will be presented later. The problem data are presented in the 

table below. 

 

 

Table 4.14 – Problem Data 

 

City i b1
i b2

i w1
i w2

i City i b1
i b2

i w1
i 

1 7.17 69.31 73422 14684.4 22 88.43 78.39 29376 

2 34.42 8.13 8161 1632.2 23 74.09 42.06 21106 

3 28.2 52.1 8046 1609.2 24 69.31 20.08 16218 

4 7.18 68.83 53012 26506 25 52.58 66.44 8507 

5 76 93.21 47839 23919.5 26 99.9 267.2 11365 

6 95.12 110.42 48410 48410 27 103.25 289.67 24889 

7 99.9 130.49 12067 12067 28 135.27 288.23 24768 

8 118.07 142.92 215587 215587 29 83.55 169.25 7201 

9 106.12 177.34 56123 56123 30 10.99 83.17 12478 

10 67.88 175.9 31872 31872 31 38.72 97.03 9497 

11 76.96 146.75 36762 36762 32 11.95 119.98 6949 

12 52.1 141.01 14014 7007 33 -4.3 135.27 9166 

13 40.63 141.97 29231 14615.5 34 50.67 119.02 6214 

14 18.64 166.34 30770 15385 35 0 185.46 7302 

15 17.2 181.21 11272 5636 36 33.46 212.71 9319 

16 44.45 188.33 20557 10278.5 37 25.33 231.35 12609 

17 108.03 162.04 6616 6616 38 19.12 249.52 2574 

18 158.7 172.08 14441 14441 39 58.32 244.74 3332 

19 91.3 196.94 10704 5352 40 100.86 301.14 6949 

20 74.57 216.06 7066 3533 41 136.71 315.96 10674 

21 98.47 240.43 119157 59578.5 42 146.75 144.83 4396 
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Parameters 

 

Branch and Bound Strategies: Combination 3 

M = 1000 

α = 10 

ρ = 10-8 

T = 100 

 

 

 

 
 

 

Figure 4.7 – Jutland Area 
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Phase 1 

 

Table 4.15 shows the LCES with the upper bound of the squares on the maximin 

objective and their optimal minsum value at the end of Phase 1. 

 

Table 4.15 - LCES at the End of Phase 1 

 

i UB(Si) W*(Si) i UB(Si) W*(Si) 

8 393652.12 53016039.61 24 178248.78 40714101.10 

9 358625.68 54163318.98 27 246046.13 45211201.85 

10 329208.78 49076258.52 28 280637.47 42902196.33 

11 314665.68 50223537.89 29 234220.47 41642732.26 

12 248459.53 45260932.52 32 253703.93 41923834.49 

19 362586.90 54225773.00 33 248593.47 40664370.43 

20 405575.65 52966308.94 37 277221.34 45161481.11 

21 297180.76 50285991.91 39 277221.34 44183119.27 

22 314829.37 49026527.85 40 277221.34 48585869.53 

 

 

Table 4.16 shows the LIFV at the end of Phase 1. At each branching 100 points are 

selected. After making a dominance check at each step, 25 points are left.    

 

Table 4.16 – LIFV at the End of Phase 1 

 

i xi L*(Si) W*(Si) 

1 [98.00,144.00] 185711.06 40836320 

2 [96.00,144.00] 198943.06 41013376 

3 [94.00,144.00] 212175.06 41298872 

4 [92.00,144.00] 225407.06 41669564 

5 [92.00,142.00] 234220.42 41824872 

6 [88.00,140.00] 242673.67 43306932 
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Table 4.16 – (cnt’d) 

 
7 [78.00,140.00] 250594.83 45641140 

8 [76.00,140.00] 264996.81 46191384 

9 [80.00,134.00] 275342.37 47288532 

10 [110.00,116.00] 288289.69 51779496 

11 [108.00,114.00] 296727.56 52165900 

12 [110.00,114.00] 297081.69 52560548 

13 [108.00,112.00] 314665.69 52946952 

14 [108.00,110.00] 323457.69 53768668 

15 [106.00,108.00] 341041.69 54388252 

16 [104.00,106.00] 344995.56 55218856 

17 [106.00,106.00] 349833.69 55362944 

18 [96.00,104.00] 353392.78 56109048 

19 [104.00,104.00] 367417.69 56193548 

20 [102.00,102.00] 369129.56 57036596 

21 [104.00,102.00] 376209.69 57168240 

22 [96.00,102.00] 387442.87 57083740 

23 [98.00,100.00] 390850.22 57881380 

24 [102.00,100.00] 393263.56 58011288 

25 [96.00,100.00] 399870.87 58058432 

 

 

 

Phase 2 

 

There is no further elimination in Phase 2. 

Figure 4.8 shows the feasible region at the end of Phase 2. 
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Figure 4.8 - Reduced Feasible Region at the End of Phase 2 

 

The below table shows the percent elimination achieved in Phase 1 and Phase 2. 

 

Table 4.17 – Percent Elimination Achieved 

 
Phase 1 Phase 2 Overall 

71.87 0 71.87 
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Phase 3 

 

Instead of presenting the squares separately to the DM, the squares are combined 

in five regions. 

 

Region I : Squares19, 20, 8, 9, 21, 22, 10, 11 

Region II : Squares 27, 12 

Region III : Squares 37, 28, 29, 39, 32, 33 

Region IV : Square 24 

Region V : Square 40   

 

Suppose that the DM wants to search the regions with the exact approach. 

 

Table 4.18 – Region’s Data 

 

Region Constraints 

Optimal 

Solution to 

(Maximin-l1) 

Optimal  

Solution to 

(Minsum-l1) 

Ideal 

 Objective 

Vector 

Nadir  

Objective 

Vector 

I 
80<x1<120 

100<x2<120 
[96.83, 100] [ 98.47, 120.0] 

[405008.13, 

49026530] 

[143838.72, 

57985220] 

II 
90<x1<110 

120<x2<130 
[110, 120] [98.47,  130.0] 

[248459.53,  

45211200] 

[23168.72, 

50223536] 

III 
70<x1<100 

130<x2<150 
[71.38,142.92] [98.47,142.92] 

[277221.34, 

40664370] 

[167248.58, 

46927152] 

IV 
100<x1<110 

140<x2<150 
[104.44, 140] [100.0, 142.92] 

[169558.61, 

40714100] 

[151199.42, 

41977592] 

V 
60<x1<70 

150<x2<160 
[64.302, 150] [70.0, 150.0] 

[277221.34,  

48585870] 

[236192.83, 

50992876] 
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Suppose that the DM wants to start the search from Region 3. Assume that she/he 

specifies below reference point and weights. 

 

G0 = (250000, 45000000) 

 

w0 = (0.9, 0.1) 

 

The closest integer nondominated vector in region 3 is found as  

 

C3 = (248534.05, 42131957) with x = (90.66, 141.85) 

 

Dominance Check 

 

C3 is not dominated by the LIFV, so we project it onto the other regions. 

 

Region 1:  C1 = (242332.21, 501232470)  with x = (109.49, 120) 

       C1 does not dominate C3. It is dominated by C3. 

 

Region 2:  C3 dominates the ideal point, region 2 is deleted from further  

      consideration. 

 

Region 4:  C4 = (169558.61, 40806177)  with x = (101.52, 142.92) 

C4 does not dominate C3. C4 is not dominated by LIFV thus added to the 

LCNV. 

 

Region 5:  C5 = (244375.24, 490168170)    with x = (68.86, 150) 

                 C5 does not dominate C3. It is dominated by C3. 

 

C3 is proved to be nondominated and added to the LCLP. 
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Suppose that the DM would like to know whether C4 is nondominated or not. It is 

deleted from the LCNV. 

 

G1 = C4 = (169558.61, 40806177) 

 

w1 = (0.5, 0.5) 

 

Dominance Check 

 

C4  is projected onto the other regions. 

 

Region 1:  C1 = (143838.64, 49026537)  with x = (98.47, 120) 

       C1 does not dominate C4. It is dominated by C4. 

 

Region 3:  C3 = (170265.58, 40686507)  with x = (98.22, 142.92) 

C3 dominates C4. C3 is not dominated by LIFV thus added to the LCNV. 

 

C4 is proved to be dominated. 

 

Suppose that the DM would like to know whether C3 is nondominated or not. It is 

deleted from the LCNV. 

 

G2 = C3 = (170265.58, 40686507) 

 

w2 = (0.5, 0.5) 

 

Dominance Check 

 

C3 is projected onto the other regions. 
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Region 1:  C1 = (148838.64, 49026537)  with x = (98.47, 120) 

       C1 does not dominate C3. It is dominated by C3. 

 

Region 4:  C3 dominates the ideal point, region 4 is deleted from further  

      consideration. 

 

Region 5:  C5 = (236192.8, 48585877)  with x = (70,150) 

      C5does not dominate C3. C5 is dominated by the LCLP, thus deleted. 

 

C3 is proved to be nondominated and added to the LCLP as C32 since there is an 

element of the LCLP from region 3 which we will name C31. 

 

Suppose the DM wants to continue searching from region 1 and specifies the 

below reference point and weights. 

 
G3 = (400000, 51000000) 

 

w3 = (0.5, 0.5) 

 

The closest integer nondominated vector in region 1 is found as  

 

C1 = (365128, 55992647) with x = (104.09, 104.43) 

 

Dominance Check 

 

C1 is not dominated by the LIFV, so we project it onto the other regions. 

 

Region 3:  C3 = (277221.34, 46791897)  with x = (76, 138.302) 
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C3 does not dominate C1. It is not dominated by the LIFV and the 

LCLP, thus added to the LCNV. 

 

Region 5:  C5 = (277221, 50992717)  with x = (76, 138.302) 

      C5 does not dominate C1. It is dominated by C3, thus deleted. 

 

C1 is proved to be nondominated and added to the LCLP. 

 

The elements of the LCLP are C31 = (248534.05, 42131957), C32= (170265.58, 

40686507) and C1= (365128, 55992647).  

 

The LCLP is presented to the DM. Suppose that DM is satisfied but can not decide 

between the alternatives. 

 

Suppose that the DM specifies the indifference (qi) and preference (pi) threshold 

levels as follows: 

 

q1 = 5000 p1 = 10000 

q2 = 500000 p2 = 1000000 

 

Let the weights be w = (0.3, 0.7) 

 

F1(C31, C32) = 1,  F1(C32, C31) = 0,  F1(C1, C31) = 1, 

F1(C31, C1) = 0,  F1(C32, C1) = 0,  F1(C1, C32) = 1, 

 

F2(C31, C32) = 0,  F2(C32, C31) = 1,  F2(C1, C31) = 0, 

F2(C31, C1) = 1,  F2(C32, C1) = 1,  F2(C1, C32) = 0, 

 

 



 115

 

( , )π 31 32C C  = 0.3 ( , )π 32 31C C = 0.7 ( , )π 1 31C C = 0.3 

( , )π 31 1C C  = 0.7 ( , )π 32 1C C = 0.7 ( , )π 1 32C C = 0.3 

 

( )φ + 31C = 1  ( )φ + 32C = 1.4  ( )φ + 1C = 0.6 

( )φ − 31C = 1  ( )φ − 32C = 0.6  ( )φ − 1C = 1.4 

 ( )φ 31C = 0   ( )φ 32C = 0.8   ( )φ 1C  = - 0.8 

 

 

According to the net flows, C32 outranks C31 and C1. Therefore C32 should be 

selected as the final objective vector. Hence, the semi-desirable facility should be 

located in region 3 at x = (98.22, 142.92). In this case the weighted distance of the 

airport to the closest city is 170265.58 distance measure, and the total weighted 

distance to the demand points is 40686507 distance measure from all the demand 

points. 
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CHAPTER 5 

 

 

CONCLUSION AND DIRECTIONS  

FOR FUTURE RESEARCH 
 

 

In the first part of the thesis, we studied the undesirable facility location problem 

in a planar region, the findings of which were used in the semi-desirable facility 

location problem of the second part. 

 

In Chapter 3, a mixed integer mathematical model suggested by Sayin (2000) has 

been used for the problem of locating an undesirable facility. This model as 

indicated in Chapter 2, is computationally prohibitive in the existence of large 

number of demand points and its solution time increases exponentially as the 

number of demand points increases. Believing that the model is very practical 

when compared to the approaches in the literature, we have given two solution 

approaches with which considerable saving in the solution time even for big 

demand point samples has been achieved. In the first approach, we have 

investigated different branch and bound strategies and conducted several tests to 

find out strategies improving the solution time. After selecting the promising 

strategies, their combined effects have been tested on several problems. Based on 

the results, it was observed that the solution time of the model has been reduced 

considerably with some strategy combinations, making the model practical even 

for big problems.  
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Further reduction in the solution time of the model has been made possible by use 

of bounds. We have used the upper bound suggested by White (1996) which, to 

our knowledge was never tested or used in the literature before, even though it was 

proved to be better than the upper bound suggested by Drezner and Wesolowsky 

(1983). Along with the upper bound, a lower bound has been used. Experiments 

showed that both bounds have a further improving effect on the solution time even 

though the upper bound was observed to be very loose in all of the test problems.  

 

In the second approach of Chapter 3, a method named as ‘Cut and Prune’ has been 

proposed which is based on the idea that some parts of the feasible region can be 

proved not to contain the optimal point and can be fathomed by the use of upper 

and lower bounds and incumbent points. Considering that the pruning may not be 

possible with loose bounds, and White’s upper bound failed to be tight in the test 

problems, the use of a supplementary upper bound was suggested. This approach 

was illustrated on example problems one of which showed that a problem with big 

sample of demand points can be solved efficiently with the proposed method.  

 

The second concern of the study, the semi-desirable facility location problem was 

dealt with in Chapter 4. There has been limited research in the literature on this 

issue. For the solution of the problem, a new objective function was added to the 

mixed integer model of Chapter 3 for the purpose of the minimization of the 

service cost, considering that the facility has desirable properties as well as 

undesirable in this case. A three-phase interactive geometrical branch and bound 

algorithm was suggested for the solution of the biobjective model. In the first two 

phases, we aim to eliminate the parts of the feasible region the inefficiency of 

which can be proved. The third phase has been suggested for an interactive search 

in the remaining regions with the involvement of a DM.  
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In the third phase, the DM is given the opportunity to use either an exact or an 

approximate procedure to carry out the search. In the exact one, finding an 

efficient point at the end is guaranteed. This procedure is based on the reference 

point approach of Wierzbicki (1980) and requires the solution of a mixed integer 

model for all the regions. On the other hand, in the approximate procedure, an 

approximately efficient solution can be presented at the end. In this procedure, a 

hybrid methodology (Karaivanova et al., 1995) is used to increase the efficiency of 

the reference point approach. With this methodology, we approach the preference 

regions of the DM in continuous nondominated objective region before starting the 

search in the integer nondominated objective region. For finding the nondominated 

continuous solutions, we have used two methods; reference direction approach 

suggested by Korhonen and Laakso (1986) and perturbation of the reference points 

suggested by Wierzbicki (1980). The approximate procedure can be used when the 

DM prefers to see approximately efficient solutions to save on computation time. 

 

The third phase also supports the DM with an outranking method when the search 

results in multiple efficient points among which the DM has a difficulty in 

selecting the final location point. 

 

The first two phases of the algorithm was an adaptation of the GBSSS algorithm to 

the semi-desirable facility location problem. New bounding schemes were used 

compared to the bounds used in the literature, and whenever optimal values were 

calculated, the insights of Chapter 3 were used. However, the third phase was 

completely new considering that there is no interactive approach suggested for the 

semi-desirable facility location problem in the literature.  

 

The solution approaches in the literature are either approximations that result in 

regions containing efficient points, or they are aimed at obtaining the complete 

efficient trajectory. Obviously, these approaches may cause information overload 
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on the DM who may have difficulty in selecting the final location point. 

Considering these, we believe, our algorithm is the first decision support system 

for the problem, thus giving the DM an opportunity to have a single -efficient or 

approximately efficient- location point at the end. 

 

An area for future research should consider forbidden regions which allow 

modeling real location areas with geographical barriers. In addition, a new 

distance gauge that properly defines the spread of pollution should be investigated. 

Moreover, different criteria involving environmental considerations such as, 

geographical, climatic, should be incorporated to the problem of this area. Another 

area is the multi-facility version of the problem which will be useful in modeling 

the real life location problems. 

 

 



 120

 

REFERENCES 

 
 

1. Appa G.M. and Giannikos I. (1994), “Is Linear Programming Necessary 
for Single Facility Location with Maximin of Rectilinear Distance?”, J. 
Opl. Res. Soc., Vol. 45(1), pp. 97-107. 

 
 
2. Brans J.P. and Vinckle P. (1985) 'A preference ranking organisation 

method : The PROMETHEE method for MCDM', Management Science, 
Vol. 31, 6, pp.647-656. 

 
 

3. Brimberg J. and Juel H. (1998), “On Locating a Semi-desirable Facility on 
the Continuous Plane”, Int. Trans. Opl. Res., Vol. 5(1), pp. 59-66.  

 
 

4. Brimberg J. and Juel H. (1998), “A Bicriteria Model for Locating a Semi-
Desirable Facility in the Plane”, European Journal of Operational 
Research, Vol. 106, pp. 144-151. 

 
 

5. Carrizosa E. and Plastria F. (1999), “Location of Semi-obnoxious 
Facilities”, Studies in Locational Analysis, Issue 12, pp. 1-27. 

 
  

6. Cplex (1998), “Using the Cplex Callable Library”, Version 6.0, ILOG, 
Inc., NV, USA. 

 
 
7. Dasarathy B. and White Lee J. (1980), “A Maxmin Location Problem”, 

Operations Research, Vol. 28(6), pp. 1385-1401. 
 
 

8. Drezner Z. and Wesolowsky G.O. (1980), “A Maximin Location Problem 
with Maximum Distance Constraints”, AIIE Transactions, Vol. 12(3), pp. 
249-252. 

 
 



 121

9. Drezner Z. and Wesolowsky G.O. (1983), “The Location of an Obnoxious 
Facility with Rectangular Distances”, Journal of Regional Science, Vol. 
23(2), pp. 241-248.  

 
 

10. Erkut E. and Neuman S. (1989), “Analytical Models for Locating 
Undesirable Facilities”, European Journal of Operational Research, Vol. 
40, pp. 275-291.   

 
 
11. Fernandez F., Puerto J. and Rodriguez-Chia AM. (1997), “A Maxmin 

Location Problem with Nonconvex Feasible Region”, Journal of the 
Operational Research Society, Vol. 48, pp. 479-489. 

 
 

12. Gregory J. (2001), “Rethinking Your Cplex Parameter Settings”, 
ILOG/CPLEX Optimization Newsletter’, http://www.ilog.com/products 
/optimization/times_winter2001/expert.cfm 

 
 

13. Hansen P., Peeters D. and Thisse J.-F. (1981), “On the Location of an 
Obnoxious Facility”, Sistemi Urbani, Vol. 3, pp. 299-317. 

 
 
14. Karasakal, E. K. and Köksalan, M. "Generating a Representative Subset of 

the Efficient Frontier in Multiple Criteria Decision Making," Working 
Paper No: 01-20, Faculty of Administration, University of Ottawa, 2001. 

 
 

15. Karaivanova J., Korhonen P., Narula S., Wallenius J., Vassilev V. (1995), 
“A reference Direction Approach to Multiple Obective Integer Linear 
Programming”, European Journal of Operational Research, Vol. 81, pp. 
176-187. 

 
 
16. Korhonen P. and Laakso J. (1986), “A Visual Interactive Method for 

Solving the Multiple Criteria Problem”, European Journal of Operational 
Research, Vol. 23, pp. 161-179. 

 
 

17. Mehrez A., Sinuany-Stern Z. and Stulman A. (1986), “An Enhancement of 
the Drezner-Wesolowsky Algorithm for Single-facility Location with 
Maximin of Rectilinear Distance”, J. Opl. Res. Soc., Vol. 37(10), pp. 971-
977.  



 122

18. Melachrinoudis E. and Cullinane T.P. (1985), “Locating an Undesirable 
Facility within a Geographical Region Using the Maximin Criterion”, 
Journal of Regional Science, Vol. 25(1), pp. 115-127. 

 
 

19. Melachrinoudis E. and Cullinane T.P. (1986), “Locating an Obnoxious 
Facility within a Polygonal Region”, Annals of Operations Research, Vol. 
6, pp. 137-145.   

 
 

20. Melachrinoudis E. (1988), “An Efficient Computational Procedure for the 
Rectilinear Maximin Location Problem”, Transportation Science, Vol. 
22(3), pp. 217-223. 

 
 

21. Melachrinoudis E. (1999), “Bicriteria Location of a Semi-obnoxious 
Facility”, Computers & Industrial Engineering, Vol. 37, pp. 581-593.  

 
 

22. Melachrinoudis E. and Xanthopulos Z. (2003), “Semi-obnoxious Single 
Facility Location in Euclidean Space”, Computers & Operations Research, 
Vol. 30, pp. 2191-2209. 

 
 

23. Morales D.R., Carrizosa E. and Conde E. (1997), “Semi-obnoxious 
Location Models: A Global Optimization Approach”, European Journal of 
Operational Research, Vol. 102, pp. 295-301. 

 
 

24. Plastria F. (1992), “GBSSS: The Genaralized Big Square Small Square 
Method for Planar Single-facility Location”, European Journal of 
Operational Research, Vol. 62, pp. 163-174.  

 
 

25. Plastria F. (1996), “Optimal Location of Undesirable Facilities: A Selective 
Overview”, Belgian Journal of Operations Research, Statistics and 
Computer Science, Vol. 36(2-3), pp. 109-127. 

 
 

26. Sayin S. (2000), “Measuring the Quality of Discrete Representations of 
Efficient Sets in Multiple Objective Mathematical Programming”, 
Mathematical Programming, 87, 543-560.  

 



 123

27. Sayin S. (2000), “A Mixed Integer Programming Formulation for the l-
maximin Problem”, Journal of the Operational Research Society, Vol. 51, 
pp. 371-375.  

 
 
28. Sayin S. (2003), “A Procedure to Find Discrete Representations of the 

Efficient Set with Specified Coverage Errors”, Operations Research, 51, 3, 
427-436. 

 
 

29. Shamos M.I. (1975), “Geometric Complexity”, Proceedings of the Seventh 
ACM Symposium on Theory of Computing, pp.224-233.  

 
 

30. Shamos M.I. and and Hoey D. (1975), “Closest Point Problems”, 16th 
Annual IEEE Symposium on Foundations of Computer Science, pp. 151-
162. 

 
 

31. Skriver A.J.V. and Andersen K.A. (2003), “The Bicriterion Semi-
obnoxious Location (BSL) Problem Solved by an ∈-Approximation”, 
European Journal of Operational Research, Vol. 146, pp. 517-528.  

 
 

32. Steuer R.E. and Harris F.W. (1980), “Intra-set Point Generation and 
Filtering in Decision and Criterion Space”, Computers and Operations 
Research, Vol. (7), pp. 41-53.  

 
 

33. Steuer R.E. (1986), “Multiple Criteria Optimization: Theory, Computation 
and Application”, John Wiley, New York, p. 245.  

 
 
34. Wierzbicki A.(1980), “The use of Reference Objective in Multiobjective 

Optimization”, in  G. Fandel and T. Gal (Eds.) Multiple Criteria Decision 
Making, Theory and Application, Springer-Verlag, Berlin, pp. 468-486 

 
 

35. White D.J. (1996), “Rectilinear Location Revisited”, Journal of the 
Operational Research Society, Vol. 47, pp. 181-187. 

 



 
124

                                   
APPENDIX A  

 
EXPERIMENTS WITH DEFAULT CPLEX 

STRATEGIES 
  
 
Table A.1- 1st Experiment with Default Strategies 
 

Number  of 
Demand 
Points 

Optimal 
Value Optimal Point Number  of  

Iterations 

Number  of 
Branch and 

Bound Nodes 

CPU Time 
(sec) 

25 43.86 [100, 0] 1046 30 0.72 
50 30.79 [83.99, 50.87] 2607 63 1.85 

100 22.42 [31.17, 100] 7291 143 6.37 
500 10.15 [0, 40.79] 75475 627 115.43 

1000 8.97 [0, 39.61] 187277 1118 462.48 
2000 6.09 [0,36.73] 416041 1360 1686.53 
3000 4.97 [0, 37.85] 806176 2731 4232.34 

 
Table A.2- 2nd Experiment with Default Strategies 
 

Number  of 
Demand 
Points 

Optimal 
Value Optimal Point Number  of  

Iterations 

Number  of 
Branch and 

Bound Nodes 

CPU Time 
(sec) 

25 38.82 [0, 100] 946 31 0.65 
50 31.1 [0, 38.17] 3172 95 1.7 

100 24.93 [96.21, 0] 6071 111 4.77 
500 9.87 [63.26, 100] 106303 959 153.42 

1000 6.78 [72.77, 6.66] 198077 1184 514.21 
2000 5.35 [56.13, 100] 554268 1730 2109.2 
3000 5.35 [56.13, 100] 1118452 2712 5359.02 

 
 
Table A.3- 3rd Experiment with Default Strategies 
 

Number  of 
Demand 
Points 

Optimal 
Value Optimal Point Number  of  

Iterations 

Number  of 
Branch and 

Bound Nodes 

CPU Time 
(sec) 

25 45.98 [0, 100] 1346 56 1.17 
50 27.85 [100, 100] 3004 83 1.83 

100 23.26 [45.39, 0] 4747 65 4.11 
500 10.97 [15.93, 100] 91792 483 121.36 

1000 7.73 [48.45, 100] 158110 605 478.06 
2000 6.07 [25.22, 0] 499928 1823 1905.42 
3000 5.11 [0,79.95] 1020872 2562 5171 
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Table A.4- 4th  Experiment with Default Strategies 
 

Number  of 
Demand 
Points 

Optimal 
Value Optimal Point Number  of  

Iterations 

Number  of 
Branch and 

Bound Nodes 

CPU Time 
(sec) 

25 39.65 [52.99, 100] 1113 36 0.69 
50 33.81 [64.77, 100] 2647 81 1.69 

100 18.58 [0, 0] 9003 231 6 
500 12.57 [11.43, 0] 84007 588 115.53 

1000 7.28 [85.93, 100] 291268 1645 619.53 
2000 5.85 [60.51, 100] 393027 1992 1667.52 
3000 5.21 [59.85, 100] 1089007 2836 5247.45 

 
Table A.5- 5th Experiment with Default Strategies 
 

Number  of 
Demand 
Points 

Optimal 
Value Optimal Point Number  of  

Iterations 

Number  of 
Branch and 

Bound Nodes 

CPU Time 
(sec) 

25 47.52 [0, 79.88] 1571 57 0.7 
50 35.71 [0, 91.69] 3495 87 1.69 

100 21.95 [0, 62.23] 7726 147 5.23 
500 9.93 [100, 7.95] 84261 617 125.13 

1000 7.17 [7.61, 100] 209164 1387 483.47 
2000 5.29 [68.39, 0] 467541 2365 1862.75 
3000 4.57 [30.89, 32,38] 823076 3554 4509.87 

 
Table A.6- 6th Experiment with Default Strategies 
 

Number  of 
Demand 
Points 

Optimal 
Value Optimal Point Number  of  

Iterations 

Number  of 
Branch and 

Bound Nodes 

CPU Time 
(sec) 

25 36.74 [0, 17.08] 1188 42 0.81 
50 26.96 [100, 47.85] 4703 29 1.92 

100 21.02 [0, 30.97] 5235 111 4.27 
500 11.78 [57.1, 0] 92882 606 124.59 

1000 7.15 [0, 100] 198006 904 511.13 
2000 7.11 [100,100] 488145 1194 1733.78 
3000 4.69 [100, 9.89] 719409 2382 3736.77 
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Table A.7- 7th Experiment with Default Strategies 
 

Number  of 
Demand 
Points 

Optimal 
Value Optimal Point Number  of  

Iterations 

Number  of 
Branch and 

Bound Nodes 

CPU Time 
(sec) 

25 41.31 [100,100] 1057 35 1.06 
50 32.36 [0, 0] 1975 46 1.77 

100 23.21 [100, 75.13] 6484 109 4.85 
500 13.75 [67.63, 0] 101886 575 135.41 

1000 8.44 [74.95, 75.6] 132708 676 370.99 
2000 5.25 [25.57, 0] 305185 972 1376.5 
3000 4.23 [89.11,0] 605421 1529 3654.78 

 
Table A.8- 8th Experiment with Default Strategies 
 

Number  of 
Demand 
Points 

Optimal 
Value Optimal Point Number  of  

Iterations 

Number  of 
Branch and 

Bound Nodes 

CPU Time 
(sec) 

25 30.03 [83.62, 77.95] 1525 69 0.67 
50 28.43 [0, 100] 3253 87 1.75 

100 25.88 [2.55, 100] 11012 192 5.36 
500 8.97 [51.67, 46.12] 106224 907 146.75 

1000 6.95 [0, 100] 180127 1017 422.47 
2000 5.79 [72.21, 10] 448723 1620 1761.56 
3000 4.47 [0, 97.51] 917776 2019 4645.86 

 
Table A.9- 9th Experiment with Default Strategies 
 

Number  of 
Demand 
Points 

Optimal 
Value Optimal Point Number  of  

Iterations 

Number  of 
Branch and 

Bound Nodes 

CPU Time 
(sec) 

25 41.05 [0, 40.39] 1477 60 0.66 
50 34.83 [100, 98.82] 3056 72 1.73 

100 28.35 [2.02, 100] 6327 105 4.34 
500 11.15 [33.49, 0] 121599 828 154.75 

1000 8.43 [0, 80.43] 216442 1080 570.03 
2000 4.96 [0, 47.78] 505357 2243 1819.56 
3000 4.23 [90.4, 5.07] 701070 2879 3852.61 
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Table A.10- 10th Experiment0 with Default Strategies 
 

Number  of 
Demand 
Points 

Optimal 
Value Optimal Point Number  of  

Iterations 

Number  of 
Branch and 

Bound Nodes 

CPU Time 
(sec) 

25 37.93 [100, 43.22] 911 29 0.59 
50 24.87 [100, 47.31] 3797 134 1.83 

100 22.74 [80.77, 100] 7525 169 5.05 
500 9.07 [76.91, 39.33] 121672 733 137.45 

1000 8 [63.7, 0] 226371 1509 513.73 
2000 5.57 [0, 16.51] 510926 1982 1873.89 
3000 4.92 [100, 44.81] 821763 2028 4114.89 
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APPENDIX B  

 
COMPARISON OF CPLEX STRATEGIES  

  
Table B.1- 1st Experiment-100 Comparison of Strategies  
 

Number of Demand Points Optimal Value 
 

Optimal Point 
 

100 22.42 [31.17,100] 

Tested Strategy Number of Iterations Number of Branch 
and Bound  Nodes CPU Time (sec) 

DEFAULT 7291 143 6.37 
VARSEL=-1 9281 145 2 
VARSEL=1 5823 93 3 
VARSEL=3 4885 65 5 
CUTS=NO 8739 180 4 
DPRIIND=1 8102 130 4 
DPRIIND=2 8204 166 8 
MIPEMPHASIS=1 5521 112 2 
BRDIR=-1 7787 125 5 
BRDIR=1 6922 101 5 
NODESEL=0 6961 160 4 
NODESEL=2 6394 140 5 
NODESEL=3 6450 149 6 
Priority on integers 7291 143 6 
Combined#1 3970 93 2 
Combined#2 4172 139 2 
Combined#3 4457 108 2 
Combined#4 4053 103 1 
Combined#5 4457 108 1 
Combined#6 4053 103 1 
Combined#7 4666 104 1 
 
Table B.2- 1st Experiment-500 Comparison of Strategies  
 

Number of Demand Points Optimal Value 
 

Optimal Point 
 

500 10.15 [0,40.79] 

Tested Strategy Number of 
Iterations 

Number of Branch 
and Bound  Nodes CPU Time (sec) 

DEFAULT 75475 627 115.43 
VARSEL=-1 156117 1076 137 
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Table B.2 – (cont’d)���
 
VARSEL=1 122040 1090 108 
VARSEL=3 54290 511 156 
CUTS=NO 63260 635 66 
DPRIIND=1 104411 951 86 
DPRIIND=2 92841 658 240 
MIPEMPHASIS=1 52337 602 47 
BRDIR=-1 133790 658 167 
BRDIR=1 155865 1036 174 
NODESEL=0 57361 607 100 
NODESEL=2 109535 933 146 
NODESEL=3 49951 353 92 
Priority on integers 75475 627 114 
Combined#1 38600 453 29 
Combined#2 40815 404 23 
Combined#3 42020 456 13 
Combined#4 40437 507 21 
Combined#5 42020 456 16 
Combined#6 40208 501 16 
Combined#7 41569 454 21 
 
Table B.3- 1st Experiment -1000 Comparison of Strategies   
 

Number of Demand Points Optimal Value 
 

Optimal Point 
 

1000 8.97 [0,39.61] 

Tested Strategy Number of Iterations Number of Branch 
and Bound  Nodes CPU Time (sec) 

DEFAULT 187277 1118 462.48 
VARSEL=-1 267320 1135 425 
VARSEL=1 244575 1567 377 
VARSEL=3 117330 757 517 
CUTS=NO 175132 690 277 
DPRIIND=1 259919 1293 280 
DPRIIND=2 193577 938 1219 
MIPEMPHASIS=1 96521 573 149 
BRDIR=-1 204682 1182 483 
BRDIR=1 175568 905 436 
NODESEL=0 85163 612 311 
NODESEL=2 153830 1013 408 
NODESEL=3 91937 616 324 
Priority on integers 187277 1118 458 
Combined#1 86668 694 107 
Combined#2 83731 612 43 
Combined#3 64133 503 30 



 130

 
 
Table B.3 – (cnt’d) 
 
Combined#4 58935 475 30 
Combined#5 64133 503 30 
Combined#6 58935 475 28 
Combined#7 71242 548 33 
 
 
Table B.4- 1st Experiment-3000 Comparison of Strategies   
 
 

Number of Demand Points Optimal Value 
 

Optimal Point 
 

3000 4.97 [0,37.85] 

Tested Strategy Number of Iterations Number of Branch 
and Bound  Nodes CPU Time (sec) 

DEFAULT 806176 2731 4232.34 
VARSEL=-1 1112735 4840 4360 
VARSEL=1 718712 3093 2567 
VARSEL=3 747675 2140 6400 
CUTS=NO 697444 1074 2981 
DPRIIND=1 878356 2392 1987 
DPRIIND=2 688723 1920 8980 
MIPEMPHASIS=1 429569 1549 1714 
BRDIR=-1 822555 2466 4313 
BRDIR=1 863045 2008 4555 
NODESEL=0 457939 1832 3040 
NODESEL=2 762376 2491 4475 
NODESEL=3 435744 1626 3311 
Priority on integers 823373 3480 3804 
Combined#1 382685 1538 1422 
Combined#2 401996 1478 364 
Combined#3 308765 1377 303 
Combined#4 320310 1373 309 
Combined#5 308765 1377 301 
Combined#6 320310 1373 304 
Combined#7 336457 1278 312 
 



 131

 
 
 
 
 
Table B.5- 2nd Experiment-100 Comparison of Strategies   
 

Number of Demand Points Optimal Value 
 

Optimal Point 
 

100 24.93 [96.21,0] 

Tested Strategy Number of Iterations Number of Branch 
and Bound  Nodes CPU Time (sec) 

DEFAULT 6071 111 4.77 
VARSEL=-1 6194 123 2 
VARSEL=1 11148 177 4 
VARSEL=3 4814 70 5 
CUTS=NO 6569 134 3 
DPRIIND=1 10242 218 5 
DPRIIND=2 6217 130 8 
MIPEMPHASIS=1 3825 59 1 
BRDIR=-1 6087 95 4 
BRDIR=1 4827 63 4 
NODESEL=0 7531 208 6 
NODESEL=2 5440 95 5 
NODESEL=3 5570 114 4 
Priority on integers 5832 120 3 
Combined#1 3186 95 1 
Combined#2 3929 110 1 
Combined#3 4175 73 1 
Combined#4 4175 73 1 
Combined#5 4175 73 1 
Combined#6 4175 73 1 
Combined#7 4060 68 1 
 
Table B.6- 2nd Experiment -500 Comparison of Strategies   
 

Number of Demand Points Optimal Value 
 

Optimal Point 
 

500 9.87 [63.26,100] 

Tested Strategy Number of Iterations Number of Branch 
and Bound  Nodes CPU Time (sec) 

DEFAULT 106303 959 153.42 
VARSEL=-1 96939 710 93 
VARSEL=1 89110 859 91 



 132

 
Table B.6-(cnt’d) 
 
VARSEL=3 59929 576 175 
CUTS=NO 55527 517 61 
DPRIIND=1 107527 1036 89 
DPRIIND=2 99104 1029 259 
MIPEMPHASIS=1 45733 515 41 
BRDIR=-1 78465 497 117 
BRDIR=1 158789 1227 192 
NODESEL=0 56188 529 106 
NODESEL=2 124462 1099 168 
NODESEL=3 53775 459 103 
Priority on integers 115924 1015 137 
Combined#1 39140 433 25 
Combined#2 42140 579 15 
Combined#3 39600 452 12 
Combined#4 40264 450 12 
Combined#5 39600 452 13 
Combined#6 40255 449 12 
Combined#7 38520 435 12 
 
 
Table B.7- 2nd Experiment -1000 Comparison of Strategies   
 

Number of Demand Points Optimal Value 
 

Optimal Point 
 

1000 6.78 [72.77,6.66] 

Tested Strategy Number of Iterations Number of Branch 
and Bound  Nodes CPU Time (sec) 

DEFAULT 198077 1184 514.21 
VARSEL=-1 404632 2430 716 
VARSEL=1 246918 2639 447 
VARSEL=3 171486 1689 953 
CUTS=NO 146713 791 265 
DPRIIND=1 228865 1700 280 
DPRIIND=2 142246 1141 955 
MIPEMPHASIS=1 132002 1044 214 
BRDIR=-1 252290 1546 607 
BRDIR=1 212784 1269 541 
NODESEL=0 138740 1184 441 
NODESEL=2 203827 1335 538 
NODESEL=3 145399 1072 450 
Priority on integers 263167 1867 552 
Combined#1 112334 959 140 
Combined#2 106941 890 56 
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Table B.7 - (cnt’d) 
 
Combined#3 100265 889 47 
Combined#4 99396 889 48 
Combined#5 100265 889 47 
Combined#6 99396 889 47 
Combined#7 108570 925 48 
 
 
 
Table B.8- 2nd Experiment -3000 Comparison of Strategies   
 

Number of Demand Points Optimal Value 
 

Optimal Point 
 

3000 5.35 [56.13,100] 

Tested Strategy Number of Iterations Number of Branch 
and Bound  Nodes CPU Time (sec) 

DEFAULT 1118452 2712 5359.02 
VARSEL=-1 1208076 3616 4856 
VARSEL=1 805244 3586 3122 
VARSEL=3 448941 1696 3374 
CUTS=NO 573546 1522 2687 
DPRIIND=1 600650 1981 1707 
DPRIIND=2 599090 1652 10220 
MIPEMPHASIS=1 446621 1932 1836 
BRDIR=-1 972364 2396 5100 
BRDIR=1 995695 2330 5107 
NODESEL=0 462042 1681 3062 
NODESEL=2 846755 2494 4525 
NODESEL=3 377253 961 2752 
Priority on integers 800487 2547 3621 
Combined#1 405294 1642 1447 
Combined#2 606893 1038 370 
Combined#3 281772 1236 249 
Combined#4 550147 2407 433 
Combined#5 281772 1236 249 
Combined#6 293418 1252 248 
Combined#7 305388 1252 289 
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Table B.9- 3rd Experiment-100 Comparison of Strategies   
 

Number of Demand Points Optimal Value 
 

Optimal Point 
 

100 23.26 [45.39,0] 

Tested Strategy Number of Iterations Number of Branch 
and Bound  Nodes CPU Time (sec) 

DEFAULT 4747 65 4.11 
VARSEL=-1 3370 74 1 
VARSEL=1 8652 199 3 
VARSEL=3 4607 72 5 
CUTS=NO 2809 64 2 
DPRIIND=1 6327 105 5 
DPRIIND=2 9272 206 9 
MIPEMPHASIS=1 5322 140 3 
BRDIR=-1 8912 184 6 
BRDIR=1 6400 123 5 
NODESEL=0 4962 90 3 
NODESEL=2 4727 64 4 
NODESEL=3 4604 81 4 
Priority on integers 4315 59 3 
Combined#1 4776 149 1 
Combined#2 3858 141 1 
Combined#3 3719 95 1 
Combined#4 3723 96 1 
Combined#5 3719 95 1 
Combined#6 3723 96 1 
Combined#7 3829 102 1 
 
 
Table B.10- 3rd Experiment-500 Comparison of Strategies   
 

Number of Demand Points Optimal Value 
 

Optimal Point 
 

500 10.97 [15.93,100] 

Tested Strategy Number of Iterations Number of Branch 
and Bound  Nodes CPU Time (sec) 

DEFAULT 91792 483 121.36 
VARSEL=-1 171218 998 145 
VARSEL=1 110625 1072 101 
VARSEL=3 56524 612 177 
CUTS=NO 41512 469 55 
DPRIIND=1 95083 796 78 
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Table B.10 – (cnt’d) 
 
DPRIIND=2 54110 559 216 
MIPEMPHASIS=1 45958 424 40 
BRDIR=-1 161451 726 166 
BRDIR=1 211384 1159 221 
NODESEL=0 40533 259 80 
NODESEL=2 91300 513 121 
NODESEL=3 39164 271 80 
Priority on integers 76573 533 92 
Combined#1 37970 405 23 
Combined#2 34286 369 11 
Combined#3 35776 408 11 
Combined#4 36191 410 11 
Combined#5 35776 408 11 
Combined#6 36038 401 11 
Combined#7 35793 336 10 
 
 
Table B.11- 3rd Experiment-1000 Comparison of Strategies   
 

Number of Demand Points Optimal Value 
 

Optimal Point 
 

1000 7.73 [48.45,100] 

Tested Strategy Number of Iterations Number of Branch 
and Bound  Nodes CPU Time (sec) 

DEFAULT 158110 605 478.06 
VARSEL=-1 202737 1016 338 
VARSEL=1 260465 1557 399 
VARSEL=3 126762 1128 674 
CUTS=NO 92293 583 211 
DPRIIND=1 183662 1051 277 
DPRIIND=2 265104 1734 1269 
MIPEMPHASIS=1 101343 705 160 
BRDIR=-1 245750 847 548 
BRDIR=1 226606 1093 581 
NODESEL=0 129142 645 431 
NODESEL=2 107568 414 396 
NODESEL=3 122289 537 420 
Priority on integers 219136 785 452 
Combined#1 105295 771 128 
Combined#2 100309 673 46 
Combined#3 93875 701 43 
Combined#4 93282 688 43 



 136

Table B.11 – (cont’d) 
 
Combined#5 93875 701 42 
Combined#6 93282 688 43 
Combined#7 81022 641 40 
 
 
 
 
Table B.12- 3rd Experiment-3000 Comparison of Strategies   
 

Number of Demand Points Optimal Value 
 

Optimal Point 
 

3000 5.11 [0,79.95] 

Tested Strategy Number of Iterations Number of Branch 
and Bound  Nodes CPU Time (sec) 

DEFAULT 1020872 2562 5171 
VARSEL=-1 479961 1415 2249 
VARSEL=1 548214 3201 2333 
VARSEL=3 572227 2297 4706 
CUTS=NO 778458 1343 3303 
DPRIIND=1 804906 1807 1675 
DPRIIND=2 371157 473 8506 
MIPEMPHASIS=1 470687 1802 1866 
BRDIR=-1 1077155 3199 5225 
BRDIR=1 793323 2082 4317 
NODESEL=0 520572 1968 3399 
NODESEL=2 789835 1731 4245 
NODESEL=3 401042 1081 2920 
Priority on integers 863775 2417 3932 
Combined#1 336827 1342 1231 
Combined#2 420556 1590 372 
Combined#3 315041 1372 262 
Combined#4 298969 1378 258 
Combined#5 315041 1372 262 
Combined#6 298969 1378 255 
Combined#7 396435 1541 344 
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Table B.13- 4th Experiment-100 Comparison of Strategies   
 

Number of Demand Points Optimal Value 
 

Optimal Point 
 

100 18.58 [0,0] 

Tested Strategy Number of Iterations Number of Branch 
and Bound  Nodes CPU Time (sec) 

DEFAULT 9003 231 6 
VARSEL=-1 6549 160 3 
VARSEL=1 10160 276 3 
VARSEL=3 7244 144 8 
CUTS=NO 8763 174 4 
DPRIIND=1 9449 258 5 
DPRIIND=2 7784 199 7 
MIPEMPHASIS=1 6020 160 3 
BRDIR=-1 8018 147 5 
BRDIR=1 7763 171 6 
NODESEL=0 7211 207 6 
NODESEL=2 8380 201 5 
NODESEL=3 7345 189 5 
Priority on integers 6387 143 4 
Combined#1 5421 170 1 
Combined#2 4993 182 1 
Combined#3 5267 142 1 
Combined#4 5267 142 1 
Combined#5 5267 142 1 
Combined#6 5267 142 1 
Combined#7 5665 149 1 
 
Table B.14- 4th Experiment-500 Comparison of Strategies   
 

Number of Demand Points Optimal Value 
 

Optimal Point 
 

500 12.57 [11.43,0] 

Tested Strategy Number of Iterations Number of Branch 
and Bound  Nodes CPU Time (sec) 

DEFAULT 84007 588 115.53 
VARSEL=-1 66952 508 56 
VARSEL=1 85135 636 64 
VARSEL=3 45666 348 109 
CUTS=NO 71885 526 69 
DPRIIND=1 105622 797 79 
DPRIIND=2 124596 761 271 
MIPEMPHASIS=1 40892 335 35 
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Table B.14 – (cont’d) 
 
BRDIR=-1 66745 341 89 
BRDIR=1 67568 366 98 
NODESEL=0 45023 382 85 
NODESEL=2 78595 560 109 
NODESEL=3 36423 293 80 
Priority on integers 79978 494 86 
Combined#1 36061 395 22 
Combined#2 33840 398 11 
Combined#3 34619 374 11 
Combined#4 30976 345 9 
Combined#5 34619 374 10 
Combined#6 30976 345 9 
Combined#7 35800 381 11 
 
Table B.15- 4th Experiment-1000 Comparison of Strategies   
 

Number of Demand Points Optimal Value 
 

Optimal Point 
 

1000 7.28 [85.93,100] 

Tested Strategy Number of Iterations Number of Branch 
and Bound  Nodes CPU Time (sec) 

DEFAULT 291268 1645 619.53 
VARSEL=-1 386362 1999 623 
VARSEL=1 228866 1775 369 
VARSEL=3 152176 1133 668 
CUTS=NO 139760 660 251 
DPRIIND=1 258017 1646 308 
DPRIIND=2 213449 1456 1403 
MIPEMPHASIS=1 144587 978 218 
BRDIR=-1 240683 1435 565 
BRDIR=1 224582 1549 558 
NODESEL=0 137743 1086 419 
NODESEL=2 237405 1397 553 
NODESEL=3 133360 1030 417 
Priority on integers 291751 1781 533 
Combined#1 95994 831 120 
Combined#2 105245 855 52 
Combined#3 92917 657 44 
Combined#4 86772 654 42 
Combined#5 92917 657 43 
Combined#6 87428 652 42 
Combined#7 103542 739 47 
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Table B.16- 4th Experiment-3000 Comparison of Strategies   
 

Number of Demand Points Optimal Value 
 

Optimal Point 
 

3000 5.21 [59.85,100] 

Tested Strategy Number of Iterations Number of Branch 
and Bound  Nodes CPU Time (sec) 

DEFAULT 1089007 2836 5247.45 
VARSEL=-1 550383 2031 2489 
VARSEL=1 801274 2801 2867 
VARSEL=3 693018 2430 5686 
CUTS=NO 587479 1047 2864 
DPRIIND=1 786409 2161 1921 
DPRIIND=2 838475 2361 8597 
MIPEMPHASIS=1 558363 1885 2243 
BRDIR=-1 953021 2848 4772 
BRDIR=1 1054488 2527 5255 
NODESEL=0 525158 2476 3468 
NODESEL=2 943567 2523 4699 
NODESEL=3 463620 1911 3188 
Priority on integers 915214 2665 4116 
Combined#1 384665 1402 1360 
Combined#2 400681 1142 313 
Combined#3 350019 1440 338 
Combined#4 365099 1544 321 
Combined#5 350019 1440 338 
Combined#6 365099 1544 317 
Combined#7 344885 1518 314 
 
Table B.17- 5th Experiment-100 Comparison of Strategies   
 

Number of Demand Points Optimal Value 
 

Optimal Point 
 

100 21.95 [0.62.23] 

Tested Strategy Number of Iterations Number of Branch 
and Bound  Nodes CPU Time (sec) 

DEFAULT 7726 147 5.23 
VARSEL=-1 6853 143 2 
VARSEL=1 7245 163 3 
VARSEL=3 5957 111 7 
CUTS=NO 9791 199 3 
DPRIIND=1 9768 154 5 
DPRIIND=2 9928 201 8 
MIPEMPHASIS=1 5314 153 3 
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Table B.17 – (cont’d) 
 
BRDIR=-1 8007 134 5 
BRDIR=1 7338 173 5 
NODESEL=0 6061 122 4 
NODESEL=2 7628 164 4 
NODESEL=3 6466 139 5 
Priority on integers 6833 116 4 
Combined#1 3557 108 1 
Combined#2 3024 68 1 
Combined#3 5509 127 1 
Combined#4 4641 121 1 
Combined#5 5509 127 1 
Combined#6 4965 121 1 
Combined#7 4988 116 1 
 
Table B.18- 5th Experiment-500 Comparison of Strategies   
 

Number of Demand Points Optimal Value 
 

Optimal Point 
 

500 9.93 [100,7.95] 

Tested Strategy Number of Iterations Number of Branch 
and Bound  Nodes CPU Time (sec) 

DEFAULT 84261 617 125.13 
VARSEL=-1 110569 571 97 
VARSEL=1 106225 934 101 
VARSEL=3 61575 689 203 
CUTS=NO 50639 475 57 
DPRIIND=1 93042 720 71 
DPRIIND=2 88378 747 241 
MIPEMPHASIS=1 50948 536 45 
BRDIR=-1 53706 400 97 
BRDIR=1 61502 339 105 
NODESEL=0 73458 708 117 
NODESEL=2 92701 687 130 
NODESEL=3 66484 639 111 
Priority on integers 82846 475 96 
Combined#1 42877 475 33 
Combined#2 44136 531 15 
Combined#3 38940 450 12 
Combined#4 38489 434 12 
Combined#5 38940 450 12 
Combined#6 38437 434 11 
Combined#7 39858 425 12 
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Table B.19- 5th Experiment-1000 Comparison of Strategies   
 

Number of Demand Points Optimal Value 
 

Optimal Point 
 

1000 7.17 [7.61,100] 

Tested Strategy Number of Iterations Number of Branch 
and Bound  Nodes CPU Time (sec) 

DEFAULT 209164 1387 483.47 
VARSEL=-1 264691 1294 404 
VARSEL=1 192588 1855 312 
VARSEL=3 149506 1348 706 
CUTS=NO 214314 915 300 
DPRIIND=1 146345 826 232 
DPRIIND=2 119742 456 969 
MIPEMPHASIS=1 126347 944 193 
BRDIR=-1 153077 954 398 
BRDIR=1 236783 1480 520 
NODESEL=0 134898 1020 375 
NODESEL=2 234869 1615 526 
NODESEL=3 135208 1083 380 
Priority on integers 264561 1780 492 
Combined#1 98489 747 128 
Combined#2 109846 867 56 
Combined#3 96878 850 51 
Combined#4 96780 854 49 
Combined#5 96878 850 50 
Combined#6 96780 854 51 
Combined#7 98761 784 45 
 
Table B.20- 5th Experiment-3000 Comparison of Strategies   
 

Number of Demand Points Optimal Value 
 

Optimal Point 
 

3000 4.57 [30.89,32.38] 

Tested Strategy Number of Iterations Number of Branch 
and Bound  Nodes CPU Time (sec) 

DEFAULT 823076 3554 4509.87 
VARSEL=-1 937404 3390 3821 
VARSEL=1 667741 3792 2578 
VARSEL=3 658739 2794 5997 
CUTS=NO 1008788 1520 3683 
DPRIIND=1 551250 1903 1640 
DPRIIND=2 832434 2272 9428 
MIPEMPHASIS=1 516714 2262 2041 
BRDIR=-1 574202 1971 3438 
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Table B.20 – (cont’d) 
 
BRDIR=1 722727 2192 3973 
NODESEL=0 445829 1931 3002 
NODESEL=2 650908 2236 3665 
NODESEL=3 440400 1785 2954 
Priority on integers 881831 3258 3742 
Combined#1 414163 2008 1527 
Combined#2 467671 2001 493 
Combined#3 442659 1730 373 
Combined#4 437048 1711 368 
Combined#5 442659 1730 374 
Combined#6 437048 1711 368 
Combined#7 440223 1713 372 
 
Table B.21- 6th Experiment-100 Comparison of Strategies   
 

Number of Demand Points Optimal Value 
 

Optimal Point 
 

100 21.02 [0,30.97] 

Tested Strategy Number of Iterations Number of Branch 
and Bound  Nodes CPU Time (sec) 

DEFAULT 5235 111 4.27 
VARSEL=-1 6670 155 3 
VARSEL=1 9289 189 3 
VARSEL=3 6728 116 6 
CUTS=NO 4800 119 3 
DPRIIND=1 7148 154 4 
DPRIIND=2 9607 267 8 
MIPEMPHASIS=1 6466 155 2 
BRDIR=-1 9009 214 6 
BRDIR=1 9723 191 6 
NODESEL=0 6057 140 4 
NODESEL=2 5268 111 5 
NODESEL=3 5473 102 4 
Priority on integers 10305 247 5 
Combined#1 4330 99 1 
Combined#2 5445 133 1 
Combined#3 4062 105 1 
Combined#4 4062 105 1 
Combined#5 4062 105 1 
Combined#6 4062 105 1 
Combined#7 4046 105 1 
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Table B.22- 6th Experiment-500 Comparison of Strategies   
 

Number of Demand Points Optimal Value 
 

Optimal Point 
 

500 11.78 [57.1,0] 

Tested Strategy Number of Iterations Number of Branch 
and Bound  Nodes CPU Time (sec) 

DEFAULT 92882 606 124.59 
VARSEL=-1 80857 591 73 
VARSEL=1 74822 822 69 
VARSEL=3 47571 464 134 
CUTS=NO 57909 402 57 
DPRIIND=1 126069 774 86 
DPRIIND=2 114828 925 273 
MIPEMPHASIS=1 40299 404 33 
BRDIR=-1 118864 783 146 
BRDIR=1 96715 638 137 
NODESEL=0 59541 532 96 
NODESEL=2 60019 389 98 
NODESEL=3 47394 300 87 
Priority on integers 73071 407 96 
Combined#1 39956 378 24 
Combined#2 37378 444 12 
Combined#3 27562 261 9 
Combined#4 28548 261 8 
Combined#5 27562 261 9 
Combined#6 28548 261 8 
Combined#7 28813 265 9 
 
Table B.23- 6th Experiment-1000 Comparison of Strategies   
 

Number of Demand Points Optimal Value 
 

Optimal Point 
 

1000 7.15 [0,100] 

Tested Strategy Number of Iterations Number of Branch 
and Bound  Nodes CPU Time (sec) 

DEFAULT 198006 904 511.13 
VARSEL=-1 383336 1949 661 
VARSEL=1 189213 1395 325 
VARSEL=3 199861 1289 888 
CUTS=NO 167495 617 268 
DPRIIND=1 188841 935 270 
DPRIIND=2 245902 1794 1169 
MIPEMPHASIS=1 124568 908 187 
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Table B.23 – (cont’d) 
 
BRDIR=-1 247039 1439 608 
BRDIR=1 171864 885 470 
NODESEL=0 158978 1214 468 
NODESEL=2 189608 847 504 
NODESEL=3 136678 820 425 
Priority on integers 192034 955 492 
Combined#1 97426 855 120 
Combined#2 136146 745 53 
Combined#3 105503 811 50 
Combined#4 105140 707 49 
Combined#5 105503 811 49 
Combined#6 105140 857 49 
Combined#7 109488 724 48 
 
Table B.24- 6th Experiment-3000 Comparison of Strategies   
 

Number of Demand Points Optimal Value 
 

Optimal Point 
 

3000 4.69 [100,9.89] 

Tested Strategy Number of Iterations Number of Branch 
and Bound  Nodes CPU Time (sec) 

DEFAULT 719409 2382 3736.77 
VARSEL=-1 1024830 3582 4017 
VARSEL=1 673663 3383 2402 
VARSEL=3 550818 2403 5058 
CUTS=NO 669342 1056 2719 
DPRIIND=1 977745 2813 2010 
DPRIIND=2 523650 1822 8092 
MIPEMPHASIS=1 470048 2080 1919 
BRDIR=-1 648252 2354 3574 
BRDIR=1 955196 3587 4526 
NODESEL=0 493388 1941 3031 
NODESEL=2 627850 2144 3438 
NODESEL=3 438204 1806 2903 
Priority on integers 598510 2037 2805 
Combined#1 436391 1864 1559 
Combined#2 445329 2148 466 
Combined#3 363936 1488 314 
Combined#4 362953 1493 310 
Combined#5 363936 1488 314 
Combined#6 362953 1493 309 
Combined#7 407014 1541 332 
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Table B.25- 7th Experiment-100 Comparison of Strategies   
 

Number of Demand Points Optimal Value 
 

Optimal Point 
 

100 23.21 [100,75.13] 

Tested Strategy Number of Iterations Number of Branch 
and Bound  Nodes CPU Time (sec) 

DEFAULT 6484 109 4.85 
VARSEL=-1 6378 118 3 
VARSEL=1 5439 115 3 
VARSEL=3 7096 104 10 
CUTS=NO 6515 179 4 
DPRIIND=1 7523 153 5 
DPRIIND=2 6143 129 7 
MIPEMPHASIS=1 5401 99 3 
BRDIR=-1 9951 169 6 
BRDIR=1 10834 203 7 
NODESEL=0 4507 81 5 
NODESEL=2 6365 97 6 
NODESEL=3 4370 74 4 
Priority on integers 8823 175 5 
Combined#1 3962 113 1 
Combined#2 3835 84 1 
Combined#3 4024 87 1 
Combined#4 4024 87 1 
Combined#5 4024 87 1 
Combined#6 4024 87 1 
Combined#7 4267 55 1 
 
Table B.26- 7th Experiment-500 Comparison of Strategies   
 

Number of Demand Points Optimal Value 
 

Optimal Point 
 

500 13.75 [67.63,0] 

Tested Strategy Number of Iterations Number of Branch 
and Bound  Nodes CPU Time (sec) 

DEFAULT 101886 575 135.41 
VARSEL=-1 95533 497 94 
VARSEL=1 105252 810 107 
VARSEL=3 62693 461 185 
CUTS=NO 76463 488 68 
DPRIIND=1 105223 812 87 
DPRIIND=2 88458 568 217 
MIPEMPHASIS=1 44600 381 38 
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Table B.26 – (cont’d) 
 
BRDIR=-1 100436 531 134 
BRDIR=1 106199 639 144 
NODESEL=0 39258 301 84 
NODESEL=2 93925 545 131 
NODESEL=3 35257 267 81 
Priority on integers 116950 688 128 
Combined#1 35134 350 22 
Combined#2 33348 338 10 
Combined#3 27016 253 8 
Combined#4 27016 253 8 
Combined#5 27016 253 8 
Combined#6 27016 253 8 
Combined#7 55020 468 8 
 
Table B.27- 7th Experiment-1000 Comparison of Strategies   
 

Number of Demand Points Optimal Value 
 

Optimal Point 
 

1000 8.44 [74.95,75.6] 

Tested Strategy Number of Iterations Number of Branch 
and Bound  Nodes CPU Time (sec) 

DEFAULT 132708 676 370.99 
VARSEL=-1 440663 2910 710 
VARSEL=1 224139 1815 366 
VARSEL=3 150968 1000 656 
CUTS=NO 94429 465 210 
DPRIIND=1 178165 1002 227 
DPRIIND=2 224980 1366 1270 
MIPEMPHASIS=1 106028 686 165 
BRDIR=-1 225522 1210 518 
BRDIR=1 253571 1149 549 
NODESEL=0 118334 852 368 
NODESEL=2 149470 762 403 
NODESEL=3 126469 915 387 
Priority on integers 152650 680 320 
Combined#1 87663 635 108 
Combined#2 96556 623 43 
Combined#3 80484 532 36 
Combined#4 82185 541 36 
Combined#5 80484 532 35 
Combined#6 82185 541 36 
Combined#7 108232 809 36 
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Table B.28- 7th Experiment-3000 Comparison of Strategies   
 

Number of Demand Points Optimal Value 
 

Optimal Point 
 

3000 4.23 [89.11,0] 

Tested Strategy Number of Iterations Number of Branch 
and Bound  Nodes CPU Time (sec) 

DEFAULT 605421 1529 3654.78 
VARSEL=-1 618286 2744 2677 
VARSEL=1 638108 3093 2567 
VARSEL=3 606418 2700 5306 
CUTS=NO 554050 1315 2785 
DPRIIND=1 567144 1464 1775 
DPRIIND=2 622790 1242 8854 
MIPEMPHASIS=1 504043 2346 2093 
BRDIR=-1 1011844 1660 5057 
BRDIR=1 731756 1738 4255 
NODESEL=0 486496 1558 3177 
NODESEL=2 678487 1663 3852 
NODESEL=3 488243 1302 3191 
Priority on integers 699847 1628 3335 
Combined#1 482602 2334 1815 
Combined#2 455751 2168 521 
Combined#3 584239 2105 421 
Combined#4 586982 2303 438 
Combined#5 584239 2105 420 
Combined#6 561610 2200 421 
Combined#7 472860 1971 411 
 
Table B.29- 8th Experiment-100 Comparison of Strategies   
 

Number of Demand Points Optimal Value 
 

Optimal Point 
 

100 25.88 [2.55,100] 

Tested Strategy Number of Iterations Number of Branch 
and Bound  Nodes CPU Time (sec) 

DEFAULT 11012 192 5.36 
VARSEL=-1 7056 158 3 
VARSEL=1 8929 145 3 
VARSEL=3 4905 60 4 
CUTS=NO 3588 87 3 
DPRIIND=1 6575 78 4 
DPRIIND=2 4831 94 7 
MIPEMPHASIS=1 4755 83 2 
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Table B.29 – (cont’d) 
 
BRDIR=-1 6839 107 4 
BRDIR=1 4994 82 4 
NODESEL=0 4833 72 4 
NODESEL=2 8167 156 5 
NODESEL=3 5378 81 4 
Priority on integers 7486 119 4 
Combined#1 4215 96 1 
Combined#2 4013 119 1 
Combined#3 4780 99 1 
Combined#4 4786 99 1 
Combined#5 4780 99 1 
Combined#6 4786 99 1 
Combined#7 4221 68 1 
 
Table B.30- 8th Experiment-500 Comparison of Strategies   
 

Number of Demand Points Optimal Value 
 

Optimal Point 
 

500 8.97 [51.67,46.12] 

Tested Strategy Number of Iterations Number of Branch 
and Bound  Nodes CPU Time (sec) 

DEFAULT 106224 907 146.75 
VARSEL=-1 83469 479 82 
VARSEL=1 102299 1041 110 
VARSEL=3 69340 731 224 
CUTS=NO 48778 541 59 
DPRIIND=1 83083 685 78 
DPRIIND=2 118400 935 265 
MIPEMPHASIS=1 62899 750 57 
BRDIR=-1 135053 1003 168 
BRDIR=1 83361 535 123 
NODESEL=0 62541 486 106 
NODESEL=2 118189 893 158 
NODESEL=3 53766 425 99 
Priority on integers 129928 1221 150 
Combined#1 50352 664 33 
Combined#2 46415 571 14 
Combined#3 47838 504 14 
Combined#4 48085 504 14 
Combined#5 47838 504 14 
Combined#6 48085 504 14 
Combined#7 35144 352 15 
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Table B.31- 8th Experiment-1000 Comparison of Strategies   
 

Number of Demand Points Optimal Value 
 

Optimal Point 
 

1000 6.95 [0,100] 

Tested Strategy Number of Iterations Number of Branch 
and Bound  Nodes CPU Time (sec) 

DEFAULT 180127 1017 422.47 
VARSEL=-1 293246 1300 462 
VARSEL=1 167265 1460 285 
VARSEL=3 134983 1159 640 
CUTS=NO 171784 764 276 
DPRIIND=1 292798 1923 347 
DPRIIND=2 229711 1592 1303 
MIPEMPHASIS=1 133904 979 205 
BRDIR=-1 21524 1250 489 
BRDIR=1 196747 1260 465 
NODESEL=0 138327 1226 395 
NODESEL=2 175072 1060 433 
NODESEL=3 117659 849 359 
Priority on integers 257249 1538 462 
Combined#1 103505 823 125 
Combined#2 102558 807 52 
Combined#3 95118 741 44 
Combined#4 98198 759 45 
Combined#5 95118 741 44 
Combined#6 96617 748 44 
Combined#7 78611 543 48 
 
Table B.32- 8th Experiment-3000 Comparison of Strategies   
 

Number of Demand Points Optimal Value 
 

Optimal Point 
 

3000 4.47 [[0,97.51] 

Tested Strategy Number of Iterations Number of Branch 
and Bound  Nodes CPU Time (sec) 

DEFAULT 917776 2019 4645.86 
VARSEL=-1 694802 2530 2932 
VARSEL=1 804768 3654 2700 
VARSEL=3 734884 2965 6284 
CUTS=NO 690337 1203 2992 
DPRIIND=1 566876 1751 1624 
DPRIIND=2 525670 1878 7701 
MIPEMPHASIS=1 479804 2288 1929 
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Table B.32 – (cont’d) 
 
BRDIR=-1 1710285 2570 7361 
BRDIR=1 1242520 2506 5644 
NODESEL=0 427452 1445 2916 
NODESEL=2 978318 2241 4759 
NODESEL=3 468076 1417 3048 
Priority on integers 745948 2196 3453 
Combined#1 465160 2072 1597 
Combined#2 475099 1962 510 
Combined#3 437131 1766 378 
Combined#4 464522 1960 406 
Combined#5 437131 1766 378 
Combined#6 464522 1960 406 
Combined#7 545113 2083 425 
 
Table B.33- 9th Experiment-100 Comparison of Strategies   
 

Number of Demand Points Optimal Value 
 

Optimal Point 
 

100 28.35 [2.02,100] 

Tested Strategy Number of Iterations Number of Branch 
and Bound  Nodes CPU Time (sec) 

DEFAULT 6327 105 4.34 
VARSEL=-1 8049 119 3 
VARSEL=1 10841 192 4 
VARSEL=3 3811 45 4 
CUTS=NO 5354 153 3 
DPRIIND=1 5274 68 4 
DPRIIND=2 5209 81 9 
MIPEMPHASIS=1 3534 54 2 
BRDIR=-1 12918 212 7 
BRDIR=1 5474 84 5 
NODESEL=0 3834 67 4 
NODESEL=2 4582 79 4 
NODESEL=3 3443 49 4 
Priority on integers 5972 96 3 
Combined#1 2464 54 1 
Combined#2 3186 99 1 
Combined#3 4241 71 1 
Combined#4 3624 66 1 
Combined#5 4241 71 1 
Combined#6 3624 66 1 
Combined#7 4221 68 1 
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Table B.34- 9th Experiment-500 Comparison of Strategies   
 

Number of Demand Points Optimal Value 
 

Optimal Point 
 

500 11.15 [33.49,0] 

Tested Strategy Number of Iterations Number of Branch 
and Bound  Nodes CPU Time (sec) 

DEFAULT 121599 828 154.75 
VARSEL=-1 139324 654 122 
VARSEL=1 103357 923 102 
VARSEL=3 45432 338 105 
CUTS=NO 55780 534 65 
DPRIIND=1 85171 618 71 
DPRIIND=2 64797 534 206 
MIPEMPHASIS=1 48473 457 43 
BRDIR=-1 48463 268 89 
BRDIR=1 52140 258 96 
NODESEL=0 51015 379 95 
NODESEL=2 102027 723 139 
NODESEL=3 48482 335 95 
Priority on integers 95469 636 110 
Combined#1 48497 631 31 
Combined#2 35143 396 11 
Combined#3 34695 384 11 
Combined#4 35751 385 11 
Combined#5 34695 384 11 
Combined#6 35751 385 11 
Combined#7 35144 352 10 
 
Table B.35- 9th Experiment-1000 Comparison of Strategies   
 

Number of Demand Points Optimal Value 
 

Optimal Point 
 

1000 8.43 [0,80.43] 

Tested Strategy Number of Iterations Number of Branch 
and Bound  Nodes CPU Time (sec) 

DEFAULT 216442 1080 570.03 
VARSEL=-1 370083 1512 676 
VARSEL=1 246001 2103 470 
VARSEL=3 145089 1260 818 
CUTS=NO 90074 669 219 
DPRIIND=1 158696 729 222 
DPRIIND=2 234217 1264 1185 
MIPEMPHASIS=1 120099 832 187 
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Table B.35 – (cont’d) 
 
BRDIR=-1 231968 1167 601 
BRDIR=1 268889 1734 690 
NODESEL=0 133082 930 451 
NODESEL=2 170218 775 492 
NODESEL=3 130433 951 456 
Priority on integers 234552 1306 513 
Combined#1 81127 524 92 
Combined#2 100045 707 49 
Combined#3 74941 508 33 
Combined#4 79088 564 36 
Combined#5 74941 508 33 
Combined#6 79087 563 36 
Combined#7 78611 543 34 
 
Table B.36- 9th Experiment-3000 Comparison of Strategies   
 

Number of Demand Points Optimal Value 
 

Optimal Point 
 

3000 4.23 [90.4,5.07] 

Tested Strategy Number of Iterations Number of Branch 
and Bound  Nodes CPU Time (sec) 

DEFAULT 701070 2879 3852.61 
VARSEL=-1 996041 4903 4015 
VARSEL=1 822464 3730 2732 
VARSEL=3 794549 2592 5834 
CUTS=NO 758531 1422 3335 
DPRIIND=1 818770 3283 1875 
DPRIIND=2 589924 2738 8320 
MIPEMPHASIS=1 509982 2454 2052 
BRDIR=-1 733181 2921 3996 
BRDIR=1 649511 2714 3604 
NODESEL=0 494454 2201 2969 
NODESEL=2 701712 2894 3838 
NODESEL=3 495425 2230 3040 
Priority on integers 693560 2554 3207 
Combined#1 497563 2299 1723 
Combined#2 494267 2429 520 
Combined#3 466490 1855 382 
Combined#4 477556 1913 389 
Combined#5 466490 1855 383 
Combined#6 477556 1913 390 
Combined#7 545113 2083 430 
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Table B.37- 10th Experiment-100 Comparison of Strategies   
 

Number of Demand Points Optimal Value 
 

Optimal Point 
 

100 22.74 [80.77,100] 

Tested Strategy Number of Iterations Number of Branch 
and Bound  Nodes CPU Time (sec) 

DEFAULT 7525 169 5.05 
VARSEL=-1 8719 214 3 
VARSEL=1 7051 155 3 
VARSEL=3 5267 75 6 
CUTS=NO 5240 150 3 
DPRIIND=1 4863 77 4 
DPRIIND=2 6090 180 8 
MIPEMPHASIS=1 6528 155 3 
BRDIR=-1 8365 158 5 
BRDIR=1 7250 125 5 
NODESEL=0 5453 134 5 
NODESEL=2 5972 128 4 
NODESEL=3 5838 111 5 
Priority on integers 7173 133 4 
Combined#1 3989 100 1 
Combined#2 4999 145 1 
Combined#3 4627 112 1 
Combined#4 4627 112 1 
Combined#5 4627 112 1 
Combined#6 4627 112 1 
Combined#7 6509 143 1 
 
Table B.38- 10th Experiment-500 Comparison of Strategies   
 

Number of Demand Points Optimal Value 
 

Optimal Point 
 

500 9.07 [76.91,39.33] 

Tested Strategy Number of Iterations Number of Branch 
and Bound  Nodes CPU Time (sec) 

DEFAULT 121672 733 137.45 
VARSEL=-1 113729 779 103 
VARSEL=1 104679 1186 102 
VARSEL=3 58398 690 175 
CUTS=NO 86371 646 76 
DPRIIND=1 101045 1014 93 
DPRIIND=2 117158 972 281 
MIPEMPHASIS=1 54867 578 49 
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Table B.38 – (cont’d) 
 
BRDIR=-1 88480 359 114 
BRDIR=1 128150 630 148 
NODESEL=0 45330 311 82 
NODESEL=2 134160 871 153 
NODESEL=3 48048 328 84 
Priority on integers 67419 442 79 
Combined#1 45372 581 30 
Combined#2 47844 599 15 
Combined#3 44663 513 14 
Combined#4 43709 506 14 
Combined#5 44663 513 14 
Combined#6 43709 506 14 
Combined#7 45715 493 14 
 
Table B.39- 10th Experiment-1000 Comparison of Strategies   
 

Number of Demand Points Optimal Value 
 

Optimal Point 
 

1000 8 [63.7,0] 

Tested Strategy Number of Iterations Number of Branch 
and Bound  Nodes CPU Time (sec) 

DEFAULT 226371 1509 513.73 
VARSEL=-1 350918 1597 561 
VARSEL=1 125571 1039 215 
VARSEL=3 142876 1140 684 
CUTS=NO 189996 717 278 
DPRIIND=1 164757 1111 260 
DPRIIND=2 208834 1439 1057 
MIPEMPHASIS=1 111025 641 165 
BRDIR=-1 200092 1248 482 
BRDIR=1 122187 815 368 
NODESEL=0 124897 1086 382 
NODESEL=2 205330 1382 498 
NODESEL=3 115673 801 360 
Priority on integers 190851 1290 389 
Combined#1 98248 821 121 
Combined#2 88801 574 41 
Combined#3 75628 519 35 
Combined#4 74030 523 34 
Combined#5 75628 519 35 
Combined#6 74030 523 34 
Combined#7 79931 578 38 
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Table B.40- 10th Experiment-3000 Comparison of Strategies   
 

Number of Demand Points Optimal Value 
 

Optimal Point 
 

3000 4.92 [100,44.81] 

Tested Strategy Number of Iterations Number of Branch 
and Bound  Nodes CPU Time (sec) 

DEFAULT 821763 2028 4114.89 
VARSEL=-1 807996 2575 3162 
VARSEL=1 907164 4438 3220 
VARSEL=3 502216 2106 4289 
CUTS=NO 735069 1574 3294 
DPRIIND=1 793511 2810 1917 
DPRIIND=2 586691 1220 9339 
MIPEMPHASIS=1 419439 1914 1675 
BRDIR=-1 676864 1730 3518 
BRDIR=1 570755 1904 3277 
NODESEL=0 446224 1826 2992 
NODESEL=2 642487 1531 3483 
NODESEL=3 470131 1424 2954 
Priority on integers 947566 2299 3934 
Combined#1 416346 1785 1501 
Combined#2 359333 139 366 
Combined#3 525904 2065 404 
Combined#4 389380 1586 319 
Combined#5 525904 2065 403 
Combined#6 389380 1586 318 
Combined#7 572603 2299 432 
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APPENDIX C 
 

EFFECT OF BOUNDING 
  
Table C.1- 1st Experiment - Effect of Bounds  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table C.2- 2nd Experiment - Effect of Bounds 
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25 701 509 415 27 17 16 0.56 0.42 0.36 
50 2118 1499 1299 81 59 27 0.64 0.61 0.39 

100 4457 3852 2671 108 89 79 2.12 0.91 0.77 
500 42020 35853 31925 456 440 427 13.52 11.89 10.27 

1000 64133 55271 51195 503 455 451 30.38 24.66 23.69 
2000 181165 177270 166841 1033 1072 1245 135.45 123.75 118.27 
3000 308765 288805 207805 1377 1368 1169 301.75 272.95 194.09 
4000 600499 544307 307800 1854 1683 1370 585.08 514.92 323.88 
5000 742371 699032 546353 1907 1893 2165 761.67 664.33 633.67 
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25 795 680 633 31 24 28 0.48 0.42 0.41 
50 1623 1471 1077 45 41 34 0.61 0.6 0.55 

100 4175 3487 2919 73 67 57 1.00 0.88 0.73 
500 39600 37691 39842 452 432 458 15.75 11.64 11.05 

1000 100265 90709 90660 889 846 941 43.00 43.00 40.00 
2000 232645 226185 184100 1149 1120 1239 160.09 146.44 143.22 
3000 281772 304493 206652 1236 1419 1172 245.01 245.27 182.49 
4000 546301 523110 528800 1991 1957 2718 517.53 479.25 602.95 
5000 828790 807333 589136 2211 2197 2263 962.12 880.55 720.56 
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Table C.3- 3rd Experiment - Effect of Bounds 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Table C.4- 4th Experiment - Effect of Bounds 
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25 568 448 416 22 18 19 0.25 0.23 0.22 
50 2193 1772 939 61 58 29 0.39 0.38 0.3 

100 3719 3141 3475 95 84 45 0.94 0.86 0.75 
500 35776 30656 25158 408 379 348 11.27 10.23 8.42 

1000 93875 79835 59135 701 651 540 41.94 36.69 29.62 
2000 199889 188468 155102 1026 1037 1135 147.5 133.05 114.44 
3000 315041 283190 228168 1372 1355 1172 257.61 233.88 202.5 
4000 434621 395946 286060 1418 1401 1351 414.27 369.03 296.97 
5000 467239 428475 342208 1205 1189 1183 577.19 510.61 416.34 

 

 

Number of Branch and 

Bound Iterations 

Number of Branch 

and Bound Nodes 

CPU Time 

(sec) 

N
um

be
r 

of
 P

oi
nt

s 

 C
om

bi
na

tio
n 

3 

W
ith

 L
ow

er
 B

ou
nd

 

W
ith

 L
ow

er
 a

nd
 

U
pp

er
 B

ou
nd

 

 C
om

bi
na

tio
n 

3 

W
ith

 L
ow

er
 B

ou
nd

 

W
ith

 L
ow

er
 a

nd
 

U
pp

er
 B

ou
nd

 

C
om

bi
na

tio
n 

3 

W
ith

 L
ow

er
 B

ou
nd

 

W
ith

 L
ow

er
 a

nd
 

U
pp

er
 B

ou
nd

 

25 606 574 440 22 22 13 0.89 0.66 0.64 
50 1898 1540 1011 57 48 27 0.81 0.75 0.69 

100 5267 4429 5138 142 132 95 1.36 1.28 1.17 
500 34619 26673 24948 374 323 227 10.8 8.75 7.34 

1000 92912 82451 68158 657 644 723 42.95 39.03 34.23 
2000 220889 164093 165673 1243 1002 1246 153.00 116.00 125.00 
3000 350019 313307 248570 1440 1386 1241 335.8 286.84 239.61 
4000 564696 554619 507112 2039 2033 2430 608.42 585.39 526.27 
5000 671027 649963 594302 2200 2194 2196 920.02 836.51 693.2 
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Table C.5- 5th Experiment - Effect of Bounds 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Table C.6- 6th Experiment - Effect of Bounds 
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25 708 556 397 29 22 20 0.66 0.59 0.47 
50 1494 806 811 60 42 16 0.75 0.59 0.52 

100 5509 3800 4184 127 97 85 2.12 1.00 1.89 
500 38940 36866 27554 450 420 355 11.89 11.02 8.75 

1000 96878 92920 79429 850 851 788 48.86 46.97 42.73 
2000 266227 248661 216227 1391 1374 1603 168.47 160.55 159.17 
3000 442659 425637 354808 1730 1717 1854 366 351.08 296.7 
4000 723870 696064 550021 2270 2258 2495 656.39 618.56 538.58 
5000 559871 559087 436930 1737 1733 1665 748.67 698.38 506.47 
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25 906 660 733 48 36 23 0.45 0.44 0.41 
50 2122 1695 1464 67 51 38 0.56 0.47 0.38 

100 4062 3519 3263 105 97 73 0.83 0.83 0.83 
500 27562 25561 29051 261 255 299 10.05 8.31 7.83 

1000 105503 99699 88218 811 797 884 49.16 43.00 42.00 
2000 132102 111311 110879 661 641 697 89.27 74.00 80.00 
3000 363936 345063 291542 1488 1486 1565 336.72 289.95 253.27 
4000 471132 438627 310078 1426 1415 1377 500 435.48 337.56 
5000 899503 881742 695743 2423 2413 2552 908.33 848 914.81 
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Table C.7- 7th Experiment - Effect of Bounds 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Table C.8- 8th Experiment - Effect of Bounds 
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25 851 636 456 42 28 14 0.25 0.23 0.23 
50 1687 1228 1086 40 30 26 0.33 0.31 0.3 

100 4024 3515 3279 87 81 60 0.88 0.88 0.73 
500 27016 23139 16487 253 239 219 8.55 7.01 6.55 

1000 80484 70916 65956 532 515 617 34.77 31.19 31.18 
2000 289741 266585 198794 1384 1351 1418 177.27 160.17 153.17 
3000 584239 562626 409514 2105 2083 2228 420.72 393.97 347.06 
4000 544223 509273 413621 1971 1946 1867 536.47 494.89 474.8 
5000 811979 764144 478705 1711 1698 1808 720.02 662.25 548.36 
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25 1106 952 901 73 58 62 0.38 0.27 0.25 
50 2043 1543 1241 82 66 31 0.59 0.48 0.33 

100 4780 3091 2456 99 77 48 0.84 0.7 0.66 
500 47838 42192 38686 504 486 548 13.67 12.48 12.19 

1000 95118 89996 68842 741 727 707 42.78 41.86 35.59 
2000 180478 163003 128342 998 969 961 130.11 114.95 98.47 
3000 437131 423276 358008 1766 1744 1900 378.7 348.16 314.83 
4000 607375 590206 491804 2165 2119 2232 585.06 548.2 513.22 
5000 839269 802166 606279 2450 2421 2250 947.89 855.67 662.99 
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Table C.9- 9th Experiment - Effect of Bounds 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Table C.10- 10th Experiment - Effect of Bounds 
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25 900 544 495 36 24 22 0.28 0.28 0.27 
50 1382 1410 758 36 33 19 0.33 0.33 0.28 

100 4241 2987 1381 71 49 26 0.73 0.58 0.41 
500 34695 29752 27216 384 363 322 10.38 9.41 8.3 

1000 74941 65724 61637 508 492 616 33.23 28.56 31.17 
2000 262859 242072 226964 1473 1451 1676 186.62 167.09 180.89 
3000 466490 447385 341764 1855 1839 1917 388.3 356.8 306.06 
4000 556511 509220 405963 1854 1833 1689 495.22 450.36 417.27 
5000 903904 895995 921236 2920 2906 3605 1018.9 983.91 957.03 
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25 806 650 624 50 40 22 0.52 0.44 0.41 
50 1881 1619 1897 83 73 56 0.61 0.56 0.52 

100 4627 3941 3117 112 92 50 1.02 0.89 0.72 
500 44663 40873 34542 513 495 492 13.95 13.17 11.44 

1000 75628 71965 61092 519 523 585 33.67 31.14 28.59 
2000 205713 197814 178487 1063 1045 1099 155.41 148.17 121.84 
3000 525904 352670 313357 2065 1497 1465 395.06 275.59 267.14 
4000 471569 433475 591475 1683 1673 2466 574.75 525.55 559.26 
5000 1057582 1023614 790459 2897 2887 2986 1076.3 1016.4 833.28 
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APPENDIX-D 
 

INTERACTIVE BIG SQUARE SMALL SQUARE (BSSS) 

ALGORITHM  
 

LCES  : List of Candidate Efficient Squares 

LIFV  : List of Incumbent Function Values  

LFDP  : List of Filtered Demand Points 

LCLP  : List of Candidate Location Points 

LCNV  : List of Candidate Nondominated Vectors 

S0  : Initial Square 

ai  : Side Length of Square Si 

L(xi)  : Maximin Function Value of a Point xi  

W(xi)  : Minsum Function Value of a Point xi 

UB(Si)  : Upper Bound on Optimal Maximin Function Value  

  in Square Si 

L*(Si)  : Optimal Maximin Function Value in Si 

W*(Si)  : Optimal Minsum Function Value in Si 

R(Si)  : Ideal Objective Vector of Square Si 

Q(Si)  : Nadir Objective Vector of Square Si 

�  : Stopping Side Length in Phase 1 

ββββ  : Stopping Side Length in Phase 2 

r  : Highest Square Index in LCES 

N  : Set of Demand Points 

bj  : jth Demand Point 

d(x,y)  : Rectilinear Distance Between x and y 

d(bj,Si)  : Smallest Rectilinear Distance Between bj and Square Si 
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1. FINDING CANDIDATE EFFICIENT SQUARES 

�

Phase 1: Pruning with UB(Si) and W*(Si) 

 

//Step 1.0 Initialize 

 

��Find a square approximation of the feasible region S0 

��Put S0 into the LCES 

��Ask the DM to specify the stopping side length, � 

��Let i = 0 

 

//Step1.1 Branching and Pruning 

 

��Delete Si from the LCES 

��Pick T feasible points from Si. Let these points be {x1, x2,..,xT } 

��Evaluate L(xi) and W(xi) for each of these T points 

 

{ }1 1 2 21,...,

1 1 2 2
1

( ) min (

( ) ( )  for i=1,...,T

i j i j

j N

N
i j i j

j

L x b x b

W x b x b

=

=

= − + −

� �
= − + −� �
� �
�

i

i

x

x
 

��Add these points to the LIFV after a dominance check. 

 

Add (L(xi), W(xi)) to the LIFV if and only if there does not exist another 

objective vector (L(xj), W(xj)) ∈ (LIFV) ∋ L(xj) ≥ L(xi), W(xj) ≤W(xi) and 

(L(xi), W(xi)) ≠ (L(xj), W(xj)) 
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If any element of the LIFV (L(xj), W(xj)) is dominated by the newly 

added objective vector (L(xi), W(xi)) ∋ L(xi) ≥ L(xj), W(xi) ≤W(xj) and 

(L(xi), W(xi)) ≠ (L(xj), W(xj)) delete (L(xj), W(xj)) from LIFV. 
 

��Compare the LCES with the recently generated incumbent value 

vectors 

 

*

     
{

         

   ( ) ( )       

   ( ) ( )  

      
}

i

i

i

FOR each square in the LCES

FOR each recently generated incumbent value vector

IF UB S L LIFV

AND W S W LIFV

THEN delete S from LCES

≤ ∈
≥ ∈

j

j j

j j

x

x x

x x

 

 

��Divide Si into 4 equal subsquares  

��Number the subsquares from Sr+1  to Sr+4  

��For each recently generated square, solve UB(Maximin-l1) with all 

existing demand points and (Maximin-l1) with the demand points 

located inside the square. Choose the smallest of the solutions as the 

UB(Si) 

��In order to find the optimal minsum objective value for each square, 

solve (Minsum-l1) with all existing demand points 

 

 

 

 

��Compare the recently generated squares with the LIFV 
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i

*

     S
{

 ( ) ( )  ,   

 ( ) ( ),    

   int  
} 

i

i

i

For each recently generated square

IF UB S L LIFV

OR W S W LIFV

THEN add S o LCES

> ∀ ∈

< ∀ ∈

j j

j j

x x

x x  

��Check the maximum side length  

If 1,...,max { ( )} ,    i i
i r a S S LCES= < ∀ ∈α   

Then STOP Phase 1. Go to Phase 2.  

Otherwise go to Step 1.2 

 

//Step1.2 Selecting Where to Branch Next  

 

��Select the square with  

1,...,max { ( )}i
i r UB S= OR *

1,...,min { ( )},  i i
i r W S S LCES= ∀ ∈  

��Let i be the index of the selected square, return to Step 1.1. 

�

Phase 2: Pruning with L*(Si) and W*(Si) 

 

Finding Optimal Maximin Objective with Filtered Demand Points 

 

//Step 2.0 Initialize  

 
��For all squares in LCES 

Extend the sides of Si into straight lines to cut the plane into 9 regions: 

N(orth), S(outh), W(est), E(ast), NW, NE, SW, SE, Si 
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��Check the demand points bj in all 9 regions  

 ( , ) ( )         j i i iIF d b S UB S for S OR S THEN Put to LFDP≤ ∉ ∈j j jb b b    

//Step 2.1 Pruning with Optimal Values 

 
��For each square Si solve (Maximin-l1) with the demand points in the 

LFDP. 

��Compare the ideal objective vector of squares in the LCES with the 

LIFV 
*

*

 ( ) ( )

  ( ) ( ),   

    

i

i

i

IF L S L

AND IF W S W LIFV

THEN delete S from LCES

≤
≥ ∀ ∈

j

j j

x

x x  

��Ask the DM if she/he wants to divide the region further 

If so, go to Step 2.2. 

Otherwise go to Step 2.3. 

 

//Step 2.2 Further Branching 

 

��Ask the DM to specify the stopping side length, β 

 

For each square Si in the LCES 

WHILE ( ( ) ,   i ia S S LCES> ∀ ∈β ) DO 

 

��Delete Si from the LCES  

��Divide Si into 4 equal subsquares 

��Number the subsquares from Sr+1  to Sr+4 

��For each recently generated square, solve (Maximin-l1) and (Minsum-

l1) with all existing demand points 
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��Compare Si with LIFV 
*

*

 ( ) ( )

 ( ) ( ),   

    

i

i

i

IF L S L

OR W S W LIFV

ADD S to LECS

>
< ∀ ∈

j

j j

x

x x  

//Step 2.3 Stopping 

 

��Combine the remaining squares in regions.  

 

2. SEARCH IN THE CANDIDATE EFFICIENT REGIONS 

 
Phase 3: Interactive Search 

 

��Ask the DM which procedure she/he wants to use: Exact or 

approximate 

 
A. Exact Procedure 

 

��Present each region with its ideal and nadir objective vectors: R(S), 

Q(S) 

��Ask the DM to choose a region for starting the search.  

��Ask the DM to specify her/his reference point 0 0
1 2( , )G G=0G  

��Ask the DM which objective is important, and how much. Set the 

initial vector of weights accordingly w0= (w1
0, w2

0) 

��Solve the (ASP) for the region. Let the solution be C. If the solution is 

feasible check whether it is dominated by the LIFV and LCLP. 

��If C is not dominated by the LIFV and LCLP then project C to the 

other regions by solving (ASP) with w0.    

��Check the resulting solutions. If none of them dominates C then it is 

proved to be nondominated and add it to the LCLP. 
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��Compare the solutions with LIFV and LCLP. Put the approximately 

efficient ones to the LCNV. 

��If C is dominated by one of the solutions then add this solution to 

LCNV. 

��If C is dominated either with the LIFV, LCLP or the resulting 

solutions then delete it from further consideration. 

��Ask the if she/he wants to continue searching the region further. If so, 

she/he can continue the search from one of the solutions in LCNV.  

Else, he can either select other regions or stop. 

��Present the LCLP to the DM. If the DM is not satisfied, ask him to 

determine a new reference point. Otherwise, ask the DM if she/he can 

select the most preferred solution among the solutions, if so, stop 

Phase 3, if not go to Step 3.6. 

 

B. Approximate Procedure  

 

//Step 3.0 Starting The Search. 

 

��Present each region with its ideal and nadir objective vectors: R(S), 

Q(S) 

��Ask the DM to choose a region 

 

//Step 3.1 Finding a Starting Nondominated Continuous Solution  

 
��Ask the DM to specify her/his reference point 0 0

1 2( , )G G=0G  

��Ask the DM which objective is important, and how much. Set the 

initial vector of weights accordingly w0= (w1
0, w2

0) 
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��Solve the LP relaxation of the (ASP) to find a starting continuous 

solution closest to the reference point. Let the solution be y0=( y1
0, 

y2
0) 

��If the DM likes y0=( y1
0, y2

0), then set K=(K1, K2) and go to Step 3.3. 

Otherwise, go to Step 3.2. 

 

//Step 3.2 Generating Alternative Nondominated Continuous Solutions 

 

Approach 1: Better Perception of the Efficient Frontier with 

Perturbed Reference Points 

 

��Find the total percent deviation of the reference point from the starting 

continuous solution (d). 

 

1 2

00 0
1 11 1

0 0 0
2 2 2 2

/

/

d d d

d yG G

d G y G

= +

= −

= −

 

��Ask the DM to specify a number of perturbed points in each objective. 

Let this number be P.  

��Find 2P perturbed reference points as shown below 

0 0 0
1 1 2

0 0 0
1 2 2

( / )     1,...,

  ( /( )   ( 1),..., (2 )

d i and for i PG G G

and d i P for i P PG G G

� 	= − = =
 �

� 	= = + − = +
 �

i i
1 2

i i
1 2

G G

G G
 

��Solve the LP relaxation of the (ASP) with perturbed reference points 

G1..G2P to find additional continuous nondominated solutions. Let the 

solutions be y1..y2P  

��Present the solutions to the DM. Ask her/him if she/he wants to 

change her/his reference point. If so, return to Step 3.1.Otherwise, ask 
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him to select one of the continuous solutions y1..y2P.Let the most 

promising solution be K=(K1, K2). Go to Step 3.3 

 

Approach 2: Reference Direction Approach 

 

��Ask the DM to specify a reference direction, ∆∆∆∆d = (∆d1, ∆d2) 

��Ask the DM the number of solutions that she/he wants to see. Let this 

number be P 

��Solve the (ASPLP) for p = 1,...,P. Let the solutions be y1..yP 

��Present the solutions to the DM. Ask her/him if she/he wants to 

change her/his reference point. If so, return to Step 3.1. Otherwise, 

ask him to select one of the continuous solutions y1..yP. Let the most 

promising solution be K=(K1, K2). Go to Step 3.3 

 

//Step 3.3 Finding Integer Nondominated Solution  

 

��Solve the (ASP) to find the closest integer solution to the most 

preferred continuous solution selected in the previous step K=(K1, 

K2). Let the solution be C=(C1, C2) 

��Check C. If it is infeasible or dominated by one of the elements of the 

LIFV or the LCLP, then delete C from further consideration. Ask the 

DM if she/he wants to search the region in concern further. If so, set 

1 2( , )C C=0G  return to Step 3.1. Otherwise return to Step 3.0. If C is 

not infeasible or dominated, add it to the LCLP. Go to Step 3.4. 

        

//Step 3.4 Stopping the Search 

 

��Present the LCLP to the DM. Ask her/him if she/he wants to stop 

searching. If so, go to Step 3.5. Otherwise go to Step 3.0. 
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//Step 3.5 Selection among the Discrete Set of Alternatives  

 

��Present the LCLP to the DM. If the DM can select one of the 

alternatives as the most promising then STOP the algorithm. 

Otherwise Go to Step 3.6. 

  

//Step3.6 Outranking of the Alternatives with Promethee II  

 
 

��Ask the DM to set indifference (qi), preference (pi) thresholds for each 

objective.  

��Rank the alternatives by using Promethee II. 


