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Abstract

COUNTING AND CONSTRUCTING BOOLEAN

FUNCTIONS WITH PARTICULAR DIFFERENCE

DISTRIBUTION VECTORS

Yıldırım, Elif

M.Sc., Department of Cryptography

Supervisor: Assoc. Prof. Dr. Ali DOĞANAKSOY

June 2004, 40 pages

In this thesis we deal with the Boolean functions with particular difference

distribution vectors. Besides the main properties, we especially focus on strict

avalanche criterion for cryptographic aspects. Not only we deal with known

methods we also demonstrate some new methods for counting and constructing

such functions.

Furthermore, performing some statistical tests, we observed a number of

interesting properties.

Keywords: SAC, Difference Distribution Vector, Boolean Functions, Counting

SAC Satisfying Functions, Cryptography.
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Öz

BELİRLİ FARK DAĞILIM VEKTÖRLERİNE SAHİP

BOOLE FONKSİYONLARININ SAYILMASI VE

TEŞKİLİ

Yıldırım, Elif

Yüksek Lisans, Kriptografi Bölümü

Tez Yöneticisi: Doç. Dr. Ali DOĞANAKSOY

Haziran 2004, 40 sayfa

Bu tezde belirli fark dağılım vektörlerine sahip Boole fonksiyonları ile ilgile-

nilmiştir. Temel özelliklerinin yanında kriptografik açıdan keskin çığ etkisini

sağlayan fonksiyonlar dikkate alınmıştır. Daha önceden bilinen metodların

yanısıra yeni sayma ve teşkil etme yöntemlerine de yer verilmitir.

İstatistiksel metodlar kullanılarak ilginç özellikler de elde edilmiştir.

Anahtar Kelimeler: SAC, Boole fonksiyonları, Keskin Çığ Etkisi, SAC’ı Sağla-

yan Fonksiyonların Sayılması, Kriptografi.
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Chapter 1

Introduction

Boolean functions are basic elements of most building blocks used in crypto-

graphic applications. A Boolean function maps a number of input bits into a

single bit. A cryptographic function must have high algebraic degree, as sys-

tems using Boolean functions can be attacked if the function have low degree.

Also, to avoid the statistical dependence between input and output, the func-

tion should be balanced. That is, the number of 1’s should be equal to the

number of 0’s. Moreover, the distance to affine functions, so called nonlinearity

should be high, otherwise an affine aproximation of the function can be used to

build attacks on the system.

For the cryptographic reasons above, it is natural to expect each input bit

has some effect on the output bit. A function with this property is said to be

complete. And the concept of completeness was first introduced by Kam and

Davida [3] in 1979. The concept of avalanche effect which means an average

of one half of the output bits should be changed whenever a singe input bit is

complemented, was first introduced by Feistel [1] in 1973. Webster and Tavares

[9], in order to combine the concepts of avalanche and completeness, introduced

the concept of strict avalanche criterion. A cryptographic function is said to sat-

isfy the strict avalanche criterion whenever a single input bit is complemented,

each output bit changes with a probability one half. Afterwards, the notion of

the strict avalanche criterion was extended in 1988 by Forre [2]. She defined

the strict avalanche criterion (SAC) of order m. A function satisfies the SAC
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of order m if and only if any subfunctions obtained from the original function

by keeping m of its input bits constant satisfies SAC. The order of the origi-

nal strict avalanche criterion is 0. In 1991, Preneel et. al. [5] introduced the

concept of propagation criterion of degree k to generalize the strict avalanche

criterion. A function is said to satisfy the propagation criterion of degree k if

complementing at most k bits of the input, the output changes with probability

exactly one half. By definition, propagation criterion of degree 1 is the strict

avalanche criterion.

The outline of the thesis is as follows:

In Chapter 2, we establish some notations which are used throughout the

thesis and define the desired properties of Boolean functions.

In Chapter 3, we recall the difference distribution vector. Some basic prop-

erties of functions having certain types of difference distribution vectors, and

the number of such functions.

In Chapter 4, we give constructions of Boolean functions satisfying crypto-

graphically good properties such as the strict avalanche criterion and balanced-

ness.

In Chapter 5, we list some statistical results and observations on the distri-

bution of difference distribution vectors.

In last chapter, we give the conclusion of our study and future work sugges-

tions.
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Chapter 2

Preliminaries

In this chapter we state the definitions and give the notations about the concepts

of cryptography that we will deal with. For further definitions and notations,

reader may refer to [6].

Let Vn be the vector space of all n-tuples of elements from GF (2). By setting

k =
∑n

i=1 ai2
n−i, an element αk = (a1, a2, . . . , an) ∈ Vn corresponds the integer

k. So there is a one-to-one correspondence between vectors of Vn and integers

{0, 1, . . . , 2n− 1}. Via this representation, Vn assumes a natural ordering called

the lexicographic ordering. We denote the element of Vn corresponding to the

integer k by αk so that, Vn = {α0, . . . , α2n−1} and α0 ≤ α1 ≤ · · · ≤ α2n−1.

For α, β ∈ Vn , the sum (α ⊕ β) ∈ Vn is obtained by adding corresponding

components of α and β modulo 2.

In Vn, we denote the vectors having only one nonzero entry in the i-th

position by ei, and these vectors constitute a basis for Vn, called standard basis.

The standard inner product on Vn is defined by < α, β >=
∑n

i=1 aibi ∈
GF (2) for α = (a1, a2, . . . , an) and β = (b1, b2, . . . , bn).

3



2.1 Boolean Functions

A Boolean function is a GF (2) valued map defined on Vn and the set of all

Boolean functions on Vn is denoted by Fn. In the rest of this thesis, unless

otherwise stated, “function” will stand for “Boolean function”.

Any Boolean function f ∈ Fn has a unique representation in each of the

following forms:

• The ordered tuple

Tf = (f(α0), f(α1), . . . , f(α2n−1))

is called the truth table of f .

• The unique polynomial representation

f(x) = a0 ⊕ a1x1 ⊕ · · · ⊕ anxn ⊕ a12x1x2 ⊕ · · · ⊕ a12...nx1x2 · · ·xn

is called the algebraic normal form . In the algebraic normal form of a

function, each product of variables appearing as a part of the sum is called

a term. Number of variables in each term is called the degree of that term.

The degree of a function is the degree of the term with largest degree in its

algebraic normal form, and is denoted by deg(f). The degree of a variable

xi is the degree of highest degree term in which the variable xi appears,

denoted by deg(f, xi).

The Hamming weight of a function is defined as the number of nonzero

entries in the truth table of f and is denoted by w(f).

1n, 0n ∈ Fn are constant functions which map all inputs to 1, 0 ∈ GF (2),

respectively. Truth table of the constant function 1n is (1, 1, . . . , 1) and that of

0n is (0, 0, . . . , 0). Note that w(1n) = 2n and w(0n) = 0.

For a function f ∈ Fn, the complement function f̄ ∈ Fn is defined as f̄(x) =

f(x)⊕ 1 for all x ∈ Vn. From this definition, it follows that w(f̄) = 2n − w(f).
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Support of a function f ∈ Fn is defined to be the set {α ∈ Vn|f(α) = 1} and

is denoted by Supp(f). It is clear that |Supp(f)| = w(f) and using the above

definition, Supp(f) ∩ Supp(f̄) = ∅.

A function is called balanced if the number of 1’s is equal to the number

of 0’s in its truth table. It follows that, f ∈ Fn is balanced if and only if

w(f) = 2n−1. Clearly, the number of balanced functions is
(

2n

2n−1

)
.

A function f ∈ Fn is called linear if f(x⊕y) = f(x)⊕f(y) for all x, y ∈ Vn.

Any linear function is of the form f(x) = a1x1 ⊕ a2x2 ⊕ · · · ⊕ anxn. The set

of linear functions is denoted by Ln. A function f ∈ Fn is called affine if

f(x ⊕ y) = f(x) ⊕ f(y) ⊕ a for all x, y ∈ Vn where a ∈ {0, 1}. Any affine

function is of the form f(x) = a0 ⊕ a1x1 ⊕ a2x2 ⊕ · · · ⊕ anxn. The set of affine

functions is denoted by An. It is clear from the above definitions that, Ln ⊂ An

and that 2|Ln| = |An| = 2n+1.

Theorem 2.1.1. [6] Any non-constant affine function is balanced .

2.2 Binary operations

For f, g ∈ Fn , the sum f ⊕ g and the product fg are defined by

(f ⊕ g)(x) = f(x)⊕ g(x)

and

(fg)(x) = f(x)g(x)

for all x ∈ Vn, respectively.

Let g1, g2, . . . , g2k ∈ Fm, then by f = (g1 || g2 || . . . || g2k) ∈ Fm+k we

denote the function whose truth table is the concatenation of the truth tables

of g1, g2, . . . , g2k in the given order. In other words, f is a function whose truth

table is Tf = (Tg1||Tg2|| . . . ||Tg
2k

), where || stands for the concatenation of 2m-

tuples. We write f(x) = f(y, z) = (g1(y) || g2(y) || . . . || g2k(y)) ∈ Fm+k, where

x = (y, z), y = (x1, . . . , xm), and z = (xm+1, . . . , xm+k).
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Given f ∈ Fk and g ∈ Fm the Kronecker product f ⊗ g of f and g is defined

by setting

f ⊗ g = (f(α0)g || f(α1)g || · · · || f(α2k−1)g).

From the definition, it follows that f ⊗ g and g⊗ f are in Fk+m but, in general,

f ⊗ g 6= g ⊗ f . By (f ⊗ g)(x) ∈ Fk+m, we mean (f ⊗ g)(y, z) = f(y)g(z) where

x = (x1, . . . , xk+m), y = (x1, . . . , xk) and z = (xk+1, . . . , xk+m)

Theorem 2.2.1. For f ∈ Fk and g ∈ Fm, the algebraic normal form of

(f ⊗ g)(x) = (f ⊗ g)(y, z) is the product of the algebraic normal forms of f(y)

and g(z) where x = (x1, . . . , xk+m), y = (x1, . . . , xk) and z = (xk+1, . . . , xk+m).

Proof: From the definition,

f ⊗ g ∈ Fk+m is (f ⊗ g)(x) = (f ⊗ g)(y, z) = f(y)g(z). �

Example 2.2.2. Let f ∈ F2 and g ∈ F3 be given by the truth tables

Tf = (1, 1, 0, 1) and Tg = (1, 0, 0, 1, 1, 1, 0, 0). Then the truth table of f ⊗ g is

Tf⊗g = (1,0,0,1,1,1,0,0, 1, 0, 0, 1, 1, 1, 0, 0,0,0,0,0,0,0,0,0, 1, 0, 0, 1, 1, 1, 0, 0)

On the other hand the truth table of g ⊗ f is

Tg⊗f = (1,1,0,1, 0, 0, 0, 0,0,0,0,0, 1, 1, 0, 1,1,1,0,1, 1, 1, 0, 1,0,0,0,0, 0, 0, 0, 0).

The algebraic normal form of f is

f(x1, x2) = 1⊕ x1 ⊕ x1x2

and the algebraic normal form of g is

g(x1, x2, x3) = 1⊕ x2 ⊕ x3 ⊕ x1x3.

From the above theorem it follows that, the algebraic normal form of f ⊗ g is

(f⊗g)(x1, x2, x3, x4, x5) = f(x1, x2)g(x3, x4, x5) = (1⊕x1⊕x1x2)(1⊕x4⊕x5⊕x3x5)
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= 1⊕x1⊕x4⊕x5⊕x1x2⊕x1x4⊕x1x5⊕x3x5⊕x1x2x4⊕x1x2x5⊕x1x3x5⊕x1x2x3x5.

The algebraic normal form of g ⊗ f is,

(g⊗f)(x1, x2, x3, x4, x5) = g(x1, x2, x3)f(x4, x5) = (1⊕x2⊕x3⊕x1x3)(1⊕x4⊕x4x5)

= 1⊕x2⊕x3⊕x4⊕x1x3⊕x2x4⊕x3x4⊕x4x5⊕x1x3x4⊕x2x4x5⊕x3x4x5⊕x1x3x4x5.

The Hamming distance of two functions f, g ∈ Fn is the cardinality of the set

{x ∈ Vn|f(x) 6= g(x)} and is denoted by d(f, g). It is clear from the definitions

that d(f, g) = w(f ⊕ g) = w(f) + w(g)− 2w(fg) for any f, g ∈ Fn.

2.3 Desired Cryprographic Properties of

Boolean Functions

For any f ∈ Fn, it is important to compare the output of f(x) and f(x ⊕ α)

for α ∈ Vn. For a ”random” function, one expects to have f(x) = f(x ⊕ α)

with probability one half or equivalently, to have
∑

x f(x) ⊕ f(x ⊕ α) = 2n−1

or
∑

x(−1)f(x)⊕f(x⊕α) = 0. The quantity
∑

x(−1)f(x)⊕f(x⊕α) is called the auto

correlation coefficient and is denoted by ∆f (α).

An element α ∈ Vn is called a linear structure of f if ∆f (α) = 2n. On the

other hand, if ∆f (α) = 0, f is said to satisfy propagation criterion with respect

to α. If f satisfies the propagation criterion with respect to all α with w(α) ≤ k

then f is said to satisfy propagation criterion of order k, and denoted by PC(k).

It is observed that, a function f ∈ Fn satisfies PC(1), whenever an input bit

is complemented, the output bit changes with probability one half. Naturally,

this is a desired cryptographic property. This important property is called the

strict avalanche criterion.

7



Chapter 3

Strict Avalanche Criterion

In this chapter, we deal with strict avalanche criterion for Boolean functions.

Besides basic properties already known, we also introduce some new results.

For a given f ∈ Fn, Si(f) denotes 1/2(2n −∆f (ei)), that is

Si(f) = 1/2[2n −
∑

x

(−1)f(x)⊕f(x⊕ei)]

or equivalently,

Si(f) =
∑

x

f(x)⊕ f(x⊕ ei).

By S(f) we denote the vector (S1(f), S2(f), . . . , Sn(f)). When the function

is clear for the given context, we just write S = (S1, S2, . . . , Sn). S(f) is called

the difference distribution vector of f . It follows that f ∈ Fn satisfies the strict

avalanche criterion if and only if Si(f) = 2n−1 for i ∈ {1, 2, . . . , n}. Also by

Smax(f), we denote the maximum value of Si(f) for i ∈ {1, 2, . . . , n}.

Alternatively, the following characterization of Si(f) for i ∈ {1, 2, . . . , n}
can be given by using the partial derivative of a function. Namely, since for

any xi, the function f ∈ Fn can be written as f = xiu ⊕ v where u, v ∈ Fn−1

and are independent of xi , Si(f) = 2w(u). Note that, since the characteristic

of the field we deal with is 2, u is in fact the formal partial derivative of f with

8



respect to xi. It follows that,

Si(f) = 2w(
∂f

∂xi

).

3.1 Properties of Difference Distribution Vec-

tor

For any fixed a ∈ {0, . . . , 2n} the number of functions satisfying Si(f) = a does

not depend on the choice of i ∈ {1, . . . , n}. That is,

|{f ∈ Fn|Si(f) = a}| = |{f ∈ Fn|Sj(f) = a}|

for any pair i, j ∈ {1, . . . , n}. For a = 2n−1, this number is denoted by

S(n, 1). We generalize this idea in an obvious manner to define S(n, k) as

follows. The number of functions satisfying the condition Si1(f) = a1, Si2(f) =

a2, · · · , Sik(f) = ak, does not depend on the choice of the subset {i1, . . . , ik} ⊂
{1, . . . , n}. Thus we define S(n, k) to be the number of functions satisfying

Si1(f) = Si2(f) = · · · = Sik(f) = 2n−1, where {i1, . . . , ik} is any subset of

{1, . . . , n} with cardinality k.

Lemma 3.1.1. Let f1, f2, . . . , f2k ∈ Fk. If Tf1 , Tf2 , . . . , Tf
2k

are linearly inde-

pendent in V2k , then any f ∈ Fn (k ≤ n) can be written uniquely as

f = (f1 ⊗ g1)⊕ (f2 ⊗ g2)⊕ · · · ⊕ (f2k ⊗ g2k)

where g1, g2, . . . , g2k ∈ Fn−k.

Proof: From the definition of Kronecker product, it follows that the truth

9



table of f is

Tf = ([f1(α0)Tg1 ⊕ f2(α0)Tg2 ⊕ · · · ⊕ f2k(α0)Tg
2k

],

[f1(α1)Tg1 ⊕ f2(α1)Tg2 ⊕ · · · ⊕ f2k(α1)Tg
2k

], · · · ,

[f1(αl−1)Tg1 ⊕ f2(αl−1)Tg2 ⊕ · · · ⊕ f2k(αl−1)Tg
2k

], · · · ,

[f1(α2k−1)Tg1 ⊕ f2(α2k−1)Tg2 ⊕ · · · ⊕ f2k(α2k−1)Tg
2k

]).

Hence, the components of Tf between positions (l − 1) · 2m + 1 and l · 2m are

[f(α(l−1)2m , . . . , f(α(l2m)−1)] =
2k⊕
i=1

fi(αl−1)Tgi

=
2k⊕
i=1

fi(αl−1)[gi(α0), gi(α1), . . . , gi(α2m−1)]

where m = n− k.

Fixing an arbitrary t ∈ {1, . . . , 2m} we obtain the following 2k equations

f(αt) = f1(α0)g1(αt)⊕ f2(α0)g2(αt)⊕ · · · ⊕ f2k(α0)g2k(αt)

f(α2m+t) = f1(α1)g1(αt)⊕ f2(α1)g2(αt)⊕ · · · ⊕ f2k(α1)g2k(αt)

...

f(α((2k−1)2m)+t) = f1(α2k−1)g1(αt)⊕ f2(α2k−1)g2(αt)⊕ · · · ⊕ f2k(α2k−1)g2k(αt).

The columns of the coefficient matrix are truth tables of fi’s, whose lin-

ear independence is guaranteed by the hypothesis, so the system has a unique

solution for g1(αt), g2(αt), . . . , g2k(αt). Since t is arbitrary, lemma follows. �

Now we introduced two distinguished examples that will be used throughout

the chapter.

Example 3.1.2. Let f1, f2 ∈ F1. If Tf1 and Tf2 are linearly independent in V2

then any f in Fn can be written uniquely as f = (f1⊗g1)⊕(f2⊗g2) ∈ Fn where

g1, g2 ∈ Fn−1. For some particular choices of f1 and f2 we compute weight of f

and Si(f), i = 1, . . . , n :

10



a) Let Tf1 = (1, 0), Tf2 = (0, 1).

w(f) = w(g1) + w(g2),

S1(f) = 2w(g1 ⊕ g2),

Si(f) = Si−1(g1) + Si−1(g2), i = 2, . . . , n.

b) Let Tf1 = (1, 1), Tf2 = (0, 1).

w(f) = w(g1) + w(g1 ⊕ g2),

S1(f) = 2w(g2),

Si(f) = Si−1(g1) + Si−1(g1 ⊕ g2), i = 2, . . . , n.

Example 3.1.3. For f1, f2, f3, f4 ∈ F2 let the truth tables be linearly indepen-

dent in V4. Then any f in Fn can be written uniquely as f = (f1 ⊗ g1)⊕ (f2 ⊗
g2) ⊕ (f3 ⊗ g3) ⊕ (f4 ⊗ g4) ∈ Fn where g1, g2, g3, g4 ∈ Fn−2. Now we compute

the weight of f , and Si(f) i = 1, . . . , n, for some particular choices of f1, f2, f3

and f4:

a) Let Tf1 = (1, 0, 0, 0), Tf2 = (0, 1, 0, 0), Tf3 = (0, 0, 1, 0), Tf4 = (0, 0, 0, 1)

w(f) = w(g1) + w(g2) + w(g3) + w(g4),

S1(f) = 2w(g1 ⊕ g3) + 2w(g2 ⊕ g4),

S2(f) = 2w(g1 ⊕ g2) + 2w(g3 ⊕ g4),

Si(f) = Si−2(g1) + Si−2(g2) + Si−2(g3) + Si−2(g4), i = 3, . . . , n.

b) In case Tf1 = (0, 0, 1, 1), Tf2 = (0, 1, 0, 1), Tf3 = (0, 0, 0, 1), Tf4 = (1, 1, 1, 1)

w(f) = w(g4) + w(g2 ⊕ g4) + w(g1 ⊕ g4) + w(g1 ⊕ g2 ⊕ g3 ⊕ g4),

S1(f) = 2w(g1) + 2w(g1 ⊕ g3),

S2(f) = 2w(g2) + 2w(g2 ⊕ g3),
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and for i = 3, . . . , n

Si(f) = Si−2(g4) + Si−2(g2 ⊕ g4) + Si−2(g1 ⊕ g4) + Si−2(g1 ⊕ g2 ⊕ g3 ⊕ g4).

From now on we deal with the properties of the difference distribution vectors

of Boolean functions which will be used in the following sections.

Lemma 3.1.4. For any f ∈ Fn we have S(f) = S(f̄).

Proof: It is enough to show that Si(f) = Si(f̄) for a fixed i ∈ {1, 2, . . . , n}.
Si(f) =

∑
x f(x)⊕ f(x⊕ ei) =

∑
x(f(x)⊕ 1)⊕ (f(x⊕ ei)⊕ 1)

=
∑

x f̄(x)⊕ f̄(x⊕ ei) = Si(f̄). �

In the following proposition we consider the weight of the functions whose

difference distribution vectors are known.

Proposition 3.1.5. For any f ∈ Fn, (Smax(f)/2) ≤ w(f) ≤ 2n− (Smax(f)/2).

Proof: Without loss of generality, we may assume that Smax(f) = S1. Write

f = (f1 ⊗ g1)⊕ (f2 ⊗ g2), where f1 = (1, 1), f2 = (0, 1), for some g1, g2 ∈ Fn−1.

By Example 3.1.2 b), S1 = 2w(g2), and w(f) = w(g1) + w(g1 ⊕ g2). Then

w(f) = w(g2)+2(w(g1)−w(g1g2)) = Smax(f)/2+2k where k ∈ {0, 1, . . . , 2n−1}.
We know that w(f) + w(f̄) = 2n, and from the above lemma, it follows that

Smax(f) = Smax(f̄). Thus, Smax/2 ≤ w(f̄), which implies that w(f) ≤ 2n −
Smax(f)/2. �

Corollary 3.1.6. Given f ∈ Fn. If f satisfies the strict avalanche criterion,

then 2n−2 ≤ w(f) ≤ 3 · 2n−2.

Proof: Since f satisfies the strict avalanche criterion, Si = Smax(f) = 2n−1

for all i ∈ {1, . . . , n}. By the previous proposition (2n−1/2) ≤ w(f) ≤ 2n −
(2n−1/2), that is, 2n−2 ≤ w(f) ≤ 3 · 2n−2 . �

Proposition 3.1.7. Let f ∈ Fn and i ∈ {1, 2, . . . n}. Then Si(f) = 0 if and

only if deg(f, xi) = 0.
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Proof: Let Si(f) = 0. Then
∑

x f(x)⊕f(x⊕ei) = Si(f) = 0. Consequentely

f(x) = f(x⊕ ei) for all x ∈ Vn, hence deg(f, xi) = 0

If deg(f, xi) = 0 for some i ∈ {1, . . . , n} then f(x) = f(x ⊕ ei) for all x ∈ Vn.

Therefore, Si(f) =
∑

x f(x)⊕ f(x⊕ ei) = 0.

�

Proposition 3.1.8. Let f ∈ Fn and i ∈ {1, 2, . . . n}. Then, Si(f) = 2n if and

only if deg(f, xi) = 1.

Proof: Si(f) =
∑

x f(x)⊕ f(x⊕ ei) = 2n implies that f(x⊕ ei) = f(x)⊕ 1

for all x ∈ Vn. Equivalently, deg(f, xi) = 1.

If deg(f, xi) = 1, then f(x ⊕ ei) = f(x) ⊕ 1 for all x ∈ Vn. Therefore, Si(f) =∑
x f(x)⊕ f(x⊕ ei) = 2n. �

Corollary 3.1.9. Let f ∈ Fn. If Si(f) = 2n for some i ∈ {1, 2, . . . n}, then f

is balanced.

Proof: By proposition 3.1.5 we have (Smax(f)/2) ≤ w(f) ≤ 2n−(Smax(f)/2).

Smax(f) = 2n implies (2n−1 ≤ w(f) ≤ 2n−1), hence f is balanced. �

Theorem 3.1.10. Let f ∈ Fn. Then,

a) Si ≡ 0 mod 2 for all i ∈ {1, . . . , n}.
b) Si ≡ 2 mod 4 for all i ∈ {1, 2, . . . , n} if and only if w(f) is odd.

c) Si ≡ 0 mod 4 for all i ∈ {1, 2, . . . , n} if and only if w(f) is even .

Proof:

a) Since Si(f) = 2w( δf
δxi

) for all i ∈ {1, . . . , n}, we have Si(f) ≡ 0 mod 2.

b) It is sufficient to prove theorem for i = 1. Write f as f = (f1⊗g1)⊕ (f2⊗g2)

where g1, g2,∈ Fn−1 and Tf1 = (1, 1), Tf2 = (0, 1). Then, by Example 3.1.2 b),

S1(f) = 2w(g2) and w(f) = w(g1) + w(g1 ⊕ g2) = 2[w(g1)− w(g1g2)] + w(g2).

Now, if S1(f) ≡ 2 mod 4, then w(g2) is odd, which implies that w(f) is odd.

On the other hand, if w(f) is odd then w(g2) is odd, that is 2w(g2) ≡ 2 mod 4.

c) This part is equivalent to part b). �
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Theorem 3.1.11. Let f ∈ Fn. If Si = 2n for some i ∈ {1, 2, . . . , n}, then

Sj ≡ Sk mod 8 where j, k are different from i.

Proof: It is sufficient to prove for i = 1, since [S(f(x))] = [S(f(π(x)))] for

any permutation π. Write f = ((1, 0)⊗ g)⊕ ((0, 1)⊗ ḡ) for some g ∈ Fn−1. By

Example 3.1.2 a), we have S1(f) = 2n and Sj(f) = Sj−1(g)+Sj−1(ḡ) = 2Sj−1(g)

for j ∈ {2, . . . , n}. Since Sj−1(g) ≡ Sk−1(g) mod 4 for all j, k ∈ {2, . . . , n},
Sj(f) ≡ Sk(f) mod 8. �

Theorem 3.1.12. Let f ∈ Fn and w(f) ≡ 0 mod 4. If Si = 0 for some

i ∈ {1, 2, . . . , n}, then Sj ≡ 0 mod 8 for any j ∈ {1, 2, . . . , n}.

Proof: It is sufficient to prove for i = 1, since [S(f(x))] = [S(f(π(x)))] for

any permutation π. Write f(x) = ((1, 0)⊗ g)⊕ ((0, 1)⊗ g) where g ∈ Fn−1. As

in Example 3.1.2 a), we have w(f) = 2w(g), S1(f) = 0 and Sk(f) = Sk−1(g) +

Sk−1(g) = 2Sk−1(g) for k ∈ {2, . . . , n}. Since w(f) ≡ 0 mod 4, w(g) is even.

Therefore by Theorem 3.1.10 c), Sk−1(g) ≡ 0 mod 4 for all k ∈ {2, . . . , n}.
Hence Sk(f) ≡ 0 mod 8 implies Sj(f) ≡ 0 mod 8 for any j ∈ {1, 2, . . . , n}. �

3.2 Number of functions with a particular

difference distribution vector

In this chapter, we especially deal with the numbers of functions having some

particular types of difference distribution vectors. We introduce the notation

[a] = [a1, a2, . . . , an] to denote the number of functions in Fn having difference

distribution vector a = (a1, a2, . . . , an).

First we note that, for any permutation π defined on n objects,

S(f(π(x1, . . . , xn))) = π(S1, . . . , Sn). Then, it follows that [πa] = [a].

Property 3.2.1. [a1, a2, . . . , an] = [2n − a1, a2, . . . , an].

Proof: Let f ∈ Fn and g, h ∈ Fn−1 such that
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f = ((1, 0)⊗ g)⊕ ((0, 1)⊗ h). Then according to the Example 3.1.2 a)

Si(f) = Si−1(g) + Si−1(h) where i ∈ {2, . . . , n}

S1(f) = 2w(g ⊕ h).

Now define f ′ ∈ Fn as f ′ = ((1, 0)⊗g)⊕((0, 1)⊗h̄). Then, S1(f
′) = 2w(g⊕h̄) =

2(2n−1−w(g⊕h)) = 2n−2w(g⊕h) = 2n−S1(f) and, Si(f
′) = Si−1(g)+Si−1(h̄) =

Si(f) for i ∈ {2, . . . , n}. This construction associates each f ∈ Fn with a unique

f ′ ∈ Fn such that S1(f
′) = 2n − S1(f) and Si(f

′) = Si(f) for i = 2, . . . , n. �

The following is an immediate result of above property.

Corollary 3.2.2. For some f, g ∈ Fn, if Si(f) = Si(g) or Si(f) + Si(g) = 2n

for all i ∈ {1, 2, . . . , n}, then [S(f)] = [S(g)].

Theorem 3.2.3. The number of functions with S1 = λ is(
2n−1

λ
2

)
22n−1

where λ is a nonnegative even integer.

Proof: Using Example 3.1.2 a), any f ∈ Fn can be written as

((1, 1)⊗ g1)⊕ ((0, 1)⊗ g2)

for some g1, g2 ∈ Fn−1. Then we have, λ = S1(f) = 2w(g2). Then, it is obvious

that, there are
(
2n−1

λ
2

)
possible choices for g2 and 22n−1

possible choices for g1. �

By substituting λ = 2n−1 in the above theorem, one obtains

Corollary 3.2.4. S(n, 1) [4] is (
2n−1

2n−2

)
22n−1

.

It is also possible to find S(n, 1) as follows :

Let f ∈ Fn be such that ((1, 1)⊗ g1)⊕ ((0, 1)⊗ g2) where g1, g2 ∈ Fn−1. Then,
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2n−1 = S1(f) = 2w(g2). After fixing g1 · g2, the number of ways of choosing the

functions g1 and g2 satisfying the above condition is

2n−2∑
w(g1·g2)=0

(
2n−1

w(g1 · g2)

)(
2n−1 − w(g1 · g2)

2n−2 − w(g1 · g2)

)
22n−2

or that is,

S(n, 1) =
2n−2∑

k

(
2n−1

k

)(
2n−1 − k

2n−2

)
22n−2

.

The number of balanced Boolean functions in Fn is
(

2n

2n−1

)
. Now we obtain

this result following an indirect way which will enable us to count the balanced

Boolean functions satisfying certain conditions.

Let f ∈ Fn be such that ((1, 1) ⊗ g1) ⊕ ((0, 1) ⊗ g2) where g1, g2 ∈ Fn−1.

Then, it follows that w(f) = w(g1) + w(g1 ⊕ g2). After fixing g1, the number of

ways of choosing g2 satisfying the above condition is

w(g1)∑
w(g1g2)=0

(
w(g1)

w(g1g2)

)(
2n−1 − w(g1)

w(g1)− w(g1g2)

)

w(g1) can take any value between 0 and 2n−1, and for each k ∈ {0, . . . , 2n−1}
there are

(
2n−1

k

)
functions with w(g1) = k. Hence the number of balanced

functions is (
2n

2n−1

)
=

2n−1∑
k=0

(
2n−1

k

) k∑
l=0

(
k

l

)(
2n−1 − k

k − l

)
.

Theorem 3.2.5. The number of balanced functions in Fn with the property

S1 = λ is
2n−1∑
k=0

(
2n−1

k

)(
k

2n−2 − λ
4

)(
2n−1 − k

2n−2 − λ
4

)
where λ is a nonnegative integer, divisible by 4.
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Proof: Given f ∈ Fn, the number of balanced Boolean functions is

2n−1∑
w(g1)=0

(
2n−1

w(g1)

) w(g1)∑
w(g1g2)=0

(
w(g1)

w(g1g2)

)(
2n−1 − w(g1)

w(g1)− w(g1g2)

)

Now S1 = 2w(g2) implies that w(g2) = λ
2
. Since f is balanced, we have w(f) =

2n−1 = w(g1)+w(g1⊕g2) = w(g2)+2w(g1)−2w(g1g2) = λ
2
+2w(g1)−2w(g1g2) So

we again have the same formula as above, but now w(g1g2) = w(g1) + λ
4
− 2n−2.

Then the sought number is

2n−1∑
w(g1)=0

(
2n−1

w(g1)

)(
w(g1)

w(g1g2)

)(
2n−1 − w(g1)

w(g1)− w(g1g2)

)

=
2n−1∑

w(g1)=0

(
2n−1

w(g1)

)(
w(g1)

w(g1) + λ
4
− 2n−2

)(
2n−1 − w(g1)

w(g1)− (w(g1) + λ
4
− 2n−2)

)

=
2n−1∑

w(g1)=0

(
2n−1

w(g1)

)(
w(g1)

2n−2 − λ
4

)(
2n−1 − w(g1)

2n−2 − λ
4

)
.

�

We denote by SB(n, k) the number of balanced functions counted in S(n, k).

And letting λ = 2n−1 in the above theorem, the following is obtained.

Theorem 3.2.6. For any integer n > 1,

SB(n, 1) =
2n−1∑
k=0

(
2n−1

k

)(
k

2n−3

)(
2n−1 − k

2n−3

)

In [4], a computation of S(n, 2) is given by

S(n, 2) =
2n−3∑
i=0

 2n−2

2i

 82n−2−2i22i

i∑
j=0

 2i

2j

  2j

j

  2i− 2j

i− j

 .

We give a more general, but yet more simple formula which computes not

only S(n, 2) but also the number of functions f ∈ Fn with S1(f) = λ1, S2(f) =
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λ2 for arbitrary choosen nonnegative even integers λ1 , λ2.

Theorem 3.2.7. Given nonnegative even integers λ1, λ2 ≤ 2n with

λ1 ≡ λ2 mod 4. Then, the number of functions in Fn such that S1 = λ1, S2 = λ2

is given by

22n−2
2n−2∑
t=0

(
2n−2

t

)(
2n−2 − t

λ1−2t
4

)(
2n−2 − t

λ2−2t
4

)
22t

where t ranges over only odd or even integers depending on whether λ1 ≡ λ2 ≡
2 mod 4 or, λ1 ≡ λ2 ≡ 0 mod 4, respectively.

Proof: Any f ∈ Fn can be written as

((0, 0, 1, 1)⊗ g1)⊕ ((0, 1, 0, 1)⊗ g2)⊕ ((0, 0, 0, 1)⊗ g3)⊕ ((1, 1, 1, 1)⊗ g4)

where g1, g2, g3, g4 ∈ Fn−2 . Then by Example 3.1.3 b), it follows that S1(f) =

2(w(g1) + w(g1 ⊕ g3)), S2 = 2(w(g2) + w(g2 ⊕ g3)), we have

λ1 = 4w(g1) + 2w(g3)− 4w(g1g3)

λ2 = 4w(g2) + 2w(g3)− 4w(g2g3)

After fixing g3, the number of ways of choosing g1 and g2 satisfying above

conditions are
(2n−2−w(g3)

λ1−2w(g3)
4

)
· 2w(g3) and

(2n−2−w(g3)
λ2−2w(g3)

4

)
· 2w(g3), respectively. Weight

of g3 can take any value between 0 and 2n−2, and g4 can be choosen arbitrarily.

So, the number of possible ways of constructing f ∈ Fn with S1(f) = λ1,

S2(f) = λ2 is

22n−2
2n−2∑
t=0

(
2n−2

t

)(
2n−2 − t

λ1−2t
4

)(
2n−2 − t

λ2−2t
4

)
22t.

�

An immediate consequence of this theorem is
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Corollary 3.2.8.

S(n, 2) = 22n−2
2n−2∑
t=0

(
2n−2

t

)(
2n−2 − t
2n−1−2t

4

)2

22t

where t ranges over only even integers.
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Chapter 4

Constructions

In this chapter we focus on the construction of Boolean functions satisfying

strict avalanche criterion.

4.1 Constructions Using Kronecker Product

Theorem 4.1.1. Given g1, g2 ∈ Fn−2 such that Si(g1) + Si(g2) = 2n−2 for all

i ∈ {1, 2, . . . , n− 2}, then f ∈ Fn defined by

f = ((1, 0, 0, 0)⊗ g1)⊕ ((0, 1, 0, 0)⊗ g1)⊕ ((0, 0, 1, 0)⊗ g2)⊕ ((0, 0, 0, 1)⊗ ḡ2)

satisfies strict avalanche criterion.

Proof: By Example 3.1.3 a) we obtain,

S1(f) = 2[w(g1 ⊕ g2) + w(g1 ⊕ ḡ2)] = 2[w(g1 ⊕ g2) + (2n−2 − w(g1 ⊕ g2))]

= 2n−1,

S2(f) = 2[w(g1 ⊕ g1) + w(g2 ⊕ ḡ2)] = 2 · 2n−2 = 2n−1,

Si(f) = 2Si−2(g1) + Si−2(g2) + Si−2(ḡ2) = 2n−1, i = 3, . . . , n.

�
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Corollary 4.1.2. Given a balanced function g ∈ Fn−2 satisfying strict

avalanche criterion, then f ∈ Fn defined by

f = ((1, 0, 0, 0)⊗ g)⊕ ((0, 1, 0, 0)⊗ g)⊕ ((0, 0, 1, 0)⊗ g)⊕ ((0, 0, 0, 1)⊗ ḡ)

is also a balanced function satisfying strict avalanche criterion.

Proof: According to the Example 3.1.3 a) w(f) = w(g)+w(g)+w(g)+w(ḡ).

Therefore, w(f) = 2n−1 since w(g) = w(ḡ) = 2n−3. That is f is balanced.

On the other hand, since Si(g) + Si(ḡ) = 2n−2 for all i ∈ {1, 2, . . . , n− 2}, then

by above theorem f satisfies strict avalanche criterion. �

Example 4.1.3. Let Tg = (1, 0, 1, 0, 1, 1, 0, 0). Then g ∈ F3 is a balanced

function with difference distribution vector S(g) = (4, 4, 4). f ∈ F5 defined by

above theorem has a truth table

Tf = (1,0,1,0,1,1,0,0, 1, 0, 1, 0, 1, 1, 0, 0,1,0,1,0,1,1,0,0, 0, 1, 0, 1, 0, 0, 1, 1)

is also a balanced function satisfying strict avalanche criterion.

Proposition 4.1.4. Let f ∈ Fn. If deg(f, xi) = 2 for all i ∈ {1, 2, . . . , n}, then

f satisfies strict avalanche criterion.

Proof: For any xi ∈ {x1, . . . , xn} we have deg( ∂f
∂xi

) = 1. Thus ∂f
∂xi

is a

nonconstant affine function, hence balanced. This completes the proof. �

Proposition 4.1.5. Number of quadratic functions satisfying strict avalanche

criterion is at least 2n+1
∑n+1

k=0(−1)k(n
k)2(n−k

2 ).

Proof: Number of functions with deg(f) ≤ 2 and

deg(f, xi1), . . . , deg(f, xik) ≤ 1, for some fixed {i1, . . . , ik} ⊂ {1, . . . , n} is

2(n−k
2 )+n+1. Since {i1, . . . , ik} ⊂ {1, . . . , n} can be chosen in

(
n
k

)
distinct ways,

the result directly follows from principle of inclusion-exculsion. �

Theorem 4.1.6. Let f ∈ Fn, g ∈ Fm. If f, g satisfy strict avalanche criterion

then h ∈ Fn+m defined by (1m ⊗ f) ⊕ (g ⊗ 1n) also satisfies strict avalanche

criterion.
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Proof: h(x) = (1m ⊗ f) ⊕ (g ⊗ 1n) where x = (y, z) with y = x1, . . . , xm,

z = xm+1, . . . , xn+m. Then for i = {1, . . . ,m},

Si(h) =
∑

x h(x)⊕ h(x⊕ ei)

=
∑

x[(1m ⊗ f)⊕ (g ⊗ 1n)](x)⊕ [(1m ⊗ f)⊕ (g ⊗ 1n)](x⊕ ei)

=
∑

x[(1m(y) ·f(z))⊕ (1m(y⊕ ei) ·f(z))]⊕ [(g(y) ·1n(z))⊕ (g(y⊕ ei) ·1n(z))]

=
∑

x[1m(y)⊕ (1m(y ⊕ ei))] · f(z)⊕ [(g(y)⊕ g(y ⊕ ei))] · 1n(z)

=
∑

x g(y)⊕ g(y ⊕ ei) = 2n
∑

y g(y)⊕ g(y ⊕ ei) = 2n · 2m−1 = 2n+m−1.

For i = {m + 1, . . . ,m + n},

Si(h) =
∑

x h(x)⊕ h(x⊕ ei)

=
∑

x[(1m(y) ·f(z))⊕ (1m(y) ·f(z⊕ ei))]⊕ [(g(y) ·1n(z))⊕ (g(y) ·1n(z⊕ ei))]

=
∑

x 1m(y)[f(z)⊕ f(z ⊕ ei)]⊕ g(y)[1n(z)⊕ 1n(z ⊕ ei)]

=
∑

x f(z)⊕ f(z ⊕ ei) = 2m
∑

z f(z)⊕ f(z ⊕ ei) = 2m · 2n−1 = 2n+m−1. �

Example 4.1.7. Let f ∈ F3 and g ∈ F2 satisfy strict avalanche criterion,

and have the truth tables Tf = (0, 1, 0, 1, 0, 0, 1, 1), Tg = (1, 0, 0, 0). Then,

F = (12 ⊗ f)⊕ (g ⊗ 13), having the truth table

TF = (1,0,1,0,1,1,0,0, 0, 1, 0, 1, 0, 0, 1, 1,0,1,0,1,0,0,1,1, 0, 1, 0, 1, 0, 0, 1, 1)

also satisfies strict avalanche criterion.

Corollary 4.1.8. Let f ∈ Fn. If f satisfies strict avalanche criterion, then

(f ⊗ f̄)⊕ (f̄ ⊗ f) also satisfies strict avalanche criterion.

Proof: The proof follows from the above theorem, and the fact that

(f ⊗ f̄)⊕ (f̄ ⊗ f) = (1n ⊗ f)⊕ (f ⊗ 1n). �
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4.2 SAC and Nonlinearity

Now we give two constructions defined in [7] by Jennifer Seberry, Xian-Mo

Zhang. This constructions yield SAC satisfying bent functions 1. We restate

the theorems and give an alternative notation.

Theorem 4.2.1. Let g1, g2 ∈ F2k such that g1 is a bent function, and g2 is a

non-constant affine function, then f ∈ F2k+1 defined by

f = ((1, 0)⊗ g1)⊕ ((0, 1)⊗ (g1 ⊕ g2))

is a balanced function satisfiying strict avalanche criterion.

Proof: Let g1 ∈ F2k be a bent function, then without loss of generality we

may assume that w(g1) = 22k−1 − 2k−1. It is known that (g1 ⊕ g2) is also a

bent for any non-constant affine function g2. Therefore, we have w(g1 ⊕ g2) =

22k−1 +2k−1. Then by using Example 3.1.2 a), w(f) = w(g1)+w(g1⊕g2) = 22k.

Hence, f is balanced.

We complete the proof showing that Si(f) = 22k for all i ∈ {1, . . . , 2k + 1}. By

using Example 3.1.2 a), it follows that

S1(f) = 2w(g2) = 2 · 22k−1 = 22k,

Si(f) = Si−1(g1) + Si−1(g1 ⊕ g2) = 22k−1 + 22k−1 = 22k for i ∈ {2, . . . , 2k + 1}.

�

Theorem 4.2.2. Let g, h1, h2, h3 ∈ F2k−2 such that g is a bent function, and

h1, h2, h3 are non-constant affine functions, then f ∈ F2k defined by

f = [(1, 0, 0, 0)⊗g]⊕[(0, 1, 0, 0)⊗(g⊕h1)]⊕[(0, 0, 1, 0)⊗(g⊕h2)]⊕[(0, 0, 0, 1)⊗(g⊕h3)]

is a balanced function satisfiying strict avalanche criterion .

1In this work we are concentrated on the strict avalanche criterion, for definitions concern-
ing nonlinearity and bent functions reader may see [6]
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Proof: Let g ∈ F2k−2 be a bent function. Since (g⊕h1), (g⊕h2) and (g⊕h1)

are also bent functions for any non-constant affine functions h1, h2, h3 ∈ F2k−2,

without loss of generality, we can assume that w(g) = w(g⊕ h1) = 22k−3− 2k−2

and w(g ⊕ h2) = w(g ⊕ h3) = 22k−3 + 2k−2. Note that by Example 3.1.3 a), we

have w(f) = 22k−1. So f is balanced.

Applying the results in Example 3.1.3 a), we have

S1(f) = 2w(h2) + 2w(h1 ⊕ h3) = 22k−1,

S2(f) = 2w(h1) + 2w(h2 ⊕ h3) = 22k−1,

Si(f) = Si−2(g)+Si−2(g⊕h1)+Si−2(g⊕h2)+Si−2(g⊕h3) = 22k−1 for i ∈ {3, . . . , 2k}.

�

Lemma 4.2.3. Let f, g ∈ Fn and xi ∈ An. If f(x) = g(x) ⊕ xi, then Si(f) =

2n − Si(g).

Proof: If f(x) = g(x)⊕xi, then Si(f) =
∑

x(g(x)⊕xi)⊕(g(x⊕ei)⊕xi⊕1) =∑
x g(x)⊕ g(x⊕ ei)⊕ 1. Hence, Si(f) = 2n − Si(g). �

Theorem 4.2.4. Let f, g ∈ Fn. If g satisfies strict avalanche criterion, then

f defined by f(x) = g(x) ⊕ xi for any i ∈ {1, 2, . . . , n} also satisfies strict

avalanche criterion.

Proof: Since g satisfies strict avalanche criterion we have Si(g) = 2n−1 and

by above lemma Si(f) = 2n − Si(g). Thus Si(f) = 2n−1. �

Theorem 4.2.5. Let g ∈ Fn−1. The function f ∈ Fn defined by

f = ((1, 0)⊗ g)⊕ ((0, 1)⊗ h)

where h = g ⊕ x1 ⊕ x2 · · · ⊕ xn−1 ⊕ c for c ∈ {0, 1}, satisfies strict avalanche

criterion.

24



Proof: By Example 3.1.2 a) we obtain,

S1(f) = 2w(g ⊕ h) = 2w(x1 ⊕ x2 · · · ⊕ xn−1 ⊕ c) = 2n−1,

Si(f) = Si−1(g) + Si−1(h) for i ∈ {2, . . . , n}.

Also, by using above lemma, it is easy to verify that

Si−1(g) + Si−1(h) = Si−1(g) + 2n−1 − Si−1(g) = 2n−1 for i ∈ {2, . . . , n}. �
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Chapter 5

Statistical Observations

There is no explicit formula to compute S(n, k) for k ≥ 3 and to compute

[a1, . . . , an] is even a much more difficult task for arbitrary integers a1, . . . , an.

For the cases n = 1, 2, 3, 4, 5, since the number of all Boolean functions remain

in a reasonable range, computations can be performed by direct counting. For

these cases we give tables showing all related information about the difference

distribution table. For n = 5, 6, 7 and 8 we present some statistical results.

5.1 Table of Difference Distribution Vectors

for n ≤ 5

In the below tables, the first column shows the difference distribution vectors;

the first row shows the weights of the functions. In the other boxes, we give the

number of functions having the corresponding difference distribution vector in

the first column and with the weight in the first row. For example, consider the

following row. The bold face 4 indicates the number of functions of weight 2

and having the difference distribution vector 0, 4, 4 or any of its permutations.

0 1 2 3 4 5 6 7 8
0 4 4 4 4
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a-) n=1

0 1 2
0 1 1
2 2

Table 5.1: Number of Difference Distribution Vectors for n=1

b-) n=2

0 1 2 3 4
0 0 1 1
2 2 4 4
0 4 2
4 4 2

Table 5.2: Number of Difference Distribution Vectors for n=2

c-) n=3

0 1 2 3 4 5 6 7 8
0 0 0 1 1
2 2 2 8 8
0 4 4 4 4
4 4 4 16 32 16
2 2 6 8 8
2 6 6 8 8
6 6 6 8 8
0 0 8 2
4 4 8 8
0 8 8 2
8 8 8 2

Table 5.3: Number of Difference Distribution Vectors for n=3

d-) n=4
For n = 4, using the facts in chapter 3.2., we give only the half of the table.
In the following example, the bold face 112 shows the number of functions of
weight 4 or 12 having the difference distrubition vector (04, 04, 08, 08) or one of
its permutations.

0-16 1-15 2-14 3-13 4-12 5-11 6-10 7-9 8
04 04 08 08 112 96 32
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0-16 1-15 2-14 3-13 4-12 5-11 6-10 7-9 8
00 00 00 00 1
02 02 02 02 16
00 04 04 04 8
04 04 04 04 88
02 02 06 06 16
02 06 06 06 64
06 06 06 06 208 400 48
04 04 04 08 64
00 00 08 08 4
04 04 08 08 112 96 32
00 08 08 08 16 32
04 08 08 08 144 288 288
08 08 08 08 228 1152 1368
02 02 06 10 16
02 06 06 10 16 48
06 06 06 10 320 336
02 02 10 10 16
02 06 10 10 32 32
06 06 10 10 176 480
02 10 10 10 48 16
06 10 10 10 112 544
10 10 10 10 128 528
00 04 04 12 8
04 04 04 12 32 112
04 04 08 12 48 32
04 08 08 12 128 192
08 08 08 12 288 576
00 04 12 12 8
04 04 12 12 40 96
04 08 12 12 32 64
08 08 12 12 96 256
00 12 12 12 8
04 12 12 12 48 80
08 12 12 12 16 96
12 12 12 12 56 64
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0-16 1-15 2-14 3-13 4-12 5-11 6-10 7-9 8
02 02 02 14 16
02 06 06 14 16
06 06 06 14 64
02 06 10 14 16
06 06 10 14 64
02 10 10 14 16
06 10 10 14 64
10 10 10 14 64
02 02 14 14 16
06 06 14 14 16
06 10 14 14 16
10 10 14 14 16
02 14 14 14 16
14 14 14 14 16
00 00 00 16 2
04 04 04 16 16
00 08 08 16 8
08 08 08 16 64
04 04 12 16 16
04 12 12 16 16
12 12 12 16 16
00 00 16 16 2
08 08 16 16 8
00 16 16 16 2
16 16 16 16 2

Table 5.4: Number of Difference Distribution Vectors for n=4
e-) n=5
For the case n = 5, since the table becomes very large, we give it without
considering weights of the functions. In the following table, the number of
functions with a difference distribution vector in the indicated class is given.
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16 16 16 16 16 27522560 08 08 12 12 16 145024 04 08 12 12 16 8448
12 16 16 16 16 14528512 08 08 12 12 12 135296 02 14 14 14 14 8256
14 14 14 14 14 13062656 06 10 10 14 14 81152 04 08 08 16 16 8192
12 12 16 16 16 8563712 08 08 08 16 16 73536 06 06 10 10 14 7232
12 12 12 16 16 4920576 04 12 16 16 16 68096 06 06 06 14 14 6400
10 14 14 14 14 4205056 08 08 08 12 12 56512 04 08 08 08 08 6016
12 12 12 12 16 2959104 06 10 10 10 10 46080 06 06 06 06 06 5760
08 16 16 16 16 2681344 04 12 12 16 16 43264 06 06 06 10 10 5312
12 12 12 12 12 2055296 06 10 10 10 14 40256 04 08 08 12 12 4608
10 10 14 14 14 1510144 08 08 08 12 16 39296 04 08 08 12 16 4352
08 12 16 16 16 1456640 08 08 08 08 08 37344 00 16 16 16 16 4128
08 12 12 16 16 947712 04 12 12 12 12 33472 02 10 14 14 14 3456
08 12 12 12 16 607104 06 06 14 14 14 32768 02 10 10 10 10 2496
10 10 10 14 14 594368 04 12 12 12 16 32320 04 04 12 16 16 2304
08 12 12 12 12 453248 08 08 08 08 12 29184 02 10 10 14 14 2176
06 14 14 14 14 404992 04 08 16 16 16 26112 04 04 12 12 12 1984
08 08 16 16 16 391808 06 06 10 10 10 15360 06 06 06 06 10 1600
10 10 10 10 14 292288 04 08 12 16 16 15104 04 04 08 08 08 1472
10 10 10 10 10 261824 06 06 10 14 14 11968 06 06 06 10 14 1344
08 08 12 16 16 217600 04 08 12 12 12 10176 00 12 12 12 12 1312
06 10 14 14 14 161152 04 04 16 16 16 9216 04 04 04 16 16 1280
04 16 16 16 16 149504 08 08 08 08 16 8928 00 08 16 16 16 1152
02 06 14 14 14 1152 04 04 08 08 12 384 04 04 08 12 16 128
04 08 08 08 12 1152 04 04 12 12 16 384 00 00 16 16 16 64
04 08 08 08 16 1152 02 02 10 10 10 256 02 02 02 02 02 64
02 10 10 10 14 1088 02 02 14 14 14 256 02 02 02 14 14 64
04 04 08 12 12 960 04 04 04 08 08 256 02 02 06 06 06 64
04 04 04 04 04 832 02 06 06 10 14 192 02 02 06 10 10 64
02 06 06 06 06 704 06 06 06 06 14 192 02 06 06 10 10 64
02 06 10 10 10 512 00 08 08 08 08 176 00 04 04 04 04 32
02 06 10 14 14 512 00 04 12 12 12 128 00 04 04 12 12 32
04 04 08 16 16 512 00 08 08 08 16 128 00 00 08 08 08 16
00 08 08 16 16 448 02 06 10 10 14 128 00 00 00 16 16 8
04 04 04 12 16 448 04 04 04 12 12 128 00 00 00 00 00 2
02 06 06 14 14 384 04 04 08 08 16 128

Table 5.5: Number of Difference Distribution Vectors for n=5
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5.2 Table of Difference Distribution Vectors

for n = 5, 6, 7 and 8

To have some idea about [a1, . . . , an] for n = 5, 6, 7, 8 a series of statistics have

been performed. A complete table for n = 5 is presented in the previous section.

But, to verify the method, by comparing the actual and statistical results, the

same statistics is also performed for n = 5. Hence, we used the case n = 5 as

the control set of the statistics.

For each case, a number of data sets is used for statistics. Below table gives

the size of data set and also the number of functions in each data set.

n Size of data set Number of functions in each data set
5 40 106

6 40 107

7 40 108

8 30 109

Table 5.6: Size and Cardinality of Data Sets

We explain the method for n = 8, the other cases are similar.

For each data set, 1.000.000.000 random functions are generated allowing

repitations. For each of these functions the difference distribution vector is

computed and the occurence number of each particular difference distribution

vector is registered. Facts stated in Section 3.2 are used to collect certain

combinations in a class. Namely, all permutations of a certain combination

are regarded as a single class. Moreover, the combinations [a1, . . . , a8] and

[b1, . . . , b8] are counted in the same class if ai = bi or ai = 256−bi for i = 1, . . . , 8.

Then, respecting these gatherings, the difference distribution vectors are ordered

up to their frequencies. For example, suppose that the combination

(112, 112, 120, 120, 124, 128, 128, 128)

is observed 325, 185 times for 1.000.000.000 functions in a data set. This vector
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represents 8!
3!2!2!

25 = 960 difference distribution vectors, that is 8!
3!2!2!

for dis-

tinct permutations and 25 for the cases ai and 256 − ai. So we obtain the

number 325.185
960

≈ 338 as occurence number of any vector in the same class

with (112, 112, 120, 120, 124, 128, 128, 128). Then, for example the probability of

having the difference distribution vector (112, 112, 120, 120, 124, 128, 128, 128)

or (112, 128, 120, 124, 120, 128, 128, 112) or (128, 112, 132, 128, 136, 112, 128, 120)

etc. is expected to be close to 338 out of 1.000.000.000.

Since the number of all difference distribution vectors is very large, we con-

sidered only those with 100 ≤ Si ≤ 156. For each class, the associated prob-

ability is in fact the probability of any difference distribution vector in that

class. For each class, the 30 sample probability values obtained from 30 data

sets are used to estimate the actual probability and an interval of confidence

(with α = 0.001) is given.

Following tables are the statistical results we obtained.

n=5 Difference Distribution Vector Probability Interval of Confidence
1 016 016 016 016 016 0.006421 0.006403 - 0.006438
2 012 016 016 016 016 0.003385 0.003381 - 0.003389
3 014 014 014 014 014 0.003041 0.003038 - 0.003043
4 012 012 016 016 016 0.001993 0.001991 - 0.001995
5 012 012 012 016 016 0.001144 0.001144 - 0.001145
6 010 014 014 014 014 0.000979 0.000979 - 0.000980
7 012 012 012 012 016 0.000690 0.000689 - 0.000690
8 008 016 016 016 016 0.000625 0.000623 - 0.000627
9 012 012 012 012 012 0.000479 0.000478 - 0.000480
10 010 010 014 014 014 0.000352 0.000352 - 0.000352

Table 5.7: Statistical Results for n=5
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n=6 Difference Distribution Vector Probability Interval of Confidence
1 032 032 032 032 032 032 0.000301 0.000299 - 0.000302
2 028 032 032 032 032 032 0.000226 0.000225 - 0.000226
3 030 030 030 030 030 030 0.000197 0.000197 - 0.000197
4 028 028 032 032 032 032 0.000171 0.000171 - 0.000172
5 028 028 028 032 032 032 0.000131 0.000130 - 0.000131
6 026 030 030 030 030 030 0.000114 0.000114 - 0.000114
7 028 028 028 028 032 032 0.000100 0.000100 - 0.000100
8 024 032 032 032 032 032 0.000097 0.000097 - 0.000098
9 028 028 028 028 028 032 0.000077 0.000077 - 0.000077
10 024 028 032 032 032 032 0.000075 0.000075 - 0.000075

Table 5.8: Statistical Results for n=6

n=7 Difference Distribution Vector Probability Interval of Confidence
1 064 064 064 064 064 064 064 7.10E-06 7.03E-06 - 7.17E-06
2 060 064 064 064 064 064 064 6.24E-06 6.22E-06 - 6.26E-06
3 062 062 062 062 062 062 062 5.65E-06 5.64E-06 - 5.65E-06
4 060 060 064 064 064 064 064 5.46E-06 5.45E-06 - 5.46E-06
5 060 060 060 064 064 064 064 4.78E-06 4.77E-06 - 4.78E-06
6 058 062 062 062 062 062 062 4.32E-06 4.32E-06 - 4.32E-06
7 060 060 060 060 064 064 064 4.18E-06 4.18E-06 - 4.18E-06
8 056 064 064 064 064 064 064 4.17E-06 4.16E-06 - 4.19E-06
9 060 060 060 060 060 064 064 3.66E-06 3.66E-06 - 3.66E-06
10 056 060 064 064 064 064 064 3.65E-06 3.65E-06 - 3.65E-06

Table 5.9: Statistical Results for n=7

n=8 Difference Distribution Vector Probability Interval of Confidence
1 128 128 128 128 128 128 128 128 8.47E-08 8.22E-08 - 8.72E-08
2 124 128 128 128 128 128 128 128 8.02E-08 7.90E-08 - 8.13E-08
3 126 126 126 126 126 126 126 126 7.51E-08 7.49E-08 - 7.53E-08
4 124 124 128 128 128 128 128 128 7.49E-08 7.46E-08 - 7.52E-08
5 124 124 124 128 128 128 128 128 7.05E-08 7.04E-08 - 7.06E-08
6 124 124 124 124 128 128 128 128 6.60E-08 6.59E-08 - 6.61E-08
7 122 126 126 126 126 126 126 126 6.60E-08 6.59E-08 - 6.60E-08
8 120 128 128 128 128 128 128 128 6.59E-08 6.54E-08 - 6.64E-08
9 124 124 124 124 124 128 128 128 6.18E-08 6.18E-08 - 6.19E-08
10 120 124 128 128 128 128 128 128 6.18E-08 6.17E-08 - 6.20E-08

Table 5.10: Statistical Results for n=8
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n=5 Difference Distribution Vector Probability Interval of Confidence
(Balanced Functions)

1 016 016 016 016 016 0.011545 0.011518 - 0.011571
2 016 016 016 016 020 0.007284 0.007275 - 0.007293
3 012 016 016 016 016 0.005062 0.005054 - 0.005070
4 016 016 016 020 020 0.004809 0.004804 - 0.004815
5 012 016 016 016 020 0.003798 0.003794 - 0.003801
6 016 016 020 020 020 0.003004 0.002999 - 0.003009
7 012 016 016 020 020 0.002530 0.002528 - 0.002533
8 012 012 016 016 016 0.002460 0.002456 - 0.002464
9 012 012 016 016 020 0.001948 0.001946 - 0.001950
10 016 020 020 020 020 0.001903 0.001897 - 0.001908

Table 5.11: Statistical Results of Balanced Functions for n=5

n=6 Difference Distribution Vector Probability Interval of Confidence
(Balanced Functions)

1 032 032 032 032 032 032 0.000555 0.000552 - 0.000557
2 032 032 032 032 032 036 0.000456 0.000455 - 0.000457
3 028 032 032 032 032 032 0.000391 0.000390 - 0.000392
4 032 032 032 032 036 036 0.000369 0.000369 - 0.000370
5 028 032 032 032 032 036 0.000325 0.000325 - 0.000325
6 032 032 032 036 036 036 0.000298 0.000298 - 0.000299
7 028 028 032 032 032 032 0.000273 0.000273 - 0.000273
8 028 032 032 032 036 036 0.000267 0.000267 - 0.000267
9 032 032 036 036 036 036 0.000240 0.000239 - 0.000240
10 028 028 032 032 032 036 0.000231 0.000231 - 0.000231

Table 5.12: Statistical Results of Balanced Functions for n=6
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n=7 Difference Distribution Vector Probability Interval of Confidence
(Balanced Functions)

1 064 064 064 064 064 064 064 1.38E-05 1.37E-05 - 1.38E-05
2 064 064 064 064 064 064 068 1.24E-05 1.24E-05 - 1.25E-05
3 060 064 064 064 064 064 064 1.16E-05 1.16E-05 - 1.16E-05
4 064 064 064 064 064 068 068 1.12E-05 1.12E-05 - 1.13E-05
5 060 064 064 064 064 064 068 1.05E-05 1.05E-05 - 1.05E-05
6 064 064 064 064 068 068 068 1.02E-05 1.02E-05 - 1.02E-05
7 060 060 064 064 064 064 064 9.75E-06 9.73E-06 - 9.77E-06
8 060 064 064 064 064 068 068 9.54E-06 9.53E-06 - 9.55E-06
9 064 064 064 068 068 068 068 9.14E-06 9.13E-06 - 9.15E-06
10 060 060 064 064 064 064 068 8.90E-06 8.89E-06 - 8.91E-06

Table 5.13: Statistical Results of Balanced Functions for n=7

n=8 Difference Distribution Vector Probability Interval of Confidence
(Balanced Functions)

1 128 128 128 128 128 128 128 128 1.67E-07 1.63E-07 - 1.70E-07
2 128 128 128 128 128 128 128 132 1.59E-07 1.58E-07 - 1.61E-07
3 124 128 128 128 128 128 128 128 1.54E-07 1.53E-07 - 1.55E-07
4 128 128 128 128 128 128 132 132 1.51E-07 1.51E-07 - 1.52E-07
5 124 128 128 128 128 128 128 132 1.47E-07 1.47E-07 - 1.48E-07
6 128 128 128 128 128 132 132 132 1.45E-07 1.44E-07 - 1.45E-07
7 124 124 128 128 128 128 128 128 1.42E-07 1.41E-07 - 1.43E-07
8 124 128 128 128 128 128 132 132 1.40E-07 1.40E-07 - 1.40E-07
9 128 128 128 128 132 132 132 132 1.37E-07 1.37E-07 - 1.38E-07
10 124 124 128 128 128 128 128 132 1.35E-07 1.35E-07 - 1.36E-07

Table 5.14: Statistical Results of Balanced Functions for n=8
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5.3 Observations

Now we list some properties observed from the statistical tables.

Observation-1. Let f, g ∈ Fn are balanced. Suppose that Si(f) + Si(g) =

2n for i ∈ {1, . . . , n}. Reorder S(f) and S(g) by arranging the components in de-

creasing order to obtain S ′(f) and S ′(g). In this rearrangement say that the first

unequal components of S ′(f) and S ′(g) are at position j and if S ′
j(f) > S ′

j(g)

then [S(f)]B > [S(g)]B, where [S]B denotes the number of balanced functions

having difference distribution vector S.

Observation-2. For any nonnegative integers a1, . . . , ak,

[a1, . . . , ak−1, ak, 2
n−1, 2n−1, . . . , 2n−1] ≤ [a1, . . . , ak−1, 2

n−1, . . . , 2n−1].

Equality holds if and only if ak = 2n−1.

Observation-3. Ordering properties of difference distribution vectors.

From the statistical results, we observe that the below descending order

holds for n = 5, 6, 7 and 8 for the functions of even weight.

1)-[2n−1, 2n−1, . . . , 2n−1]

2)-[2n−1 + 4, 2n−1, . . . , 2n−1]

3)-[2n−1 + 4, 2n−1 + 4, 2n−1, . . . , 2n−1]

4)-[2n−1 + 4, 2n−1 + 4, 2n−1 + 4, 2n−1, . . . , 2n−1]

5)-[2n−1 + 4, 2n−1 + 4, 2n−1 + 4, 2n−1 + 4, 2n−1, . . . , 2n−1]

6)-[2n−1 + 8, 2n−1, . . . , 2n−1]

7)-[2n−1 + 4, 2n−1 + 4, 2n−1 + 4, 2n−1 + 4, 2n−1 + 4, 2n−1, . . . , 2n−1]

8)-[2n−1 + 8, 2n−1 + 4, 2n−1, . . . , 2n−1]

The above table can be represented as follows, where each component is the

deviation from 2n−1.

1)-[0, 0, 0, 0, 0, 0, . . . , 0]

2)-[4, 0, 0, 0, 0, 0, . . . , 0]

3)-[4, 4, 0, 0, 0, 0, . . . , 0]
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4)-[4, 4, 4, 0, 0, 0, . . . , 0]

5)-[4, 4, 4, 4, 0, 0, . . . , 0]

6)-[8, 0, 0, 0, 0, 0, . . . , 0]

7)-[4, 4, 4, 4, 4, 0, . . . , 0]

8)-[8, 4, 0, 0, 0, 0, . . . , 0]

Keeping the same notation as above we list some other tables.

The below descending order holds for n = 5, 6, 7 and 8 for the functions of

odd weight.

1)-[2, 2, 2, 2, 2, . . . , 2]

2)-[6, 2, 2, 2, 2, . . . , 2]

3)-[6, 6, 2, 2, 2, . . . , 2]

4)-[6, 6, 6, 2, 2, . . . , 2]

5)-[10, 2, 2, 2, 2 . . . , 2]

6)-[6, 6, 6, 6, 2, . . . , 2]

7)-[10, 6, 2, 2, 2, . . . , 2]

Similarly, the below descending order holds for n = 5, 6, 7 and 8 for balanced

functions.

1)-[0, 0, 0, 0, 0, . . . , 0]

2)-[4, 0, 0, 0, 0, . . . , 0]

3)-[−4, 0, 0, 0, 0, . . . , 0]

4)-[4, 4, 0, 0, 0, . . . , 0]

5)-[4,−4, 0, 0, 0, . . . , 0]

6)-[4, 4, 4, 0, 0, . . . , 0]

37



Chapter 6

Conclusion

In this thesis, we deal with the Boolean functions having particular difference

distribution vectors and we give the ordering properties of the difference distri-

bution vectors by using statistics. Furthermore, some new constructions of the

functions satisfying strict avalanche criterion are proposed in Chapter 4. Also

two known constructions, by Jennifer Seberry, Xian-Mo Zhang [7], are given in

an alternative notation. In Chapter 5, some statistical results are presented,

and three important observations are given. These observation will be proved

for any n in our further studies.
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[6] Sağdıçoğlu S., Cryptological viewpoint of Boolean functions, M. Sc. The-

sis, The Department of Mathematics, Middle East Technical University,

Ankara, Turkey, 2003.

[7] Seberry J. and Zhang X.M., Highly Nonlinear 0-1 Balanced Boolean

Functions Satisfying Avalanche Criterion, Advances in Cryptology -

39



AUSCRYPT’92 Proceedings, Lecture Notes in Computer Science 718.

Springer-Verlag, 1993.

[8] Siegenthaler T., Correlation-immunity of nonlinear combining functions

for cryptographic applications, IEEE Transactions on Information Theory,

IT-30, No. 5: 776-779, 1984.

[9] Webster A.F. and Tavares S.E., On the design of S-boxes, Advances in

Cryptology - CRYPTO’85 ed. H.C. Williams (Lecture Notes in Computer

Science, Springer, Berlin, Heidelberg, Newyork) 218: 523-524, 1985.

40


