
YIELD CURVE ESTIMATION AND PREDICTION

WITH VASIČEK MODEL
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Abstract

YIELD CURVE ESTIMATION AND PREDICTION

WITH VASIČEK MODEL

Bayazıt, Derviş

M.Sc., Department of Financial Mathematics

Supervisor: Assoc. Prof. Dr. Azize Hayfavi

June 2004, 82 pages

The scope of this study is to estimate the zero-coupon bond yield curve of

tomorrow by using Vasiček yield curve model with the zero-coupon bond yield

data of today. The raw data of this study is the yearly simple spot rates of the

Turkish zero-coupon bonds with different maturities of each day from July 1,

1999 to March 17, 2004. We completed the missing data by using Nelson-Siegel

yield curve model and we estimated tomorrow yield curve with the discretized

Vasiček yield curve model.

Keywords: One factor short rate models, Vasiček yield curve, Nelson-Siegel yield

curve, Monte-Carlo method
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Öz

VASIČEK MODELİ İLE VERİM EĞRİSİNİN BUGÜN VE

ERTESİ GÜN İÇİN TAHMİNİ

Bayazıt, Derviş

Yüksek Lisans, Finansal Matematik Bölümü

Tez Yöneticisi: Doç. Dr. Azize Hayfavi

Haziran 2004, 82 sayfa

Bu çalışmanın amacı bugünün kuponsuz verim(tahvil, bono) verisini kulla-

narak, yarının kuponsuz verim eğrisini tahmin etmektir. Bu çalişmada ham veri

olarak, 1-Temmuz-1999 ve 17-Mart-2004 tarihleri arasında günlük olarak elde

edilmiş farklı vadeli kuponsuz tahvil ve bonoların verimleri kullanılmıştır. Ek-

sik veriler Nelson-Siegel verim eğrisi modeli kullanılarak tamamlanmış ve Vasiček

modeli kullanılarak ertesi günün verim eğrisi tahmin edilmiştir.

Anahtar Kelimeler: Tek faktörlü kısa dönem faiz haddi modelleri, Vasiček verim

eğrisi, Nelson-Siegel verim eğrisi, Monte-Carlo metodu
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Öz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Chapter

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 One Factor Interest Rate Models . . . . . . . . . . . . . . . . . . 7

2.1 Merton Model(1973) . . . . . . . . . . . . . . . . . . . . . . . . . 7
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initial point tuple a-ii and discretization fold-2 . . . . . . . . . . 66

x



4.19 Yield Curve Estimation with the Vasiček Model by using constraint-
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Chapter 1

Introduction

In our century the interest rate has an important place in all transactions

that include simply lending and borrowing. However, its importance has risen

with developing and slight stationary economic conditions of the world. The

desire to have foresight for the level of future interest rate has become crucial in

the sense that to know the lending and borrowing rate and not to missprice the

interest rate instruments. As a result, the modelling of interest rate has risen as

a problem. As solution to this problem there have been many models proposed.

Their common feature is that they all model a stochastic problem, i.e. they deal

with uncertainty. The first model in 1973 was proposed by Merton. However, the

pioneering one was suggested by Vasiček in 1977 and in the following years many

other models that are much more analytically untractable has come out. These

stochastic models are mainly classified with respect to the number of factors

which are assumed to have a stochastic evolution in the model.

In this study we will use Vasiček short-rate model among some of the most

fundamental one factor interest-rate models to predict the yield curve of tomorrow

by using today ’s observed yield data. The models taken into account are presented

in Table 1.1. In the second chapter of this study we will present these one factor

short rate models with their solutions. In the following chapter, we will discuss

two different yield curve models: Nelson-Siegel and Vasiček models. The explicit

solution of the Vasiěk model will be presented in Section 3.2. In the last chapter,

the raw data of this study which is the yearly simple spot rates of the Turkish

zero-coupon bonds with different maturities of each day from July 1, 1999 to

1



Merton(1973) drt = α dt + σ dWt

Vasiěk(1977) drt = α(β − rt) dt + σ dWt

Dothan(1978) drt = σ rt dW 0
t

Brennan-Schwartz(1980) drt = (β + α rt) dt + σ rt dWt

Cox-Ingersoll-Ross(CIR)(1985) drt = α(β − rt)dt + σ
√

rtdWt

Ho-Lee (1986) drt = θt dt + σ dWt

Exponential Vasiček(EV) drt = rt[ηt − a log rt] dt + σ rt dWt

Black-Derman-Toy(1990) d(log rt) = [θt +
σ
′

t

σt
log rt]dt + σtdWt

Hull-White- Extended Vasiček(1990) drt = (βt − αt rt) dt + σt dWt

Hull-White Extended CIR(1990) drt = [βt − αtrt]dt + σt
√

rtdWt

Black-Karazinsky(1991) d(log rt) = φt[log µt − log rt]dt + σtdWt

Geometric Brownian Motion(GBM) drt = β rt dt + σ rt dWt

Marsh-Rosenfeld (1983) drt = [β r
−(1−γ)
t + α rt] dt + σ r

γ/2
t dWt

Table 1.1: One Factor Short-Rate Models

March 17, 2004 will be analyzed. Then we will fit a Nelson-Siegel curve to each

of the day in the data set we choose. At the end of the last chapter we will predict

the yield curve of March 17, 2004 by using Vasiček yield curve model in Monte

Carlo method. Before working on these models it is necessary to introduce main

mathematical notions used in these parts of this study.

We will begin with the following assumption.

Assumption 1.1. All the random variables and the stochastic processes are de-

fined on a given complete probability space (Ω,A,P).

Definition 1.1. A filtration IF = (Ft)0≤ t≤T is an increasing sequence of sub-

sigma algebras of A such that Fs ⊆ Ft, for s<t.

IF is used to model a flow of information. As time passes, an observer knows

more and more detailed information. In mathematical sense, as t increases Ft as

partition of Ω becomes finer.

Definition 1.2. A Brownian motion (Wt)t≥ 0 is a real-valued, continuous stochas-

tic process with the following defining properties:

(1) Independent increments: ∀ s ≤ t, Wt − Ws is independent of the sub-σ

algebra generated by {Ws, s ≤ t}, that is denoted by Fs = σ (Wu, u ≤ s) .

2



(2) Stationary increments: ∀ s ≤ t, Wt −Ws and Wt−s −W0 have the same

probability law.

(3) Continuity of paths: Wt(ω) is a continuous function of t.[1]

Remark 1.3. Since the mathematical foundation of Brownian motion as a stochas-

tic process was discussed by N.Wiener in 1931, this process is also called Wiener

process.

Theorem 1.4. If (Wt)t≥ 0 is a Brownian motion, then Wt − W0 is a normal

random variable with mean c t and variance σ2 t, where c and σ are constant real

numbers [1].

Remark 1.5. A Wiener process is standard if

• W0 = 0,

• E(Wt) = 0,

• E[W 2
t ] = t.

From now on,we will surly consider standard Brownian motion without especially

mentioning the word ”standard”.

Definition 1.6. The collection IF={Ft, t ∈ [0, T ]} with Ft=σ{Ws, s ≤ t, N},
where N is the set of all P-negligible sets of ω is called the natural filtration of

W or the filtration generated by W .

Definition 1.7. A real-valued continuous stochastic process is an (Ft)-Brownian

motion if it satisfies :

• ∀ t ≥ 0, Wt is Ft-measurable.

• ∀ s ≤ t, Wt − Ws is independent of the σ-algebra Fs.

• ∀ s ≤ t, Wt − Ws and Wt−s − W0 have the probability law.

Remark 1.8. It is obvious that an Ft - Brownian motion is a Brownian motion

with respect to its natural filtration.

3



The following notion is crucial for the characterization of arbitrage-free mar-

ket, option pricing and hedging.

Definition 1.9. A stochastic process (Mt)t≥ 0 adapted to (Ft)t≥ 0 is martingale if

for any t it is integrable, i.e. E (|Mt|) < +∞ and for any s ≤ t E (Mt|Fs) = Ms

a.s.

Remark 1.10. Definition 1.9 implies E(Mt) = E(M0) for any t.

Definition 1.11. A zero coupon bond(T -bond) with maturity date T is a con-

tract which guarantees the holder 1 unit of money to be paid on the date T . The

price at time t of a bond with maturity T is denoted by P (t, T ).

Assumption 1.2. We assume the following.

• There exists a (frictionless) market for T -bonds for every T > 0.

• The relation P (t, t) = 1 holds for all t.

• For each fixed t, the bond price P (t, T ) is differentiable with respect to

maturity time T .

• For a fixed value of t, P (t, T ) is a smooth function of T .

• For a fixed maturity T , P (t, T ) is a stochastic process. This process gives

the prices, at different times, of the bond for a fixed maturity T .

Note that written payment value, equal to 1 unit, on the contract is known

as the principal value or face value.

Suppose we are standing at time t, and let us fix two other points, S and T ,

with t < S < T . Now, let us write a contract at time t which will allow us to have

a deterministic rate of return on the interval [S, T ] determined at the contract

time t. This is achieved as follows [2].

1. At time t we sell one S-bond. This will give us P (t, S) unit of money.

2. We buy with this income P (t,S)
P (t,T )

T -bonds resulting a net investment zero at

time t.

4



3. At time S the S-bond matures, therefore we pay out one unit of money.

4. At time T the T -bonds mature at one unit of money a piece, thus we receive
P (t,S)
P (t,T )

units of money.

The above transactions can be summarized as follows: We contracted at time

t, to make an investment of one unit of money at time S, that is guaranteing a

yield of P (t,S)
P (t,T )

at time T . Therefore, we contracted a riskless rate at time t,which

is valid on the future period [S, T ]. This rate is called as a forward rate.

Definition 1.12. The following definitions are the implications of above con-

struction.

1. The simple forward rate for [S, T ] contracted at t is defined as

L(t; S, T ) = −P (t, T ) − P (t, S)

(T − S)P (t, T )
.

2. The simple spot rate for [S, T ], is defined as

L(S, T ) = − P (S, T ) − 1

(T − S)P (S, T )
.

3. The continuously compounded forward rate for [S, T ] contracted at t is

defined as

R(t; S, T ) = − log P (t, T ) log P (t, S)

T − S
.

4. The continuously compounded spot rate, R(S, T ), for the period [S, T ] is

defined as

R(S, T ) = − log P (S, T )

T − S
.

5. The instantaneous forward rate with maturity T , contracted at t, is defined

as

f(t, T ) = −∂ log P (t, T )

∂T
.

6. The instantaneous short rate at time t is defined by

r(t) = f(t, t).

5



Remark 1.13. The spot rates are forward rates where the time of contracting

coincides with the start of the interval over which the interest rate is effective,i.e.

t = S.

The first hypothesis of this study is that all the work being done is in a filtered

probability space (Ω, A, P, (Ft)0≤ t≤T ), where (Ft)0≤ t≤T is the natural filtration

of a standard Brownian motion (Wt)0≤ t≤T and that FT = A.

Definition 1.14. e
∫ t

0 rs ds is called as discount factor, where rt is an adapted

process of short rate satisfying
∫ T

0
|rt| dt < ∞, almost surely. rt, itself as being

short rate, provides a return equal to rtdt on the period (t, t + dt].

In order to guarantee that the bond market is arbitrage-free the following

fundamental hypothesis is made:

There is a probability P* equivalent to P, under which, for all real valued u ∈
[0, T ], the process

(

P̃ (t, u)
)

0≤t≤u
which is defined by

P̃ (t, u) = e−
∫ t

0 rs ds P (t, u)

is a martingale.

Definition 1.15. P* called as risk neutral probability is defined by

dP* = LT dP,

with density LT = exp(
∫ T

0
qs dWs − 1

2

∫ t

0
q2
s ds) a.s., where qs is an adapted pro-

cess such that
∫ T

0
q2
s ds < ∞ a.s..[1]

The martingale property under P* allows to obtain,

P̃ (t, u) = E∗
(

P̃ (u, u)|Ft

)

= E∗
(

e−
∫ u

0 rs ds|Ft

)

and when the discounting is eliminated, the following basic equation is obtained,

P (t, u) = E∗
(

e−
∫ u

t
rs ds|Ft

)

, where E∗ denotes expectation under P*.

6



Chapter 2

One Factor Interest Rate

Models

In this chapter we will present some of the most famous one factor short-

rate models. The stochastic evolution of short-rate models is identified with the

following general stochastic differential equation;

drt = αt(βt − rt)dt + σt r
γ
t dWt, (2.0.1)

where αt, βt, σt, are the deterministic functions of time, and W is a Brownian

motion.

2.1 Merton Model(1973)

In his work, Merton offered the following stochastic evolution

drt = α dt + σ dWt ,

where α and σ are positive constants. A simple solution is obtained for r.

7



rt = r0 +

∫ t

0

α ds +

∫ t

0

σ dWs

= r0 + αt + σWt

=⇒ rt = ru + α(t − u) + σ(Wt − Wu)

In this model r follows a Gaussian distribution which implies that there is a

positive probability that short rate r can take a negative value.

2.2 Vasiček Model(1977)

One of the earliest stochastic models of the term structure was developed by

Vasiček in 1977. His model is based on the evolution of an unspecified short-term

interest rate. He supposes that r satisfies the following stochastic differential

equation

drt = α(β − rt) dt + σ dWt (2.2.2)

where β, α and σ are non-negative constants and rt is the current level of interest

rate [1]. The parameter β is the long run normal interest rate. The model exhibits

mean reversion, which means that if the interest rate is above the long run mean

(r > β), then the drift becomes negative so that the rate will be pushed to be

closer to the level β on average. Likewise, if the rate is less than the long run

mean, (r < β), then the drift remain positive so that the rate will be pushed to

the level β. The coefficient α > 0 determines the speed of pushing the interest

rate towards its long run normal level. Such mean reversion assumption agrees

with the economic phenomenon that interest rates appear over time to be pulled

back to some long run average value.That is, when the interest rates increase, the

economy slows down, and there is less demand for loans and a natural tendency

for rates to fall([19], [14]). The opposite case can be argued in a similar way.

To obtain an explicit formulae for rt let us define a new process Xt where

Xt = rt − β. Therefore, Xt is the solution of the following stochastic differential

equation

dXt = −α Xt dt + σ dWt (2.2.3)

8



which implies that Xt is an Ornstein-Uhlenbeck process. To solve this process let

Yt = Xt e
α t. By integration-by-parts formulae

Yt = x0 +

∫ t

0

Xs d(eα s) +

∫ t

0

eα s dXs+ < X, eα. >t

By differentiating both sides,

dYt = Xtα eα t dt + eα t dXt + d < X, eα. >t
︸ ︷︷ ︸

0
︸︷︷︸

Since eα t is a deterministic function.

= aXt e
α tdt + eα t[−α Xt dt + σ dWt]

= σ eα t dWt

By integrating and doing back substitution we get

Yt = x0 +

∫ t

0

σ eα s dWs

Xt = x0e
−α t + σ e−α t

∫ t

0

eα sdWs

rt − β = (r0 − β)e−α t + σ e−α t

∫ t

0

eα s dWs

Therefore,

rt = r0e
−α t + β(1 − e−α t) + σ e−α t

∫ t

0

eα sdWs

For u ≤ t,

rt = r0e
−α t + βα

∫ t

0

e−α(t−s)ds + σ

∫ t

0

e−α(t−s)dWs

= r0e
−α t + βα

∫ t

u

e−α(t−s)ds + βα

∫ u

0

e−α(t−s)ds

+σ

∫ t

u

e−α(t−s)dWs + σ

∫ u

0

e−a(t−s)dWs (2.2.4)
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Also,

ru = r0e
−α u + βα

∫ u

0

e−α(u−s)ds + σ

∫ u

0

e−α(u−s)dWs

That is,

βα

∫ u

0

e−α(t−s)ds + σ

∫ u

0

e−α(t−s)dWs = eα(u−t)(ru − r0e
−α u) (2.2.5)

By using equation (2.2.6) we get the t-u expression of rt from the equation (2.2.4).

rt = ru e−α(t−u) + αβ

∫ t

u

e−α(t−s)ds + σ

∫ t

u

e−α(t−s)dWs (2.2.6)

Vasiček model besides its advantages such as being analytically tractable, it has

several shortcomings. Since the short rate is normally distributed, for every t

there is a positive probability that r is negative and this is unreasonable from an

economic point of view. Because the nominal interest rate can not fall below zero

as long as people can hold cash; it can become stuck at zero for long periods,

however as when prices fall persistently and substantially.

Another drawback of the Vasiček model is that it assumes γ = 0. This

assumption implies the conditional volatility of changes in the interest rate to be

constant, independent on the level of r.

2.3 Dothan Model (1978)

In 1978, in the original paper of Dothan a driftless geometric Brownian motion

is proposed as short rate process under the objective probability measure P:

drt = σ rt dWt , r(0) = r0 , (2.3.7)

where r0 and σ are positive constants [9]. Then the following solutions are ob-

tained for r.

rt = r0 +

∫ t

0

σ rs dWs.
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Let f(x) = log x. Then f ′(x) = 1
x

and f
′ ′

(x) = − 1
x2 . By Ito Lemma,

logrt = logr0 +

∫ t

0

1

rs

rs σ dWs −
1

2

∫ t

0

1

r2
s

r2
s σ2 ds

= logr0 +

∫ t

0

σ dWs −
1

2

∫ t

0

σ2 ds

= logr0 + σ Wt −
1

2
σ2 t

⇒ rt = r0 exp{− 1

2
σ2 t + σWt}

For u ≤ t,

logru = logr0 +

∫ u

0

σ dWs −
1

2

∫ u

0

σ2 ds

logrt = log r0 +

∫ t

u

σ dWs +

∫ t

0

σ dWs −
1

2

∫ t

u

σ2 ds − 1

2

∫ u

0

σ2 ds

= logru +

∫ t

u

σ dWs −
1

2

∫ t

u

σ2 ds

= logru + σ(Wt − Wu) −
1

2
σ2(t − u)

⇒ rt = ru exp{− 1

2
σ2 (t − u) + σ(Wt − Wu)}

2.4 Brennan-Schwartz Model (1980)

In their work they offered a model to analyze the convertible bonds [5]. They

proposed following stochastic differential equation,

drt = (β + α rt) dt + σ rt dWt (2.4.8)

where α,β and σ are positive constants. Equation 2.4.8 is a linear nonhomoge-

neous stochastic differential equation in the form of
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drt = [βt + αt rt] dt + [γt + δt rt] dWt

where βt = β, αt = α, δt = 0, σt = σ. To solve this SDE first consider the

homogenous case in which β = 0.

Let,

drt = α rt dt + σ rt dWt

⇒ rt = r0 +

∫ t

0

α rs ds +

∫ t

0

σ rs dWs

Let f(x) = log x. Applying Ito formula

log rt = log r0 +

∫ t

0

α ds +

∫ t

0

σ dWs −
1

2

∫ t

0

σ2 ds

= log r0 + α t + σ Wt −
1

2
σ2 t

Then the homogeneous solution of SDE (2.4.8) is

rt = r0 e(α− 1
2
σ2) t+σ Wt

︸ ︷︷ ︸

φt

.

Now, let ηt = 1
φt

and define ζt = ηt rt. Let f(x) = ex and define

Xt = −(α − 1

2
σ2) t − σ Wt

⇒ dXt = −(α − 1
2
σ2) dt − σ dWt

By Ito Lemma,
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dηt = ηt dXt +
1

2
ηtσ

2
t dt

= ηt[−(α − 1

2
σ2) dt − σ dWt] +

1

2
ηtσ

2 dt

= ηt[(−α + σ2) ds] − σηt dWt (2.4.9)

By integration-by-parts,

dζt = ηt drt + rt dηt + d < η, r >t

= ηt[(β + α rt) dt + σ rt dWt] + rt[ηt(−α + σ2) dt − σηt dWt]

−[σ2 rt ηt dt]

= ηt β dt (2.4.10)

By integrating both sides of equation 2.4.10

ζt = ζ0 + β

∫ t

0

ηs ds,

where ζ0 = r0.Therefore, rt is

rt = φt r0 + φtβ

∫ t

0

ηs ds

= e(α− 1
2
σ2) t+σ Wtr0 + e(α− 1

2
σ2) t+σ Wtβ

∫ t

0

ηs ds

= e(α− 1
2
σ2) t+σ Wtr0 +

∫ t

0

e(α− 1
2
σ2) (t−s)+σ (Wt−Ws)β ds (2.4.11)

For u ≤ t,

rt = e(α− 1
2
σ2) (t−u)+σ (Wt−Wu)ru +

∫ t

u

e(α− 1
2
σ2) (t−s)+σ (Wt−Ws)β ds
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2.5 Cox-Ingersoll-Ross (CIR) Model(1985)

An intriguing case of a non-linear stochastic differential equation can be de-

fined as

dXt = (θtXt + γt)dt + υt

√

XtdWt , X0 = x0. (2.5.12)

A process following such dynamics is traditionally referred to as square-root pro-

cess. In a common sense, square-root processes are naturally linked to non-central

χ-square distributions.One of the major examples of models based on this dynam-

ics are the Cox, Ingersoll and Ross instantaneous short rate model in which short

rate process r satisfies a simplified version of equation (2.5.12) producing strictly

positive instantaneous short rate process.

The model formulation is

drt = α(β − rt)dt + σ
√

rtdWt , r(0) = r0 (2.5.13)

where α, β, σ and r0 are positive constants. The condition 2αβ ≥ σ2 provides the

positivity of r. It can be shown that equation (2.5.13) admits a unique solution

that is positive, but we do not have an explicit form for it [22].

2.6 Ho-Lee Model(1986)

Ho and Lee pioneered a new approach by showing how an interest rate model

can be designed so that it is automatically consistent with any specified initial

term structure [2].

drt = θt dt + σ dWt (2.6.14)

rt = r0 +

∫ t

0

θs ds +

∫ t

0

σ dWs

= r0 +

∫ t

0

θs ds + σ Wt (2.6.15)

rt = ru +

∫ t

u

θs ds + σ[Wt − Wu] (2.6.16)
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2.7 Exponential Vasiček Model(EV)

EV is a lognormal model in which interest rate r satisfies the following stochas-

tic differential equation

drt = rt[ηt − a log rt] dt + σrt dWt.

A natural way of obtaining a lognormal model is to assume that the logarithm

of r follows an Ornstein-Uhlenbeck process y under the the risk neutral measure

P*. Here, y is defined by the following stochastic differential equation

dyt = [Θ − ayt] dt + σ dWt (2.7.17)

where Θ, a and σ are positive constants and y0 is a real number [18]. Therefore,

to solve the 2.7.17 , it is convenient to obtain an Ornstein-Uhlenbeck process at

first hand. So, applying the Ito Lemma for f(x) = log x and putting yt = log rt,

we get

log rt = log r0 +

∫ t

0

1

rs

rs[η − a log rs] ds + σ dWs

+
1

2

∫ t

0

(
−1

rs

)σ2r2
s ds

= log r0 +

∫ t

0

[(η − 1

2
σ2) − a log rs] ds +

∫ t

0

σ dWs

that is

yt = y0 +

∫ t

0

[(η − 1

2
σ2) − ays] ds +

∫ t

0

σ dWs

we get,

dyt = [(η − 1

2
σ2) − ayt] dt + σ dWt (2.7.18)

We can express equation 2.7.18 as

dyt = [Θ − ayt] dt + σ dWt, (2.7.19)
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where Θ = η − 1
2
σ2. If we put β = Θ

a
, a = α and Xt = yt − β we get

dXt = −α Xt dt + σ dWt.

The solution of this SDE is

Xt = x0e
−α t + σ e−α t

∫ t

0

eα sdWs.

That is,

yt − β = (y0 − β)e−α t + σ e−α t

∫ t

0

eα s dWs

yt = y0e
−α t + (1 − e−α t)β + σ e−α t

∫ t

0

eα s dWs

By replacing yt with log rt we get

rt = exp{log r0e
−a t +

Θ

a
(1 − e−a t) + σ e−a t

∫ t

0

ea s dWs}

For u ≤ t,

yt = y0e
−α t + βα

∫ t

0

e−α(t−s)ds + σ

∫ t

0

e−α(t−s)dWs (2.7.20)

yt = yu e−α(t−u) + αβ

∫ t

u

e−α(t−s)ds + σ

∫ t

u

e−α(t−s)dWs (2.7.21)

By replacing yt with log rt we get

rt = exp{log rue
−α(t−u) + αβ

∫ t

u

e−α(t−s)ds + σ

∫ t

u

e−α(t−s)dWs}

That is,

rt = exp{log rue
−a(t−u) + Θ

∫ t

u

e−a(t−s)ds + σ

∫ t

u

e−a(t−s)dWs} (2.7.22)
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2.8 Black-Derman-Toy Model (1990)

In their article, Black, Derman and Toy proposed a discrete time approach of

interest rate modelling [3]. The continuous time equivalent of their model was

expressed as a stochastic differential equation which can be shown to be [10]

d(log rt) = [θt +
σ

′

t

σt

log rt]dt + σtdWt. (2.8.23)

In this model log rt is mean reverting. The function σt is chosen to make the

model consistent with the term structure of spot rate volatilities and may not

give reasonable values for the future short rate volatility. The model has the

disadvantage that bond prices can not be determined analytically.

d logrt = θt dt + σ dWt (2.8.24)

When we integrate, we get the following result;

logrt = logr0 +

∫ t

0

θs ds +

∫ t

0

σ dWs

= logr0 +

∫ t

0

θs ds + σ Wt

⇒
rt = r0 exp{

∫ t

0

θs ds + σ Wt}

For u ≤ t

rt = ru exp{
∫ t

u

θs ds + σ(Wt − Wu)}

2.9 Hull-White Extended Short Rate Models (1990)

A number of authors have proposed one factor models of the term structure

in which the short rate, r, follows a mean reverting process of the form

drt = α(β − r)dt + σ rγdWt , (2.9.25)
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where α, β, σ and γ are positive constants and W is the Wiener Process. In these

models, the interest rate r, is pulled toward to a long term interest rate level β

with rate α.

The condition of γ = 0 is considered by Vasiček. As we explained in section

2.2, besides being analytically tractable, this model has a fundamental drawback

that the short term interest rate, r, can become negative. On the other hand, CIR

considered an alternative where γ = 1/2 which results nonnegative r. However,

CIR case is not analytically tractable.

It is reasonable to anticipate that in some situations the market’s expectations

about future interest rates involve time dependent parameters. In other words,

the drift and diffusion terms can be defined as the functions of time as well as

being functions of r. The time dependence can arise from the cyclical nature

of the economy, expectations concerning the future impact of monetary policies,

and expected trends in other macroeconomic variables. In their article Hull and

White extend the model in (2.9.25) to reflect this time dependence. They add a

time dependent drift, θt to the process for r, and allow both the reversion rate,

α, and the volatility factor, σ, to be functions of time. This leads to the following

model for r:

dr = [θt + αt(β − rt)]dt + σtr
γ
t dWt (2.9.26)

This can be regarded as a model in which a drift rate, θt, is imposed on a variable

that would otherwise tend to revert to a constant level β. Since (2.9.26) can be

expressed as

dr = αt[
θt

αt

+ β − rt]dt + σtr
γ
t dWt (2.9.27)

it can also be regarded as a model in which the reversion level is a function, θt

αt
+β

of time.

2.9.1 Hull-White- Extended Vasiček Model

For γ = 0 and βt = θt + βαt from (2.9.26) Hull-White proposed the following

model,

drt = (βt − αt rt) dt + σt dWt ,
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where βt, αt and σt are time dependent deterministic functions [11]. For the

solution of this stochastic differential equation we define Kt =
∫ t

0
αu du. That is,

K ′
t = αt. Then, we multiply both sides of the equation with eKt and take the Ito

differential of both sides with respect to t.

That is,

d(eKtrt) = eKtK ′
trt dt + eKt drt

= eKtαtrt dt + eKt [(βt − αtrt) dt + σt dWt]

= eKt(βt dt + σt dWt) (2.9.28)

when we integrate both sides of equation 2.9.28 we get

eKtrt = r0 +

∫ t

0

eKsβs ds +

∫ t

0

eKsσs dWs, (2.9.29)

that is,

rt = e−Ktr0 +

∫ t

0

e−(Kt−Ks)βs ds +

∫ t

0

e−(Kt−Ks)σs dWs

To generalize this result for any u ≤ t we can make the following computations:

ru = e−Kur0 +

∫ u

0

e−(Ku−Ks)βs ds +

∫ u

0

e−(Ku−Ks)σs dWs

rt = e−Ktr0 +

∫ t

0

e−(Kt−Ks)βs ds +

∫ u

0

e−(Kt−Ks)βs ds

+

∫ t

u

e−(Ku−Ks)σs dWs +

∫ u

0

e−(Kt−Ks)σs dWs

rt = e−Ktr0 +

∫ t

u

e−Kt+Ksβs ds +

∫ t

u

e−Kt+Ksσs dWs + e−Kt+Ku(ru − e−Kur0)

= e−(Kt−Ku)ru +

∫ t

u

e−(Kt−Ks)βs ds +

∫ t

u

e−(Kt−Ks)σs dWs (2.9.30)
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2.9.2 Hull-White Extended CIR Model

For γ = 0.5 and βt = θt + βαt from (2.9.26), Hull and White in the same

article proposed [11]the extension of the CIR model based on the same idea of

considering time dependent coefficients of their Vasiček extension. The short rate

dynamics are then given by the following stochastic differential equation

drt = [βt − αtrt]dt + σt

√
rtdWt , (2.9.31)

where α, β, and σ are deterministic functions of time. Such an extension is not

analytically tractable. However, a simple version of (2.9.31) that turns out to

be analytically tractable has been proposed by Jamshidian in 1995. He assumed

that, for each t, the ratio βt/σ
2
t is equal to a positive constant δ, which must be

greater than 1/2 to ensure that the origin is inaccessible.

2.10 Black-Karazinsky Model (1991)

In their original work, Black and Karazinsky proposed a mean reverting log-

normal short rate model,

d(log rt) = φt[log µt − log rt]dt + σtdWt , (2.10.32)

where µt is the target rate, φt is the mean reversion and σt is the local volatility

in the expression for the local change in log rt [4]. They assumed these time

dependent deterministic functions to be inputs while they looked for the yield

curve, as the output of their model. While we are solving equation (2.10.32), for

the computational and traditional purposes, we will assume that αt = φt and

βt = φt log µt.

dlogrt = (βt − αt logrt) dt + σt dWt (2.10.33)

Let Yt = logrt and define a new deterministic function Kt as

Kt =

∫ t

0

αs ds
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and,

K ′
t = αt.

Let ζt = eKtYt.

d(ζt) = eKtK ′
tYt dt + eKt dYt

= eKtαtYt dt + eKt((βt − αtYt) dt + σt dWt)

= eKt(βt + σt dWt) (2.10.34)

Integrate both sides of (2.10.34)

eKtYt = Y0 +

∫ t

0

eKsβs ds +

∫ t

0

eKsσt dWs

⇒ Yt = e−KtY0 +

∫ t

0

e−(Kt−Ks)βs ds +

∫ t

0

e−(Kt−Ks)σt dWs

For u ≤ t,

Yt = e−(Kt−Ku)Yu +

∫ t

u

e−(Kt−Ks)βs ds +

∫ t

u

e−(Kt−Ks)σt dWs

If we replace logrt with Yt in the last equation

logrt = e−(Kt−Ku) logru +

∫ t

u

e−(Kt−Ks)βs ds +

∫ t

u

e−(Kt−Ks)σt dWs (2.10.35)

2.11 Geometric Brownian Motion (GBM) Model

When the noise of the interest rate process rt is introduced we enlarge the

number of multiplicative terms in the random increment dWt. That is, we scale

dWt with σ rt, so that return of interest rate has a constant standard deviation

[20]. This process is called as geometric Brownian motion and it is given with

the following stochastic differential equation.

drt = β rt dt + σ rt dWt (2.11.36)
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rt = r0 +

∫ t

0

β rs ds +

∫ t

0

σ rs dWs (2.11.37)

The explicit solution satisfying above SDE can easily be derived by applying Ito

Lemma. Let f(x) = logx.

logrt = logr0 +

∫ t

0

1

rs

drs −
1

2

∫ t

0

1

r2
s

d < r, r >s

= logr0 +

∫ t

0

1

rs

β rs ds +

∫ t

0

1

rs

σ rs dWs −
1

2

∫ t

0

1

r2
s

r2
s σ2 ds

= logr0 +

∫ t

0

β ds +

∫ t

0

σ dWs −
1

2

∫ t

0

σ2 ds

= logr0 + (β− 1

2
σ2)t + σWt

⇒ rt = r0e
(β− 1

2
σ2)t+σWt

For u ≤ t,

logrt = logru + (β − 1

2
σ2)(t − u) + σ(Wt − Wu)

⇒ rt = rue
(β− 1

2
σ2)(t−u)+σ(Wt−Wu) (2.11.38)

2.12 Marsh-Rosenfeld Model(1983)

In 1975 constant elasticity of variance (CEV)process was studied in the stock

price context by Cox and in 1976 by Black, which can be expressed in the short

rate context as

drt = α rtdt + σ rγ
t dWt ,

where γ ≥ 0. The constant elasticity of variance process includes, in turn, the

square root and normal processes, and as a limiting case, the lognormal process.

In their article Marsh and Rosenfeld used a generalized case of the CEV
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diffusion process as

drt = [β r
−(1−γ)
t + α rt] dt + σ r

γ/2
t dWt , (2.12.39)

where γ ≥ 0. If γ = 1, (2.12.39) turns into square root process with mean

reverting drift [13]. If γ = 0, it becomes,

drt = [
β

rt

+ α rt] dt + σ dWt .

Equation (2.12.39) is reducible to affine form as

dyt = [c + byt] dt +
√

a′yt dWt ,

where
y = r2−γ

a
′

= 0.5σ(2 − γ)2

c = (2 − γ)(β + 0.5σ(1 − γ))

b = α(2 − γ) .

Marsh and Rosenfeld estimate the model on a time series of T-bill data using

maximum likelihood. They are unable to reach strong conclusions, but notice

that the likelihood is higher when γ = 2 than when γ takes lower values [20].
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Chapter 3

Yield Curve Modelling

There are many methods which have been used to model the zero-coupon

yield curve. We can put them into three categories; spline based models, function

based models, and lastly stochastic models. The idea of spline based models is

interpolating a spline function from the pre-known points. These points can

be given as a pair (time to maturity, yield of zero-coupon bond at that time to

maturity). The most famous models of this type are McCulloch and FNZ(Fischer,

Nychka and Zervos) [16].

The most popular function based models are Nelson-Siegel [23], and Svens-

son models [15]. In fact, Svensson model is an extension of Nelson-Siegel model.

In Nelson-Siegel model a relatively simple function is postulated for the instan-

taneous forward curve. Svensson extended this work by altering the functional

form of the instantaneous forward curve suggested by Nelson-Siegel. In this study,

however, we will be concentrated in Nelson-Siegel model, which is less complex

in the sense of number of parameters.

The stochastic modelling of zero-coupon yield curve depends on interest rate

modelling, especially on short-rate modelling. The idea is obtaining an explicit

pricing formula for the zero-coupon bond and then extracting the yield from that

formula by using the following fundamental equation:

P (t, T ) = e−(T−t)R(t,T ) ,

where R(t, T ) is the yield of zero-coupon bond on the given period [t, T ]. In

the following sections of the chapter we will obtain the explicit zero-coupon bond
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pricing and yield curve formulas for Vasiček short-rate model.

3.1 Nelson-Siegel Yield Curve Model

Nelson and Siegel proposed the instantaneous forward rate as a solution of a

second order differential equations [15]. Thus, they give the following solution for

the instantaneous forward rate:

f(θ) = β0 + β1 e−
θ
τ + β2

[
θ

τ
e−

θ
τ

]

, (3.1.1)

where θ = T − t. Since yield on the period [t, T ] is the average of sum of the rates

which are active on the period [t, t + dt], by this simple intuition, yield R(θ) can

be defined as the integral of 3.1.1. That is,

R(t, T ) =
1

T − t

∫ T

t

f(s, T )ds (3.1.2)

=
1

T − t

∫ T

t

(

β0 + β1 e−
(T−s)

τ + β2

[
(T − s)

τ
e−

(T−s)
τ

])

ds

= β0 + (β1 + β2)
[1 − e−

T−t
τ ]

T−t
τ

− β2 e−
T−t

τ

= β0 + (β1 + β2)
[1 − e−

θ
τ ]

θ
τ

− β2 e−
θ
τ

=
1

θ

∫ θ

0

(

β0 + β1 e−
s
τ + β2

[s

τ
e−

s
τ

])

ds

=
1

θ

∫ θ

0

f(s)ds

= R(θ) (3.1.3)

Although it is easy to see the last equality, we showed it to be consistent for the

future notations of yield.

Now let us analyze the structure of the yield and forward curves. The limiting
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value of R(θ) as θ approaches to infinity is β0 and as θ gets small values it is

(β0 + β1), which are necessarily the same as for the forward rate function since

R(θ) is just an averaging of f(θ). Now, let us separate the forward rate function

into three components: long-term, medium-term and lastly short-term. The

long-term component is identified by the asymptotic value, β0, of the function.

The medium-term is identified by the functional component θ
τ
e−

θ
τ and for the

designation of the short-term e−
θ
τ is used.

The long term component is a constant larger than zero. Thus, it can not take

zero value in the limit. The medium-term takes zero value at the starting point

zero. This indicates that it is not short-term and since it decays to zero in the

limit, therefore it is not long-term. As it is obvious that short-term curve has the

largest negative slope resulting the fastest decay among all.It takes monotonically

and asymptotically zero value.

In the model the contributions of these three components are given by β0 for

long-term, β1 for short-term and β2 for medium-term. Here, there are also some

other features of the parameters that we should consider. If β1 is negative the

forward curve will have a positive slope and vice versa. Also, if β2, as being the

identifier of the magnitude and the direction of the hump, is positive, a hump

will occur at τ whereas, if it is negative, a U-shaped value will occur at τ . Thus,

we can conclude that parameter τ which is positive, specifies the position of

the hump or U-shape on the entire curve. As a result, Nelson and Siegel have

proposed that with appropriate choices of weights for these three components, it

is possible to generate a variety of yield curves based on forward rate curves with

monotonic and humped shapes [23].

3.2 Vasiček Yield Curve

In Vasiček model we assume that the process rt satisfies the following stochas-

tic differential equation:

drt = α(β − rt) dt + σ dWt (3.2.4)
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Without repeating the solution for 3.2.4 that we followed in section 2.2 we will just

change the probability measure to risk neutral one because of quite crucial reason.

Unless we study with the risk neutral probability, it is not possible to make ex-

tinct the arbitrage possibilities in bond pricing and we know that the discounted

bond prices have martingale property only under the risk neutral probability,

which satisfies the non-arbitrage condition. With this aim, to change the mea-

sure we will use Girsanov Theorem. We assume a constant process q(t) = −λ,

with λ ∈ IR. Therefore, W̃t = Wt +
∫ t

0
λ ds = Wt + λ t is a standard Brownian

motion under P*. Thus, dWt = dW̃t − λ dt and if we rewrite the equation 3.2.4

with respect to the new probability measure P ∗ we get the following result:

dr(t) = α (β − r(t)) dt + σ
[

dW̃t − λ dt
]

= (α β − α r(t) − λσ) dt + σ dW̃t

= α

(

β − λσ

α
− r(t)

)

dt + σ dW̃t

= α (β∗ − r(t)) dt + σ dW̃t, (3.2.5)

where β∗ = β − λ σ
α

.

The main goal of this section is to obtain the Vasiček bond price formulae, there-

fore the yield curve. We will start with the fundamental equation of bond price,
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with the short rate r given by Equation 3.2.5.

P (t, T ) = E∗
(

e−
∫ T

t
rs ds|Ft

)

= E∗
(

e−
∫ T

t
(rs−β∗+β∗) ds|Ft

)

= e−
∫ T

t
β∗ds E∗

(

e−
∫ T

t
(rs−β∗) ds|Ft

)

= e−β∗(T−t) E∗
(

e−
∫ T

t
X

∗

s ds|Ft

)

(3.2.6)

where X ∗
t = rt−β∗, and Ft is the natural filtration of Wt. Since (X ∗

t ) is a solution

of the diffusion equation with constant coefficients

dXt = −αXt + σ dW̃t , (3.2.7)

by using the homogeneity of 3.2.7 and the Markov property of the solution Xx
t =

x e−α t + σ e−α t
∫ t

0
eα sdW̃s we can write

E∗
(

e−
∫ T

t
X

∗

s ds|Ft

)

= F (T − t,X ∗
t )

= F (T − t, rt − β∗) (3.2.8)

where F is the function defined by F (θ, x) = E∗
(

e−
∫ θ

0 X
x
s ds

)

. Since (Xx
t ) is

Gaussian with continuous paths, we can calculate F (θ, x), explicitly [1].

For the complete calculation of F (θ, x), consider the random variable Y =
∫ θ

0
Xx

s ds ∼ N(µ, σ2) with the mean µ, and the variance σ2. The Laplace trans-

form [17] of Y can be defined therefore,

LY (t) := E
(
e−tY

)
=

∫

R

e−tY dFY (y)

The last integral turns into:
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∫

R

e−tY dFY (y) =
1√

2πσ2

∫

R

e−ty e
−(y−µ)2

2σ2 dy

=
1√

2πσ2

∫

R

e
−2tyσ2

−y2+2µy−µ2

2σ2 dy

=
1√

2πσ2

∫

R

e
−[y2

−(2µ−2σ2t)y+µ2]
2σ2 dy

=
1√

2πσ2

∫

R

e
−[y2

−(2µ−2σ2t)y+(µ−σ2t)2−(µ−σ2t)2+µ2]
2σ2 dy

=
1√

2πσ2

∫

R

e
−(y−(µ−σ2t))2

2σ2
+µ2

−2µσ2t + σ4t2−µ2

2σ2 dy

= e−µt+ σ2

2
t2

∫

R

1√
2πσ2

e
−(y−(µ−σ2t))2

2σ2 dy

= e−µt+ σ2

2
t2 . (3.2.9)

where 1√
2πσ2

e
−(y−(µ−σ2t))2

2σ2 is the density function of the random variable ∼ N(µ−
σ2t, σ2). We need the case of t = 1.

Thus,

E∗
(

e−
∫ θ

0 Xx
s ds

)

= E∗ (
e−Y

)
= e−µ+ σ2

2 = e−E∗(Y )+ 1
2
V ar(Y )

= e−E∗(
∫ θ

0 Xx
s ds)+ 1

2
V ar(

∫ θ

0 Xx
s ds) (3.2.10)
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We have

E∗
(∫ θ

0

Xx
s ds

)

=

∫ θ

0

E∗(Xx
s ) ds

=

∫ θ

0

x e−αs ds

=
x

α
(1 − e−α θ) (3.2.11)

Therefore, when we take the expectation of Xx
t we get zero for the stochastic

part,since
∫ t

0
eα sdW̃s is a continuous Ft -martingale.

V ar

(∫ θ

0

Xx
s ds

)

= Cov

(∫ θ

0

Xx
s ds

∫ θ

0

Xx
s ds

)

For u = t = s

= E∗
(∫ θ

0

Xt dt

∫ θ

0

Xu du

)

− E∗
(∫ θ

0

Xt dt

)

E∗
(∫ θ

0

Xu du

)

=

∫ θ

0

∫ θ

0

E∗ (Xx
t Xx

u) du dt −
∫ θ

0

E∗ (Xx
t ) dt

∫ θ

0

E∗ (Xx
u) du

=

∫ θ

0

∫ θ

0

[E∗ (Xx
t Xx

u) − E∗ (Xx
t ) E∗ (Xx

u)] du dt

=

∫ θ

0

∫ θ

0

Cov (Xx
t Xx

u) du dt (3.2.12)

For the calculation of Cov (Xx
t Xx

u) we write [17],
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Cov (Xx
t Xx

u) = E∗ [(Xx
t − E (Xx

t )) (Xx
u − E (Xx

u))]

= E∗
[

σ2 e−α(t+u)

∫ t

0

eα s dW̃s

∫ u

0

eα s dW̃s

]

= σ2 e−α(t+u) E∗
[∫ t

0

eα s dW̃s

∫ u

0

eα s dW̃s

]

= σ2 e−α(t+u)

∫ t∧u

0

e2α s ds

= σ2 e−α(t+u) e2α(t∧u) − 1

2α
(3.2.13)

For the complete calculation of V ar
(∫ θ

0
Xx

s ds
)

let us insert the result we found in

3.2.13 in 3.2.12. Let us define g(t, u) = Cov(Xx
t , Xx

u). We see that g is symmetric

with respect to line u = t on the region where the integral in 3.2.12 is taken.

Therefore it is enough to evaluate the above integral only for one of the regions
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to calculate V ar
(∫ θ

0
Xx

s ds
)

. Let us chose the region {(t , u) : 0 < u < t}.

V ar

(∫ θ

0

Xx
s ds

)

=

∫ θ

0

∫ θ

0

Cov (Xx
t Xx

u) du dt

= 2

∫ θ

0

∫ t

0

σ2 e−α(t+u) e2α u − 1

2α
du dt

= 2

∫ θ

0

∫ t

0

σ2e−α t eα u − σ2 e−α t e−α u

2α
du dt

= 2

∫ θ

0

[
σ2e−α t eα u

2α2
+

σ2 e−α t e−α u

2α2

]t

0

dt

= 2

∫ θ

0

(
σ2

2α2
+

σ2

2α2
e−2α t − σ2

2α2
2e−α t

)

dt

=
σ2

α2

∫ θ

0

(
1 + e−2α t − 2e−α t

)
dt

=
σ2

α2

[

t − e−2α t

2α
+

2e−α t

α

]θ

0

=
σ2

α2

[

θ − e−2α t

2α
+

2e−α t

α
− 3

2α

]

=
θσ2

α2
− σ2

2α3

[
e−2αθ − 4 e−αθ + 3

]

=
θσ2

α2
− σ2

2α3

[
1 − 2e−αθ + e−2αθ + 2

(
1 − e−αθ

)]

=
θσ2

α2
− σ2

2α3

[(
1 − e−αθ

)2
+ 2

(
1 − e−αθ

)]

=
θσ2

α2
− σ2

α3

(
1 − e−αθ

)
− σ2

2α3

(
1 − e−αθ

)2
(3.2.14)

By replacing 3.2.11 and 3.2.14 into 3.2.10, we get F (θ, x) explicitly. Thus,
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F (θ, x) = E∗
(

e−
∫ θ

0 Xx
s ds

)

= e
x
α

(1−e−α θ)+ θσ2

α2 − σ2

α3 (1−e−αθ)− σ2

2α3 (1−e−αθ)
2

(3.2.15)

Now, we can complete the calculation of bond price.

P (θ) = e−β∗θ e
x
α

(1−e−α θ)+ θσ2

α2 − σ2

α3 (1−e−αθ)− σ2

2α3 (1−e−αθ)
2

= e−β∗θ+ x
α

(1−e−α θ)+ θσ2

α2 − σ2

α3 (1−e−αθ)− σ2

2α3 (1−e−αθ)
2

= e−θ R(θ, r), (3.2.16)

where R(θ, r) can be seen as the average interest rate for the period [t , T ], i.e.

R(θ, r) is the yield of the bond on the given period, and it can be calculated by

inverting the price formula.
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R(θ , r) = −−β∗θ + x
α
(1 − e−α θ) + θσ2

α2 − σ2

α3

(
1 − e−αθ

)
− σ2

2α3

(
1 − e−αθ

)2

θ

= −
−β∗θ + σ2θ

2α2 +
(
1 − e−α θ

) [

− x
α
− σ2

2α3 − σ2

4α3

(
1 − e−α θ

)]

θ

= −
[

−β∗ +
σ2

2α2
− 1

αθ

[
(
1 − e−αθ

)
(

x +
σ2

2α2
+

σ2

4α2

(
1 − e−αθ

)
)]]

= −
[

−β∗ +
σ2

2α2
− 1

αθ

[
(
1 − e−αθ

)
(

(r − β∗) +
σ2

2α2
+

σ2

4α2

(
1 − e−αθ

)
)]]

= β∗ − σ2

2α2
− 1

αθ

[(

β∗ − σ2

2α2
− r

)
(
1 − e−αθ

)
− σ2

4α2

(
1 − e−αθ

)2
]

= R∞ − 1

αθ

[

(R∞ − r)
(
1 − e−αθ

)
− σ2

4α2

(
1 − e−αθ

)2
]

, (3.2.17)

where

R∞ = lim
θ→∞

R(θ, r) = β∗ − σ2

2α2
.
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Chapter 4

Applications

In the first section of this chapter, we are going to present and explain the

data,representing the Turkish zero-coupon bond simple spot rate, that we use

in the following sections. In the second section, we will use Nelson-Siegel yield

curve model to fit the given data. To calibrate the Nelson-Siegel model we are

going to construct a sum of squared errors. Then, we are going to minimize this

function with appropriate constraints and an initial value. After the calibration,

the performance of Nelson-Siegel yield curve will be measured by the value of the

sum of squared errors. In the last section, we are going to use the Vasiček yield

curve to predict the March 17, 2004 yield curve by using the March 16, 2004 data.

4.1 Data Analysis

The data that is used in this study is the Turkish zero-coupon bond simple

rate gathered for several maturities and days. Although the data includes yearly

simple rate information of the zero-coupon bond between July 1, 1999 and March

17, 2004, we will use a set of data starts at May 1, 2001 and ends at March 17,

2004. The reason why we use this set is two fold. Firstly, we want to exclude

the days which are effected by the harsh economic crises of the years,2000 and

2001. The most part of the data occurred during years includes daily disordered

bond simple rate of returns. The second reason is that although the data is for

a long period, it has the problem of having a very short number of bond prices

for a given day. This stems from the fact that the bond market in Turkey is not
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MNO MINO MEAN

July 1, 1999-March 17, 2004 March 17, 2004(21) March 9, 2001(2) 10.9933

July 1, 1999-April 30, 2001 July 9, 1999∗(12) March 9, 2001(2) 7.9542

May 1, 2001-March 17, 2004 March 17, 2004(21) Jul 1, 1999∗(7) 12.8784

Table 4.1: MNO: The maximum number of observations and its day for the given
data set. MINO: The minimum number of observations and its day for the given
data set. ∗: An example from several days.

liquid. The minimum number of observations occurs in March 9, 2001 with 2

observations.The maximum number 21 among all of the daily observations has

occurred in March 17, 2004. The mean of observations for the whole data set is

10.9933. The mean of observations for the data set we have chosen is 12.8784

and the mean of the remaining data from Jul 1, 1999 to April 30, 2001 is 7.9542.

These facts are summarized in the Table 4.1. Since we will fit a yield curve to

the daily observations, we preferred to choose that data set:

· Excluding the day having the minimum number of daily observations.

· Including the day having the maximum number of daily observations.

· Having the highest mean of daily observations.

· Including the most number of days satisfying the above three conditions.

Since the data is a raw data by means of the interest rate information that it

carries out, we worked on it to obtain an appropriate rate for the model based

usage. To express the data for our purpose we used interest rate definitions given

in definition set 1.12. Let us show our calculations, explicitly. First, we used

simple spot rate definition and then the definition of continuously compounded
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spot rate.

L(S, T ) = − P (S, T ) − 1

(T − S)P (S, T )

⇐⇒

P (S, T ) =
1

1 + L(S, T )(T − S)

⇐⇒

R(S, T ) = − log P (S, T )

T − S

Since we are going to fit a yield curve, the data must be in the form of continuously

compounded spot rate. For a numerical example, let us calculate the price of the

zero coupon bond in May 1, 2001 having a yearly simple rate of return 0.7580 with

time to maturity 113 days. Thus, T − S = 113/365 and L(S, T ) = 0.7580. That

is, P (S, T ) = 0.8010 TL. This price coincide with the assumption P (t, t) = 1.

However, the exact price will be 80100 TL. We multiplied the result with 100000

which is the face value of the Turkish zero-coupon bond used in this study. To

evaluate R(S, T ) we use 0.8010. Therefore, R(S, T ) = 0.0018655. This gives a

continuously compounded rate of return of 186.55 TL over 100000 TL.

4.2 Yield Curve Fitting with Nelson-Siegel Model

In section 3.1 we studied the structure of the Nelson-Siegel yield curve model.

In this section we are going to use this model to fit yield curves to the sets of

zero-coupon bond yields for given days.

Let us recall the following yield defining equation 3.1.2:

R(t, T ) =
1

T − t

∫ T

t

f(t, s)ds

37



If we replace forward rate(in fact, instantaneous forward rate) with its definition

given in 1.12 we get

R(t, T ) =
1

T − t

∫ T

t

(

−∂ log P (t, s)

∂ s

)

ds

= − 1

T − t
(log P (t, T ) − log P (t, t))

= − log P (t, T )

T − t
(4.2.1)

Fitting implies calibration of the parameters of the given model. We will minimize

the sum of squared errors(SSEs) to calibrate the parameters of the Nelson-Siegel

model for a given day.

The Nelson-Siegel yield function obtained in Section 3.1 is as follows.

R(θ) = β0 + (β1 + β2)
[1 − e−

θ
τ ]

θ
τ

− β2 e−
θ
τ

with parameters β0, β1, β2, τ . The minimization of objective function SSE is

constructed as follows;

minB

m∑

θ=1

(

R(θ) − R̂(θ)
)2

(4.2.2)

where B = [β0, β1, β2, τ ], R(θ) is observed bond yield of time to maturity θ for a

given day and R̂(θ) is the theoretical bond yield of time to maturity θ for that

day. To do this minimization we use five different sets of constraints and initial

points. Now, let us introduce these sets. We denote by Rlong the yield of the

bond with longest maturity of the given day and by Rshort the yield of the bond

with shortest maturity of the given day.

(a) Binitial = [Rlong, Rshort − Rlong, 1, 50],

β0 > 0,

β0 + β1 = Rshort,

(b) Binitial = [Rlong, Rshort − Rlong, 0.9, 49.9],

β0 > 0,
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β0 + β1 = Rshort,

(c) Binitial = [Rlong, Rshort − Rlong, 1, 50],

β0 > 0,

β0 + β1 < Rshort,

(d) Binitial = [Rlong, Rshort − Rlong, 0.9, 49.9],

β0 > 0,

β0 + β1 < Rshort,

(e) Binitial = [Rlong, Rshort − Rshort,−1, 50],

β0 > 0,

β0 + β1 < Rshort,

β2 < 0,

25 ≤ τ ≤ 800,

Note that in the initial sets first two initial values are default. However, the other

two initials are perturbed on the axis (0.9, 49.9). First, we perturbed 0.1 points in

all directions and we reached to (1, 50) and then we perturbed the axis with 0.01

points in all directions, but we remained on the same axis [24]. By using above

constraint and initial point sets we calibrated the Nelson-Siegel yield function

for all the days in our data set. That is we did 740x5 calibrations: For each of

the day in our data set we repeated the minimization procedure for each of the

constraint and initial point sets.

As a result, for each constraint-initial point set we estimated different param-

eters for a given day and we have chosen the parameters that minimize SSEs for

that day. In the Figures 4.1, 4.2, 4.3 and 4.4 we presented fits of yield curves for

some days. In most of the figures we resulted with a very fine fit. However, this

does not mean that all the yield curve fits for our data set is fine. For example,

in Figure 4.3 the days April 25 and April 26, 2002 fitted yield curves that are

S-shaped and humped, respectively, are not fine.1 Especially, the fit of April 25

is deficient which is mainly resulted from the difficulty of the data. The data

1We are describing being fine empirically since we are going to take into account all of the
Nelson-Siegel fitted curves obtained from the above algorithm.
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Figure 4.1: Fit of Yield Curves

40



0 200 400 600 800
60

80

100

120

140

160

180
DAY: 12−Oct−2001

Y
ie

ld
 

Time to Maturity
0 200 400 600 800

110

120

130

140

150

160

170

180
DAY: 15−Oct−2001

Y
ie

ld
 

Time to Maturity

0 200 400 600 800
120

130

140

150

160

170

180

190
DAY: 16−Oct−2001

Y
ie

ld
 

Time to Maturity
0 200 400 600 800

120

130

140

150

160

170

180

190
DAY: 17−Oct−2001

Y
ie

ld
 

Time to Maturity

Figure 4.2: Fit of Yield Curves
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Figure 4.3: Fit of Yield Curves
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Figure 4.4: Fit of Yield Curves
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with this structure, i.e. data having a U-shape and a hump, can be modelled by

using Svenson model which has two place holder parameters τ1 and τ2, and two

shape identifier parameters β2 and β3.

4.3 Yield Curve Estimation with Vasiček Model

We proved in section 3.2 that for the risk neutral probability Vasiček short

rate satisfies the below stochastic differential equation:

dr(t) = α (β∗ − r(t)) dt + σ dW̃t (4.3.3)

The solution of this SDE is going to be the adapted one to the solution of SDE

2.2.2 given under the objective probability in section 2.2 as:

rt = r0e
−α t + β∗(1 − e−α t) + σ e−α t

∫ t

0

eα sdW̃s,

and for u < t, it is given as

rt = ru e−α(t−u) + β∗ (
1 − e−α(t−u)

)
+ σ

∫ t

u

e−α(t−s)dW̃s, (4.3.4)

From the last solution we see that given ru, the possible values of rt are be-

ing normally distributed. The reason is that the distribution of dW̃s is normal

with mean zero and variance one. Therefore, the integral itself is being nor-

mally distributed and since the remaining part of the equation other than the

stochastic part is deterministic the current distribution of the stochastic part

does not change except its mean and variance. As a result, rt is normally

distributed with mean µr(u, t) = ru e−α(t−u) + β∗
(
1 − e−α(t−u)

)
and variance

σ2
r(u, t) = E∗

[(

σ
∫ t

u
e−α(t−s)dW̃s

)2
]

= σ2
∫ t

u
e−2 α (t−s) ds = σ2

2α

(
1 − e−2 α (t−s)

)
.
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The discretization of rt can now be easily done [25]. That is,

r(ti+1) = µr(ti, ti+1) + σr(ti, ti+1)Zi+1

= e−(ti+1−ti) r(ti) + β∗ (1 − e−(ti+1−ti)) + σ

√

1

2α
(1 − e−2(ti+1−ti))Zi+1

(4.3.5)

where 0 = t0 < t1 < ... < tn are the time points and Zi’s, i = 1...n are the

independent random variables with distribution N(0, 1). Equation 4.3.5 is the

exact discretization of the Vasiček short-rate process. However, a slightly simpler

Euler scheme of the short-rate process can be given as

r(ti+1) = r(ti) + α (β∗ − r(ti))(ti+1 − ti) + σ
√

ti+1 − tiZi+1 (4.3.6)

which entails some discretization error. In the following sections of the chapter

we will measure the performance of both equations while we are simulating the

Vasiček yield function.

In Section 3.2 we obtained the Vasiček yield function. We can rewrite it as

follows.

R(θ , rt) = R∞ − 1

αθ

[

(R∞ − rt)
(
1 − e−αθ

)
− σ2

4α2

(
1 − e−αθ

)2
]

,

where R∞ = limθ→∞ R(θ, r) = β∗ − σ2

2α2 . As R(θ , rt) is a smooth function of

θ, it is a stochastic process of t and its stochastic evolution is determined by

Vasiček short-rate process. Therefore, it is possible to use R(θ , rt) for the future

estimations of yield curve.

The discretization of R(θ , rt) begins with the following stochastic differential

equation.

dR(θ , rt) =

(
1 − e−αθ

)

αθ
drt (4.3.7)

and we write

R(θ , rti+1
) − R(θ , rti) =

(
1 − e−αθ

)

αθ

[
rti+1

− rti

]
(4.3.8)
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The following part of the discretization procedure has two folds:

(1) Replacing rti+1
− rti with

α (β∗ − rti)(ti+1 − ti) + σ
√

ti+1 − tiZi+1

which is obtained by the discretization of drt.

(2) Replacing rti+1
− rti with

(
1 − e−α(ti+1−ti)

)
(β∗ − rti) + σ

√

1

2α
(1 − e−2α(ti+1−ti))Zi+1

which is obtained by the discretization of rt, the solution of equation 4.3.3.

Assume we are in March 16, 2004. We will predict the yield curve of March

17, 2004 with the Vasiček yield curve model by using the information of and

up to March 16, 2004. To make the prediction it is needed to determine the

parameters of R(θ , rt) of March 16, 2004. For this purpose we will fit R(θ , rt) to

the yield data of that day by using the same manner as we followed in Section

4.2 with a slight difference. In Section 4.2 we exactly fit the observed data, but

now we will fit the data that is generated by Nelson-Siegel model for that day.

Why we use this data has the reason that we will have a finer fit since the data

is increased from 20 to 800 and to decrease the optimization difficulty of Vasiček

model for small number of data. For the minimization procedure we proposed a

set of parameters.

This set is formed by P = [α,R∞, σ, r]. For this parameter set we will use

two sets of constraints and for each sets of constraints we will use three differ-

ent sets of initial points. After obtaining the estimated values of parameters

P̂ = [α̂, R̂∞, σ̂, r̂] for each of the constraint-initial point tuple, we will use this

estimated parameters to predict the yield curve of March 17, 2004 by using the

Vasiček yield curve process.

Before all, let us introduce some notations used to express these constraint-

initial point tuples.
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α R∞
a-i 3121926696.79853 8.89897355073613e-017
a-ii 3074582904.78327 57.5663641192539
a-iii 3122613471.94644 57.5663640805259

σ r
a-i 1.02702656015236e-015 -8.67535580071379e-026
a-ii 1.72842316498964e-014 1.66798115571358e-007
a-iii 1.75930947185959e-014 0

Table 4.2: Estimated values of parameters for constraint set a.

• r short; the time series of yield of bonds with time to maturity with 1 day.

We gathered this series in two steps:

1) We fitted the Nelson-Siegel model to each daily data of our data set.

2) We collected the yield of bond with time to maturity 1 day for each day

of data set.

• yield ns(#); the yield of bond with time to maturity # days and obtained

from the Nelson-Siegel model for the day March 16, 2004.

• µ(yield ns); the mean of the bond yield data obtained from the Nelson-

Siegel model for the day March 16, 2004.

• σ(r short); standard deviation of r short.

• β0; the parameter value estimated by the Nelson-Siegel model for March

16, 2004.

• β1; the parameter value estimated by the Nelson-Siegel model for March

16, 2004.

• yield observed long; observed yield value of the bond with the longest time

to maturity in March 16, 2004.

• yield observed short; observed yield value of the bond with the shortest

time to maturity in March 16, 2004.

The followings are the constraint-initial point sets.
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Figure 4.5: Yield Curve Fitting with the Vasiček and Nelson-Siegel Models by
using constraint-initial point tuple set a-i.

(a) 0 < α ; natural condition coming from the hypothesis of Vasiček short rate

model,

0 < R∞ − r ;We expect long-run bond yield to be larger than short rate.

0 < σ ;Positivity of σ comes from the assumptions of Vasiček model.

0 < r < yield ns(1) ; it is logical to put this constraint in the sense that r

is a short rate.

(i) Pinitial = [0.2, µ(yield ns), σ(r short), yield ns(1)]. The result for March

16, 2004 is given in Figure 4.5.

(ii) Pinitial = [0.2, β0, σ(yield ns), β0 + β1]. The result for March 16, 2004

is given in Figure 4.6.

(iii) Pinitial = [0.2, yield observed long, σ(r short), yield observed short].

The result for March 16, 2004 is given in Figure 4.7
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Figure 4.6: Yield Curve Fitting with the Vasiček Model by using constraint-initial
point tuple set a-ii
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Figure 4.7: Yield Curve Fitting with the Vasiček Model by using constraint-initial
point tuple set a-iii
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α R∞
b-i 0.12656452867452 58.0289089496322
b-ii 0.126565260211965 58.0289077616854
b-iii 0.126565348814999 58.0289100190384

σ r
b-i 3.9547173954881e-007 48.9046368960016
b-ii 2.91328054828062e-006 48.904580334028
b-iii -1.34651426739607e-005 48.9045822601353

Table 4.3: Estimated values of parameters constraint set b.

Vasiček Yield Curve is constant in the Figures 4.5, 4.6, 4.7. The reason

of this situation is that for each of the tuples a-i, a-ii, a-iii the estimated

values of σ and r considerably small, and the estimated values of σ is

considerably large. The Table 4.2 summarizes the estimated parameter

values for constraint-initial point tuples, a-i, a-ii, a-iii.

(b) 0.01 < α < 1 ; We give an upper boundary 1 to α since α is the mean

reversion rate.

0.01 < R∞ − r ;

0.01 < σ ;

0.01 < r < yield ns(1).

For this constraint set we also take the below boundary of the conditions

0.01 units perturbed, which provides a different initial direction vector for

the minimization procedure.

(i) Pinitial = [0.2, µ(yield ns), σ(r short), yield ns(1)]. The result for March

16, 2004 is given in Figure 4.8.

(ii) Pinitial = [0.2, β0, σ(yield ns), β0 + β1]. The result for March 16, 2004

is given in Figure 4.9.

(iii) Pinitial = [0.2, yield observed long, σ(r short), yield observed short].

The result for March 16, 2004 is given in Figure 4.10.

After we changed the constraint-initial point tuples, we received better fits

of Vasiček yield curve to the yield data set of March 16, 2004. The Table
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a-i b-i
fold1 14.385093067632 17.6622167220191
fold2 14.385093067632 17.4400854139305

Table 4.4: Sum of Squared Errors-SSEs of Vasiček Yield Curve Estimations: given
for each initial i point tuple and folds. Nelson-Siegel SSEs is 5.01802205688122.

a-ii b-ii
fold1 50.7273031357703 17.6622419124489
fold2 14.3850930738333 17.4401076514605

Table 4.5: Sum of Squared Errors-SSEs of Vasiček Yield Curve Estimations: given
for each initial ii point tuple and folds. Nelson-Siegel SSEs is 5.01802205688122.

4.3 summarizes the estimated parameter values for constraint-initial point

tuples, b-i, b-ii, b-iii.

To estimate the yield curve of tomorrow we will apply Monte-Carlo Method by

using the discretized Vasiček yield function. We will produce a sample of 1000

throws. Then, we will take the mean of the sample. This is going to be our

estimator for the yield of the bond with time to maturity θ of the day March

17, 2004. For this purpose we will use two types of discretized equation as we

explained before;

R(θ , rti+1
) = R(θ , rti) +

(
1 − e−αθ

)

αθ

[

α (β∗ − rti)(ti+1 − ti) + σ
√

ti+1 − tiZi+1

]

(4.3.9)

a-iii b-iii
fold1 50.7273032551583 17.662240917152
fold2 14.3850930737449 17.4401091872071

Table 4.6: Sum of Squared Errors-SSEs of Vasiček Yield Curve Estimations: given
for each initial iii point tuple and folds. Nelson-Siegel SSEs is 5.01802205688122.
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Figure 4.8: Yield Curve Fitting with the Vasiček Model by using constraint-initial
point tuple b-i
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Figure 4.9: Yield Curve Fitting with the Vasiček Model by using constraint-initial
point tuple b-ii
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Figure 4.10: Yield Curve Fitting with the Vasiček Model by using constraint-
initial point tuple b-iii
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R(θ , rti+1
) = R(θ , rti) +

(
1 − e−αθ

)

αθ
∗

[

(
1 − e−α(ti+1−ti)

)
(β∗ − rti) + σ

√

1

2α
(1 − e−2α(ti+1−ti))Zi+1

]

(4.3.10)

When we compare the Figures 4.5 and 4.8, we see a non-zero Vasiček yield

curve fitted to the data of March 16, 2004. The reason of this improve is better

estimated parameter values. While we are estimating the parameter values with

b-i, the constraint 0.01 < α < 1 gives a better estimation(Table 4.3). As the

estimated value of α decreases the effect of exponential terms increase and the

effect of 1
αθ

decreases in amount in R(θ, r). As the effect of exponential term

increases we obtain a hump in the figure. Also, we obtained the difference R∞−r

getting faraway from 0 in positive way with b-i. The Figures 4.9 and 4.10 can

be explained in a way similar to 4.8.

Moreover, when we compare the Figures 4.6 and 4.5 obtained from a-ii and

a-i, respectively, we see that the Vasiček yield curve in Figure 4.6 is a better

fit for March 16, 2004 in the sense that it is not zero. But, again, it is linear

with an approximately zero slope. When we look at the Table 4.2 we see that

this is resulted from the fact that the large value of α decreases the effect of

exponential form in R(θ, r). In the graph, we observe that initial value is al-

most equal to its asymptotic value R∞. Although this is theoretically not true

(since limθ→ 0 R(θ, r) = r), it is possible in machine size calculation: That value

on the graph is calculated by taking θ = 1. When this equality holds, the asymp-

totic value of R(θ, r) is R∞ and this result is consistent with the zero slope value.

A similar result to a-ii can be obtained for the Vasiček yield curve fit of a-iii.

The Figures 4.14 and 4.15 represent the Vasiček yield curve estimations for a-i

fold1 and a-i fold2. Although both of the graphs are obtained from the same

constraint- initial point a-i, the folds, .i.e. discretization methods of R(θ, rt),

are different. However, the sums of squared errors for each fold are same as it is

presented in Table 4.4. This result is possible for very high values of α (see Table

4.2). When we examine Figure 4.16 we see that it is a quite similar one to the
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graph presented in Figure 4.14 and 4.15.2 However, the sum of squared errors

of the estimation with b-i fold2 is 17.4400854139305 which is 3.0549923462985

larger than b-i of both folds.

The Figures 4.17 and 4.18 represents the yield curve estimation of March

17, 2004 with a-ii fold1 and a-ii fold2, respectively. Figure 4.17 represents an

estimated yield curve which has a better fit for θ nearly larger than 108. However,

its performance is not good for the short period. It overestimates the yield of

bonds having short-term maturity. This results from the estimated parameter

set of a-ii and discretization method fold1. For the small values of θ ≥ 1, a-ii

fold1 gives a result such that

R(θ, rti+1
) ≈ R(θ, rti) + R∞.

This result is not surprising since α is quite large(see Table 4.2). On the other

hand in Figure 4.18, i.e. for a-ii fold2 this approximation can not be seen

because of the term 1−eα θ

α θ
. This term decreases the value for small θ ≥ 1 with the

help of the negative draws. The performance of the estimation with a-ii fold1 is

quite below the performance of the estimation with a-ii fold2 by means of SSEs.

This huge difference is represented in Table 4.5. Also, for not to be confused by

the Figures 4.17 and 4.18, we measured the performance of the estimation of both

a-ii fold1 and a-ii fold2 for θ ≥ 112 by means of SSEs. We observed that the

estimation with a-ii fold2 is again better than the estimation with a-ii fold1 in

the long-run. The measured value for fold2 is 1.87909334435726 and for fold1,

it is 2.84815794190374.

The collected information of performance of all the tuples is given in Tables

4.4, 4.5 and 4.6. We can conclude that constraint set b is much more consistent

with the all three initial points and it gives an estimated yield curve similar to

Nelson-Siegel fitted yield curve. However, when tomorrow comes out we see that

Nelson-Sigel gives a better fit of the day with 5.01802205688122.

The most important problem here is the distributions of data occurred in both

March 16, 2004 and March 17, 2004. If the both distributions are Gaussian, we

2The figures of constraint set b with fold1 are not given since they are very similar to the
figures obtained from the constraint set b with fold2.This similarity can also be seen in Tables
4.4, 4.5, and 4.6.
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expect a very well fit. In our case both of our data are not Gaussian distributed.

In Figures 4.11 and 4.12 the quantile-quantile plots of March 16 and March 17

are given. As it can be seen from these plots that the distributions of each of

the days are not Gaussian. However, for each of the days there is are parts of

the data drawn from a distribution closed to a Gaussian one. If the estimation

of yield curve for March 16 is done with this part we obtain a better fit in the

prediction of the yield curve of March 17. We will show this result for March 16 3.

Let us exclude the last three yield data of bonds with the longest maturities from

the whole data set of March 16, 2004 yield data. That is we exclude the yields

of bonds with maturities 372, 407 and 526 days since these data points are the

outliers of the data. When we apply Kolmogorov-Simirnov test to the remaining

part of the data we can not reject that the data is Gaussian distributed. In the

next step, we repeated all the procedures that we have followed before(estimation

and prediction procedures). After obtaining the estimated parameters of Vasiček

model we predict the yield curve of March 17 again with the Vasiček yield curve

model. As a result, we improved our prediction by means of fitting the observed

data of March 17, i.e. we decreased the SSEs approximately from 17.4401 to

16.3376(see also Figure 4.13).

3We repeated this procedure just for constraint-initial point tuple b-ii and for fold2 as an
example of above argument.
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Figure 4.11: Quantile-quantile Plot of X and March 16, 2004 yield data.
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Figure 4.12: Quantile-quantile Plot of X and March 17, 2004 yield data.
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Figure 4.13: Constraint initial point tuple b-ii and discretization fold2.
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Figure 4.14: Yield Curve Estimation with the Vasiček Model by using constraint-
initial point tuple a-i and discretization fold-1
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Figure 4.15: Yield Curve Estimation with the Vasiček Model by using constraint-
initial point tuple a-i and discretization fold-2
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Figure 4.16: Yield Curve Estimation with the Vasiček Model by using constraint-
initial point tuple b-i and discretization fold-2

64



0 100 200 300 400 500 600 700 800
50

60

70

80

90

100

110
DAY: 17−Mar−2004

Y
ie

ld
 

Time to Maturity

Vasicek Yield Curve 

Figure 4.17: Yield Curve Estimation with the Vasiček Model by using constraint-
initial point tuple a-ii and discretization fold-1
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Figure 4.18: Yield Curve Estimation with the Vasiček Model by using constraint-
initial point tuple a-ii and discretization fold-2
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Figure 4.19: Yield Curve Estimation with the Vasiček Model by using constraint-
initial point tuple b-ii and discretization fold-2
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Figure 4.20: Yield Curve Estimation with the Vasiček Model by using constraint-
initial point tuple a-iii and discretization fold-1
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Figure 4.21: Yield Curve Estimation with the Vasiček Model by using constraint-
initial point tuple a-iii and discretization fold-2
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Figure 4.22: Yield Curve Estimation with the Vasiček Model by using constraint-
initial point tuple b-iii and discretization fold-2
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Figure 4.23: Nelson-Siegel Yield Curve Fitting, and Yield Curve Estimation with
the Vasiček Model by using constraint-initial point tuple a-i and discretization
fold-1
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Figure 4.24: Nelson-Siegel Yield Curve Fitting, and Yield Curve Estimation with
the Vasiček Model by using constraint-initial point tuple a-i and discretization
fold-2

72



0 100 200 300 400 500 600 700 800
46

48

50

52

54

56

58

60

62
DAY: 17−Mar−2004

Y
ie

ld
 

Time to Maturity

Vasicek Yield Curve 

Nelson−Siegel Yield Curve 

Figure 4.25: Nelson-Siegel Yield Curve Fitting, and Yield Curve Estimation with
the Vasiček Model by using constraint-initial point tuple b-i and discretization
fold-2
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Figure 4.26: Nelson-Siegel Yield Curve Fitting, and Yield Curve Estimation with
the Vasiček Model by using constraint-initial point tuple a-ii and discretization
fold-1
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Figure 4.27: Nelson-Siegel Yield Curve Fitting, and Yield Curve Estimation with
the Vasiček Model by using constraint-initial point tuple a-ii and discretization
fold-2
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Figure 4.28: Nelson-Siegel Yield Curve Fitting, and Yield Curve Estimation with
the Vasiček Model by using constraint-initial point tuple b-ii and discretization
fold-2
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Figure 4.29: Nelson-Siegel Yield Curve Fitting, and Yield Curve Estimation with
the Vasiček Model by using constraint-initial point tuple a-iii and discretization
fold-1
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Figure 4.30: Nelson-Siegel Yield Curve Fitting, and Yield Curve Estimation with
the Vasiček Model by using constraint-initial point tuple a-iii and discretization
fold-2

78



0 100 200 300 400 500 600 700 800
46

48

50

52

54

56

58

60

62
DAY: 17−Mar−2004

Y
ie

ld
 

Time to Maturity

Vasicek Yield Curve 

Nelson−Siegel Yield Curve 

Figure 4.31: Nelson-Siegel Yield Curve Fitting, and Yield Curve Estimation with
the Vasiček Model by using constraint-initial point tuple b-iii and discretization
fold-2
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Chapter 5

Conclusion

In this study, we presented some of the most fundamental one factor interest

rate models with their solutions. Among them, Vasiček model is used to reach the

main scope of this study: prediction of the yield curve of tomorrow. Nelson-Siegel

model which is a function base yield curve model is used to complete the missing

data which is Turkish zero coupon bond simple spot rate gathered for several

maturities from May 1, 2001 to March 17, 2004. We discretized Vasiček short rate

model, that is used in Monte Carlo method to predict the yield curve of tomorrow.

We used two different discretization methods: discretization of 4.3.3(fold1) and

discretization of 4.3.4(fold2). It is seen that discretization method fold2 results

with a better prediction of yield curve of March 17 by means of smaller SSEs. In

the last section, it is also shown that if the distribution of the data(today ’s data)

used to predict the yield curve of tomorrow is Gaussian, then we obtain a better

prediction.

Although this exploratory method followed in this study can be extended to

more elaborated methods, we conclude that by taking the Nelson-Siegel model

as a benchmark we measured the performance of Vasiček model as a predictor

and we found a considerable difference. The performance might be improved by

using different constraint initial point tuples and by developing other methods

in the optimization of SSEs. We also conclude that all the methods followed in

this study are applicable to affine models in which the solution of bond price is

explicitly obtained.
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