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ABSTRACT 
 
 

INTEREST POINT MATCHING ACROSS ARBITRARY VIEWS 

 

 

 

Bayram, İlker 

M.Sc., Department of Electrical and Electronics Engineering 

Supervisor: Assoc. Prof. Dr. A. Aydın Alatan 

 

 

June 2004, 129 pages 

 

 

Making a computer ‘see’ is certainly one of the greatest challanges for 

today. Apart from possible applications, the solution may also shed light or 

at least give some idea on how, actually, the biological vision works. Many 

problems faced en route to successful algorithms require finding 

corresponding tokens in different views, which is termed the 

correspondence problem. For instance, given two images of the same scene 

from different views, if the camera positions and their internal parameters 

are known, it is possible to obtain the 3-Dimensional coordinates of a point 

in space, relative to the cameras, if the same point may be located in both 

images. Interestingly, the camera positions and internal parameters may 

be extracted solely from the images if a sufficient number of corresponding 

tokens can be found. In this sense, two subproblems, as the choice of the 

tokens and how to match these tokens, are examined. Due to the 

arbitrariness of the image pairs, invariant schemes for extracting and 

matching interest points, which were taken as the tokens to be matched, 
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are utilised. In order to appreciate the ideas of the mentioned schemes, 

topics as scale-space, rotational and affine invariants are introduced. The 

geometry of the problem is briefly reviewed and the epipolar constraint is 

imposed using statistical outlier rejection methods. Despite the 

satisfactory matching performance of simple correlation-based matching 

schemes on small-baseline pairs, the simulation results show the 

improvements when the mentioned invariants are used on the cases for 

which they are strictly necessary.  

 

Keywords: Interest point, matching, stereo correspondence, scale-space, 

invariant. 
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ÖZ 
 

 

RASTGELE GÖRÜNTÜLERDE İLGİ NOKTASI EŞLEME 

 

 

 

Bayram, İlker 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. A. Aydın Alatan 

 

 

Haziran 2004, 129 sayfa 

 

 

Bir bilgisayarın ‘görmesini’ sağlamak, hiç kuşku yok ki günümüzün en güç 

problemlerinden birisidir. Başarılı olunduğu takdirde doğabilecek olağan 

uygulamaların yanı sıra, çözüm biyolojik görmenin de nasıl gerçekleştiğine 

ışık tutabilir veya en azından bir fikir verebilir. Başarılı algoritmalara giden 

yolda birçok problem, farklı, birbirine tekabül eden işaretlerin farklı bakış 

açılarından bulunabilmesine gereksinim duymaktadır. Bu probleme eşlik 

problemi denir. Örneğin, aynı sahnenin farklı açılardan çekilmiş iki 

fotoğrafı verildiğinde, eğer kameraların birbirine göre konumları ve 

kameraların iç parametreleri biliniyorsa, uzaydaki bir noktanın kameralara 

göre 3-boyutlu koordinatları, noktanın görüntüsünün nerede olduğu her 

iki fotoğrafta da tespit edildiği takdirde, saptanabilir. İlginçtir ki, kamera 

konumları ve iç parametreleri, yeterli sayıda birbirine karşılık gelen işaret 

bulunabiliyorsa, yalnızca bu bilgi kullanılarak elde edilebilir. Bu anlamda, 

iki alt problem, sözü geçen işaretlerin nasıl seçileceği ve bu yapıldıktan 

sonra bunların nasıl eşleneceği, incelenmiştir. Fotoğrafların rastgele olması 
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nedeniyle, eşlenecek işaretler olarak alınan ilgi noktalarının çıkarılmasında 

ve bunların eşlenmesinde birtakım değişmez yöntemler kullanılmıştır. Bu 

fikirleri ve yöntemleri takdir edebilmek amacıyla, ölçek-uzayı, dönel ve ilgin 

değişmezler gibi kavramlar tanıtılmıştır. Problemin geometrisi kısaca 

gözden geçirilmiş ve epipolar kısıtlaması istatistiksel aykırı değer reddetme 

yöntemleri kullanılarak uygulanmıştır. Basit ilintiye dayalı yöntemlerin 

kısa taban çizgisine sahip fotoğraf çiftlerindeki tatmin edici başarımına 

rağmen, benzetim sonuçları, bahsedilen değişmezlerin gerekli olduğu 

durumlarda kullanılmalarıyla başarımı iyileştirdiklerini göstermektedir.  

 

Anahtar Sözcükler: İlgi noktası, eşleme, stereo eşlik, ölçek uzayı, değişmez. 
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CHAPTER I 

 

1. INTRODUCTION.111 
 
 
 
Given images of the same scene from arbitrary views, finding tokens in 

each image which correspond to the same physical points is a crucial step 

for many higher order tasks in computer vision and related areas. The 

general problem is called the correspondence problem and depending on 

the relations between the images, the solutions take special forms. In the 

following, the problem will be introduced along with proposed solutions 

and main steps to reach these solutions. 

1.1 Correspondence Problem 
 

The correspondence process may be stated to be ([38]) : “the process 

that identifies elements in different views as representing the same object 

at different times, thereby maintaining the perceptual identity of objects in 

motion or change.” It should be noted that if the scene under observation 

does not undergo any change, the problem is equivalent to the stereo 

correspondence problem (see Figure 1.1), that is of matching two images of 

the same scene from different viewpoints ([13]). 

 The problem defined above is a fundamental problem for both 

biological and computer vision. In fact, the correspondence process may be 

claimed to be the lowest level operation to be performed by a vision system, 

since reliable solutions are required by higher order tasks like camera 

calibration ([41)], three-dimensional structure estimation, depth perception 

([38], [15]), object recognition ([19]), etc. 
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 If one would like to categorize the suggested solutions to the 

problem, she/he might distinguish between proposals based on affinity 

measures considering mainly, the relations of the elements to be matched  

 

 

Figure 1.1 The stereo correspondence problem is to match the image of M in the first image m1 with 
that in the second image m2. C1 and C2 are the centers of the lenses of the first and the second 
camera respectively. 

 
 
with nearby elements ([13], [38]), and those, considering some sort of 

cross-correlation of the features representing the regions surrounding the 

elements with those of candidate elements’ regions. The first approach is 

feasible for line segments, circular arcs or ‘edges’ in general, where simple 

local structures possesing somewhat unique characteristics in one image 

are sought in the other image ([13], [38]). This approach eliminates the 

difficulties arising from cross-correlating non-smooth surfaces with a great 

number of discontinuities, occlusions, etc. (cross-correlation is not  a 

reliable measure in this case). What is dealt with is not gray-level 

structures but relationships of binary features. However, when it comes to 

point matching in a practical situation, if the number of points to be 

matched are rather high, considering the relationship of each candidate 

with its neighbors in one image and comparing these relationships with 

those of the other image makes the problem quite difficult to track. One is 

then practically, restricted to the small displacement case where the 

difference between the two images is quite low and the match for a 

particular point lies in the proximity of the point.  



 3

The other approach seems better suited for the case of point 

matching. If the points to be matched do not lie on discontinuities, it might 

be expected that cross-correlation of the raw gray-level intensities or 

outputs of a set of linear spatial filters ([15]) could be a good measure for 

detecting corresponding pairs. These alone can handle simple translations 

of any amount and yield satisfactory results. The outputs of these 

measures may also be used for reducing the number of candidate matches 

so that the affinity measure becomes applicable once again ([41], [21]). 

Unfortunately, even when there exists a slight rotation among the images 

where correspondences will be sought (which will be referred to as images 

to be matched), the outputs of the mentioned measures start to yield 

irrelevantly poor results. Changes in scale also affect the measures 

similarly. This shows itself when one decides on the sizes of the windows 

to be correlated or of the filters to be used. There simply does not exist an 

ideal window size for an arbitrary point of an arbitrary image. In order to 

overcome the problems mentioned, one is led to use invariant measures. 

These are realised by comparing invariant descriptors of the regions 

surrounding the points to be matched. The descriptors are invariant in the 

sense that they are not affected, if some particular transformation is 

applied to the image at hand. The transformations include upto a general 

affine transformation (including scale, rotations, stretchings,  etc.), which 

approximates locally, a general perspective distortion for a planar patch 

([12]). 

 In this thesis, point matching in two arbitrary images, have been set 

as the goal. The motivation for this goal is given the mentioned images and 

no other information to calibrate the cameras by which the images were 

obtained, i.e., estimate the relative positions and the internal parameters 

(like focal length, pixel characteristics, etc.) of the cameras. If a sufficient 

number of point matches with sufficient accuracy may be obtained, the 

mentioned attributes may be derived solely from the images ([12]). 
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1.2 Building Blocks for the Solution 
 

 The solution of the problem may be separated into different stages 

as in Figure 1.2. 

 

 
Figure 1.2 Building blocks for the solution to the correspondence problem 

 

1.2.1 Interest Point Detection 
 

 The correspondence process may be visualized as a function 

mapping points in one image to those of the other ([38]). A natural 

question to ask is then, “What is the domain and the range of this 

function?”. Should all the points in an image be mapped to the points in 

the other image or should a selection be made so as to narrow the domain 

and range? Considering two images from sufficiently different viewpoints, 

one immediately observes that not all points in one image exists in the 

other. Moreover, since points are no more expected to be matched within 

their close neighborhoods, there is no reliable way to match points where 

no significant change occurs. Even if the point lies on an ‘edge’ (whatever 

that might mean; the formal definition is given later in this thesis), it may 

be impossible to distinguish the match of the point from its neigbors, 

provided that the edge is a straight one in some neighborhood of the point. 

Following these observations, it may be postulated that ‘corners’ (another 

question mark to be clarified later) should be taken as  the points to be 

Image 2 

Image 1 

Interest 
point 
detection 

Description of the 
regions surronding 
the interest points 

Matching
Outlier 
Rejection 

Interest 
point 
detection 

Description of the 
regions surronding 
the interest points 
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matched. A great deal of effort has been made to acccurately determine the 

corners and the matter will be discussed thoroughly. Another view is to 

define a measure and choose interest points as points for which the 

measure assumes a local maximum and is above some threshold. The 

approach is different from that of the corner detectors in the sense that the 

searched sructure is rather relaxed. A point that should be taken care of in 

this case is the invariance of the scheme under transformations of the 

image. For instance, in the given two images, the image of the same 

physical point should be chosen as the interest point for a correct match to 

occur. Note that a sharp corner may be transformed into a dull one but 

that the position of the corner in any case corresponds to the same 

physical point. Thus, there does not exist such a danger for corner 

detectors. 

1.2.2 Description of Regions 
 

 After the interest point detection step, it comes to describe the patch 

surrounding these interest points for comparison with those of the other 

image. A straightforward solution would be to take the raw pixel brightness 

values in some neighborhood of the point. The first question to pose in an 

attempt to realise this scheme, would probably be about the sizes of the 

neighborhoods. Unfortunately, there exists no explicit answer. The solution 

should take into acount the particular scale of the interest point. 

Obviously,  a scale invariant description is required. Similarly, it is seen 

that the description should be indifferent to other local transformations. 

The greatest degree of invariance achieved in this thesis will include affine 

transformations. 

1.2.3 Matching 
 

 At this step, the interest points in each image are tried to be 

matched taking into consideration their invariant description, based on an 

appropriate comparison. Following the comparisons, it may be desired to 

apply also an affinity measure in connection with neighboring constraints 
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([41], [21], [9]). This might be the case, if the descriptions are not strong 

enough to uniquely characterise the image patch which is often the case, if 

a window of predetermined size, containing raw pixel brightness values is 

used as the descriptor. 

1.2.4 Outlier Rejection 
 

The results of the matching stage may contain a significant number 

of false matches. If however, one had the mentioned camera parameters at 

hand, she/he could eliminate most of these false matches, since they 

would not obey the constraints that the parameters would bring. 

Statistical outlier rejection methods ([41], [21]) are indeed very useful in 

such a setting. The idea is to select small subsets of putative matches, 

determine the related parameters that the model at hand posseses using 

this small subset and see if the constraints, brought  by these parameters, 

are obeyed by a number of matches out of the chosen subset. This way, 

one can eliminate irrelevant (in terms of matching the model) matches. 

1.3 Outline of the Thesis 
  

 Following this introduction, interest point detection methods are 

discussed in Chapter II. For this purpose, a corner model is given for 

insight on using different detection schemes. Major corner detection 

schemes are presented along with corresponding strengths, weaknesses 

and their performances are tried to be estimated through a theoretical 

reasoning. 

 Chapter III first presents the prerequisites for obtaining invariant 

region description and interest point detection methods. These are mainly 

concentrated around the concept of scale-space. Since the field itself is an 

influential and rich research area, a concise presentation of the key 

concepts are developed in a bottom-up manner. Rotational, scale and 

affine invariants that have proved to be useful are discussed in this 

chapter. 
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 In Chapter IV, different matching schemes are explained which do 

or do not exploit the different invariants of the previous chapters. The 

chapter also includes a brief introduction to the scene geometry needed to 

develop the statistical outlier rejection methods. Matching schemes are 

presented starting from the weakest in terms of  robustness against the 

arbitrariness of the views and ending with an algorithm which is intended 

to be able to handle local affine transformations. 

 Results and particular parameters of the methods for obtaining the 

results are shown in Chapter V. The results for interest point detectors 

and matching schemes are presented in order. 

 Finally, Chapter VI is the conclusion chapter where different 

methods presented in the thesis are evaluated. 
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CHAPTER II 

 
 

2 CORNER DETECTION.2 
 
 
 
Extraction of salient features in an image is an important task for many 

purposes like object recognition, image retrieval, stereo matching, etc. For 

the purpose of point matching, corners are natural candidates as the 

features to be used. Thus, accurate localization of these features ([8]), 

repeatability of the detectors ([31]), and invariance of the detectors under 

different geometric and photometric transformations ([26]) are important 

issues to be considered. Different detectors have been implemented, each 

representing a different reasoning. In this chapter, these methods are 

analyzed. The simulation results are presented briefly in Chapter V along 

with some details of their implementation. 

 

 

     
(a)        (b) 

Figure 2.1 Corner model. (a) Ideal corner with o45=Θ , (b) Ideal corner smoothed by a 2-D 
Gaussian of variance 12 =σ . 
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2.1 A Corner Model 
 

 In order to analyze the behaviors of the detectors, the corner model 

of [8] is being used. In this formulation, let U denote the step function: 

( )
⎩
⎨
⎧ >

=
otherwise

xif
xU

0
01

             (2.1) 

An ideal corner with an edge along the x-axis and an angle Θ can be 

represented by the following 2-D function: 

( ) ( ) ( )yUymxUyxI ⋅−=Θ ,                       (2.2) 

where Θ= tanm . 

Convolving (2) with a 2-D Gaussian yields 

( ) ( ) ( ) ( ) dadbbUbmaUbygaxgyxS ⋅−⋅−⋅−= ∫ ∫
∞

∞−

∞

∞−

),(         (2.3) 

where  

( ) 2
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2
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1 σ

σ

x

exg
−

Π
=              (2.4) 

S(x,y) is presented in Figure 2.1.  

2.2 A Note on Edge Detectors 
 

Two well-known approaches on edge detection consist of extracting 

the local maxima of the gradient in the gradient direction and finding the 

zero crossings of the response to the Laplacian (or, alternatively Laplacian 

of Gaussian) operator. The former of these methods is equivalent  to first 

suppressing the non-maxima of the gradient and then finding points where 

the second directional derivative in the direction of the gradient is zero. 

Explicitly, this is equal to (after non-maxima suppression), finding zeros of, 
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where ( )KS  denotes the function and S, the value that the function 

assumes at the given point, with subscripts denoting partial 

differentiation. 

The zero crossings of the expression in the case of an angle of 
o45=Θ smoothed by a Gaussian, is shown in Figure 2.2.a. The rounding 

effect is well-observed in the vicinity of the corner. Particularly, it is noted 

that in the origin, the expression is non-zero, i.e. the corner is not an edge 

point according to this criterion. Deriche and Giraudon ([8]) determined 

the location of  the particular edge point on the angle bisector and found 

that the displacement is a function of both the bandwidth of the Gaussian 

and the angle of the corner. The displacement increases with decreasing 

Gaussian bandwidth and/or decreasing corner angle. 

 In the latter edge detection scheme, the zero crossings of the 

Laplacian image is searched. The Laplacian image is given by: 

( ) ( ) ( )yxSyxSyxS yyxx ,,,2 +=∇        (2.6) 

 It is well known that near the corner, the zero crossings of the 

Laplacian deviates from the true edges. However, at the origin, the function 

takes the value of zero, i.e. the exact corner point is a part of the edge map 

(see Figure 2.2.b). 

 The Laplacian may be interpereted as follows: 

Let [a,b] be an arbitrary direction, i.e., 

122 =+ ba               (2.7) 

Then, one can write 

( ) [ ] [ ] ⎥
⎦

⎤
⎢
⎣

⎡−
⎥
⎦

⎤
⎢
⎣

⎡
−+⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=∇

a
b

SS
SS

ab
b
a

SS
SS

bayxS
yyyx

xyxx

yyyx

xyxx,2        (2.8) 
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In words, the Laplacian is equal to the sum of second directional 

derivatives in any two orthogonal directions. If  one of these directions are 

taken to be the gradient direction, it can be written: 

( ) 2

2

2

2
2 ,

⊥∂
∂

+
∂
∂

=∇
n
S

n
SyxS              (2.9) 

where the terms represent the second directional derivatives in the 

direction of the gradient and the direction orthogonal to the gradient 

direction. 

The difference between the two approaches is observed more clearly, 

as  the first term in (2.9) is equal to (2.5). The significance of the remaining 

term in (2.9) will be explained in the following sections. 

 

 

   
(a)      (b) 

Figure 2.2 Edges of a smoothed ideal corner, detected using (a) maxima of the gradient, (b) zeros of 
LoG. The exact location of the corner is the center of the circle. 

 
 

2.3 Gaussian Curvature 
 

 On a curve, the curvature of a point is defined as the magnitude of 

the rate of change of the tangent vector, when the curve is parameterized 

so that the curve has unit speed, i.e. the tangent vector has unit 

magnitude ([7]) (It should be noted that unit speed parameterization is not 

a restriction and that any curve may be parameterized this way). The 
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curvature may be said to measure how much the curve deviates from 

being straight or actually, ‘curves’. 

 Correspondingly, for a surface, it is of concern to measure how 

much the surface at a specific point deviates from being a plane. This 

amounts to finding how the normal vector of the surface at or in the 

vicinity of the specified point changes. Observing that the normal vector 

changes rapidly for a sharp peak (the sharper, the more rapid), Gauss’ 

approach to defining the curvature might be better enjoyed. The idea is as 

follows:  

 Consider for a point P on a surface (seeFigure 2.3(a)), a closed curve 

C enclosing a region B containing P. The image of the normal vectors of C 

on the sphere of unit radius is also a closed curve, C´, enclosing a region 

on the sphere B´. A measure is obtained if the areas of the regions are 

compared as area(B´)/area(B), where, in the limit, area(B) tends to zero. A 

distinction between saddle-like and peak-like points can also be made if 

the orientations of C and C´ are taken into account. For saddle-like points, 

the orientations are reversed (see Figure 2.3(b)) ([7]). 

 

 

  

(a) (b) 

Figure 2.3 Gauss map. (a)at an elliptic point, (b) at a hyperbolic point. Note that the orientation of 
the curve is reversed for the Gauss map around the hyperbolic point [7]. 

 
 
 Interestingly, the measure outlined (‘very’ informally) above turns 

out to be equal to the following (when the measure is non-zero): 
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Consider a plane containing the normal N and parallel to the tangent 

direction v to the surface at p (Figure 2.4). The intersection of this plane 

with the surface is a planar curve C including p. The curvature of this 

planar curve at p may be calculated. As this plane is rotated about the 

 

 

 

Figure 2.4 A surface, and its normal. The Gaussian curvature is the product of the maximum and 
minimum curvature yielding curves at p generated by intersecting the normal with the surface. 

 
 
normal to the surface, different curvature values at p resulting from the 

different curves, obtained by intersecting the plane with the surface are 

obtained. The minimum and maximum (negative values are defined 

considering the direction of the normal) curvatures Kmin, Kmax are called the 

principal curvatures. The Gaussian curvature K is defined as the product of 

the principal curvatures ([7]). 

maxmin KKK ⋅=            (2.10) 

The Gaussian curvature for the graph of a function ( )yxfz ,= , 

parameterized by ( ) ( )( )yxfyxyx ,,,, → may be explicitly written as ([7]) 

( )222

2

1 yx

xyyyxx

II

III
K

++

−
=            (2.11) 

A point on the surface is said to be, an elliptic point if K>0, a hyperbolic 

point if K<0, a parabolic point if K=0 and if one of the principal curvatures 

is non-zero. Figure 2.5 illustrates these points on the previous corner 

model. 
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Figure 2.5 Examples of elliptic, parabolic, hyperbolic points on a Gaussian smoothed o90  corner 

 
 
 Observing the Gaussian curvature values of the corner model given 

in Figure 2.6, the algorithm for finding corners proposed by Dreschler and 

Nagel may be appreciated. The algorithm is as follows ([8]): 

 

 

 

Figure 2.6 Gaussian Curvature on a Gaussian smoothed o90  corner. Points above ground are 
elliptic, points below ground are hyperbolic and the points on the ground are parabolic or planar 
points. 

 
 

Algorithm 2.1 :  

1. Compute the Gaussian curvature. 

2. Select locations of Gaussian curvature extrema. 

3. Match each elliptic maxima with a hyperbolic minima. The 

principal curvatures of the matched extrema should 

approximately be alligned. 
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4. For a particular match, consider the segment joining the 

elliptic maximum with the hyperbolic minimum. The point at 

which the Gaussian curvature is equal to zero, on this 

segment is taken to be the corner for that particular match. 

 

The major flaw in this approach ([8]) is noted to be related to the position 

of the hyperbolic extrema. As the elliptic extrema is always inside the 

corner, the hyperbolic extrema is expected to be outside the corner for 

accurately locating the corner. However, this is observed ([8]) not to be the 

case for corners with small angles and thus, the detection is not accurate. 

2.4 Corners as Local Maxima of Curvature Along Edges 
 

A different approach for detecting corners is based on the idea to first 

extract the edges as a chain code and then search for local maxima of the 

curvature on this chain code ([14]). Apparently, the first stage, consisting 

of extracting the edges requires an edge detector. Experiments were done 

using two different edge detectors, namely Canny edge detector and LoG 

edge detector. The main difference between the two is their scheme for 

obtaining the edge map. The first one searches for the maxima of the 

gradient magnitude in the direction of the gradient, while the other looks 

for the zero crossings of the Laplacian (particularly LoG) image. The 

difference of the two schemes is already discussed. 

After the extraction of the edges, the edges are represented as a chain 

code, i.e., neighboring edge pixels are ordered in some direction and 

assembled in a list. During this process, T-corners ([27]) are marked as 

corners and taken out of the list. The next step is the calculation of the 

curvatures. The calculation of the curvature is handled via averaging k-

curvatures ([14]), as follows: 

 
Algorithm 2.2 

1. Let the point for which the curvature will be calculated 

be the tth element in the chain code, denoted by t. 

2. Representing a vector by the start and end points, 

subtract the difference of the directions of the vectors 
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defined by [t,t+k] and [t-k,t]. This difference is defined to 

be k-curvature at the point t. 

3. Average k-curvatures with possibly different weights 

(emphasizing small k’s) to obtain the curvature. 

 
The point yielding a local maximum for curvature is taken as a 

corner, if its curvature is above some threshold. 

2.5 Kitchen-Rosenfeld Cornerness Measure 
 

Exploiting a similar idea as the previous detector, a cornerness 

measure may be proposed, as the change of gradient direction along an 

edge contour multiplied by the local gradient magnitude. This is also 

intuitively reasonable, since along the edges where no corner is locally in 

sight, one expects nearly constant gradient direction, whereas near the 

corners, there is a significant change in the mentioned direction. 

Multiplying the change of gradient direction further by the gradient 

magnitude emphasizes the strong edges, corners, etc. For this purpose, 

after a non-maximum suppression (along the gradient direction) applied on 

the gradient magnitude of the image, the measure is computed by 

calculating the derivative of the gradient direction along the direction 

orthogonal to the gradient1. Explicitly, this is equal to calculating the 

derivative of ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛−

x

y

I
I1tan , along ( )xy II ,−  where I(x,y) is the image and Ix 

and Iy denote the partial derivatives of I(x,y). As is well known in calculus, 

2

1

1
1)(tan
xdx

xd
+

=
−

           (2.12) 

                                                 
1 The direction orthogonal to the gradient is taken as the direction of the tangent to the edge, 
however if this were the case, all the edges would lie on an equibrightness curve. Thus, this is merely 
an intuitive approximation to the edge direction. The exact direction on  a continuous curve defined 
by the zero crossings of (2.5), is obtained by considering (2.5) as a function of x,y, namely 

( ) 0, =yxF  and calculating 
dx
dy

implicitly in terms of this function, which gives ( )
( )yxF

yxF
dx
dy

y

x

,
,

−=  

whenever the denominator is non-zero(otherwise the edge direction is parallel to the y-axis). The 

edge is in the direction of  ⎥⎦
⎤

⎢⎣
⎡

dx
dy,1 . 
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Thus, 
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Similarly, 
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=
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          (2.14) 

Using these equations, the proposed cornerness measure, denoted by K, is 

calculated as, 
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where •  denotes the inner product. Expressing (2.15) another way, K is 

equal to, 

 

[ ]
2222

11

yxx

y

yyyx

xyxx
xy

yx III
I

II
II

II
II

K
+

⎥
⎦

⎤
⎢
⎣

⎡−
⋅⎥

⎦

⎤
⎢
⎣

⎡
⋅−

+
=       (2.16) 

Recognizing [ ]xy

yx

II
II

−
+ 22

1
 as the direction orthogonal to the gradient, 

(2.16) thus K may also be interpreted as the second derivative along the 

direction orthogonal to the gradient. It is noted at this point that this is 

exactly equal to the second term in (2.9). 
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 Despite its compact form, this intuitive definition of the corner 

suffers from the same localization problem as the maxima gradient 

searching edge scheme, since the local maximum of the cornerness 

measure is sought after a non-maximum suppression (of the gradient 

magnitude in the direction of the gradient) procedure is applied. 

2.6 Zuniga-Haralick Method (Facet Model Approach) 
 

For each neighborhood of any desired size (practically 7x7 or 5x5), 

the image patch ( )yxf ,  can be modeled by a bi-cubic polynomial ([10]): 

3
10

2
9

2
8

3
7

2
65

2
4321),(

ykxykyxkxk

ykxykxkykxkkyxf

+++

++++++≈
       (2.17) 

The coefficients kn may be calculated by finding the least squares 

approximation or utilizing pre-determined masks obtained using a 

procedure exploiting Gram-Schmidt orthogonalization method (see 

Appendix-1). 

Cornerness is then calculated as the rate of change of the direction of 

the gradient along the edge contour. This measure is noted to be equal to 

the previous one (2.15) except for the absence of the multiplication with 

the gradient magnitude. This suggests the use of, 

( )2
3

22

22 2

yx

yyyyxxyxxx

II

IIIIIII
K

+

+−
=           (2.18) 

Calculating explicitly the partial derivatives of the bi-cubic polynomial at 

the origin, 

( ) 420,0 kI xx = ; 

( ) 50,0 kI xy = ; 

( ) 620,0 kI yy = ;           (2.19) 

( ) 20,0 kI x = ; 

( ) 30,0 kI y =  
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Inserting equations (2.19) in (2.18), the cornerness measure for a 

particular pixel, the neighborhood of which is approximated by the 

polynomial (2.17) is obtained as, 

 
( )2

3
2
3

2
2

2
36325

2
242

kk

kkkkkkk
K

+

+−
=           (2.20) 

An edge point, detected after the non-maxima gradient magnitude 

suppression, is claimed to be a corner, if this measure has a local 

maximum and is above some threshold. 

A particular pixel is claimed to be an edge point if the second 

directional derivative taken in the direction of the gradient has a negatively 

sloped zero-crossing within the boundaries of the pixel. At a particular 

point, consider the curve obtained by intersecting the surface with a plane 

tangent to the direction of the gradient and orthogonal to the row-column 

plane. For an independent variable h in the domain of this curve, one 

replaces x with hּcosα and y with hּsinα, where α is the direction of the 

gradient, obtaining 

( ) ( )
( )
( ) 33
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9
2
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7

22
65

2
4

321

sinsincossincoscos

sincossincos

sincos

hkkkk

hkkk

hkkkhf

αααααα

αααα

ααα

+++

+++

+++=

     (2.21) 

One can also replace sinα with 
2
3

2
2

3

kk

k

+
 and cosα with 

2
3

2
2

2

kk

k

+
. The 

desired higher order derivatives may now be calculated easily by 

differentiating the polynomial function fα(h) with respect to h, yielding new 

polynomial functions that are completely characterised by the coefficients 

ki . 

It is noted that since the corners detected by this measure also lie on 

maxima of the gradient, the detected corner is not at the exact corner 

location, similar to the previous measure. Moreover, the approximation by 

the bi-cubic polynomial may also introduce some localization error. 
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2.7 Harris-Stephens Corner Detector 
 

As an important detection scheme, Harris-Stephens Corner Detector 

makes the use of the following matrix 

( )
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

∑∑
∑∑

R
yR

R
yxR

R
yxR

R
xR

IwIIw

IIwIw
yxC 2

2

,          (2.22) 

where R is a region centered around the point (x,y), wR  represents a 

Gaussian window in this region and Ix and Iy are the partial derivatives of 

the image. The points for which this matrix has full rank, or practically, 

has two significant eigenvalues,  are considered as interest points. The 

matrix in (2.22) may also be recognized to be the one used for determining 

points for which optical flow may safely be computed.  

 A clear interpretation of this scheme is given in [32], as follows: 

 Correlating a patch with its neighboring patches, i.e. patches shifted 

in small amounts ( )yx ∆∆ , , reveals a measure about the local changes in a 

function. For a given point ( )yx,  and a direction ( )yx ∆∆ , , the measure is 

given by: 

( )( ) ( ) ( )( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∆+∆+−= ∫∆∆

R
yx dRyqxpIqpIyxm 2

, ,,,        (2.23) 

where R represents the region or patch centered around ( )yx, . In the case 

of an image, where a discrete grid is used, the integral may be replaced 

with a summation. 

If the function, at some point ( )yx, , assumes high values for any 

direction ( )yx ∆∆ , , the point is considered to be significantly distinct. 

Considering further,  

( ) ( ) ( ) ( )yxyIyxxIyxIyyxxI yx ,,,, ∆+∆+≈∆+∆+        (2.24) 

the expression to be summed may be reduced to 



 21

 

( )( ) [ ]

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
∆
∆

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
∆∆=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
∆
∆

≈

′

∆∆

∑∑
∑∑

∑

y
x

IIII

IIII
yx

y
x

IIyxm

C

R
yy

R
yx

R
yx

R
xx

R
yxyx

444 3444 21

2

,,

       (2.25) 

Thus, if C ′  has two significant eigenvalues, the measure should yield high 

values signaling an interesting point. 

In order to further concentrate the measure around the center of the 

patch, the summations taking part in (2.25) are done using a Gaussian 

window, centered around the point ( )yx, , i.e., C ′  is replaced with C in 

(2.22). 

Instead of calculating the eigenvalues, the product of the eigenvalues 

is compared to their sum squared via computing )()( 2 CkTraceCDet − , 

where k is usually taken as 0.04 or 0.06. The points, at which this 

measure is above some threshold and assumes a local maximum, are 

taken to be interest points.  

2.8 SUSAN & Fast Corner Detection  
 
 In this section, two radically different interest point detectors will be 

presented, the latter of which is also tested via simulations. Despite their 

resemblance in the first glance, the only similar point between these 

detectors is the figures in which observations are achieved, forming 

grounds that the schemes are based on. 

 

 

Figure 2.7 Circular masks for considering SUSAN. (a) Uniform region, (b) Region with nucleus near 
an edge, (c) Region with nucleus on the edge, (d) Region with nucleus near a corner, (e) Region with 
nucleus on a corner 
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Considering Figure 2.7, for each circular mask with the center, 

depicted as the nucleus, comparing the brightness of each pixel in the 

mask with that of the nucleus, an area is defined by the pixels having 

brightness similar to that of the nucleus. This area is called “Univalue 

Segment Assimilating Nucleus” (USAN) . Based on this definition, it is 

observed that for a uniform region (Figure 2.7.a), USAN is equal to the area 

inside the circle. When the nucleus is near to an edge (Figure 2.7.b), USAN 

decreases and  when the nucleus is actually an edge pixel (Figure 2.7.c), 

USAN attains a certain (ideally) value (not equal to the half of the area of 

the mask due to the dicrete grid). However, near a corner (Figure 2.7.d), 

USAN significantly decreases and at the corner point (Figure 2.7.e) USAN 

attains a local minimum. Thus, a corner detection scheme might be 

proposed in the light of these observations [33]. The implementation 

should actually contain (mainly) two thresholds. The first threshold is 

utilized for deciding whether a pixel in the circular mask belongs to USAN 

or not, i.e. the so-called brightness difference threshold. The other 

threshold works as a geometrical threshold deciding whether a local 

minimum is a corner point. This geometrical threshold allows only sharper 

corners to be detected, if it were reduced. It is noted that the geometrical 

threshold may safely be chosen as a fixed value, whereas the brightness 

difference threshold seems to need (theoretically at least) a tuning 

regarding the noise amplitude and the contrast level. The authors however 

claim that this does not turn out to be a problem in practice and propose a 

fixed value. 

Another method is due to Trajkovic and Hedley [36]. For this method, one 

should consider an arbitrary line k containing the nucleus and intersecting 

the boundary of the circular window at two opposite points ( )lP  and ( )lP′ , 

and the following corner response function (CRF): 

( ) ( )[ ]22min NPNPkC IIIIR −+−= ′          (2.26) 

where PI , PI ′ and IN are the image intensities at ( )lP , ( )lP′  and the 

nucleus, respectively and 
k

min denotes the minimum value of the 

expression evaluated for different choices of the line k (see Figure 2.8). 
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 As observed in Figure 2.8, the CRF proposed in (2.26) isolates 

corners and regions near the corners. 

 

 

 

Figure 2.8 Arcs minimizing (2.26) imposed on (a) Uniform region, (b) Region with nucleus near an 
edge, (c) Region with nucleus on the edge, (d) Region with nucleus near a corner, (e) Region with 
nucleus on a corner 

 

 

 

Figure 2.9 Digital circular masks of radius (a) 1, (b) 2, (c) 3 

 
 

In practice, a discrete approximation of the circular window is used 

(Figure 2.9). If the size of the utilized window is large, the localization of 

the corner is poor, since the CRF does not help discriminate against the 

situations in Figure 2.8.d and Figure 2.8.e. On the other hand, when the 

window is taken to be of a small diameter, there are too few directions to 

evaluate (2.26) and false corners may be detected in result. This problem is 

overcome by the help of linear interpixel approximation [36]. 

Considering a window of radius 1, with center C and A,A’,B,B’ the 

pixel locations(Figure 2.10), the horizontal(rA) and vertical(rB) intensity 

variations can be computed as, 
22 )()( CACAA IIIIr −+−= ′           (2.27) 
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22 )()( CBCBB IIIIr −+−= ′           (2.28) 

Thus the CRF at the center RC is, 

( )BAC rrR ,min=            (2.29) 

 

 

 

Figure 2.10 Interpixel location definitions 

 
 

If RC is less than a given threshold, then no corner exists in the 

window, and the point is discarded. However, if this is not the case, 

diagonal edges(i.e. P,P’,Q,Q’) must be checked using linear interpizel 

approximation. 

The intensity at interpixel locations are calculated as: 

( ) BAP xIIxI +−= 1  

( ) BAP xIIxI ′′′ +−= 1            (2.30) 

( ) BAQ xIIxI +−= ′1  

( ) BAQ xIIxI ′′ +−= 1  

Now, a response function for the diagonals containing P and P’ may be 

written: 

( ) ( ) ( )
( ) ( ) ( ) CxBxAIIIIxr

CxBxAIIIIxr
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′

′

2
2

2
22

2

1
2

1
22

1

2

2
       (2.31) 

where 
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       (2.32) 

After some manipulations, it can be shown that the necessary and 

sufficient condition for a minimum of the function 
( )

( ) ( )( )xrxrR
x 211,0

,min
∈

=  to 

exist is in the interval (0,1): 

B<0 and A+B>0           (2.33) 

where 

B = min(B1,B2) and A = rB – rA – 2B        (2.34) 

Moreover, the value of the minimum is given by :  

A
BCR

2

min −=                      (2.33) 

2.9 Discussion 
 

 Although it is rather tempting to introduce a model for the feature 

being sought and try to propose operators, detectors that can succeed for 

the given model, it is noted that ([33]) an image may contain many 

structures (e.g. ‘T’,’X’,’Y’ junctions, crunks ([2]), etc.) that one would not 

like to miss and which do not fit the model. Obviously, different models 

and detectors can be introduced for each such ‘anomaly’ and these might 

be used in parallel. Even for this case, as noted in the previous sections, 

the performance of the detectors might still be questioned in some aspects 

(localization in this case). However, many applications do not require the 

exact position of a corner, or a ‘T’ junction, etc. A more severe requirement 

seems to be related to the repeatability (i.e. the ability to detect the same 

feature in different views) ([32]) and geometric invariance (i.e. the ability to 

recover the same position for a given feature in different views) ([26]). Thus, 

if the desired application allows, it is more natural to deviate from a strict 

model of a corner, junction, blob, etc. and look for features (whatever they 
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might be) that our robust, invariant operator (whatever it is) is able to 

detect. 

 In this regard, a view invariant detector should be sought. It is 

known that a perspective transformation may locally be approximated by 

an affine transformation ([12]). Thus, an affine invariant detector 

(including scale) is sufficient in this sense.  

It was shown that, under a transformation of the image coordinates (about 

the featuıre point) as ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
′
′

y
x

B
y
x

, a modified version (utilising, instead of 

simple derivatives, derivatives of Gaussians with varying bandwidths) of 

the Harris matrix (C ′  in (2.25)) transforms as BCBT ′ . Using Cholesky 

decomposition then, it is possible to back-transform this deformed matrix 

and obtain an identity matrix. This ‘straightens’ the local patch up to a 

rotation, and since the eigenvalues are not affected by a rotation [4], the 

modified Harris matrix is rendered affine-invariant. This method was also 

shown to have good repeatability, which makes it a good candidate for 

feature detection. It can also be shown that the Hessian (i.e. the 2x2 

matrix containing the second derivatives) may also be modified in the same 

manner to gain affine-invariance. These issues will be discussed in the 

next chapter. 
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CHAPTER III 

 
 

3 INVARIANT INTEREST POINT EXTRACTION &.3 
DESCRIPTION 

 
 
 
All of the interest point detectors, which are presented in the previous 

chapter, rely on an assumption of, some fixed scale attached to the 

features present in the images, where they are applied. For instance, in 

order to estimate the curvature at a point, k-curvatures are averaged, but 

it is not known a-priori what the largest value of  ‘k’ value to be used in the 

summation is. If it is taken too low, somewhat smooth corners might beare 

missed. On the other hand, if ‘k’ is too high, some sharp, but rather local 

corners, might be lost during averaging. Similar problems may arise 

regarding the derivative approximation for the Kitchen-Rosenfeld measure, 

or choice of the size of the region for estimation by using bi-cubic 

polynomials for the Facet-Model approach, or selection of the width of the 

Gaussian for weighted summation in the Harris detector and lastly, the 

radius of the digital circles utilized by the SUSAN and ‘fast corner 

detection’ schemes. Given an image, these selections may be regarded as 

parameters to be adjusted manually. However, even for manual selection, 

one may not be able to obtain satisfactory results. This is due to the fact 

that in an arbitrary image, there may exist both sharp and diffuse features 

([17]), i.e., the mentioned characteristics are not properties of the image 

but belong to the features present in the image. Moreover, it is noted that a 

diffuse feature may be transformed into a sharp one by adjusting the scale 

of observation (Figure 3.1). From this point of view, the problem may be 

considered as one of scale. This necessitates a multi-scale description of 

the image. The idea of  scale-space, which properly suits (which has been,  
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Figure 3.1 ‘Bird assembled from smaller birds’. The coarse features present in the image are 
observed more clearly at a distance (a few meters), whereas the details are more ‘dominant’ in the 
reading distance. A similar technique exploiting the same idea is called ‘dithering’, mentioned in 
[16]. It can be speculated from these observations that our vision system somehow disregards too-
fine-scale information, paying greater attention to reliable data, at the expense of losing information. 
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indeed, proposed for this purpose ([40])) such a need, will be presented 

shortly. 

 Following the detection of the features, which usually correspond to 

a first step in a given task, one may need to locally characterise the region 

containing the feature. The most straight-forward approach would be to 

take a window of pre-determined size. However, in many applications, it is 

required that this characterisation be invariant to deformations (such as, 

rotation, stretching, scaling, etc.), arising from possible changes in the 

viewing positon. Thus, it is necessary to be able to find a characterisation 

invariant to affine transformations. For this purpose, different rotation 

invariants ([4], [29], [30], [31]) will be introduced in this chapter and by 

using these invariants, a method to obtain affine invariant description ([4], 

[18]) of any interesting region will be explained. This analysis will also lead 

to an affine invariant detector ([26]), with an ability to locate the same 

positon in a region regardless of the affine transformation that the region 

might be exposed to. 

3.1 Scale-Space 
 

 The idea of multi-scale representation of a signal can be useful in 

various situations. Pyramid representation of the images were initially 

introduced ([6]) mainly for the purpose of data compression. This 

representation exploits the high-correlation of pixel values in a 

neighborhood. Any given image is low-pass filtered and subtracted from its 

original, resulting in a “decorrelated” image. This decorrelated image can 

be coded using fewer bits, since there is less redundant information in 

each pixel value. Then, the low-pass filtered image is sampled and 

processed in the same manner,resulting in another low-pass and 

“decorrelated” image pair, of reduced size. The process is repeated and  

thus, a pyramid representation of the original image is produced (Figure 

3.2). Adding the “decorrelated” images and upsampling the sums, the 

original image is recovered. 
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       (a)       (b) 

Figure 3.2 (a) ‘House’ image, (b) its pyramid representation. 

 

 

The use of successive smoothing and subtraction may also be 

considered as bandpass filtering. Thus, filter banks, which may be utilised 

for the analysis of formants which enable the recognition of vowels in the 

context of speech recognition, etc., may be accepted as related approaches. 

Scale-space filtering, as introduced by Witkin ([40]), is intended to form a 

framework to separate events at different scales arising from distinct 

physical processes. In the following section, a brief, informal presentation 

will be made so as to give an intuitive feeling about the subject. 

3.1.1 Continuous Scale-Space Representation 
 

Given a signal RRf →: , the scale-space representation 

RRRL →× +:  is defined ([16]) such that the representation at zero scale is 

equal to the original signal  

( ) ( )xfxL =0;              (3.1) 

and the representations at coarser scales are obtained by convolution of 

the signal with Gaussian kernels of decreasing bandwidth (or increasing 

standard deviation) (Figure 3.3), 

 ( ) ( ) ( ) ( )∫ ∗=−= ftagdaaxftagtxL ;;;           (3.2) 

where 

 ( ) t
x

e
t

txg 2

2

2
1;

−
=

π
             (3.3) 
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       (a)       (b) 

Figure 3.3 Scale-space representation of a signal. (a)The signal successively smoothed by Gaussians 
of decreasing bandwidth, (b)3-D illustration of the scale-space representation of the signal, explicitly 
shown as a function of both scale and position ([16]). 

 

 

The Gaussian function posseses some interesting properties, such 

as, unimodality in both spatial and the frequency domain, symmetricity 

(Figure 3.4). As t approaches zero, the convolution with the Gaussian 

approaches the unsmoothed signal and as t increases, the convolution 

 

 
   (a)      (b) 

Figure 3.4 The Gaussian with t=2, (a) in the spatial domain, (b) in the frequency domain. The cut-off 
frequency is inversely proportional to t . 
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approaches to the mean value of the signal. The Gaussian is also 

normalized and infinitely differentiable. Despite these attractive properties, 

what is more important is related to the number of local extrema. As the 

scale parameter t is increased, the number of local extrema in the 

representation ( )txL ;  decreases monotonically. This property may also be 

formulated as all the first order minima of the convolution to increase and 

all first order maxima to decrease with increasing t. Smoothing of the 

signal in this manner ensures that artificial features or structres are not 

created and the salient features, which exist over a range of scales, may be 

safely detected. Since the representation is dependent on a continuous 

scale parameter and the same spatial sampling is preserved over all scales, 

the mentioned features may easily be tracked and the position of the 

feature at any desired scale may readily be obtained as a result (Figure 

3.5). 

 Another important question to be posed is about the uniqueness of 

such a representation. Does there exist another family of functions, whose 

convolution with images lead to a scale-space representation possessing 

similar properties? A lemma by Babaud et.al. ([3]) states the uniqueness of 

the family of Gaussians and the representation thus obtained, if the family 

is restricted to possess some advantageous properties. The constraints, for 

the desired family, denoted by ( )txg , , are as follows : 

1)
t

1
 is a bandwidth parameter, i.e. ( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

t
xh

t
txg 1, . 

2) g is symmetrical in x : for all Rx∈  

  ( ) ( )yxgyxg ,, −= . 

3) For all t>0, g is normalized: 

  ( ) .1, =∫
∞

∞−

dutug  

4) There exists an integer p such that  

  ( ) ( ) 002 ≠ph . 

where the last constraint is noted to be necessary due  to the technical 

reasons in the proof for uniqueness. 
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In fact, the uniqueness of this representation may be obtained [16] 

with different constraints.  

 

 

 

Figure 3.5 Zero crossings in scale. The signal is given below. On the above, the trace of the zero 
crossings of the second derivative in scale-space is shown. It is noted that, since new zero crossings 
are not created as the scale parameter t increases, the curves are always expected to be closed from 
above ([16]). 

 

 

Another formulation of the scale-space utilizes partial differential 

equations (the heat equation). The scale-space family is described by the 

diffusion equation ([16]) : 

LLL xxt ∂=∇=∂
2
1

2
1 2             (3.4) 

The equation above may be interpreted as follows:  

Since at the local maxima, the second derivative Lxx∂  assumes 

negative values, Lt∂ will also be negative and as a consequence it is 

ensured that proceeding in the direction of increasing t (at least for a small 

amount), without changing the spatial position would decrease the value 

that the representation assumes at the given position and scale. Similarly, 

going in the direction of increasing t at a local minimum would have the 

effect of increasing the value of the representation.  

Thus, (3.4) is seen to monotonically smooth the given signal with a 

non-enhancement property (of the local extrema) that is required from the 

representation. It is noted that the Gaussian family, and thus, convolution 

of a signal with the Gaussian satisfies (3.4) . 
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 The representation may be extended to higher dimensions ([16]) via 

the diffusion equation which, for an n-dimensional case takes the form, 

∑
=

∂=∇=∂
n

i
xxt LLL

ii
1

2

2
1

2
1

            (3.5) 

where the solution is obtained by convolving the n-dimensional signal 

( )Xf  with a family of n-dimensional Gaussians, 

 ( ) ( ) ( )tXgXftXL ;; ∗=             (3.6) 

where 

( )
( )

t
XX

n

T

e
t

tXg 2

22

1;
−

=
π

 with [ ]TnxxxX ,,, 21 K=          (3.7) 

with the initial condition ( ) ( )XfXL =0; . 

In particular, for the case n=2, it is expected that no new level curves are 

created throughout the smoothing process. 

Another useful property of this representation is related to the convolution 

of a Gaussian kernel with another Gaussian kernel, 

( ) ( ) ( )stXgsXgtXg +=∗ ;;;             (3.8) 

which is named the semi-group property. Using this property,  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )112

11222

;;
;;;;

tXLttXg
XftXgttXgXftXgtXL

∗−=
∗∗−=∗=

        (3.9) 

In words, the representation at a coarse scale t2 may be computed by 

convolving the representation at a finer scale with a Gaussian of standard 

deviation equal to the difference of the two scales. 

3.1.2 Discrete Scale-Space Representation 
 

All of the results and discussions cited above are concerned with 

continuous signals. However, the smoothing is usually performed using a 

computer which necessarily follows the spatial sampling of the signal. 

Thus, it is also important and interesting at the same time, to be able to 

form a discrete scale-space representation for practical situations. 

Lindeberg [16] presents an axiomatic approach to the problem, starting 

with the definition of a discrete scale space kernel. 
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Definition 3.1 : A one-dimensional discrete kernel RK →Ζ:  is said to be a 

scale space kernel if for all signals Rfin →Ζ:  the number of local extrema in 

the convolved signal inout fhf ∗=  does not exceed the number of local 

extrema in the original signal. 

 Considering the convolution of a scale space kernel with another 

scale space kernel, and using the associativity property of the convolution, 

it can be seen that, 

( ) ( )gKKgKK ∗∗=∗∗ 2121          (3.10) 

 Since gK ∗2  contains fewer local extrema compared to g, and 

further convolution of the resulting signal with another scale space kernel, 

namely 1K , will further reduce the number of local extrema, it is 

concluded that ( )21 KK ∗  is also a scale space kernel. 

 Another interesting property of such kernels is their unimodality in 

both the spatial and frequency domains. For the proof of this fact in the 

spatial domain, it is sufficient to consider the discrete impulse as the input 

function. If the kernel is not unimodal, the result of the convolution will be 

the kernel itself which would contain more local extrema than the input 

(the impulse function), hence the necessity in time-domain follows. For the 

frequency domain, if the frequency domain representation is not unimodal, 

then there will exist frequencies 1f  and 2f , with 21 ff < , and 

( ) ( )21 fHfH <  where ( )fH  represents the Fourier transform of the 

kernel. Considering a signal consisting of two sinusoids of frequencies 1f  

and 2f  (possibly of finite duration), successive application of the kernel to 

the signal will result in the attenuation of the low frequency sinusoid 1f , 

resulting in an increase in the number of local extrema, therefore it can be 

concluded that unimodality in the frequency domain is also necessary. 

 The family of kernels are finite. These are of the form [ ]an −δ , where  

Ζ∈a , [ ] [ ]1−+ nbna δδ  where a,b>0, [ ]nua n  where [ ]nu  denotes the step 

function and 1<a , [ ]nua n −−  where 1>a , and ( )tIe n
t αα−  for some 0>α  

where nI  are the modified Bessel functions of integer order. 
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 Among these, ( )tIe n
t αα−  is the only kernel, possesing the semi-group 

property, which makes it unique for the purpose of forming a discrete scale 

space representation. Lindeberg [16] calls it the discrete analogue of the 

Gaussian (or simply discrete Gaussian) and further shows that convolution 

of a discrete signal ( )nf  with this kernel family satisfies a discretized 

version of the diffusion equation (3.5), 

( ) ( ) ( ) ( )( )tnLtnLtnLtnLt ;1;2;1
2
1; −+−+=∂        (3.11) 

with initial condition ( ) ( )nfnL =0; , and +∈Rt , Ζ∈n . 

 The discrete scale space representation for k-dimensional signals is 

constructed by extending (3.11) to higher dimensions. In the end, it turns 

out that the unique family of kernels to be used is 

( ) ( )∏
=

=
k

i
ik tnTtNT

1

;;            (3.12) 

where T is the discrete analogue of the Gaussian kernel. 

 Another approach for the construction of a discrete scale-space 

might be through the sampling of the Gaussian family. It is in fact ensured 

by the following lemma ([16]) that these sampled functions  are also 

discrete scale space kernels. 

Lemma 3.2 : Uniform sampling of a continuous scale-space kernel gives a 

discrete scale-space kernel. 

On the other hand, it is shown that using the sampled Gaussian 

may violate the semi-group property. That is, if g is a sampled Gaussian of 

standard deviation t1, the following relation holds only under special 

circumstances: 

( ) ( ) ( )2121 ;;; tXLtXgttXL ∗=+          (3.13) 

 Despite this annoying fact, the sampled Gaussians are widely used 

(actually, they have also been used for the implementations that will be 

explained), due to the unavailability of the discrete analogue of the 

Gaussian in standard libraries. 
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3.1.3 Rescalings in Scale-Space: 
 

 Finally the behavior of the representation under rescalings of the 

original signal is considered. For an input signal RRf →: , define 

RRf →′ :  by 

( ) ( )sxfxf ′=             (3.14) 

Then, 

( ) ( ) ( )∫
∞

∞−

−= datxagaftxL f ;; ,          (3.15) 

where ( )txg ;  denotes the Gaussian. 

Then, letting saa =′ , tst 2=′ , it is seen that, 

( ) ( )afaf ′′=             (3.16) 

( ) ( )txagstxag ′′−′′=− ;;           (3.17) 

s
da
ad
=
′

            (3.18) 

where (3.16) follows from (3.14) and (3.17) from the properties of the 

Gaussian (consider the mentioned constraints). 

Thus, (3.15) is equal to 

( ) ( ) ( ) ( )txLtxLadtxagaf ff ;;; =′′=′′′−′′′′ ′

∞

∞−
∫         (3.19) 

This suggests that at a point, the problem of recovering scale may be 

reduced to finding the correct scale parameter t, for the Gaussian to be 

used ([23]). What is actually being done is to “zoom” in or out of the 

function using Gaussians with different variances, instead of dealing with 

the unknown function values. The result can be generalized to an affine 

transform as well ([22]), and this matter will be examined in detail in the 

next sections. 

3.1.4 Scale-Space Derivatives 
 

The calculation of the derivatives of an image (or any given signal) in 

a computer is usually considered an ill-posed problem ([31], [16]) (i.e. the 
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solution does not continuously depend on the input). For an illustration, 

consider the functions ([31]) ( )xf1  and ( ) ( ) ( )xxfxf ωε sin12 += , for a small 

ε , the two functions are approximately the same. However, if ω  is 

sufficiently high, the amplitudes of the first derivatives at the origin will be 

significantly different. This is a frequent situation in images due to the 

inescapable presence of noise from the sensors. The remedy for this case is 

to attenuate this high-frequency noise via some low-pass filter. 

Choosing the response of the filter as a Gaussian, the properties of 

scale-space may be exploited. With such a choice of the smoothing 

function, the differentiation operation (at an arbitrary order n) amounts to 

calculating ( )txL
x n

n

;
∂
∂

, 

( ) ( ) ( ) ( ) ( )

( )txL

daaxf
x

tagdaaxftag
x

txL
x

nf

n

n

n

n

fn

n

;

;;;

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

∂
∂

=−
∂
∂

=
∂
∂

∫∫      (3.20) 

if ( )xf  is a differentiable function. Moreover, 

( ) ( ) ( ) ( ) ( )

f
x
g

daaftaxg
x

daaftaxg
x

txL
x

n

n

n

n

n

n

fn

n

∗⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

∂
∂

=−
∂
∂

=
∂
∂

∫∫ ;;;
     (3.21) 

Equation (3.20) implies that, for a differentiable function, smoothing after 

differentiating is equivalent to differentiating after smoothing. Apart from 

this fact, it is seen that ( )txL
x n

n

;
∂
∂

 corresponds to ( )txL nf
;  which actually 

is the scale-space representation of fn. Thus, one expects to find fewer local 

extrema in the derivatives of the smoothed function, no matter when it was 

differentiated (either before or after smoothing). In addition, it is seen that 

the spatial derivatives of a scale-space representation should obey the 

scale-space axioms, as well. 

 On the other hand, (3.21) suggests a method to calculate the 

derivatives, somewhat regularizing the ill-conditioned problem. Instead of 

convolving the differentiated function with a Gaussian, the function is 
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convolved with a differentiated Gaussian (which is infinitely differentiable), 

enlarging the class of differentiable functions ([16]). 

 The reason of interest in these derivatives is actually related to the 

local description of the image. Considering the Taylor expansion around 

the origin, an infinitely differentiable function may be written as, 

( ) ( ) ( ) ( ) ( ) ( ) KK +++′′′+′′+′+= 0
!

0
!3

0
2

00
32

n
n

f
n
xfxfxfxfxf      (3.22) 

Thus, it is clear that derivatives can readily be used for local description at 

some scale t. An interesting property is about the Laplacian of the 

representation. If Laplacian derivatives at all scales are available, the 

representation, thus all the other derivatives may be obtained from these 

values. For a proof, consider the representation at some scale. If the 

representation tends to zero at infinite scale, it follows from the diffusion 

equation (3.4) that, 

( ) ( ) ( )( ) ( ) ( )∫ ∫
∞

∞−

∞

=′

′′∇−=′′
′∂

∂
−=−∞−=

tt

tdtxLtdtxL
t

txLxLtxL ;
2
1;;;; 2    (3.23) 

In fact, using scale-space derivatives with several different scales, one can 

obtain high-quality reconstructions of a patch ([15]). In this work ([15]), 

Singular Value Decomposition (SVD) is utilised to test the independence of 

the filter set (Gaussian derivatives in this case). Expressing the responses 

of the filters as a column vector and assembling the column vectors in 

some matrix, using SVD, one can obtain an orthonormal set spanning the 

same space as the original column vectors. 

The use of Gaussian derivatives at different scales may be 

appreciated, if the Fourier Transforms (FT) are investigated. It can be 

shown that FT of a Gaussian with variance s is a Gaussian with variance 

1/s (see Appendix-2). Moreover, noting that differentiating a function in 

the spatial domain corresponds to multiplication of its FT with -jω in the 

frequency domain, the FT’s of the derivatives of the Gaussian may also be 

computed easily. Considering a Gaussian derivative of arbitrary order as a  

filter kernel and noting that successive differentiation in the spatial 

domain will lead to successive multiplication with -jω in the frequency 

domain, one can expect that higher the derivative, higher will be the pass-
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frequencies (see Figure 3.6). Thus, for some fixed variance, or scale, the 

Gaussian and its derivatives behave like a filter bank, where the Gaussian  

 

 
              (a)    (b)   (c)   (d) 

Figure 3.6 Gaussian, its derivatives and their Fourier Transforms. Gaussian and derivatives with 
increasing order, (a) t=1/2,(c) t=1/4, FT magnitudes for the functions (b) in (a), (d) in (c) 

 
 

is the low-pass and the derivatives constitute the band-pass filters 

(actually this is the case for an arbitrary low-pass differentiable kernel). 

Moreover, adjusting the scale, one obtains a filter bank, which covers the 

high-frequencies with low-scale Gaussians and low-frequencies with high-

frequency Gaussians. In this respect, the behaviour may be resembled to 

those of wavelets (if the low-pass Gaussians are left out) ([16]). 

 Lastly, the behaviour of these derivatives under rescalings of the 

original signal is considered. For this, let ( )xf1  be the input signal and let 

( ) ( )xfxf 12 =′  where sxx =′ . Applying the differentiation operator (of 

arbitrary order n) with respect to x to both functions, one obtains 

( ) ( ) ( ) ( )xf
x
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x
x
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21 K    (3.24) 

Using the equivalence of (3.15) and (3.19), 

 ( ) ( )txLstxL nn f
n

f
′′= ,;

21
.          (3.25) 
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where tst 2=′  as defined previously. 

Multiplying both sides of (3.25) by 2
n

t , 

( ) ( ) ( )txLttxLtstxLt nnn f

n

f

n
n

f

n

′′′=′′= ,,;
221

222         (3.26) 

Using further, the equivalence in (3.20), equation (3.26) may be written, 

 ( ) ( )txL
x

ttxL
x

t fn

nn

fn

nn

′′
′∂

∂′=
∂
∂ ,;

21

22           (3.27) 

From these results, utilization of normalized derivatives, which are defined 

by ([17]), 

 n

nn

nt x
t

∂
∂

=∂ 2
,             (3.28) 

may be well appreciated. Although the results are presented for the 1-

dimensonal case, they may be extended to higher dimensions using similar 

arguments. These operators will be highly useful when trying to compare 

regions of arbitrary scales. 

3.2 Invariant Image Description 
 

 As already pointed out, the characterization of a region, in a way 

immune to affine transformations, is necesssary for the recognition of the 

region, when viewed from different perspectives. This stems from the fact 

that a general perspective transformation may locally be approximated by 

an affine transform ([12]). Using simply the brightness value of each pixel, 

gives good results, when the transformation between the views is restricted 

to a translation. However, in case of a more “interesting” transformation, a 

rotation for instance, the success of recognition of the same region falls 

significantly ([31]). In such a case, a description invariant to rotation is 

required, bringing the use of rotational invariants into the picture. 

 Utilizing rotational invariants, more general (in terms of invariance 

to different types of transformations) invariants may be developed. These 

are scale and affine invariants. In the next chapter, the necessity of such 

invariants are also shown visually to appreciate their requirement. The 



 42

discussion in this section is only restricted to the construction of the 

mentioned invariants, given a feature. 

3.2.1 Rotational Invariants 
 

Three different types of rotational invariants (which have drawn 

attention, been used and been known widely ([31], [25], [30], [29], [4])) will 

be explained in the following subsections. 

3.2.1.1 Steering the Gaussian Derivatives in the Direction of the Gradient 
 

Let ( )Xf  be a 2-D signal with [ ]TyxX = . 

Writing the Taylor’s expansion around the origin up to fourth order, 

( )

432234

32232

2

464

33

22

yfxyfyxfyxfxf

yfxyfyxfxfyf

xyfxyfxfyfxffXf

yyyyxyyyxxyyxxxyxxxx

yyyxyyxxyxxxyy

xyxyxxyx

++++

+++++

++++++≅

      (3.29) 

where the terms containing kn ji
f denote the value of the partial derivatives 

evaluated at the origin. 

Thus, a reasonable vector characterising ( )Xf  around the origin is: 

[ ]yyyyxyyyxxyyxxxyxxxxyyyxyyxxyxxxyyxyxxyx fffffffffffffff (3.30) 

Considering ( ) ( )XgXf ′=  where XX

C
44 344 21

⎥
⎦

⎤
⎢
⎣

⎡
ΘΘ−
ΘΘ

=′
cossin
sincos

(i.e., the two axes 

are related by a rotation of Θ), if it were possible to obtain (3.30) for 

( )Xg ′ with respect to the coordinate axes X ′ , there would be no difficulty 

matching rotated versions of the same feature for a given window size, 

after properly rotating the image. However, the rotation angle between the 

two coordinate systems is unknown. At this point, it is noted that, the 

gradient direction (at the origin) in the two images are also related by the 

same amount of rotation. For this, differentiate both f and g with respect to 

X (using the fact that the inverse of a rotation matrix is its transpose): 

( ) ( ) ( )000 fCXCf
X

Xg
X X

T
X

′=
∂
∂

=
∂
∂

==        (3.31) 
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Then, one obtains :  

( ) ( ) ( ) ( ) ( ) ( )
TT

y
f

x
fCfC

y
g

x
gg ⎥

⎦

⎤
⎢
⎣

⎡
∂
∂

∂
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=′=⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

∂
∂

=′ 0,00,000,00,00 .     (3.32) 

 Thus, if the images are rotated to align the gradient direction with 

the image’s x-axis (see Figure 3.7), it can be claimed that the resulting 

images would be the same. In order to show this, let G and F be the 

rotation matrices which transform a unit vector in the x-axis to a unit 

vector in the gradient direction in the first and second images respectively 

(note that G=CF ). Consider the rotated function fR  for the first image: 

 ( ) ( )XfXFf R =−1            (3.33) 

so, 

 ( ) ( )FXfXf R = .           (3.34) 

Similarly, for the rotated function gR for the second image, 

 ( ) ( ) ( )XCfXgXGg R
11 −− ==          (3.35) 

hence, 

 ( ) ( ) ( )FXfGXCfXg R == −1                    (3.36) 

thus, 

 ( ) ( )XfXg RR = .           (3.37) 

 

 

      
                 (a)           (b)              (c) 

Figure 3.7 Graphs of rotated edges. (a) f(X), X plotted in red, gradient direction in blue, (b) g(X), X 
plotted in red, X ′ plotted in yellow, gradient plotted in blue, (c) rotating both (a) and (b) so as to 
align the gradient direction with the x-axis yields the same image. 

 

 

 In fact, investigating the result of the equations, it can be suggested 

that each region to be described be rotated and the brightness values of 
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the rotated region be taken as a characterization of the region. 

Alternatively, instead of explicitly rotating the image, the vector (3.30), 

compactly representing the region may be obtained as if the gradient 

direction and the direction orthogonal to the gradient were the axes. This 

is equivalent to first rotating the image and then obtaining (3.30). In order 

to illustrate the calculation procedure, 
gg yxf will be computed (where 

gxr denotes the gradient direction and gyv  the direction orthogonal to it, so 

that when gxr  is rotated to match the x-axis, i.e. xv , gyv  matches the y-axis, 

i.e. yv , and a general vector is written as [ ] gggg yyxxyyxxyx vvvv +=+= ) : 

 Let 
22
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the derivative along gxv is obtained as: 
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and, 
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     (3.40) 

This procedure may be extended to any desired length of the vector. 

However, an important point to note is, as the vector proceeds, the terms 

get more dependent on a precise estimation of the gradient direction. This 

precision might be hard to achieve, which seems to be the major difficulty 

for applying the approach. For improving the estimation, some authors use 

a local histogram for the calculation of the gradient direction ([19]). 

Moreover, some of the terms depending on the second derivative may also 

be computed without referencing explicitly to the direction of the gradient 

as a property of the Hessian. This can be shown as follows: 

The second order derivative of f in some direction [x y] is : 
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       (3.41) 

under a rotation as RXX =′ , where IRRT = ,  

( ) BXXARXRXX
X

f TTT ==′
∂
∂

2

2

         (3.42) 

 using the facts that (for two square matrices Q, W of the same size) Tr(QW) 

= Tr(WQ), and DET(QW) = DET(Q)DET(W), it is concluded that the trace of A 

is equal to the trace of B (i.e. the Laplacian) and the determinants of the 

matrices are equal. These (or any combination of these) may be replaced 

with two of the second order terms of (3.30). In fact, since the two 

eigenvalues are determined by these two numbers, a third coefficient is not 

necessary, since these are the only entities that remain constant under a 

rotation (i.e. invariance to rotation introduces a redundancy to the 

representation using the full set of partial derivatives). 

Indeed, the term ‘steerable filter’ stems from the work of Adelson and 

Freeman ([1]). In their research, what the authors have primarily proposed, 

is to obtain the responses of the same filter rotated in an arbitrary amount, 

without applying the actually rotated filter. Instead, they form a basis of 

filters so as to enable calculation of the response for any amount of 

rotation. This basis consists of the rotated versions of the filter. The idea 

may explicitly be expressed as (for a filter f, fΘ denoting the ‘Θ’ rotated 

filter) ; 

∑
=

ΘΘ =
n

i
ii

faf
1

β ,           (3.43) 

i
aΘ  denoting the coefficient for each element of the basis, dependent on the 

rotation angle Θ. Such a representation is possible if the original function 

may be written as: 

( ) ( )∑
−=

Θ=
t

tn

in
n ercXf ,           (3.44) 

i.e., if the function may be written as a finite sum of complex exponentials 

in polar angles multiplied by rotationally invariant functions. In other 
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words, the Fourier terms, (which are of a finite number) expressed in polar 

angles, form a basis for the function and any translation in the polar 

angle, may be handled by appropriately adjusting the coefficient of each 

element in the basis. 

 That the Gaussian derivatives are steerable follows from writing 

these as a sum of the form (3.44). Actually, considering a derivative of any 

arbitrary order, one can observe that : 

( ) ( )∑∑
= =

+

=
∂
∂ n

k

m

l
lk

mk
mn

mn

rayxtyxg
yx 1 1

,,,          (3.45) 

ak,l(r) being a rotationally symmetric function (r representing the radial 

variable). Inserting Θ= cosrx , Θ= sinry  in (3.45), and moreover noting 

that 
2

cos
Θ−Θ +

=Θ
ii ee

, 
j
ee ii

2
sin

Θ−Θ +−
=Θ , it’s seen that (3.45) may be 

written in the form (3.44). Thus, the Gaussian derivatives are steerable in 

the sense of (3.43).  

 However, it is noted that the procedure explained in the beginning 

exploits the properties of directional derivatives of a partially differentiable 

function and actually the basis filters are not rotated versions of each 

other (consider fxxx, fxxy, etc.; on the contrary, the first order derivatives 

exactly fit the framework outlined in (3.43)) (see Figure 3.8). 

 

 

                   
   (a)        (b)          (c)          (d)          (e)          (f)          (g)          (h)          (i)           (j) 

 

                 
       (k)            (l)            (m)           (n)             (o) 

Figure 3.8 Images of a Gaussian and its partial derivatives (a) g, (b) gx, (c) gy, (d) gxx, (e) gxy, (f) gyy, 
(g) gxxx, (h) gxxy, (i) gxyy, (j) gyyy, (k) gxxxx, (l) gxxxy, (m) gxxyy, (n) gxyyy, (o) gyyyy. It is noted that (b) 
and (c) are simply rotated versions of each other and form a basis for the first order derivatives of the 
Gaussian in any direction. However, this is not the case for higher order derivatives and the elements 
of the basis (that is utilised) are not rotated verisons of each other. 
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The last point to note is about comparing two vectors. Considering 

each entry of the vector as a random variable, it is noted from the previous 

discussion about the non-orthonormality of the filter bank produced by the 

derivatives of Gaussians, that each entry will inevitably “contain some” 

from another entry. In other words, the entries will not be independent. 

Moreover, the expected value and covariance of each entry may be 

different. Thus, a fair comparison of the vectors are possible after  

normalizing the covariance matrix for the ensemble of these vectors. This 

is indeed what Mahalanobis distance does ([35]). According to this scheme, 

the distance between two (row) vectors x, y are given by: 

( ) ( ) ( )TyxCyxyxd −−= −1,           (3.46) 

where C is the covariance matrix estimated by: 

( )∑
=

−−=
N

k
k

T
k xx

N
C

1

)(1 µµ ,          (3.47) 

where each xk denotes a vector obtained through a distinct observation 

and N is the total number of such vectors in the ensemble. The mean 

vector, µ, is given by: 

∑
=

=
N

k
kx

N 1

1µ .            (3.48) 

3.2.1.2 Invariants Based on Transforms 
 

It is known that for a 2-D function f(x,y) (with Fourier Transform 

( )21 ,ωωF ), if the function is translated in some arbitrary amount (in both 

directions), the magnitude of the resulting function’s Fourier 

Transform(FT) will be the same as the original functions’. This follows 

simply from the properties of FT. What happens though under a rotation of 

the function? Let ( )Θ,rf  be the same function expressed in terms of polar 

coordinates, and similarly ( )Φ,RF  be the FT expressed in corresponding 

polar coordinates. Then, since, 

( ) ( ) dxdyeeyxfF yjxj 11,, 21
ωωωω −−∫∫=         (3.49) 

Expressing all the variables in the corresponding polar variables, 
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 Θ= cosrx , Θ= sinry , Φ= cos1 Rω , Φ= sin2 Rω ,      (3.50) 

and inserting into (3.49), 

( ) ( ) ΘΘ=Φ ΘΦ−ΘΦ−∫∫ rdrdeerfRF rjRrjR )(sin)(sin)(cos)(cos,,       (3.51) 

 ( ) [ ]∫∫ ΘΘ= ΘΦ+ΘΦ− rdrderf jRr ))(sin(sin))(cos(cos,         (3.52) 

( ) ( )∫∫ ΘΘ= Φ+Θ− rdrderf jRr cos, .         (3.53) 

From (3.53), it is seen that a rotation in the original function, which 

corresponds to a shift in Θ, causes the FT to be rotated (i.e. a shift in Ф) as 

well (in contrast to the translation propert of FT.) What can be mimicked to 

obtain an invariant, is the translation property as mentioned in the 

beginning. Thus, in order to obtain a transform whose magnitude is 

invariant to rotations, the following set of complex coefficients are 

proposed by Baumberg ([4]): 

( ) ( ) Θ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Θ= Θ∫ rdrdetrg

dr
drfu jm

n

n

mn ,,,         (3.54) 

Under a rotation of the image ( ) ( )α+Θ=Θ′ ,, rfrf , these coefficients are 

transformed as follows: 

mn
jm

mn ueu ,,
α−=′ .           (3.55) 

Thus, for the group ( m = constant ), the action under a rotation is the 

same. To render these coefficients invariant to rotation, one can simply 

take the magnitudes since 1=− αjme . Alternatively, if the coefficients 

mnu , are divided by unit-length complex number proportional to mu ,0 , the 

multiplicative factors αjme− can also be eliminated. Thus, the set of 

coefficients obtained this way are invariant to rotations. 

 The comparison of these invariants is also based on the 

Mahalanobis distance, since the kernels are not orthonormal. 

3.2.1.3 Orthonormal Filters 
 

Another major approach to obtain rotation invariance, is to use 

orthonormal filters. Consider the family of kernels ([29]), 
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( ) ( ) ( ) ( )yxgjyxjyxyxK nm
nm ,,, −+=         (3.56) 

where ( )yxg ,  denotes the Gaussian. Expressed in polar coordinates, 

 ( ) ( ) ( )nmjnmnjnmjm
nm errgererrK −Θ+Θ−Θ ==Θ,,        (3.57) 

Applying the kernel on a given function ( )Θ,rf , the response is: 

( ) ( ) ( ) ΘΘ= −Θ+∫∫ rdrdrgerrfz nmjnm
nm ,, .        (3.58) 

Similarly, the response after rotating the function so that 

( ) ( )α+Θ=Θ′ ,, rfrf  is: 

 ( ) ( ) ( )∫∫ Θ+Θ=′ −Θ+ rdrdrgerrfz nmjnm
nm α,,         (3.59) 

        ( ) ( ) ( ) ( )∫∫ −−−+= ββ αβ rdrdrgeerrf nmjnmjnm,        (3.60) 

        ( )nmj
nm ez −−= α

,            (3.61) 

Thus, for the group (m-n) = constant, the action is the same under a 

rotation. Since swapping m and n simply results in complex conjugate 

filters, it is enough to calculate the response of the filters with m≥n. 

Moreover, it is noted that nmK ,  and lkK ,  are orthogonal if (m-n) ≠ (k-l): 

( ) ( ) ( )∫ ∫
=Θ

∞

=

−Θ+−Θ+ Θ
π2

0 0

2

r

kljlknmjnm rdrdrgerer        (3.62) 

( ) ( )[ ]∫
=Θ

−−−Θ
+++ Θ=

π2

0

deM lknmj
lknm ,          (3.63) 

(Mm+n+k+l exists, since the Gaussian decays more rapidly than any 

polynomial). 

Equation (3.63) equals 0, if (m-n) ≠ (k-l), and 2πMm+n+k+l otherwise. 

The group of filters for which (m-n) = constant, may be orthonormalized 

using Gram-Schmidt orthonormalization procedure, and once this is 

achieved (since the group action for (m-n) = constant is the same under a 

rotation, the resultant group after orthonormalization using the mentioned 

method will also exhibit the same behaviour), the whole set of filters will be 

orthonormal. Orthonormality will allow the utilization of the simple 

Euclidian distance. 
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In order to achieve rotational invariance, simply taking the 

magnitude of the response (or using the scheme described in the preceding 

subsection) is sufficient. Since wzwz −≤− , the Euclidian distance for 

these invariants is noted (since the filter bank is orthonormal) to be a lower 

bound on the region’s sum of squared differences (SSD). 

 The use of the Euclidian distance is favored (compared to the 

Mahalanobis distance), since for this distance, there is no need to estimate 

the covariance matrix for the characterization vectors, which is a rather 

tedious process. 

3.2.2 Scale Invariants 
 

 The idea of scale-space offers operators and a representation to 

analyze the behavior of a signal throughout different scales, but it does not 

explicitly state the exact scale under which, a structure present in some 

signal should be observed. However, combining the outputs of the 

mentioned operators, schemes to detect a salient scale for a feature, which 

would be affected in the same manner as would some unit length in the 

given signal under rescalings of the signal. As an example, consider a one 

dimensional sinusoidal input signal 

 ( ) ( )xxf oωsin=            (3.64) 

The solution for the 1-D diffusion equation (3.4) with initial condition 

( ) ( )xfxL =0;  is given by :  

( ) ( )xetxL
t

0
2 sin;
2
0

ω
ω

−
=           (3.65) 

This can be verified by simply observing that the equality (3.4) holds for L 

given by (3.65). Applying the mth order normalized derivative m

mm

mt x
t

∂
∂

=∂ 2
, , 

the amplitude at the origin, as a function of scale is given by: 

 2
0

2
,

2
0 t

m
m

mt etL
ω

ω
−

=∂ .           (3.66) 
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It is observed that this function first increases and then decreases (for 

non-negative t), assuming a unique maximum at the zero crossing of the 

derivative wrt t, given by: 

2
0

max, ω
mt L =             (3.67) 

Defining a scale parameter s by  

ts = ,             (3.68) 

it is observed that the scale at which the normalized derivative assumes its 

maximum is proportional to 
0

2
ω
π

, i.e., the wavelength of the sinusoid.  

Moreover, placing (3.67) in (3.66), the maximum value over scales is: 

2
,sup

m
m

mt meL −=∂            (3.69) 

which is noted to be independent of the wavelength of the signal. In other 

words, using this scheme, one can treat sinusoidal signals of arbitrarily 

different frequencies, independent of their frequency (see Figure 3.9). 

The operation outlined above constitutes a way of estimating length 

(or wavelength) based on local measurements performed at a single point. 

This sounds like what Short Time Fourier Transform (STFT) intends to 

achieve, trying to estimate the frequency content of a signal at a particular 

time (or, reversely, the time content at a particular frequency). However, in 

contrast to STFT, there is no need to explicitly set a window size for 

realizing the computations, which actually exists in the definition of STFT. 

In this view, the selection of a windowing function may be regarded as 

‘buried’ in the diffusion equation. Thus, in the context of time-frequency 

analysis, this operation may be interpreted as similar to what wavelets do 

([16]). 

 The measurement procedure based on derivatives may also be 

viewed as a pattern matching process. The signal is matched with 

Gaussian derivative kernels of different order, scale, with the 

corresponding normalization. 
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Figure 3.9 Amplitudes of normalized scale-space derivatives of first order for sinusiods with angular 
frequencies 5.01 =ω , 0.12 =ω , 0.23 =ω  ([17]). 

 

 

Following these ideas, Lindeberg ([17]) states the following principle: 

“Principle for scale selection: 

In the absence of other evidence, assume that a scale level, at which 

some (possibly non-linear) combination of normalized derivatives 

assumes a local maximum over scales, can be treated as reflecting a 

characteristic length of  a corresponding structure in the data.” 

The remaining question awaiting an answer is : “Which particular 

combination of derivatives should be used?”. In fact, different authors have 

used different combinations and have obtained good results in their own 

account. For example, Lindeberg ([17]) uses the normalized Laplacian of 

Gaussian and Lowe ([19]) utilizes difference of Gaussians, leading to an 

efficient computation scheme at the expense of sampling the signal at 

hand. Mikolajczyk and Schmid ([25]) have actually shown experimentally 

that among the following candidates given as: 

Square Gradient  ( ) ( )( )sxLsxLs yx ;; 222 +        (3.70) 

Laplacian   ( ) ( )( )sxLsxLs yyxx ;;2 +       (3.71) 

Difference of Gaussian ( ) ( ) ( ) ( )nn sxgxIsxgxI ;; 1 ∗−∗ −      (3.72) 

Harris function  ( ) ( )CtraceC 2det α−        (3.73) 
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with 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
∗=

dydydx

dydxdx
iddi sxLsxLsxL

sxLsxLsxL
sxgsssxC

;;;
;;;

;,, 2

2
2       (3.74) 

where I(x) is the signal and L(x) its scale-space representation with the 

scale parameter s as previously defined in (3.68) (it is also noted that the 

scale parameter is discretized due to practical reasons, as sn, where s0 

denotes zero scale), the normalized Laplacian gives the best results in 

terms of correctly2 selecting the scale for a feature. 

 The Harris function is noted to be a scale-adapted version of the one 

described in Section 2.7 . In this respect, the derivatives are computed 

using derivatives of Gaussians with scale parameter sd (differentiation 

scale) and averaging is performed using a Gaussian of scale parameter si 

(integration scale). Usually, the differentiation and integration scales are 

taken to be proportional, i.e., si = asd .  

 Based on the experimental facts mentioned, Mikolajczyk and 

Schmid propose the following scale invariant detector ([25]):  

 
 Algorithm 3.1: 

1. Build a scale-space representation for the Harris function 

(68). Detect the candidate interest points (noting the scale 

at which they were detected) at each scale by thresholding 

the response of the function and eliminating the non-maxima. 

2. A candidate point x at some scale sn is taken to be an 

interest point if its response to the Laplacian (3.71), 

denoted by F(x;sn), forms a local maximum in scale, i.e., if  

( ) ( ) ( ) ( )11 ;;;; +− >∧> nnnn sxFsxFsxFsxF      (3.75) 

 where ∧ denotes ‘logical and’. 

 

After detecting the features and their corresponding scales, the final 

thing to do is to obtain a local description of the region preferably invariant 

to rotation. This may be achieved by utilizing normalized derivatives at the 

                                                 
2 The experiments ([25]) had been carried out on scaled versions of a given image. The selected scale 
for a point is said to be correct, if the ratio between the characteristic scales in corresponding points 
in the given images are equal to the scale factor between the images. 
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corresponding scales with the method described in Section 3.2.1.1. The 

descriptors mentioned in Sections 3.2.1.2 and 3.2.1.3 may also be 

rendered invariant to scale by a proper normalization. 
 

  
   (a)     (b) 

 

  
             (c)                (d) 

Figure 3.10 Response of the scale-adapted Laplacian operator on “Haydarpaşa Tren İstasyonu” as a 
function of the scale parameter defined in (3.68). (a),(b) Haydarpaşa Tren İstasyonu in different 
scales, (c) response of the scale-adapted Laplacian operator applied at the point marked in red in (a), 
(d) response of the scale-adapted Laplacian operator applied at the point marked in red in (b). Note 
that the two plots are actually (roughly) rescaled versions each other. The scaling factor is expected 
to be equal to the scaling among the two images (where (3.68) is taken as the scale parameter). 

 

 

3.2.3 Affine Invariants 
 

 As mentioned before, invariance of description under affine 

transformation of a patch may be useful while considering perspective 

deformations. Some practical schemes were proposed by Lindeberg and 
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Gårding ([18]), Baumberg ([4]), Mikolajczyk and Schmid ([26]), which 

actually exploit the same transformation property which will be explained. 

In fact, the Hessian also posseses the same property, and thinking that it 

is relatively easier to visualize the physical meaning of the Hessian, affine 

invariance in terms of normalizing the Hessian, which has not somehow 

drawn much attention, will be presented first. 

3.2.3.1 Normalizing the Hessian 
  

 Consider the function  

( ) ( )22

2
1, yxyxf += .           (3.76) 

(see Figure 3.11). The second derivatives of this function in the x and y 

directions, evaluated at the origin, are found to be, 

 ( ) 10,02 ==∂ xxx ff            (3.77) 

( ) 10,02 ==∂ yyy ff .           (3.78) 

 

 

 
(a)     (b) 

Figure 3.11 Inverted graph of (a) f(x,y)=x2+ y2, (b) f(x,y) = (0.8x)2+ (1.1y)2 

 

If the graph of the function is ‘stretched’ in the x-direction and ‘squeezed’ 

in the y-direction, one obtains 

 ( ) ( )byaxfyxf ,, =′ ,           (3.79) 

where 0<a<1 and 1<b. 
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Now, the second derivatives of this new function can be evaluated: 

 222 afaff xxxxx ==′=′∂ ,          (3.80) 

222 bfbff yyyyy ==′=′∂ .          (3.81) 

Under these circumstances, it can be observed that the knowledge on the 

second derivatives enables one to recover the original rotationally 

symmetric function as: 

 ( ) ( )yxf
b
bx

a
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f
y

f
xfyxh

yyxx

,,,, =⎟
⎠
⎞

⎜
⎝
⎛=⎟
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⎞

⎜
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⎝

⎛

′′
′= .       (3.82) 

A general affine normalization based on the Hessian matrix follows from a 

similar idea. For this purpose, let ( )Xf  , where X=(x,y), be a function with 

the Hessian at the origin denoted by fH , as: 

 If H = .            (3.83) 

and, let 

 ( ) ( )BXfXh =            (3.84) 

where B is a non-singular 2x2 matrix. 

It can be verified by an application of the chain rule that: 

( ) ( ) MBBXfBXh H
T

H == .          (3.85) 

Due to (3.85), M is a positive definite (PD) matrix. It is noted that what is at 

hand is the PD matrix M and the desired matrix to be obtained is B. In 

fact, exactly recovering B from M is not possible, since for an orthonormal 

matrix R, 

 BT RTRB = BTB = M .           (3.86) 

In other words, M determines B up to a rotation. This is practically realized 

by utilizing Cholesky Decomposition ([5]). The decomposition algorithm, for 

a PD input D, returns a non-singular matrix L, such that, 

 D = LTL .            (3.87) 

Applying Cholesky decomposition to M, 

 M = ATA            (3.88) 

where A = RB, (the square root matrix) and R representing an arbitrary 

rotation matrix. 

Now, backtransforming h using A, one obtains 



 57

 ( ) ( ) ( ) ( )XRfXBAfXAhXk 111 −−− ===         (3.89) 

Considering another function, 

 ( ) ( )EXfXh =′            (3.90) 

where E is another non-singular matrix, carrying out the same procedure, 

one obtains 

 ( ) ( ) ( ) ( )XRkXRRkXRfXk 3
1

2
1

2 ===′ −− .        (3.91) 

Thus, since ( )Xk  and ( )Xk ′  are rotated versions of each other, it can be 

concluded that matching between these two arbitrarily affine transformed 

patches may be realized by utilizing rotational invariants introduced in the 

previous sections. 

 If it were possible to obtain the Hessian at a point, this method 

could be used to obtain an affine invariant description of any ‘interest 

region’. However, as outlined in the previous sections, for differentiation, it 

is necessary to use a smoothing function, which is taken to be the 

Gaussian for this case. It will be shown that only under special conditions, 

the transformation property (3.85), which gives a chance to obtain affine 

invariance, holds, when the differentiation is carried out using derivatives 

of Gaussians. 

 Since differentiation of a function using the derivative of a 

Gaussian, is equivalent to smoothing the derivative of the function, by 

(3.20), the smoothed Hessian, denoted by fg,H, calculated at a point by the 

use of the Gaussian derivatives of second order is given by: 

 ( ) ( )
( ) ( )

dAe
t

AfXf
t

AXAX

HHg

T

I

2
, 2

1
−−

−

∫= π
.        (3.92) 

For an affine transformed function, ( ) ( )BXfXh = , the smoothed Hessian 

with respect to X, using (3.85) may be calculated writing fH in terms of hH : 

 ( ) ( )
( )( ) ( )( )

( )

dAe
t

BABhBf

XT

t
ABXBBABXBB

H
T

Hg

T

I

44444 344444 21

2111
,

1111

2
1

−−−− −−
−−−−∫= π

.     (3.93) 

 Since, 

 ( ) AdBdAB 11det −− = ,           (3.94) 

and a generalized Gaussian may be written as: 
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 ( )
( ) ( ) ( ) ( )

( )B
AXT

t

AXTeXg
XX T

det
det

det2
1; 2

1

+
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Σ

+
=

Σ
=Σ

−Σ
−

π
.      (3.95) 

 Thus, 

 ( ) ( ) ( )( ) ( )Σ−=Σ−⎟
⎠
⎞

⎜
⎝
⎛ Σ= −−−−− ;det;det 11111 ABXBgBABXBg

t
XT ,     (3.96) 

where ( )TBtB 11 −−=Σ . 

 Substituting these relations in (3.93) gives: 

 
( ) ( ) ( ) ( )( )

( ) ( ) 11
,

1

111111
, ;

−−−

−−−−−−

Σ
=

Σ−= ∫
BXBhB

BAdBABXBgABhBXf

Hg
T

H
T

Hg I .     (3.97) 

So, 

 ( ) ( ) ( )BBXfBXh Hg
T

Hg I ,, =
Σ

.          (3.98) 

In words, for the transformation property to hold, it is necessary that the 

Gaussian used for smoothing (and differentiation) must be adapted to the 

affine transformation applied to the coordinate axes. However, for this 

adaptation, it is required to know the transformation (i.e. the matrix B) 

applied to the coordinates. It is noted that this is exactly what one would 

like to estimate through the observation of the Hessian calculated with a 

generalized Gaussian and thus, is not at hand. This difficulty may be 

overcome by the use of an iterative procedure. In fact, what should be 

achieved is to transform the image so that the Hessian calculated using 

the derivatives of an isotropic (or rotationally symmetric) Gaussian is equal 

to cI, where c is an arbitrary constant. Thus, the following algorithm, 

which is adapted from Lindeberg and Gårding ([18]), and Baumberg’s ([4]) 

works, may be proposed: 

 
 Algorithm 3.2: 

1. Take a point where the Hessian H0, calculated using 

derivatives of an isotropic Gaussian (of the salient scale 

detected by the algorithm outlined in 3.3.2), is PD and write 

H0 = B0TB0 using Cholesky decomposition (and let n=0). 
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2. For a local patch at the origin of which lies the interest 

point chosen in step 1, obtain the affine transformed new 

patch 

 ( )
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

−

+ XB
B

fXf n
n

nn

1

1 det
1

,     (3.99) 

where n
T
nn BBH = . 

3. Calculate the Hessian Hn+1 for fn+1(X) using derivatives of 

the isotropic Gaussian utilised in step-1. If Hn+1 is not 

sufficiently close to IHn 1det + , increase n, go to step-2. 

4. Obtain the local characterization of the image patch fn+1(X) 
using rotational invariants. 

 

A few remarks should be made regarding the algorithm above: 

 Firstly, for a point, considering the applicability of the algorithm, it 

is necessary and sufficient, for the Hessian to be PD at the point. The 

Hessian, being PD ensures that Cholesky decomposition, may be applied 

to obtain the square root matrix and that the properties (3.84), (3.85) hold 

(sufficiency). Also, if the Hessian is not PD, there does not exist a non-

singular square root matrix and the algorithm should not be applied at all 

(necessity). 

 Secondly, it is assumed throughout that the salient scale is not 

changed, if the transformations are carried out using a non-singular 

matrix with determinant equal to unity ( 1
det
1det =⎟

⎠

⎞
⎜
⎝

⎛ B
B

). In fact, this 

need not be so, and theoretically, a local scale adaptation ([26]) should be 

made after each iteration of the algorithm. However, it is experimentally 

observed that the algorithm without this local scale adaptation also gives 

good results. 

 Thirdly, it is noted that the same algorithm is applicable in the case 

of Negative Definite Hessian possessing points as well, after a proper 

arrangement of the signs and square roots of the matrices. 
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3.2.3.2 Normalizing the ‘Harris Matrix’ 
 

 Observing that the transformation property (3.98) allowing a 

normalization, is actually the essence of the affine invariance obtained by 

the algorithm explained in the previous section, it is noted that other 

structures possessing similar characteristics may be used for this purpose. 

The Harris matrix (3.74) is an appropriate example. It will be shown in this 

section that this matrix behaves just like the Hessian under affine 

transformations, with similar restrictions on the Gaussians used. 

 Consider two functions related by an affine transformation 

 h(X)=f(BX)          (3.100) 

and let the gradient vector of f(X) be denoted as, 

 ( ) ⎥
⎦

⎤
⎢
⎣

⎡
=

)(
)(

Xf
Xf

Xf
y

x
X          (3.101) 

then differentiating h(X) applying the Chain rule: 

 ( ) ( )BXfBXh X
T

X = .         (3.102) 

Consider now, with the same reasoning as the last section (necessity of 

smoothing in differentiation), the smoothed derivative of f is written: 

 ( )
( ) ( )

dAe
t

AfXf t
AXAX

XXg

T

tI ∫
−−

−
= 2

, 2
1)(
π

      (3.103) 

Carrying out similar a change of variables as in the last section, 

 ( ) ( ) ( ) AdBABXBgABhBXf X
T

XgtI

11111
, ,)( −−−−−

Σ−= ∫     (3.104) 

where ( )TBtB 11 −−=Σ . 

Thus, 

 ( ) )(,, BXfBXh Xg
T

Xg tI
=

Σ
.        (3.105) 

It’s observed that for the transformation property (3.102) for the Gaussian 

derivatives (3.103) to hold, it is necessary to adapt the Gaussian. 

Now, defining 

 ( ) ( )TXgXgCg XfXfXf
tItItI

)()( ,,, ⋅= ,       (3.106) 

the Harris matrix for f can be expressed as: 

 ( ) ( ) ( )sIXgXftIsIXC Cgf tI
;,, , ∗=        (3.107) 
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Moreover, the following (compare with (3.85)) can be deduced: 

 ( ) ( )BBXfBXh Cg
T

Cg tI ,, =
Σ

.        (3.108) 

Explicitly writing (3.107), 

 ( ) ( ) ( )∫ −= dAsIAXgAftIsIXC Cgf tI
;,, ,       (3.109) 

and once again changing variables, 

 
( ) ( ) ( )

( ) 111
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,

1

,,

;,,

−−−

−−−−
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⎠
⎞

⎜
⎝
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⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ Σ−= ∫ Σ

B
t
sXBCB

BdA
t
sABXBgXhBtIsIXC

h
T

Cg
T

f

    (3.110) 

So, 

 ( )( )BtIsIBXCB
t
sXC f

T
h ,,,, =⎟

⎠
⎞

⎜
⎝
⎛ ΣΣ .       (3.111) 

In words, the Harris matrix calculated using adapted Gaussians possesses 

the transformation property sufficient to obtain affine invariance. Thus, 

Algorithm 3.3.3.1 may be adapted for this case also. It is noted that the 

Harris matrix at the points extracted by (3.73) will necessarily be PD 

(because of (3.106), (3.107) and the fact that, at the interest point the 

eigenvalues are non-zero). The assumption that the salient scale and 

position of the interest point will not change may not hold and thus for 

higher precision (at the cost of higher computation time of course) the 

following algorithm is proposed by Mikolajczyk and Schmid: 
 Algorithm 3.3: 

1. For an interest point extracted by using Algorithm 3.3.2 

write the Harris matrix at that point as C0 = B0TB0 using 

Cholesky decomposition (and let n=0). 

2. For a local patch at the origin of which lies the interest 

point, obtain the affine transformed new patch 

 ( ) ( )XBfXf nnn
1

1
−

+ = ,           (3.112) 

where n
T
nn BBC = . 

3. Update the scale and position of the interest point for 

this new patch. Calculate the Cn+1 at the updated position for 

fn+1(X) using derivatives of the isotropic Gaussian for 

differentiation(at the corresponding updated differentiation 
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scale) and an isotropic Gaussian for integration(at the 

corresponding updated integration scale). If Cn+1 is not 

sufficiently close to ICn 1det + , increase n, go to step-2. 

4. Obtain the local characterization of the image patch 

fn+1(X) using rotational invariants. 
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CHAPTER IV 

 
 

4 MATCHING.4 
 
 
 
Establishing point correspondences in different  views of the same scene is 

investigated in this chapter, using the results and methods developed in 

the previous chapters. In the following section, the geometry of the 

problem will be briefly explained, which is, in no ways meant to be 

exhaustive. This informal treatment will only be required for describing a 

model for the correspondence data to be fit. The existence of such a model 

is extremely useful for abandoning possible false matches, which will be 

evident in the following sections. After this step, different matching 

methods beginning with the simplest (in terms of robustness to the 

arbitrariness of  the views) will be described. Following each method, the 

motivation for further refinement of the current algorithm will be stated, 

i.e. a case (possibly obvious) will be shown for which the current algorithm 

would fail. Thus, as in the previous chapter, as the sections proceed, the 

algorithms are intended to be more robust to the arbitrariness of the input 

images. In this regard, the presentation will start with the small-baseline 

case. Then, a neighboring constraint will be presented. After this, another 

method, utilizing the invariants, which are described in the last chapter, 

will be explained. The chapter will end with the use of affine invariants in 

order to handle severe perspective deformations. 

 

4.1 Epipolar Geometry 
 

 The geometric relation between the orientations of two cameras (or a 

single camera capturing the scene at two time instants from different 
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locations) is the most important constraint for the two sets of interest 

points on the image pair. In other words, given an interest point in one 

frame, the location of the corresponding interest point at the other frame is 

determined by this epipolar geometry. Such a relation simply should hold 

for all the correct correspondences on the image pair, hence it can be 

utilized as a consistency (or correctness) measure for each pair of interest 

points, once the relation is determined.  

4.1.1 The Fundamental Matrix 
 

Consider the setting in Figure 4.1(a), where a point X in 3-space is 

imaged in two views, at point x1 in the first and at x2 in the second. The 

image points x1, x2, the point in space X and the camera centers C1, C2 

are observed to be coplanar. This plane, denoted by P, is determined by the 

 

 

  

  (a)      (b) 

Figure 4.1 Epipolar geometry. (a) A point X in 3-space is imaged using two cameras, (b) The 
corresponding pair for the image of a point is restricted to lie on a line in the other imageonce the 
epipolar geometry is known 

 

 

line joining the camera centers, called the baseline and the ray back 

projected from x1 (or equivalently the ray back projected from x2). If the 

positions of C1 and C2, along with the orientations of the image planes I1 

and I2 are known, then given the image (in the first image plane) at y1 of 
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some unknown space-point Y, this observation shall lead to a restriction 

on the position of the image in the second plane. For this, consider the ray 

r1 back projected from y (Figure 4.1(b)). Since y2 should lie in the plane P, 

determined by this ray and the baseline, it is restricted to lie on the 

intersection of this plane with the second image plane that is, the line L. 

Equivalently, this line may be thought of as the image of r1 in the second 

image plane, since the actual position of Y is not known and it may lie 

anywhere on this ray. 

 For point matching, the above observation leads to a reduction in 

the search space. Given a point x1 in the first image, if the camera 

positions and parameters are known, since the line in the second image on 

which the match x2 should lie will be known, the search space is restricted 

to a (1-D) line, instead of the whole (2-D) image. However, given two 

arbitrary images, without any information about the relative positions and 

parameters of the camera(s), it is not possible to directly make use of this 

relation. 

 A simple mathematical relation is required to be able utilize this 

important relation in general. For this, consider the homogeneous 

coordinates ([12]) of a point x in an image as: 

 x = [xim,  yim, 1]T               (4.1) 

where xim and yim are the coordinates of the point in the image. Utilizing 

homogeneous coordinates, a line in the plane given by (ax + by + c = 0) 

may also be written [a, b, c]⋅x = 0. Thus [a, b, c] is taken to be the 

representation of the line. Whether a given point lies on the line or not is 

determined by the product of its homogeneous coordinates and the vector 

describing the line. 

 The epipolar geometry is expressed by the equation ([12]) 

021 =FxxT                (4.2) 

where x1, x2, represent the homogeneous coordinates in the first and the 

second images of a pair of matching points. F is a 3x3, rank-2 matrix, 

called the Fundamental matrix, and is constructed, taking into account the 

relative positions and the internal parameters of the camera(s). It is noted 

that both Fx2 and FxT
1 represent a line in the sense described above. In 



 66

this regard, the equation ( ) 012 =xFx TT , states that x1 lies on the line TT Fx2  

in the first image and the equation ( ) 021 =xFxT , states that x2 lies on the 

line FxT
1  in the second image. 

4.1.2 Obtaining the Fundamental Matrix 
 

 Let x = [x, y, 1]T and  x′ = [x′, y′, 1]T  be a pair of matching points. 

Then, the epipolar equation  

 x′TFx = 0              (4.3) 

can be written as: 

x′xF11 + x′yF12 + x′F13 + y′xF21 + y′yF22  

+ y′F23 + x′xF11 + xF31 + yF32 + F33 = 0          (4.4) 

where Fij denotes the entry of F in the ith row, jth column. If further pairs of 

matching points   xn = [xn, yn, 1]T,  xn′ = [xn′, yn′, 1]T are obtained, these will 

also satisfy the epipolar equation (4.3) assembling these one obtains: 

 0
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MMMMMMMMM         (4.5) 

where [ ]TFFFFFFFFFf 333231232221131211= . 

 Given enough number of corresponding pairs (minimum seven pairs 

([12])), the fundamental matrix, thus the epipolar geometry of the images, 

may be obtained. If the data matrix D in (4.5) is exact (i.e. no noise on the 

positions of the corresponding point pairs), F can be determined up to 

scale by calculating the right null-space of D. However, when the number 

of pairs is greater than 8, due to the presence of noise, D may be of rank 9 

and for this case (4.5) does not hold. In this case, one should be interested 

in the least squares solution which may be obtained by Singular Value 

Decomposition (see Appendix-B) of D. Writing D via SVD gives: 

 D = U⋅S⋅VT,              (4.6) 

f is given by the last column of V, corresponding to the smallest singular 

value of D. It is noted ([12]) that the fundamental matrix, which is obtained 

in this way, may not have rank 2, hence this constraint should be 
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enforced. A practical and convenient way to do this is to again use SVD, 

this time on F :  

 F = T⋅B⋅Y,              (4.7) 

where B = diag(r, s, t), and r ≥ s ≥ t. F is then replaced by the rank 2 matrix 

F′ , given by: 

 F′ = T⋅B′⋅Y,              (4.8) 

where B′ = diag(r, s, 0). This matrix clearly has rank 2, and it is the unique 

matrix that minimizes the Euclidian distance between f and f′.  

 The simple method described above is noted to be noise-prone. A 

small amount of noise may result in an estimate of F, far from the original. 

In order to make the method more robust, a simple normalization on the 

input data is suggested ([11]). The normalization consists of a translation 

and scaling of each image separately so that the centroid of the 

corresponding points in each image is at the origin of the coordinates and 

the RMS distance of the points from the origin is equal to 2 . The 

algorithm may be stated as follows:  

 
Algorithm 4.1: 

Given n ≥ 8 corresponding point pairs, x1, ..., xn, x1′, ..., 

xn′, 

1. Transform the image coordinates of the first image so that 

the centroid of ii Txx =ˆ , i=1,..,n is equal to [0,0,1] and the 

RMS distance of ix̂ ’s from the origin is equal to 2 . 

Transform the second image so that ii xTx ′′=′ˆ , i=1,..,n possess 

similar characteristics. 

2. Determine F̂  from the singular vector corresponding to the 

smallest eigenvalue of D̂ , where D̂  is constructed as in 

(4.5), using ix̂ ’s and ix′ˆ ’s as the input data. 

3. Replace F̂  by F ′ˆ  as in (4.7) and (4.8) so that 0ˆdet =′F . 

4. Obtain the fundamental matrix F corresponding to the 

original image coordinates by TFTF T ′′= ˆ . 
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Regarding the estimation of the fundamental matrix and utilization 

of this knowledge for the purpose of matching, a problem, resembling the 

“chicken-egg problem”, may be recognized. To be able to perform matching 

automatically, one should use fundamental matrix to reduce the search 

space, thus reducing, in effect, the number of possible false matches. 

However, to obtain the fundamental matrix, one needs to have at hand a 

number of preferably precise, corresponding pairs of points. A solution 

might be to obtain first, a number of putative matches, i.e. matches that 

are thought to be correct, but may certainly contain false pairs as well, 

and then try to fit the scene model outlined for a subset of these putative 

matches.  

4.1.3 Error Measures 
 

 The fundamental matrix defines a variety (4.2) on the coordinates of 

the corresponding pairs. However, even for pairs where a small amount of 

noise is present (concerning the positions), (4.2) is not satisfied. To be able 

to distinguish these pairs from false matches, a plausible error measure is 

required. 

 For a corresponding pair (m1i, m2i) (where i represents the index of 

the pair), a reasonable error measure is given by: 

 ( ) ( ) ( )221
2

1221 ,,, i
T

iiiii mFmdFmmdmme +=           (4.9) 
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where d(m2i, Fm1i) represents the Euclidian distance of m2i to the epipolar 

line in the second image, defined by m1i and F, d(m1i, FTm2i) represents the 

distance of m1i to the epipolar line in the first image, defined by m2i and F, 

(v)t representing the tth entry for a column vector v. The measure is known 

in the literature as “symmetric epipolar distance” ([41], [12]). Although this 

algebraic measure is widely used and intuitively reasonable at first sight, 

what is more interesting would be to calculate the minimum amount of 

replacement of both points in the pair, so that (4.2) would be satisfied. 

This value is called the geometric error, which may not be obtained in a 
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closed form in the general case ([12]). Fortunately, the first order 

approximation for this error, which is called Sampson distance, may be 

derived as follows. 

 For a given fundamental matrix F, a corresponding pair represented 

as M = [ m1i,1, m1i,2, m2i,1, m2i,2 ]T, where mji,k represents the kth coordinate 

(k=1,2) of the point in the jth image (j=1,2) from the ith pair, the variety (4.2) 

may be written as :  

 VF(M) = 0.            (4.11) 

In case the equality is not satisfied, one should be interested in the 

smallest (in norm) vector δM so that  

VF(M+δM) = 0.            (4.12) 

Assuming that the first order approximation of VF is sufficiently accurate, 

it may be written 
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Investigating (4.12) and (4.13), an equation that δM should satisfy is 

obtained: 

 JδM = -VF(M).            (4.15) 

Utilizing Lagrange multipliers method, instead of minimizing δM with this 

constraint, the critical points of the following expression searched: 

 δMTδM - 2λ(JδM + ε).           (4.16) 

Taking derivative w.r.t. δM and equating to zero one obtains, 

δM = λJT.            (4.17) 

Also, equating the derivative w.r.t. λ to zero yields the original constraint, 

i.e.,  

JδM = -ε.            (4.18) 

Substituting (4.17) in (4.18), 

λJJT = -ε.            (4.19) 
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Solving for λ and substituting the result in (4.17), 

δM = -JT(JJT)-1ε.           (4.20) 

Then, the squared norm of δM is found as: 

( )TM JJ

2
2 εδ =            (4.21) 

Expressed in terms of F and M, this is written as: 
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Either (4.21) or its square root may be utilized as a first order 

approximation to the geometric error squared or itself. It is claimed that 

Sampson distance is slightly superior to the symmetric epipolar distance 

([12]). 

4.1.4 Outlier Rejection Methods 
 

Utilizing the error measures explained in the preceding sections, two 

popular methods for rejecting the outliers in a set of putative matches will 

be presented. 

4.1.4.1 Random Sample Consensus (RANSAC)  
 

 Given K>>8 putative matches, consider the following algorithm ([12]) 

for rejection of the outliers (and possibly a rough estimate of the 

fundamental matrix) :  

 
Algorithm 4.2 : 

Repeat for M times, 

1. Select a random sample of 8 correspondences and compute the 

fundamental matrix F, as described in Algorithm 4.1 . 

2.  Calculate the error ei by (4.10) or (4.22) for each putative 

match for the fundamental matrix obtained e. 

3.   Compute the number of inliers consistent with F, that is 

the number of corresponding pairs for which ei < t, where t is 

a fixed threshold.  
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4. Choose F with the largest number of inliers, and reject those 

pairs which yield ei > t for this particular F. 

 

The number M in Algorithm 4.2 is usually taken so that for a particular 

execution of the algorithm, the probability that there exists a sample (of 

eight pairs) consisting of correct matches is satisfactorily high. For 

instance, assuming that the ratio of the false pairs to the total are b, the 

probability of drawing eight correct matches is given by (1-b)8 . Then, the 

probability that at least one of the pairs in the sample is false equals 1-(1-

b)8. If it is desired that the chance that the algorithm selects a totally 

correct sample is 0.99, the number of samples M required is given by 

(assuming that there exist an infinite number of pairs) : 
( )
( )( )811ln

01.0ln
b

M
−−

= .  

4.1.4.2 Least Median Squares (LMedS) 
 

 Given K>>8 putative matches, a similar (in spirit) algorithm may be 

proposed ([41]) as: 
Algorithm 4.3 : 

Repeat for M times, 

1. Select a random sample of 8 correspondences and compute 

the fundamental matrix F, as described in Algorithm 4.1 . 

2. Calculate the error ei by (4.10) or (4.22) for each 

putative match for the fundamental matrix obtained 

previously. 

3. Choose F for which the median of the squared residuals, 

denoted by MF, with respect to the whole set of point 

correspondences is the minimum.  

4. Reject those pairs which yield ei > t(MF) for this 

particular F, where t(MF)  is an adaptive threshold 

determined by MF ([41]). 

 

It should be noted that the ratio of inliers to the whole set should be 

greater than 0.5 for this algorithm to succeed, since the median of the 

errors is taken as a measure in order to select the inliers and it is desired 

that this value belong to that of a correct match. Also, it is argued that 
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([41]) the samples chosen should belong to pairs, which are separated 

significantly in the views and the random selection should be omitted due 

to this reason. Instead, the authors divide the image into non-overlapping 

fields and propose a two-stage selection procedure. In the first stage, the 

field, where the selection will be made, is decided randomly, whereas in the 

second stage, a point is selected randomly from this field. It is assured that 

no two selections come from the same field. The number of runs of the 

algorithm, M, may be determined by the same consideration as in 

RANSAC. 

Thus, it is seen that given a number of putative matches, it is 

possible to reject the outliers. Now, the remaining question is: “How, then, 

will the putative matches be obtained?”. Due to the lack of knowledge of 

the scene geometry, the search space for a particular interest point in, say 

the first image, should be the whole second image. In order to restrict the 

search space, however, it will be first assumed that the difference between 

the given images is very small. In other words, the images are taken from 

almost the same position, which may be called as the case of small-

baseline stereo, which constitutes the simplest case for matching. 

4.2 Matching by Correlation: 
 

 Consider the images in Figure 4.2. It can be easily deduced by 

looking at the images that the camera displacement between the  

 

 

   

     (a)             (b) 

Figure 4.2 Example of a small-baseline image pair. 
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images is relatively small, thus the term small-baseline stereo. For an 

interest point (detected using any feature detector), it is expected that the 

corresponding point in the other image is in a neighborhood of the given 

interest point. Moreover, the regions surrounding the corresponding pairs 

are more or less the same, so simply looking at the squared sum of the 

differences gives a good measure for the purpose of matching. In order to 

be able to handle affine illumination changes (i.e. changes of the form x′ = 

ax + b, where x and x′ denote the brightness values for the same point in 

different images), the brightness values for a region are modified so that 

the average is zero and variance is equal to one. After this operation, 

instead of looking at the squared sum of differences, one can consider the 

correlation of the patches, as given below: 
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where ( )vuI k ,  is the average of the function around ( )vu,  and ( )kIσ  is the 

standard deviation and ( ui , vi ) denote the position of the interest point in 

the ith image. 

Thus an algorithm utilizing this measure may be formed: 
Algorithm 4.4 

1.Extract the interest points in each image using Harris (or 

any other) feature detector. 

2. For each interest point in each image calculate (4.23) for 

the nearby interest points in the other image. 

3. Let, for an interest point m1 in the first image, m2 be the 

interest point in the second image, which yields the highest 

correlation measure (4.23). If m1 is the point, which yields 

the highest correlation measure for m2, too, the pair is 

taken to be a putative match (the points then are said to be 

best matches). 
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(a)     (b) 

Figure 4.3 Two small-baseline images, where each interest point in one may be matched to several 
interest points in the other image, if the correlation score is the sole measure. 

 
 

The algorithm is very simple but still effective, when the baseline, thus 

the neighborhood in which the corresponding pair to be sought, is very 

small, and regions surrounding the interest points are rather distinct. 

However, slightly widening the baseline, and considering nearby interest 

points, which are surrounded by patches that look almost the same, the 

number of matches and in addition, the ratio of the correct matches 

output by the algorithm significantly decreases. The case is illustrated in 

Figure 4.3. This behavior of the algorithm is inevitable, since the only  

 

 

  

   (a)         (b) 

Figure 4.4 Details of the matching results of the images in Figure 4.3, using Algorithm 4.4.  Out of 
24 matches found, 16 of them are correct. 
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measure for obtaining the matches is easily ‘fooled’ by nearby interest 

points which all look alike. Some measure taking into account the 

structure of the collection of points for a neighborhood should be of great 

use, and actually is, as will be explained in the next section. 

4.3 Disambiguating Matches 
 

 As mentioned above, a point in the first image may be paired to 

several points in the second image, still yielding high correlation values for 

all. These are called candidate matches. For resolving these ambiguities, a 

number of techniques exist ([9], [13], [21], [41]). The one that will be 

explained uses a neighboring constraint as follows ([41]) : 

“Consider a candidate match ),( 21 ji mm  where im1 is a point in the first and 

jm2 in the second image. Let ( )imN 1  and ( )jmN 2  be, respectively, the 

neighbors of im1 and jm2 within a disc of radius R. If ( )ji mm 21 ,  is a good 

match, many other matches ( )lk nn 21 ,  exist, where ( )ik mNn 11 ∈  and 

( )jl mNn 22 ∈ , such that the position of kn1  relative to im1  is similar to that 

of ln2  relative to jm2 . On the other hand, if  ),( 21 ji mm  is a bad match, it is 

expected to see only a few matches or even not any at all, in their 

neighborhood.” 

The idea is realized by defining a ‘strength’ for each match, and then 

choosing strong candidate matches in this respect. The strength for a 

matching pair ),( 21 ji mm  is given by: 
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d(m,n) denoting the Euclidian distance between the points m and n, and 
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where r, the relative distance, is defined as: 
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and εr is a threshold on the relative distance difference. ckl and cij denote 

the goodness of the candidate matches ( )lk nn 21 ,  and ),( 21 ji mm , 

respectively, which may be taken as the correlation scores. 

 

 

  

                        (a)        (b) 

Figure 4.5 Results of matching while disambiguating high correlation yielding pairs. Out of the 36 
matches found in between two images, 35 are correct. 

 

 

After calculating the strength for each candidate match (obtained by 

thresholding the correlation score) for both images, the putative matches 

are obtained by a relaxation procedure, which may be named as “winner-

take-all”. Following the calculation of the strengths for each candidate 

match, if for a candidate match ),( 21 ji mm , the strongest match for m1i (in 

the first image) is m2j (in the second image), and the strongest match for m2j 

(in the second image) is m1i (in the first image), the pair is chosen as a 

correct match. Since a correct match will be unique, all other matches 

associated with these two points are eliminated and are no more taken into 

consideration. After all such pairs are found, the procedure is iterated, i.e., 

the strength values for the remaining candidate matches are calculated 
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once again using this updated candidate match list, and new putative 

matches are sought satisfying the mentioned criterion. The procedure is 

iterated until no more changes occur. In fact, this strategy is claimed to be 

“too” fast that it gets stuck at a local minimum (where the cost function is 

defined to be the sum of the strengths of all the candidate matches) ([41]). 

Other alternatives are also possible, but this scheme yields satisfactory 

results. 

 

 

  

    (a)           (b) 

 

     
       (c)            (d) 

Figure 4.6 Example of a rotated image pair. (a),(b) Images of the same scene through rotated 
cameras, (c), (d) details of the windows in (a) and (b) respectively. Any measure based on 
correlation should simply be abandoned in this case. 

 

 

 Although the mentioned scheme was proposed to be used in the 

wide-baseline case, a problem is faced, when there exists a significant 

amount of rotation among the given images (e.g. Figure 4.6). In this case, 
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the use of normalized correlation is misleading and should be abandoned 

([20]). 

4.4 Rotation Invariant Matching 
 

If there exists a rotation between the two views, a comparison method 

is required, which would be indifferent to this rotation. This is actually 

achieved by utilizing the rotational invariants, which are explained in 

Section 3.2.1. It is also necessary to extract the interest points with a 

rotationally invariant detector. The extraction process being invariant 

means that, the same points will be obtained for both the original image 

and the rotated counterpart. This is obviously necessary for matching, 

since matching is performed between the interest points of each image. In 

this regard, Harris feature detector is a promising rotationally invariant 

detector ([32]). After this stage, the local region, surrounding each interest 

point in the two images, is described by using rotational invariants and a 

comparison is made between these vectors, according to the Mahalanobis 

distance explained in Section 3.2.1. The decision that a correspondence is 

detected is taken when the vectors are sufficiently similar. Thus, the 

following algorithm may be proposed:  

 

Algorithm 4.5: 

1. Extract the interest points in both images using a 

rotationally invariant detector(e.g. Harris). 

2. For each interest point, obtain the local characterization 

of the point using one type of the rotational invariants, 

introduced in Section 3.2.1 . 

3. Compare the vectors obtained in one image with those of 

the other image (utilising Mahalanobis distance, if 

necessary, which is the case, if orthonormal filters are not 

used).  

4. Obtain the best matches (refer to Algorithm 4.4 for the 

meaning of ‘best match’). 

5. Eliminate the false matches using RANSAC or LMedS. 
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It is noted that steps 2 and 3 may be replaced by those of the method 

described in Section 4.3 . Lastly, the vector depending on the derivatives 

steered in the direction of the Gaussian are also given as: 
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where [ ]yx ff  denotes the unit vector in the direction of the gradient. 

The derivatives above are actually obtained by using the derivatives 

of Gaussians. If Gaussians of different scales are used, a rough covering of 

the frequency plane may be achieved (see Figure 3.6), which also enables 

reconstruction from these vectors ([15]). Thus, it is reasonable to utilize 

derivatives of Gaussians of varying scale to characterize the local region 

around the interest point, which makes a clearer distinction possible, 

improving the results of the comparison. This in turn increases the size of 

the vector to be used for description (multiplying the original vector size 

with n where n is the number of distinct scales). 

4.5 Scale Invariant Matching 
 

 The need for scale invariant matching arises when cameras of 

different focal length are used or when the distance to the scene is 

significantly different, as is the case in Figure 4.7. The problem is handled 

by utilizing a scale invariant interest point detection scheme, as outlined in 

Section 3.3.2 . Such an approach, combined with the rotational invariant 

scheme results in a scale and rotation invariant matching method. The 

rotational invariants must be properly normalized.  
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     (a)       (b) 

 

   
        (c)       (d) 

Figure 4.7 Example of images at different scales. (a),(b) Images, (c),(d) details of the windows in (a) 
and (b), respectively. The sizes of the red windows are equal in pixels, however, comparison should 
really be made between the red window in (c) and the blue window in (d). 

 

 
For the Gaussian derivatives, this is achieved by using normalized 

derivatives as outlined in Section 3.1.4, which fit well into the scale-space 

framework and are preferred for this reason. However, it is also possible to 

render the other rotational invariants, invariant to scale by a proper 

normalization ([4]). 

4.6 Affine Invariant Matching 
 

 For planar surfaces, the most general distortion, namely perspective 

distortion, due to possible changes of the viewpoint, is approximated locally 

by an affine transformation. This necessitates invariance to possible skew 

and stretch effects, which the rotational invariants may not handle (Figure 
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4.8). Thus, the requirement for the use of an affine invariant scheme, as 

outlined in Section 3.2.3. The scheme may be implemented, as is explained 

in Algorithm 3.3. It may be preferable to utilize RANSAC or LMedS to 

eliminate possible false matches. 

 

 

   

  (a)          (b) 

 

  
  (c)          (d) 

Figure 4.8 Example of a pair of images from significantly different points of view.. (a),(b) Images, 
(c),(d) details of the windows in (a) and (b) respectively. A simple rotation is not sufficient to 
transform (d) into (c). 

 

 
 Apart from this method, different schemes have also been proposed 

in the literature ([24], [28], [37]). In [28], the authors look for corresponding 

paralellograms and estimate local homographies relating the 

corresponding structures. Once this is done, this knowledge enables one to 

obtain better affinity measures for nearby interest regions. The drawback 
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is noted to be the need for suitable structures to be present in the views in 

order to obtain the homographies ([4]). 

 Similar in spirit, Tuytelaars et al. ([37]) search for closed contours 

on planar surfaces which would be affine transformed if imaged from a 

different perspective. After finding these regions, ellipses are fit to these 

contours and transforming these ellipses to circles, and using rotational 

invariants, matching is made possible under perspective deformations. The 

method for extraction of the ellipses is noted to find points not on the 

edges and thus is claimed to be better suited for finding planar points. 

 Matas et al. ([24]) look for regions closed under contionuous 

perspective deformations. Once these are located, the regions are described 

using affine invariants and matching is performed for different views. Both 

[24] and [37] are noted for their method of extraction of regions which are 

scale invariant. 

 A unifying approach would be to probably use all of these invariants 

in one setting ([29]). In addition, the consistency of the corresponding 

features may be further checked by backtransforming each region to some 

unit structure and thresholding the cross-correlation ([37], [29]). 

4.7 Discussion 
 

 In this chapter, as the sections proceeded, the need for higher 

degrees of invariance is presented. Despite their usefulness in such 

settings, as shown in the various figures in the chapter, these invariants 

all introduce a lack of describing the local patch that they are trying to 

describe with increasing degree of invariance. This insufficiency often 

shows itself when vectors corresponding to radically different patches are 

seen to be similar (in terms of the distance used). This problem is mostly 

tried to be overcome by using more descriptors. This means that for a 

scale-space derivative based description scheme, derivatives from a few 

scales should be utilized. Following this observation, the preferred 

approach for the highest performance, should be to put also the knowledge 

about the images into consideration, when choosing the method to be 

utilized. In other words, if it is known that a certain degree of invariance is 
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sufficient to handle the images at hand, one should not be tempted to use 

the most sophisticated invariants. 
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CHAPTER V 

 
 

5 RESULTS.5 
 
 
 
In this chapter, the results of the algorithms for obtaining corners, interest 

points,  as well as matching these points, will be presented along with the 

values of the parameters that each particular algorithm possesses. After 

presenting the results, a conclusion will be drawn, based on the 

observations made on these results and an algorithm will be outlined for 

use in the most arbitrary case of interest point extraction and matching. 

This proposition will probably be recognised to be a compilation of the 

algorithms explained in the previous chapters that might suit the needs of 

such an arbitrary case. 

 In this respect, the first few sections will contain the results of the 

corner or interest point extraction methods. Following these results, the 

performances of the matching algorithms are presented. Lastly, the 

chapter is concluded with an algorithm intended to be able to extract and 

match interest points on images with a wide baseline. 

5.1 Simulation Results for Interest Point Detectors  
 

In the following subsections, the performances for the corner and 

interest point detectors, which are explained in Chapter II and Chapter III, 

on a set of images are presented. 

5.1.1 Corners as Local Maxima of Curvature Along Edges [Section 2.4] 
 

 In order to calculate the curvature, k-curvatures up to k = 4 are 

utilized. Each particular k-curvature is given the same weight (i.e. k-
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curvatures with lower k values are not emphasized, which might have been 

done otherwise) and added to compute the curvature at an edge point. The 

threshold for eliminating low curvature points is set equal to half of the 

maximum of the curvature values obtained in this way. 

 

 

  
      (a)            (b) 

Figure 5.1 Results for high-curvature point detection scheme on ‘Kareler’. (a)Points on the edge map 
obtained by LoG edge detector, (b) high curvature points imposed on the original ‘kareler’ image. 

 

 

  
       (a)      (b) 

Figure 5.2 Results for high-curvature point detection scheme on ‘Goldhill’ (a) Points on the edge 
map obtained by LoG edge detector, (b) high curvature points imposed on the original ‘Goldhill’ 
image. 
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5.1.2 Kitchen-Rosenfeld Cornerness Measure [Section 2.5] 
 

 The magnitude of the gradients is calculated first and the 

cornerness measure is computed at points, where the gradient magnitude 

is among the highest %15. According to this measure, only the points in 

the highest %0.5 are taken to be corners. 

 

 

      
  (a)             (b) 

Figure 5.3 Results for Kitchen-Rosenfeld measure. (a) ‘Kareler’, (b)‘Goldhill’. 

 

5.1.3 Zuniga-Haralick Method [Section 2.6] 
 

 For each pixel in the image, the surrounding 7x7 region is 

approximated by a bicubic polynomial. The pixels for which the magnitude 

of the gradient estimated by 2
3

2
2 kk +  lies in the highest %10 are further 

considered as edge candidates and on these points, the criterion for being 

an edge point is checked. A pixel is taken as an edge point, if the third 

directional derivative in the direction of the gradient, given by,  



 87

 ( )αααααα 3
10

2
9

2
8

3
7 sinsincossincoscos6 kkkk +++         (5.1) 

 is negative, the second derivative taken in the direction of the gradient, 

given by, 
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 is zero for some h such that |h| < ½ (the pixel is  taken as circular with 

radius equal to ½) and the first directional derivative at this ‘zero second 

derivative yielding value’ of h, given by, 
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is non-zero. 

Then for the edge pixels, the measure, given by (2.20) is calculated 

and the pixels for which the absolute value of this measure is greater than 

16/180 are decided to be corner points. The outcomes are further refined 

by suppressing non-maxima. 

 

 

       
  (a)     (b) 

Figure 5.4 Results for Zuniga-Haralick method. (a) ‘Kareler’, (b)‘Goldhill’. 
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5.1.4 Harris-Stephens Corner Detector [Section 2.7] 
 

 In order to compute the required derivatives in the x and y 

directions, Sobel operator is used. The variance of the Gaussian function, 

which is used to sum up squared gradients and the threshold of the 

cornerness measure for selecting the corners are the parameters to be 

adjusted. It is observed that the performance of the detector relies heavily 

on these two parameters and by manual adjustment of these variables, 

significantly different results can be obtained. 

 

 

  
            (a)       (b) 

  
        (c)           (d) 

Figure 5.5 Corners extracted using Harris-Stephens corner detector (a) variance of the Gaussian = 
0.9, threshold=5e7, (b)variance of the Gaussian = 1, threshold =5e7, (c) variance of the Gaussian = 
1, threshold =1e7, (d) variance of the Gaussian = 1, threshold =5e7. 
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5.1.5 Fast Corner Detection [Section 2.8] 
 

 In this method, first of all, the image is filtered using a Gaussian 

filter, then the corner response function (CRF) (taking into account the 

horizontal and vertical directions) is computed at each point. If the CRF is  

 

 

  
         (a)      (b) 

  
        (c)          (d) 

Figure 5.6 Corners detected with the Fast Corner Detection scheme. (a),(d) variance of the Gaussian 
filter = 1, r1=0.4, r2=0.2, (b),(c) variance of the Gaussian filter = 1, r1=0.1, r2=0.1 . 

 

 

greater than a ratio (e.g. r1) of the maximum CRF obtained, the 3x3 

neighborhood of these points are considered as candidate corners. This 

step is necessary to reduce the number of false corners due to the 
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presence of noise. Then, CRF (taking into account the horizontal and 

vertical directions) on the original image is computed at these candidate 

corners and is again thresholded by some ratio (e.g. r2) of the maximum 

CRF computed on the original image. The sizes of the windows used are 

3x3, i.e., the smallest possible. Following this step, at points, where CRF 

exceeds the threshold, CRF is updated, taking into account any direction 

by the help of linear interpixel approximation. The points, at which this 

new CRF is above the previous threshold, are selected as the corner points, 

if CRF at the point is a local maximum. The performance of this detector is 

also dependent on the values of the three parameters, namely the 

Gaussian filter variance and the two ratios r1 and r2. 

5.1.6 Scale Invariant Interest Point Detector [Algorithm 3.1] 
 

 As it is observed in the presented results under different values for the 

specific parameters that each detector possesses, it is concluded that the 

performance of each detector relies heavily on the choice of the parameters. 

However, the requirement to adjust the parameters for different images indicates 

that there is no “optimal” choice for these parameters. What should be 

done instead may be to set these parameters in an adaptive way, but then 

comes the problem of finding a suitable error function so that any 

adaptation may take place. A trivial proposal might be related to the 

number of interest points. This approach requires that the approximate 

number of interest points are known beforehand. Then, the threshold may 

be adapted by driving the number of the interest points near this 

approximate number. An error function, which might be constructed in 

this sense, may succeed, when the scene is more or less known. However, 

in a general case, as the image may be that of a bright sky or of  a brick 

wall, the number of interest points may vary significantly. Thus, the use of 

such a scheme may not help. The concept of scale space offers an adaptive 

way to handle at least one of these parameters, that is of scale, as outlined 

in the introduction of Chapter III. 
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 For the scale invariant detector, 17 different scales (ref. (3.68)) are 

considered and the integration scale at the nth scale, si,n is set to 1.5×1.2n where n  

 

 

  
  (a)      (b) 

 
  (c) 

Figure 5.7 Interest points detected by (a), (c) scale invariant detector, (b) Harris-Stephens corner 
detector. Note in (a) the diffuse features detected in the reflection. 

 

 

ranges from 0 to 16. The derivation scale sd,n is given by sd,n = 0.65× si,n . 

The threshold for the Harris response at each scale is set to 1500. 

5.2 Matching Results 
 

In the subsections that follow, the performances of the different 

matching schemes outlined in Chapter IV are presented. 
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5.2.1 Matching by Correlation [Section 4.2] 
 

 A 7x7 window is used for correlation and the threshold is set to 0.8 . 

For a point in an image, 20x20 neighborhood of the point (i.e. a 41x41 

area, at the center of which lies the point) is sought in the other image. 

 

 

 

Figure 5.8 Results of matching by correlation. Optical flow vectors are superimposed on the first 
image. There are 161 matches, numerous false. 

 
 

5.2.2 Matching with Disambiguating Matches [Section 4.3] 
 

 The neighborhood of a point is a square with size equal to 0.125 the 

size of the image and εr is taken as 0.3 . Two points are considered 

candidate matches (i.e. matches for which strength will be calculated), if 

their correlation score (obtained using 3x3 windows) is above 0.8 . As in 

the previous algorithm, for a point in an image, 20x20 neighborhood of the 

point is sought in the other image.  
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Figure 5.9 Result of matching with disambiguating matches. There are 175 matches and the number 
of false matches are decreased significantly. 

 

 

5.2.3 Matching Using Rotational Invariants [Section 4.4] 
 

 The interest points are detected using Harris-Stephens detector as 

explained in Section 5.1.4 . Experiments are carried out using the 

rotational invariants based on transforms (Section 3.2.1.2) and Gaussian 

derivatives (Section 3.2.1.1). The results using the second type will be 

presented in Section 5.2.4 along with scale invariance. For the invariants 

based on transforms, the variance of the Gaussian is taken to be 7, m = 0, 

1, ... 5 ; n = 0, 1, 2, 3 . Invariants are obtained by first dividing the group 

for which m = constant by the magnitude of the element belonging to the 

group for which n=0; and then taking the real part of these complex 

numbers. After this process, since the elements with n=0 will be equal to 1 

(in case they were not equal to 0 in the beginning), these elements are not 

further considered, thus 18 invariants are obtained for each region 

containing the interest point.  
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          (a)      (b) 

  
                              (c)        (d) 

 
                          (e) 

Figure 5.10 Matching using rotational invariants. (a), (b) The images to perform matching on, (c), 
(d) a detailed view of the matching result, (e) optical flow vectors superimposed on the first image. 
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           (a)                (b) 

  
                   (c)         (d) 

    
           (e)      (f) 

Figure 5.11 Matching using scale invariants (a), (b) Images of ‘Yeni Cami’ differing in scale only. 
(c) Optical flow vectors superimposed on the first image before RANSAC. There are 181 matches, 
many of which are seen to be false. (c) Optical flow vectors after RANSAC. There are 94 matches 
and a few false matches. (e), (f) Details of a region in the first image(e) and the second image (f). 
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 Following the extraction of these descriptor vectors, the covariance 

matrix for the vectors is obtained, and the best matches with respect to the 

Mahalanobis distance are taken to be putative matches. 

 

5.2.4 Scale Invariant Matching [Section 4.5] 
 

 The interest points are detected by using the scale invariant interest 

point  detector  as  explained  in  Section  3.2.2. After  this  stage,  for  an 

interest point detected at a differentiation scale of sd, the region 

surrounding this point is characterised using rotatioanal invariants based 

on the Gaussian derivatives (Section 3.2.1.1) of standard deviation equal to 

sd, 1.5×sd, and sd/1.5, adding to a total of 36 descriptors per interest 

point. Following the extraction of the interest points, the covariance matrix 

for the ensemble of these vectors are estimated and the matching is 

performed with the best match criterion, where Mahalanobis distance is 

used as the measure of similarity. Among the matches obtained this way, 

there exist many false ones. In order to eliminate these false matches, 

RANSAC is applied afterwards. Sampson distance squared (Section 4.1.3, 

Eqn. (22)) is used as the error measure and the threshold is set to 18.  

 

 

  
        (a)      (b) 

Figure 5.12 More scale invariant results (a) An image of UBC, (b) Another image of UBC slightly 
rotated and at a different scale, optical flow vectors superimposed. There are 87 matches, only a few 
matches are false. 
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           (a)     (b) 

   
   (c)     (d) 

 
(e) 

Figure 5.13 Matching using affine invariants. (a) The first image of the pair, (b) optical flow vectors 
superimposed on the second image. There are 21 matches, a few false. (c), (d) Details of a region in 
the first image(c) and the second image(d). (e) If the second image to be matched is taken to be the 
image shown(a slightly ‘easier’ case), 40 matches are found, a few false. 
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5.2.5 Affine Invariant Matching [Section 4.6] 
 

 First, the scale invariant interest point detector is utilised. Then, for 

each interest point, the normalized region surrounding the interest point is  

 

 

  
(a)     (b) 

  
  (c)     (d) 

Figure 5.14 Affine invariants on relatively close images. (a) An image of ‘MM Binası’, (b)Another 
image of ‘MM Binası’ with optical flow vectors superimposed. There are 74 matches, 1 false. 
(c)Arbitrary points marked with different colors, (d) corresponding epipolar lines, drawn using the 
Fundamental matrix estimated by RANSAC. 
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obtained using the Algorithm 3.3 . For the normalization of a region, at 

most 5 iterations are performed, in case the distance of the Harris matrix 

to the properly scaled identity matrix is greater than 4.5e-5 . After 

normalizing  each  region  the  rotational  invariants  based  on  Gaussian 

derivatives are calculated as in Section 5.2.4 . The rest of the process is as 

explained in Section 5.2.4. 

 The scheme also yields satisfactory results, when it is applied in 

more ‘realistic’ pairs (Figure 5.14) . This leads to a conclusion that this 

scheme, despite its complexity in contrast to the small-baseline case, 

should be the one to be utilised for an arbitrary pair of views where no 

information about the pair is available beforehand. 

5.3 A Quantitative Comparison 
 

 In the preceding sections, different matching schemes have been 

presented due to the different necessities of the image pairs to be matched. 

However, a quantitative comparison taking into account the performance 

of each matching scheme for the same image pair has not been made. In 

order to better understand how each scheme behaves under similar 

conditions, the methods are applied to groups of images, where each group 

represents a certain situation. 6 groups of 5 image pairs, adding upto 30 

pairs are used. The groups are given in Table 5.1. 
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Table 5.1 The descriptions of different groups used to test the matching schemes. 

Label Name Description Typical Pair (1) Typical Pair (2) 
G1 Video Extracted from video 

sequences 

  
G2 Rotation Pairs which include only 

rotations; slight or significant 

  
G3 Wide 

Baseline 
Pairs from different views 

  

G4 Extreme Pairs where a great number of 

occlusions or discontinuities 

exist 
  

G5 Scale & 

Rotation 
Pairs differing in scale, some 

also rotated 

  
G6 Affine A planar surface is imaged 

from severely different points 

  

 
 
On each group, the methods, the results for which were mentioned in 

Section in 5.2, are applied. These are numbered as follows :  

 

Table 5.2 Schemes tested and their labels. 

Label Method 

M1 Matching by correlation 

M2 Matching by disambiguating matches 

M3 Matching using rotational invariants 

M4 Scale invariant matching 

M5 Affine invariant matching 
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Following the application of each method, RANSAC is applied with the 

prementioned parameters. The results are shown in Table 5.3, Table 5.4, 

Table 5.5, Table 5.6 and Table 5.7. The number of inliers indicate a 

measure of the success of each method. However, if the number of inliers 

is low (<20) for a particular entry, the reliability of RANSAC in eliminating 

false matches decreases significantly. Due to this fact, care must be taken 

in interpreting the results. One should not be tempted to compare two 

entries possessing low values in this sense. On the other hand, when the 

number of inliers is significantly high, it turns out that there exists only a 

negligible amount of false matches among the inliers.  

 It can be inferred by a first glance on these tables that methods 

based on cross correlation are suitable and moreover may be preferred 

where the difference among the two views is not significant(see the results 

for G4(video)). However, when changes in scale or orientation occur, other 

methods with increasing degrees of invariance in description should be 

utilised, which is in agreement with the expectations. 

 Investigating the results for particular pairs also gives insight on 

where each method should be utilised or abandoned. Considering a slight 

rotation as in Figure 5.15, it is noted that cross-correlation of raw 

brightness values still works as a measure of similarity. However, 

rotational invariants are much more succesful for matching purposes in 

such a case. There is no explicit need for affine or scale invariants and the 

results for the methods utilizing these are poor compared to rotation 

invariant matching. It is also of interest to note that repeating patterns are 

handled more successfully by disambiguating matches (except for 

rotational invariant matching). 

 When there exists a significant scale change among the pairs as in 

Figure 5.16, the need for scale invariant schemes arises. Affine invariance 

is not necessary in this case, and in effect scale invariants perform slightly 

better compared to affine invariants. 
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 In Figure 5.17, it is once again observed that if there exists no 

significant scale and view point change, but some rotation, utilising 

unnecessarily high degree invariants yields relatively poor results. 

 Figure 5.18 is an example where affine invariants perform clearly 

much better than the other methods. Use of cross-correlation is simply out 

of question in this case, and it is observed that using solely rotational 

invariants does not help. Scale and rotation invariants, on the other hand 

yield about half the number of correct matches that affine invariants do. 
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Table 5.3 Results of the experiments for M1, M2 and M3. G : Group number, # : Pair number in group,  I : Number of inliers, O : Number of outliers, int. pt. : 
Number of interest points, I/O, I/int pt.: Corresponding ratios. The result for a particular image in a certain group is given in the row corresponding to the number 
of the image in the group. The highest in each row(considering all the methods) is shown in bold. Bold numbered image pairs’ results are also given in the figures. 

          M1            M2            M3   
G # I O I/O int. pt. %(I/int. pt.)  I O I/O int. pt. %(I/int. pt.)  I O I/O int. pt. %(I/int. pt.) 
 1 186 84 2,214 1027 18,111  261 89 2,933 1027 25,414  306 118 2,593 1027 29,796 
 2 68 4 17,000 132 51,515  93 4 23,250 132 70,455  91 3 30,333 132 68,939 
G1 3 332 40 8,300 864 38,426  438 60 7,300 864 50,694  596 12 49,667 864 68,981 
 4 304 34 8,941 847 35,891  356 30 11,867 847 42,031  549 18 30,500 847 64,817 
 5 198 24 8,250 377 52,520  265 25 10,600 377 70,292  280 2 140,000 377 74,271 
                   

 1 10 8 1,250 153 6,536  8 5 1,600 153 5,229  13 18 0,722 153 8,497 
 2 82 188 0,436 1635 5,015  196 110 1,782 1635 11,988  493 136 3,625 1635 30,153 
G2 3 104 72 1,444 595 17,479  202 21 9,619 595 33,950  311 23 13,522 595 52,269 
 4 12 25 0,480 713 1,683  12 23 0,522 713 1,683  17 109 0,156 713 2,384 
 5 11 15 0,733 451 2,439  11 19 0,579 451 2,439  38 43 0,884 451 8,426 
                   

 1 50 194 0,258 1289 3,879  60 500 0,120 1289 4,655  81 227 0,357 1289 6,284 
 2 57 42 1,357 368 15,489  83 56 1,482 368 22,554  94 28 3,357 368 25,543 
G3 3 102 215 0,474 1288 7,919  174 426 0,408 1288 13,509  159 199 0,799 1288 12,345 
 4 140 130 1,077 1063 13,170  253 189 1,339 1063 23,801  163 118 1,381 1063 15,334 
 5 69 85 0,812 1025 6,732  87 154 0,565 1025 8,488  121 158 0,766 1025 11,805 
                   

 1 29 21 1,381 292 9,932  36 18 2,000 292 12,329  73 39 1,872 292 25,000 
 2 44 106 0,415 760 5,789  44 199 0,221 760 5,789  23 149 0,154 760 3,026 
G4 3 22 255 0,086 1957 1,124  36 476 0,076 1957 1,840  19 324 0,059 1957 0,971 
 4 16 79 0,203 687 2,329  21 143 0,147 687 3,057  15 111 0,135 687 2,183 
 5 16 109 0,147 806 1,985  36 245 0,147 806 4,467  16 92 0,174 806 1,985 
                   

 1 24 98 0,245 438 5,479  23 56 0,411 438 5,251  14 58 0,241 438 3,196 
 2 9 7 1,286 128 7,031  8 3 2,667 128 6,250  10 9 1,111 128 7,813 
G5 3 21 284 0,074 1698 1,237  47 608 0,077 1698 2,768  15 245 0,061 1698 0,883 
 4 13 51 0,255 382 3,403  19 90 0,211 382 4,974  13 56 0,232 382 3,403 
 5 14 63 0,222 514 2,724  17 112 0,152 514 3,307  11 61 0,180 514 2,140 
                   

 1 18 274 0,065 2313 0,778  34 568 0,060 2313 1,470  19 404 0,047 2313 0,821 
 2 79 190 0,415 1025 7,707  133 350 0,380 1025 12,976  314 95 3,305 1025 30,634 
G6 3 15 114 0,131 617 2,431  24 176 0,136 617 3,890  13 102 0,127 617 2,107 
 4 16 132 0,121 1235 1,296  23 199 0,116 1235 1,862  33 216 0,153 1235 2,672 
 5 11 27 0,407 465 2,366  14 47 0,298 465 3,011  14 46 0,304 465 3,011 
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Table 5.4 Results of the experiments for M4 and M5. G : Group number, # : Pair number in group, I : Number of inliers, O : Number of outliers, int. pt. : Number 
of interest points, I/O, I/int pt.: Corresponding ratios. The result for a particular image in a certain group is given in the row corresponding to the number of the 
image in the group. The highest in each row(considering all the methods) is shown in bold. Bold numbered image pairs’ results are also given in the figures. 

          M4          M5   
G # I O I/O int. pt. %(I/int. pt.)  I O I/O int. pt. %(I/int. pt.) 
 1 46 15 3,067 334 13,772  33 25 1,320 334 9,880 
 2 51 6 8,500 126 40,476  35 8 4,375 126 27,778 
G1 3 98 22 4,455 368 26,630  92 31 2,968 368 25,000 
 4 93 37 2,514 436 21,330  104 34 3,059 436 23,853 
 5 88 7 12,571 225 39,111  79 9 8,778 225 35,111 
             

 1 31 79 0,392 722 4,294  76 93 0,817 722 10,526 
 2 231 107 2,159 1293 17,865  194 118 1,644 1293 15,004 
G2 3 118 29 4,069 418 28,230  99 40 2,475 418 23,684 
 4 29 58 0,500 712 4,073  22 103 0,214 712 3,090 
 5 149 100 1,490 904 16,482  165 96 1,719 904 18,252 
             

 1 25 127 0,197 1017 2,458  23 149 0,154 1017 2,262 
 2 50 43 1,163 428 11,682  41 58 0,707 428 9,579 
G3 3 59 126 0,468 819 7,204  50 111 0,450 819 6,105 
 4 84 139 0,604 967 8,687  79 130 0,608 967 8,170 
 5 20 64 0,313 624 3,205  14 84 0,167 624 2,244 
             

 1 54 32 1,688 353 15,297  53 38 1,395 353 15,014 
 2 16 69 0,232 672 2,381  13 79 0,165 672 1,935 
G4 3 13 124 0,105 1121 1,160  16 131 0,122 1121 1,427 
 4 11 64 0,172 609 1,806  12 70 0,171 609 1,970 
 5 11 62 0,177 505 2,178  12 58 0,207 505 2,376 
             

 1 22 52 0,423 460 4,783  28 36 0,778 460 6,087 
 2 13 72 0,181 614 2,117  29 76 0,382 614 4,723 
G5 3 16 105 0,152 960 1,667  14 128 0,109 960 1,458 
 4 15 29 0,517 251 5,976  14 26 0,538 251 5,578 
 5 43 88 0,489 825 5,212  23 127 0,181 825 2,788 
             

 1 21 160 0,131 1704 1,232  21 227 0,093 1704 1,232 
 2 116 127 0,913 999 11,612  118 114 1,035 999 11,812 
G6 3 20 99 0,202 992 2,016  14 157 0,089 992 1,411 
 4 12 124 0,097 1385 0,866  13 206 0,063 1385 0,939 
 5 26 56 0,464 696 3,736  48 84 0,571 696 6,897 
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Table 5.5 Average and standard deviations of the terms in Table 5.3 and Table 5.4 for M1 and M2 on each group. . G : Group number, I : Number of inliers, O : 
Number of outliers, int. pt. : Number of interest points, I/O, I/int pt.: Corresponding ratios. The highest in each row (considering all the methods) is shown in bold. 

    M1           M2   

   
             
I 

            
O 

           
I/O int. pt. %(I/int. pt.)             I 

            
O 

           
I/O int. pt. %(I/int. pt.) 

G1 Average 217,600 37,200 8,941 649,400 39,293  282,600 41,600 11,190 649,400 51,777 
 std. dev. 94,144 26,400 4,713 337,516 12,533  115,118 29,696 6,776 337,516 17,221 
             
G2 Average 43,800 61,600 0,869 709,400 6,630  85,800 35,600 2,820 709,400 11,058 
 std. dev. 37,222 61,195 0,373 455,739 5,202  84,401 34,446 3,138 455,739 10,962 
             
G3 average 83,600 133,200 0,796 1006,600 9,438  131,400 265,000 0,783 1006,600 14,601 
 std. dev. 33,374 64,867 0,397 337,717 4,268  72,129 169,070 0,534 337,717 7,555 
             
G4 Average 25,400 114,000 0,446 900,400 4,232  34,600 216,200 0,518 900,400 5,496 
 std. dev. 10,461 77,258 0,480 558,698 3,263  7,473 150,508 0,742 558,698 3,665 
             
G5 Average 16,200 100,600 0,416 632,000 3,975  22,800 173,800 0,704 632,000 4,510 
 std. dev. 5,492 96,205 0,440 548,531 2,049  13,060 220,191 0,988 548,531 1,286 
             
G6 average 27,800 147,400 0,228 1131,000 2,916  45,600 268,000 0,198 1131,000 4,642 
 std. dev. 25,701 82,087 0,151 652,216 2,478  44,157 178,208 0,121 652,216 4,254 
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Table 5.6 Average and standard deviations of the terms in Table 5.3 and Table 5.4 for M3 and M4 on each group. The highest in each row (considering all the 
methods) is shown in bold. 

         M3      
     
M4   

G   
             
I 

            
O 

       
I/O int. pt. %(I/int. pt.)  

             
I 

           
O 

       
I/O int. pt. %(I/int. pt.) 

G1 average 364,400 30,600 50,619 649,400 61,361  75,200 17,400 6,221 297,800 28,264 
 Std. dev. 186,009 44,098 47,144 337,516 16,065  22,085 11,395 3,804 109,684 10,272 
             
G2 average 174,400 65,800 3,782 709,400 20,346  111,600 74,600 1,722 809,800 14,189 
 Std. dev. 177,762 43,648 4,579 455,739 16,933  69,540 26,042 1,226 262,405 8,328 
             
G3 average 123,600 146,000 1,332 1006,600 14,262  47,600 99,800 0,549 771,000 6,647 
 Std. dev. 33,176 69,602 1,064 337,717 6,353  23,380 38,654 0,337 219,314 3,441 
             
G4 average 29,200 143,000 0,479 900,400 6,633  21,000 70,200 0,475 652,000 4,565 
 Std. dev. 22,076 97,199 0,698 558,698 9,207  16,601 29,869 0,608 258,155 5,383 
             
G5 average 12,600 85,800 0,365 632,000 3,487  21,800 69,200 0,352 622,000 3,951 
 Std. dev. 1,855 81,876 0,378 548,531 2,341  11,016 26,664 0,155 252,746 1,730 
             
G6 average 78,600 172,600 0,787 1131,000 7,849  39,000 113,200 0,362 1155,200 3,892 
 Std. dev. 117,916 128,424 1,262 652,216 11,417  38,761 34,557 0,305 350,966 3,984 
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Table 5.7 Average and standard deviations of the terms in Table 5.3 and Table 5.4 for M5 on each 
group. The highest in each row(considering all the methods) is shown in bold. 

         M5   

G   
             
I 

            
O 

           
I/O int. pt. %(I/int. pt.) 

G1 average 68,600 21,400 4,100 297,800 24,324 
 std. dev. 29,343 10,929 2,532 109,684 8,217 
       

G2 average 111,200 90,000 1,374 809,800 14,111 
 std. dev. 56,413 24,145 0,714 262,405 6,376 
       

G3 average 41,400 106,400 0,417 771,000 5,672 
 std. dev. 22,703 32,364 0,225 219,314 3,003 
       

G4 average 21,200 75,200 0,412 652,000 4,545 
 std. dev. 15,967 31,096 0,492 258,155 5,243 
       

G5 average 21,600 78,600 0,398 622,000 4,127 
 std. dev. 6,530 43,292 0,243 252,746 1,744 
       

G6 average 42,800 157,600 0,370 1155,200 4,458 
 std. dev. 39,686 53,809 0,383 350,966 4,292 

 
 

  
   (a)      (b) 

 

   
(c)      (d) 
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(e)      (f) 

 

 
(g) 

 

Figure 5.15 Matches determined correctly by each method for the 3rd image of G2(rotation). (a), (b) 
Image pair to be matched. Correct matches for (c)M1; 86 matches, (d) M2, 186 matches, (e)M3, 292 
matches, (f) M4, 107 matches, (g) M5, 91 matches. 

 
 

   
(a)      (b) 
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(c)      (d) 

 

   
(e)      (f) 

 

Figure 5.16 Matches determined correctly by each method for the 4th image of G5(scale & rotation). 
(a), (b) Image pair to be matched. Correct matches for (c)M1; 4 matches, (d) M2, 6 matches, (e)M4, 
13 matches, (f) M5, 11 matches. M3 yielded no correct matches. 

 

  
(a)      (b) 
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(c)      (d) 

 

   
(e)      (f) 

 

 
(g) 

 

Figure 5.17 Matches determined correctly by each method for the 1st image of G4(extreme). (a), (b) 
Image pair to be matched. Correct matches for (c)M1; 28 matches, (d) M2, 35 matches, (e)M3, 70 
matches, (f) M4, 52 matches, (g) M5, 51 matches. 
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(a)       (b) 

 

 
(c) 

 

 
(d) 

Figure 5.18 Matches determined for the 5th image of G6(affine). (a), (b) Image pair to be matched. 
Correct matches for (c)M4; 23 matches, (d) M5, 44 matches. Other methods fail on this pair. 
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(a)       (b) 

Figure 5.19 3rd pair of  G4(extreme), where all of the methods fail. 

 

Lastly, in the absence of planar or smooth surfaces to perfom matching on 

(see Figure 5.19), the methods simply fail due to the failure of description 

of the regions surrounding the interest points. Even for a small change of 

viewpoint, the regions around the interest points are altered severely and it 

is not possible to obtain an invariant description. 
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CHAPTER VI 
 
 

6 CONCLUSION.66 
 
 
 
In this thesis, the correspondence problem and possible solutions for 

different settings are investigated. For this purpose, candidate solutions 

are divided into stages and each stage is examined seperately. In this 

respect, a solution may be said to be composed of two main stages, namely 

the ‘interest point detection’ and ‘interest point matching’. (Note that the 

latter may further be analysed in substages, as in Figure 1.1) 

 For the ‘interest point detection’ step, major but highly distinct 

approaches are considered. The main problem with most of the detectors 

in Chapter II is observed to be their heavy dependence on the values of 

parameters and thresholds. These parameters are used inescapably in 

order to distinguish a region from its surroundings, possibly showing 

similar characteristics, but less significant in some respect. In terms of 

avoiding this problem, it is observed that scale invariant interest point 

detection is the best scheme among the others presented in the thesis, 

despite the fact that it still also cannot fully abandon thresholds. 

Moreover, the algorithm intended to apply this scheme is much more 

expensive in computational cost (but not in complexity!). This cost mainly 

stems from the need to convolve the image with high variance Gaussian 

filters. In fact, the cost could be reduced, if the discrete-analogue of the 

Gaussian is used [16], or if recursive implementations for filtering with 

Gaussians and its derivatives are preferred. Another alternative is to down-

sample the filtered image at each level, in order to build a pyramid [19], 

but such a solution introduces the need to compute the actual position in 

the original-sized image for a feature detected in some later level of down-

sampling. 
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 The ‘interest point matching’ stage also has several candidates for 

employment. The performance of these methods  basically depend on the 

configuration of the cameras. As the cameras become seperated, the need 

for more advanced schemes, utilizing higher orders of invariance to the 

changes in the images, arises. The most advanced scheme in this regard 

can handle local affine transformations (including scale, rotation, skewing, 

stretching, etc. of the feature). The experiments show that this scheme also 

succeeds on images even where a simple correlation measure would also 

suffice. However, if a certain degree of invariance is sufficient to handle the 

image pair at hand, higher degrees of invariants usually perform worse. 

Thus, if there is some knowledge about the image pair prior to the 

matching step, this knowledge can be put to use for better results. An 

adaptive algorithm may also be devised, starting form the lowest level of 

invariants (simple cross correlation), and determining on the way the 

required degree of invariance. In such a case however, the selection of the 

cost function is not clear. 

 Even though the final schemes for matching are noted to be 

‘tiresome’ for the hardware which is excecuting the related algorithms, they 

are far from being brute-force methods (even though, given the constraints, 

how something is done would not mean much in a customer-based-

engineering point of view; the question is : is there another point of view?). 

Moreover, the algorithm can also be realised ‘parallel-wise’, if some 

dedicated hardware is used, since the most time consuming stage, namely 

the scale invariant interest point detection stage consists mainly of filtering 

the image with Gaussians of different variance, thus practically size. Given 

the interest points, the second significantly costly process is obtaining the 

invariant description of the patch containing the interest points, and it is 

noted that for each point this process is an independent process, which 

would allow a parallel implementation. 

 The methods explained in this thesis may be combined with other 

related methods [24], [37] as in [29], to strengthen the matching stage. The 

next step, following this, would probably be to take into account the 
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problem of calibrating cameras as a whole starting from the interest point 

matching stage. 
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APPENDIX-A 

 
 

MASKS FOR POLYNOMIAL APPROXIMATION 
 
 
 

Given an image patch ( )yxf , , practically of size 5x5 or 7x7, the goal 

is to approximate the patch by a bi-cubic polynomial, i.e., 
3

10
2

9
2

8
3

7
2

65
2

4321),( ykxykyxkxkykxykxkykxkkyxf +++++++++≈    (A.1) 

For this purpose, let ( ) ( ) ( )[ ]1,1,, sfnsfnsff s K−=  for an nxn patch, 

i.e., fs is a row matrix that contains the values that the function assumes 

on the  sth row (naming the rows starting from n and ending at 1). Then 

form [ ]Tnn fffF 11 K−= . In a similar fashion, form the column 

matrices Pm containing the values that each monomial on the r.h.s of (A.1) 

assumes, to be stuffed into the matrix [ ]1021 PPPA K= . Letting 

[ ]1021 kkkK K= , the r.h.s of (A.1) is represented as Ak , and the 

desired relation among this collection of matrices is, 

FAK =              (A.2) 

If F is not in the column space of A, which may certainly be (and usually 

is) the case for interesting patches, the equality in (A.2) does not hold. 

What should be sought in such a setting is the least squares solution of 

(A.2). This can be obtained by taking the pseudo-inverse of A,  that is  

(ATA)-1AT and multiplying both sides of (A.2) by this matrix. 

 ( ) FAAAK TT 1−
=             (A.3) 

It should be noted that the pseudo-inverse matrix needs to be calculated 

only once and the same matrix is used for any patch of the same size. 
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 Alternatively, one can form masks of the size of the patch to 

calculate the coefficients. For each coefficient in (A.1), a mask can be 

created so that the inner product of the mask with the image patch is 

equal to the coefficient ([10]). This is achieved by first forming an 

orthogonal polynomial basis and then exploiting the linearity of the 

process.  

Discrete Orthogonal Polynomials: 
 

 For a symmetric interval of given length, say 2n+1 (ranging from -n 

to n), a monomial of the form xk is represented by a vector composed of the 

values that it assumes in the interval, i.e. 

( ) ( )[ ]kkk
x

nnnM k KK 01+−−= . Thus, a set of vectors is obtained 

where each vector represents a different monomial. Applying the well-

known Gram-Schmidt orthogonalization method, the set may be rendered 

orthonormal. Then an orthonormal set t
jPj 1= is obtained, such that, 

jj

j
j

PP

P
P

ˆ,ˆ

ˆ
=             (A.4) 

 where, 

 00̂ x
MP =  , and 

 ∑
−

=

−=
1

0

,ˆ
j

i
iixxj PPMMP ij            (A.5) 

After the process, each element Pj of the orthonormal set, represents a 

polynomial of the form, xj+ aj-1 xj-1+ aj-2 xj-2+...+ a1 x+ a0 .  

Using these vectors, a 2-D set can be formed, with elements 

l
T

klk PPD ⋅=,  . The inner product of two elements in this set can be 

obtained as,  

( ) ( )v
T

lc
T

kvclk PPPPDD ⋅⋅⋅=,, ,           (A.6) 
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It is noted that if  ck ≠  or vl ≠ , (A.6) equals 0 and if ck = and vl = , it 

equals 1. In other words, the 2-D set obtained is orthonormal. This new set 

represents 2-D polynomials of the form ∑∑
= =

n

i

n

j

ji
ij yxa

0 0

.  

A given image patch can be approximated using this orthonormal 

set as, ( ) ∑∑
= =

≈
n

i

n

j
jiji Dcyxf

0 0
,,, , where each coefficient ci,j is obtained by the 

result of the inner product of ( )yxf ,  and Di,j . Once the ci,j’s are obtained, 

the coefficients of the monomials in (A.1) may be calculated as linear 

combinations of these. 

However, this procedure can be reversed and instead of first finding ci,j’s 

and then getting the linear combinations, the linear combinations of the 

kernels for (Di,j) may first be constructed and ki’s may be calculated directly 

using these kernels as promised. For instance, suppose that a monomial, 
mn yx , is contained in each ijD  with a weight of nmijw , . Then the kernel for 

estimating the coefficient corresponding to the monomial is obtained by 

adding the kernels for ijD , weighted by nmijw , . 
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APPENDIX-B 

 
 

SINGULAR VALUE DECOMPOSITION 
 
 
 

SVD states that any m×n matrix A can be factored as ([34]):  

 { { {
nn

T

nmmm

QQA
×××

Σ= 21              (B.1) 

The columns of the orthonormal matrix Q1 are the eigenvectors of AAT and 

the columns of the orthonormal matrix Q2 are the eigenvectors of ATA. The 

r (≤ min(m,n)) singular values on the diagonal matrix Σ are the square roots 

of the non-zero eigenvalues of AAT and ATA. 

 The proof that such a decomposition exists is given actually by 

constructing it. Consider ATA (n×n) which has a complete set of 

orthonormal eigenvectors xj;  

 jjj
T xAxA λ=  for j = 1,.., n and 

⎩
⎨
⎧

=
≠

=
jiif
jiif

xx j
T
i 1

0
.       (B.2) 

Q2 is constructed by placing these n eigenvectors in its columns. 

Taking the inner product with xj, 

 jj
T
jjj

TT
j xxAxAx λλ ==  or jjj

TT
j AxAxAx λ==

2
.       (B.3) 

Thus, λj cannot be negative. 

Suppose that r (≤n) of the eigenvalues are positive. Then for these positive 

eigenvalues, setting 
j

j
j

Ax
q

λ
= , it’s seen that qj’s have unit norm and are 

orthogonal, since 
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⎩
⎨
⎧

=
≠

===
jiif
jiifxxAxAx

qq
ji

j
T
ij

ji

j
TT

i
j

T
i 1

0
λλ

λ

λλ
.         (B.4) 

Since for each non-zero eigenvalue, a corresponding q vector can be found, 

it is satisfied that r≤m also. Moreover, that qj’s are eigenvectors of AAT is 

seen by: 

 jj
j

jj

j

j
T

j
T q

AxAxAA
qAA λ

λ

λ

λ
===           (B.5) 

Looking back, the r orthonormal qj’s can be extended to an orthonormal 

basis by Gram-Schmidt orthogonalization procedure. These form the 

columns of Q1. Now considering, 

 rjifAxq j
T
i >= 0 (since Axj=0),          (B.6) 

 and otherwise if j≤r, 

 
⎩
⎨
⎧

=
≠

== jiif
jiif

qqAxq
j

jj
T
ij

T
i λ

λ
0

.          (B.7) 

Thus, the only non-zero elements of the product Σ=21 AQQT  are the first r 

diagonal entries and these are equal to the square roots of the eigenvalues 

of AAT. Since Q1 and Q2 are orthonormal, it can be concluded that 

 TQQA 21Σ= ,             (B.8) 

as required. 

 An application of SVD that has found its use in Chapter IV is the 

following: 

 “Minimize 
2Ay  where y is a unit vector of size n and A is an m×n 

matrix.” 

Since the columns of Q2 form an orthonormal basis, y can be written as: 

 ∑
=

=
n

j
jj xy

1

α ,              (B.9) 

where 

∑
=

=
n

j
j

1

2 1α             (B.10) 

Then,  
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     (B.11) 

where xmin is the eigenvector corresponding to the least eigenvalue.  

In words, (B.11) tells that choosing y as the eigenvector of ATA 

corresponding to the least eigenvalue minimizes 
2Ay . Note that for the 

least eigenvalue, if there exists more than one eigenvector, it suffices to 

choose y from their span, with the unit length constraint in mind. 



 122

 
 

APPENDIX-C 

 
 

FOURIER TRANSFORM OF THE GAUSSIAN FUNCTION 
 
 
 
Consider the normalized Gaussian function with variance σ2, 

 ( ) 2

2

2
2

2

2

1; σ

πσ
σ

x

exg
−

=            (C.1) 

The Fourier Transform of this function ([39]) is found by evaluating : 

 ( ) ( ){ } ∫
∞

∞−

−
−

== dxeexgFG xj
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ωσ
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σσω 2
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2
2

22
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1;;         (C.2) 

Differentiating (C.2) with respect to ω, 
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      (C.3) 

For any function h(x) with F{h(x)}=H(ω), it can be written, 

 ( ) ( )∫
∞

∞−

= ωω
π

ω deHxh xj

2
1

           (C.4) 

Differentiating both sides of (C.4) with respect to x, 

 ( )( )∫
∞

∞−

= ωωω
π

ω dejH
dx
dh xj

2
1

           (C.5) 

i.e., 

( )ωωHj
dx
dhF =

⎭
⎬
⎫

⎩
⎨
⎧             (C.6) 

Using this result in (C.3), it’s concluded that 
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Rearranging (C.7), 

 

2ωσω −=
⎟
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.           (C.8) 

Integrating both sides, 
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Since ( )( ) ( ) 01ln
2

1ln;0ln 2

2

2
2

2 ==
⎟
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⎞

⎜
⎜

⎝
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= ∫

∞
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−
dxeG

x
σ

πσ
σ , as a result of the fact 

that ( )2;σxg  is normalized, 

( ) 22

22

;
σω

σω
−

= eG .          (C.11) 

Stating in words, the Fourier Transform of a Gaussian with variance σ2 is a 

Gaussian with variance 1/σ2. 
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APPENDIX-D 

 
 

CHOLESKY DECOMPOSITION 
 
 
 
 The Cholesky decomposition algorithm develops a method to write a 

positive definite(PD) matrix P as P = LLT, where  L is a square matrix and is 

said to be the square root of P. The algorithm is applicable to nxn PD 

matrices[5], but attention will be restricted to the much simpler case of 

2x2 symmetric PD matrices, which are just enough for the purposes 

mentioned in the thesis. For this, consider the quadratic form: 

 [ ] 2
221
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1
21 2 cxxbxax

x
x

cb
ba

xx

P
X T

++=⎥
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321
43421

.         (D.1) 

Since P is PD, (D.1) is greater than zero for any choice of x1, x2 by the 

definition of positive definiteness. Moerover, a > 0, c > 0, otherwise 

choosing respectively for the two cases, x1 = -1, x2 = 0 and x1 = 0, x2 = -1, 

(D.1) could be made non-positive. Also, ac – b2 > 0 (or simply det P > 0 ), or 

else for x1 = b, x2 = -a, (D.1) would again be non-positive. Rearranging (D.1), 

it is written as: 
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        (D.2) 

 where 
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Note that all the square root terms are real, a fact ensured by the 

preceding discussions. Following this change of variables, it is observed 

that P = LLT as desired. 

The last point to note is that both the Hessian and Harris matrices are PD 

and symmetric at the interest points. Actually, this was one of the criteria 

of being an interest point, where the other is that of being a local 

maximum (according to a measure considering the similarity of the 

eigenvalues). If one determines the interest point using any other detector, 

he/she should ensure the positive definiteness of these matrices before 

attempting to calculate the square root matrix. 

Also, as mentioned in section 3.3.3, points where the Hessian is negative 

definite (P is said to be negative definite if (D.1) is always negative) may 

also be considered as interest points. In this case, the square root of the 

negative of the Hessian matrix may be utilized. 
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