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ABSTRACT 
 

LSE AND MSE OPTIMUM DECONVOLUTION 
 

Aktaş, Metin 

MSc., Department of Electrical and Electronics Engineering 

Supervisor: Assoc. Prof. Dr. T.Engin Tuncer 

July 2004, 84 pages 

In this thesis, we considered the deconvolution problem when the channel is known 

a priori. LSE and MSE optimum solutions are investigated with deterministic and 

statistical approaches. We derived closed form LSE expressions and investigated the 

factors that affect the FIR inverse filters. It turns out that, minimum LSE can be 

obtained when the system zeros are distributed homogeneously on the z-plane. We 

proposed partition-based FIR-IIR inverse filters. The selection of FIR and IIR parts 

is based on partitioning the channel zeros into two regions and using the specified 

channel zeros to design the best delay FIR and all pole IIR inverse filters. Three 

methods for partitioning are presented, namely unit circle-based, ring-based and 

optimum-partitioning. It turns out that ring-based and optimum-partitioning FIR-IIR 

inverse filter performs better than the best delay FIR inverse filter for the same 

complexity by about 4-5 dB. For noisy observations, it is shown that, noise should 

also be considered in the delay selection and partitioning. We extended our results 

for the design of MSE optimum statistical inverse filters. It is shown that best delay 

FIR-IIR inverse filters are less sensitive to the estimation errors compared to the IIR 

Wiener filters and they perform better than the FIR Wiener filters. Furthermore, they 

are always causal and stable making them suitable for real-time implementations. 

When the statistical and deterministic filters are compared, it is shown that for low 

SNR statistical filters perform better by about 1-2 dB, while deterministic filters 

perform better by about 0.5-1 dB for high SNR. 

 

Keywords: Deconvolution, inverse filter, FIR, IIR 
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ÖZ 
 

LSE VE MSE ENİYİ TERS EVRİŞİM 
 

Aktaş, Metin 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. T.Engin Tuncer 

Temmuz 2004, 84 sayfa 

Bu tezde, kanalın önceden bilindiği durumlarda ters evrişim problemini inceledik. 

Gerekirci ve istatistiksel yaklaşımlarla LSE ve MSE eniyi çözümler incelenmiştir. 

Kapalı formda LSE ifadelerini çıkarttık ve FIR ters süzgezi etkileyen etmenleri 

inceledik. En küçük LSE’nin sistem sıfırları z-düzleminde tektürel olarak 

dağıldığında elde edilebildiği görülmüştür. Bölüntüleme tabanlı FIR-IIR ters 

süzgeçleri önerdik. FIR ve IIR parçalarının seçimi kanal sıfırlarının iki bölgeye 

parçalanması ve bu kanal sıfırlarının eniyi gecikmeli FIR ve tüm kutuplu IIR ters 

süzgeçlerin tasarlanması için kullanılması temeline dayanmaktadır. Bölüntüleri elde 

etmek için üç yöntem sunulmuştur, bunlar birim çember tabanlı, halka tabanlı ve 

eniyi bölüntülemedir. Halka tabanlı ve eniyi bölüntülemeli FIR-IIR ters süzgeçlerin, 

aynı karmaşıklıktaki eniyi gecikmeli FIR ters süzgece göre yaklaşık 4-5 dB daha iyi 

başarım sergilediği ortaya çıkmıştır. Gürültülü gözlemler için gürültünün de gecikme 

seçiminde ve parçalamada hesaba katılması gerektiği gösterilmiştir. Bu sonuçları 

istatistiksel eniyi MSE ters süzgeç tasarımları için genişlettik. Eniyi gecikmeli FIR-

IIR ters süzgeçlerin, kestirim hatalarına IIR Wiener süzgeçlerden daha az hassas 

oldukları ve FIR Wiener süzgeçten daha iyi başarım sergiledikleri gösterilmiştir. 

Ayrıca bu süzgeçlerin herzaman nedensel ve kararlı olmaları, onları gerçek zamanlı 

uygulamalar için uygun kılmaktadır. İstatistiksel ve gerekirci süzgeçler 

karşılaştırıldığında, düşük sinyal gürültü oranında istatistiksel süzgeçler yaklaşık 1-2 

dB daha iyi başarım sergilerken gerekirci süzgeçlerin yüksek sinyal gürültü oranında 

yaklaşık 0.5-1 dB daha iyi başarım sergilediği gösterilmiştir. 

Anahtar Kelimeler: Ters evrişim, ters süzgeç, FIR, IIR



 vi

ACKNOWLEDGEMENTS 
 
 

I would like to thank Assoc. Prof. Dr. T. Engin Tuncer, for his help, professional 

advice and valuable supervision during the development of this thesis. This thesis 

would not be completed without his guidance and support. 

Thanks to TÜBİTAK BAYG (Bilim Adamı Yetiştirme Grubu) for their financial 

supports during this thesis. 

Special thanks to my parents and my friend Hakan Y. Gürsan for their great 

encouragement and continuous moral support. 



 vii

TABLE OF CONTENTS 
  
  
  
  
  
  
ABSTRACT  ..........................................................................................................    iv 

 
ÖZ    .......................................................................................................................     v 

 
ACKNOWLEDGMENTS  ....................................................................................    vi 

 
TABLE OF CONTENTS  ......................................................................................   vii 

  
CHAPTER  

  
   1.  INTRODUCTION  ........................................................................................     1 

  
   2.  INVERSE FILTERS FOR NOISELESS OBSERVATIONS  ......................     6 

  
       2.1  Best Delay FIR Inverse Filters  ...............................................................     7 

 
           2.1.1  Factors that Affect the LSE of FIR Inverse Filters  .........................   11 

 
       2.2  IIR Inverse Filters  ...................................................................................   17 

  
       2.3  Partition-Based FIR-IIR Inverse Filters  ..................................................   19 

  
           2.3.1  Unit Circle-Based Partitioning  .........................................................   20 

 
           2.3.2  Ring-Based Partitioning  ...................................................................   22 

 
           2.3.3  Optimum-Partitioning  ......................................................................   26 

 
   3.  INVERSE FILTERS FOR NOISY OBSERVATIONS  ................................   32 

  
       3.1  Noise Considered Deterministic Inverse Filters  .....................................   32 

  
           3.1.1  Noise Considered Deterministic FIR Inverse Filters  .......................   33 

 
       3.2  MSE Optimum Statistical Inverse Filters  ...............................................   36 
 
           3.2.1  MSE Optimum Best Delay FIR Deconvolution Filters  ...................   37



 viii

           3.2.2  Best Delay FIR-IIR Partition-Based Deconvolution Filters  ............   39 
 

           3.2.3  IIR Wiener Filters  ............................................................................   42 
 

   4.  PERFORMANCE EVALUATIONS  ............................................................   44 
 

       4.1  Deterministic Inverse Filters  ...................................................................   45 
 

           4.1.1  Noiseless Observations  ....................................................................   45 
 

           4.1.2  Noisy Observations  ..........................................................................   49 
 

       4.2  Statistical Inverse Filters  .........................................................................   54 
 

       4.3  Noise Considered Deterministic versus Statistical Inverse Filters  .........   58 
 

   5.  CONCLUSION  .............................................................................................   60 
  
REFERENCES  ......................................................................................................   63 
  
APPENDICES  

  
   A.    ......................................................................................................................   66 

  
       A.i   Properties of BN  ......................................................................................   66 

 
       A.ii  Iterative Procedure  .................................................................................   76 

 
   B.    ......................................................................................................................   82 
  
  
  
  
  
  
  

 

 

 

 

 



 ix

LIST OF TABLES 
  
  
  
  
 Table 
  
   2.1  The effect of delay on LSE  .........................................................................     8 

  
   2.2  The number of partitioning cases  ................................................................   27 

  
   3.1  Effect of delay on LSE and MSE  ................................................................   34 
  
  
  
  
  
  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 x

LIST OF FIGURES 
  
  
  
  
 Figure 
  

2.1 System structure of inverse filter design problem for noiseless observations.  
...................................................................................................................     7 

 
2.2 The effect of inverse filter length on LSE for first order channel  ..........   13 

 
2.3 The effect of channel zero position on LSE for first order channel and N=8..  

...................................................................................................................   14 
 

2.4 Overall system zeros for FIR inverse filter with N=32 and channel with L=8 
□ represents channel zero, o represents inverse filter zero  .....................   15 

 
2.5 Zero positions of channel with L=2 for Example 2.1  .............................   16 

 
2.6 LSE values for different distance between two channel zeros  ...............   17 

 
2.7 Pole-zero plots for (a) FIR and (b) unit circle-based FIR-IIR inverse filters.. 

when L=8, N=16. o, □ and x represent inverse filter zero, channel zero and 
IIR pole respectively  ...............................................................................   22 

 
2.8 Inner and outer radiuses and ring region inside the unit circle for ring-based 

partitioning  ..............................................................................................   23 
 

2.9 Pole-zero plots for (a) FIR and (b) ring-based FIR-IIR inverse filters when..  
L=8, N=16. o, □ and x represent inverse filter zero, channel zero and IIR… 
pole respectively  .....................................................................................   24 

 
2.10 Zero plots of the channel and FIR inverse filter for L=8 and N=16. o and □… 

represent inverse filter zero and channel zero respectively  ....................   25 
 

2.11 Zero plots of the selected channel zeros for (a) the ring-base (outer radius is 
one) and (b) optimum-partitioning case when L=12, N=16. o, □ and x………… 
represent inverse filter zero, channel zero and IIR pole respectively  .....   28 

 
2.12 LSE performance of the deconvolution filters for different inverse filter…... 

lengths, (a) L=4, (b) L=8, (c) L=12, (d) L=16  ........................................   30 



 xi

2.13 Inner and outer ring radiuses for the LSE case, (a) L=4, (b) L=8, (c) L=12,.. 
(d) L=16  ..................................................................................................   31 

 
3.1 System structure of inverse filter design problem for noisy observations   33 

 
3.2 The pole-zero plots of FIR-IIR inverse filter. (a) ring-based for SNR=0 dB,. 

(b) ring-based for SNR=20 dB, (c) optimum-partitioning for SNR=0 dB, (d) 
optimum-partitioning for SNR=20 dB. o represents channel zero and x…… 
represents pole of inverse filter  ..............................................................   35 

 
4.1 LSE performance of best and (N+L)/2 delay FIR inverse filters when L=8… 

(a) Uniform distributed complex channel, (b) Uniform distributed real……. 
channel, (c) Gaussian distributed complex channel, (d) Gaussian distributed 
real channel  .............................................................................................   46 

 
4.2 LSE performances of the inverse filters for different channel types, (a)……. 

uniform distributed real, (b) Gaussian distributed real, (c) uniform………… 
distributed complex, (d) Gaussian distributed complex channel  ............   48 

 
4.3 Inner and outer ring radiuses of ring-based FIR-IIR inverse filter for……… 

different channel types, (a) uniform distributed real, (b) Gaussian…………. 
distributed real, (c) uniform distributed complex, (d) Gaussian distributed… 
complex channel  .....................................................................................   49 

 
4.4 MSE performance of best and arbitrary delay FIR inverse filters designed.... 

with deterministic approach when L=8 and N=32. (a) Gaussian distributed... 
complex channel, (b) Gaussian distributed real channel, (c) Uniform............ 
distributed complex channel, (d) Uniform distributed real channel  .......   51 

 
4.5 MSE performances of LSE optimum deterministic inverse filters when…… 

N=24, (a) L=8, (b) L=12  ..........................................................................   53 
 

4.6 MSE performances of noise considered deterministic inverse filters when.... 
N=24, (a) L=8, (b) L=12  ..........................................................................   53 

 
4.7 Inner and outer radiuses of ring-based FIR-IIR inverse filter for LSE……… 

optimum deterministic method when N=24, (a) L=8, (b) L=12  ..............   54 
 

4.8 Inner and outer radiuses of ring-based FIR-IIR inverse filter for noise.......... 
considered deterministic method when N=24, (a) L=8, (b) L=12  ...........   54 

 
4.9 MSE performance of best and arbitrary delay FIR inverse filters designed… 

with statistical approach when L=8 and N=32. (a) Gaussian distributed……. 
complex channel, (b) Gaussian distributed real channel, (c) Uniform……… 
distributed complex channel, (d) Uniform distributed real channel  .......   56 

 
4.10 MSE performances of inverse filters for statistical method when the………. 

correlation estimates are used. N=24, (a) L=8, (b) L=12  ........................   57 



 xii

4.11 Inner and outer radiuses of ring-based FIR-IIR inverse filter for statistical… 
method when the correlation estimates are used. N=24, (a) L=8, (b) L=12….  
...................................................................................................................   57 

 
4.12 MSE performances of inverse filters for statistical method when true……… 

correlations are used. N=24, (a) L=8, (b) L=12  ......................................   58 
 

4.13 Inner and outer radiuses of ring-based FIR-IIR inverse filter for statistical.... 
method when the true correlations are used. N=24, (a) L=8, (b) L=12  ...   58 

 
4.14 MSE performances of FIR, FIR-IIR optimum-partitioning inverse filters for 

statistical and deterministic methods when N=24, (a) L=8, (b) L=12  .....   59 
 
  
  
  
  
  
  
 

 



 1

CHAPTER 1 

INTRODUCTION 
 
 
 

Telecommunication is based on transmitting information between two points, 

namely the source and the receiver. In modern communication systems, information 

is carried by many types of signals in the form of electrical, electromagnetic, 

acoustic or so on. During the transmission, these signals travel in a medium such as 

cable, air, water, ground, etc. These mediums are commonly called as channel and 

can be modeled as a linear filter. The channel can be expressed in frequency domain 

as, 

( )( ) ( ) j fH f H f e θ=  

where |H(f)| is the amplitude response characteristic and ( )fθ  is the phase response 

characteristic. A channel is said to be nondistorting or ideal if the amplitude 

response |H(f)| is constant for all frequencies and ( )fθ  is a linear function of 

frequency. On the other hand, if |H(f)| is not constant for all frequencies, we say that 

the channel distorts the transmitted signal in amplitude and if ( )fθ  is not a linear 

function of frequency, we say that the channel distorts the signal in phase.  

The signal is not only distorted by the channel, but it is also contaminated 

along the path by undesirable signals lumped under the broad term noise which are 

unpredictable signals. In communication systems, the noise is tried to be modeled as 

random variables. Depending on spectral characteristics, noise can be classified as 

white or colored noise. The noise power for all frequencies is assumed to be constant 

for the white noise. On the other hand for the colored noise, the noise power 

concentrates on some frequency range. The choice of which noise model to use 

depends on application. In this thesis we will use the white noise model. 
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All of these undesired distortions should be minimized or eliminated, if 

possible, to reconstruct the original source signal in the receiver. Inverse filters are 

used in the receiver part to achieve this goal. In this respect, inverse filtering is 

closely related to the deconvolution and equalization problems. Deconvolution is the 

process of finding either the input sequence or channel characteristics when the 

output sequence and either one of the channel characteristics or input sequence are 

given. On the other hand, input sequence is found from the output in equalization 

problem. Both deconvolution and equalization problems can be analyzed for noisy 

and noiseless observations. In addition, deterministic and statistical problem settings 

can be investigated. Deconvolution problem is investigated in time [1], frequency 

[2] and wavelet domains [3, 4]. These types of problems find applications in 

communications, radar and sonar systems, astrophysics, seismology and so on.  

Inverse filter design for deconvolution problem has been widely investigated. 

At first glance, the solution to the deconvolution problem seems to be 

straightforward. For a given channel filter, H(z), find an inverse filter 1/H(z). It turns 

out that the solution is not so simple because for an arbitrary H(z), 1/H(z) may not be 

causal and stable. Therefore 1/H(z) is mostly suitable for minimum-phase systems. 

Furthermore direct inversion is not recommended when the channel has spectral 

nulls. This situation is equivalent to stating that the inversion problem is ill-posed. 

That is, the inverse filter is asked to reproduce components of the channel input that 

are unobservable at the channel output or are obscured by noise. This leads to noise 

amplification.  

Generalized inverse or Pseudoinverse solution [5, 6] is commonly used 

instead of direct inversion for an arbitrary channel. The pseudoinverse solution is the 

result of an optimization operation that seeks to minimize the least squares error [7, 

8]. Any spectral loss in the signal caused by the channel is directly translated into a 

corresponding decrease in the minimum eigenvalue, minλ , of the received signal. If 

minλ  becomes small, but nonzero, pseudoinverse solution becomes ill-conditioned 

and inversion leads to noise enhancement at the receiver output and to noise 

sensitivity in the filter coefficient solution. An alternative to the pseudoinverse is to 

use regularized or smoothing inverse techniques [5, 9, 10, 11, 12] wherein the eigen-

modes are weighted prior to inversion. These methods attempt to force smoothness 
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on the solution of a least squares error problem and lead to a tradeoff between the 

noise immunity of the inverse filter weights and the signal fidelity at the inverse 

filter output.  

The optimum solution for deconvolution problem is the IIR Wiener filter [5, 

8, 13]. Wiener filtering combines inverse filtering with a priori statistical knowledge 

about the noise and the input signal [14]. “The Wiener filters attempt to minimize 

the noise amplification obtained in a direct inverse by providing a taper determined 

by the statistics of the signal and noise process under consideration [5].” In practice, 

the power spectra of the noise and desired signal might not be known. In this 

condition spectral estimation techniques [15] are used, but these filters are sensitive 

to the estimation errors [16]. Furthermore, the main drawback of IIR Wiener filter is 

that, it is either noncasual or unstable and therefore it is not very suitable for real 

time sample based processing. Using FIR Wiener filter [13] or extracting the casual 

part of the IIR Wiener filter [17] overcomes these problems with higher mean square 

error (MSE).  

Adaptive filters can also be used in inverse filtering problem. These filters 

start from some predetermined set of initial conditions and recursively update its 

coefficients, unlike the nonrecursive filters described above. The advantage of 

adaptive filters is “to perform satisfactorily in an environment where complete 

knowledge of the relevant signal characteristics is not available” [7]. On the other 

hand, it requires a convergence time to achieve the desired performance. Some of 

the adaptive algorithms are, least mean squares (LMS), recursive least squares 

(RLS) and block-iterative normalized LMS (BINLMS) [7, 14]. The choice of which 

adaptive algorithm to use is application-dependent and determined by considering 

the convergence time and stability of the filter. 

In this thesis, we will investigate the nonrecursive deconvolution problem 

when the channel is known a priori. We will divide the problem into two parts. In 

the first part, we will investigate the deterministic problem where there is no noise in 

the observations. In the second part, we will look at a more general and practical 

problem where the observations are corrupted by noise. Deterministic and statistical 

solutions will be investigated for the noisy observations.  
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The deterministic setting of deconvolution for noiseless observations requires 

the design of least squares inverse filters [7, 8]. This problem is analyzed in detail 

and the design of such filters is well known [18]. It has been shown that the choice 

of system delay plays an important role for decreasing the least squares error (LSE) 

[8, 17]. Therefore best delay LSE optimum FIR inverse filter is one of the most 

effective solutions for deconvolution operation. In this thesis, we will use an 

efficient approach for the design of best delay inverse filters proposed in [19]. The 

closed form LSE expressions for the FIR inverse filters will be derived and the 

factors that affect the LSE of FIR inverse filter will be investigated. Then IIR 

inverse filters will be discussed. IIR inverse filters are more powerful tools for 

deconvolution problem than the FIR inverse filters when the channel is minimum-

phase. But for nonminimum-phase channels they suffer from the stability problem.  

In this thesis, we will propose partition-based FIR-IIR inverse filters with 

best delay. In general, FIR-IIR inverse filters are hybrid filters with an FIR and all 

pole IIR part. IIR part is the inverse filter for the channel zeros which fall into a 

selected region inside the unit circle. FIR part corresponds to the best delay LSE 

optimum inverse filter of the channel zeros outside the selected region. These filters 

use the advantages of both IIR and FIR deconvolution filters and it turns out that 

they perform significantly better than purely FIR filters. We will investigate three 

approaches for the partitioning of channel zeros to construct FIR and IIR parts. The 

simplest one is unit circle-based partitioning in which, IIR part is constructed from 

the minimum-phase part of the channel filter and the FIR part correspond to the 

inverse filter of maximum-phase part. The second one is ring-based partitioning 

[26], which divides the z-plane into two parts by a ring inside the unit circle. The 

ring is defined by the inner and outer radiuses. In this case, optimum inner and outer 

ring radiuses are found jointly in order to get the minimum LSE. In the optimum-

partitioning, we consider all the possible channel zero combinations inside the unit 

circle and select group of zeros, which return the minimum LSE. It turns out that 

ring-based approach is suboptimum compared to the optimum-partitioning. However 

the difference between these two approaches is very small when the overall LSE is 

considered. 



 5

We will extend the results for LSE designs and obtain the MSE solutions for 

the proposed deconvolution filters. We will also look at the performance of 

deterministic inverse filters for noisy observations. The deterministic method is the 

same as used in LSE designs, but in this case the noise also affects the partitioning 

and delay selection. In the statistical approach we use autocorrelation functions of 

input and noise sequences in the design procedure. For this case, we will first 

consider the MSE optimum FIR best delay deconvolution filter formulation. These 

filters are the FIR counterparts of the IIR Wiener deconvolution filters with best 

delay property [24, 25]. Then we will present the partition-based FIR-IIR best delay 

MSE optimum deconvolution filters. Three different partitioning procedures will be 

investigated as in LSE design. We will compare these filters with the FIR and IIR 

Wiener deconvolution filters. It turns out that FIR-IIR partition-based inverse filters 

perform better than the FIR Wiener deconvolution filters. Furthermore, they are less 

sensitive to the estimation errors than the IIR Wiener filters. Another advantage of 

these filters is, they are casual and can be used in real-time implementations as 

opposed to the IIR Wiener filters. 

The organization of the thesis is as follows. In Chapter II, we will present 

LSE optimum designs for FIR and FIR-IIR deconvolution filters. Also we will 

derive the closed form LSE expressions for the FIR inverse filter and show the 

factors that affect the LSE. In Chapter III, MSE designs for FIR and FIR-IIR 

deconvolution filters will be given. We will compare the performances of proposed 

inverse filters for different channel characteristics in chapter IV. Chapter V will 

present a conclusion about the proposed inverse filters.  
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CHAPTER 2 

INVERSE FILTERS FOR NOISELESS OBSERVATIONS 
 
 
 

In this chapter, we will consider the design of deterministic inverse filters for 

the deconvolution problem. In this context, we will look at the least squares 

optimum FIR inverse filters first. It has been shown that, deconvolution delay plays 

an important role on LSE of FIR inverse filters in different works [8]. In this 

chapter, we will consider the best delay design and show the effect of delay on LSE. 

We will give an effective and a simple procedure for obtaining best delay as 

proposed in [19]. Also we will derive the closed form LSE expressions in order to 

show the other factors that affect the LSE of FIR inverse filters. IIR inverse filters 

can also be used in deconvolution problem. They are more powerful tools when 

compared with FIR inverse filters when the channel is minimum-phase. They 

perfectly deconvolve the minimum-phase channels. On the other hand, they have 

stability problems for nonminimum-phase channels. We will combine these filter 

types and propose a new inverse filter called FIR-IIR which is the hybrid filter 

composed of best delay FIR inverse filter and the all pole IIR inverse filter. The 

most critical point is the selection of FIR and IIR parts. We will introduce three 

types of partitioning procedures, namely unit circle-based partitioning, ring-based 

partitioning and optimum-partitioning.  

LSE inverse filter design for the deconvolution problem will be investigated 

by using the system structure shown in Figure 2.1. δ(n) is used as an input to 

eliminate the input signal dependence of the system performance; only the channel 

and inverse filter impulse responses will affect the overall performance. 

 

 

 



 7

 

 
Figure 2.1 System structure of inverse filter design problem for noiseless 
observations. 

 

 

2.1 Best Delay FIR Inverse Filters 

 

FIR (Finite Impulse Response) inverse filter design problem is well known. 

The basic equality that should be considered in FIR inverse filter design is given as 

follows, 

( )* ( ) ( )FIR
invh n h n n kδ= −                  (1) 

where h(n) and ( )FIR
invh n  are the impulse responses of the channel and FIR inverse 

filter respectively and k is the convolution delay. Since both channel and the inverse 

filter are the FIR filters, the possible convolution delay is in the range of [0, L+N-1] 

where L is the channel order and N is the inverse filter length. Equation (1) is the 

desired result, but it is not possible to obtain such an exact result by using finite 

number of coefficients. When an FIR inverse filter is used, equation (1) is not 

satisfied perfectly. There is a nonzero LSE term, which should be minimized to 

obtain the optimum inverse filter, 

2
( ) ( )* ( )FIR

LSE inv
n

E n k h n h nδ= − −∑                 (2) 

Equation (1) can also be written in matrix form as, 

FIR
invHh = d                    (3) 

where H is the Toeplitz channel convolution matrix with the size of (N+L)xN and d 

is the desired vector, which contains 1 at kth location and all the other elements are 

zero with the size of (N+L)x1 such as, 

h(n) hinv(n) 
δ(n) ˆ( )x n

δ(n-k)

ˆ( ) ( )n k x nδ − −  
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0 1

0 1

0 1
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h h h
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h h h
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[ ]0 0 1 0 0 T=d                 (5) 

where hi terms are the coefficients of channel filter. Then the inverse filter can be 

found from (3) as, 

†FIR
invh = H d                    (6) 

where,  

( ) 1† H H−
=H H H H                   (7) 

is the pseudoinverse [7] of H.  

The effect of delay on LSE can be seen in Table 2.1, where the LSE 

corresponding to all the possible delays are given for the arbitrary third order 

channel, ( ) 0.33 ( ) 0.13 ( 1) 1.32 ( 2) 1.22 ( 3)h n n n n nδ δ δ δ= + − + − + − , and the FIR 

inverse filter with length of 4. 

 

 

Table 2.1 The effect of delay on LSE 
 

Delay (k) LSE (dB) 
0 -4.8473 
1 -5.7394 
2 -7.0573 
3 -7.0858 
4 -7.4318 
5 0.9685 
6 -0.1891 

 

 

As it can be seen from Table 2.1, delay selection seriously affects the LSE. 

The difference between the maximum and minimum LSE values is very large, 
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approximately 8.4 dB. So in FIR inverse filter design, best delay selection is an 

important problem.  

The best delay can be found in two ways. In the first one, for all the possible 

delays, desired vector d is constituted as in (5) and the inverse filter is obtained from 

the equation (6) to calculate the LSE as in (2). After finding all the LSE values 

corresponding to the possible delays, selecting the minimum one gives us the inverse 

filter with best delay. In the second case, best delay is found by using rows of H 

matrix as proposed in [19]. Once the best delay is found, desired vector d is 

determined and the inverse filter is obtained. So the design process seems to be more 

efficient in the second case, because it does not compute the inverse filter for all the 

possible delays. It uses Singular Value Decomposition (SVD) [7] of the Toeplitz 

channel convolution matrix, H, namely, 

H⎡ ⎤
⎢ ⎥
⎣ ⎦

Σ 0
H = U V

0 0
                  (8) 

If we use the same error expressions as in [7] for LSE, 

( ) ( )H FIR H H H H FIR
LSE inv invE = − −d d Hh = d U U d U HVV h              (9) 

The above error expression is obtained from the counterpart of the 

orthogonality principle and is based on the orthogonality of the left and right 

singular matrices U and V. This expression is especially useful for the 

overdetermined matrices like H. 

Let us define,  

1

2

H FIR
inv

⎡ ⎤
⎢ ⎥
⎣ ⎦

b
V h = b =

b
                (10) 

and 

1

2

H ⎡ ⎤
⎢ ⎥
⎣ ⎦

c
U d = c =

c
                (11) 

where, b1 and c1 are Nx1 vectors. LSE can be written as, 

1 1

2

H
LSEE

−⎡ ⎤
= ⎢ ⎥

⎣ ⎦

c Σb
d U

c
               (12) 
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ELSE is minimized when c1=Σb1. Therefore, LSE for the overdetermined set of 

equations is given as, 

2
H

LSEE = d Uc                  (13) 

where 2c  has the following form, 

2 , , 1 , 10
H

k N k N k N Lu u u+ + −⎡ ⎤= ⎣ ⎦c              (14) 

and 

[ ]
0

1

1

0 0 1 0 0H
k

N L+ −

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

u
u

d U = u

u

            (15) 

where iu  are the row vectors of U. Therefore, LSE for a delay of k can be written as, 

1 2

,

N L
k
LSE k i

i N
E u

+ −

=

= ∑                 (16) 

Above equation is nothing but the magnitude squared sum of the elements in 

the kth row of the left singular matrix U. Best delay for a given channel h is found as 

the index of the row which gives the minimum LSE, i.e., 

( )arg min k
opt LSE

k
k E=                 (17) 

It turns out that best delay kopt for a minimum-phase channel is zero while it 

is N+L-1 for a maximum-phase channel. In general, best delay is between these two 

extreme cases, namely 0 ≤ kopt ≤ N+L-1. Once the best delay is found, desired vector 

d is determined and the LSE inverse filter is found as, 

1

2
0 ,

1N
FIR H H
inv i i

i c iσ

−

=

=∑h v v H d                (18) 

where σc,i’s are the singular values and vi’s are the right singular vectors of H. 

Above design procedure is direct and simple. Instead of designing the inverse filter 

for all possible delays and computing the LSE, we can find the optimum delay and 

inverse filter by a simple procedure. Note that equation (18) is exactly the same as 
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equation (6). However equation (18) is more efficient since there is no matrix 

inversion as in (6). This is especially important when the filter length is large. 

 

2.1.1 Factors that Affect the LSE of FIR Inverse Filters 

 

Apart from convolution delay, there are additional factors that affect the LSE 

performance of FIR inverse filter. The factors that will be investigated in this section 

are the inverse filter length, the position of channel zeros on the z-plane and the 

channel zero distribution. In the following part, we will derive the closed form LSE 

expressions as a function of channel coefficients and the inverse filter length, N, to 

understand the dependencies of LSE performance on these factors more clearly.  

LSE optimum inverse filter FIR
invh  is found from equation (6), but this filter 

can not result desired response, d, after deconvolution operation. The actual 

response can be expressed as, 

†FIR
actual invd = Hh = HH d                (19) 

The error term between the desired and actual responses can be written as, 

actual−e = d d = Bd                 (20) 

where 

†= −B I HH                  (21) 

LSE can be found by using equation (20) as, 

H

H H

LSE =

=

e e
d B Bd

 

H= d Bd                  (22) 

The last equality comes from Property 1 and Property 3 in Appendix A. 

Let the optimum delay for FIR inverse filter be k, so the desired response can 

be written as given in (5). Then LSE expression in (22) can be simplified as, 

1, ( 1), , ( 1), ( ),... ...
TH

k k k k k k k N L kLSE b b b b b− + +⎡ ⎤= ⎣ ⎦d            (23) 
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where bj,k term represents the elements in the kth column of matrix B. Then LSE 

expression becomes, 

( ), ,k kLSE b k k= = B                 (24) 

This equation tells us that the minimum LSE is the kth element in the diagonal of 

matrix B. By using this result, we derived the LSE for the FIR inverse filter when 

the channel order is one. It is given as, 

2

2 4 2

2 4 2

1
1

1 1
1

N

N

N

a
LSE for a

a a a

LSE for a
a a a

= <
+ + + +

= >
+ + + +

            (25) 

where a is the zero of the channel filter. Note that, since the first order channel is 

either minimum-phase or maximum-phase, the best delay can be either 0 or N. So 

there are two LSE expressions for the first order channel regardless of inverse filter 

length, N. The proof of equation (25) is given in Appendix A. For the higher order 

channel filters, LSE formulas can also be derived by using equations (21) and (24) 

as well. But unfortunately LSE formulas for higher order channels are more 

complicated and can not be generalized with respect to N. Furthermore, since the 

possible delays are in the range of [0, N+L-1], N+L many LSE formulas should be 

derived. In Appendix B, LSE formulas are given for second order channel with N=2 

and N=3. 

When equation (25) is investigated, the effects of inverse filter length and 

position of channel zero on the LSE can be seen easily. Increasing inverse filter 

length decreases the LSE as it can be seen from Figure 2.2, where equation (25) is 

evaluated for a=0.95 and a=1.08 corresponding to the minimum and maximum-

phase channels respectively. When the inverse filter length, N, is small, LSE is more 

sensitive to a change in N. Furthermore, LSE values for minimum-phase and 

maximum-phase channels in this example are different. This fact states that, the 

position of channel zero also affects the LSE and this effect is shown in Figure 2.3, 

which is obtained from equation (25) for N=8. As it is seen, LSE increases as the 

channel zero gets closer to the unit circle and it decreases when the zero is away 
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from unit circle. Thus the error contribution of the channel zeros close to the unit 

circle is larger than the ones far away from the unit circle. 
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Figure 2.2 The effect of inverse filter length on LSE for first order channel. 
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In the following part, we will look at the inverse filtering procedure of FIR 

filters in z-domain to show the effect of channel zero distribution on LSE. 

FIR channel zeros produce spectral deeps in frequency domain and causes a 

distortion in the transmitted signal. This distortion effect increases when the channel 

zero comes closer to the unit circle. The aim of the inverse filter is to eliminate the 

undesired effects of these channel zeros. In ideal inverse filtering, there should be no 

system (cascaded channel and inverse filter) zero on the z-plane. But in the FIR case, 

since both channel and inverse filter are all zero filters, there are always zeros on the 

z-plane. Therefore, the locations of system zeros become an important point in 

inverse filtering.  

When the distribution of overall system zeros on the z-plane are considered, 

it is obvious that isolated zeros cause more distortion or larger LSE compared to 

homogeneously distributed zeros. In fact, homogeneous distribution corresponds to 

locating each spectral deep side by side with equal distance and obtaining a flat 
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Figure 2.3 The effect of channel zero position on LSE for first order channel and 
N=8. 
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spectrum. Therefore, locating FIR inverse filter zeros in such a way that they 

produce a homogenous distribution when combined with channel zeros, seems to be 

the best solution for inverse filtering procedure. Figure 2.4 shows the overall system 

zero distribution for the best delay FIR inverse filter with length of 32 and the 

channel with order of 8. The homogeneous distribution can be observed in this 

figure. It should be noted that, the number of inverse filter zeros around the channel 

zeros is varying with the positions of channel zeros. In fact, the inverse filter zeros 

concentrate around the channel zeros close to the unit circle. This observation states 

that more inverse filter zeros are used for channel zeros with large error contribution.  

Inverse filtering procedure can explain the effect of channel zero distribution 

on LSE. When two channel zeros are close to each other on the z-plane, producing a 

homogeneous distribution needs more inverse filter zeros or a large LSE is produced 

for the same inverse filter length. The effect of closeness of two channel zeros can 

be seen by investigating the following example. 
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Figure 2.4 Overall system zeros for FIR inverse filter with N=32 and channel with 
L=8. □ represents channel zero, o represents inverse filter zero. 
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Example 2.1: We have chosen a single channel with L=2, such that both 

channel zeros are located on the same radius, which is 0.8. The distance between 

these channel zeros are changed by moving one of them on the same radius while 

the other one is fixed. The process can be seen in Figure 2.5. Then at each channel 

zero positions, LSE is found for the best delay FIR inverse filter, whose length is 

chosen as 7. So LSE is obtained as a function of the channel zero positions with 

respect to each other, which is shown in Figure 2.6. The channel zero positions with 

respect to each other are illustrated as an angular difference between these zeros. As 

it is seen, LSE is the maximum when two zeros coincide and decreases when they go 

far away from each other. But it has some fluctuations. If the minimum points of 

these fluctuations are investigated, it can be seen that, these are approximately the 

multiples of 45o. In fact, since there are 8 zeros in the overall system, this is the 

angular difference between each zero when the homogenous distribution is achieved.  

 

 

 

 
 
Figure 2.5 Zero positions of channel with L=2 for Example 2.1. 
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As a result, FIR inverse filter design is a simple procedure but many factors 

should be considered in order to fully understand the deconvolution operation. For a 

given channel, selecting an appropriate inverse filter length and convolution delay 

are the most critical points to obtain an LSE optimum inverse filter. Channel zero 

positions and distributions also affect the LSE performance significantly.  

 

2.2 IIR Inverse Filters 

 

IIR (Infinite Impulse Response) filter is the all pole filter and uses poles, 

which are in a way the opposite of the zeros, to make the filtering operation. It 

operates in a recursive manner. When the inverse filter is expressed as a 

nonrecursive filter, it contains infinite number of filter coefficients. So it is a more 

powerful tool for the inverse filtering operation than the FIR filter. But it has some 
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Figure 2.6 LSE values for different distance between two channel zeros. 
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limitations. It should be used for minimum-phase channels because of the stability 

problem, while there is no such a problem in FIR inverse filter. 

Investigating a first order channel can help us to understand the advantage 

and disadvantage of these two types of inverse filters. Let a be the channel zero. 

Then the channel can be expressed in z-domain and time domain as, 

1( ) 1H z az−= −    ( ) ( ) ( 1)h n n a nδ δ= − −           (26) 

The IIR inverse filter for this channel can be written as, 

1

1( )
1

IIR
invH z

az−=
−

   ( ) ( )IIR n
invh n a u n=            (27) 

where u(n) is the unit step function. Note that the time domain coefficients in 

equation (27) exponentially increase with time, n, when the channel zero is located 

outside the unit circle, namely |a| > 1. In this condition IIR inverse filter is said to be 

unstable. For stability, channel zero should be located inside the unit circle. If this is 

the case, then IIR inverse filter is the perfect filter with no error.  

Equation (27) can also be written as, 

1 2 2 1 1

2 1

( ) 1

( ) ( ) ( 1) ( 2) ( 1)

IIR N N
inv

IIR N
inv

H z az a z a z

h n n a n a n a n Nδ δ δ δ

− − − − +

−

= + + + + +

= + − + − + + − + +
          (28) 

As it can be seen from equation (28), when the IIR filter is expressed as an 

all zero filter, it uses infinite number of filter coefficients to achieve the desired 

response. On the other hand in the FIR case, we have limited number of coefficients 

to use in inverse filtering. Truncating equation (28) and taking the first N 

coefficients is the simplest way to obtain the FIR inverse filter such as, 

1 2 2 1 1( ) 1FIR N N
invH z az a z a z− − − − += + + + +              (29) 

This may not be the inverse filter with minimum LSE but it gives the idea 

about why FIR filter produces LSE. It uses finite number of filter coefficients 

instead of infinite number of filter coefficients as in IIR filter. On the other hand, 

although FIR filter produces larger LSE, it can be used for any channel filter, while 

in the IIR inverse filter case, we need to have a minimum-phase channel. It is 

possible to combine the FIR and IIR inverse filters in order to fully take the 

advantage of both approaches. In the following section, we will extend this idea and 
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introduce a new inverse filter design method, which is called partition-based FIR-IIR 

inverse filtering.  

 

2.3 Partition-Based FIR-IIR Inverse Filters 

 

In general, FIR-IIR inverse filters are hybrid filters composed of best delay 

FIR and all pole IIR inverse filters. Thus the advantages of both filter types can be 

combined in inverse filtering operation. The most critical point in the design is the 

selection of FIR and IIR parts. Selection procedure is based on partitioning of 

channel zeros into two regions. IIR part is the inverse filter for the channel zeros that 

fall into one of the regions, while the FIR part corresponds to the best delay LSE 

optimum inverse filter of the channel zeros outside the first region. It is important to 

note that, the region used for IIR part should not contain any channel zero outside 

the unit circle because of the stability problem. Another important point in the FIR-

IIR inverse filter design is the filter orders. For the fair comparison with the FIR 

inverse filter, the selection of FIR and IIR parts is performed such that the 

complexity of the FIR-IIR inverse filter is equal to the complexity of the FIR inverse 

filter. The order of the FIR-IIR inverse filter can be defined as the summation of the 

FIR part and IIR part orders. Therefore, we decrease the length of the FIR part of the 

FIR-IIR inverse filter by one for every pole in IIR part. In the following part, we will 

give the design procedure of FIR-IIR inverse filters. 

Let us assume that, the channel filter H(z) is partitioned into two regions such 

that one of them is inside the unit circle. After partitioning, the channel filter can be 

written as, 

1 2( ) ( ) ( )H z H z H z=                 (30) 

where H1(z) is the part of the channel filter composed of zeros taken from the region 

inside the unit circle. H2(z) is composed of the channel zeros inside the other region. 

These channel filter parts are used to obtain the IIR and FIR parts of the FIR-IIR 

inverse filter. IIR part is obtained from H1(z) by simply inverting it such as, 
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1,
1

1( )
( )

IIR
invH z

H z
=                 (31) 

Since H1(z) is defined inside the unit circle, there is no stability problem. The FIR 

part is obtained from H2(z) by applying best delay FIR inverse filter design 

procedure. Then, the FIR-IIR inverse filter is defined as the combination of these 

inverse filters such as, 

2,
1

1( ) ( )
( )

FIIR FIR
inv invH z H z

H z
=                (32) 

The system response after deconvolution can be expressed as, 

2 2,( ) ( ) ( ) ( )FIIR FIR
inv invH z H z H z H z=               (33) 

As it is seen from (33), IIR part completely eliminates the effects of channel 

filter part, H1(z) and the overall system reduces to the deconvolution of reduced 

channel filter, which is H2(z). 

The FIR-IIR filter structure can be constructed in different ways depending 

on partitioning procedure. In the following subsections, we will present three types 

of partitioning, namely unit circle-based partitioning, ring-based partitioning and 

optimum-partitioning. 

 

2.3.1 Unit Circle-Based Partitioning 

 

In unit circle-based partitioning procedure, the regions are defined as the 

minimum and maximum-phase parts of the channel filter. Then, FIR-IIR inverse 

filter is constructed such that, IIR part is obtained from the minimum phase part of 

the channel filter while the maximum phase part is used for FIR part design. Since 

IIR part is a perfect inverse filter with no error, eliminating the effects of all the 

channel zeros inside the unit circle with this partitioning seems to be reasonable. But 

unfortunately, such a simple partitioning procedure is not the optimum one and it is 

not guaranteed to be always better than the completely FIR inverse filter. In some 

cases it may produce higher LSE than the FIR inverse filter.  
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The main reason for such an FIR-IIR inverse filter performance is that, unit 

circle-based partitioning procedure does not take into account the position of the 

channel zeros and the length of the FIR part, which are the parameters that affect the 

LSE of FIR inverse filter mentioned before. As equation (33) states, the overall error 

of the FIR-IIR inverse filter comes from the FIR part. Since the length of the FIR 

part is decreased by one for every pole of the IIR part, in some cases the length of 

the FIR part may become so small that the error of the FIR part exceeds the error of 

the completely FIR inverse filter. Such a case arises especially when there are many 

channel zeros close to the origin. As it can be seen from Figure 2.4, FIR inverse 

filter uses a small number of inverse filter zeros for the channel zeros close to the 

origin. It saves its zeros for the channel zeros close to the unit circle. But since unit 

circle-based partitioning procedure does not take into account these facts, it also uses 

poles for channel zeros close to the origin although it may be unnecessary in some 

cases. Thus less inverse filter zeros are remained for the channel zeros outside the 

unit circle. Therefore, even though there is no error term that comes from the 

channel zeros inside the unit circle, the overall LSE of unit circle based FIR-IIR 

inverse filter may exceed the LSE of the completely FIR inverse filter. Figure 2.7 

illustrates such a case in which channel order is selected as L=8 and the inverse filter 

length as N=16. As it is seen, there are 6 channel zeros inside the unit circle and FIR 

inverse filter uses only 3 of its zeros for these channel zeros to compensate their 

effects on LSE. The other 12 inverse filter zeros are used for the remaining two 

channel zeros outside the unit circle. These observations tell us that, the error 

contribution of the channel zeros outside the unit circle is much greater than the ones 

inside the unit circle.  

As it is seen from Figure 2.7(b), 6 poles are used for the unit circle-based 

FIR-IIR inverse filtering and the effects of channel zeros inside the unit circle are 

completely eliminated. Therefore, the number of inverse filter zeros that can be used 

for the remaining channel zeros reduces to 8. But, since these channel zeros have 

large error contribution, 8 inverse filter zeros are not enough to obtain the better LSE 

performance than the FIR inverse filter. In fact, for this example the LSE of the FIR 

inverse filter is 14.77−  dB while it is 12.15−  dB for the unit circle-based FIR-IIR. 
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2.3.2 Ring-Based Partitioning 

 

Ring-based partitioning procedure divides the z-plane into two parts by a 

ring region inside the unit circle. The ring region is defined between the inner and 

outer radiuses inside the unit circle as can be seen in Figure 2.8. The IIR and FIR 

parts of the FIR-IIR inverse filter are designed by considering the channel zeros 

inside and outside the defined ring region respectively. The ring-based partitioning 

procedure uses a tradeoff between FIR part length and the error contribution of 

channel zeros inside the unit circle. It tries to use the poles in an economical way in 

order not to decrease the FIR part length so much. So it uses poles to eliminate the 

effects of channel zeros with a large error contribution inside the unit circle and 

leaves the channel zeros with a small error contribution to the FIR part. Thus it has a 

better performance than the unit circle-based partitioning.  
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Figure 2.7 Pole-zero plots for (a) FIR and (b) unit circle-based FIR-IIR inverse 
filters when L=8, N=16. o, □ and x represent inverse filter zero, channel zero and 
IIR pole respectively. 
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Effectiveness of ring-based partitioning can be seen in Figure 2.9, where 

channel order is 8 and the inverse filter length is 16. As it is seen from Figure 2.9(a), 

inside the unit circle inverse filter uses 9 zeros, all of which are for three channel 

zeros close to the unit circle. No inverse filter zeros are used for the other channel 

zeros inside the unit circle. The remaining inverse filter zeros are used for the 

channel zeros outside the unit circle. On the other hand, as it is seen from Figure 

2.9(b), using only 3 poles instead of 9 zeros for the channel zeros inside the unit 

circle, not only eliminates the effects of these zeros completely but also saves 

inverse filter zeros for the remaining channel zeros. So the overall LSE is decreased. 

In fact, LSE values for FIR and ring-based FIR-IIR inverse filters are 15.74−  dB 

and 21.46−  dB respectively, while it is 20.76−  dB for unit circle-based FIR-IIR. 

 

 

 

 
Figure 2.8 Inner and outer radiuses and ring region inside the unit circle for ring-
based partitioning. 
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Figure 2.9 Pole-zero plots for (a) FIR and (b) ring-based FIR-IIR inverse filters 
when L=8, N=16. o, □ and x represent inverse filter zero, channel zero and IIR pole 
respectively. 

 

 

The most critical point in ring-based partitioning is to find the optimum inner 

and outer radiuses; Rin, Rout and they are found jointly in order to get the minimum 

LSE. Once these radiuses are found, the channel zeros inside the ring are identified 

and the IIR part of the FIR-IIR inverse filter is determined. The procedure for 

finding the optimum ring radiuses is simple. Assume that P distinct channel zeros 

are inside the unit circle. They are given as θ= ij
i iz re  (i=1,2,…,P) and they are 

ordered according to ri, 

0 1 11 0+= > > > > =P Pr r r r                (34) 

For each outer radius Rout=ri, (i=0,1,…,P), we consider an inner radius Rin=rj, 

(j=P+1,P,…,i+2). We identify the channel zeros inside the ring for each of the above 

cases and select the optimum radius pair by considering the minimum LSE. 

Unfortunately, since the LSE formulas are nonlinear with respect to N, L and 

distribution of channel zeros and also so complicated, we must design the inverse 

filter for each radius pair to find the LSE. The number of possible cases including 

Rout= Rin is P(P+1)/2+1. Note that when Rout= Rin, we have an FIR inverse filter 

instead of an FIR-IIR inverse filter. This condition can occur when no ring region 

can be defined to make the FIR-IIR better than the FIR inverse filter. Figure 2.10 
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illustrates an example that shows this condition, where the channel order and inverse 

filter length are selected as L=8 and N=16 respectively. As it is seen, since the 

channel zeros closest to the unit circle are located outside the unit circle, the most of 

the inverse filter zeros are used for these channel zeros. Only 3 inverse filter zeros 

are used to compensate the effects of channel zeros inside the unit circle. So, using a 

pole for any channel zero inside the unit circle will not improve the performance, 

because the number of inverse filter zeros will be decreased by one and the channel 

zeros outside the unit circle will produce larger LSE. Therefore using FIR inverse 

filter instead of ring-based FIR-IIR inverse filter for this channel is more suitable.  

 

 

 

 

Ring-based partitioning has some limitations in the LSE performance 

improvement. It performs partitioning by considering two main parameters, namely 

inner and outer radiuses. Therefore, it can not distinguish the channel zeros on the 
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Figure 2.10 Zero plots of the channel and FIR inverse filter for L=8 and N=16. o 
and □ represent inverse filter zero and channel zero respectively. 
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same radius. It puts all of these zeros together either inside or outside the ring 

region. Also, ring-based partitioning procedure can not exclude any channel zero 

from the defined ring region to use it in FIR part design. It is critical especially when 

there are two channel zeros close to each other. As a result, in some special cases 

ring-based partitioning FIR-IIR inverse filter may not give the possible minimum 

LSE. To achieve this value optimum-partitioning procedure will be proposed in the 

following subsection. 

 

2.3.3 Optimum-Partitioning 

 

In optimum-partitioning, all the possible combinations of channel zeros 

inside the unit circle are found and for each of such zero groupings the LSE is 

determined. The advantage of the optimum-partitioning is that we have more degree 

of freedom to select the FIR and IIR parts than ring-based approach. In this case, we 

do not restrict the IIR part between two radiuses; it can be an arbitrary region. So 

optimum-partitioning can separate the channel zeros close to each other or on the 

same radius by putting some of them to IIR part and the other to the FIR part. By 

this way, it helps the FIR part to produce an effective homogeneous distribution with 

small number of inverse filter zeros. Thus a lower LSE can be obtained when 

compared with the ring-based approach.  

On the other hand this process can require significant computational power 

when there are several zeros inside the unit circle. For the same assumption as in 

ring-based partitioning, we need to consider 2P cases of zero groupings to find the 

optimum-partitioning. As the number of channel zeros inside the unit circle 

increases, computational load of the optimum-partitioning approach increases 

exponentially. Table 2.2 compares the ring-based and optimum-partitioning design 

approaches in terms of the number of cases they should consider to obtain an 

optimum solution. It turns out that ring-based approach is always more efficient than 

the optimum-partitioning case for a given channel with P zeros inside the unit circle.  
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Table 2.2 The number of partitioning cases 
 
P Optimum-partitioning Ring-based 
2 4 4 
3 8 7 
4 16 11 
5 32 16 
6 64 22 
7 128 29 
8 256 37 

 

 

The LSE performances of ring-based partitioning and optimum-partitioning 

FIR-IIR inverse filters will be investigated in the following example.  

Example 2.2: We have chosen a single channel with L=12 and the optimum 

FIR and IIR parts of FIR-IIR inverse filter are found for both ring-based and 

optimum-partitioning approaches. The corresponding poles and zeros for ring-based 

and optimum-partitioning approaches are shown in Figure 2.11(a) and (b) 

respectively. Figure 2.11(a) also shows the ring region. As it is seen ring-based 

approach selects all the channel zeros inside the ring region to construct IIR part, 

while optimum-partitioning selects some of them for the IIR part and uses the others 

for the FIR part to achieve effective homogeneous zero distribution. In this case, the 

LSE is found as 9.7−  dB and 10.59−  dB for the ring-based and optimum-

partitioning approaches respectively. If the best delay FIR inverse filter is used, 

9.21−  dB is obtained for the LSE. 

As a result, the LSE performances of FIR-IIR inverse filters depend heavily 

on partitioning approaches. Unit circle-based partitioning is a simple procedure but 

since it does not take into account the channel zero distribution and the FIR part 

length, its performance is limited for a given channel. Ring-based and optimum-

partitioning approaches try to make an optimization with the parameters that unit 

circle-based approach does not have. As it is seen from Figure 2.11, the difference 

between the ring-based and optimum-partitioning case is more obvious when there 

are zeros close to each other. In this case, optimum-partitioning has the freedom to 

choose the appropriate zero and in this way it helps the FIR part for producing an 

effective homogenous zero distribution. But the ring-based approach can only select 
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a ring region to have the minimum LSE. In summary, ring-based design is 

suboptimum but its design process is more efficient than the optimum-partitioning. 

Furthermore the difference between the two designs can be observable only for some 

special channels. 

 

 

 

 

The LSE performances of inverse filters for noiseless observation described 

above have been investigated in the following example.  

Example 2.3: We have generated channels which have zeros uniformly 

distributed over the [0, 2] radius. 100 trials are done with different channels. At each 

case, optimum ring radiuses and optimum-partitioning are found. In addition, best 

delays for both FIR and FIR-IIR filters are found separately. Figure 2.12 shows the 

LSE performances of FIR, FIR-IIR unit circle, FIR-IIR ring-based and FIR-IIR 

optimum-partitioning filters for different channel orders. Figure 2.12 a, b, c and d 

show the performances for L=4, L=8, L=12 and L=16 respectively. For small 

channel order, FIR-IIR unit circle filter have the same performance as the optimum 

FIR-IIR inverse filter. As the channel order increases, the difference becomes more 
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Figure 2.11 Zero plots of the selected channel zeros for (a) the ring-base (outer 
radius is one) and (b) optimum-partitioning case when L=12, N=16. o, □ and x 
represent inverse filter zero, channel zero and IIR pole respectively. 



 29

obvious. However, there is no significant difference between the ring-based FIR-IIR 

and optimum-partitioning FIR-IIR filters. Both of these filters are better than the FIR 

inverse filters by about 4-5dB. These simulations effectively show the performance 

gain, when the proposed FIR-IIR inverse filters are used. Figure 2.13 shows the 

average of the selected inner and outer ring radiuses for the channels in this 

example. These plots can be taken as a basis when someone is satisfied with a 

suboptimum but a quick solution to the design problem. The outer ring radius for 

different channel orders is about one while the inner radius is large for small N and it 

gets closer to zero as N becomes large. This figure shows that the use of the IIR part 

is less favoured when the channel order L is comparable with the inverse filter length 

N. 
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Figure 2.12 LSE performance of the deconvolution filters for different inverse filter 
lengths, (a) L=4, (b) L=8, (c) L=12, (d) L=16. 
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Figure 2.13 Inner and outer ring radiuses for the LSE case, (a) L=4, (b) L=8, (c) 
L=12, (d) L=16. 
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CHAPTER 3 

INVERSE FILTERS FOR NOISY OBSERVATIONS 
 
 
 

In this chapter, we will investigate the design problem of inverse filters when 

there is noise in the system with the system structure shown in Figure 3.1. In this 

case the overall error depends on both LSE obtained for noiseless observations and 

the output noise power. Especially for low SNR, output noise power plays an 

important role on the performance of inverse filter design. Two types of solutions 

will be presented, namely deterministic and statistical. Deterministic solution can be 

used in either LSE sense or directly by considering the effects of noise to choose the 

best delay and partition. LSE optimum deterministic inverse filter design for noisy 

observations is the same as for noiseless observations; no operation is done for noise 

sequence. In the second case, best delay selection and the partitioning are performed 

by considering the noise sequence. In the following section we will show the effect 

of noise power on the delay selection and partitioning. The performance of LSE 

optimum deterministic inverse filters for noisy observations will be investigated in 

chapter 4. 

As a third solution, statistical inverse filters will also be investigated [20]. 

They use autocorrelation functions of input and noise sequences to minimize the 

MSE. In fact they are called MSE optimum inverse filters. In this chapter we will 

present MSE optimum FIR and partition-based FIR-IIR inverse filters and review 

the IIR Wiener filter. 

 

3.1 Noise Considered Deterministic Inverse Filters 

 

In the following section we will start with the deterministic FIR inverse filter 

and show the effect of noise on best delay selection. Then, we will present partition- 



 33

based FIR-IIR inverse filter and show the effect of noise on the partitioning.  

 

 

 

 

3.1.1 Noise Considered Deterministic FIR Inverse Filters 

 

The design procedure of noise considered deterministic FIR inverse filters is 

the same as LSE optimum ones with the exception of noise effect on best delay 

selection. The effect of noise can be seen in the following example.  

Example 3.1: We have chosen an arbitrary unit norm channel such as 

( ) 0.44 ( ) 0.57 ( 1) 0.60 ( 2) 0.36 ( 3)h n n n n nδ δ δ δ= + − + − + − . Then, LSE optimum 

and noise considered FIR inverse filters are obtained. The LSE and MSE values 

corresponding to all the possible delays are given in Table 3.1. The noise sequence is 

chosen such that SNR=0 dB for the noise considered design. As it is seen the best 

delay is 5 for LSE optimum filter, while it is 2 for the other. If the delay found for 

LSE optimum inverse filter is considered to be used in noise considered inverse 

filter, it results a large MSE. Therefore in noise considered FIR inverse filter design, 

best delay should be found by taking into account the noise. Unfortunately, since 

noise considered design depends on not only the channel Toeplitz matrix, H, but 

also the noise sequence, a simple delay selection procedure described in section 2.1 

can not be used. Finding the best delay requires designing the inverse filters for all 

the possible delays and computing the MSE. 

 

 

 
 
Figure 3.1 System structure of inverse filter design problem for noisy observations.

hinv(n) 
x(n) ˆ( )x n

x(n-k)

ˆ( ) ( )x n k x n− −h(n) 

w(n)

y(n)



 34

Table 3.1 Effect of delay on LSE and MSE 
 

Delay  LSE (dB) MSE (dB) 
0 -2.7564 5.6440 
1 -3.8101 3.7838 
2 -2.7327 0.0646 
3 -2.3504 1.1726 
4 -4.1631 4.1678 
5 -5.6105 6.8667 
6 -5.5167 7.2934 

 

 

3.1.2 Noise Considered Partition-Based FIR-IIR Inverse Filters 

 

In FIR-IIR inverse filter design for noisy observations, the selection of 

appropriate partitioning is again the most critical point as it is in noiseless case. 

Again the partitioning can be performed by either ring-based or optimum-

partitioning approaches. But in this case output noise power should also be 

considered for the selection of appropriate FIR and IIR parts. The effect of noise 

power on partitioning can be understood by considering the poles of IIR part. 

Poles in FIR-IIR inverse filter produce spectral peaks in frequency domain 

and they can completely eliminate the spectral deeps produced by channel zeros. But 

on the other hand, they also increase the output noise power. The output noise power 

level increases when the poles come closer to the unit circle. Note that, the channel 

zeros close to the unit circle have large error contribution and using poles for these 

zeros inside the unit circle is suitable for noiseless case. But for noisy case, this 

solution may not give the desired performance depending on SNR; it leads to noise 

amplification. So a tradeoff should be performed between LSE and output noise 

power to achieve the best performance for noisy observations. The following 

example shows the effect of noise power on partitioning for ring-based and 

optimum-partitioning approaches. 

Example 3.1: We have chosen a single channel with L=8 and the inverse 

filter with N=16. In order to show the effect of noise on the FIR-IIR inverse filter 

design, the design process is performed for SNR=0 dB and SNR=20 dB. Both ring-
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based and optimum-partitioning is used in the design. The selected channel zeros 

(crossed) for each design can be seen in Figure 3.2. 

For ring-based design, when SNR=0 dB, it can be seen that the innermost 

and outermost channel zeros inside the unit circle are located outside the ring region. 

On the other hand when SNR=20 dB, the outermost channel zero enters the ring 

region while the innermost three channel zeros are taken out from the ring region. A 

similar situation arises for optimum-partitioning design.  
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Figure 3.2 The pole-zero plots of FIR-IIR inverse filter. (a) ring-based for SNR=0 
dB, (b) ring-based for SNR=20 dB, (c) optimum-partitioning for SNR=0 dB, (d) 
optimum-partitioning for SNR=20 dB. o represents channel zero and x represents 
pole of inverse filter. 
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At low SNR the channel zeros close to the unit circle can not be selected to 

construct the IIR part because of the large noise amplification, although it is the 

optimum selection in noiseless case. When SNR increases, the effect of noise 

amplification on the overall performance decreases and the channel zeros close to 

the unit circle are placed in the ring region to improve the LSE performance. But it 

should be note that, while these channel zeros enter the ring region, some channel 

zeros close to the origin are taken out from the ring region because of the FIR part 

length consideration. Optimum-partitioning works in a similar manner with a more 

freedom to select the channel zeros than ring-based approach. As a result, a tradeoff 

between output noise power and LSE should be performed for the inverse filter 

design for noisy observations. 

 

3.2 MSE Optimum Statistical Inverse Filters 

 

Statistical inverse filters use autocorrelation functions of input and noise 

sequences to minimize the MSE unlike the deterministic filters which use input and 

noise data itself. Statistical inverse filters have been widely investigated. In general, 

IIR Wiener filters are used for the MSE optimum deconvolution. Main disadvantage 

of this filter is that it is either noncausal or unstable. When the IIR Wiener filter is 

implemented in the frequency domain, it requires long FFT data sequences and 

therefore it is not very suitable for sample based and real-time applications. FIR 

Wiener filters are proposed in order to deconvolve the blurred images [21] for real-

time implementations. In this section, we will start with the best delay MSE 

optimum FIR deconvolution filter formulation and present the MSE optimum FIR-

IIR deconvolution filters [20]. In the last section we will review the IIR Wiener 

inverse filters. 
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3.2.1 MSE Optimum Best Delay FIR Deconvolution Filters 

 

In this section, we will derive the MSE optimum best delay FIR 

deconvolution filter. In this case, we are trying to design an inverse filter ( )FIR
invh n  

with length N to have the minimum MSE when all the possible convolution delays 

are considered. Let x̂  be the vector form of the deconvolution output, then 

ˆ FIR FIR
inv invx = XHh + Wh                 (35) 

where H, X, and W are all full Toeplitz matrices. H, X, and W are (N+L)xN , 

(N+L+M-1)x(N+L), and (N+L+M-1)xN matrices respectively. We will define the 

error as, 

ˆ−e = x Cx                   (36) 

where C is a matrix to introduce the convolution delay and window the output 

sequence so that error is computed only at those samples where x exists, namely, 

0 0 1 0 0
0 0 0 1 0

0 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

C               (37) 

Then the MSE for the deconvolution can be written as, 

{ }
( ) ( ){ }

H
MSE

HFIR FIR FIR FIR
inv inv inv inv

E E

E

=

⎡ ⎤ ⎡ ⎤= − −⎣ ⎦ ⎣ ⎦

e e

x C XHh + Wh x C XHh + Wh
           (38) 

In order to find the optimum filter, we will take the derivative of the MSE error with 

respect to the deconvolution filter. At this instant, we will assume that input, x and 

noise, w are uncorrelated. Then, 

{ }( )
H H H H H H FIR H H FIRMSE

inv invFIR H
inv

dE E
d

= −H X C x + H X C CXHh + W C CWh = 0
h

 

                   (39) 

We will define 
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{ }
{ }
{ }

( )

( )

( )

H H k
x

H H k
x

H H k
w

E

E

E

=

=

=

X C x r

X C CX R

W C CW R

               (40) 

where ( )k
xR and ( )k

wR are the correlation matrices of input and noise with a delay of k. 

In general, ( )k
xR is different from xR  and the two are same when x is identically 

distributed. If we consider (39) and (40), we can write the inverse filter as, 

( ) 1( ) ( ) ( )FIR k H k H k
inv w x x

−
= +h R H R H H r               (41) 

Given the above deconvolution filter, the next problem is the choice of the 

best delay k in a MSE optimum manner. To this end, we will consider the equation 

(38) and rewrite it as, 

( ) ( ) ( )
( ) ( )

( ) ( )

( ) ( )

0
H HFIR H k FIR FIR k FIR

MSE x inv x inv inv w inv

H HFIR H k k FIR
inv x x inv

E = + +

− −

r h H R Hh h R h

h H r r Hh
           (42) 

For simplicity, we will assume that the input signal is white with a variance 

of 2
xσ and noise which is uncorrelated with the input, is also white with a variance of 

2
wσ . Then we have the following expression for the inverse filter, 

( ) 12 2 2FIR H H
inv w x xσ σ σ

−
= +h I H H H d               (43) 

where we have taken ( ) 2k
x xσ=r d  and [ ]0 0 0 1 0 0 T=d  We will 

denote the inverse matrix as, 

( ) 12 2 H
w xσ σ

−
= +S I H H                 (44) 

Then we can write the MSE expression as, 

2 6 2 4

42

H H H H H H
MSE x x w x

H H H
x

E σ σ σ σ

σ

= + +

−

Hd HS H HSH d d HS SH d

d HS H d
           (45) 

We will use the following notation, 

H H

H

=

=

A HS H
B HS

                 (46) 
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Then the MSE expression becomes 

2 6 2 4 42H H H H H
MSE x x w x xE σ σ σ σ σ= + + −d AA d d BB d d Ad            (47) 

When we consider that d is a vector with all zeros except its kth element, we find a 

simple expression for the MSE evaluation, namely, 

2 22 6 2 4 4( , ) ( , ) 2 ( , )MSE x x w x x
i i

E a k i b k i a k kσ σ σ σ σ= + + −∑ ∑            (48) 

Therefore optimum delay kopt is the value of k which minimizes (48), 

( )arg minopt MSE
k

k E=                 (49) 

When the input and noise statistics are not known, we need to use (41), (42) 

and (49) to find the MSE optimum FIR deconvolution filter. If the signal and noise 

have known statistics, then (43) and (48) can be used conveniently.  

 

3.2.2 Best Delay FIR-IIR Partition-Based Deconvolution Filters 

 

MSE performance of the FIR deconvolution filters can be improved by 

considering the partition-based FIR-IIR filters similar to their LSE counterparts. In 

the partition-based design, we will again consider the two alternatives, namely the 

optimum-partitioning and the ring-based design. At this point, it is important to 

clarify the MSE optimum partition-based FIR-IIR filter definition that we have 

employed in this thesis. Our target is to design the MSE optimum best delay FIR 

deconvolution filter for the group of channel zeros which are outside the selected 

partition, while the zeros inside the partition are handled by the all-pole IIR inverse 

filter. This IIR filter is the LSE optimum inverse filter and its LSE is zero since the 

channel zeros are completely compensated by the IIR inverse filter. However, MSE 

due to noise filtering is not zero for the IIR part. In our case, we design the IIR filter 

by selecting the zero grouping which returns the minimum MSE. In the optimum-

partitioning case, we consider all the possible zero combinations inside the unit 

circle. When the ring-based partitioning is used, inner and outer ring radiuses are 
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jointly found to have the minimum MSE. Furthermore, the FIR part of the FIR-IIR 

inverse filter takes the IIR filtering into account to minimize the MSE. 

Therefore the MSE optimum FIR-IIR deconvolution filter, ( )FIIR
MSEH z , for a 

channel H(z)=H1(z)H2(z) is, 

( ) 1
1 2, 2,( ) ( ) ( ) ( ) ( )FIIR FIR FIR

MSE inv a invH z H z H z H z H z−= =             (50) 

where 2, ( )FIR
invH z  is the FIR MSE best delay inverse filter of H2(z). We will consider 

Ha(z) as the FIR equivalent of the ( ) 1
1( )H z −  filter where the zeros of the H1(z) are 

determined by considering the optimum partitioning or ring-based approach. Ha(z) 

can be found by impulse response truncation or by using the optimal H∞ 

approximation [22]. 

The output for the partition-based FIR-IIR deconvolution filter can be written 

in vector form as, 

2 2, 2,ˆ FIR FIR
inv a inv= +x XH h WH h                (51) 

where H2 is the Toeplitz convolution matrix for the reduced channel filter. We will 

define the error as, 

ˆe = x - Cx                  (52) 

and the MSE can be obtained as, 

{ } ( ){
( ) }

2 2, 2,

2 2, 2,

HH FIR FIR
MSE inv a inv

FIR FIR
inv a inv

E E E ⎡ ⎤= = − +⎣ ⎦

⎡ ⎤− +⎣ ⎦

e e x C XH h WH h

x C XH h WH h
           (53) 

where we assumed that the input and noise are uncorrelated. We can take the 

derivative of the MSE with respect to the inverse filter vector in order to find the 

optimum filter, i.e., 

( )
{

}

2 2 2 2,

2,

2,

H H H H H H FIRMSE
invHFIR

inv

H H H H FIR
a a inv

dE E
d

= − +

+ =

H X C x H X C CXH h
h

H W C CWH h 0

           (54) 
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From the above expression, FIR part of the FIR-IIR deconvolution filter is obtained 

as, 

( ) 1( ) ( ) ( )
2, 2 2 2
FIR H k H k H k

inv a w a x x

−
= +h H R H H R H H r              (55) 

Then the FIR-IIR deconvolution filter, ( )FIIR
MSEH z , can be written as in equation (50). 

It is possible to find the best delay for the FIR part of the FIR-IIR deconvolution 

filter similar to the previous case. We can write the MSE as, 

( ) ( )
( ) ( )

( ) ( )
2 2, 2, 2,

( ) ( )
2, 2 2, 2 2 2,

(0)
H Hk FIR FIR H k FIR

MSE x x inv inv a w a inv

H HFIR H k FIR H k FIR
inv x inv x inv

E = − +

− +

r r H h h H R H h

h H r h H R H h
           (56) 

We can assume that input and noise are white with variances 2
xσ and 2

wσ respectively. 

Then the inverse filter can be expressed as, 

( ) 12 2 2 2
2, 2 2 2 2
FIR H H H H

inv w a a x x xσ σ σ σ
−

= + =h H H H H H d SH d             (57) 

where we have taken ( ) 2k
x xσ=r d  similar to the previous part. If we use the inverse 

filter in the MSE expression, we can write the MSE as, 

2 6 2 4
2 2 2 2 2 2

4
2 22

H H H H H H H H
MSE x x w x a a

H H H
x

E σ σ σ σ

σ

= + +

−

d H S H H SH d d H S H H SH d

d H S H d
          (58) 

We will use the following notation, 

2 2

2

H H

H H
a

=

=

A H S H

B H S H
                 (59) 

Then the MSE expression becomes 

2 6 2 4 42H H H H H
MSE x x w x xE σ σ σ σ σ= + + −d AA d d BB d d Ad            (60) 

which is exactly the same expression as in the FIR case except now A and B are 

defined as in (59). A simple expression for the MSE evaluation is, 

2 22 6 2 4 4( , ) ( , ) 2 ( , )MSE x x w x x
i i

E a k i b k i a k kσ σ σ σ σ= + + −∑ ∑            (61) 

which is similar to the FIR case. Then the optimum delay kopt is found as, 
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( )arg minopt MSE
k

k E=                 (62) 

When the input and noise statistics are not known, we can use the 

expressions in (55), (56) and (62) in order to find the FIR-IIR deconvolution filter. If 

the input and noise are assumed to be white, then (57) and (61) can be employed for 

this purpose. During the design of the FIR-IIR deconvolution filters, we consider all 

the possible channel zero partitions and find the minimum MSE for each. Then, 

optimum FIR-IIR deconvolution filter is found as the one which returns the 

minimum MSE of all. 

 

3.2.3 IIR Wiener Filters 

 

IIR Wiener deconvolution filters are MSE optimum filters and they are used 

extensively in a variety of different fields. These filters are noncausal and therefore 

not very suitable for real-time applications. In general, input and noise statistics 

should be estimated before the design of the IIR Wiener filter. It is known that these 

filters are sensitive to the accuracy of the estimation. In [16] and [23], this point is 

elaborated and robust methods are proposed for a better Wiener performance. We 

will compare the FIR-IIR partition based MSE optimum filters with the IIR Wiener 

filters in two cases, namely, when the required statistics are estimated and when the 

true statistics are used. 

In the following part, we will review the IIR Wiener formulation as proposed 

in [8]. As it is seen in Figure 3.1, the noisy observation can be written as, 

( ) ( )* ( ) ( )y n x n h n w n= +                (63) 

then the estimated signal at the receiver output can be written as, 

ˆ( ) ( )* ( ) ( ) ( )inv inv
l

x n y n h n h l y n l
∞

=−∞

= = −∑              (64) 

Note that we are assuming that the filter is noncausal. The filter coefficients hinv(n) 

that minimize the mean square error, 

{ }2ˆ( ) ( )MSE E x n x n= −                (65) 
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are the solution to the Wiener-Hopf equations, which, in the frequency domain, 

becomes 

( )
( )

( )

j
xyj

j
y

S e
H e

S e

ω
ω

ω=                 (66) 

Therefore, all that needs to be done in the design of ( )jH e ω  is to find the power 

spectral densities ( )j
xyS e ω  and ( )j

yS e ω . Since w(n) is assumed to be uncorrelated 

with x(n), then w(n) will also be uncorrelated with x(n)*h(n). As a result, the power 

spectral density of y(n) is the sum of the power spectrum of x(n)*h(n) and the power 

spectrum of w(n), 

2
( ) ( ) ( ) ( )j j j j

y x wS e S e H e S eω ω ω ω= +               (67) 

In addition, the cross-power spectral density ( )j
xyS e ω  is 

*( ) ( ) ( )j j j
xy xS e S e H eω ω ω=                (68) 

Therefore, substituting equations (67) and (68) into equation (66) we find that the 

optimum Wiener filter for deconvolution is given by 

*

2

( ) ( )( )
( ) ( ) ( )

j j
IIR j x
inv j j j

x w

S e H eH e
S e H e S e

ω ω
ω

ω ω ω
=

+
             (69) 

We can compare the IIR Wiener filter in (69) with the FIR Wiener deconvolution 

filter with best delay in (41). If we consider the Fourier domain expression for (41), 

we obtain a similar form like (69). They are different in the sense that (41) 

represents a FIR and causal filter and it uses the MSE optimum convolution delay. 

These factors make a significant difference between the performances of two 

deconvolution filters when we use the estimates for Sx(ejω) and Sw(ejω). This is 

especially the case when there are only finite number of samples for the estimation. 

It turns out that FIR and FIR-IIR filters are much less sensitive to the estimation 

errors. 
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CHAPTER 4 

PERFORMANCE EVALUATIONS 
 
 
 

In this chapter, we will investigate the performances of inverse filters 

described in the previous chapters for more general channels with Monte Carlo 

trials. Since the error performances of inverse filters depend on channel zero 

distribution, channel models affect the performances. Throughout this chapter we 

will use two channel models, namely Uniform and Gaussian distributed, for the 

trials. 

Uniform distributed channels are created from the zeros uniformly 

distributed in the interval of [0, 2] radius. But locating channel zeros on the z-plane 

is done in a special manner to obtain better uniform distribution. The z-plane is 

divided into nonoverlapping subrings in the range of [0, 2] radius and the uniformly 

distributed random channel zeros are located inside each subring. The number of 

subrings depends on channel order and the type of channel coefficients, namely real 

or complex. For the complex channels the number of subrings is chosen as L, while 

it is either L/2 or (L-1)/2 depending on whether the channel order is even or odd for 

the real case.  

Gaussian distributed channels are created in a simpler manner. The Gaussian 

distributed zeros are located on the z-plane without any limitation. 

In this chapter, the real and complex channel coefficients will be used for 

these distributions. Note that, Gaussian distributed complex channel is also known 

as Rayleigh fading channel, which is the most commonly used channel model. 

In this chapter, we will investigate the performances of deterministic and 

statistical inverse filters. Deterministic filters will be investigated for noiseless and 

noisy observations. For the noisy observations LSE optimum and noise considered 

solutions will be given. The performances of statistical inverse filters will be 
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investigated in two cases. In the first case, we estimate the correlation functions for 

the input and noise from the available data. In the second case, we use the true 

correlation functions in the inverse filter design.  

 

4.1 Deterministic Inverse Filters 

 

In this section, we will investigate the effect of delay selection and the error 

performance of deterministic inverse filters for noiseless and noisy observations.  

 

4.1.1 Noiseless Observations 

 

As it was seen in section 2.1, system delay is an important parameter in FIR 

inverse filter design. We showed the effect of delay selection on LSE performance in 

Table 2.1. In order to show the delay selection effect for general channels we have 

prepared the following example.  

Example 4.1: In most applications the system delay is chosen as (N+L)/2, 

which is the midpoint of the cascaded channel and inverse filter structure length. 

This is a simple procedure and mostly performs well, but it is not the optimum 

solution. Best delay can be found by the procedure described in section 2.1. Uniform 

and Gaussian distributed channels with real and complex coefficients are used to 

compare these selection procedures. The order of the channels are selected as L=8. 

For all channel models, 100 trials are done with different channel coefficients and 

the LSE corresponding to the best delay and (N+L)/2 delay designs are found. The 

average of the LSE is shown in Figure 4.1. As it is seen, best delay design is always 

better than (N+L)/2 delay design by about 1-2 dB depending on the channel 

characteristics.  
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After a delay consideration, the LSE performances of inverse filters with best 

delay for different channel models have been investigated and the following 

example has been prepared.  

Example 4.2: We have chosen Uniform and Gaussian distributed channels 

with real and complex coefficients. Channels are normalized and their order is 

selected as L=12. The system structure shown in Figure 1.1 is used and for each 

channel types 100 trials are done with different channel coefficients. At each case, 

optimum ring radiuses and optimum-partitioning are found. Figure 4.2 shows the 

LSE performances of FIR, FIR-IIR unit circle, FIR-IIR ring-based and FIR-IIR 

optimum-partitioning filters for different channel models. The average of the 

selected inner and outer ring radiuses is shown in Figure 4.3. 
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Figure 4.1 LSE performance of best and (N+L)/2 delay FIR inverse filters when 
L=8. (a) Uniform distributed complex channel, (b) Uniform distributed real channel, 
(c) Gaussian distributed complex channel, (d) Gaussian distributed real channel. 
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As it is seen from Figure 4.2, the LSE decreases with increasing inverse filter 

length, N, as expected. Two basic differences can be seen when uniform and 

Gaussian distributed channel models are compared. The first one is that, Gaussian 

distributed channel model causes larger LSE than normal distributed channel model 

especially for large N. The other one is about FIR-IIR unit circle inverse filter 

performance. At normal distributed channel model, it can be seen that for some N 

values FIR inverse filter performs better than FIR-IIR unit circle, while there is no 

such N value at Gaussian distributed channel model.  

The explanation for these observations is related with the characteristics of 

channel model. While uniform distributed channel puts its zeros all over the defined 

region with equal probability, Gaussian distributed channel locates most of its zeros 

around the unit circle. Since the error contribution of the channel zeros close to the 

unit circle is large, Gaussian distributed channel zeros cause larger LSE. This fact 

can also explain the performance difference of FIR-IIR unit circle for these channel 

models. Since there are more channel zeros close to the origin and the error 

contribution of these zeros is small, FIR-IIR unit circle produces larger LSE for 

uniform distributed channel model especially when N is small because of 

unnecessary usage of poles. It can also be seen from Figure 4.3 that, Gaussian 

distributed channel model has larger ring region, which states that there is a small 

difference between FIR-IIR unit circle and ring-based design. 
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Figure 4.2 LSE performances of the inverse filters for different channel types, (a) 
uniform distributed real, (b) Gaussian distributed real, (c) uniform distributed 
complex, (d) Gaussian distributed complex channel. 
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4.1.2 Noisy Observations 

 

In this section, we will investigate the effectiveness of delay selection and 

the error performances of deterministic inverse filters when there is a system noise. 

Two design methods will be investigated, namely LSE optimum and noise 

considered. In LSE optimum design, there is no operation on noise data, while best 

delay selection and partitioning is performed by taking into account the noise data in 

noise considered design.  

In the following example, we will compare the noise considered FIR inverse 

filter design with and without best delay property. 
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Figure 4.3 Inner and outer ring radiuses of ring-based FIR-IIR inverse filter for different 
channel types, (a) uniform distributed real, (b) Gaussian distributed real, (c) uniform 
distributed complex, (d) Gaussian distributed complex channel. 
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Example 4.3: We have considered a real, zero mean, Gaussian input signal 

with a variance 2 1xσ = . Four different channel models as in Example 4.2 with unit 

norm are used. The channel order and the inverse filter length are selected as L=8 

and N=32, respectively. 100 trials are done with different input, channel and noise 

signals. Figure 4.4 shows the MSE performance of FIR inverse filter designed with 

noise considered deterministic approach for optimum and arbitrary delay cases. The 

delays are chosen as k=0, 20 and 32 respectively for the arbitrary delay designs. As 

it is seen from this figure, best delay FIR inverse filter performs significantly better 

than the other filters. The FIR inverse filter design with delay of 20 is closest to the 

best delay performance especially for high SNR. This delay value corresponds to the 

(N+L)/2 delay, which is used in most of applications. In low SNR, the closest one is 

0 delay case. The MSE difference between best delay and arbitrary delay cases is 

changing with channel models. This difference is larger for real channels. 
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In the following example, we will investigate the MSE performances of 

deterministic inverse filters for the LSE optimum and the noise considered design 

methods.  

Example 4.4: We have considered a real, zero mean, Gaussian input signal 

with a variance 2 1xσ = . Noise and channel are also real sequences. Channel is 

selected as Gaussian distributed with unit norm. 100 trials are done with different 

input, channel and noise signals for channel orders of L=8, L=12 and the inverse 

filter length is selected as N=24. Figure 4.5 and Figure 4.6 show the MSE 

performances of inverse filters designed by LSE optimum and noise considered 

deterministic methods respectively. The average of selected inner and outer radiuses 
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Figure 4.4 MSE performance of best and arbitrary delay FIR inverse filters 
designed with deterministic approach when L=8 and N=32. (a) Gaussian distributed 
complex channel, (b) Gaussian distributed real channel, (c) Uniform distributed 
complex channel, (d) Uniform distributed real channel. 
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of ring-based FIR-IIR inverse filter is shown in Figure 4.7 and Figure 4.8 for LSE 

optimum and noise considered deterministic methods respectively.  

As it is seen from Figure 4.5, LSE optimum FIR-IIR inverse filters have 

approximately the same performances and they perform worse than the FIR inverse 

filter at low SNR. As the SNR increases FIR-IIR filters become better than the FIR 

filter. This result is obvious since there is no consideration about noise in LSE 

optimum design. The best delay selection and partitioning is performed to minimize 

the LSE but MSE is a function of LSE and output noise power. At low SNR, the 

output noise power is more effective on the MSE and as the SNR increases the LSE 

becomes more dominant. Therefore to minimize the MSE, a tradeoff should be made 

between LSE and output noise power. This is the case in noise considered 

deterministic inverse filters.  

When the noise considered design is performed, at low SNR the 

performances of all the inverse filters become better compared with LSE optimum 

design. In this case, FIR-IIR ring-based and optimum-partitioning filters have 

similar performances. Their MSE response is approximately the same as the FIR 

inverse filter at low SNR and 5 dB better than the FIR response at high SNR. When 

channel order increases the performance difference decreases. It is also important to 

note that at low SNR, FIR-IIR unit circle has the worst performance while its 

performance is better than FIR inverse filter at high SNR similar to the performances 

of LSE optimum design. This fact can be explained by investigating Figure 4.7 and 

Figure 4.8. Since in LSE optimum deterministic design, ring region is obtained 

without considering the noise, inner and outer radiuses do not change with SNR; 

they are constant as can be seen in Figure 4.7. On the other hand as it is seen in 

Figure 4.6, outer ring radius changes significantly with respect to SNR, while inner 

radius changes slightly. For noise considered design, at low SNR, channel zeros 

close to the unit circle are not selected for the IIR part because of the large noise 

amplification of the poles used to cancel the effects of these zeros. They can be 

selected when the effect of output noise power on MSE performance decreases. 

Therefore FIR-IIR inverse filters based on LSE optimum design and noise 

considered FIR-IIR unit circle inverse filter have large output noise power at low 

SNR and their MSE performances are worse than the other inverse filters.  
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Figure 4.5 MSE performances of LSE optimum deterministic inverse filters when 
N=24, (a) L=8, (b) L=12. 
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Figure 4.6 MSE performances of noise considered deterministic inverse filters when 
N=24, (a) L=8, (b) L=12. 
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4.2 Statistical Inverse Filters 

 

In this section, we will investigate the performances of inverse filters based 

on statistical design method [20]. IIR Wiener filter performance will also be 

investigated in addition to the filters in deterministic design method. The 

performances will be investigated in two cases. In the first case, we will estimate the 
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Figure 4.7 Inner and outer radiuses of ring-based FIR-IIR inverse filter for LSE 
optimum deterministic method when N=24, (a) L=8, (b) L=12. 

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR

R
in

g 
R

ad
iu

se
s

Rin
Rout

0 5 10 15 20 25 30 35 40
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR

R
in

g 
R

ad
iu

se
s

Rin
Rout

(a) (b) 
 
Figure 4.8 Inner and outer radiuses of ring-based FIR-IIR inverse filter for noise 
considered deterministic method when N=24, (a) L=8, (b) L=12. 
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correlation functions for the input and noise from the available data and equations 

(41) and (55) will be used for finding the FIR and FIR-IIR filters respectively. In the 

second case, we will use the true correlation functions in the inverse filter design. 

Delay selection is an important part of the statistical FIR inverse filter design 

as it is in deterministic design. The MSE performance of FIR inverse filter designed 

with statistical approach for optimum and arbitrary delay cases are obtained by using 

the same parameters in Example 4.3. The results are shown in Figure 4.9. Again best 

delay FIR inverse filter performs significantly better than the other filters especially 

for Gaussian distributed channels. For uniform distributed channels, the difference 

between MSE performance of the best delay and the delay of 20 case is very small 

while it is approximately 1-2 dB for Gaussian distributed channels.  

MSE performances of statistical inverse filters are compared by using the 

same parameters in Example 4.4. Figure 4.10 shows the performance of five filters 

for L=8 and L=12 respectively when the estimated correlation functions are used. It 

is seen from Figure 4.10 that IIR Wiener filter performance is almost independent 

from the channel order. FIR-IIR ring-based and optimum-partitioning filters have 

similar performances. Their MSE response is the same as the FIR MSE optimum 

inverse filter at low SNR and more than 5 dB better than the FIR response at high 

SNR. FIR-IIR unit circle filter performance is almost the same as the FIR-IIR ring-

based and optimum-partitioning. These four filters perform better than the IIR 

Wiener filter at low SNR. As the SNR increases IIR Wiener filter eventually 

becomes better than these filters. 

Figure 4.12 shows the results of the inverse filters when the true correlation 

functions are used. In this case, we used the expressions in (43) and (57) for the FIR 

and FIR-IIR filters respectively. When compared with Figure 4.10, it can be seen 

that, IIR Wiener filter is seriously affected by the estimation of the input and noise 

power spectral densities. The performances of FIR and FIR-IIR ring-based filters are 

similar to the case when the estimates are used. Therefore, they are more robust to 

the estimation errors. IIR Wiener filter has the best performance when the true 

correlation functions are used. It is followed by the FIR-IIR and FIR inverse filters 

respectively. We did not plot the FIR-IIR optimum-partitioning filter response in this 

figure since its performance is almost the same as the FIR-IIR ring-based filter. 
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Figure 4.11 and Figure 4.13 show the average of the inner and outer ring radiuses 

found during estimated and true correlation functions usage respectively. As the 

SNR increases inner radius gets closer to zero while outer radius goes to one. For 

low SNR, ring radiuses are close to each other indicating that FIR part is favoured 

over the IIR part in constructing the FIR-IIR inverse filter. 
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Figure 4.9 MSE performance of best and arbitrary delay FIR inverse filters designed 
with statistical approach when L=8 and N=32. (a) Gaussian distributed complex 
channel, (b) Gaussian distributed real channel, (c) Uniform distributed complex 
channel, (d) Uniform distributed real channel. 
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Figure 4.10 MSE performances of inverse filters for statistical method when the 
correlation estimates are used. N=24, (a) L=8, (b) L=12. 
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Figure 4.11 Inner and outer radiuses of ring-based FIR-IIR inverse filter for 
statistical method when the correlation estimates are used. N=24, (a) L=8, (b) L=12. 
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4.3 Noise Considered Deterministic versus Statistical Inverse Filters 

 

In the following example, we have compared the performances of inverse 

filters for noise considered deterministic and MSE optimum statistical design 

methods.  
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Figure 4.12 MSE performances of inverse filters for statistical method when true 
correlations are used. N=24, (a) L=8, (b) L=12. 
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Figure 4.13 Inner and outer radiuses of ring-based FIR-IIR inverse filter for 
statistical method when the true correlations are used. N=24, (a) L=8, (b) L=12. 
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Example 4.5: We have considered a real, zero mean, Gaussian input signal 

with a variance 2 1xσ = . Noise and channel are complex sequences and channel has 

unit norm with Gaussian distributed. 100 trials are done with different input, channel 

and noise signals for channel orders of L=8, L=12 and the inverse filter length is 

selected as N=24. For each trial, FIR and FIR-IIR optimum-partitioning inverse 

filters are designed by using noise considered deterministic and statistical methods 

with true correlation functions. Figure 4.14 shows the results. As it is seen, statistical 

method performs better than the noise considered deterministic method for both 

inverse filters at low SNR by about 1-2 dB. They are close to each other for the SNR 

values of 10-15 dB. For higher SNR, deterministic method performs better than the 

statistical method by about 0.5-1 dB. When the channel order increases, the 

characteristic does not change but the MSE of all filters increases, as expected. 

These results are reasonable. Because, statistical method uses complete information 

about noise data, while this is not the case for deterministic method. Therefore 

minimizing output noise power can be realized in statistical method more 

effectively. As the SNR increases since the effect of noise on MSE decreases, LSE 

becomes more dominant and deterministic method performs better. This is due to the 

fact that MSE optimum approach has certain assumptions which might not be valid 

at all times. 
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Figure 4.14 MSE performances of FIR, FIR-IIR optimum-partitioning inverse filters 
for statistical and deterministic methods when N=24, (a) L=8, (b) L=12. 
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CHAPTER 5 

CONCLUSION 
 
 
 

In this thesis, deconvolution problem is investigated. It is a problem of 

recovering the original source signal from the observed signal at the receiver. It is a 

major problem in many areas such as telecommunication, radar and sonar systems, 

astrophysics, seismology and so on. An effective solution for this problem is the 

inverse filter design. Many design procedures have been considered in the previous 

works. In this thesis, we have proposed a new inverse filtering method which is 

called partition-based FIR-IIR filters. In general, FIR-IIR inverse filters are hybrid 

filters composed of best delay FIR inverse filter and the all pole IIR inverse filter.  

We have started with the inverse filter design for noiseless observation and 

reviewed the FIR inverse filters. It turns out that delay selection seriously affects the 

LSE. We have presented an efficient way of finding the best delay for the FIR 

inverse filter as proposed in [19]. Then we have investigated the factors that affect 

the LSE of the best delay FIR inverse filters. These factors are inverse filter length, 

N, channel order, L and the distribution of channel zeros on the z-plane. Also we 

have derived closed form LSE expressions as a function of channel coefficients for 

small channel order to effectively show the effect of these factors. It turns out that, 

increasing inverse filter length decreases the LSE, while LSE increases with the 

channel order. Channel zero positions also affect the LSE. LSE increases as the 

channel zero gets closer to the unit circle and it decreases when the zero is away 

from the unit circle. In addition, when two channel zeros come closer to each other, 

LSE increases. In order to understand these facts more clearly, we have looked the 

inverse filtering procedure of FIR inverse filter and seen that the overall system 

(cascaded channel and inverse filter) zeros are located uniformly on the z-plane to 

minimize the LSE.  



 61

We have also reviewed the IIR inverse filters. IIR filters are perfect inverse 

filter with no error for minimum-phase channels but for nonminimum-phase 

channels they have stability problems. On the other hand although FIR inverse filters 

always produce nonzero error, they have no such limitation. Therefore the idea of 

proposing FIR-IIR inverse filter is to combine the advantages of both FIR and IIR 

inverse filters in deconvolution problem. It should be note that for the fair 

comparison FIR-IIR inverse filter is designed in such a way that its complexity is 

equal to the complexity of the FIR inverse filter. The order of the FIR-IIR inverse 

filter is defined as the summation of the FIR part and IIR part orders. Therefore, we 

decrease the length of the FIR part of the FIR-IIR inverse filter by one for every pole 

in IIR part. 

The most critical point in FIR-IIR inverse filter design is the selection of FIR 

and IIR parts or in other words partitioning the channel zeros into two regions. The 

channel zeros inside these regions are used to design the FIR and IIR parts of the 

FIR-IIR inverse filter. It is important to note that, the region used for IIR part design 

should not contain any channel zero outside the unit circle because of the stability 

problem. In this thesis, we have proposed three types of partitioning approaches, 

namely unit circle-based, ring-based and optimum-partitioning. In unit circle-based 

partitioning IIR part is constructed by the minimum-phase part of the channel, while 

maximum-phase part is used to obtain the FIR part. Ring-based partitioning divides 

the z-plane into two parts by a ring inside the unit circle. The ring is defined by the 

inner and outer radiuses. In optimum-partitioning IIR part is obtained by considering 

all the possible channel zero combinations inside the unit circle. So the region 

corresponding to the IIR part can be in any shape. 

Unit circle-based partitioning does not take into account the factors that 

affect the LSE. Although IIR part produces no error, it may decrease the FIR part 

length so much that the LSE of the FIR-IIR inverse filter exceeds the LSE of the 

purely FIR inverse filter. Therefore, although unit circle-based partitioning is simple, 

its performance is not always better than FIR inverse filter. Ring-based partitioning 

uses a tradeoff between FIR part length and the error contribution of channel zeros 

inside the unit circle. It tries to use poles to eliminate the effect of channel zeros with 

a large error contribution inside the unit circle and leaves the channel zeros with a 
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small error contribution to the FIR part in order not to decrease the FIR part length 

so much. Thus it has a better solution than the unit circle based partitioning. 

Optimum-partitioning has more freedom to select the FIR and IIR parts than ring-

based partitioning. The difference between these two approaches is very small and 

can be observed for special channels such as there are channel zeros on the same 

radius or close to each other. Therefore ring-based partitioning is suboptimum 

compared to the optimum-partitioning, but ring-based partitioning is always more 

efficient in the design procedure.  

After investigating the inverse filter designs for noiseless observations, we 

have extended them to the noisy observations. In this case, inverse filter design has 

been investigated for the deterministic and statistical methods. For the noisy 

observations the overall error (MSE) is a function of LSE for noiseless observations 

and the output noise power and the inverse filters should be designed to minimize 

this error. Therefore inverse filters should use a tradeoff between LSE and the output 

noise power. Especially for low SNR, output noise power plays an important role on 

the performances. The effect of output noise power has been shown by comparing 

LSE optimum deterministic inverse filter with noise considered one. It turns out that, 

delay selection and partitioning procedures should consider the noise power to 

minimize the MSE.  

For the statistical method, we have started with MSE optimum best delay 

FIR inverse filter formulations and extended it for the partition-based FIR-IIR 

inverse filter design. We have also reviewed the IIR Wiener filter, which is known 

as the MSE optimum inverse filter. The main disadvantage of IIR Wiener filter is it 

is either noncausal or unstable. It turns out that MSE optimum FIR-IIR inverse 

filters are better than FIR Wiener filters. When the true correlations are used IIR 

Wiener inverse filter is the best. On the other hand if the correlations are estimated, 

the performance of the IIR Wiener filter degrades significantly, while the FIR-IIR 

does not. Therefore, FIR-IIR filter is more robust to the estimation error than IIR 

Wiener filter.  

From the comparison of deterministic and statistical methods, it has been 

seen that for low SNR statistical method has better performance by about 1-2 dB, 

while deterministic method performs better for high SNR by about 0.5-1 dB.  
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APPENDIX A 
 
 
 

This part includes the derivation of equation (25). Since LSE depends on 

inverse filter length, we will use N as a sub-index to determine the parameters at a 

specific inverse filter length.  

First of all 7 properties of matrix BN, which is given in equation (21), will be 

represented and each of these properties will be proved. Then equation (25) will be 

obtained by using these properties with iterative manner.  

A.i Properties of BN 

Property 1 

BN is idempotent matrix for all N values, which means that, 

2
N N N∀B = B  

Proof: 

2 † † † †

† † †

†

N N N N N N N N N

N N N N N N

N N

− −

− −

−

B = I H H H H + H H H H

= I H H H H + H IH

= I H H

 

2
N NB = B                (A.1) 

 

Property 2 

1
ˆ

N N N N− ∀B = B B  

where, 
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1
1

( ) ( )

ˆ
1

N
N

N L x N L

−
−

+ +

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

B 0
B

0
           (A.S1) 

or,  

1N N N N− ∀B = B B  

where, 

( ) ( )

N N
N H

N N N L x N L
b

+ +

⎡ ⎤
⎢ ⎥
⎣ ⎦

B b
B =

b
           (A.S2) 

Nb  is (N+L-1)x1 vector and bN is scalar. 

Proof: 

The Toeplitz channel matrix HN can be rearranged as follows: 

[ ]NH = H P  

where P is (N+L)x1 vector and H is (N+L)x(N-1) matrix such as, 

1

1 ( 1) ( ) ( 1)

N

x N N L x N

−

− + −

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

H
H

0
 

where HN-1 is Toeplitz channel matrix with inverse filter length of N-1. Then 

pseudoinverse of HN can be written as, 

( )

[ ]

1†

1

H H
N N N N

H H

H H

−

−
⎛ ⎞⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠

H = H H H

H H
= H P

P P

 

1H H H

H H H

−
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

H H H P H
=

P H P P P
 

Let, 

1H H

H H

−
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦

X YH H H P
=

Z WP H P P
            (A.2) 

To find the unknowns X, Y, Z, W as a function of matrix H and vector P, multiply 

equation (A.2) with  
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H H

H H

⎡ ⎤
⎢ ⎥
⎣ ⎦

H H H P
P H P P

 

by left and right, then equalize it to identity. After that, the unknowns can be found 

by solving the equations obtained from matrix multiplications. 

Let, 

H k=P P                (A.3) 

and, 

1 H

k
= −U I PP               (A.4) 

then the unknowns are: 

1H −
⎡ ⎤⎣ ⎦X = H UH               (A.5) 

1 H

k
= −Y XH P               (A.6) 

1 H

k
= −Z P HX               (A.7) 

1 11 H H

k k
⎛ ⎞= +⎜ ⎟
⎝ ⎠

W P HXH P              (A.8) 

Then, the pseudoinverse of HN can be written as, 

†
H H H

N H H H

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦

X Y H XH + YP
H = =

Z W P ZH + WP
           (A.9) 

Finally, BN matrix can be written by using (21), (A.4), (A.6), (A.7), (A.8) and (A.9) 

as, 

[ ]

( )

H H

N H H

H H H H
N

⎡ ⎤
− ⎢ ⎥

⎣ ⎦

−

XH + YP
B = I H P

ZH + WP

B = I HXH + HYP + PZH + PWP

 

( )H
N −B = U I HXH U            (A.10) 

To complete the proof, the relation between 1
ˆ

N−B and BN should be found. Like in 

equation (21), BN-1 can be written as, 
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( ) 1

1 1 1 1 1
H H

N N N N N

−

− − − − −−B = I H H H H           (A.11) 

To be able to define 1
ˆ

N−B , let us investigate the following equations, 

( )
1

1 1 1
1 1

N NH H H H
N N

−
− − −

− −

⎛ ⎞⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤− − ⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎝ ⎠

H H
I H H H H = I H 0 H 0

0 0
 

( )1 1 1 1

1

H H
N N N N

−

− − − −
⎡ ⎤−
⎢ ⎥
⎢ ⎥⎣ ⎦

1
I H H H H 0=

0
 

( ) 1 1

1
NH H− −⎡ ⎤

− = ⎢ ⎥
⎣ ⎦

B 0
I H H H H

0
 

( ) 1

1
ˆ H H

N

−

−⇒ = −B I H H H H            (A.12) 

Let us rearrange the matrix U in equation (A.4) as, 

U = I + M              (A.13) 

where 

1 H

k
= −M PP              (A.14) 

then, equation (A.5) becomes, 

1 1H H H− −
⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦X = H (I + M)H = H H + H MH          (A.15) 

To represent the matrix BN as a function of matrix 1
ˆ

N−B , matrix inversion lemma [7] 

is used, 

[ ] 11 1 1 1 1 1−− − − − − −⎡ ⎤− ⎣ ⎦A + BCD = A A B DA B + C DA  

In our case; 

H HA = H H; B = H MH; C = I; D = I  

So equation (A.15) can be rewritten as, 

( ) ( ) ( ) ( )
11 1 1 1H H H H H H
−− − − −⎡ ⎤− ⎢ ⎥⎣ ⎦

X = H H H H H MH H H H MH + I H H     (A.16) 

By using equations (A.10), (A.12), (A.13) and (A.16), BN can be found as, 
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( ) 12 2 † †
1 1 1

ˆ ˆ ˆ
N N N N

−

− − − ⎡ ⎤− − − ⎣ ⎦B = U U + UB U + U U UB U + UB H H UH H U  

               (A.17) 

Let us investigate U2 matrix, 

2
2

2

2

1 1 1

1 1 1

1

H H H H

H H H

H

k k k

k
k k k

k

= − − +

= − − +

= −

U I PP PP PP PP

I PP PP P P

I PP

U = U

 

So, BN in equation (A.17) becomes, 

( ) ( ) ( )

( ) ( ) ( )( )

11 1

1 1 1

1 1

1 1 1

ˆ ˆ ˆ

ˆ ˆ ˆ

H H H H
N N N N

H H H H
N N N N

−− −

− − −

− −

− − −

⎡ ⎤− ⎢ ⎥⎣ ⎦

−

B = UB U + UB U + UB H H H H UH H H H U

B = UB U + UB U + UB H H UH H H H H H U
 

( ) ( )1 1

1 1
ˆ ˆH H H H

N N N

− −

− −
⎡ ⎤−⎢ ⎥⎣ ⎦

B = UB U I H H UH H U + UB H H UH H U   

     (A.18) 

The second term on right hand side of equation (A.18) vanishes. This can be seen by 

multiplying equation (A.12) with H by right, 

( ) 1

1
ˆ H H

N

−

− − =B H = H H H H H H 0           (A.19) 

So equation (A.18) reduces to, 

1
ˆ H

N N− ⎡ ⎤−⎣ ⎦B = UB U I HXH U            (A.20) 

Substitute equation (A.10) into equation (A.20) 

1
ˆ

N N N−B = UB B             (A.21) 

Equation (A.21) can be rewritten by using (A.10), (A.12) and (A.13) as, 

1
ˆ H

N N N− ⎡ ⎤= + −⎣ ⎦B B B MU I HXH U           (A.22) 

The second term on the right hand side of (A.22) vanishes, because, 

MU = M(I + M)  

2

1 1H H H

k k
= − +PP PP PP  
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2

1 1H Hk
k k

= − +PP P P  

MU 0=  

So equation (A.22) becomes, 

1
ˆ

N N N−B = B B              (A.23) 

Because of the definitions of 1
ˆ

−BN , BN  and equation (A.23) the following equation 

is also valid, 

1N N N−B = B B              (A.24) 

 

Property 3: 

H
N N N∀B = B  

Proof: 

( )
( )( )
( )

( )( )
( )

†

1

1

1

†

HH
N N N

H
H H

N N N N

HH H
N N N N

H H
N N N N

N N

H
N N

−

−

−

−

= −

⎛ ⎞⎡ ⎤= −⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

= −

= −

B = I H H

I H H H H

I H H H H

I H H H H

I H H

B = B

 

 

Property 4: 

det( ) 0N N= ∀B  

Proof: 

Since BN is idempotent matrix (Property 1), it should be singular, because, if 

it is nonsingular, then the only solution is identity matrix; but BN can be different 

from identity. 

N N NB B = B  
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If BN is nonsingular, 

1 1
N N N N N
− −=B B B B B  

N⇒ =B I  

So BN must be singular matrix. 

 

Property 5: 

For L=1 

( ) 1Nrank N= ∀B  

Proof: 

From Property 2 

1N N N−B = B B  

for N=2; 

2 1 2B = B B  

where B1 is 2x2 matrix and from Property 4 det(B1)=0. So rank of this matrix is 

equal to 1. From the multiplication relation of B1 and 2B , rank of 2B  is also 1. This 

can be seen by Sylvester’s inequality as, 

( )( ) ( ) ( ) min ( ), ( )
A B C

A B C A B
mxk kxn mxn

rank rank k rank rank rank
=

⇒ + − ≤ ≤
 

In our case m=n=k=2, 1A = B  and 2B = C = B . Then 

( )2 21 ( ) 2 ( ) min 1, ( )rank rank rank+ − ≤ ≤B B B  

2B  is 2x2 matrix, so its rank should be 1 or 2.  

( )
2

2

( ) 2;
1 2 2 2 min 1,2
1 2 1

( ) 2

if rank

rank

=

+ − ≤ ≤

≤ ≤

⇒ ≠

B

B
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( )
2

2

( ) 1;
1 1 2 1 min 1,1
0 1 1

( ) 1

if rank

rank

=

+ − ≤ ≤

≤ ≤

⇒ =

B

B

 

From the relation between 2B  and B2 in Property 2, it can be seen that rank of B2 is 

also equal to 1. If this iterative procedure continues rank of BN is found to be 1 for 

all values of N. 

Property 6: 

For L=1, 

1N N N Nα −= ∀B B  

where αN is scalar 

Proof: 

From Property 5 the matrix NB  and BN-1 can be rewritten as, 

[ ] [ ]
[ ]

1 0 1 1 1 1 1 1 0 1 1 1

0 1 1 0 1 1 1

N N N N N N N xN

N N N N N N N xN

β β β β β β

γ γ γ γ γ γ

− − − − − − −

− −

= =

⎡ ⎤= =⎣ ⎦

B b b b b

B b b b b
  (A.25) 

bN-1 and Nb  are Nx1 basis vectors for BN-1 and NB  respectively. Let, 

[ ]0 1 1 1
β β β β− =N xN

 

[ ]0 1 1 1N xN
γ γ γ γ− =  

The relationship between bN-1 and Nb  can be obtained by using Property 2 such as, 

1

1

N N N

N N Nβ γ γ
−

− =

B B = B

b b b
 

1N Nθ γ γ− =b b              (A.26) 

where, 

1 1x Nθ β= b              (A.27) 

Multiply both sides of (A.26) with γ H  by right.  
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2 2
1θ γ γ− =b bN N  

1N Nθ −b = b              (A.28) 

Since matrix BN  is hermitian (Property 3), then the following equations can be 

written by the help of Property 2, 

1

1

H
N N N

H H
N N Nβ γ γ
−

−

B B = B

b b = b
 

1
H

N N Nϕ γ− =b b b             (A.29) 

where, 

1 1ϕ β γ= H
x  

Substitute equation (A.28) into equation (A.29) 

*
1 1 1

H
N N Nϕθ θ γ− − −=b b b            (A.30) 

Multiply both sides of (A.30) with 1
H
N−b  by left. 

2 2*
1 1 1

*
1

H
N N N

H
N

ϕθ θ γ

ϕθ θγ
− − −

−

=

=

b b b

b
 

1 *
H
N

θ γ
ϕθ− =b              (A.31) 

From Property 1 and 3, 

1 1 1

1 1 1

H
N N N

H H
N N Nβ β β
− − −

− − −

B B = B

b b = b
 

1 1 1
H

N N Nβ β− − −

2
b b = b            (A.32) 

Multiply both sides of (A.32) with 1
H
N−b  by left 

1 1 1
H

N N Nβ β− − −

2 2 2b b = b  

1
1H

N β
β

− = 2b              (A.33) 

Combining (A.24), (A.25), (A.27), (A.31) and (A.33), proves the property. 
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*

1 1

*
1 1

*
1

*

1

1

H
N N N

H
N N

N

N

ϕθθ
θ

ϕθ

ϕθ β
β

ϕθ

β

− −

− −

−

−

=

=

=

=

2

2

B b b

b b

b

B

 

1N N Nα −=B B              (A.34) 

 

 

Property 7: 

For L=1, 

2

,
1 1

1
N L N L

N i j
i j

b N
+ +

= =

= = ∀∑ ∑B  

Proof: 

By using equations (A.27) and (A.28), the followings can be written, 

1 1 1x Nθ βθ −= b  

1 1Nβ − =b              (A.35) 

If we multiply both sides of equation (A.33) with bN-1 by right, the following one is 

obtained, 

2
1 1

1
N Nβ

β
− −= 2b b             (A.36) 

If we substitute equation (A.35) into equation (A.36), the following equation is 

obtained, 

2
1 1N β− =

2
b             (A.37) 

From equation (A.25), the norm of BN-1 can be written as, 

2 2 2 2 2 2 2
1 0 1 1 1 1 1

2 2
1

1

N N N N N

N

N i
i

β β β

β

− − − − −

−
=

= + + +

= ∑

B b b b

b
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22 2
1 1N N β− −=B b             (A.38) 

Substitute equation (A.37) into equation (A.38),  

2
1 1N− =B              (A.39) 

This equation is valid for all value of N. 

 

A.ii Iterative Procedure 

 

By using these properties LSE for first order channel filter can be found 

iteratively. From Property 7, 

2 1N =B  

By using structure in (A.S2), this equation can be rewritten as, 

2 2 22 1N N Nb+ + =B b            (A.40) 

Since BN is hermitian (Property 3) bN is real. Property 1 helps us to rewrite the 

second and third terms of right hand side of (A.40) as a function of bN only. 

2

2 2

N N

N N N N N N
H H H
N N N N N N

H N
N N N

N

N N N

b b b

b b
b

b b

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤

⎡ ⎤⇒ =⎢ ⎥⎣ ⎦
⎣ ⎦

+ =

B = B

B b B b B b
b b b

b
b

b

 

2 2 22 2N N N Nb b b+ = −b            (A.41) 

So equation (A.41) becomes, 

2 22 1N N Nb b+ − =B             (A.42) 

By using Property 6 and 7, (A.42) can be rewritten as, 

2 22 1N N Nb bα + − =             (A.43) 
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From Property 6 and the definition of BN  in structure (A.S2), the first row and first 

column element of matrices BN and BN-1 is related as, 

1(1,1) (1,1)N N Nα −=B B  

1

(1,1)
(1,1)

N
N

N

α
−

=
B

B
            (A.44) 

Since matrix BN is hermitian (Property 3), both BN(1,1) and BN-1(1,1) are real. So 

Nα  is also real. By using these facts (A.43) can be written as, 

[ ]
[ ]

2
2

2
1

(1,1)
2 1

(1,1)
N

N N
N

b b
−

+ − =
B

B
           (A.45) 

Since channel filter order is 1, the channel must be either minimum phase or 

maximum phase. For minimum phase channel, optimum delay for LS inverse filter 

is 0, and for maximum phase channel, optimum delay is N. So LSE can be either 

first element or last element of diagonal of matrix BN, depending on channel 

characteristic (min or max phase).  

Let a be the root of channel filter. The minimum or maximum phase depends 

on magnitude of a.  

|a|<1 minimum phase  LSE=BN(1,1) 

|a|>1  maximum phase  LSE=bN = BN(N+1,N+1) 

But these relations can also be written as, 

1/|a|<1  maximum phase 

1/|a|>1  minimum phase 

So the first and last diagonal element of matrix B can be written as, 

( )
( )1

(1,1)

( 1, 1)

N

N N

f a

b N N f a −

=

= + + =

B

B
          (A.46) 

and 

( )
( )

1

1
1

(1,1)

( , )

N

N

g a

N N g a

−

−
−

=

=

B

B
            (A.47) 
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So (A.45) can be rewritten as, 

( )
( ) ( ) ( )

2
1 12

2 2 1
f a

f a f a
g a

− −+ − =           (A.48) 

If |a| is replaced with 1/|a|, then equation (A.48) becomes, 

( )
( ) ( ) ( )

12

2
12

2 1
f a

f a f a
g a

−

−
+ − =           (A.49) 

By using (A.48) and (A.49), LSE can be found as follows: 

Substitute (A.48) into (A.49), 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

1 1 12 2 2
2

1 12

1 2

2 1 0

f a g a f a g a g a
g a

g a g a

− − −

− −

⎡ ⎤ ⎡ ⎤− + −⎢ ⎥ ⎣ ⎦⎢ ⎥⎣ ⎦

+ − − =

       (A.50) 

Equation (A.50) is simply a second order equation and it can be solved easily as, 

( )
( ) ( ) ( )

( ) ( ) ( ) ( )
( )

( ) ( )

1 1
1

1
1

1 1

11 1
011 1

g a g a g ag a
f a

g ag a g a g ag a g a

− −
−

−
− −

⎡ ⎤⎡ ⎤− −⎢ ⎥⎣ ⎦ −⎢ ⎥⎣ ⎦= = − <
⎡ ⎤ ⎡ ⎤ +− +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

( )
( ) ( ) ( )

( ) ( ) ( ) ( )
( )

( ) ( )

1 1
1

2
1

1 1

11 1
011 1

g a g a g ag a
f a

g ag a g a g ag a g a

− −
−

−
− −

⎡ ⎤⎡ ⎤− +⎢ ⎥⎣ ⎦ −⎢ ⎥⎣ ⎦= = >
⎡ ⎤ ⎡ ⎤ −− +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

Since LSE should be positive, the second one is the correct results, 

( ) ( )
( ) ( )

1

1

1
1

g a
f a

g a
g a

−

−

−
=

−
           (A.51) 

Note that since ||BN|| is equal to 1, then the entries of BN should be smaller 

than 1. So, iterative LSE formulation for L=1, can be written as, 
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(2)
(1) 1

(2)
1(1)

1

(1)
(2) 1

(1)
1(2)

1

1
1

1
1

N
N

N
N

N
N

N
N

LSELSE
LSE

LSE

LSELSE
LSE

LSE

−

−
−

−

−
−

−
=

−

−
=

−

           (A.52) 

where, 

( )
( )
( )
( )

(1)

1(2)

(1)
1

1(2)
1

N

N

N

N

LSE f a

LSE f a

LSE g a

LSE g a

−

−

−
−

=

=

=

=

 

The final LSE formula for L=1, and inverse filter length N is: 

( )(1) (2)min ,N N NLSE LSE LSE=            (A.53) 

 

Initialization: 

 

(1)
1 1
(2)
1 1

(1,1)

(2, 2)

LSE

LSE

=

=

B

B
 

( ) 1

1 1 1 1 1
H H−

= −B I H H H H  
1

* *
1

1 0 1 1
1 1

0 1
a a

a a

−
⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎡ ⎤ ⎡ ⎤= − ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

B  

2 *

1 2
1

11
a a

aa

⎡ ⎤−= ⎢ ⎥
−+ ⎢ ⎥⎣ ⎦

B  

2
(1)
1 2

(2)
1 2

1
1

1

a
LSE

a

LSE
a

=
+

=
+

            (A.54) 

The general LSE as a function of channel root a and inverse filter length N can be 

found by induction method: 
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From equations (A.52) and (A.54), 

( )
( )

2 22 2
(1)
2 2 2 22 2

2 2

2 2 4

2 4 2 2 4

11 11 1 1
1 11 1

1

1 2 1

a aa a
LSE

a a a a
a a

a a a
a a a a a

−
++ + −

= =
+ + + −−

+

= =
+ + − + +

 

( ) ( )

2

2 2 2 2
(2)
2 2 2 22 2

2
2

2 4 2 2 4

1
1 1 1

1 11
1

1 1
1 2 1

a
a a a a

LSE
a a a aa

a

a a a a a

−
+ + − +

= =
+ + −+ −

+

= =
+ + − + +

       (A.55) 

And let us assume that, 

2( 1)
(1)

1 2 2( 1)

(2)
1 2 2( 1)

1
1

1

N

N N

N N

a
LSE

a a

LSE
a a

−

− −

− −

=
+ + +

=
+ + +

          (A.56) 

then we should show that, 

2
(1)

2 2

(2)
2 2

1
1

1

N

N N

N N

a
LSE

a a

LSE
a a

=
+ + +

=
+ + +

 

To do this use equation (A.52) and (A.56), 
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2 2( 1) 2
(1)

2 2( 1) 2 2

2( 1) 2 2( 1)

2 2
(2)

2 2 2( 1) 2

2 2

2 2( 1) 2

11
1

1 11
1

1
1

1 1 11

1
1

N N

N N N

N N

N N

N N N N

N

N N

a a a
LSE

a a a a
a a a

a a
LSE

a a a a
a a

a a a

−

−

− −

−

−

−
+ + +

= =
+ + + + + +

−
+ + +

= =
+ + + ++ + +

=
+ + + +

 

So the general LSE function of first order channel filter and inverse filter with length 

N is: 

2

2 2 2 2

1min ,
1 1

N

N N N

a
LSE

a a a a

⎡ ⎤
= ⎢ ⎥

+ + + + + +⎢ ⎥⎣ ⎦
        (A.57) 
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APPENDIX B 
 
 
 

For the channel filter with order two the Toeplitz channel matrix is modeled 

as, 

2

( 2)

1 0 0
1 0

0 1

0 0 N xN

a
b a

b
a
b

+

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

H  

where a and b is the channel coefficients. The channel zeros, z1 and z2, are related 

with these coefficients as, 

( )1 2

1 2

a z z
b z z
= − +

=
 

Then LSE formulas for N=2 and N=3 are found as, 

 

For N=2, 

22 2 *2 * *
2

0 2

a+a bP P a+a b P a+a b1 + a + + b +a + b
K K K K K (K)kLSE =

⎡ ⎤= − − −⎢ ⎥⎣ ⎦
 

22* * * *
*

1

2 2* * * * *
* * * *

P a+a b P a+a b a +b a Pa + + 1 a a +a
K K K K K K

P a+a b a +b a P a +b a P+ a b a + a ab +b
K K K K K K

kLSE =

⎧ ⎫⎡ ⎤⎪ ⎪= − − − −⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

⎡ ⎤ ⎡ ⎤
− − − − + −⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦
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22* * * *
* *

2

2 2* * * *
2* *

P a+a b P a+a b a +b a Pb +a + 1 b a b b +a a
K K K K K K

P a+a b a +b a P a+a b P+ b a a +b a b a b
K K K K K K

kLSE =

⎧ ⎫⎡ ⎤ ⎡ ⎤⎪ ⎪= − − − − −⎨ ⎬⎢ ⎥ ⎢ ⎥
⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

⎡ ⎤
− − − + −⎢ ⎥
⎣ ⎦

 

2 2 2* * 2* *
22 * * *

3 2

a +b a a+a b P a+a b P P|b| + a b b + b a b + 1 b b
K K K K K KkLSE =

⎡ ⎤= − − −⎢ ⎥⎣ ⎦
 

where, 

( )22 2 4 2 2 4 * * 2

2 2

K=1+ a +2 b + a + a b + b a b b a

1+ a + bP

− −

=
 

 

For N=3, 

 

2 22 2 2* *
*

0
K K S K S M S M M1 + a + + b +a + b a + b
R R R R R R R R RkLSE =

⎡ ⎤= − − − − −⎢ ⎥⎣ ⎦
 

2 2* * *
* *

1

2 22 * * *
* * *

K S S V K S M S V S1 a a +a + b a + a +b a +
R R R R R R R R R R

K S S M V S M Sa + + b +a a b +a a b +b
R R R R R R R R

kLSE =

⎧ ⎫⎡ ⎤ ⎡ ⎤⎪ ⎪= − − − − − −⎨ ⎬⎢ ⎥ ⎢ ⎥
⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

⎡ ⎤
+ − − − − + −⎢ ⎥

⎣ ⎦
22* * *

*
2

2* * *
* *

2 2* * *
2* * * *

K S M K S M S V Sb +a + b a + a +b a +
R R R R R R R R R

K S M S V S M S K+ 1 b a + b b +a a b +a
R R R R R R R R R

S V S M S K M S K+ b +a b b a + a b ab +b
R R R R R R R R R

kLSE =

⎡ ⎤
= − − − − −⎢ ⎥

⎣ ⎦

⎧ ⎫⎡ ⎤ ⎡ ⎤⎪ ⎪− − − − − − −⎨ ⎬⎢ ⎥ ⎢ ⎥
⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

⎡ ⎤ ⎡ ⎤
− − − − − + −⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

22* *
* *

3

2* *
* *

S M S V M Sb a + a + b a a
R R R R R R

S V S M S K+ b +a b b a + a
R R R R R R

kLSE =

⎡ ⎤⎡ ⎤= − − − − −⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤
− − − − −⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦
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2 2*
2* * *V S S K S K+ 1 b a b b +a a + b +ab

R R R R R R
⎧ ⎫⎡ ⎤⎪ ⎪⎡ ⎤− − − − −⎨ ⎬⎢ ⎥ ⎢ ⎥⎣ ⎦⎪ ⎪⎣ ⎦⎩ ⎭

 

2 22 * *
2 2* *

4 2

M M S M S Kb + a b +b + b +a b b
(R) R R R R RkLSE = = − − −  

2 2
2 2*S K Kb +ab + 1 b

R R R
⎡ ⎤+ − −⎢ ⎥⎣ ⎦

 

where, 

( )
( ) ( ) ( )

( )
( ) ( )

( )

22 2 4 2 2 4 * * 2

3 2 2* 3 * * 2 2 4 4 * * 2 * 2 *

2* 2 2 2 4 2 2 4 6 6

2 2* * * 2 * *

222 * 2 * 2

2

K=1+|a| +2|b| +|a| +|a| |b| +|b| a b b a

R=1 2a a b 2 a ab+|a| +2|b| +|a| +2|b| a b b a b b a

b ba +5|a| |b| +|a| |b| +|a| |b| +|a| +|b|

S=a + a a+b a a + b ab

M=a + a b+ a b b b b

V=1+2|a| +|

− −

− − − − −

−

− −
2 4 2 2 4b| +|a| +2|a| |b| +|b|

 

 

 
 
 
 
 
 
 
 
 
 
 
 
  




