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ABSTRACT

THEORETICAL INVESTIGATION OF AITiNi TERNARY CLUSTERS:
DENSITY FUNCTIONAL THEORY CALCULATIONS AND MOLECULAR
DYNAMICS SIMULATIONS

OYMAK, HUSEYIN
Ph.D.,; Department of Physics
Supervisor: Prof. Dr. Sakir Erkog

June 2004, 156 pages.

This doctoral study consists of three parts. In the first part, structural and electronic
properties of Al TiNi,, (k+ !+ m = 2,3) microclusters have been investigated by per-
forming density functional theory (DFT) calculations within the B3LYP [which com-
prises the Becke—88 exchange functional and the correlation functional of Lee, Yang,
and Parr] and the effective core potential (ECP) level. Dimers and trimers of the el-
ements aluminum, titanium, and nickel, and their binary and ternary combinations
have been studied in their ground states. The optimum geometries, possible dissoci-
ation channels, vibrational properties, and electronic structure of the clusters under

study have been obtained.

In the second part, after an empirical potential energy function (PEF) has been
parametrized for the AITiNi ternary system, stable (minimum-energy) structures of
Al TiNiy, (k4 1+ m = 4) microclusters have been determined by molecular dynamics

(MD) simulations. The energetics of the microclusters in 1 K and 300 K have been

v



discussed. By performing, again, DFT calculations (within the B3LYP and ECP level),
the possible dissociation channels and electronic properties of the obtained clusters have

been calculated.

In the last part, using the empirical PEF parametrized previously for the AITiNi
ternary system, minimum-energy structures of Al,Ti,Ni, (n = 1-16) ternary alloy
nanoparticles have been determined by performing MD simulations. The structural

and energetic features of the obtained nanoparticles have been investigated.

Keywords: Transition metal clusters, aluminum, nickel, titanium, empirical po-
tential energy functions, density functional theory, molecular dynamics simula-

tions.
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AITiNi UCLU TOPAKLARIN KURAMSAL OLARAK INCELENMESI:
YOGUNLUK FONKSIYONELI KURAMI HESAPLARI VE MOLEKULER
DINAMIK SIMULASYONLARI

OYMAK, HUSEYIN
Doktora, Fizik Boliimii
Tez Yoneticisi: Prof. Dr. Sakir Erkog

Haziran 2004, 156 sayfa.

Bu doktora caligmas: ii¢ kisimdan olusmaktadir. Ik kisimda, AL, TiNip, (k+1+
m = 2,3) yapisindaki mikrotopaklarin yapisal ve elektronik ozellikleri incelenmigtir.
Caligmalar yogunluk fonksiyoneli kurami (YFK) hesaplar1 yapilarak [etkili cekirdek
potansiyeli (ECP) diizeyinde ve B3LYP degis-tokus ve kaginim katkis1 dahil edilerek]
gergeklegtirilmigtir. Aliminyum, nikel ve titan elementlerinin homontikleer ikili ve tgli
ve heteroniikleer ikili ve tcli bilegikleri temel seviyelerinde incelenmigtir. Caligilan
mikrotopaklarin minimum enerji geometrileri, miimkiin ayrigma kanallari, ayrigma e-

nerjileri, titregim frekanslar1 ve bazi elektronik yap1 6zellikleri hesaplanmigtir.

Caligmanin ikinci kisminda, A1TiNi tglii sistemi igin bir ampirik potansiyel enerji
fonksiyonu (PEF) parametrize edildikten sonra, Al TiNi,, (k+ {4+ m = 4) yapisindaki
mikrotopaklarin minimum enerji yapilar:1 molekiiler dinamik (MD) simiilasyonu ile be-
lirlenmigtir. 1 K ve 300 K sicakliklarinda elde edilen mikrotopaklarin genel enerji

ozellikleri tartigilmigtir. Mikrotopaklarin miimkiin ayrigma kanallari, ayrigma enerjileri

vi



ve baz1 elektronik oOzellileri YFK hesaplar: (yine ECP diizeyinde ve B3LYP katkisiyla)

ile elde edilmigtir.

Caligmanin son kisminda ise, ikinci kisimda AITiNi tgli sistemi i¢in parametrize
edilen ampirik PEF kullamlarak, Al,Ni,Ti, (n = 1 —16) yapisindaki nano—parcgacikla-
rin minimum enerji yapilar1 MD simiilasyonu ile belirlenmigtir. Elde edilen nano—par-

caciklarin genel yapisal 6zellikleri tartigilmigtir.

Anahtar Kelimeler: Gegig elementleri topaklari, aliiminyum, nikel, titan, ampirik
potansiyel enerji fonksiyonlari, yogunluk fonksiyoneli kurami, molekiiler dinamik

simiilasyonlari.
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CHAPTER 1

INTRODUCTION

1.1 Al-Ti-Ni Binary and Ternary Materials and Their Importance

In this work, we deal with the microclusters of aluminum, nickel, and tita-
nium. Recently their binary and ternary alloy systems have become very popular
from the metallurgical point of view. Their crystal structure and phase dia-
gram data, electronic structure, optical properties, etc. have been investigated
intensely. There exist some recent experimental and theoretical studies about
Al-Ti-Ni binary and ternary alloy systems [1-3], the Ni-Ti alloy system [4, 5],

the Al-Ti alloy system [6, 7], and the AI-Ni alloy system [8, 9].

Atomistic studies of the structures of intermetallic materials have been of great
value in the modeling and understanding of alloy behavior. With the advent of
extremely fine—grained eutectic microstructures, AI-Ti—-Ni alloys have attracted
attention as soldering or brazing materials for Ni-based superalloy devices as well

as for TiAl-based structural intermetallics [1]. Ni-based superalloys is of great



importance in many applications such as gas turbines, demolition devices, metal
cutting and welding, and emergency beacons and flares [8]. Ni-Al and Ti-Al in-
termetallic alloys are candidate alloys for structural applications and consequently
received theoretical interest [3]. Several Al-Ti intermetallic compounds have a
number of outstanding high—temperature properties (such as high melting point,
low density and good oxidation resistance) which make them desirable candidates
for high temperature applications [6, 7]. In addition to their technologically useful
properties, AlI-Ti—Ni binary and ternary intermetallics also exhibit scientifically
interesting complex structures. Noteworthy among these alloys are quasicrys-
tals, ordered structures displaying crystallographically forbidden icosahedral or

decagonal symmetry [9].

One of the most important reason of the intense interest in the AI-Ti—Ni bi-
nary and ternary intermetallics is their shape-memory-alloy (SMA) properties
which render them industrially important [10, 11]. SMAs are ”strange” materials
exhibiting some novel properties. The most striking one is that they have the
ability to return to a predetermined shape when heated. In other words, they
"remember” and transform back to their original shape upon heating. When an
SMA is cold, or when it is under its transformation temperature 7}, it has a very
low yield strength. Therefore, it can readily be deformed into any shape at low

temperatures. As long as the temperature is kept below 7}, the SMA will retain



its shape. However, when it is heated above T}, its crystal structure undergoes
a change which causes the SMA to return to its original shape. Furthermore, if
the SMA encounters any resistance during this transformation, it can generate
extremely large forces. Obviously, this property of SMAs can be fully exploited
when a remote actuation or a sensor mechanism is needed; and this is only one

among the very diverse current applications of SMAs.

The most famous SMA is the intermetallic Ni-Ti (usually called nitinol) al-
loys. It has been studied extensively due to its technological importance and its
peculiar structural phase transition® that has been found in alloys near equiatomic
stoichiometry. This transformation is associated with shape—memory effect. This
transition also shows large hysteresis in electrical resistivity, Hall coefficient,
sound velocity, magnetic susceptibility upon cooling or heating [5]. (There are
lots of explanation trying to account for this unusual phase transition. A good
review can be found in Ref. [5].) Additional stimulus for the research on Ni-Ti
alloys is the finding that alloys on the Ti-rich side possesses glass—forming abil-
ity. Furthermore, a metastable quasicrystal can be formed near the stoichiometry

NiTi, [4].

1 Technically described as a martensitic transformation from the austenitic B2 phase at

high temperature (> 333 K) to the martensitic B19' phase upon cooling [5].



Understanding of the microscopic origins of this type of structural properties
of AI-Ti-Ni binary and ternary intermetallics has been at the core of chemistry,
metallurgy, and condensed matter physics for a long time. Both technological
need and fundamental scientific interest motivate study of these systems. Our in-
terest in Al-Ti-Ni ternary clusters is to determine the very basic building blocks
of and to explore the clustering phenomenon in these economically promising
alloy systems. We desired to investigate systematically the simpler potential
candidates for the building blocks, namely Aly, Tis, Niy, AITi, AINi, TiNi, Als,
Tis, Nis, Al,Ti, AlTiy, Al,Ni, AlNiy, TioNi, TiNis, as we did in the first part of
our study (Section 2.2 and Ref.[12]); and the more involved candidates Aly, Tig,
Niy, Al3Ti, AlyTiy, AlTis, Al3Ni, AlyNis, AlNiz, TizNi, TisNip, TiNis, Al,TiNi,
AlTi;Ni, AlTiNiy, as we did in the second part of our study (Section 4.2 and
Ref.[13]). In this regard, we continued our research series toward the larger clus-
ters of Al-Ti-Ni ternary system, as we did in the last part (Section 4.3 and
Ref.[14]). Our general objective is to get a general understanding of geometrical
and electronic properties about these clusters, which is believed to lead valu-
able insights into the evolution from small clusters to bulk Al-Ti—Ni binary and

ternary alloy systems. Accordingly, we have embarked on this study.



1.2 Clusters of Metal Atoms

In the past thirty years or so, a new type of chemical entity has come under
both experimental and theoretical examination: clusters of metal atoms. The
cluster area has been one of the most actively studied research field especially
after 1980s; it today occupies an interdisciplinary place in the intersection point
of quantum chemistry, solid—state physics, surface science, atomic and molecular
physics, metallurgical sciences, etc. Although there is actually no need to point
out it, it should not be superfluous, we think, to highlight the importance of the

studies aimed at understanding structural and electronic properties of clusters.

Quantum molecular methods in cluster theory has proven its usefulness in
quantum chemical investigations of the structural and electronic properties of
small atomic and molecular clusters. The literature of past two decades is full
of numerous theoretical and experimental studies devoted to characterize these
unexamined species. The theoretical and experimental results of these studies,
their far-reaching consequences, their practical and possible industrial applica-
tions have been collected in several reviews [15-21] and books [22-37]. At the
fundamental level, these investigations are being carried out in order to reveal the
very general physical and chemical properties of atoms under the specific condi-

tions existing in clusters and therefore to reach a consensus in interpreting the



basic properties of clusters. Among these studies are abundances [20, 38], catal-
ysis [28, 34, 39-51], chemisorption and substrate adsorption [43-46, 50, 52-65],
crystal growth [16, 66-71], electronic structures, equilibrium structures, evolu-
tion of surface properties [72, 73], laser applications [46], magic numbers [16, 19,
28, 74-89], magnetism [62, 81, 84, 85, 90-99|, nucleation [41, 42, 46, 65, 70, 72,
100-103], photographic processes [42, 46, 51], reactivity [28, 51, 104-106], prop-
erties as a function of clusters size [17, 45, 56, 73, 74, 85, 90, 91, 105, 107-116].
All the other information about the studies not mentioned above can be drawn
from Refs. [15-37]. Notwithstanding the fact that a large and still increasing
number of researches are at the moment being conducted with the aim of pro-
viding further theoretical contribution to the understanding of the cluster field,
there will always be much yet to be studied. Each new study usually gives such
results that cause new problems and questions to rise in this field. Although a
substantial amount of information has been collected so far on clusters, all the
facts about them have not understood completely yet. The cluster area is thus
relatively young compared to the more established traditional areas of chemistry

and physics.



The quantum molecular methods in efforts of revealing the properties of clus-
ters are, of course, not alone. In addition to the theoretical studies (see Ref. [117]
for a somewhat detailed description of the methods), experiments constitute the
very indispensable part of the field of cluster research. They either precede the-
oretical studies giving them experimental results and thus offering impetus to
researchers, or follow a theoretical study providing test confirming or refuting
the results of it. This ceaseless interplay between theory and experiment leads to

new scopes in understanding of the properties of clusters.

Clusters are generally defined as small aggregates of atoms. Their sizes are in-
termediate between constituent atoms and bulk matter. The number of atoms, N,
making up a cluster is no more than a few hundred or at most a thousand; beyond
this enters the field of nano—scale materials. Small clusters have structural and
electronic properties which depend strictly on N. It is hardly possible to cor-
relate these properties with smoothly varying functions of N. There are lots of
experimental and theoretical studies which showed that the geometrical and elec-
tronic properties of small clusters exhibits no similarity at all compared with the
properties corresponding bulk. This is one of the reasons that has rendered the
cluster area being one of the most actively studied research field. The properties
of a large cluster usually approach those of the corresponding bulk material. This

puts the large clusters in front of the main door to the realm of the solid state.



Consequently, clusters can be thought to be on the border separating atoms and
molecules from liquids and solids and this fact is perhaps the most important
reason for the indispensability of the cluster area. From atoms and molecules
to liquids and solids, it is possible only with the help of the studies of clusters
to understand the evolution of structural and electronic properties of solid state
[30, 31, 115]. (For a good discussion, the reader is recommended to have a look
also at Reference [80], where clusters are described to be in the mesoscopic re-
gion between the microscopic region of atoms or molecules and the macroscopic
region of the condensed matter. In that review, the authors build a bridge, for
this mesoscopic region of clusters, between microscopic and macroscopic regions.
They discuss analytic cluster models enabling simple interpolation formulas for
the size dependence of various stationary cluster properties. The verification of
the given interpolation formulas for electronic, geometrical, kinetic, optical, elec-
trical, and magnetic properties are presented. They show how beautifully the

cluster properties approach those of bulk.)

There is another intriguing phenomenon so—called magic numbers that has
given intense impetus to many researchers. Speaking simplest, at magic numbers,
clusters are unusually stable. In the mass—spectroscopic detection of clusters, it
is usually the case that one finds especially high abundances for certain cluster

sizes. The existence of magic numbers is still waiting for a concrete explanation.



The increasing knowledge about the properties of clusters has a potential to
contribute to the theory of crystal growth. In determining the stability of clusters
of a given size, it is likely that an understanding of the electronic structure of
the clusters will offer new aspects and thus will help to suggest possible growth

sequences.

The structural and electronic properties of trimers and higher clusters have
been less well investigated compared to those of dimers in the literature of clus-
ters. Structural properties of these bear particular importance because one can
begin only with the trimer to compare between cluster properties and those of the
bulk [118]. For example, the structure of small clusters of group IA and IB metals
have been predicted to be linear. Therefore one can expect some critical cluster
sizes to exist at which some drastic structural changes takes place leading to the
closed-packed of the bulk [20, 84, 95, 97, 118, 119]. Geometrical arrangement of
the atoms and the charges on them in small clusters constitute another aspect of
the importance in understanding of some catalytic processes [41]. Therefore, de-

termining geometrical and electronical properties of small clusters is worthwhile.



Despite all the recent breakthroughs in experimental techniques, the advent of
sophisticated supercomputers and theoretical methods, our current understand-
ing of clusters is still little compared to our knowledge of other fields of chemistry.
In the regard of augmenting our understanding of clusters, the task is heavily on
theoreticians because it is likely that experimental progresses will not reach in
near future the proper sophistication to probe the structures of clusters. For this
reason, the developing of new methods for the structural properties of clusters is

the ultimate goal for theorists.

1.3 Transition Metals and Their Clusters

Titanium and nickel, two of the three elements under consideration in this
work, are so—called transition metal (TM) elements. It would not be superfluous
to repeat here briefly general properties of TMs [120]. The major characteristic
of TMs is that they have incompletely filled d subshells or readily give rise to ions
with incompletely filled d subshells. Most of TM elements have a close—packed
structure in which each atom has a coordination number of 12. Furthermore,
they have relatively small atomic radii. The combined effect of closest packing
and small atomic size leads to strong metallic bonds. These in turn causes TMs
to possess higher densities, higher melting and boiling points, and higher heats of

fusion and vaporization than the Group IA and IIA metals, as well as the Group
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IIB metals. Due to their incompletely filled d subshells, most TM compounds are
paramagnetic. Many of transition metals and their compounds are good catalysts

both for inorganic and organic reactions and for electrochemical processes [120].

Titanium is a Group IVB element with the electron configuration [Ar]3d?4s.
It is the most abundant TM after iron (0.63 percent of Earth’s crust by mass). It
is a strong, lightweight, corrosion-resistant metal that is used in the construction
of rockets, aircrafts, and jet engines. It also has applications in the chemical and

polymer industry [120].

Nickel is a Group VIIIB element with the electron configuration [Ar]3d®4s?.
It is a rare element (0.01 percent of Earth’s crust by mass). It has high electrical
and thermal conductivities and is mainly used in making alloys. It also finds ap-
plications as a catalyst in hydrogenation reactions and as electrodes in batteries

and fuel cells [120].

As to aluminum, which is not a TM, it is a Group IITA element with the
electronic configuration [Ne|3s?3p!. It is the most abundant metal and the third
most plentiful element (7.5 percent of Earth’s crust by mass). Aluminum is one

of the most versatile metals known. It has a low density (2.7 g/cm®) and high
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tensile strength; it is malleable, it can be rolled into thin foils, and it is an excel-
lent conductor so that it is widely used in high-voltage transmission lines. One
of its chief use is in aircraft construction. Mechanical properties of aluminum can
be greatly improved by alloying it with small amounts of metals such as copper,

magnesium, manganese, silicon, nickel, as well as titanium [120].

In the literature, the transition metal clusters have a special place because
of their physical, chemical, and obvious economical importance. For this reason,
transition metal clusters have drawn very intense interest. Three monumental
reviews, Refs. [15-17], present the experimental data and theoretical results con-
cerning transition metal clusters. (Another well-known review [19] giving both
theoretical and experimental information about the heavy p-block dimers and
trimers is also very precious.) Because of their wide—spread use in the studies of
the catalysis processes, chemisorption and substrate adsorption, nucleation, the
photographic processes, and possible laser applications, the chemistry of transi-
tion metals, especially that of bare metal clusters and of metallic surfaces is at-
tached a great importance [34, 41, 47, 100]. In addition, the diatomic transition
metals are source of information about the metal-metal bond and organometallic
complexes [121]. These dimers have an important place in solid-state physics;

they play a key role in exploring how the atomic properties change as the atoms
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are clustered [47]. Homonuclear transition metal diatomics are the simplest mod-
els for metallic clusters and binuclear transition metal complexes. They also have
theoretical, astronomical and high temperature importance [122, 123]. Therefore

studying their properties would be very useful and instructive.

Unfortunately, isolation of these molecules from the bulk metal is very diffi-
cult to do in a manner that allows proper characterization. Experimental data on
these molecules are scarce and quite inconclusive. The paucity of experimental
data on transition metal microclusters, particularly beyond dimers, was a notable
feature of the literature search for this work. Such data are needed in order to
challenge researchers’ interest to get a deep understanding of metallic clusters
and small particles. Metal atom clusters have been first observed experimentally
in vaporization and sublimation of solids [124] (observations from this research
were later used o determine the dissociation energies of some diatomic molecules
[125]), in rf-spark sources [126] and in sputtering ion sources[127]. Later small
metal molecules have been isolated in rare—gas matrices, and in this way a number
of spectra of these species have been investigated [42, 122, 128-131]. The matrix
isolation methods has furthermore been utilized when studying the processes of

catalysis and chemisorption [40, 132, 133].
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1.4 Abbreviations Mentioned Frequently in This Work and Elsewhere

At present many ab initio and semiempirical methods are ceaselessly intro-
duced by quantum chemists and physicists and they are now customarily abbre-
viated to initials. In the below list we give some of them which are mentioned

frequently in this work and elsewhere [15]:

e AREP: Averaged relativistic core potential.

e CAS-SCF: Complete active space—self—consistent field.

e CI: Configuration interaction.

e CNDO: Complete neglect of differential overlap.

e CVP: Core valence polarization (pseudopotential).

e DFT: Density functional theory.

e DIM: Diatomics—in—differential overlap.

e DVM: Discrete variational method.

e ECP: Effective core potential (pseudopotential).

e EH: Extended Hickel.

o GMO: Generalized molecular orbital.

o GVB-vdw: Generalized valence bond—van der Waals.
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HFS: Hatree—Fock—Slater.

LCAO: Linear combination of atomic orbitals

LCGTO: Linear combination of Gaussian—Type orbitals.

LD: Local density.

LSD: Local spin density.

MC-SCF: Multiconfigurational—self-consistent field.

MD: Molecular—-dynamics.

MEH: Modified extended Hiickel.

MINDO: Modified intermediate neglect of differential overlap.

MP: Model potential

MRD: Multi-—reference double excitation.

NRMP: Nonrelativistic model potential.

PEF': Potential energy function

POL-CI: Polarized configuration interaction.

QRMP: Quasirelativistic model potential.

RECP: Relativistic effective core potential.
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RHF: Restricted Hartree—Fock.

SC-CMS: Self-consistent cellular multiple scattering.

SCF-Xa-SW: Self-consistent field-Xa—scattered wave.

SC-LSD: Self-consistent Local spin density.

SH: Simple Hiickel.

Xa: A local density method, « is a parameter.
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CHAPTER 2

DENSITY FUNCTIONAL THEORY CALCULATIONS

This chapter is composed of two main sections. In the first section, which is largely
compiled from the book Lecture Notes on Molecular Physics, by 3. Erkog [134],
we will give, at some length, introductory information about the fundamentals of
density functional theory (DFT). In the second section we will present the first

part of our study carried out by using DFT calculations.
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2.1 Density Functional Theory

2.1.1 Introduction

One of the main aim of quantum physics and quantum chemistry is, given
a system, to solve the electronic Schrodinger equation for the electronic wave

function

AV, = E,U, (2.1)

more or less accurately. The (approximate) solution ¥, is an N—electron wave
function and depends accordingly on 3N position-space coordinates and N spin
coordinates. For just medium-sized systems this function is therefore extremely
complex: for a water molecule, it is a function of 30 position—space coordinates
and 10 spin coordinates; for a benzene molecule it depends on 126 position—space
coordinates and 42 spin coordinates; for a crystal it depends on of the order

of 10** coordinates [117].

Having obtained the wave function W,, it is, in principle, possible to calcu-
late any experimental observable although, due to practical limitations, many of
the calculated properties are less accurate than may be desirable. A basic prob-
lem is that the wave function W, is very much more complex than is necessary
when calculating experimental observables. Most operators for the experimental

observables depend on the coordinates of only one or two electrons, i.e., of the
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3N position—space and /N spin coordinates, at most 6 position—space and 2 spin

coordinates are required. That is, for the operators of the form [117]

A=Y a(n), (2.2)

n=1
when calculating the expectation values, (¥, A |¥,), most of the complexity of U,

is redundant.

A particularly simple case occurs when A is written as in Eq.(2.2) and when,

furthermore, @ depends only on position—space coordinates,
a(n) =a(ry,) . (2.3)

This is actually the case for many physically and chemically relevant observables.

Since
a(r,) = / a(r') 8 (v, — ') dr', (2.4)

we find

(W, A|W,) = //---/\IIZ(rl,rQ,...,rN)\Ile(rl,rg,...,rN)
N

X Z a(r,) dridrs ...dry
n=1

= /[//.../\Il:(rl,r2,...,I‘N)\I’e(l‘brz,---arN)

N
X Y a(r') o (r, —r') dridry ...dry| dr’
n=1
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= /[//---/\Il:(1‘1,1'2,...,I‘N)\I’e(rl,rfza---arN)

N
XY 6(r,—1') dridry ... dry|a(r')dr’
n=1

(W AIw) = [ o) a(r)dr. (2.5)

In this result, we identify the quantity p(r') as the electron density of the electronic
system under question; it is of great importance in the density functional theory.

Its formula in terms of W, is

p(r') = i// . / (W, (ry,ro,...,vx8)?0 (r, — 1) drydry ...dry.  (2.6)

It is a nonnegative simple function of three variables, z, y, z, integrating to the
total number of electrons,

/p(r') dr' =N. (2.7)

Recapitulating our simple finding, Eq.(2.5), we draw a conclusion that for the

expectation value of the most of the physically and chemically relevant observ-

ables, we need only the electronic density p(r') [117].

We may now suggest that, somehow, we may avoid determining the complete
N—electron wave function ¥, but instead can determine only the position—space
density p and from that obtain all information that is of interest. This means
that instead of solving the Schrédinger equation (2.1) for the wave function W,

we would have to solve another equation that determines the electron density p.
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2.1.2 Basic Theory

The proposal for the use of electronic density goes back to the beginning of

the modern quantum theory [135]. Thomas and Fermi suggested [136-138] that

for larger systems (for N not too small), the number of electrons was so large

that the system could be treated using statistical arguments. Then the electron

density is the number of electrons per small volume element; and by assuming

that this number is large, a statistical treatment is justified. Furthermore, one

can then derive an approximate expression for the total energy of a such a gas of

electrons that move in a given external field (which in our case is the electrostatic

field generated by the nuclei). This total-energy expression then becomes one

depending solely on the electron density p. In its original form, it is

Byplpl = Tlol + [ o(x) p(x) dr + J]o],

where T'[p] is the kinetic energy

Tl =0, [FPwa, ¢, == (30)7

J[p] is the Coulombic electrostatic interactions between the electrons
L[ o) o)
s =1 [ [P
=g [ [P s

and v(r) is the external Coulombic potential generated by nuclei

(2.8)

(2.9)

(2.10)

(2.11)



For the electron density p, it is assumed that the ground state of an atom of
interest, p minimizes the energy functional F_ . [p|, under the constraint (2.7). Us-
ing the method of Lagrange multipliers, it is seen that the ground—state electron

density must satisfy the variational principle

54 Eralo) = iz | [ o) de = N|} =0 (212
which leads to the Euler-Lagrange equation

0B, . [p]
dp(r)

where ¢(r) is the electrostatic potential at point r due to the nucleus and the

frp = = 2 C, 70) - 6(r), (213)

entire electron distribution

é(r) = % — / p(r')/| dr'. (2.14)

r—r
Equation (2.13) can then be solved with the constraint (2.7), and the resulting
electron density p is inserted into FE,.[p] to give the total energy!. This is the

Thomas—Fermi theory of the atom.

We may now attempt to use E,, for a given system, but for those of interest
here it turns out that the results are very inaccurate. After all, the whole formal-

ism is constructed as being approximate, and only as long as the approximations

1 To calculate the electronic density (of atoms) for some basic problems, the Hartree—Fock
wave functions are conventionally and frequently used. Hartree—Fock results are available for
most atoms and ions [139]. More accurate (e.g. variational or configuration—interaction) atomic
functions could also be used; but these accurate functions are available only for small atoms.
Recently a work was presented offering general atomic density distribution for atoms [140]. Us-
ing these density distribution functions, one can easily do his/her calculations without referring
to Hartree-Fock wave functions.
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are valid we can expect reasonable results. First of all, the assumption that
there is a large number of electrons per small volume element is rarely justified.
The Thomas-Fermi approach is a pure density—based one, where the problem of
calculating the N—electron wave function is replaced by calculating the electron
density in three-dimensional position space. It is not constructed as being an
exact alternative to solving the Schrodinger equation, but rather as an approxi-

mation; therefore also the results are at most approximate.

Numerous modifications and improvements for the Thomas—Fermi theory have
been made over the years. The accuracy for atoms was not high as that with other
methods, which caused the method to be viewed as an oversimplified model of
much real importance for quantitative predictions in atomic and or molecular
solid-state physics. The situation, however, changed with the work of Hohenberg
and Kohn in 1964 [141]. They proved the fundamental theorems showing that,
for ground states, the Thomas-Fermi theory was merely an approximation to an

eract theory, the density functional theory (DFT).
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2.1.3 The Hohenberg—Kohn Theorems

For an N—electron system described by the Hamiltonian

N 1 ) N N 1
H:Z<__Vz> +Z’U(I’Z)+Zf, (215)
N 2 i=1 i<j T — 1y

where v (r;) is the external potential (associated with the electron-nucleus inter-
action) acting on the ith electron, both ground-state energy E, and the ground-
state wave function vy are determined, using the variational method, by mini-

mizing the energy functional

H
Ely) = % (2.16)
with the result
E[y] > Ey. (2.17)

It is clear that for an N—electron system, the external potential v completely fixes

the Hamiltonian; thus N and v determine all the properties for the ground state.

In lieu of N and v, the first Hohenberg—Kohn theorem [141] considers the use
of the electron density p as the basic variable. It simply states that the external
potential v is determined, within an additive constant, by the electron density p.
Since p and N are interrelated via Eq.(2.7), then p determines the ground-state

wave function 1y and all the other electronic properties of the system. The total
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energy is expressed as

Blp] = Tlo] + Velp] + Vaelpl = [ p(x)v(@) dr + Fy o], (2:18)

with

Fylp] = Tlp] + Veelpl , (2.19)
where T'[p] is the kinetic energy of N noninteracting electrons, V,¢[p] and V.[p]
are respectively the potential energy of associated with the electron—nucleus and

the electron—electron interactions. The functional for the electron—electron inter-

action can be written as
Veelp] = J[p] + nonclassical term , (2.20)
where J[p] is the Coulombic electrostatic interactions between the electrons
Lypre@pe).
= — —————=drd 2.21
Jlel 2// v —r| T (221)

and the nonclassical term, a very important term, includes the exchange func-

tional and all the many-body terms of the interacting electron system.

The second Hohenberg—Kohn theorem [141] provides the energy variational
principle: For a trial density p, such that p > 0 and [ p(r)dr = N, it is always
true that Elp| > Eo, where Ey is the ground-state energy of the system and
Elp] is the energy functional resulted from the trial density p. This provides the

justification for the variational principle in Thomas-Fermi theory that E,.[p] is
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an approximation to E[p]. The variational principle, E[p] > Ej, requires that the

ground-state density satisfies the stationary principle

(5{E[p]—,u[/,0(r)dr—N]} =0 (2.22)

which leads to the Euler-Lagrange equation

(5E_[p] =uo(r) +

= OF, [Pl
dp(r)

POR (2.23)

where the quantity p is the chemical potential which measures the escaping ten-
dency of an electron cloud; it is a constant, through all space for the ground-state

of an atom, or solid, and equals the slope of E versus N curve at constant v(r).

If the functional F,, [p] happens to be known, the stationary principle (2.22)
will be an exact equation for the ground-state electron density. We note from
Eq.(2.19) that F, . [p] is defined independently of the external potential v(r); this

means that F,,[p| is a universal functional of p.

Once the functional F, [p] is explicitly known (approximate or accurate),
the DFT method can be applied to any system. Equation (2.23) is the basic
working equation of DFT. Accurate calculational implementations of DFT are
still far from easy to achieve because of the unfortunate (though challenging) fact

that the functional form of F,, [p] is hard to come by in explicit form. Various
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methods have been developed to implement DFT in real systems. The most com-

monly used one is the so—called Kohn-Sham method [142]. They thereby turned

DFT into a practical tool for rigorous calculations.

2.1.4 The Kohn-Sham Method

To recapitulate, we have four interrelated equations:

Bl = [ p(e)v(x) dr+ Flp,

Flp] = Tlp] + Veelp],

— o(p) o OFuxp]

N = /p(r)dr.

(2.24)
(2.25)
(2.26)

(2.27)

Kohn and Sham [142] introduced orbitals into the problem in such a way that

the kinetic energy functional

N 1 )
T = an (il — §Vz' i)

(2.28)

where 1); are natural spin orbitals and n; are their corresponding occupation

numbers (the Pauli principle requires that 0 < n; < 1), can be computed to a

good accuracy. T in Eq.(2.28) is a functional of the total electron density

p(r) =3 Y 4, )
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Kohn and Sham showed that one can built a theory using simpler formulas,

namely
N

T,le) = 3 (] — 592 o) (2.30)

i

and
a 2
p(r) =3 > [¥ilr, )" . (2.31)
1 S
The latter two equations are the special case of the former two equations with
n; = 1 for N orbitals and n; = 0 for the rest. This representations of kinetic

energy and density holds true for the determinantal wave function that exactly

describes N noninteracting electrons, with the Hamiltonian

H, = f: (—%Vf) + i::vs(ri) : (2.32)

in which there are no electron—electron repulsion terms, and for which the ground—
state electron density is exactly p. For this system there will be an exact deter-

minantal ground-state wave function

1
where 1; are the N lowest eigenstates of the one-electron Hamiltonian h:
1o
hoths = |5 V2 + Vi) 1 = e (2.34)
The kinetic energy functional is, as given in Eq.(2.30),
N 1, N 1,
Tl = 3 (] = 5V = 3 (il = 592 o) (2.35)

% %
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and the density is decomposed as in Eq.(2.31).

In order to produce the separation out of T[p] as the kinetic energy compo-

nent, Eq.(2.25) is rewritten as
Flp] = Ti[p] + Jp] + Exclp] (2.36)
where

Eqelp] = Tlp] — Ts[p] + Veelpl — J1p] - (2.37)

The defined quantity E,.[p] is called the exchange—correlation energy; it contains

the difference between T" and T, and the nonclassical part of V.., Eq.(2.20).

The Euler equation now becomes

0T [p]
op(r)

p= veg(r) + (2.38)

where the Kohn—Sham effective potential is defined by

=o(r 0717 | OBuelp] =o(r p(r’) T’ + V(T
ver(r) = v(r) + 5p(r) + 5p(r) ( )+/ P dr’ + v (r) (2.39)

with the exchange—correlation potential

'Umc(r) - (240)

The explicit form of Ti[p] in terms of density is as yet unknown. We follow the

indirect approach designed by Kohn and Sham.
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The Kohn-Sham treatment runs as follows. For a given v.q(r), one obtains
the p(r) that satisfies Eq.(2.38) simply by solving the N one-electron equations

(the Kohn—Sham orbital equations)
Lo
[—§V + veﬂ"(r)] Vi = € (2.41)

and setting
p(r) =303 [uir,s)[ . (2.42)

Here, v.g(r) depends on p(r) through Eq.(2.40); hence Egs.(2.39), (2.41), and
(2.42), must be solved self-consistently. During the self-consistency procedure

mixing of density should be taken into account:

Pt = (1= a)pl, + aphy, (2.43)

The mixing parameter « is usually taken as ~ 0.15 [143]. One begins with a
guessed p(r), constructs vg(r) from Eq.(2.39), and then finds a new p(r) from
Egs.(2.41) and (2.42). The total energy can be computed directly from Eq.(2.24)

with Eq.(2.36), or indirectly from

N1 () plr)
B=Yea-g [ 5T

o e+ Bl - / Vee(r) p(r) dr , (2.44)

where

N

> = X (Wl = 5V valt) [9) = T+ [valr) plr)dr. (249

2
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Just as in Hartree-Fock theory, the total electronic energy is not the sum of the

orbital energies.

The computational effort to solve Kohn-Sham equations is not much more
than to solve the Hartree equations—less than for the Hartree-Fock equations.
The Hartree—Fock equations contain a nonlocal potential operator in the one—
electron Hamiltonian and hence are not a special case of the Kohn—Sham equa-
tions. All the three theories, Hartree-SCF, Hartree—Fock, and Kohn—Sham, pro-
vide one—electron equations for describing many—electron systems. The Kohn-—
Sham theory, exact in principle, is distinguished from the Hartree-Fock theory

in its capacity to fully incorporate the exchange—correlation effect of electrons.

2.1.5 Local-Density Approximation

The Kohn—Sham equations

[—%V2+’Ueﬂ]¢i = &Y (2.46)

valr) = w(r)+ / ‘ r”(_rg‘ dr' + vye(r) (2.47)

plr) = D> |i(r,s)? (2.48)

while exactly incorporating the kinetic energy Tj[p|, still leave the exchange-

correlation functional E,.[p| of Eq.(2.36) unsettled. An explicit form for E,.[p]
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is needed to specify the Kohn—Sham equations. The simplest approximation, the
local approximation to E,.[p] has been proposed by Kohn and Sham. The so

called local-density approzimation (LDA) for exchange and correlation energy,

B ) = [ p(x) eaelp) dr, (2.49)

where e,.(p) indicates the exchange and correlation energy per particle of a uni-
form electron gas of density p. The corresponding exchange-correlation potential
of Eq.(2.39) then becomes

oy _ OBl _ o 05s(p)

and the Kohn—Sham orbital equations read

[—%V2 +o(r) + / |I{)(_r’1)‘

dr’ + U;CDA(I') ’QDZ =&; ’wz . (251)

/|
The self—consistent solution of this equation defines the Kohn—Sham local den-
sity approximation (KS-LDA), which in the literature is usually simply called

the LDA method.

The function e,.(p) can be divided into ezchange and correlation contributions,

Eze(p) = €a(p) +c(p) - (2.52)

The exchange part is already known, given by the Dirac exchange—energy func-

tional of the form

1/3
alp) =G, a=3(2) (2.53)
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Accurate values of €.(p) are available. These values have been interpolated to

provide an analytic form for .(p).

The DFT method is not this much, here we just gave some introductory infor-
mation about the method, a detailed discussion of the theory and its applications

on atoms and molecules and much more can be found in Ref. [135].

2.1.6 Functionals Used in the DFT Method

Total energy of a many—electron system can be written in DFT as

Blol = [ v (x) plx) dr + T, + Vo] + Faelp]. (2.54)

Up to this point there is no approximation. All of this development comes out
directly from the Schrédinger equation. All of the functionals but E,. in Eq.(2.54)
are known. Once FE,. is happened to be known, the total energy E can be
minimized with respect to the density p, yielding the Kohn-Sham equations that

can be solved self—consistently
1 oo
_§V + ,Uext + vclass + ,U.TC ¢Z = gi (ZSZ Y (2'55)

where vy, and v,. are the potentials corresponding to the classical Coulomb

repulsive energy between the electrons and to the exchange-correlation energy,

33



respectively,

p(r') , 0 Eye[p(r)]
vclass(r) = / |I‘ — 1"| dI‘, Uacc(r) = T(I') .

(2.56)

The Kohn-Sham orbitals, {¢;}, in this procedure are the solutions for the non-

interacting system of electrons that feel the effective potential v.q

veﬂ" = ,Uext + vclass + ’Uwc . (2'57)
Therefore,
N N 1
Bo=Y ei=T+Vi=Y (il — 5V |6} + /ueﬁ(r) p(r) dr, (2.58)
i=1 i=1

where F;, T, and V; are respectively the total, kinetic, and potential energies of
the noninteracting system. The wave function of this noninteracting system is

exactly the determinant composed from the orbitals ¢;,

\I!s(rl,rz,"',I'N): \/%‘¢1¢2¢N| (259)

It should always be kept in mind that ¥, is not the wave function of the real
system, nor are the {¢;} related to real electrons, except that they yield the same

density through the sum
N
p(r) =" [gi(r)]*. (2.60)
i=1
The total energy for the real system will be evaluated from Eq.(2.54), where one

should use those orbitals that yield the minimum energy.
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2.1.6.1 Functionals

The first functionals related to E,. were not created with DFT in mind, but
rather were oriented to the description of exchange effects. Therefore, for practical

reasons, the partition,

Eccc[p] = Ew[p] + Ec[p] (2'61)

is invoked, with the implicit warning that we are defining at least one term (FE,)
that does not correspond to the ab initio E., while E, follows closely the HF

definition of exchange. The partition can be made according to convenience.

The calculation of exchange functionals is as old as quantum theory itself. The
first ab initio functional to be calculated for the exchange was the one for the
ground state of a uniform gas of electrons. Given a uniform density of electrons,
assumed to have a Fermi distribution, Bloch [144] obtained an exchange potential
energy proportional to p/3; later Dirac [145] used it to include the exchange in
the Thomas—Fermi atom [136, 146]; in both cases, no intention of a DFT proce-
dure was in mind as yet. Later, Slater [147] used the p!/? relation as a functional
to simplify the HF method, substituting for the more complicated HF exchange.
Slater [148] introduced a proportionality constant a to p*/® to reproduce the HF
exchange energy. This last method is called X« or HFS (HF-Slater) method,

and it can be regarded as an approximation to the Kohn-Sham procedure.
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The exchange energy using the formula for the uniform electron gas is the

local density approximation (LDA), written as

373 1/3
B =— [ 2 <;) 03 dr. (2.62)
The corresponding potential is
3 1/3
) == [2pw)] (2.63)

The above formulas and the following ones are often expressed using a parame-
ter rg, equivalent to the radius of a sphere with constant charge density p and a

total charge of one electron, also known as the Wigner-Seitz radius:

4 -1/3
Ty = (—’Kp) . (2.64)
3
Therefore,
3\ 1
EPAr) = — [ — —. 2.65
vs () (27r) Ts (2.65)

Equation (2.62) indicates that E, scales homogeneously when the coordinates are
scaled by a factor A:

E.lp,] = A Ey[p]. (2.66)

Therefore another way to define the exchange functional is as that portion of
the FE,. that scales linearly. The remainder will be defined as the correlation

functional F,.
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The uniform electron gas model gives us the first approximation for E,.

Bzt = [ e p(o)] p(x) dr. (2.67)

LDA ;

where 2% is the exchange—correlation energy distribution per unit volume, which

depends on the density only at the point where it is evaluated.

In principle, the ideal electron gas of uniform density requires a uniform pos-
itive charge of equal density but without exchange effects. This idealized system
is known as jellium. Because of the interaction of the positive charge with itself

and with the electron distribution, Eq.(2.54), reduces only to
Elp] =T, + Ey[p] - (2.68)

This equation can be solved numerically as accurate as is needed for any situation
by using plane waves, and analytically for some limiting cases. Therefore it will
be possible to obtain E,., and by subtracting the E, already known, the E,. can

be calculated.

In the literature there are many exchange and correlation functional; their
explicit forms with their limitations can be found in Refs. [117, 135, 149] and
the references therein. We here give only those that have been used in our DFT

calculations. They are the Becke-88 exchange functional [150]

2
BSS _ _LDA |1 ﬁx

_ : 2.69
213 A, (146 sinh™" ) (2.69)
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where

21/3|Vp‘ 3/3 1/3

and the correlation functional of Lee, Yang, and Parr [15]1]

LYP _ a —2/3 5/3 1 1 2 —cp™1/3
ggl = 71+dp—1/3 {p+bp [C’Fp 2t + 9 (tw + 2V p)] e } (2.70)
where
1 (|Vp]? 2 3 2)2/3
tw—§<T—Vp , CF—E(37T) 5

a=0.04918, b=0.132, ¢=0.2533, d=0.349.

We have been used these two functionals because of their best performance over

the years [152].

2.1.6.2 Classification of Functionals

The simplest type of DFT exchange treatment is to use a local functional, most
commonly the Dirac—Slater or X« functional [153], which gives the exact ex-
change energy for the uniform electron gas. Moving to a gradient—corrected ex-
change functional usually results in an improvement; one of the most widely used
such functionals is due to Becke [150]. The simplest way to treat the correlation is
to ignore it entirely, by using a "null” functional. A more sensible approach is to
use either a local functional such as the uniform gas correlation parametrization

of Vosko, Wilk and Nusair [154] or a gradient—corrected functional, an example
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of which is the functional of Lee, Yang and Parr [151]. Each pair of exchange and
correlation treatment gives a different type of exchange-correlation functional.
A general hierarchy of exchange and correlation functionals is represented in a
diagram as shown in Figure 2.1. In particular, two of these methods have been in
wide use for some time; S—null corresponds to Hartree-Fock-Slater theory, while

S—-VWN is commonly referred to as LSDA.

Exchange

GC B-null — B-VWN —= B-LYP

[ .

L Snul — SVWN —= SLYP

Correlation
N L GC

N: null L: local GC: gradient corrected

Figure 2.1: The hierarchy of exchange and correlation functionals.
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2.1.6.3 Comparison of Functionals

It has long been recognized that HF theory frequently gives bond lengths which
are too short. The bond lengths by the various DFT methods are mostly too
long, with some methods giving systematically long bond lengths. Some gen-
eral trends can also be discerned for bond angles. All of the functionals gave
smaller bond angle. The DFT dipole moments are often significantly in error,
the calculated values are all too small. All of the DFT methods are remarkably
successful in reproducing fundamental vibrational frequencies. It is well known
that HF frequencies are systematically too high. The atomization energies show
a large variation with theoretical method. HF method gives binding energies
which are too low, primarily because of inadequate treatment of electron corre-
lation. Overall, B-VWN and B-LYP are the DF'T methods exhibiting the best
performance. More information about the comparison of functionals for various

molecular properties may be found in Ref. [152].
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2.2 Structural and Electronic Properties of Al TiNi,, (k+ 1+ m = 2,3) Micro-

clusters: Density Functional Theory Calculations

2.2.1 Introduction

In the first part of our doctoral study, structural and electronic properties of
sixteen different microclusters of the type Al Ti;Ni,, (k+1+m = 2,3) have been
investigated. The dimers (Als, Tis, Nis), trimers (Als, Tis, Ni3) of elements alu-
minum, titanium, and nickel, and their binary combinations (AINi, AITi, NiTi,
Al,Ni, AlNi,, Al,Ti, NigTi, AlTis, NiTiy), and the ternary combination (A1TiNi)
have been studied in their ground states. The density functional theory (DFT)
calculations have been performed within the effective core potential (ECP) level
[with BSLYP exchange—correlation contribution]. All the calculations have been
carried out by using the GAUSSIAN-98 package [155]. The calculated spec-
troscopic constants (binding energy D,, equilibrium interatomic separation r,
and fundamental frequency we) of the dimers, the minimum energy configura-
tions of the trimers (bond lengths and bond angles, as well as their fundamental
frequencies w,) are reported. For all the microclusters considered, the possible
dissociation channels and the corresponding dissociation energies, the calculated
HOMO (highest occupied molecular orbital), LUMO (lowest unoccupied molec-
ular orbital), and HOMO-LUMO gap energies are presented. The calculated

dipole moments and excess charges on the atoms of the trimers are also given.
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The calculated values are compared with the previously reported ones computed
by various other approximate methods and estimated experimentally. Several

discrepancies appear between the present calculations and some literature values.

2.2.2 Method of Calculation

Why density functional theory and effective core potential methods? When
the standard quantum—mechanical methods are too time—consuming or incapable,
DFT provides us with the formal framework for energy calculations with predic-
tive value. Even when working with DF'T, one usually encounters some great
computational difficulties in treating systems with atoms having many electrons.
The ECP or pseudopotential methods have been indispensable in overcoming
partially these difficulties. In these methods, instead of considering all the elec-
trons (all-electron ab initio methods), one treats only valence electrons explicitly;
the remaining "effective core” electrons are thought to modify the potential in
which the valence electrons move. (For a good review, see Ref. [16] and refer-
ences therein.) The ECP methods have proven their accuracy and reliability over
many years; they give good results for chemical systems, with error relative to
the experiment comparable to corresponding error obtained from all-electron ab

initio methods [45].
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In this first part, AlyTi;Ni,, (k+ 1+ m = 2,3) microclusters have been inves-
tigated theoretically by performing DFT calculations. The exchange and corre-
lation potentials contributions have been considered at B3LYP level [135]. The
compact effective potential (CEP) basis functions with ECP triple-split basis,
namely, CEP-121G [156-158], have been used in the calculations. The exchange
term of B3LYP consists of hybrid Hartree-Fock and local spin density (LSD) ex-
change functions with Becke’s gradient correlation to LSD exchange [150]. The
correlation term of B3LYP consists of the Vosko, Wilk, Nusair (VWN3) local
correlational functional [154] and Lee, Yang, Parr (LYP) correlation correction
functional [151]. The BLYP method gives a better improvement over the SCF-
HF results, as we mentioned earlier. Its predictions are in qualitative agree-
ment with experiment. In general, the DFT method overestimates the energies,
and it gives shorter bond lengths than the experimental values. However, the
optimized structures predicted at BLYP level are in good agreement with the

experiment[159, 160].

CEP-121G basis functions are becoming widely used in quantum chemistry,
particularly in the study of compounds containing heavy elements [156-158]. The
CEP basis sets have been used to calculate the equilibrium structures and spec-
troscopic properties of several small molecules [156]. The standard basis set of

CEP theory was consistent for the entire series not only within the lanthanide
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series but also with the second and third row metals. The quality of the CEP—
121G basis set does not degrade when going from the second to third row of the
periodic table. In the present calculations, CEP-121G basis set and the number
of primitive Gausssians used in CEP-121G vary from atom to atom, depending

on the valence structure of atoms considered.

2.2.3 Results and Discussions
2.2.3.1 Dimers

The calculated results, as well as some experimental and theoretical outcomes
from the literature, related to homonuclear dimers Al,, Niy, and Ti, are pre-

sented in Tables 2.1-2.3.

Aly: The Al-Al bond in the bulk metal is 2.86 A [176], as compared with our
value of 2.65 A. The corresponding experimental value, estimated from vibrational
spectra of aluminum, is 2.70 A [163], which is very close to the present calculation.
As is seen from Table 2.1, both experimental and theoretical values for AI-Al bond
are all in a good range of 2.45-2.95 A, most of them are close to the experimental
value of 2.70 A. This is not surprising because aluminum is almost an ideal free
electron metal. It is light and has only one isotope. These properties render

it being one of the model systems for testing and developing ideas about metal
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Table 2.1: Spectroscopic constants of Aly. Binding energy D, is in eV, equilibrium

interatomic separation r, is in A, and the fundamental frequency w, is in cm 1.

D, Te We Method Reference
0.4531 | 2.6520 | 274.3 | DFT This work
1.5 | 2.466 | 350.0 | Exp. 161]
1.55 Exp. [162]
2.70 | 284.2 | Exp. [163]
1.33 2.51 354 | ab initio (pseudopotential) [56]
2.95 | 246 | ab initio MD [74]
1.425 | 2.73 277 | SOCI + Q BIG-ANO [109]
2.51 first princ. calc. [110]
1.51 2.519 ab initio & par. emp. pot. [111]
2.03 2.70 290 | LSD (pseudopot.) + MD [112]
1.19 2779 | 270 | MCSCF+FOCI [164]
2.0 LDA [165]
0.08 2.65 CI (all-electron & ECP) [166]
1.35 | 2.717 | 285 | CCD + ST [167]
1.30 2.493 | 338 | MRCI+D [168]
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Table 2.2: Spectroscopic constants of Nis. Binding energy D, is in eV, equilibrium

interatomic separation r. is in A, and the fundamental frequency we is in cm™?.

D, Te We Method Reference
1.2581 | 2.4948 | 222.2 | DFT This work
330 | Exp. [42]
2.068 | 2.200 Exp. [47]
2.08 Exp. [114]
192 | Exp. [122]
2.3 Exp. [161]
2.38 Exp. [162]
2.03 Exp. & abs. ent. meth. [169]
2.36 2.30 325 | Exp. & second law calc. [169]
381 | Exp. [170]
280 | Exp. [171]
262 |25 EH [39]
2.5 MO [41]
142 220 [289 |CI [43]
097 [260 |23 |HF [43]
1.89 |2.26 | (190) | ECP-GVB-CI [44]
143 |233 |211 |ECP-CI [45]
121 |236 |201 |ECP-1-pair CI [45]
092 |233 |[216 |ECP-SCF [45]
228 | 240 | RHF [46]
2.49 ECP-MCSCF (53]
332 | 2.00 DFT (LCAO-MO) [91]
2.4 CONDO [107]
2.02 |204 |344 |ECP-GVB-CI [121]
278 |2.21 |395 |MEH [123]
245 |221 |37 |EH [172]
2.70 | 218 |320 |DFT (LSD) [173]
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Table 2.3: Spectroscopic constants of Tiy. Binding energy D, is in eV, equilibrium

interatomic separation r, is in A, and the fundamental frequency w, is in cm 1.

D, Te We Method Reference
2.8979 | 1.8537 | 482.4 | DFT This work
407.9 | Exp. [100]
1.3 Exp. [161]
1.31 Exp. 162]
1.23 Exp. & second law calc. [174]
1.42 2.65 288 | Exp. & third law calc. [174]
3.0 MO [41]
1.87 | 580 | RHF [46]
1.88 [230 |250 |EH [172]
2.30 | 252 |220 |DFT (LSD) [173]
1.96 DV-Xa« [175]

clusters. It is possible to perform reasonably reliable theoretical calculations on
aluminum clusters [177]. The calculated binding energy D, for Al, of 0.45 €V is
significantly lower than the experimental estimate of ~ 1.5 eV [161, 162]. This
is in contrast with the general trend of the DFT methods because, as it was
mentioned before, the DFT methods, in general, overestimate the energies with
respect to the experimental values. The reason for this discrepancy might be due
to the ECP method itself since ECP considers only the valance electrons of the
system. In this work Al atom has the least number of electrons among the atoms
considered. If we had used an all-electron formalism, with an extended basis set,

we might have obtained a result closer to the experimental value for the binding
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energy D, of Aly. The fundamental frequency w, is calculated to be 274.3 cm ™!, in

reasonable agreement with the experimental value of 284.2 cm™ [163]. For more
rigorous treatments for Als, involving low—lying states, the reader is recommended

to go over Refs. [109, 164, 166-168].

Niy: The ground state is found to be a bond length of 2.4948 A, which is sur-
prisingly (and incidentally) almost equal to the bulk value of 2.4919 A [176].
The discrepancy between the present result and the seemingly best estimate
of 2.200 A of the experiment [47], which was on jet-cooled Nis, is not too severe.
On the other hand, the case for the binding energy cannot, however, be seen reli-
able: the ground state is found to has a binding energy of 1.2581 eV, which is not
at all close the corresponding experimental value of 2.068 eV. Similar to Als, the
present binding energy is much lower than the experimental one, again not con-
sistent with the general trend of the DFT method. As is seen from Table 2.2, the
other calculated D, values vary in a large range from 1.42 to 3.42 eV i.e., there
is no unanimous answer concerning the binding energy of Nis in the literature.
The situation for the fundamental frequency w, is even more severe: both ex-
perimental estimates and other theoretical calculations exhibit a great diversity;

the present value of 222.2 cm™! lies between the two extrema of 192 and 395 cm ™.
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Ti,: The Ti—Ti bond is calculated to be 1.8537 A, lower than the bulk value of
2.95A [176] and the conjectured value of 2.65 A used by Kant [174] in his semiem-
pirical calculations. We have not encountered any other experimental value for
the bond length to compare. The other calculated results for r. taken from the
literature again do not show any unanimity. The binding energy D, of Tij is
calculated as 2.8979 eV, which is significantly overestimated compared with the
experimental estimate of ~ 1.3 eV [161, 162, 174] and with the other theoretical
calculations. In this case the results for both bond length and binding energy
is consistent with the typical outcomes of the DFT method. The fundamental
frequency w, is calculated to be 482.4 cm~!, which may be considered to be much
closer to the experimental prediction of 407.9 cm™! [100] (matrix—isolated Tiy)

than the other calculated values cited in Table 2.3.

We have seen in Ni, and Ti, cases that their binding energies were significantly
different from the corresponding experimental values. A possible reason might be
the use of the ECP scheme instead of an all-electron approach, similar to the Al,
case. Another possible reason could be that the B3LYP exchange and correlation
functionals might not properly take into account spin polarization (which leads
to magnetism in some TM elements) in Ni and Ti elements [178] and this might

account for the observed binding energy discrepancies in Nis and Tis.
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Table 2.4: Spectroscopic constants of heteronuclear diatoms. Binding energy D, is

in €V, equilibrium interatomic separation r, is in A, and the fundamental frequency w,

is in cm 1.

Diatom D, Te w. | Method | Reference

Al-Ni | 3.3511 | 2.5331 | 263.5 | DFT | This work
Al-Ti | 2.0708 | 2.7480 | 202.9 | DFT | This work
Ni-Ti | 2.8032 | 2.0567 | 349.3 | DFT | This work

AINi, AlTi, NiTi: For these heteroneuclear diatoms there was no exper-
imental and theoretical data to compare in the literature. However, relatively
much information are available about many of the homonuclear metal dimers. To
our best knowledge, the present calculated values are the first for these species.

Calculated spectroscopic constants for these dimers are given in Table 2.4.

2.2.3.2 Trimers

The present calculated results for the homonuclear trimers Als, Niz, and Tis,
with some experimental and theoretical values from the literature, are tabulated
in Table 2.5. The geometry adoption, with a = b, is as shown in Figure 2.2.
In the following discussion, we will focus mainly on the structure of the trimers
considered. This is not only the most intriguing question in the short history

of the clusters, but also one of the most difficult aspects to probe. Because
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of the approximations made, the theoretical calculations usually result in the
equilibrium geometries which are not accepted unanimously. Even in the simplest
case of homonuclear trimers, we have seen that there was no consensus about
the question of whether the considered species is linear, isosceles triangle, or

equilateral triangle.

Figure 2.2: Geometry of triatom with parameters.

Als: With an ab initio pseudopotential method, Upton [56] conjectured the
triangular form of Al; as being most stable. Considering an ab initio calcula-
tion, Basch [181] found that the Als trimer having lowest energy is in triangular
form (nearly equilateral triangle); similarly in his perturbed electron drop model
calculation, Upton [110] also obtained the same result. Pettersson et al. [111]
considered both ab initio and parametric empirical potential calculations for Al,
clusters, and they also found that the triangular configuration for Al; is ener-

getically most stable. Pacchioni and Koutecky [180] considered pseudopotential
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Table 2.5: Trimers Alz, Nig, and Ti3 at minimum energy configurations. Bond lengths

a = barein A, bond angle @ is in degree, and the vibration with maximum amplitude w*

is in cm~!. The geometry, with a = b, is as shown in Figure 2.2. (The abbreviations

in the ”Structure” column are as E: equilateral, T: triangular, L: linear.)

Trimer | Structure | a 0 w* Method Reference
Al E 2.64 200.7 | DFT This work
E (Ds,) | 2.802 Exp. & MO [179], or
T (Coy) | 2.709 | 72.6 Exp. & MO [179]
T 2.61 | 60.5 ab initio (pseudopotential) [56]
E 2.52 255 | first princ. calc. [74]
E 2.916 MRD CI 108, 180]
T (C2) |2.62 | 60.5 first princ. calc. [110]
T 2.619 | 71.0 ab initio & par. emp. pot. [111]
E 2.46 DFT [112]
T (Coy) | 247 |63 MD [113]
T 2.55 | 63 MCSCF/MRCI [168]
T (Ds) | 2.569 | 56.2 MCSCF [181]
T (D3) | 2.584 empirical PEF [182]
E (Dy,) | 2.58 MD [183]
Nis E 2.21 227.8 | DFT This work
202 | Exp. [42]
T (Cay) 90-100 | 232.3 | Exp. [118]
E 2.5 EH [39]
L 2.5 MO [41]
L ECP-MCSCF-CI [45]
T 2.15 | 61.14 DFT [91]
E CNDO [107]
L 2.25 MO [123]
T (Dsp) | 2.253 empirical PEF [182]
L&E SCF/CCI [184]
Tis T 2.30 | 67.97 75.2 | DFT This work
E 3.1 MO [41]
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calculations and found that linear and equilateral triangle forms of the Al; trimer
are energetically almost degenerate. On the other hand, Howard et al. [179] in
their ESR spectroscopy experiment observed that the equilateral triangle geom-
etry of Als has lowest energy. The finding of Tse [168] is the triangular form for
Alz. In his empirical PEF calculation Erkog [182, 183] found the triangular form
of Als as most stable. Jones [112], using DFT calculation, found that the equilat-
eral triangle form of Al; is energetically most stable. El-Bayyari and Erkog [113],
with the molecular dynamics technique, found the triangular form of Al with
Cs, symmetry as the energetically most stable structure. Finally, with a first
principle calculation, Yang et al. [74] found an equilateral triangular structure
for the ground state of Als. In the present study, we found the ground state to
be an equilateral triangle with a bond length of 2.64 A, which may be seen to be
consistent with the other calculations. We also tried a linear geometry for Alg
and found that its energy is about 0.3 eV above from that of the equilateral one.
We note that our bond length for Als is very close to that for Al, dimer, 2.6520 A.
Our result for the vibration with the maximum amplitude, w* = 200.7 cm™! is
in reasonable agreement with that of Yang et al. [74], 255 cm™!. For a more

rigorous treatment of Als, see Ref. [181]; and for a detailed information about Al

clusters see Ref. [177].
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Niz: There exists a controversy between theory and experiment for this mi-
crocluster. With semiempirical methods Anderson [41, 123] and with ab initio
methods Basch et al. [45] predicted the linear structure to be most stable. Basch
et al. found that the linear form is more stable by 0.17 eV than the triangular
form. In solid argon matrix, Moskovits and DiLella [118] found, on the other
hand, the geometry of Niz in solid argon to be a bent structure with an apex
angle predicted between 90° and 100°. The semiempirical calculations of Bly-
holder [107], extended Hiickel calculations of Baetzold [39], and empirical PEF
calculations of Erko¢ [182] predicted the equilateral form for Niz as most stable.
Blyholder found that the equilateral form was more stable than the linear one by
1.7 eV. Reuse and Khanna [91], with a DFT calculation, found a triangular form
with an apex angle 61° as being most stable. In this work, we found the ground
state to be an equilateral triangle with a bond length of 2.21 A, which is not too
different from the other literature values. Furthermore, our trial linear geometry
for Nizg has appeared with an energy value which was significantly above from
that of the equilateral one by 3.1 eV. We also note that our bond length of 2.21
A for Nis is significantly lower from that for Ni, dimer, 2.4948 A. Koutecky [16]
states that from theoretical and experimental results the conclusion can be drawn
that in a gas phase the Nis species is probably a fluzional molecule. As to the
vibrational frequency, Moskovits and Hulse [42] attribute a system with a spac-

ing of 202 cm™! to Niz. Moskovits and DiLella [118] later observed Niz with a
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1

dominant frequency about resonance 232.3 cm~". The present calculated value

of 227.8 cm™! is in good agreement with these two experimental values.

Tis: We found the ground state to be a triangle with a bond length of 2.30 A,
an apex angle of 67.97°, and a maximum—amplitude—vibration of 75.2 cm!. We
have encountered only one theoretical calculation in the literature: Anderson [41],
with the molecular orbital approximation, found the ground state to be an equi-
lateral triangle with a bond length of 3.1 A. We note that the present bond length
of 2.30 A for Tis is greater from that of Ti, dimer, 1.8537 A. It is also found that
a trial linear geometry for Tiz has an energy which is about 2.8 eV above from

that of the (isosceles) triangular one.

Heteronuclear trimers: For these species, as well as homonuclear ones dis-
cussed above, all the calculated results are given in Table 2.6. We have encoun-
tered neither experimental nor theoretical information about these heteronuclear
species in the literature to compare. Data on polyatomic metal clusters was in-
deed very limited. To our best knowledge, the present calculated values are the
first for these species. An interesting feature of Table 2.6 is that the optimized
minimum energy structure of AINiNi is linear in the given order. Furthermore,

both AINiNi and TiTiAl trimers have asymmetric structure.
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Table 2.6: Trimers of Al;TiNi,, at minimum energy configurations. Bond lengths a
and b are in A, bond angle 6 is in degree, and vibrational frequencies w, are in cm 1.
The geometry is as shown in Figure 2.2. The asterisked frequencies represent the

vibrations with maximum amplitude.

A-B-C a b 0 wy Wo w3 Wy

Al-Al-Al | 2.6444 | 2.6444 | 60.00 | 200.7* | 201.3 | 301.1 —
Ni-Ni-Ni | 2.2184 | 2.2184 | 60.00 | 227.8 | 231.4* | 3334 —
Ti-Ti-Ti | 2.3035 | 2.3035 | 67.97 | 75.2% | 261.3 | 368.1 —

Al-Ni-Al | 2.2907 | 2.2907 | 77.87 | 147.8 | 302.8* | 358.4 —
Al-Ni-Ni | 2.8152 | 2.3430 | 180.00 | 64.4 75.2 | 171.4% | 245.3
Al-Ti-Al | 2.8631 | 2.8631 | 64.35 | 139.0* | 182.8 | 208.4 —
Ni-Ti-Ni | 2.0346 | 2.0346 | 116.81 | 81.0 | 340.1 | 421.5*% | —
Ti-Ti—-Al | 2.9985 | 2.6779 | 58.56 | 133.0 | 203.1* | 251.1 —
Ti-Ni—Ti | 2.3719 | 2.3719 | 51.27 | 143.6 | 284.7* | 470.0 —

Ni-Al-Ti | 2.3633 | 2.7302 | 151.99 | 45.0 | 160.9* | 351.7 —
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2.2.3.3 Energetics of clusters

We calculated the possible dissociation channels and the corresponding dissoci-
ation energies, which are presented in Tables 2.7 and 2.8. We define the dis-
sociation energy of a particular dissociation channel XY — X + Y as EFy, =

EXY _ EX _ EY

. o el Y .1- From experimental point of view, this definition may be

reversed. It is seen from Tables 2.7 and 2.8 that atomization energies of homonu-
clear trimers are, not surprisingly, greater than those of the corresponding dimers.
Besides, homonuclear trimers, X3, are seen to dissociate as X3 — Xy + X, as ex-
pected. All but XTi,, all the XY, type trimers dissociate as XY, — XY + Y.
XTiy type trimers, i.e. AlTi, and NiTis, prefer to fragment into XTis, — X +
Ti,. NiAlTi trimer dissociates as NiAlTi — AINi + Ti, consistent with the fact
that AINi dimer has the greatest binding energy. For Nis, and Nig we found the
dissociation energies to be —1.2581 and —4.6854 eV, respectively. These results
contradict with the findings of Anderson [123] (using gas phase UV Ni atom spec-
tra), Lian et al. [114] (the collision induced fragmentation of Ni; clusters), and
Reuse and Khanna [91] (DFT calculations); they all found that the dissociation

energy of Nig was lower than that of Nis.
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Table 2.7: Dissociation data of the most stable Al,Ti;Ni,, microclusters: the possible
dissociation channels and the corresponding dissociation energies (in eV). The aster-
isked rows represent the favorable dissociation for the corresponding clusters. Trimer
structures are as shown in Figure 2.2.

Cluster Dissociation | Dissociation
A-B-C channel energy
Al-Al —  2Al —0.4531
Ti-Ti — 2T —2.8979
Ni—Ni —  2Ni —1.2581
Al-Ni — Al 4+ Ni —3.3511
Al-Ti — Al + Ti —2.0708
Ni-Ti — Ni+ Ti —2.8032
Al-Al-Al — 3Al —2.6859
Al, + Al —2.2328*
Ni-Ni-Ni — 3Ni —5.9436
Ni, + Ni —4.6854*
Ti-Ti-Ti — 3Ti —5.8400
Tiy + Ti —2.9420*
Al-Ni-Al — Al, + Ni —4.8000
2A1 + Ni —5.2531
AINi + Al —1.9020*
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Table 2.8: Continuation of Table 2.7.

Cluster Dissociation Dissociation
A-B-C channel energy
Al-Ni-Ni Al + Ni, —3.6298
Al + 2Ni —4.8880
AINi + Ni —1.5369*
Al-Ti-Al Al, + Ti —3.3556
2A1 + Ti —3.8087
Al + AlTi —1.7379*
Ni-Ti-Ni Ni, + Ti —5.7217
2Ni + Ti —6.9799
Ni + NiTi —4.1766*
Ti-Ti—Al Al + Ti, —3.0561*
Al 4+ 2T —5.9540
AlTi + Ti —3.8832
Ti-Ni-Ti Ni + Tis —4.0595*
Ni 4+ 2Ti —6.9575
NiTi + Ti —4.1542
Ni—-Al-Ti Al 4+ Ni + Ti | —5.4357
AINi + Ti —2.0846*
AlTi + Ni —3.3649
Al + NiTi —2.6324
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We calculated HOMO-LUMO gaps of all the microclusters considered in this
work, which are given in Table 2.9. Since the number of electrons in Al-Al, Ni-Ni,
Ti-Ti, Ni-Ti, Ni-Ni-Ni, Ti-Ti-Ti, Al-Ni-Al, Ni-Ti-Ni, and Ti-Ni-Ti is even,
this microclusters have only a-states; on the other hand, the remaining clusters
have odd number of electrons hence they have both a— and g—states. The most
striking feature seen from Table 2.9 is that the calculated HOMO-LUMO en-
ergy gap of dimers are relatively smaller than the corresponding ones for trimers,
which may not be expected; but we should not hurry in drawing any conclusion
from this result because both homonuclear dimers and the corresponding trimers
are too small to be classified as conducting or not. Another feature is that the

gap of a states are relatively larger than that of 3 states, except AITiAl trimer.

The calculated excess charge and dipole moments of the trimers are given
in Table 2.10. Because of their rotational symmetry, homonuclear trimers with
equilateral-triangular structure, i.e. Alg and Nisz, do not experience charge sepa-
rations among the atoms, resulting in no dipole moments. All symmetric trimers,
i.e., Tiz, AINiAl, AITiAl, NiTiNi, and TiNiTi, have some excess (positive) charges
equally distributed on the end atoms, and the negative charge on the center atom.
The remaining trimers AINiNi, TiTiAl (which has the largest dipole moment),
and NiAlITi have no symmetry at all so that their charge separation do not exhibit

any regular pattern. We note that all the trimers except Al and Nig bears a net,
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Table 2.9: Calculated HOMO, LUMO energies (in Hatree) and HOMO-LUMO

gap (E,) energies (in eV) of dimers and trimers.

Species | HOMO(«a) | LUMO(a) | Ey(a) | HOMO(B) | LUMO(B) | E,(8)
Al-Al —0.1416 —0.1176 | 0.6525 — — —
Ni-Ni —0.1441 —0.1253 | 0.5124 — — —
Ti-Ti —0.1118 —0.0776 | 0.9322 — — —
Al-Ni —0.1786 —0.0847 | 2.5556 | —0.1744 —0.0922 | 2.2362
Al-Ti —0.1643 —0.0765 | 2.3888 | —0.1479 —0.0837 | 1.7456
Ni-Ti —0.1191 —0.0821 | 1.0054 — — —
Al-Al-Al | —-0.1714 —0.1162 | 1.5020 | —0.1681 —0.1184 | 1.3527
Ni-Ni-Ni | —0.1714 —0.0879 | 2.2718 — — —
Ti-Ti-Ti | —0.1376 —0.0749 | 1.7039 — — —
Al-Ni-Al | —0.1792 —0.0975 | 2.2239 — — —
Al-Ni-Ni | —0.1616 —0.0891 | 1.9736 | —0.1607 —0.1499 | 0.2920
Al-Ti-Al | —0.1466 —0.1128 | 0.9205 | —0.1706 —0.1101 | 1.6463
Ni-Ti-Ni | —0.1718 —0.0982 | 2.0046 — — —
Ti-Ti-Al | —0.1607 —0.0715 | 2.4272 | —0.1579 —0.0899 | 1.8509
Ti-Ni-Ti | —0.1443 —0.0760 | 1.8580 — — —
Ni-Al-Ti | —0.1909 —0.0996 | 2.4854 | —0.1427 | —0.08750 | 1.5023
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Table 2.10: Calculated excess charge (in units of electron charge) on atoms, and dipole
moments (in Debye) of trimers.

A-B-C q(A) q(B) q(C) Lo Iy Iz

Al-Al-Al| 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
Ni-Ni-Ni | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
Ti-Ti-Ti | —0.0422 0.0845 | —0.0422 | 0.0727 | 0.0000 | 0.0727

Al-Ni-Al | 0.3407 | —0.6815 0.3407 | 0.3952 | 0.0000 | 0.3952
Al-Ni-Ni | 0.2068 0.1295 | —0.3362 | 1.2073 | 0.0000 | 1.2073
Al-Ti-Al 0.1308 | —0.2616 0.1308 | 2.0216 | 0.0000 | 2.0216
Ni-Ti—-Ni 0.1746 | —0.3492 0.1746 | 2.2309 | 0.0000 | 2.2309
Ti-Ti-Al | —0.1044 | —0.1918 0.2962 | 2.2304 | 0.6519 | 2.3237
Ti-Ni-Ti 0.0274 | —0.0548 0.0274 | 0.1591 | 0.0000 | 0.1591

Ni—-Al-Ti | —0.3334 0.5133 | —0.1800 | 1.2085 | 0.0426 | 1.2092

dipole moment, as expected. Here we should point out that the excess charge
distribution pattern on atoms, both in sign and in amount, demonstrates a strong
dependence on geometry. For example, the charge on Ni atom in NiTiNi is about

+0.17 electron charge whereas in TiNiTi it is about —0.05 electron charge.

In concluding, compared with the experimental and the other theoretical re-
sults, the method of calculation and the basis set chosen in the first part of the
doctoral study are seen to give reliable results for systems considered; therefore,

it is quite appropriate to use the same method and basis set for other systems.
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CHAPTER 3

EMPIRICAL POTENTIAL ENERGY FUNCTION FOR AITiNi

TERNARY SYSTEM

3.1 Introduction

The literature of last decades has witnessed many attempts devoted to predict
energetically the most stable structures of small clusters. The methods used can
be broadly classified into two groups, namely, computer simulations using empir-
ical model potentials and ab initio calculations from first principles. But why a
computer simulation based on a potential energy function (PEF) instead of an
ab initio method? In spite of the advent of sophisticated computers, it is still
not practical to handle systems containing more than a few heavy atoms using
ab initio methods. It is generally accepted that in order to describe accurately
the bonding phenomenon in metal clusters one needs high levels of theory [166].
Because of the partial occupancy of d orbitals in TMs, even in a simple case
of homonuclear dimers of TMs, there is no unanimously accepted results, as we

witnessed in Section 2.2. The seemingly most challenging problem in molecular
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electronic ab initio methods is that as the system under study gets larger and
larger, the number of molecular integrals to be evaluated increases in a tremen-
dous manner. This in turn requires an expensive computational time. An efficient
remedy for solving this problem is to introduce a reliable empirical model PEF.
Computer simulations based on empirical PEFs have been used successfully to
investigate the various bulk, surface, and cluster properties of numerous systems
at the atomistic level [185]. Many of these simulations were based on empirical
model potentials describing interactions among the atoms in the system under
study [186]. It is likely that the use of empirical PEFs will continue its indispens-

ability in material science computations.

3.2 Modeling & Simulation

A molecular—scale simulation involves a three—step procedure: (i) modeling in-
dividual particles, (7) simulating the movements of a large number of the model
particles, and (7)) analyzing the simulation data for the required collective phe-
nomenon. Here are the words modeling and simulation that deserve further clari-
fication. A modeling is an attempt to decouple and remove interactions that have
little or no influence on the observables being studied. Thus a model is simpler
than the system it mimics: it has access to fewer states. Decoupling interactions

means relaxing constraints; and a model has access to some states not available
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to the original system. In other words, a model is a subset or subsystem of the
original system: outputs from a model will be consistent with those of the orig-
inal system, but only for a restricted set of inputs. For those restricted inputs,
since the model is a subsystem of the original one, states visited by the model

correspond to those visited by the original system.

In contrast, a stmulation is more complicated than the system it simulates: a
simulation generally can reach many more states than the original system can.
A simulation imposes constraints so that the simulated output is consistent with
the output of the original system, at least for a restricted set of inputs. A simula-
tion will typically bear no structural relation to the original system; for example,
the way constraints are imposed in the simulation may differ from the mechanism
that confines the original system to certain states. Hence, states in the simulation

may bear no correspondence to states of the original system.

Here is an example to clarify these ideas. We identify a substance and its
observables we want to study, say, thermodynamic properties of argon. Then
we construct a model of the substance, say, the spherically symmetric, pairwise
additive Lennard—Jones potential, which is a true model. The Lennard—Jones
potential is simpler than the argon potential because argon atoms are not perfect

spheres and their interactions are certainly not only pairwise additive. With the
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model chosen, we then perform a simulation—but a simulation of what? It can
only be a simulation of the model, of the Lennard-Jones substance. We do not
simulate argon. The simulation is more complex than the model, but the added
complexity does not add to the realism of the resulting observable outputs. In
error are those who claim that molecular dynamics simulates argon, or water, or

proteins, or whatever. We simulate molecular models of such substances.

3.3 Models for Atomistic Simulations

A computer simulation is valuable because it is applied to a precisely defined
model for the material of interest. The model is actually composed of two parts:
one for the interacting among the atoms making up the system and another for
interactions between the atoms and their environments. The latter encompasses
boundary conditions, which describe how the atoms interact with their surround-
ings. Characteristics of boundary conditions are largely dictated by the physical

situation to be simulated.

The model for atomistic interactions is contained in an interatomic force law
or, equivalently, an interatomic potential energy function (PEF). This PEF im-
plicitly describes the geometric shapes of the individual atoms or, more precisely,

their electron clouds. Thus when we specify a PEF, we establish the symmetry
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of the atoms, whether they are rigid or flexible; how many interaction types are
prevail among atoms, two—body interaction, three-body interaction, ...; and so
on. A detailed characterization of interatomic PEF may be given analytically or
numerically; in any case a quantitative form for PEF defines a molecular model

and hence the form must be chosen before a simulation.

3.4  General Features of Potential Energy Functions

A PEF is a parametric function designated to describe the interactions among
the atoms in a system. It is parameterized to give the empirical data for the sys-
tem under consideration. Apart from the condition that a PEF must possess
all physically required invariance properties, it is usually desired to have a small
number of parameters because the more parameters a PEF has, the more time
consuming the parametrization is. Furthermore, it is difficult to relate the ob-

served structure back to the PEF parameters.

The Born—Oppenheimer approximation [187] provides us with an unambigu-
ous definition of a PEF for the nuclei of a system. The PEF & of a system
depends only on the positions of the nuclei and it implicitly contains the energy
of the ground state electronic wave function that binds the nuclei together. If

there is no external field acting on the system, then the PEF depends on the
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relative positions of the nuclei (or, equivalently, atomic positions) and it can be
expanded quite generally into a many-body series containing two—, three—, ...,
N-body potentials which describe the interactions between two atoms, among
three atoms, ..., among N atoms, respectively [188], like the multipole expansion

in electrostatics:

N N
®(ry,re,...,rx) = > Ui (ri,r;) + > Wik (vi,rjrp) + - -
i<j i<j<k
N
+ Z szlcN (rivrjvrkv"'7rN) ) (31)
i<j<ka <N

where r; is the position vector for the atom 2, and N is the total number of
atoms in the system. In practice, it is difficult to handle such an expansion in
calculations; furthermore, it is not an easy task to define many-body atomic inter-
actions. For these reasons the expansion is usually truncated after the three—body
term [189]. Contributions of the truncated terms can sensitively be included in
the PEF by inserting some linear combination parameters to the remaining two—
and three-body terms [182, 190, 191]. All PEF parameters can be determined
by making use of available experimental data and constraints imposed on the
system. This is actually a hard step to achieve and requires skill and experience.
For example, if a PEF is to be used for a bulk matter, the parameters are usu-
ally determined by considering the cohesive energy per atom and the stability
condition d®/dV = 0 at T = 0 K. If the so-parametrized PEF reproduces other

experimental values such as bulk moduli, elastic constants, surface energies, etc.,
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then it is said to reasonably represent the bulk matter under study [11]. A com-
mon situation is that one has not any experimental datum to determine the PEF
parameters. What is done in that case is to resort to accurate first principles
ab initio theoretical results. In any case, the main aim of parametrization is to
obtain a fitting as accurate as possible for small systems (generally only for two—
and three—atom systems). Once this is achieved, a well-constructed reliable PEF

can be successfully used for larger systems, including bulk materials.

In general finding an appropriate PEF constitutes the most important and
the most difficult part in the simulation of a system. It is necessary to describe
the PEF of the system in terms of empirical or model potential functions with
simple analytic forms. In the literature there are many such functions for two—
and three-body interactions whose explicit functional forms for various systems

were recently collected together in two reviews [192, 193].

3.5 Two-Body Potential Energy Functions

The potential energy functions used in molecular—scale simulations divide into
two broad classes: those for soft bodies, for which the interatomic forces are
continuous functions of the between molecules, and those for hard bodies, for

which the forces are discontinuous. For hard bodies, the discontinuity in the
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force extends to the interatomic potential; in particular, hard spheres of diameter

o interact through a PEF u(r) of the form

u(r) = B (3.2)

which is shown in Figure 3.1. Thus hard spheres exert forces on one another
only when they collide. Between collisions the spheres travel along straight lines
at constant velocities, and so, rather than compute trajectories, the simulation
algorithm computes the times of collision. The calculation is purely algebraic
because collisions are taken to be perfectly elastic: during a collision no energy
is transferred either to deform a sphere or to change its internal state. Thus two
principles, conservation of linear momentum and conservation of kinetic energy,

enable us to determine collision times.

Figure 3.1: The pair PEF u(r) for hard spheres
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Although it is instructive, the hard—sphere potential is not realistic. What
is needed is a model PEF that accounts both for short-range, repulsive over-
lap forces and for long-range, attractive dispersion forces. Short—range repulsive
forces prevent the substance from collapsing onto itself, while long-range attrac-
tions deter disintegration of the substance (in the absence of a container). A

well-known useful model for the soft—sphere pair potential is the Lennard—Jones

u(r) = const. [(%)n - (%)m] . (3.3)

The range and strength of repulsive and attractive forces determined by the values

potential:

assigned to the integers n and m. The most popular choice is n = 12 and m = 6,

leading to the (12,6) Lennard-Jones pair PEF:

Ury) = e [(%) "ty (%)6] . (3.4)

where 7;; = |r; — r;| is the interatomic distance between the atoms ¢ and j. In
Eq. (3.4) the first term inside the brackets represents the repulsive branch and the
second term represents the attractive branch of the interaction potential between
two atoms. U (r;;) = 0 when the two atoms are infinitely far apart, i.e., when
rij = oo. Using dU/dr;; = 0, it is readily seen that the minimum value of the
energy is —eg (i.e., the depth of the potential well is £¢). This minimum occurs
at r;; = ro and this is the position of the static equilibrium. In Figure 3.2 the
(12,6) Lennard-Jones pair PEF, U(r), and the corresponding pair force, F(r),

are shown qualitatively.
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Figure 3.2: The (12,6) Lennard—Jones pair PEF, U(r), and the corresponding pair
force, F(r).
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Empirical two—body, or pair, potentials, like the LJ potential, have been uti-
lized for years for a variety of bulk, surface, interface, and cluster simulations. We
now know, however, that if the PEF of a system includes only two—body inter-
action, such a PEF does not stabilize open crystal structures; does not give the
proper surface lattice plane spacing changes on relaxation; or does not provide the
proper atomic configuration for trimers [194]. There are two ways to overcome
the deficiency of a two—body interaction (not necessarily only LJ-type). One can
scale the total energy into two parts as repulsive Uy (r;;) and attractive Uss (7;;)
terms [195]:

N N N
® =Y Uy = Do Y Un(rij) + Doy Un(ryj) - (3.5)

1<j 1<j i<j

The additional parameters Dy; and Doy can then be determined analytically from
the stability condition d®/dV = 0 at T = 0 K. The combination Dy Uz (ri;) +
D4yUss (15) can be said to represent the effective pair interaction. The second
way of overcoming the deficiency of a two—body interaction is to include a three—
body interaction term in the PEF of the system. Any angular dependence of
a PEF is essentially an expression of the many-body effect and thus the PEF
needs at least a three-body potential for its description. Unfortunately, it is a
very difficult task to derive a three-body atomic interaction from pure quantum

mechanical means [196].
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3.6 Empirical Potential Energy Function for AITiNi Ternary System

Now we return to our AITiNi ternary system. As usual we assume that, in
the absence of external forces, there exists a PEF, ®(ry,rs,...,ry), describing
the total potential energy of a system of N atoms as a functions of their posi-
tions and that this PEF can be expanded into the contributions from two—body,
three-body, ... interactions, as given in Eq.(3.1). It is usually believed that
this series is rapidly convergent [189] and that the first two terms give a reason-
able approximation to the total interaction potential. (As we mentioned above,
the contributions of the remaining terms, beyond the three-body term, may be
forced to be included in the two— and three-body parts during the parametriza-
tion process.) In early applications, this expansion used to be truncated after
the two—body term. However, it has been shown [197, 198] that the three-body
term makes important contributions to the structure and stability of different
microclusters, and is essential to a proper understanding of surface multilayer

relaxation in crystals [199].

In this study, the expansion (3.1) has also been truncated after the second
term so that only the two— and three-body interactions were included. The
Lennard-Jones potential, Eq.(3.4), has been taken for the two-body part, and

the Axilrod-Teller triple-dipole potential for the three-body part [200], their
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explicit form respectively are
o\ 12 o\ ©
Uy = L) —2(2 3.6
o) )] o

Z (1 + 3cosb; cos b; cosby,)

(rij rie )’

and

Wijk = , (3.7)

where 7;; = |r; — r;| is the interatomic distance between the atoms 4 and j; 6;,
¢, and 0 are the angles of the triangle formed by the three atoms ¢, 7, k; and
Z is the three-body parameter which is a measure of the energy density in the
three-body part. [For the information about the derivation of Eq.(3.7), see Ref.
[196].] The combination of PEF given above, (LJ 4+ AT), has proven its usefulness
and was successfully used for different cluster systems as well as for surface and
bulk properties of some materials [111, 200-204]. should emphasize here that, in
the literature, this empirical many—body potential energy function, Eq.(3.1) with
Egs.(3.6) and (3.7), is the one which has the least number of parameters for a

monatomic system, namely rg, €, and Z.

An important point is in order here. In the electronic properties of the ele-
ments containing many electrons, such as those in our work, relativistic effects
play an important role. This fact is even more crucial in molecules. However,
empirical potentials do not contain electronic information directly; they contain

all kinds of contributions, nonrelativistic and/or relativistic, indirectly by using
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accurate dimer, cluster, and bulk properties in their parametrization procedure.
This approach has been used successfully before for elements such as nickel [206],
copper [207], ZnCd binary [208, 209], and even for heavier elements such as sil-
ver [210], gold [211, 212], lanthanum [213], lutethium [214], uranium [215], and

AuGaAs ternary [202, 204, 216] systems.

3.6.1 Parametrization of the Empirical Potential Energy Function for AITiNi

Ternary System

Making use of the available experimental data and the quantum mechanical
calculation results for dimers and trimers of Al, Ni, and Ti (see Tables 2.1-2.3 and
2.5; we have not taken Table 2.4 into account because there was no available ex-
perimental data for the heteronuclear dimers of the elements under consideration),
we have determined the parameters, (rg, €, Z) of the PEF, Eqgs.(3.1,3.6,3.7), for
the AITiNi ternary system. The binding energy and the interatomic equilibrium
distance for two—atom clusters, whereas the binding energy and the geometry
for three—atom clusters have been taken into account during the parametrization
process. The main objective was to re-obtain the geometry and the total ener-
gies of the dimers and trimers of the elements under consideration as close as
those resulting from experiments and, at the same time, those resulting from the

previous ab initio results. The so—obtained parameter set for the AITiNi ternary
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Table 3.1: Empirical potential energy function parameters determined for the AITiNi
ternary system.

Two-body parameters || Three-body parameters
Dimer ¢, (eV) 7, (A) || Trimer Z (eV A9)
Al-Al  1.60 2.55 || AlI-Al-Al 3000.0
Ti-Ti 2.00 2.30 || Ti-Ti-Ti 1760.0
Ni—-Ni 2.20 2.22 Ni—-Ni—Ni 1813.0
Al-Ti 1.70 270 || AI-AI-Ti 6000.0
Al-Ni 1.70 2.25 Al-Al-Ni 1510.0
Ti-Ni  2.20 2.00 | AI-Ti-Ti 500.0

Al-Ni—-Ni 3810.0
Ti-Ti-Ni 600.0
Ti-Ni-Ni 250.0
Al-Ti—-Ni 290.0

system is presented in Table 3.1. We should point out here that this parameter
set can be more suitable for cluster applications; it is, not surprisingly, likely that
it might not properly work for bulk properties. This is due to the fact that we
have not made use of bulk properties in the parametrization procedure, instead

we have used only the two— and three-atom properties mentioned above.

The mentioned parametrization procedure is not like the least—square fitting
method; it is merely a numerical search being aimed to get predetermined geom-

etry and energy of the system studied. We first reasonably fixed the two-body
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parameters 7y and €y by making use of the experimental data and ab initio re-
sults, then we determined the three-body parameter Z. In the determination
of Z, the two—body parameters were always kept fixed; however, the Z values
for homonuclear systems were determined analytically, whereas for heteronuclear
systems they are determined partly analytically and partly numerically by con-

sidering the predetermined total energy and geometry of the system considered.
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CHAPTER 4

MOLECULAR DYNAMICS SIMULATIONS

This chapter is composed of three main sections. In the first section, we will give,
at some length, introductory information about molecular dynamics method. In
the second and third sections we will present the second and third parts of our
study carried out by using both DFT calculations and molecular dynamics sim-

ulations.

4.1 Molecular Dynamics Methods

4.1.1 Introduction

Molecular dynamics (MD) methods are now widely accepted means for simu-
lating molecular—scale models of matter. Although they were originally devised
in the 1950s, with the advent of sophisticated computers, they only began to
receive widespread attention in the mid—1950s. Today they continue to attract
attention from researchers and they are now an indispensable tool in material

science, solid and liquid state physics, physical chemistry, etc.
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The essence of MD is simply solving the N-body problem of classical me-
chanics. Since the time of Newton, the N-body problem has been viewed im-
portant, but the reasons for its importance has evolved. At the present time, its
importance stems from attempts to relate collective dynamics to single—particle
dynamic, attempts motivated by the hope that the puzzling behavior of large
collections of particles can be explained by examining the motions of individual

particles.

Molecular dynamics simulations compute the motions of individual molecules
(atoms) in models of solids, liquids, and gases. The key idea of MD simulation is
motion, which describes how positions, velocities, and orientations change with
time. Molecular dynamics simulation is the modern realization of an old idea in
science that the behavior of a system can be computed if we have a set of initial

conditions plus forces of interaction.

In the following, the commonly used simulation methods will be summarized
and, because it is used in the present work, a detailed information will be given
for MD method. The following information is basically compiled from the book

Lecture Notes on Simulations of Many—Particle Systems by S. Erkog [217].
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4.1.2 Atomistic Computer Simulations

As we pointed out previously, the first two tasks of the dynamic modeling are
(7) developing a model and (7) using the model in a simulation. The first task,
model development, includes choosing a form for the interatomic PEF. Once the
basic physical behavior of the system is embodied in the PEF, large-scale numer-
ical calculations, referred to as atomistic computer simulations (ACS), provide
an iterative solution to the basic structural, energetic, and dynamical behavior
of the interacting atoms. After we have chosen the model potential, we must
derive appropriate equations of motion. In this chapter we tackle simulation of
substances modeled as soft spheres, substances for which the potential is that

proposed in the previous chapter, Eq.(3.1) with Eqgs.(3.6) and (3.7).

Before entering the details of the MD method, it would be appropriate here
to give some general information about the methods used in ACSs. There are
four basic ACS methods: Static method, Monte—Carlo method, lattice—dynamics
method, and molecular—dynamics method. The common property of all these
methods is that their application to the determination of macroscopic properties
from a microscopic description of the Born-Oppenheimer potential using numer-

ical methods on high—speed computers.
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Figure 4.1: The static method, qualitatively. {z}* is portion of the level surface of
the hypersurface of the PEF of the system.

4.1.2.1 The Static Method

The static method [218] is the simplest one. An initial configuration of the atoms
of the input to the program and the forces on all the atoms are calculated from
the PEF using

Then, all of the atoms are displaced in the direction of the net force acting on
them, and the magnitude of this displacement is proportional to the magnitude
of the force. Thus the static method traverses the gradient path from the initial
configuration to the closest local critical point which may or may not be the
global minimum, see Figure 4.1. Since the static method is able to find only

stable minima, it can not be used for full thermodynamic calculations.
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4.1.2.2 The Monte—Carlo Method

The Monte-Carlo Method [218-221] aspires to the generation of a large num-
ber of successive atomic configurations which, taken as a whole, approximate the
canonical ensemble of the system of atoms. The constraints of constant volume
and number of atoms are automatically satisfied by the use of periodic bound-
ary conditions. The constraint of constant temperature is achieved through the
following method. Small random displacements are applied to an atom and the
PEF of the system is used to calculate the change in energy, A®, caused by
this displacement. If A® is negative, this displacement is accepted as a new
configuration. If A® is positive, then the Metropolis criterion is applied; that

is, the Boltzman factor, e 2

, is calculated for the temperature T" at which the
simulation is desired. This factor is then compared to a random number to prob-
abilistically some configurations of higher energy to be included in the ensemble.
Modification of this method can be used to generate other ensembles, such as a

constant pressure and temperature ensemble. Figure 4.2 diagramatically shows

the general feature of the Monte—Carlo method.
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Figure 4.2: The Monte-Carlo method, qualitatively.

4.1.2.3 The Lattice—Dynamics Method

The lattice-dynamics method [223] is distinct from the other techniques in that it
generates an analytic representation for the atomic motion in terms of harmonic
functions (i.e., phonons), see Figure 4.3. This is accomplished by considering only
small amplitude, low temperature vibrations of the atoms about some metastable
point of the PEF hypersurface, so that the curvature of the hypersurface at that
point suffices for characterizing the atomic motion. Although the applicability
of this method is severely restricted compared to the Monte-Carlo and/or MD
techniques, its advantage is that the phase space becomes analytically integrable,

so that the entropy and related quantities can be directly obtained.
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Figure 4.3: The lattice-dynamics method, qualitatively.

4.1.2.4 The Molecular Dynamics Method

The molecular dynamics method [223-226] attempts to numerically integrate the

classical equations of motion,

62)(2' 1
=_——V,;0, =1,2,...,3N, 4.2
ot? my; ¢ ( )

for a collection of N atoms interacting through a specific analytic PEF and sub-
ject to a periodic boundary conditions that constraint the volume and number of
atoms. A variety of numerical algorithms are available for this purpose. When
done with sufficient accuracy, the total energy in the system will be constant, thus
the MD method generates a time—ordered series of atomic configurations which,
taken as a whole, approximate the microcanonical ensemble for the system. Mod-

ification of the technique can allow constant pressure or temperature ensembles
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Figure 4.4: The molecular dynamics method, qualitatively.

to be generated. In addition, MD can be applied to the study of non—equilibrium
and kinetic phenomena. Figure 4.4 diagramatically shows the general feature of

the MD method.

4.1.3 An Important Algorithmic Feature: Truncated Potential

In a system of N atoms, the double sum in the pair potential, for example
the one in Eq.(3.6), accumulates N (N — 1) unique pair interactions. Thus if all
pair interactions are sampled during a simulation, the number of such samples
increases with the square of the number of atoms, N2. Moreover, if the allowed

range of interaction between atoms is increased, say from r to r + dr, then the
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number of sampled interactions increases as r2; that is,

N(r,0r) ~ pV(r,dr) ~ 4mwpr? ér. (4.3)

Here p is the number density, N(r,0r) is the number of atoms in a spherical shell

of radius r and thickness dr, and V (r, dr) is the volume of the shell.

From Figure 3.2 it is seen that the Lennard—Jones pair potential extends over
a modest range of pair separations; as a result, we can achieve a considerable
savings in computer time by neglecting pair interactions beyond some distance

r = R.. The same considerations hold also for three-body interactions.

4.1.4 Details Of Molecular Dynamics Method
4.1.4.1 A General Look at the Method

What is done in an MD simulation can be simply summarized as follows:

1. Choose the initial configuration, calculate the total energy E using

@z@(rl,rg,...,rN)EE. (44)

(a) Determine velocities {v;} considering Maxwell speed distribution for
a given temperature 7. (For constant temperature only—temperature

rescaling.)
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t (or number of MD step)

Figure 4.5: Variation of energy with respect to time (or number of MD steps).

(b) Move particles for a time step At, determine new configuration, cal-

culate energy. (For relaxation only—without temperature rescaling.)

2. Calculate forces using

F,=-V,®, (4.5)
and calculate velocities using
dv;

3. Go to (a) or (b).

Figure 4.5 depicts typical energy variation with respect to time (or number of

MD steps).

88



4.1.4.2 Details

In a Newtonian MD simulation one simply solves Newton’s equations of motion
for a collection of N particles interacting via an assumed PEF, ®. Consider N
particles inside a cubic box of volume V = L3. Each time step the simulation
starts with the calculation of the force for each particles, F; = —V,;®. In this eval-
uation the interaction between a pair of particles is ignored if their separation r
is greater than a predetermined cut—off radius R,,,. The size of the computation

cell and R, should satisty R, < L/2.

The system is made pseudo—infinite by the application of periodic boundary
conditions in the three cartesian directions, which is accomplished by the nearest
image convention [228]. In evaluating the force on particle ¢ due to particle j, we
look at the image of j, j', which is nearest to 7 as shown in Figure 4.6. This is

achieved by the transformation:

if Tijo = L/2 then Tijoq $ Tijo — L, (47)

if Tijo, > —L/2 then Tijo = Tijg + L , (48)

where « stands for z, or y, or z.
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Figure 4.6: Nearest image model for periodic boundary condition.

Having obtained the total force on each particle, we integrate its equation of
motion, F; = m(9%r;/0t?), between times n At and (n + 1)At using a convenient,
numerical integration method, which we tackle in the following section. The

kinetic energy and temperature of the system at step n is calculated using

1
K=Y gmiluf (49)
and
2 K
= - — 4.10
3 Nkp ( )

If the movement of a particle produced after solving the equation of motion takes
it outside the calculation box, the periodic boundary conditions are applied to

bring it back into the box by means of the transformation

if r4>L/2 then 1, < 71— L, (4.11)

if r,>-L/2 then 1, <+ Ti.+0L, (4.12)
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with the convention that the origin of the coordinates is at the center of the cal-

culational box.

When the system is in thermal equilibrium, the total kinetic energy is about
%N kgT, the velocity distribution remains Maxwelian, and at the same time, the

particle displacement distribution becomes a Gaussian form.

The termination of the simulation can be decided by checking the variation
of total energy of the system versus the number of time steps: when a smooth

region is reached, as in Figure 4.5, the simulation is halted.

4.1.5 Algorithms for Molecular Dynamics

At this point we have a MD simulation of atoms whose PEF varies contin-
uously with distances among atoms, i.e., atoms are treated as "soft-bodies”.
We are required a numerical method for solving differential equations with the
known initial values. Most of the algorithms used in MD methods are based
on the so—called finite—difference methods, which are classical tools for attacking

initial-value problems.
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Finite—difference methods replace differentials such as dx and dt with finite
differences Az and At; they replace differential equations with finite—difference
equations; and over a small but finite time At¢, they assume the rate (or some

known function of the rate) is constant.

Most of finite—difference methods stem from truncated Taylor expansions;
the simplest one, for example, is Fuler’s method, which is a Taylor expansion

truncated after the first—order term:
z(t+ At) = z(t) + At (t) . (4.13)

From the known (or estimated) value of = at ¢, this method estimates = at ¢ + At

by extrapolating from z(¢) the straight line that has slope Z(t), evaluated at t.

The most commonly used finite-difference methods are the Runge-Kutta (RK)
methods [229, 230]. These methods have the structure of Euler’s method, Eq.(4.13).
The various RK methods differ from one another in how the slope 2(t) is es-
timated. Fach RK algorithm estimates the slope at points along At and then
computes a weighted average to get a single value to be used in Eq.(4.13). Runge-
Kutta methods have been little used in MD because, for large numbers of atoms,
the RK algorithms are too slow; they have been used in simulations of systems

involving a very few degrees of freedom [231].
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Verlet’s method [232] is the simplest finite—difference method that has been
widely used in MD. The algorithm is a combination of two Taylor’s expansions

(up to the third order) for z(t + At) and z(t — At):
ot + At) = 22(t) — ot — At) + i(t) A + O (At*) | (4.14)

In this approximation the acceleration % is obtained from the interatomic forces
and Newton’s second law. Various schemes can be used to estimate velocities.

One of them is

o(t) ~ x(t+ At)Q—AZU(t — At) '

(4.15)
We notice that Verlet’s algorithm is a two—step method because it estimates
z(t + At) from the current position z(t) and the previous position z(t — At).
Therefore it is not self-starting: initial positions z(0) and velocities v(0) are not

enough to begin a calculation, and something must be done at t = 0 (say, a

backward Euler method) to get z(—At).

4.1.5.1 Predictor—Corrector Algorithms

As seen above, Verlet’s algorithm uses positions and velocities from previously
calculated steps. Another well-reputed algorithm, called predictor—corrector al-

gorithm [233], runs reversely: it estimates positions and velocities for future steps.
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Predictor—corrector algorithms are composed of three steps: prediction, eval-
uation, and correction. For just an example, from the current position z(¢) and
velocity v(t) the steps are as: (i) Predict the position z(t + At) and velocity
v(t + At) at the end of a step. (i) Evaluate the forces at t + At using the
predicted position. (777) Correct the predictions using some combination of the

predicted and previous values of position and velocity.

Predictor—corrector methods offer great flexibility in that many choices are
possible for both the prediction and correction steps. They may be either one—
step, in which case they are self-starting, or multistep methods, in which case

something special must be done to start the calculation.

4.1.5.2 Nordsieck—Gear Predictor—Corrector Algorithm

This is the most commonly used algorithm in MD [234, 235]. To illustrate its
fifth—order version in detail, we first make some definitions. Let ¢o(t) be one of
the 3N coordinate components for an assembly of N atoms. If D is taken as the

operator for the time derivative d/dt, the scaled derivatives of go(¢) will be

1
a(t) = A" Do . (4.16)

The Nordsieck—Gear predictor—corrector algorithm consists of the following steps:
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e Predict atomic position gy at time ¢+ At using a fifth—order Taylor expansion
based on position and its derivatives at time ¢. Thus, the derivatives q;, ¢2,
q3, Ga, 5 are needed at each step; these are also predicted at time ¢ + At
by applying Taylor expansion at ¢:

qo(t-l-At): G + ¢ + g2 -+ g3 + qs + gs

a(t+ At) = @ + 2¢ + 3¢ + 4qga + 5S¢
@ (t+ At) = 2 + 3¢ + 6qg + 10¢
gs(t + At) = g3 + 4q + 10¢s
qa(t + At) = @4 + 5S¢
gs(t + At) = s

where all the quantities on the right are evaluated at time t.

e Fuwaluate the associated interatomic force F' on the atom concerned at time

t + At using the predicted position gq.

e C(orrect the predicted position and its derivatives using the discrepancy Ags
between the predicted acceleration and that given by the evaluated force.
With the forces at t+ At obtained in the previous step and Newton’s second
law can be used to determine the accelerations ¢o(t + At). The difference

between the predicted and evaluated accelerations is then formed:

Agy = [qat + At) — g (t + At)] (4.17)
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which leads to a discrepancy function

¢ = %%(At)? — ot + AL). (4.18)

In this algorithm, for second order differential equations, this discrepancy

function is used to correct all predicted positions and their derivatives. They

are
(4 At) = gu(t+ At) +ong, 1 =0,1,2,3,4,5, (4.19)
where
3 251 _, 1 1 1
a0_16’ a1_360a C\f2— ’ a3_18’ O54_67 a5_60‘

The parameters o, cause the algorithm to have a higher stability; they
depend on the order of the Taylor series predictor. As to the integration
time step At, it depends on the system studied and is usually on the order

of 10715 second.

In the present study, the seventh order predictor—corrector method has been

used in the solutions of equations of motion.
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4.2 AlTyNi,, (k+1+m = 4) Ternary Alloy Microlusters: Molecular Dynamics

Simulations and Density Functional Theory Calculations

4.2.1 Introduction

The second part of our study is the continuation of the previous one, pre-
sented in Section 2.2, but this time & + [ + m = 4. In this study, structural
and electronic properties of fifteen different microclusters of the type Al,Ti;Ni,,
(k4 1+ m = 4) have been investigated theoretically. The elemental clusters (Aly,
Tig, Nig), their binary (Al3Ni, AloNis, AINis, Al3Ti, AlyTis, AlTis, NisTi, NipTiy,
NiTi;), and ternary combinations (AlyTiNi, AlTi,Ni, AlTiNiy) have been studied

in their ground states.

This work is composed of two stages. In the first stage, we have parameterized
a reliable empirical PEF for the AITiNi ternary system. The PEF used in the
calculations includes two— and three-body atomic interactions which were respec-
tively represented by Lennard—Jones and Axilrod—Teller type functions. Then,
performing MD simulations, we obtained and reported minimum energy configu-
rations for the clusters. A discussion about the energetics of the species in both
1 K and 300 K then follows. We compared the energetically most stable geome-
tries with the previously reported ones computed by various other approximate

methods and estimated experimentally (available only for Aly and Nig). In the
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second stage, in order to explore the electronic properties of the most stable clus-
ters obtained from MD simulations, we have performed DFT calculations within
the effective core potential (ECP) level with B3LYP exchange—correlation poten-
tial, the same as in the first part. The DFT calculations were carried out by using
the GAUSSIAN 98 package [155]. For all the clusters considered, the possible
dissociation channels and the corresponding dissociation energies, the calculated
highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital
(LUMO), and HOMO-LUMO gap energies are presented. The calculated dipole

moments and excess charges on the atoms of the four—atom clusters are also given.

4.2.2 Results and Discussions

4.2.2.1 MD Simulations Results

Having fixed the empirical potential parameters, we have used the new poten-
tial in the simulations of four—atom clusters of the elements under consideration,
Al TiNi,, (k4+14+m = 4), by MD technique. Since clusters assume their geometry
according to the local minima on the potential energy hypersurface (PES) of the
system, a cluster should be expected to have as many ”isomers” as the number of
local minima, just like molecules. In order to "catch” the real minimum energy
configuration of the system, corresponding to the global minimum on the PES

hypersurface, one then must try as many initial configuration as possible at low
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temperature. Although the difference in the interaction energy of the isomers is
usually small, their structures may be greatly different. (Here an important point
isin order: there exist some well-known standard methods to determine the global
minimum-—energy configuration of a system. For example, a single initial configu-
ration can be optimized either through the simulated annealing or quenching, or
through the conjugated gradient and steepest descend methods. There should be
no doubt that it is more likely to find the global minimum-energy configuration
of the system under consideration by starting with many randomly—chosen differ-
ent initial configurations than by starting with only a single initial configuration
optimized through the methods mentioned above [236].) For all these reasons,
we have tried 1000 randomly generated initial configurations, within a volume of
7.5 x 7.5 x 7.5 A3, for each cluster under consideration. Each configuration then
was relaxed, as an isolated cluster, through the MD simulations at low tempera-
ture, 1 K. The one giving the minimum energy was then taken as the most stable
structure for the cluster. The cluster geometry of the most stable structures ob-
tained using the MD simulations are shown in Figure 4.7 (which correspond to
the geometry of the cluster at the last MD step), the corresponding interatomic

distances are given in Table 4.1.
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Figure 4.7: Structures of clusters optimized with use of the empirical potential via
MD simulations.
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Table 4.1: Interatomic distances (in A) of the stable clusters obtained as the result
of MD simulations. (d;; is the distance between atoms i and j. The geometries of the
clusters and the labels of the atoms are as shown in Figure 4.7.)

Cluster Dimensionality d12 d13 d14 d23 d24 d34
Aly 3D 2.67 | 2.67 | 2.67 | 2.67 | 2.67 | 2.67
Niy 2D 2291229 | 388|243 |2.29 | 2.29
Tiy 2D 2.36 | 2.36 | 2.46 | 4.02 | 2.35 | 2.35
Al3Ni 2D 2.63 1425|228 | 2.63 | 2.35 | 2.28
AlyNi, 2D 2.61 | 225|420 | 225 |4.21 | 2.16
AlNi; 2D 218 1 4.27 | 4.28 | 2.26 | 2.26 | 2.30
Al;Ti 2D 2.71 1 2.60 | 2.78 | 2.60 | 2.78 | 4.64
Al Tiy 2D 4.88 | 2.70 | 2.70 | 2.70 | 2.70 | 2.31
AlTi; 3D 2.72 12721272237 | 237|237
NigTi 3D 233 1233203233203 2.03
NiyTis 3D 2271205205205 205|246
NiTig 2D 2.02 | 2.07 | 2.02 | 2.37 | 3.80 | 2.36
Al,TiNi 2D 4.40 | 2.72 | 2.24 | 2.72 | 2.24 | 2.01
AlTi,Ni 3D 27312731227 237|204 | 2.04
AlTiNi, 2D 2.76 1 4.13 | 2.21 | 2.03 | 2.01 | 2.20

101



Starting with many randomly—chosen different initial configurations assisted
us in identifying the isomers of the clusters, so that we were able to determine the
energy distribution of each species. Just for an example, for Al, case, 1000 initial
random geometry resulted in four distinct energy values (so that four well-defined
geometries), namely around 6.6 eV (equilateral pyramid), 6.5 eV (equilateral par-
allelogram), 5.9 eV (Y-shaped, like Al;Ni, in Figure 4.7), and 5.3 eV (linear). We
saw that each of the trial runs went into one of these four values, not into any
other energy (geometry). This situation was similar for all the remaining clus-
ters. We tabulated the energy distribution data in Table 4.2. As is seen from
that table, the number of isomers varies from one species to another, according
to their constituent atoms. As advertised previously, we saw indeed several "iso-
mers” for each cluster, possessing geometries not similar at all each other. That
there exist only a few, finite number of local minima is the result of the fact that
we chose our working temperature as to be 1 K. At such a low temperature, it is
natural for only low—energy states (geometries) to be populated. To see the effect
of temperature on the energy levels (geometries) of the clusters, we performed
another series of simulations at 300 K. We were again able to obtain the minimum
energy-geometries obtained at 1 K with some small distortions. Because the in-
creased temperature adds some small amount of kinetic energy to the atoms, the
minimum-energies at 300 K were slightly larger (i.e. absolutely smaller) than

those at 1 K (compare the third column with the last column in Table 4.3). The
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most striking difference between the studies at 1 K and 300 K was that in the lat-
ter case there was no distinct energy values (so that no well-defined geometries)
at all. For all the clusters considered, we witnessed the same situation at 300 K.
Put another way, the increased temperature caused high—energy states (beside
the low—energy states) to populate. To visualize this phenomenon clearly, we
superimposed in Figure 4.8 the Gaussian-broadened distributions (for number of
clusters possessing the energy between F and E + dF) of Al, clusters at 1 K and
300 K. It follows from this figure that the distinct energy values at 1 K (corre-
sponds to peaks in dashed-line curve) disappear at 300 K (only one peak in solid
curve). Secondly, we see that the majority of randomly-chosen different initial
configurations result in structures with energy close to the global minimum. This
means that 300 K for Aly cluster (and for others also) should not be considered

as high temperature.

Clusters differ from molecules which usually possess definite compositions and
definite geometries. As mentioned above, the properties of a cluster depend on
the number of constituent atoms and so does the energetically most stable struc-
ture. Although a particular geometry may be more stable than any of several
others, clusters generally can assume any of a number of different geometries. In
low-temperature studies, like the present one, the number of distinct geometries

is finite because the cluster does not have energy enough to pass over some ”large”
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Table 4.2: Energy distribution of the clusters studied. (FE is the total interaction
energies of possible isomers via MD simulation. n represents the total number of trials
giving the same energy.)

Cluster —E(n)

Aly 6.6 (12) 6.5 (1561) 5.9 (567) 5.3 (270)

Tig 7.9 (52) 7.3 (493) 6.7 (455)

Nig 8.1 (14) 7.8 (326) 7.5 (565) 7.3 (27) 7.2 (45) 6.7 (23)

Al3Ti 6.5 (46) 6.3 (40) 6.2 (221) 5.9 (320) 5.6 (200) 5.5 (154)
5.4 (19)

Al,Tip | 8.7 (409) 8.1 (19) 7.6 (230) 7.5 (262) 5.7 (76) 5.3 (4)

AlTis 9.5 (155) 9.0 (842) 5.3 (3)

Al3Ni 6.9 (72) 6.7 (59) 6.4 (48) 6.1 (288) 6.0 (203) 5.6 (100)
5.3 (230)

AlLNiy, | 7.5(164) 7.4 (81) 6.6 (505) 6.5 (21) 6.4 (74) 6.3 (30)
6.0 (5) 5.4 (120)

AlNis 7.8 (186) 7.5 (345) 7.4 (430) 5.7 (34) 5.6 (5)

TigNi 9.0 (54) 8.4 (44) 7.9 (340) 7.3 (115) 7.1 (130) 6.7 (287)

TisNis 10.4 (294) 9.5 (267) 8.9 (3) 8.5 (283) 8.1 (2) 6.9 (8)
6.8 (94) 6.7 (49)

TiNig 10.4 (55)  10.3 (853) 10.2 (3) 9.5 (2) 9.3 (3) 9.1 (18)
8.9 (7) 8.3 (1) 7.2 (58)

Al,TiNi | 8.9 (317) 8.4 (23) 8.0 (141) 7.7 (130) 7.5 (275) 6.4 (1)
5.5 (113)

AITioNi | 10.1 (180) 9.5 (159) 9.1 (658) 7.7 (1) 5.4 (2)

AlTiNip | 9.8 (604) 9.0 (1) 8.8 (20) 8.4 (1) 7.9 (365) 7.1 (6)
6.7 (3)
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Figure 4.8: The Gaussian-broadened distributions (number of clusters possessing the
energy between E and E + dFE) of Aly clusters at 1 K and 300 K.
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energy barriers on the potential energy surface. That is, the atoms are trapped
inside some finite number of ”"deep” local minima. As the temperature increases,
the cluster will have energy enough to pass over from any local minimum to an-
other, deep or not; consequently, a cluster may assume many stable structures at

high temperatures different from those in low temperatures.

Information about most of the clusters considered in this work does not exist
in the literature. We have encountered data of only Aly and Nig tetramers. Sim-
ilar to the case in Section 2.2, we have again seen that there was no consensus
about the question of whether these species was 2D or 3D. To our best knowledge,
the present calculated values for the remaining thirteen clusters are the first to
appear. In the following, we will compare the present results for Al; and Nig
with those from the literature. We will focus mainly on the structures of the

four—atom clusters considered, not on the bond lengths.

Aly: In this study, we found the most stable geometry of Aly to be a 3D
tetrahedron with Ty symmetry (see Figure 4.7). Pacchioni and Koutecky [180]
considered pseudopotential calculations and found that rhombic Al, was ener-
getically most favorable. With an ab initio pseudopotential method, Upton [56]
found that Al did not become 3D for Aly, and the planar structures remained

most stable. In his later perturbed electron drop model calculation, Upton [110]
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reported that the Aly cluster having lowest energy is in a puckered rhombohedron
structure which is between the square planar and tetrahedral geometries. Pet-
tersson et al. [111] considered both ab initio and parametric empirical potential
calculations for Al,, clusters, and they found the planar rhombus structure for Aly
to be the lowest in energy. In the study of Erkog [182] with a PEF, the tetrahedral
form of Al; was reported to be most stable. In their empirical PEF calculation,
Erkog and Katircioglu [183] calculated that the planar rhombus and the 3D tetra-
hedron structures were energetically very close to each other, but the tetrahedron
geometry with Ty symmetry was slightly lower in energy. Jones [112], using DFT
calculation, found that the planar rhombohedral structure (Ds,) was more stable.
Employing MD technique, El-Bayyari and Erko¢ [113] found a distorted tetra-
hedron as being most stable. Finally, with a first-principles calculation and a
local orbital DFT study, Yang et al. [74] found a (nearly) rhombus as being most

stable for Aly.

Niy: Experimental observation of Parks et al. [237] showed that the structure
of Niy was not certain; it was probably two—dimensional such as rhombic. In this
study, we also found the most stable geometry of Nig to be a 2D rhombus (see
Figure 4.7). In his extended Hiickel and complete neglect of differential overlap
(CNDO) calculations, Baetzold [39] reported a pyramidal structure for Niy as

most stable. In the literature, there are many studies showing the tetrahedron
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geometry with T; symmetry for Niy energetically most favorable: Empirical PEF
calculations of Erkog [182, 191], Amerillas and Garzon [238], Nayak et al. [239];
effective medium calculations of Stave and DePristo [240], Wetzel and DePristo
[241]; tight—binding MD calculations of Lathiotakis et al. [242], Bouarab et al.
[243]; size—dependent empirical PEF calculation of Erkog et al. [206]. A DFT
calculation of Reuse and Khanna [91] gave the stable structure of Niy as trigonal
bipyramid and square. Finally, in their empirical PEF calculation, Hu et al. [244]

found Niy as trigonal pyramid.

4.2.2.2 Density Functional Theory Calculation Results

With the aim of predicting the electronic properties of the most stable clusters
obtained from MD simulations, we have performed DFT calculations within the
effective core potential (ECP) level [with BSLYP exchange—correlation contribu-
tion]. In Table 4.3 we present the interaction energy, E;(DFT), calculated by
DFT method with the total potential energy, E(MD), calculated by empirical
potential (through MD simulations). The interaction energy E;(DFT) of the

four—atom clusters was calculated using

EI — EIABCD _ EIA _ EB _ EC _ ED

total total total total total ?

(4.20)

where FE, ., are the total energies obtained from the DF'T calculations for four-

atom (ABCD) and individual atoms (A, B, C, D). We see from Table 4.3 that
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there are some small discrepancies between the two types of calculations, as one
should expect. However, the discrepancy for Aly is quite large, which is an excep-
tional case. (This may be due to the fact that the minimum—energy configuration
of Al in this work has been determined by using MD method; it has not been op-
timized thoroughly by using DFT method. As a result, the optimized structure of
Al obtained from MD simulation might not correspond to the minimum—energy
configuration which would be obtained using only DFT method. We now know
that most of the DFT method gives the minimum energy configuration of Al, as
being a rhombohedral structure, like in the Ref. [74]. Recall that the our result
was a 3D tetrahedron.) Existence of small discrepancies the potential energies of
the two methods should not be surprising. One should not expect the two energy
values to have the same value: during the parametrization process of PEF, there
were many quantities (bond length, interaction energies and geometries of dimers
and trimers) to be re—obtained altogether as close as those resulting from exper-
iments and, at the same time, those resulting from the previous ab initio results.
This many—quantity—process indispensably creates some amount of discrepancy

between the two types of energy values.

109



Table 4.3: Calculated interaction energy by DFT method, E;(DFT), and total poten-
tial energy by empirical potential (through MD simulations at 1 K), Ep(MD). (Contri-
butions of two— and three-body energies, E» and FE3, to total potential energy, E7(MD),

and their ratio are given separately. The last column gives total energy at 300 K through
MD simulations, —E3°% (MD). Energies are in eV.)

Cluster | —E;(DFT) | —E7(MD) —Fs Eg (E53/Es) —E%OOK (MD)
%100
Aly 2.9054 6.6494 9.0208 2.3715 ~ 26 6.6448
Tiy 9.4808 7.8733 9.7853 1.9120 ~ 20 7.8674
Niy 6.7985 8.0877 10.5045 | 2.4168 ~ 23 8.0767
Al3Ti 5.6978 6.5162 8.0612 1.5451 ~ 19 6.5106
Al,Ti, 5.2894 8.7285 8.8627 0.1343 ~ 02 8.7240
AlTis 8.7790 9.5257 10.9172 | 1.3915 ~ 13 9.5209
Al3Ni 5.6401 6.8813 8.2493 1.3680 ~ 17 6.8720
Al;Niy 6.3613 7.4618 7.2686 | —0.1933 ~ 03 7.4335
AlNij 7.8628 7.7821 8.2394 0.4573 ~ 06 7.7576
TigNi 7.3243 9.0458 10.6066 | 1.5608 ~ 15 9.0413
TisNis 8.6911 10.3836 12.6011 | 2.2174 ~ 18 10.3774
TiNis 8.8924 10.3685 12.7273 | 2.3588 ~ 19 10.3634
Al,TiNi 7.0054 8.8912 9.1088 0.2169 ~ 02 8.8882
AlTi,Ni 8.5650 10.0629 11.3728 | 1.3099 ~ 12 10.0601
AlTiNi, 8.2884 9.8224 10.0150 | 0.1926 ~ 02 9.8199
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In Table 4.3 we also give the contributions the two— and three-body energies,
E, and Fj, to the total energy, £ (MD) and the percentage ratio of E3 to Fs.
It is seen that, for all clusters but Al;Nis, the three-body interaction is positive.
That the mentioned percentage ratio varies between 2% and 26% indicates that
the contribution of the three-body energies to the total energy is not at all neg-
ligible. This point is one of the most important conclusion to be drawn from this
work. As an aside, a comparison of the geometries in Figure 4.7 with the Fj

values in Table 4.3 shows no correlation.

We calculated the possible dissociation channels and the corresponding disso-
ciation energies, which are tabulated in Tables 4.4-4.6. We define the dissociation
energy of a dissociation process XY — X + Y as By, = E), — EX.. — EY ...
In calculating the dissociation energies, we used the total energy values obtained
from the DFT calculations; the four-atom cluster values are given in Table 4.3,
the three-atom, two-atom, and atomic energies were from the first part of our
work, Section 2.2. We see from Tables 4.4-4.6 that, apart from Al,Ti; and Al;Ni,,
all the dissociation energies are negative, as should be. The positive ones should
not be interpreted as simultaneous dissociations or as unstable clusters. This is
due to the fact that, although the dimers and trimers of our previous work were

calculated thoroughly by using DFT method, the tetramers of the present work

were calculated by using first MD method and then DFT method. Consequently,
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the optimized structures of Al,Ti; and Al,Ni, obtained from MD simulations
might not correspond, at least in energy, to the minimum-energy configuration
which would be obtained using only DFT method. Nevertheless, Tables 4.4-4.6
are illustrative and are believed to give reasonable trends for dissociation chan-
nels. It is seen for each cluster that atomization energies (dissociation to the
constituent atoms) are, not surprisingly, the greatest among the other possible
dissociation energies. Homonuclear tetramers X4 are seen to dissociate as X4 —
X3 + X, as expected. Apart from Al;Nis and AlTis, the remaining Al-contained
clusters prefer to fragment to give one Al atom firstly. AlsNis dissociates to give
two AINi dimers, consistent of the fact that AINi dimer has a large binding energy
(3.3511 eV, from the previous work, Section 2.2). Except AlINiz, all XY; type
clusters dissociate as XY5 4+ Y. For the NiTi containing species, we see that there
is no priority for neither Ni nor Ti to dissociate first. If one combines this datum
with the fact that Al has a relative larger preference to dissociate firstly, we may
conjecture the following: If we continue to enlarge our AlITiNi ternary system,
we expect most of Al atoms to occupy outermost part of the system, relatively

few to place themselves in the NiTi-rich inner part.
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Table 4.4: Possible dissociation channels and the corresponding dissociation energies

(in V) for the clusters studied. (DC: dissociation channel, DE: dissociation energy.)

Cluster DC DE Cluster DC DE
2A1> —1.9993 AlbNi + Ni —1.1082
Al, + 2Al —2.4525 AlNi, + Al —1.4733
4A1 —2.9054 AINi + Al + Ni | —3.0102
Tiy — Tig + Ti —3.6408 2A1 + Nig —5.1032
2Tis —3.6849 Als + 2Ni —5.9082
Tip + 2Ti —6.5829 2Al1 + 2Ni —6.3613
4Ti —9.4808
TigNis — TiNiy + Ti —1.7112
Niy — Nig + Ni —0.8549 TioNi + Ni —1.7337
2Niy —4.2822 2TiNi —3.0846
Niy + 2Ni —5.5404 Tig + Nip —4.5350
4Ni —6.7985 Tis + 2Ni —5.7932
TiNi + Ti + Ni | —5.8879
2AITi —1.1478 2Ti + 2Ni —8.6911
ALTi + Ti —1.4807
Aly + Tis —1.9384 || Al3Ti —  AlLTi + Al —1.8891
2A1 + Ti —2.3915 Als + Ti —-3.0119
AlTi+ A1+ Ti  —3.2186 Aly + AITi —3.1739
Aly, + 2Ti —4.8363 AlTi + 2Al —3.6270
2A1 + 2Ti —5.2894 Aly, + A1+ Ti —5.2447
3Al + Ti —5.6978
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Table 4.5: Continuation of Table 4.4.

Cluster DC DE Cluster DC DE
Al3Ni —  ALNi + Al —0.3870 || AlNis —  Nig + Al —1.9192
Al + AINi —1.8359 AlNi, + Ni —2.9748
AINi + 2Al —2.2890 Ni, + AINi —3.2536
Als + Ni —2.9541 AINi + 2Ni —4.5117
Al + A1+ Ni  —5.1870 Nis + Al + Ni | —6.6047
3A1 + Ni —5.6401 3Ni + Al —7.8628
TigNi —  TisNi + Ti —0.3668 || TiNig —  TiNiy + Ni —1.9125
Tis + Ni —1.4843 Nig + Ti —2.9488
Tis + TiNi —1.6231 Nis 4+ TiNi —4.8310
Tis + Ti + Ni  —4.4263 TiNi + 2Ni —6.0891
TiNi + 2Ti —4.5210 Nis + Ti + Ni | —7.6342
3Ti + Ni —7.3243 3Ni + Ti —8.8924
AlTis —  AlTiy + Ti —2.8250 || Al,TiNi — AITiNi + Al —1.5697
Tis + Al —2.9390 AlITi 4+ AINi —1.5835
Tiy + AITi —3.8103 AlNi + Ti —1.7523
Tis + Al + Ti  —5.8811 Al,Ti + Ni —3.1967
AlITi + 2Ti —6.7082 AINi + Al + Ti | —3.6543
3Ti + Al —8.7790 Al, + TiNi —3.7491
TiNi + 2Al —4.2022
AlTi + Al + Ni | —4.9346
Al + Ti+ Ni | —6.5523
2A1 + Ti + Ni | —7.0054
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Table 4.6: Continuation of Table 4.4.

Cluster DC DE Cluster DC DE

AlTioNi  —  TigNi + Al —1.6075 || AITiNi; — TiNiy + Al —1.3085
AINi + Tis —2.3159 AINi + TiNi —2.1341
AlTiy + Ni —2.6109 AITiNi + Ni —2.8527
AITiINi + Ti —3.1293 AlNiy + Ti —3.4004
AITi + TiNi —3.6909 AINi + Ti + Ni | —4.9373
AINi + 2Ti —5.2139 AlTi + Niy —4.9595
Tis + A1+ Ni  —5.6670 TiNi + Al + Ni | —5.4852
TiNi + Al + Ti —5.7617 AlITi + 2Ni —6.2176
AlTi + Ti + Ni  —6.4942 Nip + A1+ Ti | —7.0303
Al + 2Ti + Ni  —8.5650 Al + Ti+ 2Ni | —8.2884

Some computational details in the DFT calculations are presented in Table 4.7
which contains mainly the molecular properties, the basis set and spin informa-
tion of the species considered. Basis information reflects the basis set used in the
calculation, namely CEP-121G. The size of basis set is fixed for each element in
CEP-121G. The accuracy of results depends surely on the basis set used. In the
present study the basis set used is believed to be sufficient for the species under

study [156-158].
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Table 4.7: Some molecular properties of the clusters studied. Nj: number of basis
functions with symmetry A; N,: number of primitive Gaussians; N,: number of a-
electrons; Ng: number of S-electrons. The point group symmetry of all the clusters
are Cj.

Cluster | Ny | Ny | Ny | Ng | Cluster | Ny | Ny | Ny | Ny

Aly 48 | 64 6 6 || AlNi; 114 | 220 | 29 | 28
Ti4 136 | 272 | 24 | 24 || TiNis 136 | 272 | 33 | 33
Niy 136 | 272 | 36 | 36 | NiTi, | 136 | 272 | 30 | 30

ALTi | 70| 116 | 11| 10| TisNi | 136 | 272 | 27| 27
Al Ti, | 92]168| 15| 15| ALTiNi | 92| 168 | 18| 18
AlTis | 114|220 | 20| 19 | AITi,Ni | 114 | 220 | 23| 22
ALNi | 70| 116| 14| 13 | AITiNiy | 114 | 220 | 26| 25
AlLNi, | 92168 | 21| 21

The positions of the highest occupied molecular orbital (HOMO) and the low-
est unoccupied molecular orbital (LUMO), and the HOMO-LUMO difference (or
the frontier molecular orbital energy gap, E,) bear some importance from spec-
troscopic point of view. Since the number of electrons in Aly, Ti4, Nig, NigTi,
NiyTis, NiTis, and Al,TiNi is even, this clusters have only a—states; on the other
hand, the remaining clusters have odd number of electrons hence they have both
a— and f-states. HOMO, LUMO, and E; of the systems studied are tabulated
in Table 4.8. Some interesting features follow from this table: its E,(«) value
tempts us to say that Al;Tiy cluster has the best metallic property, but we should

remember that a four-atom cluster is too small to be classified as conducting or
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not. Another feature is that the gap of a states are relatively larger than that of
states, except AlTis. An interesting situation draws attention: a replacement of
one Al atom by a Ni atom increases the E (o) value of Al,Ti, by about eight
times. This may be due to the drastic change in the geometry in passing from
AlyTis to AlTioNi. The same situation takes place also in passing from AlyTi, to

Al3Ti and/or to AlTis.

The calculated excess charge (Mulliken charges) and dipole moments of the
four-atom clusters are given in Table 4.9. We note that all the clusters bear
a net dipole moment according to their geometry and configurations of con-
stituent atoms, as expected. Because of its rotational symmetry, homonuclear
Al, tetramer with tetrahedral structure experiences relatively less charge accu-
mulations on the atoms, compared to the other clusters. But its resulting dipole
moment is, however, not small because of the distribution of the excess charges
among the atoms. The same distribution concern makes the Tiy cluster possess
the smallest dipole moment. One of the important outcomes of the charge data
from this table is that in all heteronuclear clusters containing Al (i.e. Al3Ti,
AlyTis, AlTiz, Al3Ni, AloNis, AINiz, Al,TiNi, AlTi,Ni, AlTiNiy) we never see
a negative charge accumulation on Al atoms. A very similar conclusion holds

for Ni atoms in species NizTi, NisTis, NiTis. Another interesting feature is the

117



Table 4.8: HOMO, LUMO energies (in Hatree) and HOMO-LUMO gap (E,) energies
(in €V) of the clusters studied, calculated by DFT method.

Cluster | HOMO(a) | LUMO(e) | E,(e) || HOMO(B) | LUMO(B) | E,(8)
Al —0.1511 | —0.1281 | 0.6239 — — —
Tiy —0.1477 | —0.0878 | 1.6324 — — —
Niy —0.1614 | —0.1175 | 1.1940 — — —
Al Ti | —01715 | —0.1128 |1.5959 | —0.1640 | —0.1156 | 1.3184
AlLTi, | —0.1474 | —0.1392 | 0.2253 — — —
AlTi, —0.1549 | —0.0973 | 1.5695 | —0.1558 | —0.0906 | 1.7741
ALLNi | —0.1450 | —0.1200 |0.6803 | —0.1520 | —0.1308 | 0.5761
AlLNi, | —0.1665 | —0.1189 | 1.2955 — — —
AINi, —0.1653 | —0.1027 | 1.7034 | —0.1509 | —0.1042 | 1.2716
TisNi | —0.1448 | —0.0903 | 1.4838 — — —
Ti,Ni, | —0.1488 | —0.1033 | 1.2400 — — —
TiNij —0.1304 | —0.1016 | 0.7839 — — —
ALTiNi | —0.1537 | —0.1033 | 1.3722 — — —
AITiNi | —0.1663 | —0.0992 | 1.8253 | —0.1580 | —0.0969 | 1.6629
AITiNi, | —0.1582 | —0.1039 | 1.4789 | —0.1557 | —0.1022 | 1.4552
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Table 4.9: Excess charge (in units of electron charge) on atoms, and dipole moments
(in Debye) of the clusters studied, calculated by DFT method. Refer to Figure 4.7 for
the labels of atoms.

Cluster Q q2 q3 qa s Py Wz @
Aly —0.027 | 0.027 | —0.027 | 0.027 | 0.867 | 1.623 | 0.884 | 2.042
Tig 0.079 | —0.087 | —0.084 | 0.092 | 0.070 | 0.156 | —0.042 | 0.176
Nig 0.062 | 0.056 | 0.021 | —0.138 || —1.636 | —0.266 | 0.006 | 1.657
AlsTi 0.156 | 0.128 | 0.018 | —0.303 || —3.623 | 0.188 | 0.132 | 3.630
Al Tiy 0.367 | 0.356 | —0.334 | —0.389 || 0.349 | —0.081 | 0.011 | 0.358
AlTis 0.450 | —0.094 | —0.154 | —0.203 || —0.095 | 0.418 | —2.907 | 2.938
Al3Ni 0.279 | 0.280 | 0.277 | —0.837 || —0.122 | 0.920 | —0.095 | 0.933
Al,Ni, 0.281 | 0.280 | —0.580 | 0.018 || —0.358 | —0.002 | —0.003 | 0.358
AlNis 0.400 | —0.393 | —0.013 | 0.006 | 0.858 | 0.356 | 0.039 | 0.930
TisNi 1.241 | —0.368 | —0.475 | —0.398 || 0.061 | 2.278 | 0.002 | 2.279
TiyNis 0.373 | 0.372 | —0.371 | —0.374 || —0.006 | 0.011 | 1.750 | 1.750
TiNis 0.057 | 0.041 | 0.081 | —0.179 || 0.460 | 0.058 | 2.593 | 2.635
ALTiNi | 0.339 | 0.339 | —0.361 | —0.318 || —0.000 | 3.512 | 0.000 | 3.511
AlTioNi | 0.259 | —0.365 | —0.362 | 0.469 | —2.501 | 0.021 | —0.378 | 2.530
AITiNiy | 0.341 | —0.261 | 0.146 | —0.226 | —0.562 | 0.895 | 0.009 | 1.057

unexpected situation between the symmetry of the structure and the charge dis-
tribution in clusters Tiy and Niy. We see that although the charge accumulation
in Al, is commensurate with its geometry, the similar expected situation does not
occur in Tiy and Niy: charges on the atoms of each of these clusters do not show

any correlation with their geometry at all.
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We have thus come to the end of the second part of our doctoral study. In
these two studies, our aim was to determine the basic building blocks for the
AITiNi ternary clusters. We investigated systematically the simpler potential
candidates for the building blocks, namely Aly, Tis, Niy, AITi, AINi, TiNi, Als,
Tis, Niz, AloTi, AlTis, AILNi, AlNi,, TisNi, TiNiy (Section 2.2); and the more
involved candidates Aly, Tis, Niy, Al3Ti, AlyTis, AlTis, AlsNi, Al;Nis, AlNis,
TizNi, TisNiy, TiNiz, AlyTiNi, AlTioNi, AITiNis (this section). In the latter, we
investigated structural and electronic properties of AlyTiNi,, (kK + 1+ m = 4)
clusters by performing MD simulations and DFT calculations (within the B3LYP
and effective core potential level). We first parametrized an empirical potential
energy function (PEF) for the AITiNi ternary system. We then determined stable
structures of the clusters by MD simulations. We presented the possible dissocia-
tion channels and electronic properties, calculated by DFT method, of the stable
clusters. We predicted that if the AITiNi system was gradually enlarged, most of
the Al atoms were expected to be distributed themselves in the outermost part
of the system, relatively few to occupy in the NiTi-rich inner part. In the next

part of our study we will see if this is the case or not.
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4.3 Structural and Energetic Features of Al,Ti,Ni, (n = 1-16) Nanoparticles:

Molecular Dynamics Simulations

4.3.1 Introduction

This is the last part of our doctoral study, which is the continuation of our
previous two works (Sections 2.2 and 4.2). The general objective in our research
series is to explore the clustering phenomenon in economically promising AITiNi
ternary alloy systems which is believed to lead valuable insights into the evolution
from small clusters to bulk material. In this regard, we continue our research with
this work. Here we theoretically investigated the structural and energetic features
of the energetically most stable nanoparticles of the type Al,Ti,Ni, (n = 1-16),
which were supposedly in their ground states. Using the previously parameterized
empirical PEF for the AITiNi ternary system (Section 4.2), we performed MD

simulations. We obtained and reported minimum-energy configurations.
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4.3.2 Results and Discussions

Since this work is the continuation of especially the second part, we used the
same potential as in Section 4.2 in the simulations of the nanoparticles under
consideration, Al,Ti,Ni,(n = 1-16), by MD technique. Because of the reasons
explained previously (Subsection 4.2.2.1), in order to increase the chance of catch-
ing the "real” minimum-—energy configuration of the system, corresponding to the
global minimum on the PES hypersurface, we tried 1000 randomly generated ini-
tial configurations for each nanoparticle of different n value. These initial random
geometries are generated within a cube of volume ranging from (2.5x2.5x2.5) A3
for n =1 to (13 x 13 x 13) A3 for n = 16. Each configuration then was relaxed
through the MD simulations as an isolated system; the one giving the minimum
energy was accepted as the most stable structure for that nanoparticle. Indeed,
we have again observed that as n increased, the number of local minima increased
drastically, as expected. To give an idea, there were 936 runs (out of 1000 trials)
giving the same minimum-energy configuration for n = 1, 120 runs for n = 2,
6 runs for n = 3; and there were only 1 run for each of the remaining n values.
It is always a great trouble in this type of systems to answer the question ”how
can one decide that one particular configuration corresponds to the global min-
imum on the PES hypersurface?” Actually the answer is simple: "one cannot!”
We can never ensure that, even after n = 2, our findings are the global minima.

The only thing to do is to investigate the configuration of the same n numerous
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Figure 4.9: Optimum geometries of Al,Ti,Ni, (n = 1 — 7) nanoparticles.

times, for instance, 10000, 100000 times; then to compare all the results and
finally to choose the minimum one. But even in this case the global minimum
may remain elusive. Fortunately, in our all cases, energies of most of the lowest
minima were very close to each other and choosing the very lowest one is very
likely to give intimately the properties of the global minimum. The geometries
of the most stable structures obtained from the MD simulations are qualitatively
shown in Figures 4.9-4.11. Tables 4.10 and 4.11 present the related quantitative

information about the nanoparticles studied.
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Figure 4.10: Optimum geometries of Al,Ti,Ni, (n = 8 — 12) nanoparticles.
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Figure 4.11: Optimum geometries of Al,Ti,Ni, (n = 13 — 16) nanoparticles.
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Table 4.10: Average interatomic distances for the neighboring atoms in the Al,Ti,Ni,
nanoparticles. The distances are in A.

Al,Ti,Ni,
n Al-Al | AI-Ti | AI-Ni | Ti-Ti | Ti-Ni | Ni-Ni

— 2.718 | 2.259 — 2.006 —
— 2.763 | 2.217 | 2.387 | 2.071 | 2.192
— 2.785 | 2.203 | 2.430 | 2.070 | 2.275
— 2.790 | 2.202 | 2.476 | 2.070 | 2.315
— 2.803 | 2.180 | 2.525 | 2.067 | 2.323
— 2.788 | 2.219 | 2.464 | 2.059 | 2.357
2.883 | 2.851 | 2.235 | 2.449 | 2.083 | 2.292
2.811 | 2.804 | 2.258 | 2.432 | 2.079 | 2.334
2.893 | 2.828 | 2.220 | 2.432 | 2.079 | 2.300
2.775 | 2.305 | 2.455 | 2.063 | 2.352
2.791 | 2.794 | 2.251 | 2.473 | 2.061 | 2.315
2.744 | 2.753 | 2.301 | 2.423 | 2.062 | 2.275
2.728 | 2.788 | 2.297 | 2.450 | 2.090 | 2.318
2.757 | 2797 | 2.260 | 2.430 | 2.078 | 2.276
2.702 | 2.785 | 2.263 | 2.435 | 2.075 | 2.300
2.716 | 2.780 | 2.269 | 2.425 | 2.080 | 2.303
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Table 4.11: Energetics of most stable Al,Ti,Ni, nanoparticles. Calculated total po-
tential energy by empirical potential (through MD simulations), E7.; contributions of

two— and three-body energies, EY and EY,

to total potential energy and their percent-

age ratio, (E%/E3) x 100; contributions of elemental energies, E;, Et., E};, to total
potential energy. The values within the parentheses are energies per particle, see the
text. Energies are in eV.

n — B} ~E3 | B} | ~E%, ~E} ~E},;
%100

1| 5.41(1.80) | 560 | 0.19 | ~3 | 1.64 (1.64) | 1.89 (1.89) | 1.89 (1.89)
2 | 20.23 (3.37) | 22.95 | 271 | ~12 || 5.09 (2.55) | 7.87 (3.94) | 7.27 (3.63)
3| 35.93 (3.99) | 42.82 | 6.89 | ~ 16 || 8.56 (2.85) | 13.99 (4.66) | 13.39 (4.46)
4 | 52.67 (4.39) | 66.45 | 13.78 | ~ 21 || 11.67 (2.92) | 20.52 (5.13) | 20.48 (5.12)
5 | 70.04 (4.67) | 89.26 | 19.22 | ~ 22 || 14.78 (2.96) | 27.61 (5.52) | 27.65 (5.53)
6 | 87.03 (4.84) | 114.43 | 27.40 | ~ 24 | 20.04 (3.34) | 35.23 (5.87) | 31.77 (5.30)
7 | 103.90 (4.95) | 141.37 | 37.47 | ~ 27 || 24.10 (3.44) | 42.56 (6.08) | 37.24 (5.32)
8 | 122.01 (5.08) | 162.49 | 40.48 | ~ 25 || 27.88 (3.49) | 50.37 (6.30) | 43.75 (5.47)
9 | 138.98 (5.15) 186.01 | 47.03 | ~ 25 || 34.72 (3.86) 57.62 (6 40) 46.63 (5.18)
10 | 158.61 (5.29) 218.63 | 60.03 | ~ 28 || 36.30 (3.63) 65.39 (6 54) 56.92 (5.69)
11 | 175.40 (5.32) | 234.46 | 59.06 | ~ 25 | 44.71 (4.07) | 72.33 (6.58) | 58.35 (5.31)
12 | 192.75 (5.35) | 252.44 | 59.69 | ~ 24 || 48.90 (4.08) | 83.88 (6.99) | 59.98 (5.00)
13 | 211.12 (5.41) | 293.56 | 82.44 | ~ 28 | 51.12 (3.98) | 88.98 (6.85) | 71.02 (5.46)
14 | 229.93 (5.47) | 309.84 | 79.92 | ~ 26 | 61.81 (4.42) | 94.01 (6.72) | 74.11 (5.29)
15 | 248.70 (5.53) | 335.14 | 86.44 | ~ 26 || 62.48 (4.17) | 104.35 (6.96) | 81.87 (5.46)
16 | 265.55 (5.53) | 358.68 | 93.13 | ~ 26 || 67.71 (4.23) | 112.38 (7.02) | 85.47 (5.34)
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In Figures 4.9-4.11, the Al atoms were drawn as the smallest, the Ti atoms
as larger, and the Ni atoms as the largest, somewhat accordingly to their atomic
numbers. To give an idea about the size of the minimum-energy nanoparti-
cles, the maximum distance between any two atoms is 2.718 A for n = 1, and
12.213 A for n = 16. Apart from n = 2 and n = 3 cases, it is hardly possible to
speak of any geometrical symmetry of the systems. This was expected because
these nanoparticles are too small to be considered as being bulk and hence as
having well-defined symmetrical structures. One interesting feature seen from
the figures that, except in n = 12, n = 15, and n = 16 cases, most of the Al
atoms occupy the outermost part of the system. The similar reverse fashion holds
for the Ni atoms: most of them occupy the innermost part. The remaining Ti
atoms are usually between these two regions. In other words, we may see the
formation of the systems as though first the Ni atoms assembled to form the in-
ner core part of the nanoparticles, then the Ti atoms tried to cover this Ni—core,
and then the Al atoms distributed on the Ni—Ti rich part. This trend appears
almost in all the nanoparticles considered. For the distribution of the Al atoms,
the figures tempt us to say that the Al atoms starts to mix with the Ni—-Ti mix-
ture at » = 12 case. The existence of Al atom in the inner part for n = 15 and
n = 16 cases implies us to predict that it is highly likely for the Al atoms to find

places to themselves in the inner part of the system for cases of n greater than 16.
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In Table 4.10 we tabulated the average interatomic distances for the atoms
within the first neighboring range. With the expression first neighboring range
we mean that, for the sake of clarity and simplicity, we only give the average
interatomic distances, r, limited to ranges 0 < 7 < 3.0 A for Al-Al and Al-Ti
bonds, 0 < r < 2.5 A for Al-Ni and Ni-Ni bonds, 0 < r < 2.6 A for Ti-Ti
bonds and 0 < 7 < 2.2 A for Ti-Ni bonds. Commensurate with Figures 4.9-
4.11, it is seen from Table 4.10 that there is no Al-Al bond till n = 7 case within
the first neighboring range. The nearest—neighbor distance in the bulk aluminum
is 2.864 A [245]. This bulk value is comparable with our average Al-Al bond
lengths which are roughly in the range from 2.7 to 2.9 A. As to Al-Ti bonds it
is seen that the average bond length steadily increases from n =1 to n = 5 case;
beginning from n = 6, it smoothly fluctuates about 2.80 A. In Al-Ni bonds we
see a persistent and smooth fluctuation about 2.25 A. Like Al-Ti bond lengths,
the average Ti—Ti bond length increases from n = 1 to n = 5 case, then fluctu-
ates about 2.43 A to compare with 2.95 A [245], the nearest neighbor distance
in the bulk titanium. These situation results in the conclusion that our model
underestimates the Ti—Ti bond length as compared to that in bulk. In Ti—Ni
bond lengths we see a very smooth fluctuation about 2.07 A. And finally, we
again see an average bond length steadily increasing from n = 1 to n = 6 case,
and then a smooth fluctuation about 2.31 A, to compare with 2.489 A [245],

the nearest—neighbor distance in the bulk nickel. A general feature seen from
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Table 4.10 that all above mentioned bond lengths less fluctuate as n increases,
especially beginning from n = 10 case. Apart from the possibly fortuitous Al-Al
case, we see that the average bond lengths are not harmonious with those of bulk.
This situation should not to be regretted because, as we pointed out earlier, our

parameter set is suitable for cluster properties, not for bulk.

In Table 4.11 we present energetic features of the nanoparticles obtained as
most stable. It is seen that the total energy of the system, E.; the two—body
energy contribution, Fs; and the individual elemental energy contributions, F,,,
E.;, Ey, are all negative and they demonstrate a steadily decreasing behavior,
as expected. To get a better understanding, we also give within the parentheses
average energies per particle, E7/3n, E?, /n, E?./n, and EZ,/n. In Figure 4.12 we
plotted these average energies with respect to n. We see from the plotting that
all four energies are decreasing as n increases in such a way that they at first
drop sharply, then go down gradually. Their trends show that they finally level
off to some well-defined energies. These are all expected. Probably prohibitively,
we can compare this trend with the cohesive energies of Al, Ti, and Ni from
bulk, which are respectively 3.39, 4.85, and 4.44 eV /atom [245]. Our possible
offlevel values are roughly 4.5, 7.5, and 5.5 eV /atom, not harmonious with bulk
values. This is expected because of two reasons: first, our offlevel values are from

AlTiNi-type nanoparticles, not from individual elemental clusters; second, at a
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Figure 4.12: Variation of average interaction energies per particle versus cluster size.
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cost of repeating, our parameter set is not appropriate for the bulk applications.
What important here is the same ordering of cohesive energies obtained from
both source: E5* < B¢ < Eh. If we had rescale our parameters using known
elemental bulk properties, we would probably cohesive energy values closer to the

experimental ones.

In Table 4.11 we also give the contributions the two— and three-body energies,
E5 and FEj3, to the total energy, Er and the percentage ratio of F5 to Es. It is
seen that, for all nanoparticles the three-body interaction energy is positive. It
also follows from this table that the contribution of the three-body interaction
also levels off to some fixed value between 26% and 28% . More importantly,
that the mentioned percentage ratio varies between 3% to 28% indicates that the
contribution of the three-body energies to the total energy is not at all negligible,

as the same case as that in Section 4.2.2.2.

As we pointed out earlier, clusters occupy the intermediate region between
atoms and bulk matter. If the number of atoms making up a cluster is large,
and also the atoms themselves contain many electrons, as our case in this study,
one cannot apply, at least for the time being, ab initio quantum methods because
clusters are too big to handle properly. On the other hand, one cannot apply

solid state physics methods because clusters are much smaller than small solids
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that we can conceive of. The same situation exists from experimentalists’ point
of view. The clusters considered in this work may be produced experimentally
but their structural and electronic analyses, if possible, may not be an easy task
because of the fact that our clusters are not homonuclear and, even worse, two
of the elements we considered are transition metals. Nevertheless, this study
can be seen a preliminary work for possible future experimental studies. We did
not attempt to calculate fundamental frequencies since this is computationally
very expensive even for 4— or S5—atom clusters; and frequencies to be calculated

were so many that we decided not to deal with them within the scope of this work.

In this study we presented our theoretical computational outcomes on the
structural and energetic features of the most stable Al,Ti,Ni, (n = 1 — 16)
nanoparticles via MD technique. We believe that the structural features obtained
in this treatise are reasonable and reliable. The trends seen in energetics of the
systems studied appeared to be correct although, not surprisingly, the numerical

values are not harmonious with those of bulk.
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CHAPTER 5

CONCLUSIONS

5.1 A General Look

In this doctoral study, structural and electronic properties of AITiNi ternary
cluster systems are studied theoretically. Due to their physical, chemical, metal-
lurgical, and economical importance, we deal with the microclusters of aluminum,
nickel and titanium in various combinations, Al Ti;Ni,, (k+1+m =2 —4), and

with the nanoparticles of type Al,Ti,Ni, (n =1 — 16).

This work consists of three main parts. In the first part of our study, we
investigated structural and electronic properties of 16 different microclusters of
the type AlNi;Ti,; k+ 14+ m = n); (n = 2,3). We studied the dimers (Aly,
Tiy, Nis), trimers (Als, Tis, Niz) of aluminum, titanium, and nickel, and their bi-
nary combinations (AINi, AlTi, NiTi, AloNi, AINi2, Al;Ti, NiyTi, AlTiy, NiTis),
and the ternary combination (AlTiNi) in their ground states. We performed the
density functional theory (DFT) calculations. We have presented the literature

with our results as an article titled Structural and electronic properties
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of A;NiTi,,; k+1+m = n); (n = 2,3) microclusters: density func-
tional theory calculations [H. Oymak, §. Erkog, Phys. Rev. A 66, 033202
(2002)], where we reported the calculated spectroscopic constants (binding en-
ergy D,, equilibrium interatomic separation r., and fundamental frequency w,) of
the dimers, the minimum energy configurations of the trimers (bond lengths and
bond angle, as well as their fundamental frequencies w,,). For all the microclusters
considered, we presented the possible dissociation channels and the corresponding
dissociation energies, the calculated HOMO (highest occupied molecular orbital),
LUMO (lowest unoccupied molecular orbital), and HOMO-LUMO gap energies.
We also gave the calculated dipole moments and excess charges on the atoms of
the trimers. We compared the calculated values with the previously reported ones

computed by various other approximate methods and estimated experimentally.

The second part of our study is the continuation of the first part: we studied
structural and electronic properties of Al;Ni;Ti,, (kK + !+ m = 4) by perform-
ing molecular-dynamics simulations (MD) and DFT calculations. The elemental
clusters (Aly, Tig, Niy), their binary (Al3Ni, AloNis, AINiz, Al3Ti, Al Tis, AlTis,
Ni3Ti, NiyTis, NiTi3), and ternary combinations (Al,TiNi, AlTi,Ni, AlTiNiy)
have been studied in their ground states. Using the previous part’s results and
the related experimental data from the literature, a reliable empirical potential

energy function (PEF) for AITiNi ternary system has been developed. Then,
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this PEF was applied to the four—atom AITiNi microclusters for the determina-
tion of stable structures by employing MD simulations. The energetics of the
clusters at 1 K and 300 K were also studied in this stage. Finally, the possible
dissociation channels and electronic properties of the obtained clusters were cal-
culated by the DFT method. In this part we placed the main emphasis on MD
results. We have provided the literature with our results as an article titled
AITiNi Ternary Alloy Clusters: Molecular Dynamics Simulations and
Density Functional Theory Calculations [§. Erkog, H. Oymak, J. Phys.
Chem. B 107, 12118, 2003], where we reported minimum energy configurations
and compared them with the previously reported ones (available only for Aly
and Niy), dissociation channels and dissociation energies, the calculated HOMO,
LUMO, HOMO-LUMO gap energies, and the calculated dipole moments and

excess charges on the atoms of the four-atom clusters.

Within the scope of the first two parts of our study, we encountered in the
literature of microclusters many experimental and theoretical studies focused on
elemental clusters of aluminum, nickel but very limited for elemental titanium
clusters. To our best knowledge, there is no study for the rest of the clusters
mentioned above. Therefore, exploring the uncertain geometrical and electronic

properties of the remaining microclusters was our aim the first two parts.
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In the last part of our study, with the aim of getting valuable insights into the
evolution from small clusters to bulk material, we theoretically investigated the
structural and energetic features of the energetically most stable nanoparticles
of the type Al,Ti,Ni, (n = 1-16). Using the previously parametrized empirical
PEF for the AITiNi ternary system, we performed MD simulations. We have
presented the literature with our results as an article titled Structural and
energetic features of Al,Ti,Ni, (n = 1-16) nanoparticles: molecular—
dynamics simulations [H. Oymak, Sakir Erkog, Modelling Simul. Mater. Sci.
Eng. 12, 109 (2004)], where we reported the obtained minimum—energy config-
urations; we gave the average interatomic distances making a bond analysis and
compared them with bulk; we stated the general trend toward the bulk; and fi-

nally some analysis about the energetic features.

We must here stress that our outcomes should not be taken for granted; they
should be understood merely as predictions based on the CEP-121G basis func-
tions and B3LYP exchange—correlation functional used in the first and second
part of our study and on the PEF parameters for AITiNi ternary system used in

the second and third part.
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It follows from the results of the present work that the present PEF works
very well for the cluster properties of AI-Ti—Ni ternary systems. It will be sci-
entifically and practically interesting to extend the present work to investigation
of the surface and bulk properties of some AI-Ti—Ni binary and ternary systems
by making use of the same PEF. An important point is in order here: since the
present PEF has been parametrized to give primarily the cluster properties of
Al-Ti-Ni ternary system, it may not give the proper surface and bulk properties
as good as the cluster properties. If this is the case, one should modify the PEF
by re—adjusting only the three-body intensity parameters Z, not the two—body
parameters. This can be achieved by considering some of the surface and bulk
characteristics, such as surface energy, surface reconstruction, surface multilayer
relaxation, bulk stability condition, cohesive energy, elastic constants, phonon

frequencies, etc.

In Section 1.1 we pointed out that one of the most important reason of the
intense interest in the AI-Ti—Ni binary and ternary intermetallics was their shape—
memory-alloy (SMA) properties. Unfortunately the cluster and nanoparticle sys-
tems considered in this work are too small to attach any SMA property to them.
The possible thing to do is to parameterize the PEF for some Al-Ti-Ni binary
and ternary systems to give primarily their bulk properties, as described in the

previous paragraph. Then a specific system can be studied in different sizes and
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especially in different temperatures; it is likely that the outcomes will shed light

on the SMA properties of the system.

5.2  Afterword

Finally we have come to the end of this study. Before closing, it would be
appropriate here to mention briefly the task of quantum mechanical methods
in cluster research. At the time being there are denumerably many researchers
around world who are after a theory, or a formalism, or an algorithm, or what
it is called, which is capable of giving appropriate, reasonable, and/or accurate
answers to some frequently asked questions. Some of them which are listed as

follows [16]:

o At what cluster size do the typical metallic properties, such as high elec-

tronic and/or thermal conductivity, start to appear?

e At which rate does the ionization potential of clusters converge to the bulk

work function?

e At which rate does the average binding energy per atom in a cluster converge

cohesion energy of a crystal?

e Is the geometric arrangement of particles in cluster similar to that in the

crystal or crystal surface or are, on the contrary, the geometric features of
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clusters very specific?

e Isit possible to obtain the most stable cluster by adding more atoms or atom
groups at proper places to a smaller stable cluster or, oppositely, should the

cluster undergo deep qualitative arrangements during its growth?

e Is cluster stability a monotonic function of cluster size?

e If mass spectroscopy is used for the detection of clusters, the experimental-
ists very often find especially high abundances for certain cluster sizes in
the mass spectra. What are the reasons for the appearance of these "magic

numbers” ?

A reliable theory for electronic structure is expected to give at least the ba-
sic starting point to answer all these questions. Quantum mechanical methods
are now capable at least of answering the qualitative explanation and prediction
of the electronic structure and properties of small stable molecular and cluster
systems which are urged by modern chemistry and atomic & molecular physics.
Unfortunately a reliable investigation of atomic and molecular systems with un-
usual fundamental properties needs much more elaborate quantum mechanical
methods unless the system under consideration is indeed quite small. The ap-

plicability of sophisticated methods is still limited only to small systems. What
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is worse is that experimentally most frequently studied and scientifically and
practically most interesting small atomic clusters are made up of heavy atoms
possessing large number of electrons. The situation is more serious in the case
of transition metal clusters. As we stated earlier, clusters occupy the interme-
diate region between atoms and bulk matter. If the atoms making up cluster
contain many electrons, as our case in the last part of our study, one cannot
apply properly, at least for the time being, ab initio quantum methods because
clusters are too big to handle properly. On the other hand, one cannot apply
solid state physics methods because clusters are much smaller than small solids
we can conceive of. What is needed is a tool which is particularly designated to
study in this "no man’s land”. We believe that reliable empirical model potential

energy functions are capable of dealing with these not too small nor big systems.

In this study we presented our theoretical computational outcomes on the
structural and energetic features of Al-Ti-Ni ternary microclusters and nanopar-
ticles via DFT and MD techniques. We believe that the structural and electronic
features obtained in this treatise are reasonable and reliable so that the present

study is a preliminary work in this "no man’s land”.
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