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ABSTRACT 
 
 

BATCH SCHEDULING OF INCOMPATIBLE JOBS ON A SINGLE 
REACTOR WITH DYNAMIC ARRIVALS 

 
 

Korkmaz, Gediz 

 

M.Sc., Department of Industrial Engineering 

Supervisor      : Prof. Dr. Sinan Kayalıgil 

Co-Supervisor: Prof. Dr. Ömer Kırca 

 

June 2004, 158 pages 
 
 
In this study, a single machine batch-scheduling problem with incompatible jobs 

and dynamic arrivals is examined. The objective function is the minimization of 

the total flow time of the jobs. For solving problems a case specific branch and 

bound algorithm with a heuristic upper bound scheme and two alternative lower 

bound procedures is used. An extensive computational experiment is conducted 

to investigate the effects of certain parameters on the computation time. For the 

most difficult parameter combination branch and bound algorithm can solve the 

problems about 25 jobs with 4 different job types in a 10 minutes time on 

average. For the problem types with higher number of jobs and the most difficult 

parameter combination proposed upper bound heuristic can be used to obtain 

near optimal solutions. 

 
Keywords: Batch scheduling, dynamic arrival, branch and bound, incompatible 

jobs. 
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ÖZ 
 
 

DİNAMİK VARIŞLI ORTAMLARDA GEÇİMSİZ İŞLERİN TEK 
REAKTÖRDE GRUP ÇİZELGELENMESİ 

 
 
 

Korkmaz, Gediz 

Yüksek lisans, Endüstri Mühendisliği Bölümü 

Tez Yöneticisi          : Prof. Dr. Sinan Kayalıgil 

Ortak Tez Yöneticisi: Prof. Dr. Ömer Kırca 

 
Haziran 2004, 158 sayfa 

 
 

 
Bu çalışmada farklı zamanlarda sipariş verilen (dinamik varışlı) uyumsuz işlerin 

tek reaktörde parti çizelgelenmesi yöntemiyle işlenmeleri incelenmiştir. 

Çalışmadaki amaç fonksiyonu işlerin toplam akış sürelerinin enazlanmasıdır. Bu 

tip problemleri çözebilmek için problem şartları dikkate alınarak hazırlanmış 

özel bir dal-sınır algoritması kullanılmıştır. Bu algoritma sezgisel bir üst sınır 

bulma yöntemi ve iki farklı alt sınır bulma yöntemi ile desteklenmiştir. Belirli 

parametrelerin hesaplama süresi üzerindeki etkilerini görmek için geniş bir 

sayısal analiz yapılmıştır. En zor parametre kombinasyonu geçerliyken 25 iş ve 4 

çeşit işle yapılan denemlerde çözüm zamanının ortlama 10 dakika civarında 

olduğu görülmüştür. Daha yüksek iş sayısının bulunduğu ve en zor parametre 

kombinasyonunun geçerli olduğu durumlarda ise üst sınır bulma yöntemi 

kullanılabilir. 

 
Anahtar Kelimeler: Parti çizelgeleme, dinamik varış,dal-sınır, uyumsuz işler. 
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CHAPTER 1 
 

 

INTRODUCTION 
 

 

 

Owing to the increase in demand to the low volume specialized products, 

scheduling of the existing processors (machines, reactors, tanks etc.) became 

much more important in the manufacturing environment. Parallel to this demand 

in manufacturing environments a growing area of research has appeared on 

literature; job grouping. 

 

The motivation of the job grouping may be different for several industries. It is 

sometimes related to the existence of setup times or changeover times on the 

machines. Suppose we have many jobs belonging to different job families. The 

jobs in a family show great similarities with the other jobs in the family thus we 

can produce them consecutively with a single setup procedure. On the other 

hand, we need a setup while changing the job family from one to another job 

family. This model of job grouping is called as family scheduling model. 

(Webster&Baker, 1995) In family scheduling model, a machine is assumed 

capable of processing single job at a time. 

 

There are two variants of family scheduling model: the first is item availability 

model (or job availability model). In item availability model the job can pass to 

the next processing unit just after its completion. In the second variant, if the job 

is included in the batch it can pass to the next processing unit only after the 
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completion of all jobs in the batch. This is called as batch availability. 

(Potts&Kovalyov, 2000) 

 

Another motivation of the job grouping may be the capability of the processing 

unit (machine) to process several jobs at once. The processing unit can have 

several jobs in it up to the capacity and process them simultaneously. The nature 

of the process is batch availability model as mentioned before, whereas the 

distinguishing feature is not the availability of jobs but the jobs included in the 

batch. This class of job grouping is called batch scheduling model. For some 

processes, the jobs in a batch should be identical in terms of their families 

whereas in some processes this is not an obligation and the jobs from different 

families may coexist in the same batch. 

 

Before going further we should also give the explanation of the term “family” for 

this study. A family is a group of jobs, whose technical and processing 

requirements are the same. The coexistence of two jobs in a batch does not effect 

processing of each other, if these two jobs belong to the same family. On the 

other hand, two jobs from different families cannot coexist in a batch. This 

situation is called as “incompatible jobs” or “incompatible families” in the 

literature. 

 

Batch scheduling models are applicable in many industries. Especially the 

integrated circuit manufacturing is a good application area, because we can 

observe both cases, batches with compatible jobs and batches with incompatible 

jobs, together in integrated circuit manufacturing. For example, burn-in 

operation in integrated circuit manufacturing is a good example to the multi 

family batch processing (compatible families). The final stage in production of 

the integrated circuits is the burn-in operation, in which chips are loaded onto 

boards and exposed to high temperature. Each chip has a pre-specified minimum 

burn-in time, which depends on type or the customer requirements. The burn-in 

oven has limited capacity thus the boards holding the chips must be divided into 
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batches. Since chips may stay in the oven for a period longer than their minimum 

required burn-in time, it is possible to place different products in the oven 

simultaneously. The processing time of each batch will therefore be equal to the 

longest minimum exposure time among all the products in the batch. (Uzsoy 

1995). On the other hand, the operation of diffusion carried out in wafer 

fabrication, is a batch processing example with single family batches 

(incompatible families). In this operation a number of wafers are placed in a 

cylindrical reactor, which is then sealed, heated and filled with a carrier gas to 

allow dopant atoms present in the gas to diffuse into the exposed layer of the 

wafers, altering their electrical and chemical characteristics. Due to the chemical 

nature of the process it is impossible to process jobs with different recipes 

together in the same batch. (Uzsoy 1995). 

 

In this work our aim is to explore a single machine batch scheduling problem 

with incompatible families and dynamic job arrivals. The objective function is 

minimizing the total volume weighted flow time of the jobs. This problem is 

critical since the batching practice is important for many cases. Moreover the 

dynamic nature of the arrivals requires a “make to order” approach in the 

scheduling of the production period. In that respect for minimizing the 

inventories total flow time of the jobs play an important role.  

 

To be able to solve this problem we should make a combined decision at each 

decision point: 

 

1. start processing a new batch or wait for the next arrival of a job? 

2. if the decision is “starting a new batch” then which one of the existing 

families should be selected? 

3. finally the jobs from the same family should be selected for being 

processed in the batch. 
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The main difficulty of the problem caused by its dynamic nature. Since the job 

arrivals are arbitrary, at any decision point the available jobs and non-released 

jobs create a non-repeating arrival pattern. This pattern constitutes an 

enumerative problem, which is difficult to solve. This problem can be compared 

with static arrival weighted flow time problem with incompatible jobs, where all 

jobs are simultaneously available at time zero. It is known that this problem is 

NP-Hard. Considering that in an interval the jobs with different volume weights 

also constitute a bin-packing problem we can conclude that this problem is also 

NP-Hard. Moreover it is known that single machine weighted flowtime problem 

with different release times is NP-Hard even the weights are all unity [3]. Thus 

this is another comparison that allows us to conclude our problem is also NP-

Hard. To solve this problem we used branch and bound method with “depth 

first” branching strategy. It is coded using Borland Turbo Pascal 7.0 and run on 

Intel PIV-1.6 Ghz processor under Windows NT 4.0 operating system. 

 

We have developed an upper bound procedure and two alternative lower bound 

procedures. These are based on problem specific properties. 

 

To explore the problem we observed four parameters; first one is the job volume. 

We created the input sets in three different job volumes: “small” (the job 

volumes are determined using uniform distribution in the interval between 0 and 

50% of the reactor capacity), “large” (the job volumes are determined using 

uniform distribution in the interval between 50% of the reactor capacity and 

100% of the reactor capacity) and “mixed” (the job volumes are determined 

using uniform distribution in the interval between 0 and 100% of the reactor 

capacity). 

 

The second one and the third one of the parameters are the job number and 

family number, respectively. In this study we determined the job numbers and 

family numbers simultaneously. The sets are between 50 jobs, 2 families and 16 

jobs, 10 families. 
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The last parameter is the intensity of the arrivals. In this study we used three 

different frequencies: “frequent” or “tight” (the job arrivals occur in a time 

interval between 0 and 1/3*(processing time * total job number) with a uniform 

distribution), “moderate” (the job arrivals occur in a time interval between 0 and 

2/3*(processing time * total job number) with a uniform distribution) and 

“loose” (the job arrivals occur in a time interval between 0 and (processing time 

* total job number) with a uniform distribution). 
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CHAPTER 2 
 

 

AN OVERVIEW 

 

 

 

The grouping of jobs is a rather new topic in manufacturing. Therefore the term 

“batching” can be used for several types of problems in the literature. In this 

chapter our aim is to address some of the studies made on the scheduling 

problems with batching of jobs. 

 

2.1 The Literature on Family Scheduling Models 

 

As it mentioned before, we are only interested in single machine batch 

scheduling problems with incompatible families. But for the sake of the 

completeness of the work, we also give a short overview for some of the family 

scheduling model literature. 

 

One of the first and widely known works in this area is the paper of 

Santos&Magazine (1985). They concentrated on single machine static arrival of 

n different jobs. The objectives used in the work were minimization of total flow 

time for item and batch availability models and minimization of total tight flow 

time for item and batch availability models. They proposed optimal dispatching 

algorithms for minimization of total flow time problem with item availability and 

batch availability models. Moreover for total tight flow time minimization 

problem they proposed that the problem could be reduced to the knapsack 
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problem and if the set-up times are considered equal, a greedy single pass 

algorithm gives the optimal solution. 

 

In 1987 Dobson et al. studied also a static single machine environment to 

minimize total flow time of the produced parts. In this study they represented 

general integer programs for item-flow problem and batch-flow problem. Then 

for item-flow problems they proposed a dispatching rule solves the problem 

optimally. In batch-flow problem they separated the problem into two parts. First 

one is single product batch flow problem. They showed that the general problem 

can be reduced since there exist single part type and can be solved after this 

reduction. The second part of the batch-flow problem is represented as multiple 

product batch flow problem. For this part Dobson et al. (1987) proposed two 

solution heuristics and two improvement heuristics for the second solution 

heuristic. To be able to compare the effectiveness of the heuristics, they also 

proposed a lower bound. 

 

Cheng et al. (1994) proposed a dynamic programming approach to single 

machine, simultaneously available multiple type items. The jobs have batch 

availability property and the objective of the study is to minimize the total item 

flow time. Their DP algorithm runs in time O(nT+1/TT-1), where n represents the 

number of items and T represents number of types. The proposed algorithm 

becomes polynomial-bounded when T is fixed. In case of arbitrary number of 

types, T, the problem becomes open to search whether the problem is solvable or 

NP-hard. 

 

Sung&Joo (1997) published a paper investigating the same type of batch flow 

problem as that of Dobson et al. (1987) and Cheng et al. (1994) and additionally, 

considered two types of batch setup times (minor and major setup times) with 

capacity restricted integral batch volumes. In this paper they propose a DP 

solution and a DP based heuristic method to solve the minimization of weighted 

mean flow time problem. But as in the paper of Cheng et al. (1994), Sung&Joo 
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(1997) states that the problem is time bounded in terms of job numbers when the 

number of job types is fixed whereas it is open to search when the job type is not 

fixed. Then they proposed a heuristic method to solve the problem. This heuristic 

method has a time complexity O(n2 d log n). 

 

And recently in 2001 Cheng&Kovalyov published a paper having static arrival, 

batch availability of the jobs with constant set-up times. But their objective 

function is not unique but studied all these objectives: 

• minimizing maximum lateness 

• number of late jobs 

• total tardiness 

• total weighted completion time 

• total tardiness 

According to the batch capacity they classified the problems into two groups, 

unbounded model, the batch capacity is equal to the total job number, and 

bounded model, the batch capacity is less than the total job number. For both 

bounded and unbounded cases they proposed DP algorithms when all due dates 

are equal. They stated that the problems can be solved in polynomial time in case 

of existence of fixed number of distinct due dates or processing times. Moreover, 

Cheng&Kovalyov (2001) proposed efficient algorithms for some special cases, 

in which all the processing times and/or due dates are equal, and showed that 

some of the bounded models are NP-hard. 

 

2.2 The Literature on Batch Scheduling Models 

 
In batch scheduling problem there is a main distinction point in terms of the job 

specifications. Most of the literature on batch scheduling deals with multifamily 

batches as in burn-in operations, the final testing stage in semiconductor 

manufacturing. The jobs in burn-in operations are in solid state and the existence 

of a job from another family do not affect the jobs in the batch except their 

completion time. 
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On the other hand in many production environments, where the operation has a 

chemical nature and in liquid or gaseous state, the batches should be uniform in 

terms of families of jobs. Because the jobs are incompatible and the coexistence 

of these jobs may cause contamination, loss of material or side reactions. 

 

There are limited works on batch scheduling of incompatible jobs in literature.  

Most of the authors agree that one of the earliest works on batch scheduling 

appears to be that of Ikura and Gimple (1986). They studied the problem of 

scheduling a single batching machine in the presence of release times, rj , and 

due date, dj . All jobs assumed to have identical processing times and there exist 

single job family. Under the assumption of agreeable release times and due dates 

they provided an algorithm to the problem to determine whether there is a 

schedule, where all jobs are completed by their due dates. 

 

In 1991 Glassey and Weng presented a paper on “Dynamic batching heuristic for 

simultaneous processing”. In this paper they examined the problem of scheduling 

a single batch processing machine with single family in case of dynamic job 

arrival. Their objective function was minimizing the flow time of a job. They 

assumed that they have only the information of next L periods and in the scope 

of this information, they try to decide when to start a batch. They tried the 

effectiveness of the heuristic using a simulation model. 

 

In 1992 Ahmadi et al. presented a study on scheduling of a system composed of 

a discrete processor and batch processor in series. They proposed six different 

solution approaches to minimization of maximum completion time problems and 

minimization of total completion time problems with different machine 

configurations. They proposed that five of these problems can be solved in 

polynomial time and one of them is NP-complete. 
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Another important work is that of Chandru, Lee and Uzsoy (1993). Briefly this 

work studied the problem of minimizing total completion time on single and 

parallel batch processing machines. This problem is motivated by burn-in 

operations. In this study they assumed that jobs have different processing times 

and their capacity requirements are equal, all jobs are available at time zero. 

Chandru et al. proposed an exact solution procedure for the single machine 

problem and heuristic algorithms for both single and parallel machine problems. 

 

Hochbaum and Landy (1997); they were inspired by the work of Chandru et al. 

As it mentioned in previous part of this work Chandru et al. proposed a branch 

and bound algorithm for relatively small number of jobs (35 distinct jobs) and 

two heuristic methods for larger methods. In addition Chandru et al. considered a 

restricted version of the problem on a single machine in another paper (the paper 

is not discussed in this work), in which there is a fixed number of job types and 

jobs of the same type have the same processing time. This problem is called m-

type burn-in problem by the authors. Chandru et al. provided a DP algorithm 

with running time O(m3Bm+1) to the m-type burn-in problem. Hochbaum and 

Landy state that the DP solution provided by Chandru et al. depends heavily on 

B, oven capacity, thus in practice the proposed DP can be useful only for small 

values of m as B get larger. Moreover the B&B proposed for the general problem 

is again effective for small number of jobs. 

 

In the work of Hochbaum and Landy (1997), they proposed an algorithm for the 

m-type burn-in problem, which has a running time of O(m23m). The running time 

is independent of n, number of jobs, and B, the capacity of the oven. 

Besides the m-type burn-in problem on single machine Hochbaum and Landy 

consider also the general burn-in problem. They proposed a DP based heuristic 

for this general problem, which guarantees a solution that is at most twice the 

value of optimal solution. 

 



 11

In 1997, DuPont and Ghazvini (1997) presented a B&B algorithm to minimize 

mean flow time of jobs on a single batch processing machine. As in the previous 

studies it was focusing on burn-in operations and the job sizes were assumed to 

be identical and all jobs are present at time zero. 

 

The paper of Brucker et al. (1998) consists of two main parts; the first part is the 

unbounded model, where the batch capacity is greater or equal to the number of 

jobs. The second part is the bounded model, where the batch size is less than the 

number of jobs. In the first part the objective function is not unique, but consider 

all these objective functions: 

• minimizing the number of tardy jobs 

• minimizing total weighted completion time 

• minimizing the maximum lateness and maximum cost 

• minimizing the weighted number of tardy jobs 

• minimizing total weighted tardiness 

For the unbounded case they presented a generic DP algorithm that solves the 

minimization problems in pseudo-polynomial time. With the further study and 

characterization of the minimization problem they proposed more efficient DP 

algorithms for specific cost functions. They proposed an O(N log N) time 

algorithm for the minimization of the total weighted completion time. 

For the bounded case they proposed an O(nb(b-1)) time DP algorithm for 

minimizing total completion time when b>1; b is the batch capacity. Besides 

they proposed an O(b2m22m) DP algorithm for  

 

Another paper that discusses the batch scheduling of compatible jobs, is the work 

of Ghazvini and Dupont (1998). Unlike the others this paper discuss a situation 

where the jobs are in different volumes and requires the place in burn-in oven 

relevant to their volumes.  

 

The objective is minimizing the mean flow time. The authors proposed several 

heuristic algorithms to solve this problem and determined a lower bound to 
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compare the results of the proposed heuristic algorithms. By these comparisons 

they concluded that DYNA heuristic, an iterative, parametric heuristic, performs 

best in most of the cases. 

 

And recently in 2002 a study of DuPont and Flipo has appeared in the literature. 

They proposed an exact algorithm to minimize makespan on a batch machine 

with non identical job sizes. They proposed three different heuristic methods to 

solve bin packing problem. By using two of the proposed heuristics they 

developed a branch and bound algorithm. 

 

We now introduce the papers that address scheduling of incompatible job 

families. The work of Dobson and Nambimadom (1992) is one of the earliest 

and widely known researches on the subject. Considering the scarcity of the 

works on scheduling of incompatible jobs with respect to burn-in problems, the 

importance of the work increases. 

 

In this working paper the authors presented an integer programming formulation 

for the problem. Moreover, a lower bound calculation using the partial relaxation 

of the integer programming is given. Besides these they proposed three 

heuristics; one is a greedy heuristic, a successive knapsack heuristic and 

generalized assignment heuristic. The major assumptions made in this work is as 

follows: 

The jobs belonging to different families have to be processed separately. The 

processing time of the batch depends only on the family but not to the volume of 

the jobs. The volume of each job can be different. All jobs are available at time 

zero. The objective of the problem is the minimization of the mean flow time. 

Dobson and Nambimadom (1992) concluded that knapsack heuristic is superior 

to the greedy heuristic; assignment heuristic is better than the knapsack heuristic 

on average but the performance time of the knapsack heuristic is shorter. 
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In the same year, 1992, Fowler et al. presented a paper on “Real time control of 

multiproduct bulk service semiconductor manufacturing processes”. This paper 

based on the study of Glassey and Weng (1991). But they also studied the multi-

product, dynamic arrival batching machine problem with different processing 

times and incompatible jobs. At the first glance this paper seems very similar to 

the problem discussed in our study but there is a major distinction in problem 

definition and two differences in problem conditions. First, the problem 

conditions: in this paper Fowler et al. assumed the job volumes are fixed and the 

job processing times are different for the families. Second, the problem 

definition and nature: In the study of Fowler et al., the future arrival information 

is not available thus for each family they try to predict the next arrival time and 

decide to start processing a batch or wait for the next arrival. 

 

Another paper appeared in the literature is the work of Uzsoy (1995). Uzsoy 

discussed the minimization of makespan (Cmax), total weighted completion time 

and minimization of maximum lateness (Lmax) on single batch reactor for static 

problems. He offered optimal algorithms to solve these problems. Beside these 

he also extend the problem to the static, identical parallel machine environment. 

Finally, he offered an optimal algorithm for the minimization of makespan 

problem for the dynamic job arrival environment, and proposed some heuristic 

methods for the minimization of maximum lateness. 

 

In 1998 Mehta and Uzsoy proposed a dynamic programming algorithm to solve 

the minimzation of total tardiness on a batch processing machine with 

incompatible job families. Their algorithm can solve the problem in polynomial 

time when the number of families and machine capacity are fixed. Moreover 

they proposed two heuristic algorithms to solve the problem in a reasonable 

computation time.  

 

Finally Azizoğlu and Webster (2001) studied a static batch-processing problem 

with incompatible job families. In this study the jobs may have different space 
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requirements due to their volumes. The work of Azizoğlu and Webster extends 

the analysis of the model studied by Dobson and Nambimadom(1992). They 

developed two properties of an optimal schedule, proposed a lower bound 

procedure, incorporate these and other known properties and bounds in the 

design of a branch and bound algorithm. 

 

In literature there exist also some studies on the batch scheduling with dynamic 

arrivals. The first study that will be introduced is the paper of Sung and Yoon 

(1997). Unlike the others Sung and Yoon studied a two-batch processing 

machine flow shop problem with dynamic arrivals. In this study the jobs have 

different processing times in different machines. There exist no families that can 

cause an incompatible case or elongation of processing time. They proposed a 

dynamic programming algorithm with time complexity O(n*c1), where c1 is the 

capacity of the first batching machine. 

 

In 2002, Sung et al. presented another paper with dynamic arrivals. This paper 

was focusing on minimization of makespan on a single burn-in oven with job 

families and dynamic arrivals. In this paper authors proposed a dynamic 

programming algorithm to solve the problem. The time complexity of the 

proposed algorithm is O(∏
=

F

i

F
icn

1

), where ni is the number of jobs from family f 

and F is the number of families. 

 

In this work our aim is to explore the batch-scheduling problem with 

incompatible job families and dynamic job arrivals for minimizing the total flow 

time of the jobs. Considering the assumptions made and the solution approach, 

our work can be regarded as an extension of the work by Azizoğlu and Webster 

(2001). 
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CHAPTER 3 
 

 

PROBLEM DEFINITION, PROPERTIES OF THE PROBLEM 

AND SOLUTION APPROACH 
 

 

 

In this study our motivation was building a parallelism with the liquid phase 

chemical batch reactions and a general batching machine. To be able to establish 

the consistency of the problem environment we make the following assumptions. 

 

3.1 Assumptions 

 

1. Multiple jobs are processed simultaneously in batches; only the jobs from 

the same family may be processed together (incompatible jobs). 

 

This assumption forces us to collect the existing jobs in multiple, 

unifamilar groups. Thus at any decision point we should evaluate each of 

these groups and the content of them separately. This property increases the 

number of decisions. Considering that the processing times of all batches 

are equal, this assumption is the only assumption leading to the impact of 

the families. 

 

2. Preemption is not allowed, the process of the batching machine cannot be 

interrupted; the jobs cannot be added to the batch or cannot be removed 

from the batch during the process. 
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The main motive of this assumption was the chemical nature of the 

proposed problem. Unlike the manufacturing industries most of the 

processes in process industries are irreversible and continuous. This 

property necessitates the uninterrupted processing of the raw material. 

Besides this property of chemical processes, the structural and operational 

conditions of batch reactors are other important factors. 

 

3. All jobs, regardless of their family, have the same processing time, p. 

 

This is a simplifying assumption. This property justifies dividing the time 

scale into uniform length intervals. By using this grid we can analyze the 

whole time horizon in distinct short intervals and then we can look for the 

interactions between these short intervals. 

 

4. Jobs may have arbitrary volumes between 1 and 100 (1≤job volume≤100), 

where the batch capacity is 100 units. 

 

This assumption leads to the indeterminism in batch content. Since the job 

volumes are arbitrary, theoretically a batch may contain a single job or 100 

jobs. Moreover two different batches with n distinct jobs may have 

different total volumes. Therefore this property brings a batch content 

decision problem. 

 

5. Jobs arrive to the processor at arbitrary integer time points and in random 

order. 

 

This assumption is the main characteristic of this study. The arbitrary 

arrival of jobs creates a non-repeating, non-systematic pattern. The optimal 

solution of such a pattern can be obtained only by enumerative approaches, 

which constitutes the main difficulty of this study. 
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6. The jobs can be split to different batches, but the completion time of a job 

is equal to the completion time of its last portion. 

 

This property depends heavily on the liquid nature of the reactants and 

product i.e. in this study we assumed that both raw materials and the 

product are liquid in nature; therefore they can be divided into all portions. 

This property brings an extra simplification in using the reactor at its 

maximum capacity. Besides, with the improved utilization of the reactors 

the optimal solution will also be improved. 

 

Considering the production environment described above, we can formulate the 

problem as follows: 

Min ∑
=

n

i
iF

1
 

Subject to: 

 

 Xik ≤ Vi * Jik   ∀ i,k     (1) 

 ∑
=

m

k 1
Xik = Vi   ∀ i     (2) 

 ∑
=

n

i 1
 Xik ≤ 100   ∀ i,k     (3) 

 Jik ≤ )(
1

1
)()( )(

)(

∑
∑

≠

≠

−

− iflf lf

il
lklf

N

JN

NF
  ∀ i,k   (4) 

 BSk ≥ BCk-1     ∀ k   (5) 

 BSk ≥ Ri – M (1 - Jik )     ∀ i,k   (6) 

 BCk = BSk + p     ∀ k   (7) 

 Fi ≥ Vi (BCk – Ri ) – M (1 - Jik )  ∀ i,k   (8) 

 BSk ≥0 , BCk ≥0 , Xik ≥ 0 , Jik = {1,0}. 
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The variables are: 

Xik : the volume of job i processed in batch k; 

Jik : 1 if any portion of the job i is processed in batch k, 0 otherwise; 

BSk : start time of the processing of batch k 

BCk : completion time of the processing of batch k. 

 

The parameters are: 

p : the processing time of a batch 

Ri : the release time of job i 

Vi : total volume of job i 

NF : number of families 

Nf(i) : number of jobs from family f 

f(i) : index of family of job i 

M : very large number. 

 

Constraint 1 and constarint 2 ensures that the fraction of a job is at most identical 

to the job volume and the sum of the fractions is equal to the job volume. 

Constraint 3 ensures that the sum of the volumes of jobs or job fractions is less 

than the reactor capacity. 

Constraint 4 ensures that the jobs from different families are not processed in the 

same batch. 

Constraint 5 ensures that the processing of a batch starts if and only if its 

predecessor is finished. 

Constraint 6 ensures that any batch contain only the jobs which are already 

released. 

Constraint 7 ensures that a batch is completed when the processing of the jobs 

are completed. 

Constarint 8 ensures that volume weighted flow time of a job is calculated when 

the last portion of the job is completed. 
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3.2 Properties of the Problem 

 

Using these conditions and specifications stated before for the problem 

environment, we propose some properties of the optimal solution. 

 

Property 1: Suppose a batch completion is time t. If we have jobs waiting to be 

processed, the start of a batch cannot be equal to or later than t+p. (Waiting 

time of a job can not exceed processing time of a batch when the batch processor 

is idle.) 

 

The motivation of this property is that, keeping the machine idle more than a 

processing time period is not reasonable. The proof of this property can be made 

easily by contradiction; assuming a batch start at t+p which is optimal and 

inserting an extra batch to the idle period [t,t+p] in which at least one of the jobs 

available at time t can be processed. 

 

Property 2: Start time of a new batch can be either a job release time or a batch 

completion time but no other time. 

 

Proof: Let at time t a batch be completed and we have uncompleted jobs waiting 

to be processed. Let the next event after this event is at t+n and it is a job arrival. 

Suppose the optimal solution is obtained in a way that the batch start is not at t or 

t+n, but at t+m, where n>m. Then we can reduce the total flow time by reducing 

the flow time of a job, which is available at time t but not started to be processed 

until t+m. And during this back shift from t+m to t all the other jobs may remain 

at their optimum positions. 

The second property given here can be also found in the paper of Glassey and 

Weng (1991). 

 

In their paper Glassey and Weng (1991) proposed yet another property: “If the 

volume of the available jobs exceed (or at least equal to) the capacity of the 
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batch processor and the processor is idle it starts service immediately.” This 

property is very important for the solution of their problem. On the other hand in 

our problem it cannot be applied. Because the volumes of the jobs in their 

problem are fixed; and the jobs belong to a single family. These characteristics 

provide them information about the maximum capacity and the maximum 

number of jobs in a reactor. In our problem the job volumes are arbitrary this 

gives rise to another classical combinatorial problem, bin packing problem. 

 

3.3 Approach for Selecting Available Jobs from Families 

 

At a decision point (i.e. at a batch finish time or a job release time) if a family 

contains more than one job and the sum of the volumes of existing jobs from that 

family is at least equal to the reactor capacity this case constitutes an instance of 

bin packing problem. Bin packing problems are hard problems to solve [22]. To 

overcome this embedded problem we propose a simple rule and get satisfied by 

an optimal solution among the problems solved by this simple rule. We assume 

that this restricted optimum solution gives a satisfactory batch schedule. In this 

study we used the proposed solution approach whenever we met a bin packing 

problem instance.  

 

Solution Algorithm of Bin Packing Problems 

 

Step1: Determine the available jobs from the same family. 

Step 2: For each existing job calculate the ratio 
oblumeofthejexistingvo
oblumeofthejreleasedvo . 

Step 3: Sort the jobs in decreasing order of this ratio. If there exists a tie, break 

the tie in favor of the job having higher total volume. 

Step 4: Start taking the jobs from the top up to filling the capacity. The last job 

can be split into two to fill the processor maximally. 
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After setting the production environment and the bin-packing algorithm, we can 

propose the heuristic method to solve the single machine batch-scheduling 

problem. The solution obtained from this heuristic method was used as an upper 

bound. 

 

Before starting to explain the upper bound procedure it is necessary to introduce 

some notation about the procedure. These notations are also valid for the lower 

bound procedures. 

 

Vz
xy : Volume of the xth job in interval y belong to family z. 

Rz
xy : Release time of the xth job in interval y belong to family z. 

mr(z,y): index number of the last job from family z in interval y, whose release 

time is equal to the interval start time. 

m*(z,y): index number of the last job from family z in interval y 

m(z,y): index number of the last job from family z in interval y, which completes 

the batch capacity to the reactor capacity. If the volume of the last job,say job x, 

is greater than the remaining capacity the index m(z,y) represents job x-i. 

i*: index of the last interval 

Vz
xy,opt: Volume of the xth job in interval y belong to family z under an optimizing 

procedure. 

Finally we should note that for any family f in any interval i, total volume of the 

jobs, which are released before the start time of the interval i and not processed 

yet, are presented by Vf
0i. 

 

3.4 Upper Bound Heuristic 

 
This is a rolling horizon type heuristic and its main idea is maximizing the 

average utilization of the reactor per unit time. It takes a standard batch 

processing period as the basis and determines for each family a possible batch 

and batch start time. Then select one of these batches for being processed. This 

approach provides a feasible start time and content for every batch. This is the 
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brief description of one cycle of the upper bound heuristic. At each cycle of the 

upper bound procedure it provides a solution for another batch. The description 

of the heuristic is given below, the pseude-code of the upper bound procedure 

can be found in Appendix D. 

 

Algorithm of Upper Bound Procedure 

 

Step 1: Set a standart interval with length p. 

Step 2: Determine the total volume of available jobs , ∑
=

),(

0

ifm

x
xi

f
r

V  for each family f; 

a. If ∑
=

),(

0

ifm

x
xi

f
r

V  ≥ reactor capacity 

Select the jobs among family f using the bin packing algorithm, 

establish a batch. 

b. If ∑
=

),(

0

ifm

x
xi

f
r

V < reactor capacity 

Take all available jobs of family f into the batch, then calculate the 

capacity utilization of family f =
p

V
ifm

x
xi

f
r

∑
=

),(

0 . 

Starting from the job x=mr(f,i) to m*(f,i) check 

If Vf
xi ≤ remaining batch capacity and  

i
f

xi
f

ifm

x
xi

f
xi

f

RpR

VV
r

0
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0

−+

+ ∑
= ≥

p

V
ifm

x
xi

f
r

∑
=

),(

0  then take the job into the batch; 

decrease the remaining capacity; check the next job. 

Step 3: Select the family f with f = argmax {Vf} where Vf is the volume of the 

batch of family f per unit time. 

Step 4: Calculate total weighted flow time of jobs throughout the interval; 

If jobs are finished, stop; sum all weighted flow times calculated 

throughout the intervals, UB is found; 
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Else Goto Step 1. 

 

Sample of Upper Bound Calculation 

 

Let the processing time of a batch, p, is 10 units and the capacity of the reactor is 

100 units. The data of the problem is as given in following table: 

 

Table 3.1: Data of the sample problem of upper bound heuristic 

Job # 1 2 3 4 5 6 7 8 9 10 11 12 

Rel.time 2 6 8 11 14 20 22 28 33 37 43 46 

Family 1 2 1 1 2 2 1 2 2 1 2 1 

Volume 50 36 48 21 24 30 44 52 32 33 41 37 
 

 
The first interval is [2,12), the total volume of available jobs are 50 from family 

1 and 0 from family 2. 

For family 1: 50 / 10 = 5 

(50 + 48) / (8+10-2) = 6.125. 

Since volume of the job 4 is greater than the remaining capacity of the batch 

(i.e.100-98), it is skipped. Since job 4 is the last job of the family 1 in the interval 

[2,12) we stop at this point and start to evaluate the next family. 

For family 2 : 0 / 10 = 0 

(0 + 36 ) / (6+10 - 2) = 2.514. 

Job 2 is the last job of the family 2 in the interval. 

Max {5 , 6.125, 0, 2.514} = 6.125, then it is decided that 

Batch start : 8,  Batch finish : 18  Selected family : 1. 

Total weighted flow time of the released jobs up to the batch finish time is: 

50*16 + 36*12 + 48*10 + 21*7 + 24*4 = 1955. 

From this point on the calculations will be given in brief: 

Interval is [18,28), volume of available jobs are 21 from family 1 and 60 from 

family 2. 
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For family 1: 21 / 10 = 2.1 

(21 + 44) / (22 + 10 - 18) = 4.643. 

For family 2: 60 / 10 = 6.0 

(60 + 30) / (20 + 10 - 18) = 7.50. 

Max {2.1, 4.643, 6.0, 7.50} = 7.50, then 

Batch start : 20,  Batch finish : 30  Selected family : 2. 

21*12 + 60*12 + 30*10 + 44*8 + 52*2 = 1728 

Interval is [30,40), volume of available jobs are 65 from family 1 and 52 from 

family 2. 

For family 1: 65 / 10 = 6.5 

(65 + 33) / (37 + 10 - 30) = 5.76. 

For family 2: 52 / 10 = 5.2 

(52 + 32) / (33+10 - 30) = 6.46. 

Max {6.50, 5.76, 5.20, 6.46} = 6.50, then 

Batch start : 30,  Batch finish : 40  Selected family : 1. 

65*10 + 52*10 + 32*7 + 33*3 = 1493. 

Interval is [40,50), volume of available jobs are 33 from family 1 and 84 from 

family 2. 

For family 1: 33 / 10 = 3.3 

(33 + 37) / (46 + 10 - 40) = 4.375. 

For family 2: 84 / 10 = 8.4 

41 > (100-84) therefore skip job 11. 

Max {3.30, 4.375, 8.40} = 8.40, then 

Batch start : 40,  Batch finish : 50  Selected family : 2. 

33*10 + 84*10 + 41*7 + 37 * 4 = 1605. 

Interval is [50,60), volume of available jobs are 70 from family 1 and 41 from 

family 2. 

For family 1: 70 / 10 = 7.0. 

For family 2: 41 / 10 = 4.10. 

Max {7.0, 4.10} = 7.0, then 

Batch start : 50,  Batch finish : 60  Selected family : 1. 
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70*10 + 41*10 = 1110. 

Interval is [60,70), volume of available jobs are 0 from family 1 and 41 from 

family 2. 

For family 1: 0 / 10 = 0. 

For family 2: 41 / 10 = 4.10. 

Max {0, 4.10} = 4.10, then 

Batch start : 60,  Batch finish : 70  Selected family : 1. 

41*10 =410. 

Since batch finish time is greater than the release time of the last job and no 

available job exist, end the upper bound procedure. 

Upper Bound is 8301. 

 

 {1,3}  {2,5,6} {4,7} {8,9} {10,12} {11} 
 
2       8               18  20              30               40                50                60             70 

Figure 3.1: Schedule obtained for the sample problem using upper bound 

heuristic 

 

Note that the optimal solution of this problem is 7942. 

 

{1} {3,4} {2,5,6}  {8,9} {7,10} {11} {12} 
 
2              12              22             32  33            43               53             63             73 

Figure 3.2: Optimal schedule obtained for the sample problem using proposed 

B&B algorithm. 

 

3.5 Lower Bound Procedures 
 

After setting the upper bound heuristic, we defined two lower bound heuristics to 

be able to search the problem more efficient. 

 

The flow time of a job can be thought in two parts, the first part is the 

“operational flow time”. Operational flow time is the flow time accumulated 
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during the processing of the job. Therefore it is the minimum possible flow time 

of the job. The second part is the “waiting flow time”. Waiting flow time is the 

flow time accumulated during the time between release time of the job and start 

of its last portion’s (if any) processing. This part is the variable part and makes 

the difference between the proposed lower bound procedures. Any procedure 

that estimates the waiting flow time closer to the optimal result provides tighter 

lower bound. Since the processing flow time is fixed part of the flow time it can 

be added later without any difficulty. Throughout this study we took only the 

waiting flow times in the calculations made for comparison (i.e proofs) due to its 

convenience. 

 

As it is mentioned before, we proposed two lower bound procedures. The first 

one is the “Family independent lower bound procedure”. The other one is the 

“Family dependent lower bound procedure”. 

 

3.5.1 Family Independent Lower Bound Procedure (FILB) 
 

The main idea of this procedure is operating the reactor at maximum capacity 

utilization on a continuous basis. To increase the utilization of the reactor 

following assumptions are relaxed: 

• Multiple jobs are processed simultaneously in batches; only the jobs from 

the same family can be processed together (incompatible jobs). 

In this procedure we assume that the jobs from different families can be 

aggregated together in a single batch (i.e. incompatible job assumption is 

relaxed). 

• A job can be split to different batches, but the completion time of a job is 

equal to the completion time of its last portion. 

Another relaxation is made on the completion time of the jobs. We assume that 

any finished portion of a job does not contribute towards flow time. Only the 

uncompleted part charges the flow time with respect to its volume.(i.e. let a 80 
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unit volume job be divided into portions as 20 and 60. The 20 unit portion is 

already finished and 60 unit portion is waiting to be processed. The flow time of 

the job is calculated over the 60-unit portion following the completion of 20-unit 

job) 

• Jobs arrive to the processor at arbitrary integer time points and in 

random order. 

Finally we relaxed the arbitrary arrival of the jobs. As in the upper bound 

heuristic, we set intervals to solve the problem and we re-ordered the release 

times of the jobs according to the interval start time. 

Similar to the upper bound heuristic, the family independent lower bound 

procedure is a rolling horizon type heuristic. 

We set interval start time and interval end time for a batch. Interval start time is 

the first possible time when the machine is idle. As it is in the upper bound 

procedure, interval length is equal to the batch processing time. 

After setting the interval boundaries we determine the available jobs at the 

interval start for each family and the jobs in the interval. 

For the first interval we determine the available jobs according to their families 

and calculate the flow times as in the optimal solution. But starting from the 

second interval the volumes of the available jobs are handled as the total volume 

of all jobs regardless of their families. If the total volume of the available jobs is 

at least equal to the reactor capacity we start to the process. If the total volume of 

the available jobs is less than the reactor capacity, we “pull “ the jobs from the 

interval by re-ordering the release times of these jobs, if there exist any release of 

job throughout the interval. We “pull” the jobs until the volume of available jobs 

(i.e. jobs in the batch) reaches the reactor capacity or no more jobs remain in the 

interval. If the volume of the job to be pulled is greater than the remaining 

capacity, we pull a portion of job, which is equal to the remaining capacity. If 

there exist no job release in the interval, we start to the processing with available 

jobs. 
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Algorithm of Family Independent or Consolidated Family Lower bound 

Procedure (FILB) 

 

Step 1: Set the standard interval with length p, [t,t+p). 

Determine the total volume of available jobs from family f, ∑
=

),(

0

ifm

x
xi

f
r

V , at 

time t. 

a. If ∑
=

),(

0

ifm

x
xi

f
r

V ≥ reactor capacity 

Select the jobs among the available jobs using bin packing algorithm 

provided that the lower bound refer to the restricted optimum as 

mentioned in section 3.3, establish a batch. 

b. If ∑
=

),(

0

ifm

x
xi

f
r

V < reactor capacity 

Establish a batch with available jobs from family f. 

Calculate the total weighted flow time of jobs throughout the interval. 

c. If ∑
=

),(

0

ifm

x
xi

f
r

V = 0 

Label LB[j,f] = BIG, f= f+1Goto 1. 

Step 2: Set the standard interval with length p. 

Step 3: Consolidate all the jobs in single family, f. 

Step 4: Determine the total volume of available jobs for the consolidated 

family,∑ ∑
= =

f

z

zm

x

r

1

)(

0
Vz

xi; 

a. If ,∑ ∑
= =

f
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zm
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0
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xi≥ reactor capacity 

Select the jobs among available jobs using bin packing algorithm, 

establish a batch. 

b. If ,∑ ∑
= =

f

z

zm

x

r

1

)(

0
Vz

xi< reactor capacity 
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Pull the jobs that are not released yet, to the interval start until the 

batch capacity is fully utilized or the last job that will be released 

before the interval end is pulled to the interval start. 

Step 5: Calculate the total weighted flow time of jobs throughout the interval. 

Step 6: If jobs are finished then sum all flow times calculated for each interval, 

LB[j,f] is found. 

Else Goto 2. 

Step 7: To repeat the same cycle for f+1 Goto 1. 

 

This algorithm has O(n2 log n) complexity, where n is total number of arrivals. 

In fact at the worst case the number of comparisons made to obtain a schedule is 

less than n2 log n. At the worst case we will have n jobs simultaneously in an 

interval and sorting of these jobs will bring O(n log n) complexity to the 

algorithm. Since the number of intervals is at most equal to the number of 

arrivals we will have at most n intervals in a problem. Therefore the number of 

comparisons made is always less than n2 log n. But it does not reduce the order 

of the complexity. 

 

Proposition 3.1: Under given conditions FILB procedure leads always a lower 

volume weighted flow time than the restricted optimal schedule.  

Proof: 

Here we will prove that the family independent lower bound leads always to 

weighted flow time lower than a restricted optimal schedule by showing that 

when the job volumes, release times and other operational conditions are 

identical, job completions in lower bound is necessarily on or before their 

counterparts in an optimal schedule. For this proof we compared only the cases, 

where optimal schedule and FILB start at the same time to the processing of 

jobs. Because the cases in which the optimizing procedure starts at a later time 

are easier. 

Since the size of the proof is rather high we demonstrated it in Appendix G. 
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Sample of Family Independent Lower Bound Procedure 

 

Let the processing time of a batch, p, be 10 units and the capacity of the reactor 

be 100 units. The data of the problem is given in the following table. 

 

Table 3.2: Data of the sample problem of family independent lower bound 

procedure 

Job # 1 2 3 4 5 6 7 8 9 10 11 12 

Rel.time 2 6 8 11 14 20 22 28 33 37 43 46 

Family 1 2 1 1 2 2 1 2 2 1 2 1 

Volume 50 36 48 21 24 30 44 52 32 33 41 37 
 
 
The first interval is [2,12), the available jobs are 50 from family 1 and 0 from 

family 2. The only family that can be processed is family 1. Therefore label the 

lower bound of the family 2 as BIG. Start calculating the lower bound of family 

1. 

Flow time of the jobs throughout the interval is, 

50*p + 36*6+48*4+21*1 = 929. 

To represent the quantity processed throughout the interval, it is multiplied by p, 

where p = 10. 

Total volume of jobs not processed by t=12 is 36+48+21=105. 

 

The second interval is [12,22), the sum of volumes of available jobs is 105. Flow 

time of the jobs throughout the interval is, 

100*p+5*10+24*8+30*2 = 1302. 

Total volume of jobs not processed by t=22 is 5+24+30=59. 

 

The third interval is [22,32), the sum of volumes of available jobs is 103. Flow 

time of the jobs throughout the interval is, 

100*p+3*10+52*4 = 1238. 
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Total volume of jobs not processed by t=32 is 3+52 =55. 

 

The fourth interval is [32,42), the sum of volumes of available jobs is 55.  

Since the total volume of available jobs is less than the reactor capacity we 

examine the jobs, which will be released throughout the fourth interval. Then 

pull the jobs to the interval start time (this means taking the job into the batch 

without waiting its release time) starting from the nearest release of job to the 

interval start. 

Rearrange the jobs throughout the interval as in the table below: 

 

Table 3.3: Rearranged pattern of the consolidated jobs through interval [32,42) 

for LB[1,1] 

Job #          10 11 12 

Rel.time         32 37 43 46 

Volume         100 20 41 37 
 

 
Flow time of the jobs throughout the interval is, 

100*p+20*5 = 1100 

Total volume of jobs not processed by t=42 is 20. 

 

The fifth interval is [42,52), the sum of volumes of available jobs is 20.  

Rearrange the jobs throughout the interval as in the table below; 

 

Table 3.4: Rearranged pattern of the consolidated jobs through interval [42,52) 

for LB[1,1] 

Job #           11 12 

Rel.time          42 43 46 

Volume          98 0 0 
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Flow time of the jobs throughout the interval is, 

98*p = 980. 

At the end of the fifth interval (or fifth batch) all jobs are processed. So we can 

calculate the minimum total weighted flow time by the summation of all 

weighted flow times calculated for each interval. The result obtained gives the 

minimum bound of the problem if the job from family 1 is processed 

immediately. 

LB[1,1] = 980+1100+1238+1302+929 = 5549. 

 

{1} {2,3,4} {4,5,6,7} {7,8,9,10} {10,11,12} 
 
2                   12                  22                   32                   42                  52 

Figure 3.3: Schedule obtained for LB[1,1] of the sample problem using FILB 

procedure. 

 

Another possibility in calculating the lower bound is accounting for the waiting 

time of the next job. 

The first interval is [2,6) since the next arrival of job is at t=6; there exist 50 unit 

volume job from family 1. 

Flow time of the job throughout the interval is, 

50*(6-2) = 200. 

Total volume of jobs not processed by t=6 is still 50. 

 

The second interval is [6,16), the sum of volumes of available jobs is 86. Since it 

is smaller than the reactor capacity rearrange the jobs throughout the interval as 

given below. 
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Table 3.5: Rearranged pattern of the consolidated jobs through interval [6,16) for 

LB[1,2] 

Job #  2 3 4 5 6 7 8 9 10 11 12 

Rel.time  6 8 11 14 20 22 28 33 37 43 46 

Volume  100 34 21 24 30 44 52 32 33 41 37 
 
 

Flow time of the jobs throughout the interval is, 

100*p+34*8+21*5+24*2 = 1425. 

Total volume of jobs not processed by t=16 is 34+21+24=79. 

 

The third interval is [16,26), the sum of volumes of available jobs is 79.  

Rearrange the jobs throughout the interval as in the table: 

 

Table 3.6: Rearranged pattern of the consolidated jobs through interval [16,26) 

for LB[1,2] 

Job #      6 7 8 9 10 11 12 

Rel.time     16 20 22 28 33 37 43 46 

Volume     100 9 44 52 32 33 41 37 
 
 
Flow time of the jobs throughout the interval is, 

100*p+9*6+44*4 = 1230. 

Total volume of jobs not processed by t=26 is 9+44=53. 

 

The fourth interval is[26,36), the sum of volumes of available jobs is 53.  

Rearrange the jobs throughout the interval as: 
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Table 3.7: Rearranged pattern of the consolidated jobs through interval [26,36) 

for LB[1,2] 

Job #        8 9 10 11 12 

Rel.time       26 28 33 37 43 46 

Volume       100 5 32 33 41 37 
 
 

Flow time of the jobs throughout the interval is, 

100*p+8*5+32*3 = 1136. 

Total volume of jobs not processed by t=36 is 5+32=37. 

 

The fifth interval is [36,46), the sum of volumes of available jobs is 37.  

Rearrange the jobs throughout the interval as: 

 

Table 3.8: Rearranged pattern of the consolidated jobs through interval [36,46) 

for LB[1,2] 

Job #          10 11 12 

Rel.time         36 36 43 46 

Volume         67 33 11 37 
 
 

Flow time of the jobs throughout the interval is, 

100*p+11*3 = 1033. 

Total volume of jobs not processed by t=46 is 11+37=48. 

 

The sixth interval is[46,56), the sum of volumes of available jobs is 48.  

48*p = 480. 

LB[1,3] = 480 + 1033 + 1136 + 1230 + 1425 + 200 = 5504. 
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 {1} {2,3,4} {4,5,6,7} {7,8,9,10} {10,11,12} 
 
2      6                   16                   26                  36                   46                   56 

Figure 3.4: Schedule obtained for LB[1,3] of the sample problem using FILB 

procedure. 

 

At the end of the fifth interval (or fifth batch) all jobs are processed. And lower 

bound for “waiting the next arrival” (= do nothing) is found less than starting to 

process 50 unit jobs immediately. In the branch and bound procedure branching 

the possibility with the minimum lower bound is the most promising choice. 

Therefore we branch towards the node that has “waiting the next arrival”. 

 

3.5.2 Family Dependent Lower Bound Procedure (FDLB) 
 

This procedure heavily depends on the family independent lower bound 

procedure. The main idea is the same with the family independent lower bound 

procedure, operating the reactor with minimum idle time and at maximum 

capacity. To increase the utilization of the reactor the following assumptions are 

relaxed: 

• jobs can be split to different batches, but the completion time of a job is 

equal to the completion time of its last portion. 

• jobs arrive to the processor at arbitrary integer time points and in random 

order. 

These are also the two assumptions relaxed for obtaining the family independent 

lower bound procedure. 

We set interval start time and interval end time for a batch. Interval start time is 

the first possible time when the machine is idle. As in the upper bound and the 

former lower bound procedures, interval length is equal to the batch processing 

time. 
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After setting the interval boundaries we determine the available jobs at the 

interval start for each family and the job releases in the interval. For the first 

interval we determine the available jobs according to their families and calculate 

the weighted flow times as in the optimal solution. Starting from the second 

interval we start to “pull” the jobs from the future arrivals. If the total volume of 

the available jobs from family f* is greater than or equal to the reactor capacity 

we start to process. If the total volume of the available jobs from family f*is less 

than the reactor capacity, we “pull “ the jobs from the interval by re-ordering the 

release times of the jobs. We “pull” the jobs until the volume of available jobs 

(i.e. jobs in the batch) reaches the reactor capacity. If the volume of the job to be 

pulled is greater than the remaining capacity, we pull a portion of the job, which 

is equal to the remaining capacity. But unlike the family independent lower 

bound procedure, we only pull the jobs from the same family; to be able to fulfill 

the maximum capacity requirement we also pull the jobs from future intervals. 

 

Algorithm of Family Dependent Lower Bound Procedıure 

 

Step 1: Set the standard interval with length p, [t,t+p). 

Determine the total volume of available jobs from family f, ∑
=

),(

0

ifm

x
xi

f
r

V , at 

time t. 

a. If ∑
=
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0

ifm

x
xi

f
r

V ≥ reactor capacity 

Select the jobs among the available jobs using bin packing algorithm 

provided that the lower bound refer to the restricted optimum as 

mentioned in section 3.3, establish a batch. 

b. If ∑
=

),(

0

ifm

x
xi

f
r

V < reactor capacity 

Establish a batch with available jobs from family f. 

Calculate the total weighted flow time of jobs throughout the interval. 
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c. If ∑
=
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x
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r

V = 0 

Label LB[j,f] = BIG, f= f+1Goto 1. 

Step 2: Set a standard interval with length p; 

Step 3: Determine the total volume of available jobs, and the jobs that will be 

released throughout the interval for each family, f; ∑
=

),(*

0

ifm

x
xi

fV determine 

the release times of the jobs; 

a. If ∑
=

),(*

0

ifm

x
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fV  ≤ reactor capacity  

Take all jobs of family f and calculate the total weighted flow times of 

these jobs throughout the interval; 

b. ∑
=

),(*

0

ifm

x
xi

fV  > reactor capacity 

Select the earliest released jobs of family f, whose total volume is equal 

to the batch capacity, ∑
=

),(

0

ifm

x
xi

fV ; 

Calculate the total flow time of the selected jobs throughout the interval; 

Step 4: Choose the family f with the maximum flow time content calculated in 

step 3, label the family as f*; 

Step 5: If total volume of available jobs of family f* < reactor capacity 

Pull the jobs of family f*, that are not released yet, to the interval start 

until the batch capacity is fully utilized; 

Step 6: Calculate the total flow time of all jobs throughout the interval. 

Step 7: If jobs are finished then sum all flow times calculated for each interval, 

LB[j,f] is found; 

Else Goto 2; 

Step 8: To repeat the same cycle for f+1 Goto 1. 

 

As in FILB procedure the complexity of this algorithm is O(n2 log n), where n is 

the total number of jobs. 
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Proposition 3.2: Under given conditions FDLB procedure always leads to a 

lower volume weighted flow time than the restricted optimal schedule.  

 

Proof: 

This procedure takes care of the existence of families. Therefore it is more 

complicated than the family independent procedure. We will first prove that in 

case BSz
i,opt = BSz

i,LB for ∀z the lower bound procedure completes more job than 

the optimizing procedure if both of the procedures decide to process the same 

family f.  

The second part is more complicated than the first part. We will show that in 

case of BSz
i,opt = BSz

i,LB for ∀z given that the optimizing procedure starts to 

process a batch of family f and lower bound procedure starts to process a batch 

of family g, the total weighted flow time accumulated by the lower bound at the 

end is less than that of optimal solution. For this comparison we selected a case 

at which the volume of completed jobs are less for the lower bound procedure. 

Because, all other cases dominate the optimal solution in terms of the total 

volume of completed jobs. But for this case the dominance in terms of total 

volume of completed jobs in the interval is violated by the optimizing procedure. 

Therefore this is the most advantageous case of optimizing procedure. 

Since the size of the proof is rather high we demonstrated it in Appendix G. 

 

Sample of Family Dependent Lower Bound Procedure 

 

Let the processing time of a batch, p, be 10 units and the capacity of the reactor 

be 100 units. The data of the problem is as follows: 
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Table 3.9: Data of the sample problem of family dependent lower bound 

procedure 

Job # 1 2 3 4 5 6 7 8 9 10 11 12 

Rel.time 2 6 8 11 14 20 22 28 33 37 43 46 

Family 1 2 1 1 2 2 1 2 2 1 2 1 

Volume 50 36 48 21 24 30 44 52 32 33 41 37 
 

 
The first interval is [2,12), the available quantities are 50 from family 1 and 0 

from family 2. The only family that can be processed is family 1. Therefore label 

the lower bound of the family 2 as BIG. Start calculating the lower bound of 

family 1. 

Flow time of the jobs in the interval is, 

50*p + 36*6+48*4+21*1 = 929. 

To represent the quantity processed in the interval, it is multiplied by p. 

Over [12,22), the available quantities are 69 from family 1 and 36 from family 2. 

The effective flow times of families are: 

69 * 10 = 690     for family 1 

36 * 10 + 24 * 8 + 30 * 2 = 612   for family 2, 

choose family 1 to be processed in interval [12,22) as 690>612. 

Re-arrange the arrivals as follows 

 

Table 3.10: Rearranged pattern of the jobs through interval [12,22) for LB[1,1] 

Job #     5 6 7 8 9 10 11 12 

Rel.time   12 12 14 20 22 28 33 37 43 46 

Family   1 2 2 2 1 2 2 1 2 1 

Volume   100 36 24 30 13 52 32 33 41 37 
 
 
Flow time of the jobs in the interval is, 

100*p+36*10+24*8+30*2 = 1612. 
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Over [22,32), the available quantities are 13 from family 1 and 90 from family 2. 

The effective flow times of families are: 

13 * 10 = 130     for family 1 

90 * 10 + 10 * 4 = 940    for family 2, 

choose family 2 to be processed in interval [22,32). 

Re-arrange the arrivals as follows 

 

Table 3.11: Rearranged pattern of the jobs through interval [22,32) for LB[1,1] 

Job #       7 8 9 10 11 12 

Rel.time      22 22 28 33 37 43 46 

Family      2 1 2 2 1 2 1 

Volume      100 13 42 32 33 41 37 
 
 
Flow time of the jobs in the interval is, 

100*p+13*10+42*4= 1298. 

Over [32,42), the available quantities are 13 from family 1 and 42 from family 2. 

The effective flow times of families are: 

13 * 10 + 33 * 5= 295     for family 1 

42 * 10 + 32 * 9 = 708     for family 2, 

choose family 2 to be processed in interval [32,42). 

Re-arrange the arrivals as follows 

 

Table 3.12: Rearranged pattern of the jobs through interval [32,42) for LB[1,1] 

Job #          10 11 12 

Rel.time        32 32 37 43 46 

Family        1 2 1 2 1 

Volume        13 100 33 15 37 
 
 
Flow time of the jobs in the interval is, 

100*p+13*10+37*5= 1315. 
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Over [42,52), the available quantities are 46 from family 1 and 0 from family 2. 

The effective flow times of families are: 

46 * 10 + 37 * 6= 682     for family 1 

15 * 9 = 135       for family 2, 

choose family 1 to be processed in interval [42,52). 

Re-arrange the arrivals as follows 

 

Table 3.13: Rearranged pattern of the jobs through interval [42,52) for LB[1,1] 

Job #           11  

Rel.time         42 42 43  

Family         1 2 2  

Volume         83 0 15  
 
 
Flow time of the jobs in the interval is, 

83*p+15*9= 965. 

Over [52,62), the available quantities are 0 from family 1 and 15 from family 2. 

The effective flow times of families are: 

0       for family 1 

15 * 10 = 150       for family 2, 

choose family 2 to be processed in interval [52,62). 

15*p = 150. 

LB[1,1] = 929 + 1612 + 1298 + 1315 + 965 + 150 =6269. 

 

{1} {3,4,7} {2,5,6,8} {8,9,11} {7,10,12} {11} 
 
2                 12                  22                  32                 42                 52                 62 

Figure 3.5: Schedule obtained for LB[1,1] of the sample problem using FDLB 

procedure. 

 

Another possibility is waiting for the next job. Start calculating the Lower bound 

of “wait” option. 
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The first interval is [2,6), 

Flow time of the jobs in the interval is, 

50*4 = 200. 

Over [6,16), the available quantities are 50 from family 1 and 36 from family 2. 

The effective flow times of families are: 

50 * 10 + 48 * 8 + 2 * 5= 894    for family 1 

36 * 10 + 24 * 2 = 408     for family 2, 

choose family 1 to be processed in interval [6,16). 

Re-arrange the arrivals as follows. 

 

Table 3.14: Rearranged pattern of the jobs through interval [6,16) for LB[1,3] 

Job #   2 4 5 6 7 8 9 10 11 12 

Rel.time  6 6 11 14 20 22 28 33 37 43 46 

Family  1 2 1 2 2 1 2 2 1 2 1 

Volume  100 36 19 24 30 44 52 32 33 41 37 
 
 
Flow time of the jobs in the interval is, 

100*p+19*5+36*10+24*2= 1503. 

For the other intervals the calculating procedure is similar to the procedure given 

above. Therefore we skip the remaining part of the detailed solution. 

At the end of the interval [56,66) we obtain the following lower bound value for 

“wait” option 

LB[1,3] = 200+1503+1366+1432+1045+480+150 = 6176 

 

 {1,3,4} {2,5,6,8} {4,7,10,12} {8,9,11} {12} {11} 
 
2     6                 16                 26                 36                46               56               66 

Figure 3.6: Schedule obtained for LB[1,3] of the sample problem using FDLB 

procedure. 
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The lower bound found for processing the job from family 1 was 6269 which is 

greater than 6176. According to the result we conclude that in node 1 “waiting 

the next arrival” may lead to a smaller total weightad flow time. Thus we select 

this option first to branch. 

 

3.6 Branch and Bound Algorithm 

 

After describing the upper bound and lower bound schemes we can give the 

algorithm of the branch and bound algorithm developed to solve this problem. 

In this algorithm we have f+1 branches for each node. The first f branches 

represent the branching possibilities of jobs belong to any family and the last 

branch (f+1th branch) represents the possibility of waiting the next arrival (i.e., 

not making any batch). If there exist no available jobs from any family f, we 

label this branch by giving the lower bound value BIG to this family (described 

in lower bound procedures) and fathom it. As we said before, the branch and 

bound algorithm follows depth first strategy. To avoid multiple evaluation of a 

branch we label again that branch as BIG, when we pass to the next node. For 

example, let at node j we select family f to branch. When we create node j+1 we 

label LB[j,f] as BIG. So that we can distinguish the non-evaluated branches at 

node j when we come back to node j later. We can simply give the Branch and 

Bound algorithm that is developed to solve the problem as follows: 

 

Step 1: Determine the upper bound value of the problem using Upper Bound 

Procedure. Use this upper bound value (and schedule) as the initial 

solution. 

Step 2: Start the Forward Move Procedure. Increase the node number (j = j+1). 

Determine the time of the node (TNODE[j]= TNODE[j-1]+p or 

TNODE[j]= TNODE[j-1]+w, where w is the waiting time). Label LB[j-

1,f] as BIG. At node j, determine the lower bound values of of each 

family and “wait” option using one of the lower bound schemes. 
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If, for any family f, the value of calculated lower bound is at least equal 

to the upper bound value, then fathom that branch (i.e., LB[j,f]= BIG) 

Step 3: Choose the minimum value of lower bounds (i.e., minimum of LB[j,f] for 

all f) to branch. If the minimum lower bound value is less than the upper 

bound value and there exist unprocessed jobs at node j, then go to step 2. 

Step 4: If all families have lower bound values at least equal to the upper bound 

value, then stop. Fathom all branches of node j (i.e., LB[j,f]= BIG for all 

f). Start the Backward Move Procedure to go to most recent alternative 

branching to node j. 

If any family has lower bound value less than the upper bound value and 

all jobs are processed at node j then keep this solution as incumbent 

solution. Revise the upper bound value, upper is equal to the incumbent 

solution. Fathom the node j. 

Start the Backward Move Procedure to go to most recent alternative 

branching to node j. 

Step 5: If at any node j, any family f has the lower bound value less than the 

upper bound value then stop Backward Move Procedure. Go to step 2. 
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CHAPTER 4 
 

 

RESULTS AND DISCUSSION 
 

 

4.1 Experimental Design 

 

In this chapter the figures for the computational experimentation are presented. 

We performed the experimentation twice for each problem set, with two 

different lower bound algorithms (i.e. family dependent and family independent 

schemes). Each problem set contains 10 different problems craeted randomly.We 

assumed that the reactor capacity is 100 unit volumes and the processing times of 

the jobs are 10 unit times.The problems are generated for: 

• Three different job volume ranges: small (1-50 units), large (51-100 units) 

and mixed (1-100 units), where the volumes are selected uniformly. 

 

• Three different arrival patterns, where all release times are selected using 

uniform distribution: tight or frequent; (0 to 1/3*processing time*job 

number), moderate (0 to 2/3*processing time*job number), loose (0 to 

processing time*jobnumber). 

The limits of the uniform distribution are selected such that we have 

interarrival times less than the processing time of a batch on average. 

 

• 5 different arrival stream sizes ,i.e.number of jobs: 50 arrivals , 33 arrivals, 

25 arrivals, 20 arrivals and 16 arrivals. 
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The figures of the job numbers are determined by considering the previously 

solved problems. There exist problems solved successfully for 25 jobs with 4 

families or 30 jobs with 4 families in the literature. On the other hand these 

problems were all static arrival problems. Depending on the solved problems in 

previous studies we have expected that the parameters number of jobs and 

number of families have close relation with the computation time of the problem. 

Therefore we set the “jobnumber*family number” multiplication as the limit and 

we set it to 100 except the 16 jobs case. This was a conservative limitation 

considering the problems with 30 jobs and 4 families. On the other hand we 

could not predict the effects of dynamic nature of the problem in terms of 

solution time. With the increasing practice and results obtained we set the limit 

to 160 for the 16 jobs problems. 

 

For each problem, the solution size (i.e total number of nodes) is limited with 2 

million nodes. The program terminates the solution procedure at the 2 millionth 

node and assumes the last incumbent solution as the optimal solution. 

 

4.2 Performance Measures 

 

In this study the following data are collected for a problem: 

 

• Run time 

• Upper bound value. 

• First incumbent solution 

• Node of the first incumbent solution 

• Optimal solution or the last incumbent solution 

• Node number of optimal solution or node number of the last incumbent 

solution. 

• Total nodes created to solve the problem. 

• Lower bound at the root node  
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Depending on the data following performance measures are observed: 

 

• Run Time: Solution time for a problem measured in CPU seconds. 

(Elap.time) 

• Percentage deviation of the upper bound from the optimal solution or the 

last incumbent solution, whichever applies. (UB-Opt.) 

• Percentage deviation of the first solution from the optimal solution or the 

last incumbent solution, whichever applies. (F.S.Opt.) 

• Total nodes created to solve the problem.(TotalNode) 

• Percentage deviation of the minimum lower bound at the root node from 

the optimal solution or the last incumbent solution. (LB-Opt.) 

• The number of problems in which the upper bound procedure gives optimal 

solution. 

• The number of problems that cannot be solved within node limit (i.e. 

2000000 nodes). 

 

4.3 Results and Discussion 

 

4.3.1 Total Number of Nodes and Solution Times of the Problems 
 

Problems with 50 arrivals 

 

In this study the first 18 problem sets contain the problems with 50 job arrivals in 

total. First 6 sets are composed of the problems with small sized jobs (i.e. jobs of 

1-50 unit volumes, S). First two sets are problems with “frequent” or “tight” 

arrivals (F); sets 3 and 4 are the problems with “moderate” or “average “arrivals 

(A) and the final two are the “loose” arrival problems (L). The second six sets 

are composed of the problems with large sized jobs, jobs of 51-100 unit volumes 

(B). The last six sets are with mixed sizes, jobs of 1-100 unit volumes (M). The 

intensity pattern is the same as in the first six sets. 
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Table 4.1: Average completion time of a problem with 50 jobs. 

FDLB    
Small Big Mixed 

fa
m

ily
 

F A L F A L F A L 
2 00:00:11 00:04:00 00:01:34 00:56:34 01:02:32 00:26:36 00:02:49 00:16:24 00:08:04
1 00:00:02 00:00:11 00:00:01 00:00:01 00:00:12 00:03:08 00:00:00 00:00:36 00:00:11

FILB   
Small Big Mixed 

fa
m

ily
 

F A L F A L F A L 
2 00:00:18 00:03:24 00:01:29 02:20:44 00:42:48 00:15:30 00:03:08 02:37:06 00:06:27
1 00:00:02 00:00:08 00:00:01 00:00:01 00:00:08 00:01:53 00:00:00 00:00:30 00:00:09 

 
When we observe the computation times on Table 4.1 it is apperant that sets with 

“large” job sizes constitute the majority of the time consuming problems. On the 

other hand the sets with “small” job sizes are relatively easy to solve when 

computation time is concerned. 

 

In Table 4.2 it can be seen that the problem sets with 2 families dominate the 

problem sets with 1 family in terms of the problem size. Six of the problem sets 

have average total node number larger than 1 million and these are all the sets 

with two families. Considering Table 4.1, we can conclude that the sets with 

high solution times are the sets with large total number of nodes. But we cannot 

determine a direct proportionality of time requirement with total number of 

nodes. As in the case of set J50/F2/S/A or J50/F2/M/L (here we introduce a 

notation to specify the problem sets, J50/F2/S/A represents the problem set with 

50 arrivals (J50), two families (F2), small job sizes (S) and average arrival 

rate(A)), these sets are larger in terms of the total number of nodes but smaller in 

terms of the computational time required. It can be explained by the amount of 

alternative solutions and the close differences among the values of alternative 

solutions. For the problems with large volume jobs, each arrival constitutes an 

alternative branching in an interval. 

For problems with small volume jobs, the jobs can be combined easily in a 

batch; therefore the number of alternative branches reduces in great extent. As it 

can be seen the problems with small volumes and frequent arrivals are easier 
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than the problems with small volumes and average arrivals. For the small volume 

problems, as the arrival rate decreases the possibility of combining different jobs 

in a batch also decreases. This case increases the length of the branch reaching a 

solution. But branching is not in increase. 

On the other hand, for the problems with many alternatives the solution time 

increases due to the many forward and backward moves on the branch and bound 

tree. Beside to this increased branch length also increases solution time. 

 

Table 4.2: Average of total number of nodes created for a problem with 50 jobs 

FDLB    
Small Big Mixed 

fa
m

ily
 

F A L F A L F A L 
2 23726,7 1222970 496208 2000000 1826198 1819328 780122 1456817 1490971
1 4982,3 114349 11620,3 531,8 15262,4 294749 265,5 118163 38345,1

FILB   
Small Big Mixed 

fa
m

ily
 

F A L F A L F A L 
2 45289,7 1404221 762546 2000000 1654186 1827788 114642 1704969 1434488
1 5117,8 93105,2 10762,8 531,8 11313 182859 265,5 96415,3 34387,1 

 
To be able to analyze the problems we require detailed information of the data 

sets. On the other hand due to the high variety of the parameters we cannot 

analyze all data sets in this chapter. Therefore we selected two of the sets and 

represented them in this chapter. Since the organization of data is tha same for all 

type of problems it will be sufficient to explore one of these tables.The tables can 

be found in Appendix 1 in complete. In this chapter we represented the tables of 

problem sets J50/F2/S/A and J50/F2/L/L as sample problems. 

 

At the top of the table the it is possible to find the operational parameters about 

the problem such as number of jobs, number of families, limits of arrival time 

range and limits of volume range. 

In these tables, “Node of F.S.” is the node number at which the first incumbent 

solution has found. If upper bound is the optimal solution or the size of the 

problem exceeds the node limit without any other solution, it becomes equal to 
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upper bound “Node of Inc.” is the node number at which the incumbent solution 

has found. “Total Node” is the total number of nodes created to solve the 

problem. “UB-Opt.” represents the deviation of the upper bound value from the 

optimal solution or the last incumbent solution. “LB-Opt.” represents the 

deviation of the minimum lower bound value at the root node from the optimal 

solution. “F.S.-Opt.” is the deviation of the first incumbent solution from the 

optimal solution. Finally “Elap.time” is the computation time of the problem. 

Note that these figures are the averages of ten different problems. It is also 

possible to see the maximum and minimum values and standard deviation of the 

data. 

 

Table 4.3: Performance measures of problem set J50/F2/S/A 

FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time 
Average 44,9 222076,3 1222970,4 10,7 31,0 4,5 00:04:00 
Max 49,0 770011,0 2000000,0 16,1 36,1 8,2 00:08:29 
Min 43,0 5399,0 74677,0 6,4 28,0 2,5 00:00:19 
St.Dev. 2,4 274227,0 823555,7 3,7 2,4 1,8 00:02:51 
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time 
Average 17208,4 588325,1 1404221,2 10,1 30,9 5,8 00:03:24 
Max 166185,0 1670818,0 2000000,0 16,1 36,0 13,8 00:06:34 
Min 41,0 265,0 120702,0 3,1 28,0 0,0 00:00:19 
St.Dev. 52373,5 570159,2 766985,2 4,4 2,3 3,9 00:02:02  
 
Table 4.4: Performance measures of problem set J50/F2/B/L 

FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time 
Average 316988,4 695628,7 1819328,3 7,3 45,7 3,0 00:26:36 
Max 1638853,0 1842868,0 2000000,0 23,8 51,7 7,8 01:21:53 
Min 0,0 0,0 193283,0 0,0 40,8 0,0 00:06:08 
St.Dev. 558284,1 648337,8 571334,1 9,3 3,2 3,2 00:21:04 
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time 
Average 374036,9 707780,1 1827787,9 7,2 37,9 4,4 00:15:30 
Max 1972331,0 1973754,0 2000000,0 23,8 45,0 18,9 00:42:36 
Min 0,0 0,0 277879,0 0,0 32,7 0,0 00:04:08 
St.Dev. 694683,7 697910,5 544582,5 9,4 4,1 6,8 00:10:26  
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Problems with 33 arrivals 

 

Table 4.5: Average completion time of a problem with 33 jobs. 

Family Dependent    
Small Big Mixed 

fa
m

ily
 

F A L F A L F A L 
1 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00 00:00:02 00:00:00 00:00:01 00:00:00
2 00:00:00 00:00:02 00:00:02 00:01:19 00:00:43 00:00:46 00:00:02 00:00:34 00:00:11
3 00:00:01 00:00:24 00:00:02 00:29:40 00:18:57 00:07:36 00:04:44 00:00:29 00:01:22

Family Independent    
Small Big Mixed 

fa
m

ily
 

F A L F A L F A L 
1 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00 00:00:01 00:00:00 00:00:01 00:00:00
2 00:00:00 00:00:02 00:00:02 00:01:40 00:01:02 00:00:41 00:00:02 00:00:22 00:00:10
3 00:00:02 00:00:30 00:00:03 00:25:58 00:20:53 00:07:47 00:06:26 00:00:55 00:01:06 

 
When we observe Table 4.5 it can be seen that four of the sets are dominating the 

others in terms of the computation times. These are J33/F3/B/F, J33/F3/B/A, 

J33/F3/B/L and J33/F3/M/F; all of them are 3 family sets. Moreover most time 

consuming problems are the problems with 3 families and “large” volumes.  

When we compare the sets in three groups according to the job sizes (small, big 

[or large] and mixed), the easiest group is the group with “small” job sizes. The 

most time consuming problem set in this group is J33/F3/S/A and its average 

solution time is less than one minute ( 24 and 30 seconds respectively). Second 

group is the “mixed” job sized group and the last one is the group with “large” 

jobs. This pattern is in parallel with the pattern observed among the sets with 50 

arrivals. 

 

In Table 4.6 we can observe a pattern in parallel with the results of Table 4.5. 

There exist 3 sets, J33/F3/B/F, J33/F3/B/A and J33/F3/B/L, whose total number 

of nodes are above 1 million. The next 3 sets with relatively high total number of 

nodes are J33/F3/S/A, J33/F3/M/F and J33/F3/M/L. 
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Table 4.6: Average of total number of nodes created for a problem with 33 jobs 

FDLB    
Small Big Mixed 

fa
m

ily
 

F A L F A L F A L 
1 691,2 1538,8 1475,7 198,1 431,8 5801,9 190,4 2971,5 2007,3
2 817,8 18011,5 21109 104815 69576,2 118932 2912,1 137734 67503,4
3 2883,5 181842 15119 2000000 1307546 1398772 314318 71905,9 394529

FILB   
Small Big Mixed 

fa
m

ily
 

F A L F A L F A L 
1 692,9 1633,2 1548,8 191,9 458,9 4295,3 232,6 3121,8 1707,8
2 1512,2 26063,4 28749 120136 104270 112690 3852,7 79369,3 73479,8
3 11343,9 388684 37329 2000000 1597138 1622653 460825 182914 441261 

 
Moreover, except one case, among all the sets, the set with 2 families are 

dominated by its adjecant sets with 3 families. And for these sets the total 

number of nodes, that are obtained by the branch and bound method with the 

consolidated family (i.e. family independent) lower bound procedure, are higher 

than the that of obtained by branch and bound method with family dependent 

lower bound procedure. 

The ranking made among the groups that are formed according to job sizes is 

also valid for the total number of nodes. First group is the sets of “ small” jobs, 

then “mixed” jobs’ sets and last one is the “large” jobs’ sets.  

 

Problems with 25 arrivals 

 

In Table 4.7 there exist four problem sets dominating the other sets in terms of 

the computation times. These are sets J25/F3/B/F, J25/F4/B/F, J25/F3/B/A and 

J25/F4/B/A. Compared to the dominating solutions of 50 arrival sets and 33 

arrival sets, the computation times are shorter. But with the increasing family 

number the pattern has changed. In the previous sets, the most time requiring sets 

were the sets with “large” job sizes and the maximum number of families. On the 

other hand in this group of sets, J25/F4/B/L is dominated by J25/F3/B/F and 

J25/F3/B/A although the family counts are fewer than the number of families of 
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set J25/F4/B/L. This can be explained by the increasing importance of the 

intensity of the arrivals compared to the number of families in the case of fewer 

numbers of arrivals with higher number of families. 

 

Table 4.7: Average of completion time of a problem with 25 jobs. 

FDLB    
Small Big Mixed 

fa
m

ily
 

F A L F A L F A L 
2 00:00:00 00:00:00 00:00:00 00:00:14 00:00:05 00:00:07 00:00:00 00:00:01 00:00:00
3 00:00:00 00:00:01 00:00:00 00:06:14 00:02:46 00:00:12 00:00:08 00:00:01 00:00:01
4 00:00:00 00:00:02 00:00:00 00:12:27 00:03:51 00:00:36 00:00:15 00:00:05 00:00:03

FILB   
Small Big Mixed 

fa
m

ily
 

F A L F A L F A L 
2 00:00:00 00:00:00 00:00:00 00:00:16 00:00:06 00:00:07 00:00:00 00:00:01 00:00:00
3 00:00:00 00:00:01 00:00:00 00:10:32 00:02:41 00:00:10 00:00:12 00:00:02 00:00:01
4 00:00:00 00:00:02 00:00:01 00:09:35 00:04:38 00:00:30 00:00:31 00:00:07 00:00:02 

 
In Table 4.7 we can differentiate the decline of time requirement among sets 

with decreasing arrival rate per time. This decline is demonstarting the relation 

between the arrival rate and the size of the problem. We can conclude that the 

problem size increses with the increasing arrival rate of jobs (i.e. shorter the inter 

arrival times of jobs, harder to solve the problem). Ranking of the groups in 

terms of the computation time is also same. “Small” jobs are easiest, “mixed” 

jobs are harder and “large” jobs are the hardest. 

 

Since the pattern of the Table 4.8 is almost the same with Table 4.7 we do not 

make any comments on it We just notice that the solution times are lower 

compared to the problems with 50 arrivals or 33 arrivals. 
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Table 4.8: Average of total number of nodes created for a problem with 25 jobs 

FDLB    
Small Big Mixed 

fa
m

ily
 

F A L F A L F A L 
2 353,4 1929,4 687,9 36599,1 13592,6 31422,7 938,8 3686,3 2239,5
3 223,4 7340,1 2561 774153 366485 55584,1 19069,6 5078,6 7611,8
4 544,4 14306,2 4450,3 1542964 611967 126725 32157,9 26974,6 19166,4

FILB   
Small Big Mixed 

fa
m

ily
 

F A L F A L F A L 
2 534,1 2924 972,6 40500,9 16059,2 35120,8 1078,4 4687,7 2361,4
3 522,1 19635,8 4497,7 1313164 388666 60284,9 29518,7 10856,7 11148,2
4 1943,6 33813,8 11187,9 1672633 873768 182782 83569,4 72605,7 25574,9 

 

 

Problems with 20 arrivals 

 

Table 4.9: Average of completion time of a problems with 20 jobs 

FDLB    
Small Big Mixed 

fa
m

ily
 

F A L F A L F A L 
3 00:00:00 00:00:00 00:00:00 00:00:33 00:00:06 00:00:01 00:00:01 00:00:00 00:00:00
4 00:00:00 00:00:00 00:00:00 00:02:35 00:02:20 00:00:01 00:00:01 00:00:01 00:00:00
5 00:00:00 00:00:00 00:00:00 00:06:14 00:02:06 00:00:17 00:00:07 00:00:00 00:00:01

FILB   
Small Big Mixed 

fa
m

ily
 

F A L F A L F A L 
3 00:00:00 00:00:00 00:00:00 00:00:40 00:00:11 00:00:01 00:00:01 00:00:00 00:00:00
4 00:00:00 00:00:00 00:00:00 00:02:54 00:02:12 00:00:01 00:00:01 00:00:01 00:00:00
5 00:00:00 00:00:01 00:00:00 00:05:12 00:01:46 00:00:28 00:00:12 00:00:00 00:00:01 

 
Table 4.9 show great similarity with Table 4.7; the time requiring job sets or sets 

with high total numbers are collected in the group of sets including large jobs. 

J20/F5/B/F is the most time requiring problem type among 20 arrivals problems.  

The sets J20/F4/B/F, J20/F4/B/A and J20/F5/B/A are other most time requiring 

problem types. On the other hand, the solution times are much less than the 

problems with 33 jobs or 25 jobs. Here, we can conclude that the number of 

arrivals is an important factor affecting the solution time. 
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Table 4.10: Average of total number of nodes created for a problem with 20 jobs 

FDLB    
Small Big Mixed 

fa
m

ily
 

F A L F A L F A L 
3 148,3 476,1 526,7 110174 22861,4 7642,1 4879,8 1567 933
4 249 472,2 1342,8 576077 565558 9139,5 4330,8 3687,8 1259,6
5 110,1 2123,4 1694,3 1590161 529782 90690 33831,9 903,2 11143,5

FILB   
Small Big Mixed 

fa
m

ily
 

F A L F A L F A L 
3 391,7 1413,8 953,5 134219 46510 10831,9 6248,6 2126,2 1534
4 819,3 1793,3 3436,2 682209 670071 12801,4 9274,2 9121,5 2883,1
5 982,4 14334 9403,4 1801356 585486 238208 72745,6 3602,7 30355,1 

 
Table 4.10 is in parallel with the solutions of Table 4.9. 

 

Problems with 16 arrivals 

 

The final group of sets in this study is composed of 16 job problems. The 

distribution of sets in terms of intensity or job sizes is same as in the previous 

groups of sets. Whereas the family numbers are increased; they are 6,8 and 10. 

Besides, unlike the previous data sets the result of multiplication of number of 

jobs and number of families reach 160, much longer than its value of 100 for the 

other data sets. 

 

Table 4.11: Average of completion time of a problems with 16 jobs 

FDLB    
Small Big Mixed 

fa
m

ily
 

F A L F A L F A L 
6 00:00:00 00:00:00 00:00:00 00:02:57 00:01:34 00:00:01 00:00:00 00:00:00 00:00:00
8 00:00:00 00:00:00 00:00:00 00:04:01 00:00:16 00:00:02 00:00:00 00:00:00 00:00:00

10 00:00:00 00:00:00 00:00:00 00:04:05 00:00:34 00:00:01 00:00:01 00:00:00 00:00:00
FILB   
Small Big Mixed 

fa
m

ily
 

F A L F A L F A L 
6 00:00:00 00:00:00 00:00:00 00:01:57 00:00:57 00:00:01 00:00:00 00:00:00 00:00:00
8 00:00:00 00:00:00 00:00:00 00:01:55 00:00:26 00:00:01 00:00:01 00:00:00 00:00:00

10 00:00:01 00:00:00 00:00:01 00:02:08 00:00:51 00:00:03 00:00:04 00:00:00 00:00:00 
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In Table 4.11 we observe that set J16/F6/B/F, J16/F8/B/F and J16/F10/B/F 

dominates all sets in terms of the completion time. In Table 4.7 we had noticed 

that set J25/F3/B/F dominate the completion time of set J25/F4/B/A, although its 

family number is less than set J25/F4/B/A. This situation repeated also for the 

sets J20/F4/B/F and J20/F5/B/A. Finally, we observed above that not only set 

J16/F8/B/F but also set J16/F6/B/F dominates set J16/F10/B/A. Here we can 

conclude that as the number of familes increases and the number of jobs per 

family decreases, the intensity of arrivals play more important role in 

computation time than the number of families. 

 

For sets with 16 arrivals, the limit of multiplication of number of jobs and 

number of families reaches to 160; whereas the maximum completion time is 

still less than that of sets with 20 arrivals and other sets with higher number of 

arrivals. 

Moreover for all sets, the completion time of branch and bound method using 

family dependent lower bound procedure is higher than the completion time of 

branch and bound method using family independent lower bound procedure. 

 

Table 4.12: Average of total number of nodes created for a problem with 16 jobs 

FDLB    
Small Big Mixed 

fa
m

ily
 

F A L F A L F A L 
6 107 501,1 164,4 1187636 527036 7246,4 762,3 413,3 101,1
8 59,8 150,4 811,4 1429939 88752,2 13100,1 1503,8 490,6 799

10 42,5 174,1 2662,8 1508816 176913 4929,3 4611,2 323 182,6
FILB   
Small Big Mixed 

fa
m

ily
 

F A L F A L F A L 
6 839,4 4365,7 1090,5 1440952 608091 25272,8 1848,2 2178,3 441,9
8 1845,7 7012,5 5835,6 1750469 327662 22671,3 19706,5 3615,5 3135,4

10 20327,1 12160,3 23713,9 2000000 796441 50659,7 69820,9 9231,2 3602,2 
 
The results of Table 4.12 are in contrast of the result of Table 4.11. Because, as 

the number of families increases the quality of the results obtained by the family 

dependent lower bound become much better than the results obtained by the 
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family dependent lower bound. Whereas, for the family dependent lower bound 

procedure, the number of comparisons and calculations also increases with the 

increasing number of families. Therefore the solution time obtained is higher 

than the solution time obtained by the family independent lower bound 

procedure. 

 

4.3.2 Terminated problems 
 

Among 126 sets there exists 6 sets, whose average completion time exceed 10 

minutes and the number of the problems terminated in the set are at least 5 (the 

complete data on terminated problems can be found in Appendix B). These sets 

are J50/F2/B/F, J50/F2/B/A, J50/F2/B/L, J50/F2/M/A, J33/F3/B/F, and 

J33/F3/B/A. Besides there exist 7 sets, whose average completion time is less 

than 10 minutes but the number of problems terminated in the set are at least 5. 

These sets are J50/F2/M/L, J33/F3/B/L, J25/F4/B/F, J20/F5/B/F, J16/F6/B/F, 

J16/F8/B/F and J16/F10/B/F. The proposed branch and bound methods were not 

successful for these sets (i.e. solving the problems under given conditions). 

 

When we look at these sets closer the first group is composed of the problems 

with high number of jobs arrived. Moreover 5 of the 6 sets are composed of large 

volume jobs, the only exception of this group is J50/F2/M/A, which is composed 

of mixed volume jobs; And 4 of these 5 sets are composed of problems with tight 

interarrival time. The second group contains seven jobs and there exist one set 

from each problem type with different job arrivals. As in the first group, these 

jobs are mainly composed of large volume jobs; only J50/F2/M/L is a set with 

mixed volume jobs. 5 of these 7 sets again have tight interarrival times. Hence 

tight arrivals with large volumes relative to the reactor capacity make it harder to 

solve. 

 

The difficulty of these types of problems originated from the nature of the branch 

and bound algorithm. When the jobs are large in volume and arrivals of these 
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jobs are tight, the problem size (i.e. total number of nodes) increases. There exist 

two possible reasons of this result. The first one is the length of a branch; in this 

case length of the branch, going in depth becomes longer than that of composed 

by small volume jobs. Two jobs (non-divided jobs) cannot be combined in a 

batch and finished at once. Therefore the sum of the volumes of the jobs from 

family f necessitate minimum  nf /2 batches to be completed throughout the 

solution of a problem, where nf represents the number of jobs from family f. On 

the other hand for the problems with low volume jobs the number of batches 

decreses because they can be combined in a batch and processed at once. 

The second reason of the growth of problem size (i.e. total number of nodes) is 

the intensity of arrivals. Increase in the intensity of arrivals brings up alternative 

branching routes, especially in case of existence of multiple families. The 

increased number of job arrivals brings the high variety of families of existing 

jobs at a node. Therefore for that node f+1 new branches should be created, 

where f represents the count of existing families. If the intensity of arrivals is 

lower than one job per processing time of a batch, then the existence of multiple 

families will not be effective. 

 

4.3.3 Performances of Upper and Lower Bound Procedures 
 

At this part of our study we will focus on the success of the upper bound 

procedure and lower bound procedures. 

 

Evaluation of Upper Bound Procedure 

For the upper bound procedure we have two success criteria. First one is the 

number of problems in a set, whose optimal value is estimated by the upper 

bound procedure. The relevant figures can be found in Appendix C. The second 

one is the deviation of the upper bound from the optimal solution or last 

incumbent solution. The relevant figures can be found in Appendix A. 
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When we examine the figures of Appendix C we see that the success of upper 

bound procedure is fairly low for 50 arrivals case. There are only 5 problems out 

of 180, whose optimal solutions were found by the upper bound procedure and 

they are allocated to the different problem sets. 4 of these 5 sets are single family 

problem sets. 

 

For the 33 arrivals sets the success of the upper bound procedure increases to 20 

out of 270. Again majority of the sets are single family problems but we should 

note that there exist a small grouping relative to the other sets at sets 27,28 and 

29. These are sets with small job volumes and loose interarrival times. 

 

For 25 arrivals sets the number of problems, whose optimal solutions were found 

by the upper bound procedure, is the same 20 out of 270. On the other hand the 

problems are allocated in small groups. Therefore groupings can not be 

determined easily. Whereas we observe that 13 of 20 problems are from the 

problem sets with loose interarrival times. 

 

For 20 arrivals sets the success of the upper bound procedure increases to 29 out 

of 270. 

17 of them are from the problem sets with loose interarrival times. 9 are from the 

problem sets with moderate interarrival times and 3 of them are from the sets 

with tight interarrival times. We should note that there exists no problem at sets 

with tight interarrival times and large volume jobs. 

 

Finally for 16 arrivals there exist 60 problems out of 270, whose optimal solution 

were found by the upper bound procedure. The allocations of number of the 

problems are as follows: 
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Table 4.13: Allocation of the problems, whose optimal solutions and upper 

bound values are equal, according to the volumes and interarrival times of jobs. 

 small large mixed 

tight 8 1 8 

moderate 2 10 5 

loose 2 20 4 
 
 

For the evaluation of the performance of upper bound procedure, percent 

deviation of the upper bound value from the optimal solution is more reliable and 

proper way. Because we can expect that there exist one or two irregular 

problems in each set and these sets cannot represent the whole set. From this 

point on we will study the average percentage deviation of the upper bound from 

the optimal solution for each problem type. 

 

Table 4.14:Average percent deviation of upper bound from the optimal 

solution for a 50 arrivals problem 

FDLB  
Small Big Mixed 

fa
m

ily
 

F A L F A L F A L 
2 7,4 10,7 3,2 1,9 11,5 7,3 10,5 13,9 5,6 
1 11,9 6,5 5,6 0,6 4,8 2,5 3,5 9,6 7,5 

FILB  
Small Big Mixed 

fa
m

ily
 

F A L F A L F A L 
2 7,4 10,1 2,9 1,9 12,3 7,2 10,5 13,6 5,9 
1 11,9 6,5 5,6 0,6 4,8 2,5 3,5 9,6 7,5  

 
According to Table 4.14, among the 50 arrivals problem sets it is not possible to 

observe any trend; on the other hand we can say that the problems with moderate 

interarrival times have the largest deviation from the optimum solution. The 

largest deviation from the optimal is 13.88%. It is the set of problems with 

moderate interarrival times, mixed volume jobs and 2 families. The minimum is 

0.63% and it is a single family set with tight arrivals and large volume jobs. 
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In Table 4.15 the deviations are again scattered such that we cannot conclude 

any trends in parallel with family number or intensity of interarrival times. But it 

would be not so wrong if we say that the deviations of the sets with loose arrivals 

are relatively low and the deviations of the sets with average arrival rates are 

high. Moreover the problems with tight interarrival times and large volumes 

have fairly low deviations.  

 

Table 4.15:Average percent deviation of upper bound from the optimal 

solution for a 33 arrivals problem 

FDLB    
Small Big Mixed 

fa
m

ily
 

F A L F A L F A L 
1 7,8 8,2 2,7 0,6 2,5 2,8 7,0 9,5 3,9
2 10,3 7,9 3,7 3,2 12,8 6,8 9,1 12,7 4,3
3 12,2 8,6 7,6 3,0 12,2 7,3 6,7 15,5 5,8

FILB   
Small Big Mixed 

fa
m

ily
 

F A L F A L F A L 
1 7,8 8,2 2,7 0,6 2,5 2,8 7,0 9,5 3,9
2 10,3 7,9 3,7 3,2 12,8 6,8 9,1 12,7 4,3
3 12,2 8,6 7,6 3,0 12,2 6,6 6,7 15,5 5,8 

 
The largest deviation from the optimal is 15.48%. It is the set of problems with 

moderate interarrival times, mixed volume jobs and 3 families. The minimum is 

0.64% and it is a single family set with tight arrivals and large volume jobs. This 

in parallel with the determination that we made for the same problem type using 

the number of problems, whose upper bound is equal to the optimal solution. 

 

For the 25 arrivals problems and 20 arrivals problems we can generally say that 

there exist no siginificant change in these sets in terms of deviations and 

allocation of the most deviating and least deviating problems. The most 

deviating problems are again the problems with average arrival rates for all 

groups. Therefore we skip those to avoid repeating the same comments for those 

problem sets. 
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Table 4.16:Average percent deviation of upper bound from the optimal 

solution for a 16 arrivals problem 

FDLB    
Small Big Mixed 

fa
m

ily
 

F A L F A L F A L 
6 6,3 6,0 5,9 1,5 5,5 1,1 2,1 8,2 15,8
8 6,7 8,6 6,3 1,1 3,9 0,4 6,6 6,5 5,6

10 6,1 9,6 9,0 0,1 0,7 0,7 5,2 4,3 3,6
FILB   
Small Big Mixed 

fa
m

ily
 

F A L F A L F A L 
6 6,3 6,0 5,9 1,4 5,5 1,1 2,1 8,2 15,8
8 6,7 8,6 6,3 1,0 3,9 0,4 6,6 6,5 5,6

10 6,1 9,6 9,0 0,0 0,7 0,7 5,2 4,3 3,6 
 

Finally we investigate the sets with 16 arrivals. When we examine the Table 4.16 

we see that all deviation except one, has decreased below 10%. On the other 

hand the maximum deviation rise to 15.79%. The deviations of the sets with 

large volume jobs are fairly low; in contrast the deviations of the sets with small 

volume jobs are relatively high. 

 

At this point we conclude that the upper bound cause relatively less error for 

loose arrival problems and tight arrival problems with large volume jobs. On the 

other hand, we cannot point out any problem type easily for causing large 

deviations of upper bound from the optimal solution. Fixing a problem type as 

causing trouble is fairly difficult. But we can say that the upper bound procedure 

deviates more from the optimal solution for the problems with moderate 

interarrival times. In addition the small volume jobs have relatively higher 

deviations than the large volume jobs in general. 
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Evaluation of Lower Bound Procedures 

 

After discussing the upper bound performance we want to discuss the 

performances of the lower bound procedures. This evaluation was made using 

the deviation of the lower bound value from the optimal solution. 

 

Table 4.17:Average percent deviation of the minimum lower bound at the root 

node from the optimal solution for a 50 arrivals problem 

FDLB    
Small Big Mixed 

fa
m

ily
 

F A L F A L F A L 
2 38,5 31,0 23,2 3,9 28,7 45,7 8,8 45,0 32,3
1 33,1 19,9 15,7 3,5 19,1 36,2 8,2 32,8 28,1

FILB   
Small Big Mixed 

fa
m

ily
 

F A L F A L F A L 
2 37,2 30,9 24,3 3,9 18,8 37,9 9,1 35,3 28,5
1 29,0 19,1 15,4 3,5 15,0 27,5 8,4 27,4 24,1 

 
For 50 arrivals case (Table 4.17) the deviation of the lower bound from the 

optimal is rather high, but for the case with tight arrivals and large volume jobs it 

is fairly low, about 4%. Similarly it is relatively low (~8.5%) for the problems 

with tight arrivals and mixed volume jobs. Maximum deviation is 45.71% for 

FDLB procedure and 37.9% for the FILB procedure. 

 

According to the Table 4.18 again the problems with tight arrivals and large and 

mixed volume jobs have relatively low percent deviations (on average ~6% for 

large volume problems and ~13% for mixed volume jobs.). On the other hand for 

those problems the deviations have increased in general. It may be a sign of that 

the deviation of the lower bound increases with the increasing number of 

families and decreasing number of arrivals. For 33 arrivals case the family 

independent lower bound procedure deviates less than the family dependent 

lower bound in general. Maximum deviation is 45.71% for family dependent LB 

procedure and 39.3% for the family independent LB procedure. 
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Table 4.18: Average percent deviation of the minimum lower bound at the root 

node from the optimal solution for a 33 arrivals problem 

FDLB    
Small Big Mixed 

fa
m

ily
 

F A L F A L F A L 
1 29,8 20,3 16,6 5,7 23,3 36,6 14,9 30,1 28,0
2 38,4 26,5 25,5 4,5 27,7 40,3 11,9 39,0 32,5
3 44,1 31,3 25,3 6,6 30,0 36,2 14,5 41,0 34,2

FILB   
Small Big Mixed 

fa
m

ily
 

F A L F A L F A L 
1 25,4 19,1 16,3 5,6 18,5 28,0 12,5 28,4 22,1
2 38,3 27,5 26,1 4,6 24,0 33,2 10,9 33,8 27,7
3 44,6 34,8 26,9 7,0 25,0 30,8 15,5 38,9 31,2 

 
Another observation is, for the problems with small volumes the deviations from 

the optimal value decreases with the decreasing arrival rate. In contrast, for the 

problems with large volumes the deviations from the optimal increase with 

decreasing arrival rate. There is no such a linear trend for mixed jobs. 

 

Table 4.19: Average percent deviation of the minimum lower bound at the root 

node from the optimal solution for a 25 arrivals problem 

FDLB    
Small Big Mixed 

fa
m

ily
 

F A L F A L F A L 
2 38,0 25,6 19,2 6,8 23,1 38,2 14,7 31,9 28,8
3 36,3 28,8 25,4 7,7 23,9 33,8 15,4 38,0 28,2
4 36,2 29,2 27,6 9,0 34,7 39,7 15,2 43,8 34,1

FILB   
Small Big Mixed 

fa
m

ily
 

F A L F A L F A L 
2 37,0 26,6 20,1 6,9 21,9 31,8 16,4 30,2 25,5
3 41,9 33,1 25,8 8,2 25,3 31,5 15,9 38,9 28,8
4 45,7 33,4 30,7 10,3 33,0 33,6 17,2 41,1 35,2 

 
As in the upper bound, the results of the 25 arrivals problems and 20 arrivals 

problems have no siginificant change. Therefore we give only the deviation 

tables and skip the comments to avoid repeating the same comments for those 
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problem sets. But we should note that for 25 jobs case and especially for 20 jobs 

case the family dependent lower bound procedure is superior to the family 

independent lower bound procedure in terms of deviation. The cause of this 

domination is the increasing number of families. We can expect that for 16 case 

problems it will be more significant. 

 

Table 4.20: Average percent deviation of the minimum lower bound at the root 

node from the optimal solution for a 20 arrivals problem 

FDLB    
Small Big Mixed 

fa
m

ily
 

F A L F A L F A L 
3 33,2 30,2 22,3 8,1 25,2 34,5 17,1 34,2 27,7
4 35,1 28,7 24,6 10,4 24,9 34,9 21,0 25,6 30,6
5 33,9 37,5 26,9 11,3 23,4 34,0 18,7 28,1 34,4

FILB   
Small Big Mixed 

fa
m

ily
 

F A L F A L F A L 
3 42,2 33,5 24,6 8,5 26,5 33,0 20,9 34,3 26,1
4 46,7 38,0 26,9 11,5 29,7 35,5 23,9 31,5 29,6
5 48,8 41,6 30,1 12,7 29,2 33,5 22,0 40,3 34,0 

 

 

Table 4.21: Average percent deviation of the minimum lower bound at the root 

node from the optimal solution for a 16 arrivals problem 

FDLB    
Small Big Mixed 

fa
m

ily
 

F A L F A L F A L 
6 29,7 32,6 24,2 13,0 22,6 29,8 13,2 25,7 19,7
8 21,1 33,0 26,7 12,0 20,0 26,2 17,9 29,1 25,2

10 14,8 30,4 20,6 10,1 17,6 21,8 10,4 23,6 17,8
FILB   
Small Big Mixed 

fa
m

ily
 

F A L F A L F A L 
6 50,4 42,7 29,2 16,0 31,7 37,1 24,6 34,1 25,2
8 52,0 49,9 37,6 19,7 32,5 35,5 39,9 45,3 36,1

10 60,3 48,6 33,3 18,3 39,0 41,1 33,0 46,1 26,3 
 

The last group of problems is the problems with 16 arrivals. When we observe 

the deviations from the optimum solution in Table 4.21, we can easily 
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distinguish that the family independent lower bound procedure is not suitable for 

the problems with high number of families. On the other hand, we can observe a 

slight decrease in deviations for problems solved by using the family dependent 

lower bound scheme. 

 

At the end of the examination of deviations of the results obtained by upper 

bound scheme and lower bound schemes, we can conclude that lower bound 

schemes are effective for the tight arrivals in large volume job problems. 

Considering the solution times and total number of nodes created these problems 

are difficult to solve. In that respect we can find the lower bound procedures 

successfull. On the other hand there exists very high deviations from the optimal 

solution for the rest of the problems. In that respect the success of the lower 

bounds are not so good. By looking at the figures it is not possible to relate the 

difficult problems with the deviations from the optimum solution. Most problems 

with relatively high deviations from the optimum are solved within seconds, for 

example set J25/F3/M/A or set J16/F6/M/L. On the other hand the problems such 

as set J50/F2/B/F, and J33/F3/B/F are terminated at the 2 millionth node 

although the lower bound and upper bound deviations are low. It is obvious that 

with better performing upper and lower bound procedures the problems could be 

solved more efficiently but the main difficulty of the problem is originated from 

its combinatorial nature. As in the set J50/F2/B/F or J33/F3/B/F as the number of 

arrivals increases the problem size increases very high although the gap between 

the upper bound value and lower bound value is relatively small. In contrast 

when the number of arrivals is low, as in J25/F3/M/A or J16/F6/M/L, the number 

of total nodes become small although the gap between the lower bound value and 

upper bound value is large. 

 

On the other hand, upper bound procedure and lower bound procedures have also 

many weaknesses. Unfortunately we could only notice two of them for the upper 

bound procedure. The first weakness of the upper bound algorithm is related 

with its focus length. It focuses only to an interval whose length is limited with 
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the batch processing time. But, as it is stated before, the nature of the problem is 

combinatorial. Therefore it cannot capture the flow time decreases, which can be 

possible by a wider view horizon. To make the statement more clear we will 

show it by an example. 

Let the processing time of a batch be 10 and reactor capacity be 100. There exist 

three jobs with volumes 80, 79, 20 and with release times 0, 0, and 10 

respectively. Finally the families of these jobs are 1, 2 and 1 respectively. 

According to the upper bound algorithm the sequence should be as follows: 80 of 

family 1 is processed in interval [0,10), 79 of family 2 in interval [10,20) and 

finally 20 of family 1 in interval [20,30). By this sequence total flow time would 

be 80*10 + 79 * 20 + 20 * 20 = 2780. But with an alternative sequence, which is 

not considered by the upper bound procedure, total flow time could be reduced. 

Let 79 of family 2 be processed in interval [0,10). Then in interval [10,20) the 

jobs from family 1 is processed simultaneously (i.e 80+20). By this sequence 

total flow time would be: 79 * 10 + 80 * 20 + 20*10 = 2590. 

 

Another weakness of the upper bound algorithm is related with its selection 

method of jobs into a batch. It evaluates the jobs according to their job numbers 

and if it is worth the job is taken into the batch. Then the next job is evaluated. 

On the other hand if the remaining capacity is not sufficient to take the job it is 

skipped and the next one is evaluated. This is also another reason of deviation. 

Its predecessors hinder the jobs that can complete the remaining capacity. For 

example, with the same conditions given above, there exist a job with 60 unit 

volume at the beginning of the time interval, say 0; then 10 unit-volume job is 

released at time 1 and 35 unit-volume job is released at time 2. Upper bound 

algorithm will take the 10 unit-volume job and let the 35 unit-volume job aside 

due to the remaining capacity constraint. But taking the 35 unit-volume job 

would be more efficient in terms of capacity utilization and unit time utilization. 

 

Unlike the upper bound procedure, for the lower bound procedures the sources of 

deviation are apperant. These are the relaxed constraints to obtain a lower bound 
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procedure. Therefore these constraints will not be discussed. But we can say 

using our observations that the “rearrangement of the release times” or “pulling 

the future arrivals” causes most of the deviation in two ways. Since we do not 

move from the interval start, flow time that should be charged due to the 

movement in time axis, is not charged. Moreover for the family dependent lower 

bound procedure we can pull the jobs from the distant future intervals. This 

relaxation causes high deviations especially for the problems with small volumes 

and loose interarrival times. 

Finally we want to discuss why the problems with small job sizes are easy to 

solve although the performance of the lower bound procedures are quite bad for 

these types of problems. 

As we mentioned before, for the problems with high arrival rates and small 

volumes we can easily combine the jobs in a batch. Moreover the alternative 

branches are limited for those types of problems. This was the reason of short 

solution times. On the other hand this small volumes also causes an increase in 

the deviation of the lower bound value, when it is considered with the pulling 

action. Since the jobs are small we can combine several jobs in a batch by 

pulling them to an interval start. In fact the combination of jobs may not be 

possible for a feasible solution. But it is not a problem for the lower bound 

procedure since we don’t wait these jobs. As a result we may count only the 

processing times of the future jobs, which causes a great deviation from the 

optimal solution. 

The problems with high volumes and frequent arrivals do not face with such a 

problem since they fill the reactor capacity more efficiently than the small jobs. 

Therefore the deviations are smaller compared to the small volume problems. 

 

4.3.4 Performance of Proposed Branch and Bound Algorithm 
 

To investigate the efficiency of the proposed branch and bound algorithm, we 

solve the sample problem using LINDO linear optimization package. To limit 

the solution time we set the iteration limit as 1000000. 
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The solution time of the problem, using our branch and bound algorithm, was 

less than 0.5 seconds. The solution obtained using the proposed branch and 

bound algorithm is given in section 3.4. 

The general purpose linear optimization package (LINDO) made 1000000 

iterations in 9.01 minutes and obtained the following schedule with the objective 

function value 33464. 

 

 {1,7} {3,4,7} {6,8,11} {10} {2,11} {12} {9} {5} 
 
0   48           58           68            78           88            98           108         118      128 

Figure 4.1: Schedule obtained for the sample problem using LINDO 

optimization package. 

 

By this comparison we can conclude that the proposed branch and bound 

algorithm is superior to a general purpose optimization package. 
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CHAPTER 5 
 

 

CONCLUSION 
 

 

In this study we developed a branch and bound algorithm for single machine, 

dynamic arrival, batch scheduling problem with incompatible families of job. 

Our objective was minimizing total volume weighted flow time of the jobs 

measured at entire job completion. To the best of our knowledge this study is the 

first attempt to solve the problem by a branch and bound algorithm. To solve the 

problems more efficiently, we proposed a heuristic method to set an upper bound 

to our problem and two alternative lower bound procedures to limit the 

branching of the problem. 

 

The main idea of the upper bound was determining an interval, whose length is 

equal to the processing time of a batch and maximizing the volume of processed 

jobs per unit time within this interval.  

 

Both of the lower bound procedures have the same idea in general. At a point, 

where available jobs exist and machine is idle, we can have a batch start and we 

can maximize the volume of processed jobs by pulling the jobs from the future 

arrivals to the present time disregarding their actual release times (i.e. to the node 

described above). We called the first proposed lower bound procedure as “family 

independent lower bound procedure” or “ consolidated family lower bound 

procedure”. This procedure consolidates all jobs in a single family. Then start to 

pull these jobs to the node up to its capacity is full or until the jobs, that will be 

released in a processing time length interval, will be finished. The second lower 
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bound procedure does not consolidate the jobs. It determines an interval, and 

then decides on the family for processing. Then start to pull the jobs from that 

family to the node up to its capacity is full. Unlike the first lower bound it is not 

limited with the length of the interval. 

 

Using these upper bound and lower bound procedures we performed extensive 

computational experimentation. For this experiment we solved 126 different 

problem sets each containing 10 randomly generated problems. These problems 

are prepared for 3 different job arrival intensities, 3 different ranges of job 

volume, 5 different total number of job arrivals and 3 different total number of 

families for each of the five different number of job arrivals. Based on the 

experimental results we can conclude the following: 

 

For any problem group with given number of jobs, problems with small jobs are 

simpler than problems with relatively large jobs. Mixing large and small jobs in 

a problem reduces the solution times compared to problems with large jobs. 

Given that 10 minutes solution time is reasonable for any problem, the problems 

with small jobs can be solved effectively by the branch and bound method using 

either one of the lower bound procedures. For the problems with mixed jobs in 

terms of size, the proposed branch and bound algorithm can also be used. But we 

should consider the set 15, which has an exceptionally long solution time by the 

branch and bound method using the family independent lower bound procedure 

and fairly long solution time for the branch and bound method using the family 

dependent lower bound procedure. 

 

The most difficult problems are those with large job sizes. Especially the 

problems with the highest number of families and the tightest job arrivals are the 

most difficult problems. Therefore most of these problems are terminated before 

reaching a guaranteed optimal solution. 
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The number of job arrivals is the most important parameter of the problem. As 

the number of job arrivals increase, solution time increases exponentially. 

Considering the solutions obtained, the number of job limit should be less than 

33 for the most difficult problems.  

 

Keeping all other conditions constant, solution time increases with the 

decreasing interarrival times of the jobs. 

 

Number of families and intensity of the arrivals are two factors increasing the 

solution time. The family number is effective for problems with small family 

number and high job arrivals whereas the intensity of the arrivals is more 

important for the problems with higher family number and relatively lower job 

arrivals. 

 

When we take 5% deviation from the optimal value as a limit, the performances 

of upper bound and lower bound procedures are quite bad. Especially lower 

bound procedures have very poor performances. Therefore, we should state that 

the solution qualities are low for these procedures. On the other hand, the lower 

bound procedures have relatively less deviations from the optimal for most of the 

difficult problems. 

 

The proposed branch and bound algorithm became unsuccessful for some of the 

problems. Two main characteristics of these problems are large job volumes with 

frequent interarrival times and high number of job arrivals. A study focusing on 

these types of problems may be one of the near future research area. This study 

is conducted on relying on the property that all the jobs have equal processing 

times. A study assuming different processing times would be another future 

research area. In this study weights of jobs are directly proportional to their 

volumes; a study with arbitrary weights of jobs is another future research area. 

Another extension of this study may include different objective functions as total 

(weighted) lateness or tardiness. Beside these a further study may include 
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multiple parallel machines or multi stage processing. Of course a study, which is 

a combination of these areas, is also possible. 
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APPENDIX A 
 

 

COMPUTATIONAL RESULTS OF BRANCH AND BOUND 

ALGORITHM 

 

 

Table A 1 through Table A 126 show the computational results of the branch and 

bound algorithm, percent deviations of upper bound values from the optimal 

solution, percent deviations of lower bound values from the optimal solution and 

percent deviations of first incumbent solution from the optimal solution. 
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Table A.1: Detailed performance measures of branch and bound algorithm for 
problem set J50/F2/S/F 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time 
Average 400,6 4449,7 23726,7 7,4 38,5 4,0 00:00:11 
Max 3197,0 18024,0 63175,0 17,7 46,4 7,6 00:00:31 
Min 0,0 0,0 1543,0 0,0 25,3 0,0 00:00:01 
St.Dev. 990,5 6339,5 19583,7 4,8 6,9 2,5 00:00:11 
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time 
Average 1140,6 13134,3 45289,7 7,4 37,2 4,5 00:00:18 
Max 10329,0 100119,0 119318,0 17,7 42,3 10,7 00:00:57 
Min 0,0 0,0 2342,0 0,0 29,1 0,0 00:00:01 
St.Dev. 3235,1 31164,0 41856,1 4,8 4,3 3,1 00:00:19  

 

Table A.2: Detailed performance measures of branch and bound algorithm for 
problem set J50/F1/S/F 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time 
Average 42,7 1379,3 4982,3 11,9 33,1 2,7 00:00:02 
Max 135,0 3946,0 25137,0 22,4 41,8 11,1 00:00:09 
Min 22,0 48,0 324,0 3,6 26,2 0,4 00:00:00 
St.Dev. 39,3 1648,7 7347,4 6,1 5,3 3,2 00:00:02 
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time 
Average 112,7 2549,7 5117,8 11,9 29,0 4,1 00:00:02 
Max 840,0 14861,0 23495,0 22,4 33,2 8,0 00:00:08 
Min 22,0 62,0 433,0 3,6 24,7 1,1 00:00:00 
St.Dev. 256,1 4400,5 6729,8 6,1 2,7 2,0 00:00:02  

 

Table A.3: Detailed performance measures of branch and bound algorithm for 
problem set J50/F2/S/A 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time 
Average 44,9 222076,3 1222970,4 10,7 31,0 4,5 00:04:00 
Max 49,0 770011,0 2000000,0 16,1 36,1 8,2 00:08:29 
Min 43,0 5399,0 74677,0 6,4 28,0 2,5 00:00:19 
St.Dev. 2,4 274227,0 823555,7 3,7 2,4 1,8 00:02:51 
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time 
Average 17208,4 588325,1 1404221,2 10,1 30,9 5,8 00:03:24 
Max 166185,0 1670818,0 2000000,0 16,1 36,0 13,8 00:06:34 
Min 41,0 265,0 120702,0 3,1 28,0 0,0 00:00:19 
St.Dev. 52373,5 570159,2 766985,2 4,4 2,3 3,9 00:02:02  
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Table A.4: Detailed performance measures of branch and bound algorithm for 
problem set J50/F1/S/A 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time 
Average 41890,3 50773,2 114349,4 6,5 19,9 2,1 00:00:11 
Max 417619,0 417619,0 690192,0 14,6 24,3 6,5 00:01:03 
Min 42,0 49,0 1682,0 0,0 14,7 0,0 00:00:00 
St.Dev. 132017,8 131620,7 217557,3 4,8 3,1 2,3 00:00:20 
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time 
Average 4258,2 12015,7 93105,2 6,5 19,1 2,2 00:00:08 
Max 40939,0 70511,0 546303,0 14,6 22,9 6,3 00:00:44 
Min 42,0 49,0 1671,0 0,0 14,5 0,0 00:00:00 
St.Dev. 12894,0 24084,4 171396,1 4,8 2,7 2,4 00:00:14  

 

Table A.5: Detailed performance measures of branch and bound algorithm for 
problem set J50/F2/S/L 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time 
Average 386,6 258703,8 496207,6 3,2 23,2 1,6 00:01:34 
Max 3360,0 1612563,0 2000000,0 5,8 28,0 4,0 00:06:18 
Min 54,0 173,0 26167,0 0,7 18,1 0,3 00:00:08 
St.Dev. 1044,7 494573,2 589794,1 1,7 2,8 1,2 00:01:46 
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time 
Average 83766,8 534069,5 762545,8 2,9 24,3 2,6 00:01:29 
Max 327892,0 1828056,0 2000000,0 5,1 27,8 4,8 00:03:42 
Min 54,0 43929,0 74556,0 0,7 19,7 0,5 00:00:12 
St.Dev. 111056,4 632455,5 705611,6 1,6 2,9 1,6 00:01:13  

 

Table A.6: Detailed performance measures of branch and bound algorithm for 
problem set J50/F1/S/L 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time 
Average 1214,6 6227,5 11620,3 5,6 15,7 0,8 00:00:01 
Max 11629,0 15380,0 23418,0 16,5 21,3 2,4 00:00:04 
Min 50,0 50,0 635,0 0,3 11,6 0,0 00:00:00 
St.Dev. 3659,2 6135,1 8138,0 4,9 2,5 0,8 00:00:01 
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time 
Average 57,1 3770,5 10762,8 5,6 15,4 1,5 00:00:01 
Max 62,0 17241,0 21792,0 16,5 21,3 4,1 00:00:03 
Min 49,0 55,0 650,0 0,3 11,6 0,0 00:00:00 
St.Dev. 3,7 5620,9 7254,9 4,9 2,6 1,4 00:00:01  
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Table A.7: Detailed performance measures of branch and bound algorithm for 
problem set J50/F2/B/F 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time 
Average 1048,2 445387,0 2000000,0 1,9 3,9 1,3 00:56:34 
Max 9292,0 1792945,0 2000000,0 4,5 6,7 4,0 01:01:20 
Min 38,0 3254,0 2000000,0 0,6 2,4 0,2 00:45:37 
St.Dev. 2902,5 628669,1 0,0 1,2 1,3 1,1 00:04:19 
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time 
Average 1129,6 494656,4 2000000,0 1,9 3,9 1,3 02:20:44 
Max 10099,0 1727831,0 2000000,0 4,5 6,8 4,0 02:37:10 
Min 38,0 3347,0 2000000,0 0,6 2,4 0,2 01:55:24 
St.Dev. 3157,0 663623,7 0,0 1,2 1,4 1,1 00:14:02  

 

Table A.8: Detailed performance measures of branch and bound algorithm for 
problem set J50/F1/B/F 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time 
Average 89,2 89,2 531,8 0,6 3,5 0,0 00:00:01 
Max 574,0 574,0 998,0 2,6 4,8 0,0 00:00:01 
Min 0,0 0,0 239,0 0,0 2,3 0,0 00:00:00 
St.Dev. 170,8 170,8 229,6 0,9 0,7 0,0 00:00:00 
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time 
Average 89,2 89,2 531,8 0,6 3,5 0,0 00:00:01 
Max 574,0 574,0 998,0 2,6 4,8 0,0 00:00:01 
Min 0,0 0,0 239,0 0,0 2,3 0,0 00:00:00 
St.Dev. 170,8 170,8 229,6 0,9 0,7 0,0 00:00:00  

 

Table A.9: Detailed performance measures of branch and bound algorithm for 
problem set J50/F2/B/A 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time 
Average 92,8 1097865,8 1826197,7 11,5 28,7 6,8 01:02:32 
Max 507,0 1973721,0 2000000,0 23,8 47,8 12,4 01:41:44 
Min 41,0 69991,0 624461,0 5,1 6,2 3,3 00:17:03 
St.Dev. 145,8 653410,0 429073,5 5,5 14,1 3,7 00:26:05 
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time 
Average 43,0 979792,4 1654186,4 12,3 18,8 5,9 00:42:48 
Max 47,0 1896772,0 2000000,0 24,2 35,8 9,7 00:58:20 
Min 41,0 287368,0 463480,0 5,5 6,3 3,7 00:11:51 
St.Dev. 1,8 586759,1 589180,9 5,1 8,6 2,1 00:16:02  
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Table A.10: Detailed performance measures of branch and bound algorithm for 
problem set J50/F1/B/A 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time 
Average 124,0 7419,0 15262,4 4,8 19,1 0,5 00:00:12 
Max 899,0 70947,0 139020,0 15,8 29,1 3,0 00:01:46 
Min 0,0 0,0 331,0 0,0 9,3 0,0 00:00:00 
St.Dev. 272,6 22325,4 43493,4 5,2 6,7 0,9 00:00:33 
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time 
Average 277,1 4381,2 11313,0 4,8 15,0 0,4 00:00:08 
Max 2431,0 38484,0 99492,0 15,8 20,4 2,8 00:01:11 
Min 0,0 0,0 331,0 0,0 9,3 0,0 00:00:00 
St.Dev. 756,9 12010,9 30997,2 5,2 3,5 0,9 00:00:22  

 

Table A.11: Detailed performance measures of branch and bound algorithm for 
problem set J50/F2/B/L 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time 
Average 316988,4 695628,7 1819328,3 7,3 45,7 3,0 00:26:36 
Max 1638853,0 1842868,0 2000000,0 23,8 51,7 7,8 01:21:53 
Min 0,0 0,0 193283,0 0,0 40,8 0,0 00:06:08 
St.Dev. 558284,1 648337,8 571334,1 9,3 3,2 3,2 00:21:04 
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time 
Average 374036,9 707780,1 1827787,9 7,2 37,9 4,4 00:15:30 
Max 1972331,0 1973754,0 2000000,0 23,8 45,0 18,9 00:42:36 
Min 0,0 0,0 277879,0 0,0 32,7 0,0 00:04:08 
St.Dev. 694683,7 697910,5 544582,5 9,4 4,1 6,8 00:10:26  

 

Table A.12: Detailed performance measures of branch and bound algorithm for 
problem set J50/F1/B/L 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time 
Average 23664,2 186923,6 294748,6 2,5 36,2 2,2 00:03:08 
Max 167922,0 729933,0 894765,0 3,9 45,8 3,6 00:09:43 
Min 49,0 49,0 824,0 0,3 28,2 0,0 00:00:01 
St.Dev. 51816,6 271612,7 303585,1 1,1 6,0 1,2 00:03:42 
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time 
Average 27843,4 129874,3 182858,8 2,5 27,5 2,1 00:01:53 
Max 190170,0 481099,0 515377,0 3,9 40,3 3,8 00:07:13 
Min 49,0 49,0 2979,0 0,3 17,5 0,0 00:00:02 
St.Dev. 60558,1 160014,8 170746,7 1,1 6,5 1,1 00:02:11  

 



 82

Table A.13: Detailed performance measures of branch and bound algorithm for 
problem set J50/F2/M/F 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time 
Average 28,9 71520,1 101346,1 10,5 8,8 4,3 00:02:49 
Max 36,0 209846,0 354349,0 18,9 13,6 13,0 00:10:17 
Min 26,0 11285,0 16477,0 3,5 3,8 0,2 00:00:29 
St.Dev. 3,0 76240,8 112407,7 5,8 3,2 3,4 00:03:13 
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time 
Average 28,9 79904,2 114642,0 10,5 9,1 4,4 00:03:08 
Max 36,0 227619,0 400229,0 18,9 14,2 13,0 00:11:26 
Min 26,0 11340,0 22752,0 3,5 3,8 0,8 00:00:39 
St.Dev. 3,0 83834,6 125827,9 5,8 3,4 3,4 00:03:33  

 

Table A.14: Detailed performance measures of branch and bound algorithm for 
problem set J50/F1/M/F 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time 
Average 25,6 32,7 265,5 3,5 8,2 0,0 00:00:00 
Max 31,0 96,0 606,0 12,6 21,9 0,2 00:00:01 
Min 0,0 0,0 70,0 0,0 3,6 0,0 00:00:00 
St.Dev. 9,2 24,1 169,3 3,8 5,3 0,1 00:00:00 
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time 
Average 25,6 32,7 265,5 3,5 8,4 0,0 00:00:00 
Max 31,0 96,0 606,0 12,6 24,5 0,2 00:00:01 
Min 0,0 0,0 70,0 0,0 3,6 0,0 00:00:00 
St.Dev. 9,2 24,1 169,3 3,8 6,1 0,1 00:00:00  

 

Table A.15: Detailed performance measures of branch and bound algorithm for 
problem set J50/F2/M/A 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time 
Average 78,5 402024,0 1456817,0 13,9 45,0 6,6 00:16:24 
Max 433,0 1315138,0 2000000,0 45,5 51,8 16,9 00:38:20 
Min 0,0 0,0 51360,0 0,0 38,4 0,0 00:00:44 
St.Dev. 125,4 521873,7 757909,2 13,5 4,8 5,4 00:11:06 
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time 
Average 215561,2 932134,3 1704968,7 13,6 35,3 6,6 02:37:06 
Max 1814109,0 1992927,0 2000000,0 45,5 43,4 16,7 07:19:19 
Min 42,0 1261,0 74269,0 0,4 27,0 0,3 00:09:39 
St.Dev. 571738,0 715074,7 611116,1 13,7 4,9 4,7 02:17:06  
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Table A.16: Detailed performance measures of branch and bound algorithm for 
problem set J50/F1/M/A 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time 
Average 88,9 20057,1 118162,6 9,6 32,8 4,7 00:00:36 
Max 567,0 130091,0 675693,0 16,8 44,0 13,3 00:02:36 
Min 0,0 0,0 1379,0 0,0 23,0 0,0 00:00:01 
St.Dev. 168,5 41049,6 212444,4 5,3 7,1 4,6 00:00:54 
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time 
Average 83,5 14702,5 96415,3 9,6 27,4 4,3 00:00:30 
Max 515,0 49851,0 470932,0 16,8 40,2 12,6 00:01:50 
Min 0,0 0,0 1321,0 0,0 19,4 0,0 00:00:01 
St.Dev. 152,2 18981,6 153944,7 5,3 6,7 3,9 00:00:40  

 

Table A.17: Detailed performance measures of branch and bound algorithm for 
problem set J50/F2/M/L 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time 
Average 18823,4 392468,4 1490971,0 5,6 32,3 3,4 00:08:04 
Max 151357,0 1590655,0 2000000,0 9,8 40,3 7,5 00:14:28 
Min 0,0 0,0 119957,0 0,0 25,0 0,0 00:00:31 
St.Dev. 47501,6 601635,4 815262,9 3,6 5,7 2,7 00:05:02 
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time 
Average 25435,8 796251,6 1434487,5 5,9 28,5 3,9 00:06:27 
Max 118059,0 1894818,0 2000000,0 10,4 34,3 7,0 00:11:54 
Min 0,0 0,0 84498,0 0,0 23,1 0,0 00:00:14 
St.Dev. 48974,2 668881,4 801982,9 3,6 4,3 2,5 00:03:57  

 

Table A.18: Detailed performance measures of branch and bound algorithm for 
problem set J50/F1/M/L 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time 
Average 2218,3 9906,6 38345,1 7,5 28,1 2,2 00:00:11 
Max 21616,0 31186,0 100879,0 14,2 38,8 5,7 00:00:33 
Min 50,0 82,0 3640,0 0,3 19,0 0,2 00:00:01 
St.Dev. 6815,7 12831,4 32553,5 5,2 6,4 1,8 00:00:10 
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time 
Average 1621,8 14331,7 34387,1 7,5 24,1 2,5 00:00:09 
Max 15229,0 74202,0 91074,0 14,2 37,6 6,8 00:00:27 
Min 49,0 88,0 3416,0 0,3 18,8 0,0 00:00:01 
St.Dev. 4782,6 22399,5 29600,8 5,2 6,4 2,1 00:00:09  
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Table A.19: Detailed performance measures of branch and bound algorithm for 
problem set J33/F1/S/F 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 135,4 489,3 691,2 7,79 29,78 3,24 00:00:00
Max 1193 2104 2623 25,43 43,58 13,22 00:00:00
Min 0 0 22 0,00 16,88 0,00 00:00:00
St.Dev. 371,6806 686,9783 875,7334 7,52 8,54 4,22 00:00:00
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 62,6 461,9 692,9 7,79 25,36 3,01 00:00:00
Max 462 2746 2899 25,43 35,36 13,22 00:00:00
Min 0 0 22 0,00 16,21 0,00 00:00:00
St.Dev. 140,5435 834,9545 922,3825 7,52 6,31 4,25 00:00:00 

 

Table A.20: Detailed performance measures of branch and bound algorithm for 
problem set J33/F2/S/F 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 165,2 498 817,8 10,27 38,37 4,28 00:00:00
Max 1317 2067 2156 19,01 46,29 10,24 00:00:01
Min 0 0 52 0,00 30,47 0,00 00:00:00
St.Dev. 408,7213 598,7776 738,2893 6,31 4,66 2,96 00:00:00
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 369,1 1139,4 1512,2 10,27 38,27 5,36 00:00:00
Max 2996 4673 4939 19,01 45,31 11,03 00:00:01
Min 0 0 61 0,00 31,07 0,00 00:00:00
St.Dev. 937,2549 1434,364 1546,977 6,31 3,57 3,38 00:00:00 

 

Table A.21: Detailed performance measures of branch and bound algorithm for 
problem set J33/F3/S/F 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 84,1 2274,4 2883,5 12,20 44,07 7,45 00:00:01
Max 287 11696 13711 29,85 52,50 19,22 00:00:02
Min 17 75 568 0,57 28,22 0,00 00:00:00
St.Dev. 101,9754 3495,101 4015,566 9,68 6,75 6,92 00:00:01
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 212,8 8886,5 11343,9 12,20 44,63 9,62 00:00:02
Max 1043 69098 78453 29,85 53,48 23,29 00:00:11
Min 19 591 1089 0,57 35,93 0,36 00:00:00
St.Dev. 344,1001 21221,18 23853,42 9,68 4,59 7,76 00:00:03 
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Table A.22: Detailed performance measures of branch and bound algorithm for 
problem set J33/F1/S/A 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 24,6 555 1538,8 8,21 20,28 0,86 00:00:00
Max 37 3211 4263 23,05 30,53 5,10 00:00:00
Min 0 0 234 0,00 13,94 0,00 00:00:00
St.Dev. 13,54991 999,8537 1198,487 7,31 4,94 1,56 00:00:00
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 66,6 824,5 1633,2 8,21 19,10 2,16 00:00:00
Max 450 3281 4306 23,05 27,13 5,10 00:00:00
Min 0 0 230 0,00 13,94 0,00 00:00:00
St.Dev. 135,3836 1095,769 1239,462 7,31 3,58 2,12 00:00:00 
 

Table A.23: Detailed performance measures of branch and bound algorithm for 
problem set J33/F2/S/A 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 42,4 5558,2 18011,5 7,88 26,53 2,65 00:00:02
Max 116 23070 77785 14,62 32,29 10,90 00:00:06
Min 0 0 418 0,00 21,07 0,00 00:00:00
St.Dev. 32,2876 8447,979 23705,03 5,00 4,32 3,71 00:00:02
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 619,2 9611,8 26063,4 7,88 27,52 5,70 00:00:02
Max 3317 34371 99743 14,62 32,11 12,71 00:00:06
Min 0 0 772 0,00 22,06 0,00 00:00:00
St.Dev. 1237,618 13445,31 32024,8 5,00 3,38 3,96 00:00:02 

 

Table A.24: Detailed performance measures of branch and bound algorithm for 
problem set J33/F3/S/A 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 3255,4 137249,5 181842,2 8,63 31,31 4,74 00:00:24
Max 27435 850185 925521 20,09 37,63 11,61 00:02:02
Min 27 1250 3480 1,44 25,66 0,03 00:00:01
St.Dev. 8543,375 280042,2 310285,3 7,21 3,63 3,55 00:00:41
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 5863,3 230717,2 388684,3 8,63 34,78 7,01 00:00:30
Max 46022 903621 2000000 20,09 46,44 19,47 00:02:33
Min 31 775 5839 1,44 26,55 1,34 00:00:00
St.Dev. 14208,6 305799,1 625928,1 7,21 5,61 5,87 00:00:48 
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Table A.25: Detailed performance measures of branch and bound algorithm for 
problem set J33/F1/S/L 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 26,7 59,5 1475,7 2,70 16,60 0,28 00:00:00
Max 42 258 4898 11,07 19,44 1,61 00:00:00
Min 0 0 141 0,00 13,89 0,00 00:00:00
St.Dev. 18,66101 78,00748 1465,661 3,71 2,04 0,54 00:00:00
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 34,5 510,2 1548,8 2,70 16,32 0,58 00:00:00
Max 113 3424 5551 11,07 19,44 1,67 00:00:00
Min 0 0 141 0,00 13,89 0,00 00:00:00
St.Dev. 33,17378 1082,414 1659,006 3,71 1,97 0,71 00:00:00 
 

Table A.26: Detailed performance measures of branch and bound algorithm for 
problem set J33/F2/S/L 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 593,8 7413 21108,8 3,75 25,48 1,31 00:00:02
Max 5675 68083 85828 9,74 33,45 5,50 00:00:10
Min 0 0 253 0,00 18,85 0,00 00:00:00
St.Dev. 1785,423 21390,56 30262,67 3,16 4,96 2,17 00:00:03
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 1048,7 12124,4 28748,7 3,75 26,14 2,32 00:00:02
Max 6611 88083 109369 9,74 34,06 7,00 00:00:08
Min 0 0 327 0,00 19,19 0,00 00:00:00
St.Dev. 2041,573 27169,89 37842,31 3,16 5,43 2,59 00:00:03 

 

Table A.27: Detailed performance measures of branch and bound algorithm for 
problem set J33/F3/S/L 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 35 3285 15119,1 7,55 25,34 1,95 00:00:02
Max 41 16090 59257 16,58 30,06 4,76 00:00:07
Min 0 0 2497 0,00 19,24 0,00 00:00:00
St.Dev. 12,37381 5783,195 17450,74 5,34 3,59 1,75 00:00:02
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 1263,3 18279 37329,1 7,55 26,89 5,07 00:00:03
Max 6780 107379 209250 16,58 29,66 10,81 00:00:13
Min 0 0 4616 0,00 21,98 0,00 00:00:00
St.Dev. 2521,542 32706,06 61842,84 5,34 2,51 4,07 00:00:04 
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Table A.28: Detailed performance measures of branch and bound algorithm for 
problem set J33/F1/B/F 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 45,4 45,4 198,1 0,64 5,73 0,00 00:00:00
Max 187 187 469 3,00 14,07 0,00 00:00:00
Min 0 0 84 0,00 3,10 0,00 00:00:00
St.Dev. 57,66031 57,66031 110,8296 1,08 3,24 0,00 00:00:00
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 43 43 191,9 0,64 5,64 0,00 00:00:00
Max 163 163 445 3,00 14,07 0,00 00:00:00
Min 0 0 79 0,00 3,08 0,00 00:00:00
St.Dev. 51,25535 51,25535 105,969 1,08 3,30 0,00 00:00:00 
 

Table A.29: Detailed performance measures of branch and bound algorithm for 
problem set J33/F2/B/F 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 934,7 38539,9 104815,3 3,24 4,49 1,88 00:01:19
Max 9090 100823 255785 6,21 6,94 5,24 00:03:17
Min 26 325 32965 0,55 3,41 0,09 00:00:24
St.Dev. 2865,482 36901,13 72840,48 2,13 1,04 1,66 00:00:54
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 1160,7 43492,4 120136,4 3,24 4,56 1,88 00:01:40
Max 11350 108006 306566 6,21 7,02 5,24 00:04:37
Min 26 325 40526 0,55 3,20 0,09 00:00:29
St.Dev. 3580,156 41456,39 84043,82 2,13 1,07 1,66 00:01:23 

 

Table A.30: Detailed performance measures of branch and bound algorithm for 
problem set J33/F3/B/F 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 142,6 852314,1 2000000 2,97 6,56 2,22 00:29:40
Max 1072 1590441 2000000 5,57 11,13 4,01 00:33:58
Min 0 0 2000000 0,00 3,20 0,00 00:20:36
St.Dev. 327,6421 526727,9 0 1,71 2,31 1,40 00:03:44
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 244,9 860398,2 2000000 2,79 7,00 2,04 00:25:58
Max 1194 1585732 2000000 5,31 12,70 4,01 00:29:46
Min 0 0 2000000 0,00 3,35 0,00 00:19:12
St.Dev. 439,6105 659901,4 0 1,66 2,69 1,27 00:02:55 
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Table A.31: Detailed performance measures of branch and bound algorithm for 
problem set J33/F1/B/A 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 44,7 174,7 431,8 2,50 23,28 0,42 00:00:00
Max 249 1060 1522 9,07 48,91 2,93 00:00:01
Min 0 0 83 0,00 9,21 0,00 00:00:00
St.Dev. 72,75232 328,8259 408,1105 2,99 13,09 0,97 00:00:00
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 44,7 210,1 458,9 2,50 18,52 0,67 00:00:00
Max 249 1060 1522 9,07 33,75 2,93 00:00:01
Min 0 0 83 0,00 9,21 0,00 00:00:00
St.Dev. 72,75232 330,6866 428,844 2,99 8,76 1,16 00:00:00 
 

Table A.32: Detailed performance measures of branch and bound algorithm for 
problem set J33/F2/B/A 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 45,5 28654,3 69576,2 12,77 27,73 6,75 00:00:43
Max 184 110763 200106 24,37 40,94 15,95 00:01:36
Min 29 658 3551 3,42 13,48 3,00 00:00:02
St.Dev. 48,68093 31844,95 65171,29 7,92 10,41 3,84 00:00:38
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 933,4 68163,9 104269,6 12,77 24,00 6,46 00:01:02
Max 8012 307927 331437 24,37 36,75 13,31 00:03:38
Min 29 692 3861 3,42 11,93 3,00 00:00:02
St.Dev. 2497,872 104045,1 115442,8 7,92 8,69 3,14 00:01:11 

 

Table A.33: Detailed performance measures of branch and bound algorithm for 
problem set J33/F3/B/A 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 55,6 761209 1307546 12,17 30,03 7,67 00:18:57
Max 275 1883686 2000000 21,86 51,50 15,47 00:31:25
Min 26 57732 218936 5,82 9,44 3,72 00:02:51
St.Dev. 77,14373 651760,2 790278,8 4,77 14,86 3,60 00:12:24
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 65,8 878196 1597138 12,17 25,03 7,85 00:20:53
Max 285 1959395 2000000 21,86 51,98 21,60 00:28:00
Min 26 64062 249860 5,82 10,94 3,72 00:03:04
St.Dev. 81,92924 569318,9 640459,9 5,16 13,24 5,33 00:09:09 
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Table A.34: Detailed performance measures of branch and bound algorithm for 
problem set J33/F1/B/L 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 547,7 2880,5 5801,9 2,85 36,59 1,91 00:00:02
Max 1621 15491 19874 9,45 41,98 9,23 00:00:06
Min 31 31 590 0,28 25,54 0,00 00:00:00
St.Dev. 637,8361 4779,95 5940,713 2,71 4,85 2,86 00:00:02
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 587,9 2199,3 4295,3 2,85 27,99 1,65 00:00:01
Max 2033 7001 11387 9,45 35,14 7,12 00:00:03
Min 31 31 562 0,28 21,11 0,00 00:00:00
St.Dev. 790,8147 2230,348 3778,224 2,71 5,15 2,15 00:00:01 
 

Table A.35: Detailed performance measures of branch and bound algorithm for 
problem set J33/F2/B/L 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 3500,7 27190,4 118932,2 6,77 40,32 2,95 00:00:46
Max 31928 157532 572370 23,47 52,11 9,00 00:03:02
Min 35 35 4705 0,59 20,82 0,00 00:00:02
St.Dev. 9996,695 49586,73 187409,5 7,02 9,73 3,10 00:01:06
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 8886,5 36954,9 112689,8 6,77 33,22 3,79 00:00:41
Max 47842 193963 394014 23,47 58,54 10,19 00:02:51
Min 34 185 5221 0,59 16,17 0,52 00:00:02
St.Dev. 15068,98 57357,87 147000,2 7,02 11,52 3,55 00:00:54 

 

Table A.36: Detailed performance measures of branch and bound algorithm for 
problem set J33/F3/B/L 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 6242,9 454731,3 1398772 7,32 36,24 3,29 00:07:36
Max 30202 1871285 2000000 33,66 51,60 10,01 00:16:05
Min 31 16426 69225 0,02 25,51 0,00 00:00:27
St.Dev. 10030,43 579480,7 797360,7 10,58 9,20 3,41 00:04:55
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 113013,4 712465,5 1622653 6,56 30,83 3,03 00:07:47
Max 846538 1697874 2000000 33,66 40,28 9,64 00:17:07
Min 0 0 157051 0,00 25,21 0,00 00:00:48
St.Dev. 262256,6 582010,4 571842,9 10,51 4,90 3,41 00:05:44 
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Table A.37: Detailed performance measures of branch and bound algorithm for 
problem set J33/F1/M/F 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 17 43,3 190,4 7,03 14,92 0,24 00:00:00
Max 20 92 768 20,92 34,33 0,68 00:00:00
Min 0 0 67 0,00 6,49 0,00 00:00:00
St.Dev. 6,073622 32,09032 215,9306 7,06 10,08 0,31 00:00:00
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 22,4 155,9 232,6 7,03 12,52 0,64 00:00:00
Max 73 1079 1154 20,92 21,18 2,42 00:00:00
Min 0 0 67 0,00 6,49 0,00 00:00:00
St.Dev. 18,7806 327,0995 334,6408 7,06 6,07 0,80 00:00:00 
 

Table A.38: Detailed performance measures of branch and bound algorithm for 
problem set J33/F2/M/F 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 20,6 1731,8 2912,1 9,13 11,92 3,70 00:00:02
Max 23 6892 9189 17,06 24,51 9,87 00:00:06
Min 18 50 507 5,22 3,42 0,21 00:00:00
St.Dev. 1,95505 2054,899 2792,318 3,68 6,87 3,05 00:00:02
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 20,5 2301,5 3852,7 9,13 10,91 3,91 00:00:02
Max 23 7058 9592 17,06 18,32 9,87 00:00:06
Min 18 50 588 5,22 3,51 0,21 00:00:00
St.Dev. 1,840894 2621,492 3669,722 3,68 5,29 3,05 00:00:02 

 

Table A.39: Detailed performance measures of branch and bound algorithm for 
problem set J33/F3/M/F 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 3050,5 291233,3 314318 6,72 14,47 5,50 00:04:44
Max 19760 1898934 2000000 17,42 32,26 10,75 00:29:31
Min 19 5520 6343 1,44 6,13 1,30 00:00:04
St.Dev. 6077,924 606709,3 639053,4 4,70 8,10 3,11 00:09:36
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 4493,3 326846,7 460824,5 6,58 15,51 5,35 00:06:26
Max 30394 1926240 2000000 17,42 31,18 10,55 00:29:48
Min 25 10162 11120 1,44 7,48 1,30 00:00:06
St.Dev. 9338,178 617262,8 816946,1 4,70 7,57 3,14 00:11:41 
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Table A.40: Detailed performance measures of branch and bound algorithm for 
problem set J33/F1/M/A 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 33,8 2057 2971,5 9,52 30,12 2,08 00:00:01
Max 123 18271 19174 26,43 39,85 6,93 00:00:05
Min 0 0 43 0,00 20,05 0,00 00:00:00
St.Dev. 32,67619 5701,822 5795,214 7,29 6,89 2,29 00:00:02
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 50,4 1174 3121,8 9,52 28,36 4,53 00:00:01
Max 220 6475 19532 26,43 40,23 10,94 00:00:05
Min 0 0 43 0,00 18,29 0,00 00:00:00
St.Dev. 62,44678 2044,934 5878,307 7,29 6,85 3,90 00:00:01 
 

Table A.41: Detailed performance measures of branch and bound algorithm for 
problem set J33/F2/M/A 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 2703,2 85916,3 137733,6 12,67 39,02 6,48 00:00:34
Max 25559 637285 850999 22,92 44,04 11,33 00:03:09
Min 25 1051 4582 5,48 32,58 4,04 00:00:01
St.Dev. 8035,326 197069,3 263692,5 6,59 4,18 2,39 00:00:58
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 289,7 58358,4 79369,3 12,67 33,79 7,35 00:00:22
Max 2071 227295 287389 22,92 38,54 17,06 00:01:29
Min 28 749 5469 5,48 28,08 1,20 00:00:03
St.Dev. 642,5571 90120,63 111340,9 6,59 3,39 4,70 00:00:29 

 

Table A.42: Detailed performance measures of branch and bound algorithm for 
problem set J33/F3/M/A 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 62,4 17177,8 71905,9 15,48 41,03 5,19 00:00:29
Max 307 80387 221123 28,45 48,29 12,30 00:01:26
Min 0 0 8082 0,00 34,70 0,00 00:00:02
St.Dev. 89,19915 23941,72 73291,78 11,26 4,31 4,35 00:00:32
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 63,7 24594,7 182914,1 15,48 38,89 6,88 00:00:55
Max 412 68705 877031 28,45 58,29 17,63 00:04:21
Min 0 0 12320 0,00 16,91 0,00 00:00:03
St.Dev. 122,7256 26070,84 256431,4 11,26 10,44 5,82 00:01:18 
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Table A.43: Detailed performance measures of branch and bound algorithm for 
problem set J33/F1/M/L 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 162,4 531 2007,3 3,93 27,99 1,97 00:00:00
Max 1243 1243 4053 9,49 41,86 6,48 00:00:01
Min 34 42 422 0,33 18,36 0,00 00:00:00
St.Dev. 379,7678 427,7125 1223,596 3,44 6,40 2,52 00:00:00
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 303,7 809,4 1707,8 3,93 22,06 2,03 00:00:00
Max 1910 2228 3052 9,49 26,34 6,48 00:00:00
Min 33 60 425 0,33 16,94 0,00 00:00:00
St.Dev. 606,0116 832,996 926,8378 3,44 3,03 2,37 00:00:00 
 

Table A.44: Detailed performance measures of branch and bound algorithm for 
problem set J33/F2/M/L 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 2927,8 30574,8 67503,4 4,32 32,47 1,93 00:00:11
Max 28167 294599 317668 11,86 42,27 4,57 00:00:55
Min 0 0 1093 0,00 21,69 0,00 00:00:00
St.Dev. 8869,604 92787,45 131734,6 4,30 7,20 1,63 00:00:21
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 571,2 57865,2 73479,8 4,32 27,65 1,98 00:00:10
Max 4547 308469 359365 11,86 39,75 4,81 00:00:48
Min 0 0 961 0,00 18,83 0,00 00:00:00
St.Dev. 1410,533 119769,5 143348,3 4,30 6,94 1,54 00:00:18 

 

Table A.45: Detailed performance measures of branch and bound algorithm for 
problem set J33/F3/M/L 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 804 197898 394528,7 5,85 34,25 2,46 00:01:22
Max 7255 1039354 2000000 19,27 40,29 7,46 00:06:52
Min 0 0 8861 0,00 27,22 0,00 00:00:01
St.Dev. 2268,86 361724,3 658038,8 6,05 4,92 2,27 00:02:08
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 7931,9 155086,9 441261 5,85 31,19 4,26 00:01:06
Max 40075 692107 2000000 19,27 40,32 15,73 00:04:57
Min 0 0 31024 0,00 24,01 0,00 00:00:03
St.Dev. 13391,47 224621,3 613421,6 6,05 5,03 4,77 00:01:32 
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Table A.46: Detailed performance measures of branch and bound algorithm for 
problem set J25/F2/S/F 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 48,9 186,2 353,4 6,58 37,97 3,87 00:00:00
Max 214 469 1316 14,11 45,97 7,21 00:00:00
Min 0 0 45 0,00 28,80 0,00 00:00:00
St.Dev. 66,52226 166,3536 396,6524 4,29 5,57 2,78 00:00:00
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 46,8 265,3 534,1 6,58 36,96 4,83 00:00:00
Max 252 799 1956 14,11 41,75 11,51 00:00:00
Min 0 0 50 0,00 30,97 0,00 00:00:00
St.Dev. 73,43145 276,0862 596,9782 4,29 3,13 3,33 00:00:00 
 

Table A.47: Detailed performance measures of branch and bound algorithm for 
problem set J25/F3/S/F 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 51,8 133,1 223,4 6,69 36,34 3,29 00:00:00
Max 246 462 523 21,37 46,85 9,61 00:00:00
Min 0 0 83 0,00 27,59 0,00 00:00:00
St.Dev. 75,67445 150,3126 141,7252 6,81 6,98 3,89 00:00:00
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 97,2 304,8 522,1 6,69 41,95 5,29 00:00:00
Max 451 868 1044 21,37 47,31 20,33 00:00:00
Min 0 0 201 0,00 35,23 0,00 00:00:00
St.Dev. 141,873 319,1074 349,4438 6,81 4,63 6,32 00:00:00 

 

Table A.48: Detailed performance measures of branch and bound algorithm for 
problem set J25/F4/S/F 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 57,1 283,2 544,4 7,40 36,15 4,80 00:00:00
Max 195 1242 1957 19,50 56,65 18,11 00:00:00
Min 0 0 13 0,00 16,32 0,00 00:00:00
St.Dev. 70,32378 362,9548 615,3577 6,43 10,64 6,00 00:00:00
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 100,5 810,1 1943,6 7,40 45,66 4,88 00:00:00
Max 523 2923 5739 19,50 51,91 18,11 00:00:01
Min 0 0 25 0,00 29,96 0,00 00:00:00
St.Dev. 153,605 1043,353 2156,589 6,43 6,64 5,96 00:00:00 
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Table A.49: Detailed performance measures of branch and bound algorithm for 
problem set J25/F2/S/A 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 475 933 1929,4 9,58 25,62 4,15 00:00:00
Max 4445 5105 10177 19,32 32,25 9,60 00:00:01
Min 22 22 231 0,37 19,71 0,00 00:00:00
St.Dev. 1395,102 1730,854 3060,257 6,98 4,57 3,40 00:00:00
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 662,2 1501,6 2924 9,58 26,58 5,43 00:00:00
Max 6345 7275 14619 19,32 33,62 14,74 00:00:01
Min 21 33 388 0,37 18,78 0,14 00:00:00
St.Dev. 1996,752 2416,516 4335,525 6,98 4,83 4,50 00:00:00 
 

Table A.50: Detailed performance measures of branch and bound algorithm for 
problem set J25/F3/S/A 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 41,4 1003,8 7340,1 12,39 28,84 5,95 00:00:01
Max 192 6338 26246 26,45 36,63 10,86 00:00:03
Min 21 51 194 4,42 22,21 1,00 00:00:00
St.Dev. 53,07688 1985,37 10130,36 7,95 4,54 2,90 00:00:01
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 994,5 8259,9 19635,8 12,39 33,08 8,96 00:00:01
Max 8986 37058 61771 26,45 39,46 18,15 00:00:04
Min 18 46 521 4,42 25,18 4,06 00:00:00
St.Dev. 2814,303 12562,72 24812,42 7,95 4,64 4,84 00:00:01 

 

Table A.51: Detailed performance measures of branch and bound algorithm for 
problem set J25/F4/S/A 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 426,4 11449,1 14306,2 9,46 29,16 4,46 00:00:02
Max 3828 111289 120697 16,36 40,70 13,12 00:00:13
Min 22 77 418 1,03 18,88 0,00 00:00:00
St.Dev. 1196,17 35081,58 37431,78 5,21 6,45 4,19 00:00:04
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 1246,4 24316,3 33813,8 9,46 33,40 6,63 00:00:02
Max 10880 207698 254051 16,36 43,53 13,35 00:00:13
Min 23 103 1967 1,03 24,60 0,00 00:00:00
St.Dev. 3390,33 64569,97 77670,1 5,21 5,87 4,40 00:00:04 
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Table A.52: Detailed performance measures of branch and bound algorithm for 
problem set J25/F2/S/L 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 25 118,2 687,9 7,01 19,20 2,05 00:00:00
Max 42 637 2138 15,07 28,19 6,02 00:00:00
Min 0 0 138 0,00 12,27 0,00 00:00:00
St.Dev. 13,88044 189,1113 744,7249 5,53 4,95 2,07 00:00:00
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 37,1 242,4 972,6 7,01 20,06 4,82 00:00:00
Max 127 1162 3041 15,07 28,23 10,80 00:00:00
Min 0 0 226 0,00 13,41 0,00 00:00:00
St.Dev. 35,45404 356,0853 985,0251 5,53 4,34 4,04 00:00:00 
 

Table A.53: Detailed performance measures of branch and bound algorithm for 
problem set J25/F3/S/L 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 25,5 513 2561 4,29 25,41 0,63 00:00:00
Max 36 3707 10185 14,41 32,58 3,49 00:00:01
Min 0 0 287 0,00 21,82 0,00 00:00:00
St.Dev. 13,59126 1133,98 3033,331 4,59 3,45 1,07 00:00:00
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 316,3 1684,4 4497,7 4,29 25,83 1,56 00:00:00
Max 2485 7389 17898 14,41 32,58 5,65 00:00:01
Min 0 0 635 0,00 22,11 0,00 00:00:00
St.Dev. 767,035 2198,732 5306,343 4,59 3,56 1,76 00:00:00 

 

Table A.54: Detailed performance measures of branch and bound algorithm for 
problem set J25/F4/S/L 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 51,9 522,6 4450,3 7,77 27,61 2,25 00:00:00
Max 204 2554 19801 18,23 37,00 6,97 00:00:02
Min 24 29 415 2,11 20,92 0,00 00:00:00
St.Dev. 55,71844 811,9317 6218,471 5,46 5,28 2,72 00:00:01
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 470,9 7079 11187,9 7,77 30,65 6,92 00:00:01
Max 1298 28712 35212 18,23 40,90 17,76 00:00:02
Min 27 1311 1988 2,11 24,05 0,15 00:00:00
St.Dev. 535,9217 8745,236 11686,77 5,46 5,54 5,78 00:00:01 
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Table A.55: Detailed performance measures of branch and bound algorithm for 
problem set J25/F2/B/F 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 333 22777,8 36599,1 3,33 6,76 2,29 00:00:14
Max 2192 78303 123789 6,88 12,44 4,25 00:00:47
Min 21 393 8499 1,85 3,02 0,03 00:00:03
St.Dev. 667,46 31521,61 37675,13 1,43 2,87 1,24 00:00:14
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 413,7 25192,3 40500,9 3,33 6,94 2,32 00:00:16
Max 2500 87617 131431 6,88 12,70 4,25 00:00:54
Min 21 393 10554 1,85 3,07 0,03 00:00:04
St.Dev. 812,4322 34613,25 40500,88 1,43 2,91 1,23 00:00:16 
 

Table A.56: Detailed performance measures of branch and bound algorithm for 
problem set J25/F3/B/F 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 4790,9 292714,4 774152,7 4,92 7,71 3,73 00:06:14
Max 46423 1196772 2000000 8,98 17,43 7,02 00:16:29
Min 19 35095 37951 1,02 3,43 0,47 00:00:16
St.Dev. 14629,98 376885,1 776402,5 3,02 4,17 2,40 00:06:24
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 6923,9 720457,2 1313164 4,95 8,17 3,80 00:10:32
Max 67614 3456661 4441898 8,98 18,42 7,02 00:33:25
Min 19 46809 50640 1,02 3,90 0,47 00:00:20
St.Dev. 21326,02 1079585 1555834 2,98 4,38 2,38 00:12:32 

 

Table A.57: Detailed performance measures of branch and bound algorithm for 
problem set J25/F4/B/F 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 10445,2 1115457 1542964 5,89 9,04 5,10 00:12:27
Max 52556 1997380 2000000 13,78 14,45 10,96 00:19:58
Min 22 54900 143888 0,17 4,53 0,12 00:00:58
St.Dev. 17261,46 763357 723424,8 4,35 3,20 3,54 00:06:14
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 19114 1056799 1672633 5,31 10,31 4,52 00:09:35
Max 110193 1930619 2000000 13,78 16,70 10,96 00:13:59
Min 22 22 238100 0,17 5,46 0,00 00:01:12
St.Dev. 36053,8 795890,9 692664,2 4,56 3,35 3,77 00:05:14 
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Table A.58: Detailed performance measures of branch and bound algorithm for 
problem set J25/F2/B/A 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 355,5 7007,9 13592,6 10,44 23,13 6,67 00:00:05
Max 3341 21649 33513 20,36 32,90 10,77 00:00:15
Min 22 631 1091 2,92 9,49 1,60 00:00:00
St.Dev. 1048,999 6926,225 11107,9 5,89 7,44 3,17 00:00:05
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 434,6 8855,2 16059,2 10,44 21,94 6,69 00:00:06
Max 4131 17341 35780 20,36 30,93 12,68 00:00:14
Min 22 281 986 2,92 9,92 1,60 00:00:00
St.Dev. 1298,784 6440,901 11371,4 5,89 7,46 3,64 00:00:05 
 

Table A.59: Detailed performance measures of branch and bound algorithm for 
problem set J25/F3/B/A 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 1103,6 335669,8 366484,5 12,68 23,92 7,06 00:02:46
Max 7418 1959547 2000000 26,85 46,33 15,01 00:14:40
Min 23 7839 12862 4,12 8,34 3,35 00:00:04
St.Dev. 2343,405 675362,8 705709,7 7,25 11,83 3,95 00:05:21
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 1478,7 228284,2 388665,9 12,71 25,34 7,28 00:02:41
Max 9277 1334387 1671707 26,85 61,95 15,31 00:12:24
Min 23 23436 35429 4,12 8,43 3,35 00:00:11
St.Dev. 2946,717 417976,5 666812,6 7,22 14,96 4,17 00:04:45 

 

Table A.60: Detailed performance measures of branch and bound algorithm for 
problem set J25/F4/B/A 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 35292,1 487889,8 611967,2 10,97 34,70 7,66 00:03:51
Max 262876 1882472 2000000 21,48 49,43 20,50 00:13:56
Min 23 12914 19147 1,16 19,86 0,99 00:00:08
St.Dev. 84040,88 618988,8 765248,9 8,70 10,00 7,42 00:04:38
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 91369,5 635018,3 873768 10,49 33,00 7,54 00:04:38
Max 803291 1727738 2000000 21,48 46,25 20,50 00:12:37
Min 23 35476 43077 1,13 23,02 0,99 00:00:11
St.Dev. 252043 619720,5 845432,7 9,01 8,65 7,06 00:04:34 
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Table A.61: Detailed performance measures of branch and bound algorithm for 
problem set J25/F2/B/L 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 33,6 2856 31422,7 9,84 38,23 4,70 00:00:07
Max 102 8058 139921 19,10 47,82 9,25 00:00:33
Min 0 0 559 0,00 30,86 0,00 00:00:00
St.Dev. 26,08618 2871,292 43156,35 5,74 5,14 3,39 00:00:10
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 1092,9 20757,3 35120,8 9,84 31,81 7,85 00:00:07
Max 10559 101411 107326 19,10 38,54 18,98 00:00:28
Min 0 0 1119 0,00 21,95 0,00 00:00:00
St.Dev. 3326,197 31945,84 32700,57 5,74 4,87 5,18 00:00:08 
 

Table A.62: Detailed performance measures of branch and bound algorithm for 
problem set J25/F3/B/L 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 6355,8 8702,8 55584,1 4,31 33,77 3,35 00:00:12
Max 60857 60857 302693 7,23 45,25 6,99 00:01:06
Min 0 0 622 0,00 22,75 0,00 00:00:00
St.Dev. 19156,14 18806,47 100642 3,11 7,02 2,89 00:00:22
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 13922,3 22267,6 60284,9 4,31 31,49 3,45 00:00:10
Max 130072 130072 287128 7,23 38,66 6,72 00:00:55
Min 0 0 1247 0,00 21,34 0,00 00:00:00
St.Dev. 40847,67 40033,69 99741,4 3,11 5,33 2,69 00:00:17 

 

Table A.63: Detailed performance measures of branch and bound algorithm for 
problem set J25/F4/B/L 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 19895,9 71961,6 126725,4 3,16 39,69 2,76 00:00:36
Max 179547 529517 581740 13,40 60,95 12,93 00:03:18
Min 0 0 3974 0,00 26,83 0,00 00:00:01
St.Dev. 56245,87 164471,5 179971,3 4,57 10,33 4,42 00:01:01
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 30739,8 98110,8 182781,5 3,16 33,62 1,94 00:00:30
Max 273608 625828 681976 13,40 45,68 8,66 00:02:06
Min 0 0 4572 0,00 26,06 0,00 00:00:00
St.Dev. 85584,35 194113,1 208573 4,57 5,90 2,74 00:00:39 
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Table A.64: Detailed performance measures of branch and bound algorithm for 
problem set J25/F2/M/F 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 48,5 524,2 938,8 7,35 14,65 2,00 00:00:00
Max 318 1614 2475 13,44 33,62 4,88 00:00:01
Min 15 17 76 0,35 5,26 0,00 00:00:00
St.Dev. 94,85808 522,8252 721,2648 5,33 8,61 1,79 00:00:00
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 51,4 596,8 1078,4 7,35 16,39 2,02 00:00:00
Max 366 1819 2950 13,44 47,47 4,88 00:00:01
Min 15 17 79 0,35 5,70 0,00 00:00:00
St.Dev. 110,5473 618,1082 855,3143 5,33 12,25 1,79 00:00:00 
 

Table A.65: Detailed performance measures of branch and bound algorithm for 
problem set J25/F3/M/F 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 2402,6 15441,5 19069,6 7,84 15,36 6,25 00:00:08
Max 19444 129163 153173 21,36 34,84 19,57 00:01:09
Min 15 377 429 2,72 3,47 0,75 00:00:00
St.Dev. 6064,31 39986,18 47211,53 6,05 10,19 5,54 00:00:21
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 3599,3 23630,7 29518,7 7,84 15,89 6,26 00:00:12
Max 29091 196496 235314 21,36 31,16 19,57 00:01:38
Min 15 631 692 2,72 4,29 0,75 00:00:00
St.Dev. 9066,354 60775,02 72449,32 6,05 9,29 5,53 00:00:30 

 

Table A.66: Detailed performance measures of branch and bound algorithm for 
problem set J25/F4/M/F 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 420 10518 32157,9 8,60 15,21 4,20 00:00:15
Max 2895 32863 153047 20,72 32,14 8,56 00:01:27
Min 18 269 617 0,65 3,33 0,48 00:00:00
St.Dev. 886,8705 12497,33 49880,18 7,01 9,84 2,94 00:00:27
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 344,8 18954,3 83569,4 8,60 17,20 4,46 00:00:31
Max 1215 61119 403347 20,72 40,24 8,56 00:02:50
Min 18 808 2666 0,65 4,05 0,60 00:00:00
St.Dev. 497,9616 22258,15 135076,6 7,01 10,46 2,74 00:00:55 
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Table A.67: Detailed performance measures of branch and bound algorithm for 
problem set J25/F2/M/A 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 962,6 1251,7 3686,3 8,11 31,90 2,83 00:00:01
Max 7888 7914 17312 16,72 49,65 5,85 00:00:04
Min 19 72 220 0,29 18,12 0,17 00:00:00
St.Dev. 2454,488 2393,43 5488,85 5,94 11,80 2,16 00:00:01
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 1363,9 1892,9 4687,7 8,11 30,20 4,08 00:00:01
Max 10057 10271 21313 16,72 54,67 10,69 00:00:04
Min 21 105 325 0,29 15,71 0,17 00:00:00
St.Dev. 3105,309 3089,559 6645,484 5,94 10,48 3,31 00:00:01 
 

Table A.68: Detailed performance measures of branch and bound algorithm for 
problem set J25/F3/M/A 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 218,5 1964,1 5078,6 11,31 37,97 6,73 00:00:01
Max 1520 9665 30995 29,58 47,55 20,26 00:00:07
Min 0 0 171 0,00 24,89 0,00 00:00:00
St.Dev. 477,8906 3051,233 9276,561 9,74 7,35 6,47 00:00:02
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 703,4 5013,8 10856,7 11,31 38,86 8,24 00:00:02
Max 3886 32052 65051 29,58 55,17 20,70 00:00:11
Min 0 0 222 0,00 25,99 0,00 00:00:00
St.Dev. 1286,495 9891,218 19428,24 9,74 10,22 7,50 00:00:03 

 

Table A.69: Detailed performance measures of branch and bound algorithm for 
problem set J25/F4/M/A 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 350,4 11207,9 26974,6 13,25 43,83 6,93 00:00:05
Max 2472 103821 164962 36,01 48,91 22,74 00:00:28
Min 0 0 885 0,00 36,43 0,00 00:00:00
St.Dev. 783,0055 32566,6 50454,04 10,58 4,68 7,32 00:00:09
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 1934,6 38967,7 72605,7 13,25 41,14 8,20 00:00:07
Max 18244 310346 423255 36,01 48,70 20,31 00:00:30
Min 0 0 4510 0,00 29,21 0,00 00:00:01
St.Dev. 5732,393 96233,52 127393,9 10,58 5,17 6,84 00:00:09 
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Table A.70: Detailed performance measures of branch and bound algorithm for 
problem set J25/F2/M/L 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 135,4 680,5 2239,5 5,18 28,78 1,65 00:00:00
Max 706 2010 5493 14,81 39,89 5,23 00:00:01
Min 27 27 125 0,51 17,43 0,00 00:00:00
St.Dev. 213,2662 734,426 2146,091 4,33 9,05 1,78 00:00:00
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 207,8 657 2361,4 5,18 25,54 2,29 00:00:00
Max 808 1829 5605 14,81 38,79 5,23 00:00:01
Min 27 68 201 0,51 17,02 0,00 00:00:00
St.Dev. 297,9656 690,7526 2203,624 4,33 7,91 1,70 00:00:00 
 

Table A.71: Detailed performance measures of branch and bound algorithm for 
problem set J25/F3/M/L 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 31,6 1993,3 7611,8 8,27 28,18 3,00 00:00:01
Max 72 7114 29554 17,02 36,62 13,80 00:00:05
Min 0 0 140 0,00 18,63 0,00 00:00:00
St.Dev. 17,34743 2665,674 10201,53 6,21 5,68 4,07 00:00:01
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt.   
Average 88,3 3429,1 11148,2 8,27 28,81 4,43 00:00:01
Max 559 12725 54651 17,02 44,64 12,70 00:00:05
Min 0 0 180 0,00 17,62 0,00 00:00:00
St.Dev. 166,6534 4842,835 16895,95 6,21 8,05 3,73 00:00:02 

 

Table A.72: Detailed performance measures of branch and bound algorithm for 
problem set J25/F4/M/L 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 537,4 2347,5 19166,4 3,40 34,10 1,62 00:00:03
Max 3812 11511 119679 16,45 42,60 5,61 00:00:16
Min 0 0 519 0,00 22,21 0,00 00:00:00
St.Dev. 1222,32 4476,082 36296,84 5,11 6,31 2,22 00:00:05
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 376,9 6513,1 25574,9 3,40 35,16 2,57 00:00:02
Max 2687 56311 97375 16,45 39,36 11,42 00:00:06
Min 0 0 910 0,00 29,72 0,00 00:00:00
St.Dev. 845,3085 17527,77 31501,17 5,11 3,52 3,68 00:00:02 
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Table A.73: Detailed performance measures of branch and bound algorithm for 
problem set J20/F3/S/F 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 20,1 103,5 148,3 11,99 33,23 5,09 00:00:00
Max 49 343 383 24,91 48,41 18,16 00:00:00
Min 10 10 12 2,17 17,15 0,00 00:00:00
St.Dev. 13,58471 106,7887 112,7002 8,05 8,71 5,35 00:00:00
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 41,4 259,6 391,7 11,99 42,21 6,22 00:00:00
Max 140 876 1014 24,91 51,10 18,16 00:00:00
Min 12 13 34 2,17 33,91 0,00 00:00:00
St.Dev. 48,79253 319,9539 341,857 8,05 5,40 5,96 00:00:00 
 

Table A.74: Detailed performance measures of branch and bound algorithm for 
problem set J20/F4/S/F 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 25,6 167,7 249 8,57 35,08 5,96 00:00:00
Max 67 502 722 22,32 43,51 21,98 00:00:00
Min 0 0 64 0,00 25,57 0,00 00:00:00
St.Dev. 21,13554 157,0761 212,9178 8,30 6,29 6,96 00:00:00
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 102,8 539 819,3 8,57 46,73 7,67 00:00:00
Max 244 1261 1968 22,32 53,20 22,15 00:00:00
Min 0 0 258 0,00 36,22 0,00 00:00:00
St.Dev. 74,62916 374,8434 552,8568 8,30 5,32 8,53 00:00:00 

 

Table A.75: Detailed performance measures of branch and bound algorithm for 
problem set J20/F5/S/F 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 21 72,8 110,1 10,65 33,94 4,79 00:00:00
Max 72 179 272 23,52 49,52 19,23 00:00:00
Min 0 0 20 0,00 17,11 0,00 00:00:00
St.Dev. 19,44794 68,2541 83,0267 9,77 11,27 7,26 00:00:00
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 164,8 661,1 982,4 10,65 48,81 8,46 00:00:00
Max 860 1828 2476 23,52 57,03 19,64 00:00:00
Min 0 0 119 0,00 35,19 0,00 00:00:00
St.Dev. 257,281 582,9563 731,3712 9,77 6,95 8,35 00:00:00 
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Table A.76: Detailed performance measures of branch and bound algorithm for 
problem set J20/F3/S/A 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 20,2 85,3 476,1 12,82 30,24 6,14 00:00:00
Max 50 224 2352 37,81 34,89 18,34 00:00:00
Min 0 0 78 0,00 19,61 0,00 00:00:00
St.Dev. 14,65757 71,89815 702,9224 12,71 4,98 6,23 00:00:00
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 159,2 657,1 1413,8 12,82 33,45 8,47 00:00:00
Max 1386 4108 7900 37,81 37,11 22,32 00:00:00
Min 0 0 121 0,00 24,07 0,00 00:00:00
St.Dev. 431,4216 1293,341 2424,364 12,71 3,86 8,21 00:00:00 
 

Table A.77: Detailed performance measures of branch and bound algorithm for 
problem set J20/F4/S/A 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 43,8 203,9 472,2 7,37 28,71 1,49 00:00:00
Max 259 713 879 16,95 36,68 3,76 00:00:00
Min 0 0 199 0,00 18,85 0,00 00:00:00
St.Dev. 76,58953 223,6279 262,3275 5,92 4,96 1,26 00:00:00
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 320,3 1198,3 1793,3 7,37 37,96 4,36 00:00:00
Max 1800 4144 4403 16,95 47,19 11,17 00:00:00
Min 0 0 564 0,00 26,23 0,00 00:00:00
St.Dev. 545,1347 1291,518 1259,502 5,92 6,19 4,48 00:00:00 

 

Table A.78: Detailed performance measures of branch and bound algorithm for 
problem set J20/F5/S/A 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 59,4 814,3 2123,4 8,01 37,48 5,09 00:00:00
Max 439 4734 7156 16,39 44,75 13,67 00:00:01
Min 0 0 37 0,00 28,14 0,00 00:00:00
St.Dev. 133,5209 1437,623 2413,757 5,32 4,92 4,78 00:00:00
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 986,5 8593,5 14333,6 8,01 41,59 6,93 00:00:01
Max 4657 51805 57889 16,39 48,53 15,43 00:00:03
Min 0 0 498 0,00 35,85 0,00 00:00:00
St.Dev. 1500,94 15600,63 20448,4 5,32 3,99 5,36 00:00:01 
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Table A.79: Detailed performance measures of branch and bound algorithm for 
problem set J20/F3/S/L 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 39,6 282,8 526,7 6,02 22,29 2,04 00:00:00
Max 183 726 1646 14,62 32,61 5,05 00:00:00
Min 0 0 89 0,00 15,89 0,00 00:00:00
St.Dev. 51,28829 272,9606 470,7002 4,82 4,74 1,57 00:00:00
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 203,3 696,3 953,5 6,02 24,62 2,62 00:00:00
Max 1162 2159 2625 14,62 32,45 4,84 00:00:00
Min 0 0 148 0,00 20,49 0,00 00:00:00
St.Dev. 377,1799 717,9231 759,3903 4,82 3,90 1,64 00:00:00 
 

Table A.80: Detailed performance measures of branch and bound algorithm for 
problem set J20/F4/S/L 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 96,4 434,7 1342,8 6,31 24,56 1,37 00:00:00
Max 723 2433 5885 10,30 42,44 2,74 00:00:01
Min 22 23 101 0,92 15,92 0,00 00:00:00
St.Dev. 220,3211 742,0909 1916,933 3,50 7,13 1,02 00:00:00
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 963,3 1787,8 3436,2 6,31 26,90 3,67 00:00:00
Max 8602 8602 14831 10,30 42,66 8,69 00:00:01
Min 21 21 240 0,92 18,31 0,00 00:00:00
St.Dev. 2692,142 3065,295 5141,242 3,50 6,97 3,14 00:00:00 

 

Table A.81: Detailed performance measures of branch and bound algorithm for 
problem set J20/F5/S/L 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 29,4 302,7 1694,3 8,51 26,90 5,40 00:00:00
Max 85 1045 7065 17,21 35,09 14,60 00:00:01
Min 0 0 83 0,00 20,50 0,00 00:00:00
St.Dev. 21,43828 332,3693 2297,917 5,03 4,82 5,51 00:00:00
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 112,6 3699,7 9403,4 8,51 30,14 7,46 00:00:00
Max 689 23366 39187 17,21 37,55 15,46 00:00:02
Min 0 0 226 0,00 21,62 0,00 00:00:00
St.Dev. 209,5838 7030,105 14885,66 5,03 5,73 4,47 00:00:01 
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Table A.82: Detailed performance measures of branch and bound algorithm for 
problem set J20/F3/B/F 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 820 55143,8 110174,2 6,74 8,07 4,85 00:00:33
Max 3512 183780 269982 17,16 11,09 8,82 00:01:21
Min 17 8268 24681 1,59 4,10 1,35 00:00:07
St.Dev. 1317,872 50897,42 79797,14 4,54 2,02 2,09 00:00:25
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 924,3 59833,7 134219,3 6,74 8,48 4,62 00:00:40
Max 3693 216691 331448 17,16 11,77 8,82 00:01:32
Min 17 1251 30618 1,59 4,19 1,35 00:00:10
St.Dev. 1468,727 61276,8 92419,42 4,54 2,20 2,19 00:00:27 
 

Table A.83: Detailed performance measures of branch and bound algorithm for 
problem set J20/F4/B/F 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 24102,2 314926 576076,8 6,22 10,42 4,06 00:02:35
Max 229094 1952984 2000000 16,94 15,92 8,72 00:08:28
Min 0 0 30331 0,00 6,14 0,00 00:00:10
St.Dev. 72103,43 592192 769321,4 5,31 3,54 3,03 00:03:05
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 35654,7 274523,6 682208,5 6,21 11,47 4,14 00:02:54
Max 328900 1148286 2000000 16,94 17,54 8,72 00:07:00
Min 0 0 51330 0,00 7,03 0,00 00:00:13
St.Dev. 103370 359840,7 732924,5 5,31 3,64 3,15 00:02:30 

 

Table A.84: Detailed performance measures of branch and bound algorithm for 
problem set J20/F5/B/F 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 165551,3 640826,2 1590161 2,79 11,34 2,23 00:06:14
Max 1315165 1589900 2000000 8,78 17,68 6,23 00:10:00
Min 0 0 217734 0,00 4,53 0,00 00:01:33
St.Dev. 407949,1 618335,2 710203,1 2,65 3,57 1,87 00:02:42
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 239472,5 973131,6 1801356 2,79 12,66 2,19 00:05:12
Max 1680940 1968929 2000000 8,78 18,83 6,23 00:10:19
Min 19 0 407165 0,00 6,12 0,00 00:00:00
St.Dev. 512354,4 834328,6 505245,1 2,65 3,57 1,89 00:02:54 
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Table A.85: Detailed performance measures of branch and bound algorithm for 
problem set J20/F3/B/A 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 1127,2 16072,2 22861,4 8,80 25,25 5,42 00:00:06
Max 9079 108628 109842 25,27 45,48 15,59 00:00:29
Min 19 200 299 0,54 9,80 0,25 00:00:00
St.Dev. 2817,273 32981,64 34487,82 7,94 9,12 5,78 00:00:09
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 1963,4 35629,6 46510 8,80 26,49 5,93 00:00:11
Max 12278 269273 284935 25,27 37,42 20,11 00:01:11
Min 19 234 362 0,54 10,25 0,25 00:00:00
St.Dev. 3906,108 82579,85 87085,17 7,94 7,86 6,82 00:00:22 
 

Table A.86: Detailed performance measures of branch and bound algorithm for 
problem set J20/F4/B/A 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 55913,1 159485,4 565557,9 3,58 24,86 3,30 00:02:20
Max 529264 723510 2000000 8,91 32,87 8,45 00:09:19
Min 0 0 2399 0,00 13,63 0,00 00:00:01
St.Dev. 166387,4 297123,4 827005,7 2,65 5,00 2,46 00:03:34
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 102911,8 249819,6 670070,9 3,58 29,71 3,29 00:02:12
Max 748229 1057565 2000000 8,91 48,43 8,45 00:07:12
Min 0 0 3190 0,00 13,31 0,00 00:00:01
St.Dev. 239209,8 424627,6 873686,7 2,65 10,16 2,46 00:02:56 

 

Table A.87: Detailed performance measures of branch and bound algorithm for 
problem set J20/F5/B/A 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 8962,1 187780,5 529782,2 8,20 23,44 6,87 00:02:06
Max 87826 1042106 2000000 17,65 40,81 12,46 00:08:03
Min 0 0 2075 0,00 9,95 0,00 00:00:01
St.Dev. 27713,58 336778,4 792506,3 5,44 9,96 4,02 00:03:11
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 21733,3 267278,5 585485,8 8,44 29,16 5,80 00:01:46
Max 207511 1297108 2000000 17,65 44,39 12,46 00:06:56
Min 19 942 5000 2,23 13,62 0,31 00:00:01
St.Dev. 65312,2 395632,5 778236,7 5,11 11,83 4,28 00:02:20 
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Table A.88: Detailed performance measures of branch and bound algorithm for 
problem set J20/F3/B/L 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 171,5 2082,3 7642,1 6,14 34,53 3,36 00:00:01
Max 735 6832 16602 18,59 56,06 12,61 00:00:02
Min 0 0 216 0,00 15,09 0,00 00:00:00
St.Dev. 250,8888 2491,413 5228,49 6,96 11,65 4,17 00:00:01
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 607,9 3719,3 10831,9 6,14 32,96 3,71 00:00:01
Max 3860 15677 22202 18,59 46,78 12,61 00:00:03
Min 0 0 305 0,00 18,88 0,00 00:00:00
St.Dev. 1187,804 4981,379 7304,372 6,96 8,55 4,97 00:00:01 
 

Table A.89: Detailed performance measures of branch and bound algorithm for 
problem set J20/F4/B/L 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 856,5 2465,7 9139,5 1,48 34,89 1,07 00:00:01
Max 2719 11590 20547 6,27 49,70 5,72 00:00:04
Min 0 0 1584 0,00 18,24 0,00 00:00:00
St.Dev. 1048,985 3610,901 6873,693 2,06 9,02 1,83 00:00:01
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 1337,1 4027,6 12801,4 1,48 35,46 1,22 00:00:01
Max 4118 20515 23773 6,27 41,66 5,80 00:00:04
Min 0 0 1991 0,00 30,71 0,00 00:00:00
St.Dev. 1826,118 6354,048 7181,269 2,06 3,81 1,93 00:00:01 

 

Table A.90: Detailed performance measures of branch and bound algorithm for 
problem set J20/F5/B/L 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 1286,4 2406,9 90690 2,16 33,99 1,53 00:00:17
Max 12648 20570 792835 7,65 51,58 5,41 00:02:36
Min 0 0 383 0,00 14,07 0,00 00:00:00
St.Dev. 3992,189 6398,87 247188,8 2,67 10,46 2,08 00:00:49
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 2662,8 29393 238207,8 2,16 33,51 1,79 00:00:28
Max 17959 259092 2000000 7,65 46,40 4,78 00:04:16
Min 0 0 1689 0,00 16,24 0,00 00:00:00
St.Dev. 5886,346 81274,32 622519,2 2,67 8,23 2,08 00:01:20 
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Table A.91: Detailed performance measures of branch and bound algorithm for 
problem set J20/F3/M/F 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 78,5 3722,8 4879,8 11,14 17,11 5,46 00:00:01
Max 309 27534 31294 23,86 34,29 13,82 00:00:07
Min 0 0 252 0,00 8,97 0,00 00:00:00
St.Dev. 112,2599 8502,896 9434,084 8,50 8,31 4,10 00:00:02
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 102,1 4718 6248,6 11,14 20,92 6,28 00:00:01
Max 378 32918 37187 23,86 44,21 17,39 00:00:08
Min 0 0 392 0,00 9,55 0,00 00:00:00
St.Dev. 142,5408 10090,83 11076,08 8,50 10,85 5,50 00:00:02 
 

Table A.92: Detailed performance measures of branch and bound algorithm for 
problem set J20/F4/M/F 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 516,1 3055,5 4330,8 10,04 21,00 3,92 00:00:01
Max 4075 14208 15049 18,51 40,59 11,11 00:00:02
Min 11 79 162 1,73 5,51 0,79 00:00:00
St.Dev. 1271,196 4326,998 4551,862 5,21 13,39 3,32 00:00:01
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 1018,6 5943,4 9274,2 10,04 23,93 3,93 00:00:01
Max 7856 23385 25612 18,51 41,28 11,11 00:00:04
Min 11 84 241 1,73 6,83 0,82 00:00:00
St.Dev. 2477,632 8669,441 9712,542 5,21 14,07 3,30 00:00:01 

 

Table A.93: Detailed performance measures of branch and bound algorithm for 
problem set J20/F5/M/F 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 9906,9 24135,9 33831,9 4,76 18,74 3,37 00:00:07
Max 34333 110906 116849 10,86 44,32 10,82 00:00:24
Min 12 124 680 0,16 8,37 0,09 00:00:00
St.Dev. 12486,8 34252,35 43222,75 3,35 10,19 3,42 00:00:09
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 19804,3 54762,9 72745,6 4,76 21,99 3,54 00:00:12
Max 69733 288569 305942 10,86 36,05 10,82 00:00:47
Min 14 254 1641 0,16 10,54 0,09 00:00:00
St.Dev. 26668,93 90096,35 98123,63 3,35 7,87 3,37 00:00:16 
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Table A.94: Detailed performance measures of branch and bound algorithm for 
problem set J20/F3/M/A 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 554,7 1219,3 1567 8,09 34,20 3,10 00:00:00
Max 3801 8179 8956 24,89 47,31 10,36 00:00:01
Min 0 0 165 0,00 19,92 0,00 00:00:00
St.Dev. 1190,002 2474,293 2652,608 8,09 8,61 3,63 00:00:00
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 524,3 694,9 2126,2 8,09 34,34 4,25 00:00:00
Max 2461 2554 8986 24,89 46,03 10,93 00:00:01
Min 0 0 285 0,00 25,79 0,00 00:00:00
St.Dev. 851,4576 842,2699 2678,786 8,09 6,80 4,31 00:00:00 
 

Table A.95: Detailed performance measures of branch and bound algorithm for 
problem set J20/F4/M/A 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 47,2 1228,6 3687,8 10,24 25,63 2,12 00:00:01
Max 222 8797 26987 30,28 45,26 9,66 00:00:06
Min 0 0 91 0,00 12,53 0,00 00:00:00
St.Dev. 70,78732 2715,315 8267,034 9,08 10,30 3,16 00:00:02
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 70,1 3506,9 9121,5 10,24 31,52 3,13 00:00:01
Max 454 18215 64531 30,28 44,85 8,88 00:00:10
Min 0 0 268 0,00 22,21 0,00 00:00:00
St.Dev. 138,1396 6024,983 19770,29 9,08 8,76 2,86 00:00:03 

 

Table A.96: Detailed performance measures of branch and bound algorithm for 
problem set J20/F5/M/A 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 73,2 263,6 903,2 7,10 28,10 3,65 00:00:00
Max 293 807 3089 39,03 49,85 20,41 00:00:00
Min 0 0 40 0,00 11,15 0,00 00:00:00
St.Dev. 106,0113 253,3562 981,6075 11,84 13,15 6,11 00:00:00
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 648 1327 3602,7 7,10 40,34 2,20 00:00:00
Max 3752 5078 9950 39,03 62,86 5,84 00:00:01
Min 0 0 312 0,00 21,45 0,00 00:00:00
St.Dev. 1175,932 1647,314 3550,116 11,84 14,01 1,96 00:00:00 
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Table A.97: Detailed performance measures of branch and bound algorithm for 
problem set J20/F3/M/L 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 22,7 458 933 8,97 27,69 3,67 00:00:00
Max 46 2928 4984 19,55 40,30 15,99 00:00:00
Min 0 0 268 0,00 17,67 0,00 00:00:00
St.Dev. 11,06596 897,5396 1441,726 7,51 8,33 4,87 00:00:00
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 52,9 1075,9 1534 8,97 26,11 3,73 00:00:00
Max 187 6621 7129 19,55 33,20 15,89 00:00:00
Min 0 0 432 0,00 17,09 0,00 00:00:00
St.Dev. 53,41754 2027,778 2047,738 7,51 5,40 5,12 00:00:00 
 

Table A.98: Detailed performance measures of branch and bound algorithm for 
problem set J20/F4/M/L 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 30,5 54,4 1259,6 5,04 30,62 0,59 00:00:00
Max 132 225 4790 13,65 45,20 1,93 00:00:01
Min 0 0 186 0,00 11,74 0,00 00:00:00
St.Dev. 37,13414 74,80077 1515,728 5,39 10,93 0,81 00:00:00
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 232,5 588,5 2883,1 5,04 29,61 2,33 00:00:00
Max 1485 2098 10692 13,65 39,15 11,79 00:00:01
Min 0 0 245 0,00 13,88 0,00 00:00:00
St.Dev. 453,6037 809,0125 3353,276 5,39 8,07 3,85 00:00:00 

 

Table A.99: Detailed performance measures of branch and bound algorithm for 
problem set J20/F5/M/L 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 67,7 376,5 11143,5 6,22 34,43 3,61 00:00:01
Max 364 2104 90295 17,23 49,35 12,94 00:00:11
Min 0 0 98 0,00 21,89 0,00 00:00:00
St.Dev. 113,2922 647,9393 28113,98 6,71 9,73 4,37 00:00:04
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 6989,1 7614,2 30355,1 6,22 33,98 2,91 00:00:01
Max 68072 71852 267460 17,23 42,24 11,29 00:00:12
Min 0 0 347 0,00 25,23 0,00 00:00:00
St.Dev. 21464,96 22577,53 83588,48 6,71 6,22 3,58 00:00:04 
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Table A.100: Detailed performance measures of branch and bound algorithm 
for problem set J16/F6/S/F 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 11,8 85,4 107 6,34 29,70 2,25 00:00:00
Max 36 539 576 19,17 49,87 8,38 00:00:00
Min 0 0 10 0,00 15,00 0,00 00:00:00
St.Dev. 12,43472 164,1505 169,684 7,35 9,29 2,93 00:00:00
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 135,8 578,7 839,4 6,34 50,40 4,95 00:00:00
Max 809 1927 2283 19,17 56,01 17,27 00:00:00
Min 0 0 200 0,00 42,43 0,00 00:00:00
St.Dev. 271,3349 686,7259 727,5432 7,35 5,02 6,61 00:00:00 
 

Table A.101: Detailed performance measures of branch and bound algorithm 
for problem set J16/F8/S/F 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 14,9 44,3 59,8 6,73 21,07 2,63 00:00:00
Max 21 230 236 16,88 35,14 14,34 00:00:00
Min 12 12 17 0,94 3,79 0,00 00:00:00
St.Dev. 3,142893 66,77832 68,84088 5,03 10,53 4,45 00:00:00
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 498 993,4 1845,7 6,73 51,99 3,99 00:00:00
Max 1052 2880 4964 16,88 64,78 16,51 00:00:00
Min 19 159 428 0,94 42,40 0,00 00:00:00
St.Dev. 393,4938 863,1461 1505,734 5,03 7,18 4,79 00:00:00 

 

Table A.102: Detailed performance measures of branch and bound algorithm 
for problem set J16/F10/S/F 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 9,5 31,9 42,5 6,06 14,81 1,41 00:00:00
Max 18 143 148 18,21 23,83 6,24 00:00:00
Min 0 0 5 0,00 10,55 0,00 00:00:00
St.Dev. 8,289887 43,36781 43,01486 7,68 4,65 2,44 00:00:00
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 3032,7 16290,3 20327,1 6,06 60,34 5,23 00:00:01
Max 17287 65460 78400 18,21 67,90 16,99 00:00:03
Min 0 0 1342 0,00 51,85 0,00 00:00:00
St.Dev. 5361,153 24050,14 26368,53 7,68 4,58 6,56 00:00:01 
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Table A.103: Detailed performance measures of branch and bound algorithm 
for problem set J16/F6/S/A 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 16,7 55,5 501,1 6,02 32,65 1,26 00:00:00
Max 35 179 3866 16,20 45,35 5,12 00:00:00
Min 0 0 40 0,00 17,55 0,00 00:00:00
St.Dev. 8,641631 59,85028 1185,604 4,55 8,81 1,70 00:00:00
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 2175,4 2729,3 4365,7 6,02 42,67 5,26 00:00:00
Max 19335 19335 30569 16,20 53,25 14,92 00:00:01
Min 0 0 357 0,00 29,33 0,00 00:00:00
St.Dev. 6035,689 5907,946 9293,792 4,55 6,99 4,30 00:00:00 
 

Table A.104: Detailed performance measures of branch and bound algorithm 
for problem set J16/F8/S/A 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 19,1 60 150,4 8,57 33,00 2,17 00:00:00
Max 55 177 261 21,36 48,57 8,51 00:00:00
Min 0 0 54 0,00 18,78 0,00 00:00:00
St.Dev. 13,7554 53,59104 77,10195 6,77 9,03 2,83 00:00:00
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 1069,8 3700,7 7012,5 8,57 49,94 7,02 00:00:00
Max 5103 15095 20454 21,36 59,20 13,33 00:00:01
Min 0 0 1835 0,00 35,73 0,00 00:00:00
St.Dev. 1554,679 5124,106 6503,508 6,77 7,87 5,05 00:00:00 

 

Table A.105: Detailed performance measures of branch and bound algorithm 
for problem set J16/F10/S/A 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 18 116,4 174,1 9,64 30,35 3,13 00:00:00
Max 26 435 482 21,24 47,85 7,48 00:00:00
Min 14 17 24 2,80 0,00 0,00 00:00:00
St.Dev. 3,126944 143,0044 159,6966 4,90 14,03 2,42 00:00:00
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 940,6 5992,1 12160,3 9,64 48,65 8,02 00:00:00
Max 4386 19646 31040 21,24 59,78 16,65 00:00:01
Min 17 260 561 2,80 29,93 1,83 00:00:00
St.Dev. 1528,809 6133,96 10026,96 4,90 8,74 3,93 00:00:00 
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Table A.106: Detailed performance measures of branch and bound algorithm 
for problem set J16/F6/S/L 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 17,2 60,2 164,4 5,89 24,22 1,28 00:00:00
Max 31 182 357 16,32 39,09 5,62 00:00:01
Min 0 0 28 0,00 17,89 0,00 00:00:00
St.Dev. 9,874771 62,33565 100,8477 5,51 6,63 1,81 00:00:00
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 130,1 738,2 1090,5 5,89 29,23 4,59 00:00:00
Max 643 4028 4676 16,32 44,78 11,83 00:00:00
Min 0 0 45 0,00 17,43 0,00 00:00:00
St.Dev. 202,042 1232,15 1377,738 5,51 9,05 4,09 00:00:00 
 

Table A.107: Detailed performance measures of branch and bound algorithm 
for problem set J16/F8/S/L 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 38,8 163 811,4 6,26 26,70 2,02 00:00:00
Max 183 714 3042 18,28 39,30 9,02 00:00:00
Min 19 19 82 0,59 4,50 0,00 00:00:00
St.Dev. 50,93962 233,9611 930,7469 4,91 10,45 2,93 00:00:00
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 824,1 2146,5 5835,6 6,26 37,57 4,38 00:00:00
Max 3054 6263 17878 18,28 46,76 14,32 00:00:01
Min 22 35 307 0,59 20,79 0,00 00:00:00
St.Dev. 1077,05 2079,973 6401,178 4,91 8,80 4,16 00:00:00 

 

Table A.108: Detailed performance measures of branch and bound algorithm 
for problem set J16/F10/S/L 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 23,3 295,4 2662,8 9,01 20,59 0,93 00:00:00
Max 35 1827 21498 22,47 24,54 3,08 00:00:03
Min 18 18 41 0,16 15,19 0,00 00:00:00
St.Dev. 6,092801 552,8456 6676,908 7,31 3,26 1,01 00:00:01
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 2820 17671 23713,9 9,01 33,30 5,59 00:00:01
Max 21207 121205 143651 22,47 48,76 14,86 00:00:07
Min 20 61 94 0,16 22,98 0,00 00:00:00
St.Dev. 6611,329 39436,08 48573,68 7,31 7,71 4,85 00:00:02 
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Table A.109: Detailed performance measures of branch and bound algorithm 
for problem set J16/F6/B/F 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 175275,8 651459,1 1187636 1,51 12,99 1,31 00:02:57
Max 647334 1988212 2000000 3,62 16,87 3,28 00:05:23
Min 0 0 20147 0,00 8,89 0,00 00:00:05
St.Dev. 249837,8 733069,1 900888,1 1,33 3,03 1,22 00:02:00
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 224432,4 660644,8 1440952 1,45 16,03 1,25 00:01:57
Max 806584 1909851 2000000 3,62 19,96 2,70 00:03:07
Min 0 0 45254 0,00 11,30 0,00 00:00:07
St.Dev. 296904,4 624016,1 797568,8 1,25 2,87 1,12 00:01:00 
 

Table A.110: Detailed performance measures of branch and bound algorithm 
for problem set J16/F8/B/F 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 90252,5 289716,3 1429939 1,11 11,98 0,96 00:04:01
Max 838537 1781665 2000000 3,24 17,27 3,17 00:08:22
Min 0 0 58937 0,00 7,36 0,00 00:00:10
St.Dev. 263605,1 598702,2 789391,6 1,46 2,94 1,26 00:02:29
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 239492,8 452084,8 1750469 0,97 19,74 0,81 00:01:55
Max 1800731 1940594 2000000 3,24 26,40 3,17 00:02:38
Min 0 0 280088 0,00 11,75 0,00 00:00:21
St.Dev. 569744,3 724659 571225 1,44 3,88 1,22 00:00:39 

 

Table A.111: Detailed performance measures of branch and bound algorithm 
for problem set J16/F10/B/F 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 2782,3 73107,9 1508816 0,12 10,13 0,11 00:04:05
Max 21738 638239 2000000 0,78 22,57 0,77 00:08:39
Min 0 0 127805 0,00 5,13 0,00 00:00:15
St.Dev. 6929,454 200699 801198,4 0,26 4,97 0,25 00:02:32
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 103647 117744,7 2000000 0,04 18,33 0,03 00:02:08
Max 1036470 1177447 2000000 0,37 30,31 0,34 00:03:15
Min 0 0 2000000 0,00 12,64 0,00 00:01:34
St.Dev. 327760,6 372341,4 0 0,12 5,50 0,11 00:00:32 
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Table A.112: Detailed performance measures of branch and bound algorithm 
for problem set J16/F6/B/A 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 25602,1 111426,2 527036,3 5,51 22,58 2,75 00:01:34
Max 101303 553068 2000000 15,02 32,91 12,11 00:06:45
Min 0 0 352 0,00 11,83 0,00 00:00:00
St.Dev. 38856,32 171969,3 833100,5 5,83 6,60 3,67 00:02:37
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 39707,1 169680,8 608091,1 5,51 31,66 4,10 00:00:57
Max 154185 531601 2000000 15,02 50,99 12,35 00:03:57
Min 0 0 4019 0,00 16,46 0,00 00:00:00
St.Dev. 53765,86 189405,9 845253,1 5,83 11,00 4,56 00:01:24 
 

Table A.113: Detailed performance measures of branch and bound algorithm 
for problem set J16/F8/B/A 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 18173 46407,4 88752,2 3,92 19,96 1,79 00:00:16
Max 106414 176720 276887 16,70 35,40 5,88 00:00:53
Min 0 0 985 0,00 7,81 0,00 00:00:00
St.Dev. 34580,26 72282,76 102690,8 5,53 8,80 2,25 00:00:19
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 99764,2 167657,4 327662,3 3,92 32,53 1,98 00:00:26
Max 537516 538732 808908 16,70 54,55 7,76 00:01:07
Min 0 0 4387 0,00 18,80 0,00 00:00:00
St.Dev. 173378,9 213100,8 299959,8 5,53 10,82 2,67 00:00:25 

 

Table A.114: Detailed performance measures of branch and bound algorithm 
for problem set J16/F10/B/A 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 39302,3 70219,6 176912,5 0,66 17,63 0,25 00:00:34
Max 372211 460560 754473 2,73 38,76 1,69 00:02:14
Min 0 0 639 0,00 5,48 0,00 00:00:00
St.Dev. 117046,1 152110,7 274901 0,98 12,09 0,53 00:00:52
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 155017,1 360035,5 796440,7 0,66 39,01 0,38 00:00:51
Max 1259298 1937280 2000000 2,73 73,60 1,69 00:02:22
Min 0 0 8205 0,00 23,37 0,00 00:00:00
St.Dev. 392913,5 719476,2 912746,4 0,98 15,52 0,57 00:00:58 
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Table A.115: Detailed performance measures of branch and bound algorithm 
for problem set J16/F6/B/L 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 290 339,2 7246,4 1,06 29,84 0,56 00:00:01
Max 1649 1649 30532 9,07 40,33 5,55 00:00:05
Min 0 0 375 0,00 17,83 0,00 00:00:00
St.Dev. 516,8791 550,3185 10815,23 2,82 8,92 1,76 00:00:02
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 531,3 840,2 25272,8 1,06 37,10 0,76 00:00:01
Max 2428 2980 146941 9,07 46,15 7,42 00:00:08
Min 0 0 764 0,00 28,22 0,00 00:00:00
St.Dev. 880,5703 1145,786 45503,04 2,82 6,30 2,34 00:00:02 
 

Table A.116: Detailed performance measures of branch and bound algorithm 
for problem set J16/F8/B/L 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 6203,9 8691,6 13100,1 0,36 26,15 0,33 00:00:02
Max 61924 86725 120288 1,75 37,48 1,67 00:00:15
Min 0 0 49 0,00 17,43 0,00 00:00:00
St.Dev. 19578,07 27418,19 37709,87 0,71 6,21 0,69 00:00:05
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 8273,2 11216,2 22671,3 0,36 35,55 0,33 00:00:01
Max 82434 111428 169207 1,75 51,28 1,67 00:00:11
Min 0 0 257 0,00 24,65 0,00 00:00:00
St.Dev. 26057,58 35211,52 52545,71 0,71 8,45 0,69 00:00:04 

 

Table A.117: Detailed performance measures of branch and bound algorithm 
for problem set J16/F10/B/L 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 31,7 31,7 4929,3 0,73 21,84 0,00 00:00:01
Max 299 299 19958 7,14 33,36 0,00 00:00:03
Min 0 0 59 0,00 11,05 0,00 00:00:00
St.Dev. 94,08985 94,08985 7026,775 2,25 7,38 0,00 00:00:01
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 588,6 920,7 50659,7 0,73 41,08 0,62 00:00:03
Max 5275 5275 296434 7,14 57,42 6,20 00:00:17
Min 0 0 259 0,00 24,71 0,00 00:00:00
St.Dev. 1657,791 1966,649 93248,84 2,25 9,91 1,96 00:00:05 
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Table A.118: Detailed performance measures of branch and bound algorithm 
for problem set J16/F6/M/F 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 221,7 261,4 762,3 2,09 13,16 1,16 00:00:00
Max 1229 1324 1740 6,13 26,02 5,22 00:00:00
Min 0 0 18 0,00 6,56 0,00 00:00:00
St.Dev. 408,4472 423,5585 701,7605 2,35 6,53 1,76 00:00:00
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 512,4 647,3 1848,2 2,09 24,58 1,22 00:00:00
Max 2437 2437 4718 6,13 39,24 5,22 00:00:00
Min 0 0 52 0,00 6,33 0,00 00:00:00
St.Dev. 936,2998 918,9449 1596,988 2,35 11,44 1,80 00:00:00 
 

Table A.119: Detailed performance measures of branch and bound algorithm 
for problem set J16/F8/M/F 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 819,7 1066,4 1503,8 6,63 17,92 3,36 00:00:00
Max 4756 4784 6717 18,89 30,40 17,45 00:00:02
Min 0 0 49 0,00 6,87 0,00 00:00:00
St.Dev. 1715,593 1751,49 2418,804 6,19 8,28 5,23 00:00:01
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 10500,2 11989,8 19706,5 6,63 39,86 4,87 00:00:01
Max 63251 63301 89549 18,89 55,32 18,34 00:00:07
Min 0 0 500 0,00 25,37 0,00 00:00:00
St.Dev. 22487,99 22124,98 33054,08 6,19 11,16 5,66 00:00:02 

 

Table A.120: Detailed performance measures of branch and bound algorithm 
for problem set J16/F10/M/F 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 132 990,1 4611,2 5,23 10,42 1,45 00:00:01
Max 573 5884 35096 13,39 16,41 6,17 00:00:09
Min 0 0 13 0,00 1,33 0,00 00:00:00
St.Dev. 216,2493 1864,266 10833,3 5,53 4,62 1,98 00:00:03
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 2487,1 31282,7 69820,9 5,23 32,98 3,45 00:00:04
Max 17847 185178 263592 13,39 55,03 11,75 00:00:17
Min 0 0 513 0,00 12,11 0,00 00:00:00
St.Dev. 5540,811 58244,87 99936,08 5,53 12,74 3,99 00:00:06 
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Table A.121: Detailed performance measures of branch and bound algorithm 
for problem set J16/F6/M/A 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 63,4 124,6 413,3 8,22 25,74 1,75 00:00:00
Max 379 502 1171 22,78 40,39 11,75 00:00:00
Min 0 0 46 0,00 12,37 0,00 00:00:00
St.Dev. 119,684 161,8142 430,2403 8,56 8,71 3,59 00:00:00
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 261,5 655,8 2178,3 8,22 34,07 3,85 00:00:00
Max 1704 2153 6179 22,78 41,69 17,94 00:00:01
Min 0 0 375 0,00 18,42 0,00 00:00:00
St.Dev. 546,0574 808,0484 1993,114 8,56 6,83 5,95 00:00:00 
 

Table A.122: Detailed performance measures of branch and bound algorithm 
for problem set J16/F8/M/A 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 21,7 334,1 490,6 6,49 29,06 2,80 00:00:00
Max 50 2816 3405 22,63 53,95 14,60 00:00:01
Min 0 0 40 0,00 13,09 0,00 00:00:00
St.Dev. 12,84134 873,1309 1033,596 7,52 12,06 4,34 00:00:00
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 596,9 1886,7 3615,5 6,49 45,27 2,73 00:00:00
Max 3064 12115 19219 22,63 64,80 12,48 00:00:01
Min 0 0 187 0,00 27,77 0,00 00:00:00
St.Dev. 1038,501 3793,598 5745,607 7,52 10,93 4,24 00:00:00 

 

Table A.123: Detailed performance measures of branch and bound algorithm 
for problem set J16/F10/M/A 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 35,9 134,3 323 4,27 23,62 1,01 00:00:00
Max 186 426 1081 16,80 34,10 2,11 00:00:00
Min 0 0 21 0,00 7,04 0,00 00:00:00
St.Dev. 54,36185 147,2353 340,1621 5,63 8,51 0,86 00:00:00
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 2154,4 3327,5 9231,2 4,27 46,08 2,53 00:00:00
Max 20137 22264 37962 16,80 52,95 13,31 00:00:02
Min 0 0 1843 0,00 39,90 0,00 00:00:00
St.Dev. 6321,801 6890,339 11467,65 5,63 5,45 4,60 00:00:01 
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Table A.124: Detailed performance measures of branch and bound algorithm 
for problem set J16/F6/M/L 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 21,9 48,6 101,1 15,79 19,75 1,88 00:00:00
Max 35 186 265 39,22 33,47 11,07 00:00:01
Min 17 17 30 0,08 9,99 0,00 00:00:00
St.Dev. 5,466057 52,55938 85,58615 15,05 7,35 3,66 00:00:00
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 26,8 285,3 441,9 15,79 25,24 7,43 00:00:00
Max 59 1456 1703 39,22 35,39 23,58 00:00:00
Min 18 19 88 0,08 16,71 0,00 00:00:00
St.Dev. 13,7905 439,5617 475,476 15,05 6,05 8,20 00:00:00 
 

Table A.125: Detailed performance measures of branch and bound algorithm 
for problem set J16/F8/M/L 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 77,4 223,9 799 5,64 25,20 2,77 00:00:00
Max 595 596 2615 18,53 39,32 17,41 00:00:00
Min 0 0 103 0,00 11,09 0,00 00:00:00
St.Dev. 182,3234 248,1113 743,9131 7,10 8,66 5,32 00:00:00
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 395,1 1283,4 3135,4 5,64 36,13 3,10 00:00:00
Max 2396 4211 8743 18,53 45,27 17,23 00:00:00
Min 0 0 370 0,00 26,40 0,00 00:00:00
St.Dev. 730,7533 1653,669 2728,022 7,10 5,31 5,32 00:00:00 

 

Table A.126: Detailed performance measures of branch and bound algorithm 
for problem set J16/F10/M/L 
FDLB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 35,2 44,1 182,6 3,64 17,82 1,43 00:00:00
Max 122 175 687 11,51 29,45 8,97 00:00:00
Min 0 0 34 0,00 6,64 0,00 00:00:00
St.Dev. 38,53656 51,74607 203,8759 4,20 8,27 2,80 00:00:00
FILB 
  NodeofF.S. NodeofInc. TotalNode UB-Opt. LB-Opt. F.S.Opt. Elap.time
Average 992,1 1152,2 3602,2 3,64 26,30 2,13 00:00:00
Max 9404 9404 19950 11,51 40,91 10,75 00:00:01
Min 0 0 167 0,00 12,77 0,00 00:00:00
St.Dev. 2956,343 2925,151 6592,124 4,20 9,63 3,33 00:00:00 
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APPENDIX B 
 

 

NUMBER OF PROBLEMS TERMINATED AT THE NODE 

LIMIT 

 

 

Table B 1 shows the number of the problems terminated at node limit, which is 

2000000 nodes, before completion. 
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b. jobnumber = 33 

set # Fam.Dep. Fam.Ind. set # Fam.Dep. Fam.Ind. set # Fam.Dep. Fam.Ind. 
19 0 0 28 0 0 37 0 0 
20 0 0 29 0 0 38 0 0 
21 0 0 30 10 10 39 1 2 
22 0 0 31 0 0 40 0 0 
23 0 0 32 0 0 41 0 0 
24 0 1 33 5 5 42 0 0 
25 0 0 34 0 0 43 0 0 
26 0 0 35 0 0 44 0 0 
27 0 0 36 6 5 45 1 1  

 
 
 
 

c. jobnumber = 25 

set # Fam.Dep. Fam.Ind. set # Fam.Dep. Fam.Ind. set # Fam.Dep. Fam.Ind. 
46 0 0 55 0 0 64 0 0 
47 0 0 56 1 0 65 0 0 
48 0 0 57 6 8 66 0 0 
49 0 0 58 0 0 67 0 0 
50 0 0 59 1 0 68 0 0 
51 0 0 60 2 3 69 0 0 
52 0 0 61 0 0 70 0 0 
53 0 0 62 0 0 71 0 0 
54 0 0 63 0 0 72 0 0  

Table B.1: Number of problems exceed node limit in problem sets 

a. job number = 50 

set # Fam.Dep. Fam.Ind. set # Fam.Dep. Fam.Ind. set # Fam.Dep. Fam.Ind. 
1 0 0 7 10 10 13 0 0 
2 0 0 8 0 0 14 0 0 
3 3 5 9 7 7 15 5 6 
4 0 0 10 0 0 16 0 0 
5 1 2 11 9 9 17 6 6 
6 0 0 12 0 0 18 0 0 



 122

 
 
 
 
 
 
 
 

d. jobnumber = 20 (Table B1 cont.) 

set # Fam.Dep. Fam.Ind. set # Fam.Dep. Fam.Ind. set # Fam.Dep. Fam.Ind. 
73 0 0 82 0 0 91 0 0 
74 0 0 83 2 2 92 0 0 
75 0 0 84 7 8 93 0 0 
75 0 0 85 0 0 94 0 0 
77 0 0 86 2 2 95 0 0 
78 0 0 87 2 2 96 0 0 
79 0 0 88 0 0 97 0 0 
80 0 0 89 0 0 98 0 0 
81 0 0 90 0 1 99 0 0  

 
 
 
 

e. jobnumber = 16 

set # Fam.Dep. Fam.Ind. set # Fam.Dep. Fam.Ind. set # Fam.Dep. Fam.Ind. 
100 0 0 109 5 6 118 0 0 
101 0 0 110 5 8 119 0 0 
102 0 0 111 7 10 120 0 0 
103 0 0 112 2 2 121 0 0 
104 0 0 113 0 0 122 0 0 
105 0 0 114 0 3 123 0 0 
106 0 0 115 0 0 124 0 0 
107 0 0 116 0 0 125 0 0 
108 0 0 117 0 0 126 0 0  
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APPENDIX C 
 

 

PERFORMANCE OF THE UPPER BOUND PROCEDURE 

 

 

Table C 1 shows the number of the problems, at which the upper bound value is 

equal to the optimal solution. 
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Table C.1: Number of problems, at which the optimal solution is equal to the 

upper bound value, in a set. 

a. job number = 50 

set # ub=opt set # ub=opt set # ub=opt
1 1 7 0 13 0 
2 0 8 1 14 1 
3 0 9 0 15 0 
4 0 10 1 16 1 
5 0 11 0 17 0 
6 0 12 0 18 0  

 
 
 
 

b. job number = 33 

set # ub=opt set # ub=opt set # ub=opt
19 1 28 2 37 1 
20 1 29 0 38 0 
21 0 30 0 39 0 
22 2 31 2 40 1 
23 1 32 0 41 0 
24 0 33 0 42 1 
25 3 34 0 43 0 
26 2 35 0 44 1 
27 1 36 0 45 1  

 
 
 
 

c. job number = 25 

set # ub=opt set # ub=opt set # ub=opt
46 1 55 0 64 0 
47 3 56 0 65 0 
48 1 57 0 66 0 
49 0 58 0 67 0 
50 0 59 0 68 1 
51 0 60 0 69 1 
52 2 61 1 70 0 
53 2 62 1 71 1 
54 0 63 2 72 4  
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d. job number = 20 (Table C1 cont.) 

set # ub=opt set # ub=opt set # ub=opt
73 0 82 0 91 1 
74 1 83 0 92 0 
75 1 84 0 93 0 
75 2 85 0 94 1 
77 1 86 1 95 1 
78 1 87 0 96 2 
79 1 88 2 97 1 
80 0 89 4 98 2 
81 1 90 4 99 2  

 
 
 
 

e. job number = 16 

set # ub=opt set # ub=opt set # ub=opt
100 4 109 1 118 3 
101 0 110 0 119 2 
102 4 111 0 120 3 
103 1 112 1 121 2 
104 1 113 4 122 1 
105 0 114 5 123 2 
106 2 115 5 124 0 
107 0 116 7 125 2 
108 0 117 8 126 2  
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APPENDIX D 
 

 

PSEUDO CODE OF UPPER BOUND HEURISTIC 

 

 

1. Set the standard interval, which is equal to the processing time of a batch. 

(The first interval will be [R1, R1+p) i.e. IntervalStart = R1, IntervalEnd = 

R1+p; at any finish time ,t, of a batch, if there exist available job(s) waiting 

to be processed, the interval will be [t, t+p); finally at any finish time of a 

batch ,t, if there exists no available jobs and next release of any job is at t+n, 

then the interval will be [t+n, t+n+p).) 

 

2. FOR every family f 

Determine all available jobs from family f and their respective volumes; 

 

3. FOR every family f 

Sum all available jobs from family f, ∑
=

),(

0

ifm

x
xi

f
r

V  

IF ∑
=

),(

0

ifm

x
xi

f
r

V < reactor capacity THEN 

Take all available jobs of family f into the batch, then calculate the capacity 

utilization of family f =
p

V
ifm

x
xi

f
r

∑
=

),(

0 . 

Starting from the job mr(f,i) to m*(f,i) check 

If Vf
xi ≤ remaining batch capacity and  
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i
f

xi
f

ifm

x
xi

f
xi

f

RpR

VV
r

0

),(

0

−+

+ ∑
= ≥

p

V
ifm

x
xi

f
r

∑
=

),(

0  then take the job into the batch; decrease the 

remaining capacity; check the next job. 

IF ∑
=

),(

0

ifm

x
xi

f
r

V ≥ reactor capacity THEN 

Select the jobs among family f using the bin packing algorithm, establish a 

batch. 

 

4. Select the family f with f = argmax {Vf} where Vf is the volume of the batch 

of family f per unit time. 

Look for the last job,x, selected from family f , 

BatchStart = max {Rf
xi,IntervalStart}, BatchFinish = BatchStart+p 

 

5. Calculate total weighted flow time of jobs throughout the interval; 

∑ ∑
= =

f

z

izm

x1

),*(

0
 Vz

xi* (Rz
0i + p – Rz

xi) 

If jobs are finished, Stop, sum all weighted flow times calculated throughout 

the intervals, UB is found; 

Else Goto Step 1. 
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APPENDIX E 
 

 

PSEUDO CODE OF FAMILY INDEPENDENT LOWER 

BOUND PROCEDURE 

 

 

1.  Determine the flow time charged up to the time t; 

FOR every family f 

2. Determine the sum of available jobs, ∑
=

),(

0

ifm

x

r

Vf
x1, from family f; 

IF there is no available jobs from family f, ∑
=

),(

0

ifm

x

r

Vf
x1= 0, THEN 

Label the lower bound of the family f as “do not branch” (i.e. LB[j,f] = BIG), 

f= f+1, GOTO 2; 

IF there is no available jobs, ∑ ∑
= =

f

z

izm

x

r

1

),(

0
 Vz

x1 = 0, THEN 

 IF the time of the node < Release time of the last job, i.e. for ∃z that 

tnode<Rz
m*(z,i)i* , THEN 

 Go forward until the next arrival of a job 

 ELSE  

 End of the Lower bound procedure, Exit the Procedure. 

3a. IF ∑
=

),(

0

ifm

x

r

Vf
x1 > reactor capacity THEN 

Determine the interval with length p   (i.e. Interval Start = node time , 

Interval End = Interval Start + p); 
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Find the total weighted flowtime of jobs in the interval (Total weighted 

flowtime in the interval = ∑ ∑
= =

f

z

izm

x1

),(

0

*

 Vz
x1* (Rz

01 + p – Rz
x1); 

Determine the volume of jobs that will be available in the next interval 

(Available in the next Interval = ∑ ∑
= =

f

z

izm

x1

),*(

0
 Vz

x1 + ∑ ∑
= =

f

z

izm

x

r

1

),(

1
 Vz

x2 – reactor 

capacity), 

 

3b. IF ∑
=

),(

0

ifm

x

r

Vf
x1<= reactor capacity AND ∑

=

),(

0

ifm

x

r

Vf
x1>0 THEN 

Determine the interval with length p   (i.e. Interval Start = node time , 

Interval End = Interval Start + p); 

Find the total weighted flowtime of jobs in the interval (Total weighted 

flowtime in the interval = ∑ ∑
= =

f

z

izm

x

r

1

),(

1
 Vz

x1* (Rf
01 + p - Rf

x1); 

Determine the volume of jobs that will be available in the next interval 

(Available in the next Interval = ∑ ∑
= =

f

z

izm

x1

),*(

0
 Vz

x1 + ∑ ∑
= =

f

z

izm

x

r

1

),(

1
 Vz

x2 – ∑
=

),(

0

ifm

x

r

Vf
x1), 

 

4.  Determine the interval i with length p (IF Available in the Next Interval ≥ 0 

and t < Relaese of last Job, Rz
m*(z)i* , THEN  

Interval Start = Previous Interval End, Interval End = Interval Start + p 

IF Available in the Next Interval = 0 and t > Relaese of last Job, , Rz
m*(z)i* , 

THEN  

Stop, LB[j,f] = Flowtime[j] + Total Flow of Jobs,); 

Find the Sum of all available jobs at the Interval Start (∑ ∑
= =

f

z

izm

x

r

1

),(

0
 Vz

xi = 

∑ ∑
= =

f

z

izm

x1

),*(

0
Vz

xi-1 + ∑ ∑
= =

f

z

izm

x

r

1

),(

1
 Vz

xi – reactor capacity ); 
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5. IF Sum of All Available Jobs, ∑ ∑
= =

f

z

izm

x

r

1

),(

0
 Vz

xi, =< reactor capacity THEN 

 Find the remaining capacity (The Remaining Capacity = reactor capacity – 

∑ ∑
= =

f

z

izm

x

r

1

),(

0
 Vz

xi); 

Determine the Next Job, x+1, its volume, Vz
x+1i, and its release time Rz

x+1i,  

5a. IF Vz
x+1i > Remaining capacity AND Rz

x+1i, < Interval End THEN 

Divide the job x+1 into two portion (Vz
x+1i – Remaining Capacity , 

Remaining Capacity); 

Take the “Remaining Capacity” portion into the batch (i.e. ∑ ∑
= =

f

z

izm

x

r

1

),(

0
 Vz

xi 

+ Remaining Capacity), which starts at interval start; 

Rename the “Volume of Next Job – Remaining Capacity” portion as job 

x+1; 

Calculate the total weighted flowtime of jobs in the Interval (Total 

Weighted Flowtime of Jobs in the Interval = ∑ ∑
= =

f

z

izm

x

r

1

),(

0
 Vz

xi + Remaining 

Capacity * p + ∑ ∑
= +=

f

z

izm

izmx r1

),(*

1),(

 Vz
xi (Rz

0i + p - Rz
xi ); 

Determine the remaining jobs that will be available in the next interval 

(Available in the next Interval = (∑ ∑
= =

f

z

izm

x

r

1

),(

0
 Vz

xi+1 = ∑ ∑
= =

f

z

izm

x1

),*(

0
 Vz

xi + 

∑ ∑
= =

f

z

izm

x

r

1

),(

1
 Vz

xi+1 – reactor capacity); 

5.b IF Vz
x+1i =< Remaining capacity AND Rz

x+1i, < Interval End THEN 

Take the job ,x+1, into the batch by changing the Release of the next job 

as Interval start (i.e. Rz
x+1i = Interval Start), GOTO 5. 

 

6. IF Sum of All Available Jobs, ∑ ∑
= =

f

z

izm

x

r

1

),(

0
 Vz

xi, > reactor capacity THEN 
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Find the total weighted flowtime  of jobs in the interval (Total weighted 

flowtime of jobs in the interval = ∑ ∑
= =

f

z

izm

x1

),(*

0
 Vz

xi* (Rz
0i + p – Rz

xi); 

Determine the volume of jobs that will be available in the next interval 

(Available in the next Interval = ∑ ∑
= =

f

z

izm

x1

),(*

0
 Vz

xi + ∑ ∑
= =

f

z

izm

x

r

1

),(

1
 Vz

xi+1 – reactor 

capacity), GOTO 4 

7. Find the Cumulative Delay of the job at node j (Cumulative Delay[j] = 

Cumulative Delay[j-1] + TNODE[j] – TNODE[j-1] ); 

8. FOR family number + 1 DO 

IF Cumulative Delay>p THEN 

Do not Branch (i.e. LB[j,f] = BIG for f= family number +1), Exit the lower 

bound Procedure.; 

IF Cumulative Delay<p THEN 

GOTO 6 

9. Determine the interval with length less than p 

(i.e. Interval Start = node time , Interval End = Next Event time); 

Find the total flow of jobs in the interval  

(Total weighted flowtime of jobs in the interval = ∑ ∑
= =

f

z

izm

x1

),(

0

*

 Vz
x1* (Rz

02– 

Rz
01); 

Determine the volume of remaining jobs that will be available in the next 

interval (Available in the next Interval = ∑ ∑
= =

f

z

izm

x1

),*(

0
 Vz

x1 + ∑ ∑
= =

f

z

izm

x

r

1

),(

1
 Vz

x2); 

10.  Determine the interval i with length p (IF Available in the Next Interval ≥ 0 

and t < Relaese of last Job, Rz
m*(z)i* , THEN  

Interval Start = Previous Interval End, Interval End = Interval Start + p 

IF Available in the Next Interval = 0 and t > Relaese of last Job, , Rz
m*(z)i* , 

THEN  

Stop, LB[j,f] = Flowtime[j] + Total Flow of Jobs,); 
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Find the Sum of all available jobs at the Interval Start (∑ ∑
= =

f

z

izm

x

r

1

),(

0
 Vz

xi = 

∑ ∑
= =

f

z

izm

x1

),*(

0
Vz

xi-1 + ∑ ∑
= =

f

z

izm

x

r

1

),(

1
 Vz

xi – reactor capacity ); 

11. IF Sum of All Available Jobs, ∑ ∑
= =

f

z

izm

x

r

1

),(

0
 Vz

xi, =< reactor capacity THEN 

 Find the remaining capacity (The Remaining Capacity = reactor capacity – 

∑ ∑
= =

f

z

izm

x

r

1

),(

0
 Vz

xi); 

Determine the Next Job, x+1, its volume, Vz
x+1i, and its release time Rz

x+1i,  

11a. IF Vz
x+1i > Remaining capacity AND Rz

x+1i, < Interval End THEN 

Divide the job x+1 into two portion (Vz
x+1i – Remaining Capacity , 

Remaining Capacity); 

Take the “Remaining Capacity” portion into the batch (i.e. ∑ ∑
= =

f

z

izm

x

r

1

),(

0
 Vz

xi 

+ Remaining Capacity), which starts at interval start; 

Rename the “Volume of Next Job – Remaining Capacity” portion as job 

x+1; 

Calculate the total weighted flowtime of jobs in the Interval (Total 

Weighted Flowtime of Jobs in the Interval = ∑ ∑
= =

f

z

izm

x

r

1

),(

0
 Vz

xi + Remaining 

Capacity * p + ∑ ∑
= +=

f

z

izm

izmx r1

),(*

1),(

 Vz
xi (Rz

0i + p - Rz
xi ); 

Determine the remaining jobs that will be available in the next interval 

(Available in the next Interval = (∑ ∑
= =

f

z

izm

x

r

1

),(

0
 Vz

xi+1 = ∑ ∑
= =

f

z

izm

x1

),*(

0
 Vz

xi + 

∑ ∑
= =

f

z

izm

x

r

1

),(

1
 Vz

xi+1 – reactor capacity); 

11b IF Vz
x+1i =< Remaining capacity AND Rz

x+1i, < Interval End THEN 
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Take the job ,x+1, into the batch by changing the Release of the next job 

as Interval start (i.e. Rz
x+1i = Interval Start), GOTO 11. 

 

12. IF Sum of All Available Jobs, ∑ ∑
= =

f

z

izm

x

r

1

),(

0
 Vz

xi, > reactor capacity THEN 

Find the total weighted flowtime  of jobs in the interval (Total weighted 

flowtime of jobs in the interval = ∑ ∑
= =

f

z

izm

x1

),(*

0
 Vz

xi* (Rz
0i + p – Rz

xi); 

Determine the volume of jobs that will be available in the next interval 

(Available in the next Interval = ∑ ∑
= =

f

z

izm

x1

),(*

0
 Vz

xi + ∑ ∑
= =

f

z

izm

x

r

1

),(

1
 Vz

xi+1 – reactor 

capacity), GOTO 10. 
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APPENDIX F 
 

 

PSEUDO CODE OF FAMILY DEPENDENT LOWER BOUND 

PROCEDURE 

 

 

1.) Determine the total weighted flowtime charged up to the time t; 

FOR every family f 

2.) Determine the sum of available jobs, ∑
=

),(

0

ifm

x

r

Vf
x1, for family f; 

IF there is no available jobs from family f, ∑
=

),(

0

ifm

x

r

Vf
x1= 0, THEN 

Label the lower bound of the family f as “do not branch” (i.e. LB[j,f] = BIG), 

f= f+1, GOTO 2; 

IF there is no available jobs, ∑ ∑
= =

f

z

izm

x

r

1

),(

0
 Vz

x1 = 0, THEN 

IF the time of the node < Release time of the last job, i.e. for ∃z that 

tnode<Rz
m*(z)i* , THEN 

Go forward until the next arrival of a job 

ELSE  

End of the Lower bound procedure, Exit the Procedure. 

3a.) IF ∑
=

),(

0

ifm

x

r

Vf
x1 > reactor capacity THEN 

Determine the interval with length p   (i.e. Interval Start = node time , 

Interval End = Interval Start + p); 

Find the total weighted flowtime of jobs from famil f in the interval  
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(Total weighted flowtime in the interval[f] = ∑
=

),(*

0

ifm

x
Vf

x1* (Rf
01 + p - Rf

x1); 

Determine the volume of jobs, that will be available in the next interval for 

family f. 

(Available jobs in the next interval[f]= ∑
=

)1,(*

0

fm

x
Vf

x1 + ∑
=

)2,(

1

fm

x

r

Vf
x2 – reactor 

capacity) 

3b.) IF ∑
=

),(

0

ifm

x

r

Vf
x1<= reactor capacity AND ∑

=

),(

0

ifm

x

r

Vf
x1>0 THEN 

Determine the interval with length p   (i.e. Interval Start = node time , 

Interval End = Interval Start + p); 

Determine the total flow of jobs from family f in the interval. 

(Flow in the interval[f] = ∑
=

),(*

0

ifm

x
Vf

x1* (Rf
01 + p - Rf

x1); 

Determine the volume of remaining jobs from family f, determine the 

volume of jobs, that will be available in the next interval for family f. 

(Available jobs in the next interval[f]= ∑
=

)1,(*

0

fm

x
Vf

x1 + ∑
=

)2,(

1

fm

x

r

Vf
x2 - ∑

=

)1,(

0

fm

x

r

Vf
x1) 

4.) FOR each family g ≠ f DO 

Determine the total weighted flowtime of jobs from family g in the interval. 

(Total weighted flowtime in the Interval[g]= ∑
=

),(*

0

igm

x
Vg

x1* (Rg
01 + p – Rg

x1); 

Determine the volume of jobs that will be available in the next interval for 

family g. 

(Available jobs in the next interval[g]= ∑
=

)1,(*

0

gm

x
Vg

x1 + ∑
=

)2,(

1

gm

x

r

Vg
x2; 

 

5.) Calculate the total flow of jobs in the interval 

(Total weighted flowtime of all Jobs = Total weighted flowtime of all Jobs + 

Total weighted flowtime in the Interval[f]) 
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6.) Determine the interval i with length p   (i.e. Interval Start = Interval End , 

Interval End = Interval Start + p  

7.) Determine the family f, with maximum volume of jobs available at interval 

start 

7a.) IF ∑
=

),(

0

ifm

x

r

Vf
xi ≥ reactor capacity THEN 

Determine the total weighted flowtime of jobs from family f in the interval. 

(Total weighted flowtime in the Interval[f]= ∑
=

),(*

0

ifm

x
Vf

xi* (Rf
0i + p - Rf

xi); 

Determine the total volume of jobs, that will be available in the next interval 

for family f. 

(Available jobs in the next interval[f]= ∑
=

),(*

0

ifm

x
Vf

xi + ∑
+

=

)1,(

1

ifm

x

r

Vf
xi+1 – reactor 

capacity); 

 

7b.) IF ∑
=

),(

0

ifm

x

r

Vf
xi < reactor capacity THEN 

Determine the total volume of jobs from family f that are available and will 

be released throughout the interval [t,t+p). 

Determine the total weighted flowtime of jobs from family f in the interval. 

(Total weighted flowtime in the Interval[f]= ∑
=

),(*

0

ifm

x
Vf

xi* (Rf
0i + p - Rf

xi); 

Find the effective weighted flowtime of family f in the interval. 

(IF Total Volume of jobs in the Interval[f] ≤ reactor capacity THEN 

Effective weighted flowtime [f] = Total weighted flowtime in the Interval[f] 

ELSE 

Effective weighted flowtime [f] = ∑
=

),(

0

ifm

x
Vf

xi*(Rf
0i + p - Rf

xi)+(reactor 

capacity - ∑
=

),(

0

ifm

x
Vf

xi)*(Rf
0i + p - Rf

m(f,i)+1i )) 
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Choose the family f with maximum effective weighted flowtime[f]. 

7bi.) IF ∑
=

),(*

0

ifm

x
Vf

xi > reactor capacity THEN 

Pull the jobs to the interval start until the total volume of jobs at the interval 

start = reactor capacity (i.e. ∑
=

),(

0

ifm

x

r

Vf
xi = ∑

=

),(

0

ifm

x
Vf

xi + (reactor capacity - 

∑
=

),(

0

ifm

x
Vf

xi)) 

Determine the total weighted flowtime of jobs from family f in the interval. 

(Total weighted flowtime in the Interval[f]= ∑
=

),(*

0

ifm

x
Vf

xi* (Rf
0i + p - Rf

xi)); 

Determine the total volume of jobs, that will be available in the next interval 

for family f. 

(Available jobs in the next interval[f]= ∑
=

),(*

0

ifm

x
Vf

xi + ∑
+

=

)1,(

1

ifm

x

r

Vf
xi+1 – reactor 

capacity); 

7bii.) IF ∑
=

),(*

0

ifm

x
Vf

xi ≤ reactor capacity THEN 

Pull the job(s) and/or job portion to the interval start until the total volume of 

jobs at the interval start = reactor capacity. (i.e. ∑
=

),(

0

ifm

x

r

Vf
xi = ∑

=

),(*

0

ifm

x
Vf

xi + min 

{ reactor capacity - ∑
=

),(*

0

ifm

x
Vf

xi; ∑ ∑
+= =

*

1

),(*

1

i

iy

yfm

x
 Vf

xy}) 

Determine the total weighted flowtime of jobs from family f in the interval. 

(Total weighted flowtime in the Interval[f]= ∑
=

),(

0

ifm

x

r

Vf
xi * processing time) 

Determine the volume of jobs, that will be available in the next interval for 

family f. 

(Available jobs in the next interval[f]= max {0 , Sum of available jobs [f] + 

Jobs Released at the Interval End[f] – reactor capacity}); 
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8.) FOR every family g ≠f 

Determine the total weighted flowtime of jobs from family g in the interval. 

(Total Weighted flowtime in the Interval[g]= ∑
=

),(*

0

igm

x
Vg

xi* (Rg
0i + p – Rg

xi)); 

Determine the volume of jobs that will be available in the next interval for 

family g. 

(Available jobs in the next interval[g]= ∑
=

),(*

0

igm

x
Vg

xi + ∑
+

=

)1,(

1

igm

x

r

Vg
xi); 

 

9.) Calculate the total weighted flowtime of all jobs in the interval 

(Total weighted flowtime of all Jobs = Total weighted flowtime of all Jobs + 

Total weighted flowtime in the Interval[f]) 

IF all jobs are finished THEN 

Calculate LB[j,f] , f = f+1 , GOTO 2. 

 

10.) Find the Cumulative delay of the job at node j; 

(Cumulative Delay[j]= Cumulative Delay[j-1] + TNODE[j] – TNODE[j-1] ); 

 

11.) FOR familynumber +1 

IF Cumulative delay + node time[j+1] - node time[j] ≥ processing time 

THEN 

Do not branch (i.e. LB [j,f] = BIG), exit the lower bound procedure 

IF Cumulative delay + node time[j+1] - node time[j] < processing time 

THEN 

GOTO 12. 

 

12.) Determine the interval with length < p   (i.e. Interval Start = node time , 

Interval End = Next Event time); 

13.) FOR every family f 

Determine the total weighted flowtime of jobs from family f in the interval. 
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(Total weighted flowtime in the Interval[f]= ∑
=

),(

0

ifm

x

r

Vf
x1 * (Rf

02 – Rf
01)) 

Determine the volume of jobs that will be available in the next interval for 

family f. 

(Available jobs in the next interval[f]= Sum of available jobs [f]+ Jobs 

Released at the Interval End[f]); 

 

14.) Calculate the total weighted flowtime of all jobs in the interval 

(Total weighted flowtime of all Jobs = Total weighted flowtime of all Jobs + 

Total weighted flowtime in the Interval[f]) 

 

15.) Determine the interval i with length p   (i.e. Interval Start = Interval End , 

Interval End = Interval Start + p  

16.) Determine the family f, with maximum volume of jobs available at 

interval start 

16a.) IF ∑
=

),(

0

ifm

x

r

Vf
xi ≥ reactor capacity THEN 

Determine the total weighted flowtime of jobs from family f in the interval. 

(Flow in the Interval[f]= ∑
=

),(*

0

ifm

x
Vf

xi* (Rf
0i + p - Rf

xi); 

Determine the total volume of jobs, that will be available in the next interval 

for family f. 

(Available jobs in the next interval[f]= ∑
=

),(*

0

ifm

x
Vf

xi + ∑
+

=

)1,(

1

ifm

x

r

Vf
xi+1 – reactor 

capacity); 

16b.) IF ∑
=

),(

0

ifm

x

r

Vf
xi < reactor capacity THEN 

Determine the total volume of jobs from family f that are available and will 

be released throughout the interval [t,t+p). 

Determine the total weighted flowtime of jobs from family f in the interval. 
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(Total weighted flowtime in the Interval[f]= ∑
=

),(*

0

ifm

x
Vf

xi* (Rf
0i + p - Rf

xi); 

Find the effective weighted flowtime of family f in the interval. 

(IF Total Volume of jobs in the Interval[f] ≤ reactor capacity THEN 

Effective weighted flowtime [f] = Total weighted flowtime in the Interval[f] 

ELSE 

Effective weighted flowtime [f] = ∑
=

),(

0

ifm

x
Vf

xi*(Rf
0i + p - Rf

xi)+(reactor 

capacity - ∑
=

),(

0

ifm

x
Vf

xi)*(Rf
0i + p - Rf

m(f,i)+1i )) 

Choose the family f with maximum Effective weighted flowtime [f]. 

16bi.) IF ∑
=

),(*

0

ifm

x
Vf

xi > reactor capacity THEN 

Pull the jobs to the interval start until the total volume of jobs at the interval 

start = reactor capacity (i.e. ∑
=

),(

0

ifm

x

r

Vf
xi = ∑

=

),(

0

ifm

x
Vf

xi + (reactor capacity - 

∑
=

),(

0

ifm

x
Vf

xi)) 

Determine the total weighted flowtime of jobs from family f in the interval. 

(Flow in the Interval[f]= ∑
=

),(*

0

ifm

x
Vf

xi* (Rf
0i + p - Rf

xi)); 

Determine the total volume of jobs, that will be available in the next interval 

for family f. 

(Available jobs in the next interval[f]= ∑
=

),(*

0

ifm

x
Vf

xi + ∑
+

=

)1,(

1

ifm

x

r

Vf
xi+1 – reactor 

capacity); 

 

16bii.) IF ∑
=

),(*

0

ifm

x
Vf

xi ≤ reactor capacity THEN 
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Pull the job(s) and/or job portion to the interval start until the total volume of 

jobs at the interval start = reactor capacity. (i.e. ∑
=

),(

0

ifm

x

r

Vf
xi = ∑

=

),(*

0

ifm

x
Vf

xi + min{ 

reactor capacity - ∑
=

),(*

0

ifm

x
Vf

xi; ∑ ∑
+= =

*

1

),(*

1

i

iy

yfm

x
 Vf

xy}) 

Determine the total weighted flowtime of jobs from family f in the interval. 

(Total weighted flowtime in the Interval[f]= ∑
=

),(

0

ifm

x

r

Vf
xi * processing time) 

Determine the volume of jobs, that will be available in the next interval for 

family f. 

(Available jobs in the next interval[f]= max {0 , Sum of available jobs [f] + 

Jobs Released at the Interval End[f] – reactor capacity}); 

 

17.) FOR every family g ≠ f 

Determine the total weighted flowtime of jobs from family g in the interval. 

(Total weighted flowtime in the Interval[g]= ∑
=

),(*

0

igm

x
Vg

xi* (Rg
0i + p – 

Rg
xi));Determine the volume of jobs that will be available in the next interval 

for family g. 

(Available jobs in the next interval[g]= ∑
=

),(*

0

igm

x
Vg

xi + ∑
+

=

)1,(

1

igm

x

r

Vg
xi); 

 

18.) Calculate the total weighted flowtime of jobs in the interval 

(Total weighted flowtime of all Jobs = Total weighted flowtime of all Jobs + 

Total weighted flowtime in the Interval[f]) 

IF all jobs are finished THEN 

Calculate LB[j,familynumber+1],exit Lower bound procedure. 
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APPENDIX G 
 

 

PROOF OF FAMILY INDEPENDENT LOWER BOUND 

PROCEDURE 

 

 

Let BSi,opt be the total volume of jobs completed up to the beginning of interval i 

under optimizing procedure. And let ASi,opt be the total volume of jobs that are 

released but not processed yet and the jobs that are not released yet at the 

beginning of interval i under optimizing procedure. 

For the optimizing procedure 

BSi,opt = ∑∑ ∑
=

−

= =

f

z

i

y

yzm

x1

1

1

),*(

1
Vz

xy - ∑
=

f

z 1
Vz

0i,opt 

and 

ASi,opt = ∑∑ ∑
=

−

= =

f

z

i

y

yzm

x1

1

1

),*(

1
Vz

xy + ∑
=

f

z 1
Vz

0i,opt ; 

Similarly for the lower bound procedure 

ASi,LB = ∑∑∑
= = =

f

z

i

iy

m

x1

* *

1
Vz

xy + ∑
=

f

z 1
Vz

0i,LB . 

ASi,LB - ASi,opt = ∑
=

f

z 1
Vz

0i,LB - ∑
=

f

z 1
Vz

0i,opt . 

 

For the optimal solution 
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∑
=

f

z 1
Vz

0i+1,opt = ∑
=

f

z 1
Vz

0i,opt +∑ ∑
= =

f

z

ifm

x1

),(*

1
Vz

xi – min {reactor capacity, Vf
0i,opt 

+ ∑
=

),(

0

ifm

x
Vf

xi}         (1) 

For the lower bound procedure 

∑
=

f

z 1
Vz

0i+1,LB = ∑
=

f

z 1
Vz

0i,LB +∑ ∑
= =

f

z

ifm

x1

),(*

1
Vz

xi – min {reactor capacity, ∑
=

f

z 1
Vz

0i,LB 

+∑ ∑
= =

f

z

ifm

x1

),(*

1
Vz

xi }        (2) 

Let for the interval i, BSi,opt = BSi,LB then ∑
=

f

z 1
Vz

0i,LB = ∑
=

f

z 1
Vz

0i,opt . 

Then there exist three cases 

Case 1: 

If Vf
0i,opt + ∑

=

),(

0

ifm

x
Vf

xi > C and ∑
=

f

z 1
Vz

0i,LB +∑ ∑
= =

f

z

ifm

x1

),(*

1
Vz

xi > C then 

(1)–(2) gives 

∑
=

f

z 1
Vz

0i+1,opt - ∑
=

f

z 1
Vz

0i+1,LB = ∑
=

f

z 1
Vz

0i,opt +∑ ∑
= =

f

z

ifm

x1

),(*

1
Vz

xi –reactor capacity – 

(∑
=

f

z 1
Vz

0i,LB +∑ ∑
= =

f

z

ifm

x1

),(*

1
Vz

xi – reactor capacity) = 0. 

If Vf
0i,opt + ∑

=

),(

0

ifm

x
Vf

xi < C and ∑
=

f

z 1
Vz

0i,LB +∑ ∑
= =

f

z

ifm

x1

),(*

1
Vz

xi > C then 

(1)–(2) gives 

∑
=

f

z 1
Vz

0i+1,opt - ∑
=

f

z 1
Vz

0i+1,LB = ∑
=

f

z 1
Vz

0i,opt +∑ ∑
= =

f

z

ifm

x1

),(*

1
Vz

xi - Vf
0i,opt + ∑

=

),(

0

ifm

x
Vf

xi – 

(∑
=

f

z 1
Vz

0i,LB +∑ ∑
= =

f

z

ifm

x1

),(*

1
Vz

xi – reactor capacity) > 0. 

If Vf
0i,opt + ∑

=

),(

0

ifm

x
Vf

xi < C and ∑
=

f

z 1
Vz

0i,LB +∑ ∑
= =

f

z

ifm

x1

),(*

1
Vz

xi < C then 

(1)–(2) gives 
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∑
=

f

z 1
Vz

0i+1,opt - ∑
=

f

z 1
Vz

0i+1,LB = ∑
=

f

z 1
Vz

0i,opt +∑ ∑
= =

f

z

ifm

x1

),(*

1
Vz

xi - Vf
0i,opt + ∑

=

),(

0

ifm

x
Vf

xi – 

(∑
=

f

z 1
Vz

0i,LB +∑ ∑
= =

f

z

ifm

x1

),(*

1
Vz

xi – Vz
0i,LB +∑ ∑

= =

f

z

ifm

x1

),(*

1
Vz

xi) > 0  

For all cases discussed above ∑
=

f

z 1
Vz

0i+1,opt ≥ ∑
=

f

z 1
Vz

0i+1,LB . As the consequence 

of that we see ASi+1,opt ≥ ASi+1,LB. At the start of the interval i+1, since the total 

volume of jobs that should be processed by the optimizing procedure is greater 

than the total volume of jobs that should be processed by the consolidated family 

lower bound procedure, we can conclude that the total weighted flow time of the 

optimizing procedure will be greater than the lower bound procedure. We should 

note that in the comparison above we compared the cases where the processing 

start time is the same (i.e. Rf
m(f,i)i = Rf

0i). This is the most competing case of the 

optimizing procedure. If the processing start time is later than the interval start 

time (i.e. Rf
m(f,i)i > Rf

0i) then there will be a rightward shift in completion time. 

This shift charges even more additional flow time to the optimizing procedure. 

Therefore we will only compare the cases without shifts. 

Now for the interval i let BSi,opt < BSi,LB then ∑
=

f

z 1
Vz

0i,LB < ∑
=

f

z 1
Vz

0i,opt . 

Here we can identify four different cases of available job volumes to the reactor 

capacity. Let the reactor capacity be C. 

Case1: 

if Vf
0i,opt + ∑

=

),(

0

ifm

x
Vf

xi ≥ C and ∑
=

f

z 1
Vz

0i,LB +∑ ∑
= =

f

z

ifm

x1

),(*

1
Vz

xi ≥ C then 

(1) – (2) gives the following  

∑
=

f

z 1
Vz

0i+1,opt - ∑
=

f

z 1
Vz

0i+1,LB = ∑
=

f

z 1
Vz

0i,opt - ∑
=

f

z 1
Vz

0i,LB > 0 , so the remaining 

total volume at the beginning of the interval i+1 is larger in optimizing 

procedure; 

Case 2: 
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if Vf
0i,opt + ∑

=

),(

0

ifm

x
Vf

xi > R and R > ∑
=

f

z 1
Vz

0i,LB +∑ ∑
= =

f

z

ifm

x1

),(*

1
Vz

xi then 

the result of (1) – (2) becomes 

∑
=

f

z 1
Vz

0i+1,opt - ∑
=

f

z 1
Vz

0i+1,LB = ∑
=

f

z 1
Vz

0i,opt +∑ ∑
= =

f

z

ifm

x1

),(*

1
Vz

xi – reactor capacity – 0 > 

0, as in the first case it means the remaining total volume at the beginning of the 

interval i+1 is larger in optimizing procedure; 

Case 3: 

if ∑
=

f

z 1
Vz

0i,LB +∑ ∑
= =

f

z

ifm

x1

),(*

1
Vz

xi > R and R > Vf
0i,opt + ∑

=

),(

0

ifm

x
Vf

xi then 

(1) – (2) is 

∑
=

f

z 1
Vz

0i+1,opt - ∑
=

f

z 1
Vz

0i+1,LB = ∑
=

f

z 1
Vz

0i,opt +∑ ∑
= =

f

z

ifm

x1

),(*

1
Vz

xi - Vf
0i,opt - ∑

=

),(

0

ifm

x
Vf

xi - 

∑
=

f

z 1
Vz

0i,LB - ∑ ∑
= =

f

z

ifm

x1

),(*

1
Vz

xi + reactor capacity, 

= ∑
=

f

z 1
Vz

0i,opt - Vf
0i,opt - ∑

=

),(

0

ifm

x
Vf

xi - ∑
=

f

z 1
Vz

0i,LB + reactor capacity 

= (∑
=

f

z 1
Vz

0i,opt -∑
=

f

z 1
Vz

0i,LB) + (reactor capacity – (Vf
0i,opt + ∑

=

),(

0

ifm

x
Vf

xi)) > 0, the 

remaining total volume at the beginning of the interval i+1 is larger in optimizing 

procedure; 

Case 4: 

if R > ∑
=

f

z 1
Vz

0i,LB +∑ ∑
= =

f

z

ifm

x1

),(*

1
Vz

xi and R> Vf
0i,opt + ∑

=

),(

0

ifm

x
Vf

xi then 

(1) – (2) becomes 

∑
=

f

z 1
Vz

0i+1,opt - ∑
=

f

z 1
Vz

0i+1,LB = ∑
=

f

z 1
Vz

0i,opt +∑ ∑
= =

f

z

ifm

x1

),(*

1
Vz

xi – Vf
0i,opt - ∑

=

),(

0

ifm

x
Vf

xi – 0 

≥ 0; 

as it can be seen ∑
=

f

z 1
Vz

0i+1,opt ≥ ∑
=

f

z 1
Vz

0i+1,LB for the condition BSi,opt < BSi,LB, . 

Hence ASi+1,opt ≥ ASi+1,LB; 
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It is apparent that for all cases ASi+1,opt ≥ ASi+1,LB. This means that the lower 

bound procedure finishes the processing on or earlier than in the optimal 

solution. Therefore for the lower bound procedure the weighted total flow time 

of the jobs are necessarily less than that of the optimal solution. 
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APPENDIX H 
 

 

PROOF OF FAMILY DEPENDENT LOWER BOUND 

PROCEDURE 

 

 

Suppose at interval i BSz
i,opt = BSz

i,LB for ∀ z and lower bound procedure starts 

to process a batch from family f whereas optimal solution procedure also starts to 

process a batch from family f. 

Then at the interval i+1, the total volume of jobs that are not processed from 

family f is 

ASf
i+1,opt = Vf

0i,opt + ∑∑
==

),*(

1

* yfm

x

i

iy
Vf

xy,opt - min{reactor capacity , ∑
=

),(

0

ifm

x
Vf

xi,opt} 

          (3) 

for optimizing procedure and 

ASf
i+1,LB = Vf

0i,LB + ∑∑
==

),*(

1

* yfm

x

i

iy
Vf

xy,LB - min{reactor capacity , Vf
0i,LB + 

∑ ∑
= =

* ),(*

1

i

iy

yfm

x
Vf

xy,LB }        (4) 

for family dependent lower bound procedure.  

 

In fact this part is very similar to the family independent lower bound procedure. 

For FILB amount of processed job in interval i is indicated by 

min {reactor capacity, ∑
=

f

z 1
Vz

0i,LB +∑ ∑
= =

f

z

ifm

x1

),(*

1
Vz

xi } 

Whereas for FDLB procedure this is given by  
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min{reactor capacity , Vf
0i,LB + ∑ ∑

= =

* ),(*

1

i

iy

yfm

x
Vf

xy,LB }. 

 

We can identify three cases of available job volume of family f relative to reactor 

capacity, C. 

Case 1:  

If C< ∑
=

),(

0

ifm

x
Vf

xi,opt and C< Vf
0i,LB + ∑ ∑

= =

* ),(*

1

i

iy

yfm

x
Vf

xy,LB then  

(3) – (4) gives  

ASf
i+1,opt - ASf

i+1,LB = Vf
0i,opt + ∑∑

==

),*(

1

* yfm

x

i

iy
Vf

xy,opt -reactor capacity – (Vf
0i,LB + 

∑∑
==

),*(

1

* yfm

x

i

iy
Vf

xy,LB - reactor capacity) = 0. 

We conclude that for Case 1 the lower bound procedure and optimizing 

procedure performs the same under even the best condition for the optimal 

solution. 

Case 2: 

If ∑
=

),(

0

ifm

x
Vf

xi,opt <C and C< Vf
0i,LB + ∑ ∑

= =

* ),(*

1

i

iy

yfm

x
Vf

xy,LB then 

(3) – (4) gives 

ASf
i+1,opt - ASf

i+1,LB = Vf
0i,opt + ∑∑

==

),*(

1

* yfm

x

i

iy
Vf

xy,opt - ∑
=

),(

0

ifm

x
Vf

xi,opt – (Vf
0i,LB + 

∑∑
==

),*(

1

* yfm

x

i

iy
Vf

xy,LB - reactor capacity) 

= (reactor capacity - ∑
=

),(

0

ifm

x
Vf

xi,opt ) > 0, so lower bound finishes more jobs than 

the optimal procedure on time or earlier than the optimal procedure. 

Case 3: 

If ∑
=

),(

0

ifm

x
Vf

xi,opt <C and  Vf
0i,LB + ∑ ∑

= =

* ),(*

1

i

iy

yfm

x
Vf

xy,LB < C then 
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(3) – (4) gives 

ASf
i+1,opt - ASf

i+1,LB = Vf
0i,opt + ∑∑

==

),*(

1

* yfm

x

i

iy
Vf

xy,opt - ∑
=

),(

0

ifm

x
Vf

xi,opt – (Vf
0i,LB + 

∑∑
==

),*(

1

* yfm

x

i

iy
Vf

xy,LB - Vf
0i,LB + ∑∑

==

),*(

1

* yfm

x

i

iy
Vf

xy,LB) 

= Vf
0i,opt + ∑∑

==

),*(

1

* yfm

x

i

iy
Vf

xy,opt - ∑
=

),(

0

ifm

x
Vf

xi,opt – 0 > 0. 

For all three cases we conclude that the lower bound procedure completes atleast 

same amount of jobs on time or earlier than the optimal procedure. Therefore we 

can conclude that at the start of the interval i we can establish the optimal 

sequence of batches without any extra unit volumes of jobs or flow times. 

In second part we cannot use the remaining volumes for comparison because the 

optimizing procedure and lower bound procedure may select different families 

for processing. In that case we cannot divide the problem into intervals as easy as 

the problems in which the optimal procedure and lower bound procedure. In this 

part we will compare the case of BSz
i,opt = BSz

i,LB for ∀z when optimizing 

procedure starts to process a batch of family f and lower bound procedure starts 

to process a batch of family g . 

There exist numerous cases that can be compared; here we will compare the case  

∑
=

),*(

0

ifm

x
xi

fV > ∑
=

),*(

0

igm

x
xi

gV  and ∑
=

),*(

0

igm

x
xi

gV = ∑ ∑
= =

* ),*(

0

i

iy

igm

x
xy

gV ,which is the most critical case. 

This is critical since in all other cases lower bound procedure completes at least 

equal volume of jobs that the optimizing procedure does. Therefore it has 

dominance in terms of total weighted flow time in the interval and total volume 

of completed jobs in the interval. But for this case the dominance in terms of 

total volume of completed jobs in the interval is violated by the optimizing 

procedure. Therefore this is the most advantageous case of optimizing procedure. 

Case 1: 

Let ∑
=

),(

0

ifm

x
xi

fV = reactor capacity and ∑
=

),*(

0

ifm

x
xi

fV = (n * reactor capacity) in interval i 

and let in interval i+1 exist a single release of job with volume Vf
1i+1 with release 
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time Rf
1i+1. For the lower bound procedure the total weighted flow time can be 

written as  

LB: 

∑
=

),*(

0

igm

x
xi

gV * p + ∑
=

),*(

0

ifm

x
xi

fV * (Rf
0i + p – Rf

xi) +  

∑
=

),*(

0

ifm

x
xi

fV * p + Vf
1i+1 * (Rf

0i + 2p – Rg
1i+1) + 

( ∑
=

),*(

0

ifm

x
xi

fV - reactor capacity) * p + Vf
1i+1 * (Rf

0i + 3p – (Rf
0i + 2p )) + 

. 

. 

( ∑
=

),*(

0

ifm

x
xi

fV -(n-1)* reactor capacity)*p + Vf
1i+1 * (Rf

0i + (n+1)*p – (Rf
0i + n*p )) 

+ 

Vf
1i+1 * (Rf

0i + (n+1)*p – (Rf
0i + n*p )) 

For the optimal solution procedure the total weighted flow time is given below 

OPT: 

∑
=

),(

0

igm

x
xi

gV * (Rf
m(f,i)i – Rf

0i) + ∑
=

),*(

0

ifm

x
xi

fV * (Rf
m(f,i)i – Rf

0i) + 

∑
+=

),*(

1),(

ifm

ifmx
xi

fV *(Rf
m(f,i)i + p – Rf

xi) + ∑
=

),(

0

ifm

x
xi

fV * p + ∑
=

),(

0

igm

x
xi

gV * ( Rf
m(f,i)i + p – Rf

m(f,i)i) 

+ ∑
+=

),(*

1),(

igm

igmx
xi

gV * (Rf
m(f,i)i + p – Rf

xi) + 

∑
+=

),*(

1),(

ifm

ifmx
xi

fV * p + ∑
=

),*(

0

igm

x
xi

gV * ( Rf
m(f,i)i + 2p – (Rf

m(f,i)i + p)) + Vf
1i+1 * (Rf

m(f,i)i + 

2*p–Rf
1i+1)+ 

( ∑
+=

),*(

1),(

ifm

ifmx
xi

fV - reactor capacity)*p + ∑
=

),*(

0

igm

x
xi

gV *(Rf
m(f,i)i + 3*p – (Rf

m(f,i)i + 2*p)) + 

Vf
1i+1*(Rf

m(f,i)i + 3*p – (Rf
m(f,i)i + 2*p)) +  
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( ∑
+=

),*(

1),(

ifm

ifmx
xi

fV - 2*reactor capacity) * p + ∑
=

),*(

0

igm

x
xi

gV * (Rf
m(f,i)I + 4*p – (Rf

m(f,i)I + 

3*p)) + Vf
1i+1*(Rf

m(f,i)I + 4*p – (Rf
m(f,i)I + 3*p)) +  

. 

. 

( ∑
+=

),*(

1),(

ifm

ifmx
xi

fV -(n-2)*reactor capacity)* p+ ∑
=

),*(

0

igm

x
xi

gV *(Rf
m(f,i)i+n*p–(Rf

m(f,i)i+(n-

1)*p)) + Vf
1i+1*(Rf

m(f,i)i + 2p – (Rf
m(f,i)i + p)) +  

∑
=

),*(

0

igm

x
xi

gV * p + Vf
1i+1* p +  

min { ∑
=

),*(

0

igm

x
xi

gV * p , Vf
1i+1* p}; 

let ∑
=

),*(

0

igm

x
xi

gV < Vf
1i+1 and Rf

m(f,i)i + p > Rf
1i+1. After the elimination of the terms 

with equal flow times the problem can be reduced to the following form 

LB: 

∑
=

),*(

0

igm

x
xi

gV * p + ∑
=

),*(

0

ifm

x
xi

fV * (Rf
0i + p – Rf

xi) +  

∑
=

),*(

0

ifm

x
xi

fV * p + Vf
1i+1 * (Rf

0i + 2p – Rg
1i+1) + 

Vf
1i+1 * (Rf

0i + (n+1)*p – (Rf
0i + n*p )) 

OPT: 

∑
=

),(

0

igm

x
xi

gV * (Rf
m(f,i)i – Rf

0i) + ∑
=

),(

0

ifm

x
xi

fV * (Rf
m(f,i)i – Rf

0i) + 

∑
+=

),*(

1),(

ifm

ifmx
xi

fV *(Rf
m(f,i)i + p – Rf

xi) + ∑
=

),*(

0

ifm

x
xi

fV * p + ∑
=

),(

0

igm

x
xi

gV * ( Rf
m(f,i)i + p – Rf

m(f,i)i) 

+ ∑
+=

),*(

1),(

igm

igmx
xi

gV * (Rf
m(f,i)i + p – Rf

xi) + 

Vf
1i+1 * ( Rf

m(f,i)i + 2*p–Rf
1i+1)+ n * ∑

=

),*(

0

igm

x
xi

gV * ( Rf
m(f,i)i + 2p – (Rf

m(f,i)i + p)) +  
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∑
=

),*(

0

igm

x
xi

gV * p, 

Note that ∑
=

),*(

0

ifm

x
xi

fV * (Rf
0i + p – Rf

xi) = ∑
=

),(

0

ifm

x
xi

fV * (Rf
0i + p – Rf

xi) + ∑
+=

),*(

1)(

ifm

fmx
xi

fV * 

(Rf
0i  + p – Rf

xi) and ∑
=

),*(

0

ifm

x
xi

fV * p = ∑
=

),(

0

ifm

x
xi

fV * p + ∑
+=

),*(

1),(

ifm

ifmx
xi

fV * p and Vf
1i+1 * 

(Rf
0i + (n+1)*p – (Rf

0i + n*p )) = Vf
1i+1 * (Rf

0i + 2*p – (Rf
m(f,i)i + p )) + Vf

1i+1 * 

(Rf
m(f,i)i + p – (Rf

0i +p)) 

By using these information we can re-write the lower bound and optimal solution 

procedures as 

LB:  

∑
=

),(

0

ifm

x
xi

fV * (Rf
0i + p – Rf

xi) + ∑
+=

),*(

1),(

ifm

ifmx
xi

fV * (Rf
0i  + p – Rf

xi) + ∑
=

),(

0

ifm

x
xi

fV * p + 

∑
+=

),*(

1),(

ifm

ifmx
xi

fV * p + Vf
1i+1 * (Rf

0i + 2*p – (Rf
m(f,i)i + p )) + Vf

1i+1 * (Rf
m(f,i)i + p – Rf

1i+1 

) + Vf
1i+1 * p; 

OPT: 

∑
=

),(

0

igm

x
xi

gV * (Rf
m(f,i)i – Rf

xi) + ∑
=

),(

0

ifm

x
xi

fV * (Rf
m(f,i)i – Rf

xi) + ∑
=

),(

0

ifm

x
xi

fV * (Rf
m(f,i)i + p – 

(Rf
0i + p)) + ∑

+=

),*(

1),(

ifm

ifmx
xi

fV * (Rf
0i  + p – Rf

xi) + ∑
=

),(

0

ifm

x
xi

fV * p + ∑
=

),(

0

igm

x
xi

gV * p + 

∑
+=

),*(

1),(

igm

igmx
xi

gV * (Rf
m(f,i)i + p – (Rf

0i + p)) + ∑
+=

),*(

1),(

igm

igmx
xi

gV * (Rf
0i + p – Rf

xi) +n * 

∑
=

),(

0

igm

x
xi

gV * p + Vf
1i+1 * ( Rf

m(f,i)i + p–Rf
1i+1) + Vf

1i+1 * p; 

after this elimination step : 

LB: 

∑
=

),*(

0

ifm

x
xi

fV * (Rf
0i + p – Rf

m(f,i)i ) + Vf
1i+1 * (Rf

0i + p – Rf
m(f,i)i ) 

OPT: 
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n * ∑
=

),(

0

igm

x
xi

gV * p + ∑
=

),(

0

igm

x
xi

gV * (Rf
m(f,i)i + p – Rf

xi) + ∑
+=

),*(

1),(

igm

igmx
xi

gV * (Rf
m(f,i)i + p – Rf

xi) 

or  

n * ∑
=

),(

0

igm

x
xi

gV * p + ∑
=

),*(

0

igm

x
xi

gV * (Rf
m(f,i)i – Rf

0i) + ∑
=

),*(

0

igm

x
xi

gV * (Rf
0i + p – Rf

xi) 

by the definition of the lower bound procedure (from step 4) we know that  

∑
=

),*(

0

igm

x
xi

gV * (Rf
0i + p – Rf

xi) > ∑
=

),(

0

ifm

x
xi

fV * (Rf
0i + p – Rf

xi) 

then  

∑
=

),*(

0

igm

x
xi

gV * (Rf
0i + p – Rf

xi) > ∑
=

),(

0

ifm

x
xi

fV * (Rf
0i + p – Rf

m(f,i)i) 

Since ∑
=

),(

0

ifm

x
xi

fV = reactor capacity ≥ Vf
1i+1 

∑
=

),*(

0

igm

x
xi

gV * (Rf
0i + p – Rf

xi) > Vf
1i+1 * (Rf

0i + p – Rf
m(f,i)i ); 

∑
=

),(

0

igm

x
xi

gV * p > ∑
=

),*(

0

igm

x
xi

gV * (Rf
0i + p – Rf

xi) > ∑
=

),(

0

ifm

x
xi

fV * (Rf
0i + p – Rf

m(f,i)i), 

∑
=

),*(

0

ifm

x
xi

fV = n * reactor capacity , ∑
=

),(

0

ifm

x
xi

fV = reactor capacity then 

∑
=

),(

0

ifm

x
xi

fV  (Rf
0i + p – Rf

xi) > ∑
=

),(

0

ifm

x
xi

fV * (Rf
0i + p – Rf

m(f,i)i) consequently 

n * ∑
=

),(

0

igm

x
xi

gV * p > ∑
=

),*(

0

ifm

x
xi

fV * (Rf
0i + p – Rf

m(f,i)i); flowtime charged by the 

optimal solution procedure is greater than that of lower bound procedure 

charged. 

Case2: 

Let ∑
=

),(

0

ifm

x
xi

fV = reactor capacity and ∑
=

),*(

0

ifm

x
xi

fV < 2* reactor capacity in interval i 

and let in interval i+1 be a single release with volume Vf
1i+1 with release time 

Rf
1i+1 
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LB: 

∑
=

),*(

0

igm

x
xi

gV * p + ∑
=

),*(

0

ifm

x
xi

fV * (Rf
0i + p – Rf

xi) +  

∑
=

),*(

0

ifm

x
xi

fV * p + Vf
1i+1 * (Rf

0i + 2p – Rf
1i+1) + 

( ∑
=

),*(

0

ifm

x
xi

fV - reactor capacity) * p + Vf
1i+1 * (Rf

0i + 3p – (Rf
0i + 2p )) + 

( ∑
=

),*(

0

ifm

x
xi

fV + Vf
1i+1 – 2* reactor capacity) * (Rf

0i + 4p – (Rf
0i + 3p )) 

OPT: 

∑
=

),(

0

igm

x
xi

gV * (Rf
m(f,i)i – Rf

xi) + ∑
=

),(

0

ifm

x
xi

fV * (Rf
m(f,i)i – Rf

xi) + 

∑
+=

),*(

1),(

ifm

ifmx
xi

fV *(Rf
m(f,i)i + p – Rf

xi) + ∑
=

),(

0

ifm

x
xi

fV * p + ∑
=

),(

0

igm

x
xi

gV * ( Rf
m(f,i)i + p – Rf

m(f,i)i) 

+ ∑
+=

),*(

1),(

igm

igmx
xi

gV * (Rf
m(f,i)i + p – Rf

xi) + 

( ∑
+=

),*(

1),(

ifm

ifmx
xi

fV + Vf
1i+1 )* p + ∑

=

),*(

0

igm

x
xi

gV * ( Rf
m(f,i)i + 2p – (Rf

m(f,i)i + p)) +  

( ∑
+=

),*(

1),(

ifm

ifmx
xi

fV + Vf
1i+1 – reactor capacity)* p + ∑

=

),*(

0

igm

x
xi

gV * p + 

min {( ∑
+=

),*(

1),(

ifm

ifmx
xi

fV + Vf
1i+1 – reactor capacity)* p ; ∑

=

),*(

0

igm

x
xi

gV * p } 

Define intervals with length Rf
m(f,i)i – Rf

0i = a and Rf
0i + p - Rf

m(f,i)i = b, then we 

can write (Rf
m(f,i)i – Rf

xi) as a- if Rf
0i < Rf

xi < Rf
m(f,i)i . Similarly we can write (Rf

0i 

+ p – Rf
xi) as b- if Rf

0i +p> Rf
xi > Rf

m(f,i)i . 

After canceling the terms with equal flow times we can write the remaining 

terms as follows: 

LB: 

∑
=

),(

0

ifm

x
xi

fV * b + ∑
=

),(

0

ifm

x
xi

fV * a- + ∑
+=

),*(

1),(

ifm

ifmx
xi

fV * b- + 
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∑
=

),(

0

ifm

x
xi

fV * a + ∑
=

),(

0

ifm

x
xi

fV * b + ∑
+=

),*(

1),(

ifm

ifmx
xi

fV * a + ∑
+=

),*(

1),(

ifm

ifmx
xi

fV * b + Vf
1i+1 * b  

OPT: 

∑
=

),(

0

igm

x
xi

gV * a- + ∑
=

),(

0

ifm

x
xi

fV * a- + 

∑
=

),(

0

ifm

x
xi

fV * a + ∑
=

),(

0

ifm

x
xi

fV * b + ∑
=

),(

0

igm

x
xi

gV * a + ∑
=

),(

0

igm

x
xi

gV * b + ∑
+=

),*(

1),(

ifm

ifmx
xi

fV * a + 

∑
+=

),*(

1),(

ifm

ifmx
xi

fV *b- + ∑
+=

),*(

1),(

igm

igmx
xi

gV *a + ∑
+=

),*(

1),(

igm

igmx
xi

gV * b- + 

∑
=

),(

0

igm

x
xi

gV * a + ∑
=

),(

0

igm

x
xi

gV * b + ∑
+=

),*(

1),(

igm

igmx
xi

gV *a + ∑
+=

),*(

1),(

igm

igmx
xi

gV * b+  

min {( ∑
+=

),*(

1),(

ifm

ifmx
xi

fV + Vf
1i+1 – reactor capacity)* (a+b) ; ∑

=

),*(

0

igm

x
xi

gV * (a+b) }. 

Note that 

∑
=

),(

0

igm

x
xi

gV * b + ∑
=

),(

0

igm

x
xi

gV * a- + ∑
+=

),*(

1),(

igm

igmx
xi

gV * b- > ∑
=

),(

0

ifm

x
xi

fV * a- + ∑
=

),(

0

ifm

x
xi

fV * b and  

∑
=

),(

0

ifm

x
xi

fV = reactor capacity , ∑
+=

),*(

1),(

ifm

ifmx
xi

fV < reactor capacity and Vf
1i+1 ≤ reactor 

capacity, 

LB: 

∑
=

),(

0

ifm

x
xi

fV * b + ∑
+=

),*(

1),(

ifm

ifmx
xi

fV * b + Vf
1i+1 * b 

OPT: 

∑
=

),(

0

igm

x
xi

gV * a- + ∑
=

),(

0

igm

x
xi

gV * a + ∑
=

),(

0

igm

x
xi

gV * b + ∑
+=

),*(

1),(

igm

igmx
xi

gV *a + ∑
+=

),*(

1),(

igm

igmx
xi

gV * b- + 

∑
=

),(

0

igm

x
xi

gV * a + ∑
=

),(

0

igm

x
xi

gV * b + ∑
+=

),*(

1),(

igm

igmx
xi

gV *a + ∑
+=

),*(

1),(

igm

igmx
xi

gV * b+  

min {( ∑
+=

),*(

1),(

ifm

ifmx
xi

fV + Vf
1i+1 – reactor capacity)* (a+b) ; ∑

=

),*(

0

igm

x
xi

gV * (a+b) }. 
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If ∑
+=

),*(

1),(

ifm

ifmx
xi

fV + Vf
1i+1 – reactor capacity < ∑

=

),*(

0

igm

x
xi

gV  then 

∑
=

),(

0

igm

x
xi

gV * b + ∑
=

),(

0

igm

x
xi

gV * a- + ∑
+=

),*(

1),(

igm

igmx
xi

gV * b- > ∑
=

),(

0

ifm

x
xi

fV * b and  

( ∑
+=

),*(

1),(

ifm

ifmx
xi

fV + Vf
1i+1 – reactor capacity)* (a+b) + ∑

=

),*(

0

igm

x
xi

gV * (a+b) > ∑
+=

),*(

1),(

ifm

ifmx
xi

fV * 

b + Vf
1i+1 * b; 

If ∑
+=

),*(

1),(

ifm

ifmx
xi

fV + Vf
1i+1 – reactor capacity > ∑

=

),*(

0

igm

x
xi

gV  then 

∑
=

),(

0

igm

x
xi

gV * b + ∑
=

),(

0

igm

x
xi

gV * a- + ∑
+=

),*(

1),(

igm

igmx
xi

gV * b- > ∑
=

),(

0

ifm

x
xi

fV * b and  

2 * ∑
=

),*(

0

igm

x
xi

gV * (a+b) > ∑
+=

),*(

1),(

ifm

ifmx
xi

fV * b + Vf
1i+1 * b; 

i.e flowtime charged by the optimal solution procedure is greater than that of 

lower bound procedure charged. 

Case 3: 

Let ∑
=

),(

0

ifm

x
xi

fV = ∑
=

),*(

0

ifm

x
xi

fV ≤ reactor capacity in interval i and in interval i+1, there 

exist single release with volume Vf
1i+1 and release time Rf

1i+1 

LB:  

∑
=

),*(

0

igm

x
xi

gV * p + ∑
=

),*(

0

ifm

x
xi

fV * (Rf
0i + p – Rf

xi) +  

( ∑
=

),*(

0

ifm

x
xi

fV + ∆f
1i+1)* p + (Vf

1i+1 -∆f
1i+1)* (Rf

0i + 2p – Rf
1i+1) + 

(Vf
1i+1 -∆f

1i+1)* p, where ∆f
1i+1 = reactor capacity - ∑

=

),*(

0

ifm

x
xi

fV . 

OPT: 

∑
=

),(

0

igm

x
xi

gV * (Rf
m(f,i)i – Rf

xi) + ∑
=

),*(

0

ifm

x
xi

fV * (Rf
m(f,i)i – Rf

xi) + 
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∑
=

),(

0

ifm

x
xi

fV * p + ∑
=

),(

0

igm

x
xi

gV * ( Rf
m(f,i)i + p – Rf

m(f,i)i) + ∑
+=

),*(

1),(

igm

igmx
xi

gV * (Rf
m(f,i)i + p – Rf

xi) 

+ 

∑
=

),*(

0

igm

x
xi

gV * p + Vf
1i+1 * p + min { ∑

=

),*(

0

igm

x
xi

gV * p; Vf
1i+1 * (Rf

m(f,i)i – Rf
0i) }. 

LB:  

∑
=

),*(

0

ifm

x
xi

fV * b + (Vf
1i+1 -∆f

1i+1) * b; 

OPT: 

∑
=

),(

0

igm

x
xi

gV  * a- + ∑
=

),(

0

igm

x
xi

gV * a + ∑
=

),(

0

igm

x
xi

gV * b + ∑
+=

),*(

1),(

igm

igmx
xi

gV * b- + ∑
+=

),*(

1),(

igm

igmx
xi

gV * a + 

min{ ∑
=

),*(

0

igm

x
xi

gV * (a+b); Vf
1i+1 * b }. 

Remember that 

∑
=

),(

0

igm

x
xi

gV * b + ∑
=

),(

0

igm

x
xi

gV * a- + ∑
+=

),*(

1),(

igm

igmx
xi

gV * b- > ∑
=

),(

0

ifm

x
xi

fV * a- + ∑
=

),(

0

ifm

x
xi

fV * b then 

∑
=

),(

0

igm

x
xi

gV * b + ∑
=

),(

0

igm

x
xi

gV * a- + ∑
+=

),*(

1),(

igm

igmx
xi

gV * b- > ∑
=

),(

0

ifm

x
xi

fV * b 

if ∑
=

),*(

0

igm

x
xi

gV * (a+b) > Vf
1i+1 * b then 

Vf
1i+1 * b > (Vf

1i+1 - ∆f
1i+1) * b; 

if ∑
=

),*(

0

igm

x
xi

gV * (a+b) < Vf
1i+1 * b then 

for the case  

reactor capacity - ∑
=

),*(

0

ifm

x
xi

fV ≥ Vf
1i+1  ∆f

1i+1 becomes equal to Vf
1i+1 

∑
=

),*(

0

igm

x
xi

gV * (a+b) > (Vf
1i+1 - ∆f

1i+1) * b; 

for the case  
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reactor capacity - ∑
=

),*(

0

ifm

x
xi

fV < Vf
1i+1  ∆f

1i+1 is equal to reactor capacity- ∑
=

),*(

0

ifm

x
xi

fV  

∑
=

),*(

0

ifm

x
xi

fV + ∆f
1i+1 ≥ Vf

1i+1  

∑
=

),*(

0

igm

x
xi

gV * (a+b) > (Vf
1i+1 - ∆f

1i+1) * b; 

Thus total weighted flow time charged by the optimal solution procedure is 

necessarily greater than that the lower bound procedure charged. 

 


