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ABSTRACT

THE RED NOISE POWER DENSITY ESTIMATION TECHNIQUES AND
APPLICATION TO THE SOURCE SAX J2103.5+4545

ERKOCA, ARIF EMRE
M.S., Department of Physics
Supervisor: Prof. Dr. Altan Baykal

July 2004, 76 pages.

In this thesis, red noise analysis techniques are presented. The necessity of the use
of the window functions and the Deeter polynomial method in order to determine
red noise is discussed. The method was applied to the source SAX J2103.5+4545
which showed a white torque noise with a relatively low noise strength due to its

being a transient system.

Keywords: Window functions,Red Noise Determination Techniques, SAX J2103.5+4545
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0z
KIRMIZI GURULTU GUC YOGUNLUGU BELIRLEME TEKNIKLERI VE

SAX J2103.5+4545 KAYNAGINA UYGULAMASI

ERKOCA, ARIF EMRE
Yiiksek Lisans , Fizik Bolimi

Tez Yoneticisi: Prof. Dr. Altan Baykal

Temmuz 2004, 76 sayfa.

Bu tezde, kirmiz: giiriiltii analizi teknikleri sunulmaktadir. Kirmiz giiriiltii belir-
lemede pencere fonksiyonlar: ve Deeter polinom yontemini kullanma gereklilikleri
tartigilmigtir. Bu teknikler SAX J2103.5+4545 kaynagina uygulandiginda beyaz

donme momenti giiriiltiisi diigiik seviyeli olarak belirlendi.

Anahtar Sozciikler: Pencere fonksiyonlari, Kirmizi Giiriiltii Belirleme Teknikleri,

SAX J2103.54+4545
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CHAPTER 1

INTRODUCTION

1.1 A Brief Theory

The discovery of periodic X-ray pulsations from Cen X-3 led to a qualitative
understanding of X-ray pulsars as rotating magnetized neutron stars accreting
matter from a binary companion. The neutron star accretes matter either by
capturing material from the stellar wind of the companion or through Roche
lobe overflow of the mass donating star. The strong magnetic field controls the
accretion flow close to the neutron star. Matter follows the field lines onto the
magnetic poles. Mainly as the accreting material approaches the neutron star,
the plasma is channeled to the magnetic polar caps, where it releases its gravi-
tational energy as X-ray radiation; these rotating hot spots are the source of the
pulsed emission. Such emission is beamed and thus produces X-ray pulsation by
periodically passing through the line of sight as the neutron star rotates, if the
magnetic and rotation axes of the neutron star are misaligned. Neutron stars

of this type are called "Accretion Powered Pulsars’. The resulting accretion lu-

GM, M

7 which depends on the accretion rate, neutron star mass
.

minosity is L =
and radius.Accretion powered X-ray pulsars are classified according to the mass

of companion star as either low mass X-ray binaries (LMXBs have late type or



degenerate dwarf companion with M, < 2.5M) or high mass X-ray binaries
(HMXB) (M, > 6M). HMXB are divided into two subgroups as Be type com-
panion star and the OB supergiant type. In these X-ray pulsars mass transfer
can be seen by either disk-fed or wind-fed. In LMXB, mass transfer occur only
if the companion star fills its Roche lobe and the Keplerian disk forms around
the neutron star. There are only few low-mass binaries with accreting pulsars:
Her X-1, 4U 1626-67, GX144 and GRO J1744-28. The Be systems are generally
observed during transient outbursts. The episodic outbursts are often correlated
with periastron passage of the neutron star in its eccentric orbit. Most OB su-
pergiants have stellar winds driven by the radiation pressure. Vela X-1 is the
best known wind-fed supergiant pulsar binary. If an accretion disk is a result of
a Roche lobe overflow, much larger mass transfer rates are produced. The large
persistent accretion rates in SMC X-1, Cen X-3, and LMC X-4 make them candi-
dates for disk-fed supergiant pulsar binaries (Bildsten et al. 1997). According to
the Corbet diagram (Corbet 1986), the neutron stars orbiting Roche-lobe filling
supergiants have short spin and orbital periods and the opposite for the wind-fed
supergiant binaries. They also show long term steady torque behavior. However,
the observed accretion torque on wind-fed objects often fluctuate (even between
spin-up and spin-down). The torque on the neutron star can be expressed as
a specific angular momentum (I, = (GMr,)"?) added to neutron star at some
radius with a certain mass accretion rate. If the accretion is from a Keplerian
disk, at the inner disk edge the magnetosphere disrupts the Keplerian rotation

of the disk, forcing matter to accrete along the field lines. The inner disk edge



moves inward with increasing mass accretion rate due to the relation;
ro = K,u4/7(GM)_1/7M_2/7

(u) is the neutron star magnetic moment and K=0.91 gives the Alfven radius for
spherical accretion. Then the torque estimate is given by Ghosh & Lamb (1979)
as

onlir = n(wg) Ml
n(ws) ~ 1.4(1 — wg/w.) /(1 — ws)

n is a dimensionless function that measures the variation of the accretion torqueas

estimated by the fastness parameter
wy = v/vi(ro) = (ro/reo)*’* oc M3/

where 7., is the corotation radius at which the centrifugal forces balance the
gravitational forces, and w, is the critical fastness parameterat which the accretion
torque is expected to vanish. The accretion torque,in fact, is the sum of the torque
produced by the accretion of matter that falls onto the star (mechanical torque)
and the torque contributed by the twisted magnetic field lines of the star that
interact with the outer parts of the disk (magnetic torque). The mechanical
torque always acts to spin up a star rotating in the same sense as the disk flow,
whereas torque from the magnetic stresses can have either sign;negative if the
lines thread the disk outside the corotation radius. The net torque will cause
spin-up if the neutron star is rotating slowly (ws; < w,) in the same sense as the
circulation in the disk. Even if the neutron star is rotating in the same sense

3



as the disk flow, the torque will be in the direction of spin-down if the nuetron
star is rotating too rapidly (ws > w.). The accreted material will produce X-ray

luminosity at the neutron star surface at the rate
L=GMM/R

The rate of spin-up is related to the X-ray intensity through
v o n(wg) L7

When M becomes small enough the luminosity decreases and the magnetospheric
radius exceeds the corotation radius. Then, some of the material will be accel-
erated to super-Keplerian velocities and will not be easily accreted (accretion
is centrifugally inhibited) and material may become attached to the field lines
and flung away, removing angular momentum and causing the star to spin down
which is called propeller effect (Illarrionov & Sunyaev, 1975). So a slight change
in the mass accretion rate can be considered to be a reason for torque reversals.
Also any external torque fluctuation creates a difference between angular velocity
of the core superfluid and crust. The two components are coupled by a mutual
friction at crust core coupling times of the order 400 to 10* periods. In time scales
shorter than the crust-core coupling time scales crust angular velocity derivative
has larger magnitude. As a model torque variations by a sum of noise processes
were represented by Lamb et.al.(1978 b). They concentrated on two different
types of torque fluctuation models; one corresponds to ”white noise”, where the
power of torque variation is independent of frequency, which represents the se-
ries of sudden transfers of angular momentum to the neutron star crust; other

4



describes sudden jumps in the rate at which angular momentum is transferred to
the neutron star crust, and hence represents red torque noise where the power of
torque variation depends inversely on the second power of the frequency. They
also described the response of a neutron star to these variations by using a two
component model.

The conventional wisdom suggests that Roche-lobe overflow and subsequent
disk accretion is supposed to carry positive angular momentum to the neutron
star and spin it up (Pringle and Rees 1972). On the other hand for wind accretion,
the flow is supposed to have lower specific angular momentum and can approach
the neutron star with reversals in the spin direction. Hence, it is expected that
disk accretion should lead to a stronger spin-up of the neutron star and less torque
noise in contrast to the wind accreting types. Observations showed that there
is a strong correlation between the noise strength and the X-ray luminosity of
accreting X-ray pulsars (S ~ L3;107'7rad?s=2) ,where Ls; is the X-ray luminosity
in 1037ergs™!. An interesting feature of this relation is the lack of any distinction
between the sources believed to be disk type and wind type (Baykal 1993). This
is due to the fact that both of these depend on the rate of the torque noise events
and regardless of the sign of the torque, the mass transfer always contribute
positively to the luminosity of the neutron star. In this study a list of some
accretion powered X-ray binaries are presented, with their noise strengths and
X-ray luminosities (Bildsten et al. 1997, Baykal et al. 1993, Baykal et al. 2002
and this study).

Early studies of four pulsating sources X-ray sources reveal pulse periods which



Table 1.1: Luminosities and Noise strengths of Accretion powered X-ray pulsars

Name Log L(erg/sec) Log S(rad?/sec?)
SMC X-1 (38.70 , 38.78)  (-13.52 , -12.33)
HER X-1 (36.85 , 37.30)  (-16.92 , -16.40)
4U 0115+634 (36.90 , 37.48)  (-17.70 , -16.68)
CEN X-3 (37.70 , 38.00)  (-15.80 , -13.70)
4U 1627-67 (36.90 , 37.48)  (-16.32 , -16.19)
LMC X-4 (38.60 , 38.85)  (-17.00 , -15.80)
OAO 1657-41 (35.60 , 37.00)  (-15.40 , -14.10)
A 0535426 (37.30 , 37.30)  (-16.70 , -16.36)
GX14+4 (37.60 , 38.00)  (-13.77 , -13.05)
VELA X-1 (35.90 , 36.78)  (-18.10 , -17.40)
AU 1145-619 (35.00 , 36.78)  (-17.40 , -16.85)
E1145.1-614 (34.48 , 36.48)  (-18.15 , -17.15)
4U1538-52 (36.60 , 36.60)  (-19.10 , -17.49)
GX301-2 (36.00 , 37.00)  (-16.62 , -15.09)
X-PER (33.60 , 34.00)  (-19.40 , -18.42)
SAXJ 2103.5+4545 (34.78 , 36.00)  (-20.27 , -19.0)

are not smoothly decreasing; and in fact are noisier than the Crab: Her X-
1, Cen X-3 , Vela X-1 and X Per . These variations imply that the angular
momentum of the crust is fluctuating. Because the neutron star is a dynamic
system, such fluctuations could be caused by the (external) torque exerted by the
accreting matter(Lamb et al. 1978) or internal torque exerted on the crust by
neutron superfluid. Neither of these torques is expected to be smooth. Accretion
theory suggests that the accretion torque contains a fluctuating component while
the response of the superfluid even to a smooth accretion torque may contain

a stochastic element. Consequently, the pulse period fluctuations in accreting
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Figure 1.1: Noise Strength versus Luminosity of Accretion powered X-ray Pulsars

neutron stars are produced by torques originating outside and inside the object.

The external torque is closely related to the mass accretion and the internal torque

depends on the coupling between the superfluid interior and the solid outer crust.

Filtered torque variations by the mutual interactions of the internal structures

results the observed changes on the pulse period. A statistical analysis of such

fluctuations was performed after the discovery of the Crab pulsar (Boynton et.

al., 1972; Groth, 1975a; Cordes, 1980) indicating that the small scale variations

can be expressed with white or red noise models. Soon afterwards, a theoretical

description of torque variations in terms of power spectral analysis was developed
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by Lamb et. al. (1978 a,b). The pulse timing analysis techniques has been
developed to study the fluctuations in the rotation rate of a neutron star. (Deeter
& Boynton 1982; Deeter 1984). They were applied to Vela X-1 and Her X-1 using
the data obtained by HEAO-1 and UHURU (Boynton 1981, Deeter 1981, Boynton
et al. 1984, Deeter et al. 1989). The results showed that the angular velocity
time series of these sources can be modelled as a random walk (or white noise in
the angular accelerations). Also the restless behaviour has been observed in the
rapidly spinning down Crab Pulsar (Groth 1975a) and possibly in several other
pulsars (Cordes & Helfand 1980). A similar analysis has also been applied to
derive the power spectra of timing noise in radio pulsars (Cordes 1980, Cordes &

Helfand 1980, and Alpar et. al. 1986).

1.2 About This Study

This study mostly deals with the methodology of determining the red noise
processes present in the timing data. We have used some routines written in
C language at Numerical Recipes such as during the generation of a random
number series, finding the linear least square fit, cubic spline, and FFT (Fast
Fourier Transform) routines are also used while discrete Fourier Transforming.
The other routines were written by ourselves (some of which are present in the
appendix). In Chapter 2 the need for the use of window functions are presented.
In Chapter 3, time-domain properties and the non-stationarity of a red noise
process is introduced. In Chapter 4, low-resolution technique which mixes the
time-domain properties and the frequency-domain properties in determining the

8



red noise is presented. In all chapters, results of our computer simulations are
also present. In the fifth chapter, an application to the phase residual of source

SAXJ2103.544545 is shown. Finally, in chapter 6 we discuss our results.



CHAPTER 2

FOURIER TECHNIQUES AND POWER SPECTRUM

In most of the scientific and engineering problems, power spectrum analysis are

required. In this sense, Fourier techniques are widely used.

2.1 Fourier Transform

A Fourier Transform gives a decomposition of a function introduced in time
domain into sine waves in frequency domain. Two types of transforms can be
considered; continuos and discrete. The continuous transform decomposes an in-
finitely extended continuous function z(¢)(—oo < t < 00) into an infinite number

of sine waves:

a(f) = /_ Zx(t)emﬁdt

o(t) = / T a(f)e2mittay

—00
In the real world the data are neither infinitely extended nor continuous, so

discrete transform is used.

N
2
2mijk
aj = Z ZTre N
=%
N
1 & —2mijk
T = N Z a;e nw
. N
JI==%



where £k =0,..., N and j = —N/2,..., N/2 — 1.So, the discrete Fourier transform
decomposes the time series into N sine waves.If the time series is an equidistant
one of length T, so z; refers to a time ¢, = %.Then, the transformation is an
equidistant frequency series. Each j refers to a frequency w; = 275 /T. So it is

clear from this construction that how we can write the exponential factors in the

transformation pair.

It is interesting to note that inserting N numbers as input, N numbers as
output are generated.How we limit the maximum analysis frequency strongly

depends on the sampling interval, defined as A = T'/N. This highest frequency,

1

55 1s called the Nyquist frequency.

equal to half the sampling frequency, f% =
Hence, a_; = an—_; that is Fourier Transform coefficients are periodic in j with
period N. With this convention in mind, one can let j vary from 0 to N — 1. So
we can work with only positive frequencies. Mathematically speaking, in general,
the coefficients can be independent unless we require certian constraints such as a
real time series which is the situation in reality. Then with a constraint of a real
time series; it is obvious that |a_;| = |a;| which shows the correlation between

the coefficients. Then it is wise to use one-sided power spectrum definition for

the analysis;

2
Py = —[a;f* (2.1)
Qo

where j = 0,...N/2. An important feature is observed that power is a quantity
that can be calculated with both of the transform pairs (Persavel’s theorem). This

11



property resembles the conservation of the length of a vector in space rotations.

[1a®)Pdt = [ la(r)Pas

or for the discrete case

zk|” = — |aj\
k N j
2.2 The relation between the Discrete and Continuous Fourier Transform

In order to obtain a finite and discretely sampled time series from a continuous
one, double multiplication must be applied. The first multiplication is with a

?window function”

1, 0<t<T
w(t) =

0, otherwise.

which makes the series finite.(with the above form it is also called ”square win-
dow”) Second multiplication is with a ”sampling function” which discretizes the

series;

2409

k=—00

Consequently, the discrete series, x; can be reached after two multiplications
x(t)w(t)i(t). The Fourier Transform of the resulting series can be found easily by
using the Convolution Theorem which states that the Fourier Transform of the
product of two functions is the convolution of the corresponding transforms (van
der Klis,M. 1988). For simplicity let’s show the transform pairs with <=, then

the convolution theorem indicates that;

z(t) <= a(f)

12



y(t) <= b(f)

p(Oy(t) < alf)«b(f) = [l (s = 1)

Most of other types of transform pairs can be found from the Campbell and Foster

Table.

Then we need the Fourier Transforms of window and sampling functions. They

are found as;
W(f) =sin(zfT)/nf.

for a symmetric w(t), and

2.2.1 Aliasing

The convolution of an arbitrary function with a delta function at f; is a shifted
version of the original function; a(f) x §(f — fo) = a(f — fo). So it is obvious
that convolution with the Fourier Transform of the sampling function results in
a function in frequency space which repeats itself every N/T, twice the Nyquist
frequency,frequency units. Since the time series are real, the transforms are also
symmetric around f = 0. Then, this causes features with a frequency exceeding
the Nyquist frequency by f, (i.e. located at f = fy/2 + f) to also appear at a
frequency fwn/2 — fz, a phenomenon known as aliasing. The reflected feature is
called the alias of the original one (van der Klis 1988).

13



2.2.2 Windowing

Now let’s suppose we have a noise process whose Fourier Transform is given
by F(f) = f% (like the rth order red noise) where C is a constant and 2r is the
power-law index. Then, due to the use of a window function, the convolution of
its transform with that of the original noise process must be considered before

finding the resultant transform. This can be written as;

_ [ Csinfm(f = £)T]
fl'r 7T(f _ f/)

Fy(f) df’

Consequently, the problem called ”leakage” is observed due to the large, but
finite response at the low frequencies. The sine function inside the integrand
have considerable sidelobe effects, so each power estimate is dominated by the
response at the low analysis frequencies. The sidelobe characteristic can easily be
guessed since there is a sharp increase from 0 to 1, so apart from the peak at zero
frequency the presence of a considerable response at larger frequencies is obvious.
This effect flattens the power spectrum and unfortunately the expected power
law can not be observed. Because of this fact square window is sometimes called
”no window”. In order to recover this, the window function must be chosen to
sufficiently reduce the sidelobe response of the power density estimator so that
leakage is not a major problem (Scott et.al. 2003). Practically, every function
that rises from zero to a peak and then falls again has been named after someone
(Press 1992). A few of the more common are as follows:

-4

~ Bartlett
2

wj = 1—‘
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Figure 2.1: Window Functions

2.3 Simulations

In order to have simulations we should construct a kind of white noise process

which is ,by definition, a stationary process (< €(t)e(t+7) >= 0.26(7)) which has

15



a flat power spectrum. S = 2 is called the noise strength and < |F.(f)|* >= S
from the Persavel’s theorem, where F¢(f) is the Fourier Transform of €(t). First
integral of a white noise process is a first order red noise process with a power-law
of form P~ f~2; repeating the same procedure, after each integration a factor of
f~2 is multiplied in the power spectrum. The Figure 2.2 shows the time series of
one of the white noise realizations having 100000 points produced by a gaussian
deviate random number generator and its histogram. Also the gaussian fit to
this histogram and the power spectrum of the realization are also presented. We
found the noise strength of that noise as 0.999 from the power spectrum and the
standart deviation from the histogram as 0.996 whose square (~ 0.992) is also
a test for the noise strength. These two close numbers suggest us that we can

generate a normally deviated unit strength white noise process.

In order to test the strength of windowing, with the help of a generated nor-
mal deviated white noise process, red noise processes with different orders were
generated with repeated integrations and different subsets from these realizations
were taken, multiplied with window functions as described above, Fourier Trans-
formed; logP versus logf graphs were drawn and the slopes were found and then

averaged.

According to the simulations, it is observed that Hann window is a good choice
to recover the red noise processes; particularly the low order ones, rather than
other window functions. It is also obvious that square window(no window) is the
worst choice. Regardless of the order of the noise process, the slope of the logP
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Table 2.1: Power Law index (m=2r) estimates for the first three order red noises

window function r=1 r=2 r=3
hann 2.065F0.001 4.311F0.076  6.78F0.02
welch 2.14150.019 3.570F0.002 3.563F0.001
bartlett 2.127F0.01 3.685F0.002 3.718=F0.007
no window 1.779F0.003 1.787F0.002 1.78970.001

versus logf graphs saturates around -2 when square window is used. Also for
other window functions this method has limitations to recover higher order red
noise processes(r > 3). Also during our simulations it is observed that removing a
low degree polynomial from the noise recovers the spectrum in a more convenient
way. In addition, the number of points used in the process significantly affects
the results. For the first order red noise, the results are not significantly distinct.
However, starting with the second order red noise, the number of points and the
removal of a polynomial trend have great significance. The following results are
after removing cubic polynomial trends and using a larger window length (i.e.
more points). In order to determine the second order red noise process, again
hann window is the best choice to be applied whereas here are presented the best
results obtained from the simulations. For several other noise processes some
kinds of deviations of the order 20% from the expected power-law index are also
occured and even the histograms of power-law indices obtained from different
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noise realizations with the same order and equal length show significant changes.

Table 2.2: Power Law index (m=2r) estimates for the first three order red noises
after cubic polynomial removal

window function r=1 r=2 r=3
hann 2.057F0.001 4.011F0.075 6.57F0.01
welch 2.109F0.017 3.430F0.001 3.563F0.001
bartlett 2.081F0.008 3.582F0.002 3.643F0.005
no window 1.774F0.003 1.785F0.002 1.788F0.001
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Figure 2.2: White Noise realization (upper panel) and its histogram (lower panel)
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CHAPTER 3

TIME DOMAIN PROPERTIES OF NOISE PROCESSES

3.1 Generation of Red Power-Law Noise

As it is also stated in the previous chapters, power-law noise(PLN) processes
with negative even integer spectral indices can be produced by repeated integra-
tion of a white noise process €(t). For instance, a random walk, with a 1/ f2 power
spectrum is defined as (Scott et al. 2003);

() = [ ).

-0

It is also easy to show that there is an alternative way to define the above random
walk process from the same white noise process by the convolution of white noise

with the unit step function, H(¢) :

e e(tH(t —t")dt' = / t e(t")dt’

—0oQ

ro(t) = e(t) % H(t) = /

-0

where H(t) is the standard Heaviside step function defined as : H(t) = 1;t > 0
and H(t) = 0;t < 0. In a similar way, 1/f* noise can be made by double

convolution with the step function.

H(t)* (H(t) x€(t)) = (H(t) « H(t)) = €(t).
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The self convolution of H(t) results in a ramp function; tH ().

H(t)« H(t) = /ﬂﬁﬂﬂﬂg—ﬂmf

-0

+o0o
= / H(t —t")dt'
0

= /Otdt’

= tH(1)
Then r4(t) can be generated directly as the convolution of ¢H () with white noise:

ra(t) = (tH(t)) *€(t)

_ f (t — )e(t')d.

—oQ

Similarly, the convolution of €(t) with t?H (¢) will generate 1/f°® noise. In gen-
eral, even-integer red power-law noise can be generated directly from white noise

(Scott, Finger & Wilson 2003) as:

mm=%/tW4%¢wf (3.1)

where m=2(k+1) and is called the spectral index. For integer values of k,
m=2,4,6,... So, without the need of repeated integration of a white noise process,
we can generate a red noise process with a desired spectral index,m, by using the
equation 3.1. This formulation for r,,(¢) can also be generalized for noninteger k
values. An example of this will be given shortly. The above equation is in the
form of a general linear noise process

rMﬂ:/tmp¢%wm#

—0o0
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in which case a weight function of the form w(t)H(t) is convolved with the
white noise.It is then easy to find PDS by simply multiplying the fourier transform
of the weight function with that of white noise. When the discrete form of a white
noise process is concerned, the weight function can be viewed as a ”step” so that
the noise process can be considered as an accumulation of random steps. The
duration of the step is important in order to say that whether the noise process
is stationary or not(i.e. whether two values of the noise process separated by
a sufficiently large time interval are correlated or not). For red power-law noise
processes a correlation exists between a given value and all past values of the time
series even if two values of the basis white noise time-series are uncorrelated at
all times. So red power-law noise is intrinsically nonstationary. Using the Fourier
Transform Techniques and the Convolution Theorem, it is easy to show that the
PDS of a red power-law noise can be found as:

0.2

P(f) = o (2T fQE’““) (3.2)

where o2 is the mean power level of the underlying white noise.

3.2 Time Domain Properties of Red Power-Law Noise

The time series of any kind of noise process can be divided into two prts: a
physically realizable part starting at time ¢ = 0 and a part which refers to the
past starting at time t = 7T (T can range to —oo) and the latter contributes a

smooth function to the time series after ¢ = 0.

o) = % [ = t)kew)at + % / C(t— ¢)re(t)dt
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and m=2(k+1). As an example, for the random walk (k=0; m=2), the smooth

function will be a constant:

0
/ e(t')dt' = Cy

T

Similarly, the smooth function will be a linear trend for the time series of 1/ f*
type noise and a quadratic trend for that of a 1/f® type noise process. These
smooth functional behaviours are also presented in this study for the first three

integrals of white noise.

3.2.1 Ensemble Averaged Expectation and Variance

Since the generation of a red power-law noise depends on a white noise process,
the statistics will be directly related to the white noise statistics. The expectation

(rm(t)) will be given by:

) = ([ (=t elt)ar) = (et [ (6= t)Far.

-0 —00

If this time series is divided into two finite portions as before the result will be:

_ ({e@®) k+1

Then a zero mean white noise ({€(¢)) = 0) time series implies that (r,,(¢)) =0 as

well. The variance of r,(t) as a function of time can also be calculated from:

(r(®)?) = (%)2 <( /_t (- t’)ke(t’)dt’)2>



where for white noise (e(t)e(t')) = o.20(t — t') is used. 6(¢) is the Dirac delta
function. If, again, the integral is divided into two finite portions the variance is

finite and reduces to:

O

(rm(t)?) = (%%1) (ﬂ)Q(t LT o (14 T

The physical unit of noise strength (S=0.?) can be seen easily from the above

relation. If r,,(t) has the unit of radian, for example, it is rad?sec™(%+1). So if

we had a second order red noise in phase (i.e. k=1 or m=4), the unit of noise
3

strength would be rad?sec®.

The autocovariance can also be found in a similar manner:

(P ()t + 7)) = (%)2 (/t (t—t)F(t+7 - t’)’“dt’)

—o0
with 7 > 0. Hence the autocovariance function depends on both the current
time ¢ and the lag 7.After a long algebraic calculation it can also be proven that
the fourier transform of this autocovariance function (from 7 space to frequency

space) approach the power-law form in equation 3.2.

3.2.2 Examples

For the three cases (k=0,1,2 i.e. for 1/f? 1/f* 1/f% power-law noise), after
removing the past smooth function (i.e. taking the lower limits of integrals as 0

rather than —o0), the autocovariance functions can be found as:
<re(t)ra(t +7) >= 0t

1
<ry(t)ra(t +7) >= 8062t2(2t + 37)
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1 2,3 2 2
<ro(t)re(t +7) >= 550t (6t* + 15t7 + 107%)
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Figure 3.1: Simulated Red Noise Time Series for r=1(upper panel), r=2(lower
panel)
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CHAPTER 4

LOW RESOLUTION TECHNIQUE

In the rapidly spinning down Crab pulsar a kind of restless behaviour was ob-
served (Groth 1975a) and a new method of analysis for time series like Crab pul-
sar timing data was presented (Groth 1975b). Same behaviour was also observed
in several other radio pulsars (Cordes and Helfand 1980). This phenomenon is
thought to arise from fluctuating internal torques associated with the nature of
coupling between the neutron star crust and the superfluid interior. In the case
of accreting neutron stars, rotational spin-up suggests the possibility of simi-
lar behaviour from internal torques, but enhanced restlessness may result from
fluctuating external torques associated with the process of matter accretion. The-
oretical studies showed that the response of a neutron star to fluctuating torques
can be quiet complex, however they can be described by a simple noise process
which has a definite power spectrum.The complexity can also be revealed through
the power spectrum of pulse phase, pulse frequency or frequency derivative. Not
only there are problems including the non-equispaced sampling of time series aris-
ing from real astronomical data, but there are also problems due to the nature of
the noise process present in the data.
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4.1 Nonstationarity

For the red noise determinations the most important problem is the nonsta-
tionarity. By definition, the autocorrelation function < x(¢1)z(t2) > of a sta-
tionary process z(t) is a function of one variable, t; — t5. So, the process is in
some sense independent of local time; only the time difference between the data
points are important. Since the power spectrum is the cosine transform of the
autocorrelation fuction (Freeman 1958 page 35), then it is only a fuction of one
frequency. For a non-stationary process, the autocorrelation function not only
depends on the time difference; but it also depends on the local time through

t1 + to term. So, a useful power spectrum is not obtained.

After removing the secular trends from the data we can end up with only the
noise component which is discussed by Groth (Groth 1975b). He expands the
noise process with orthonormal polynomials (Legendre polynomials, P;, where j
is the degree of the polynomial). Covariances of the expansion coefficients give
rough estimates of the power spectrum; however non-stationarity must be re-
moved. Non-stationarity is the characteristic of a red noise process. Three types
of noise models can be considered; random walk in phase,phase noise (PN); ran-
dom walk in frequency, frequency noise (FN); random walk in frequency deriva-
tive, slowing-down noise (SN).
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41.1 PN,FN,SN

With the PN model,
¢ =2 0:H(t—1;)
where t; is the time of ith step, d¢; is the size of the ith step, H(t) is the unit

step function, the autocorrelation function is found to be
< o(t)p(ty) >= R < 6¢° > t.

R is the average rate of steps; RT is the number of steps (T is the total time
span). < d¢? > is the second moment of the step size distribution. . is the

smaller of ¢; and t5. In a more symmetric form;
t< == ta — 7—/2

where t, = (t1+1%2)/2 and 7 = |t;—t3|. Sot, term brings the non-stationarity. It is
found that the non-stationary part only contributes to the first three covariances
(j < 1 ,i.e. non-stationarity is confined to a few of the expansion coefficients
rather than spread out among all the coefficients). So, for j > 1, the power
spectrum which is due to only the stationary part can be calculated with inserting
f; = 7/2T since jth degree Legendre polynomial has j real zeros between 0 < ¢ <
T. Then f; corresponds to ”quasifrequency”. In a way this resembles the Fourier
transforming. In the end, Power ~ fj_2.

Similarly for FN stationarity is found for j > 3, and 5 > 5 for SN. And for

FN, Power ~ fj*4. ; for SN Power ~ fjfﬁl. FN model is given as;
¢=> oyt —t;)H(t—1;)
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SN model is given as;

¢ = Z (6wn),(t — t:)°H(t — t;)

Hence, the time derivative of PN brings delta functions in the summation since
the derivative of step function is a delta function. The power spectra of that
process turns out to be independent on the frequency and it is flat; then this is
called white noise. Most of the time the term ”order” is used. If power spectrum
of a noise process goes as f~%", this process is called "rth order red noise” (i.e. it

is the rth integral of a white noise process).

4.2 Polynomial Estimator Method

This method takes its roots from the previous section and from the previous
chapters. Up to now, we have encountered two important problems while trying
to find the power spectrum of a red noise; one is the ”leakage problem”, the other
is the "non-stationarity”. Both of them are solved by this technique. Sampling
our time series with a function which is considered to take care of the ”leakage”
problem;the necessity to remove the non-stationarity and the use of Legendre
polynomials are the basic clues of this method.

The power estimate can easily be written as (Deeter et al. 1982)

p= [ / ’ g(t)x(t)dtr (4.1)

Here x(t) is a time series, g(t) is a sampling function. If x(t) is a stationary
random process like a white noise, the ensemble average of the power spectrum
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can be found as (Freeman 1958 page 105)

< P>= [IG(NIS(f)df (4.2)

G(f) is the transfer function, fourier transform of g(t). S(f) is the power density
which obeys, for a rth order red noise, S = K,(2rf)”>". Here this time K, is
what we call "noise strength”. Again the leakage problem must be solved. This
arises since the expectation of power estimate may not be dominated by power at
the centroid of G(f) but rather by power at the lower frequency sidebands, if the
spectrum is red and sufficiently steep. This problem can be avoided by requiring
G(f) to go to zero (for small f) at least as rapidly as f7 2. It is assured if the first
7 + 5 terms in the Maclaurin expansion of G(f) vanish. G(f) can be written as
the Fourier transform of g(t), the terms in the Maclaurin expansion can be found
by taking the derivatives with respect to frequency and after setting f equal to
zero. After each derivative there appears a factor of t coming from the derivative
of the exponential. Then the requirement here produces the following so called r
moment conditions.
b )

/a g()tidt = 0 (4.3)
for 0 < i < r.Here there seems to be an ambiguity that we require x(t) to be
stationary, however we can take S(f) to be a power spectrum of a red noise process.
In fact the implemented moment conditions also solves the puzzle; since a kind
of sampling function which satisfies the above moment conditions automatically
removes the non-stationarity in the noise (remember that non-stationarity only
contributes to the low degree polynomials depending on the order of noise, Groth
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1975b). As might be expected, imposing the moment conditions to order r on
sampling function is closely related to removing a polynomial trend of degree r-1
from the observed data. Thus any sampling function g(t) applied to the data
with a polynomial of degree r-1 removed will produce a valid power estimate for
rth order red noise. For example, to estimate a second order red noise cubic,
quartic,... polynomials can be used as sampling functions. In fact in our study

we have used Legendre-like polynomials such as what Groth had used.

Integrating the equation 4.1 by parts,the power estimate in the time domain

becomes
pP= l / ’ gr(t)xr(t)dtr (4.4)

g "(t) is the particular rth integral of g(t) and z"(¢) (rth derivative of x(t)) is
the underlying white noise process if x(t) corresponds to a rth order red noise.

Considering 4.2, a similar form of average power estimate can be obtained

<P>=K, / ’ g (0)] (4.5)

<P>=K, / ’ [ar(5)] ar (4.6)

Noting that G="(f) = (i27 f)"G(f), the nominal frequency of the estimate is in
fact given by the centroid of f~2"|G(f)[>. This means that,to some extent, the
nominal frequency also depends on the order of the noise process. Deeter, in the
appendix part of his paper (Deeter 1984) repeats the calculation, makes use of
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4.2 and ends up with for discrete sampling g(t) = >, g;6(t — t;) ;

( (; gjxj) )= Kr% ; ;gjgkﬁj — t[" (4.7)

t;’s are the discrete times of sampling, need not be equally spaced which is the

power of this low-resolution method.

4.2.1 Bandpasses of Sampling Functions

The selection of a sampling function for the recovery of red power spectra
hinges largely on the features of its frequency bandwidth. The effective frequency
response can be very sensitive to the noise process itself. Due to 4.6, the effective
frequency response of g(t) is given by the transfer function of ¢~"(¢) which can

be obtained in a direct manner;

2

G = @nf)TIGN) (4.8)

4.2.1.1 Simulation Results

Using equation 4.8 the bandpass responses of the sampling functions can be
found. We have generated linear, quadratic and cubic polynomials each of which
spans a unit time interval. In the Figure 4.1 the responses of these polynomials
are shown. Horizontally to the right, the columns corresponds to the degree
of the noise process going as r=1,r=2,r=3. Vertically to the bottom, the lines
correspond to the polynomial order;linear,quadratic, cubic.

Since the rth integral of the sampling function has a primary concern when
finding the frequency response, in the time domain, the three moments with
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respect to this rth integral of the sampling function can be found. The kth

moment can be written as

k!

k
g

My = (1) (m+

Finally the half-width can be written as;

1/2

AT = [My/My — (M1 /Mo)’]

From this uncertainity in the time domain, one can switch back to the frequency
domain by introducing a § factor, which is the product of AT and median fre-
quency obtained from the frequency response of the rth integral of the sampling

function;
ﬂ(ra m) = Azjfmed(ra m)

where m designates the order of the noise process. The calibration of this factor
is given by Deeter (Deeter 1984). And in this study the calibration of Deeter is
also checked and modified for our simulations. So if one can calculate AT from
the data, median frequency can also be found from the calibrated § factor. This

is what we have done in the calculations.

4.2.2 How to use the Method?

From a set of noise data, a single noise strength estimate can be obtained
at the longest time scale (corresponding to the lowest frequency) by applying
the estimator to the entire data set.The data set can then be divided into two
equal parts, and a scaled version of the estimator applied to each part to obtain
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a noise strength estimate at twice the lowest frequency ; in turn, the set can be
divided into fourths, eights,and so forth. A single noise strength estimate can be
obtained by averaging the individual estimates. Not each estimate for a given
time scale is the same, so averaging of the median frequencies is also required.
For the nonoverlapping estimators, the stability of each average estimate for each
time scale is given by the width of the x? distribution whose number of degrees
of freedom equals the number of individual estimates (Deeter 1984 and also Ap-
pendix A). While displaying the results graphically, it is a choice to plot log-log
graphs of noise strength estimate versus frequency. However, log distribution
differs with that of our usual distribution. A kind of bias is introduced by Deeter

et al. (1989):

B = <logK > —log < K >

12

1 1
—[—+ —2]l0ge
n o n

and the variance is given as

2 2 4
var(logK) = [ﬁ + 3 + ﬁ] (log e)?

n here is the number of degrees of freedom. If the logarithms of the noise strength
estimates are used in model fitting, this bias must be subtracted so that all the
estimates of log P will have the same expectation for the assumed noise process.

Hence in this method, the order of the noise comes into the picture as an
input. So it must be assumed and supplied by the user and the linearity of the
final result must be negligible for the assumption to be correct (flat spectrum)

since according to equation 4.7 K, is constant.
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4.3 Simulations

4.3.1 Model Test

The generated, equally spaced (unit time sampling) first order and second
order noise realizations (with different seed numbers in the generation algorithm)

are used to test the model.

4.3.1.1 r=1 type noise

We have generated a r=1 type noise process, whose corresponding white noise
variance is 1 (i.e. the noise strength), with 100000 data points. Firstly the
data set was divided into subsets for which cubic and quadratic polynomials,
which were found to satisfy the desired moment conditions, were used as sam-
pling functions. The average power of subsets showed that quadratic polynomial
is a better sampler for recovering a r=1 type noise process with a closer average
noise strength (~ 1) and with an uncertainity calculated by dividing the stan-
dart deviation of the distributions by the square root of the number of subsets
(Bevington 1992)(see Table 4.1).

The results also show that the noise strength can be recovered more precisely
when the number of averaged values are increased (compare the 2nd and 3rd lines

in the Table 4.1).

4.3.1.2 r=2 type noise

Similarly, for the second order red noise process check the Table 4.2.
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Table 4.1: Low Resolution Technique applied to the first order red noise

num. of Subsets Seed FEstimator Noise Strength

1000 -2 cubic 0.94 F 0.04
1000 -2 quadratic 0.98 F 0.04
10000 -2 quadratic 1.00 F 0.01
100 -5 cubic 1.09 ¥ 0.12
100 -5 quadratic 0.98 F 0.11

In Figure 4.2 are there two histograms of the noise strengths of two different
noise processes (r=1 and r=2 types). Quadratic and cubic polynomials were used
respectively.

The figures show a characteristic of a distribution of a x? with one degree of
freedom. This is also justified in Figure 4.3 with scaling the corresponding x?
distribution (dashed lines) for the second histogram in the previous figure. This
also proves experimentally that the stability of the estimates really depend on
chi-square distribution. This is expected because the red noises are produced
from a white noise which has standart normal distribution and then its modulus
square must have a chi-square distribution which is related to the noise strength
(Appendix A).

Similar simulation was also applied to the third order red noise process to
correctly recover the power spectum with a noise strength of 1 (the variance of
the basis white noise process). For that, cubic and quartic polynomials were used
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Table 4.2: Low Resolution Technique applied to the second order red noise

num. of Subsets Seed FEstimator Noise Strength

1000 -2 cubic 1.01 = 0.05
1000 -2 quadratic  0.95 F 0.04
100 -5 cubic 1.02 + 0.09
100 -5 quadratic 1.05 F 0.08

as sampling functions. It is seen that quartic polynomial for the third order red
noise process is a good choice to recover the spectrum. This simulation also shows
the strength of the method over the windowing method which has a limitation

when the order increases.

Table 4.3: Low Resolution Technique applied to the third order red noise

num. of Subsets Estimator Noise Strength
1000 cubic 0.95 F 0.05
1000 quartic 0.99 F 0.04
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4.3.2 p factor calibration

The B factor values for a given noise process and the estimator are given in
detail by Deeter (Deeter 1984). We have also checked the validity of his results
and they turned out to be applicable. As in this study we have predominantly
worked with a second order red noise process and ,as a consequence, worked with
cubic polynomial estimators, the § factor for that case was crucial. Considering a
cubic polynomial on the unit interval, we have found it to be 0.159 corresponding
to a frequency of 0.921 (unit of frequency) whereas it is given by Deeter as 0.158
with a corresponding frequency 0.918 (unit of frequency) which is not so distinct
from ours. This calculation is in fact easy but the point is that the polynomial
must be constructed over an interval of type (-a,a), i.e. for the unit interval it
should be (-0.5,0.5). The standard deviation from the mean frequency was found
as 0.49 which is approximately half of the median frequency. That also gives
an intuitive answer for why we use the median frequency in determining the g
factor because it is nearly the uncertainity in the frequency domain. As an other
simulation, we have tried to find the frequency response of the cubic polynomial,
lasting for two unit time, to the second order red noise for two different sampling
densities; one with 25 points and other with 50 points in that interval. Both
of the simulations gave a median frequency around 0.5 frequency unit (which is
expected for a 2 unit time interval) and a standart deviation half of that median
frequency; consequently the same [ factor as above. This shows the similarity
property for different analysis frequencies and the stability of the 3 factor.
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4.3.3 Window function responses

Deeter explained that any sinusoid can satisfy only those moment conditions
forced by parity consideration; however this problem can be circumvented by
polynomial trend removal . Unfortunately, simple trend removal does not produce
sinusoid estimators with good bandpasses. Except for first order red noise, the
responses are mostly bimodal and concentrated at very low frequencies rather
than at nominal frequencies determined beforehand. So, for red noise processes
sinusoids are excluded as sampling functions (Deeter 1984). In the previous
chapter we deal with window functions while determining the order of noise.
However, some problems arised when the order gets larger. In windowing method,
the data is multiplied by the window and the fourier transform of the product
is taken. This is equivalent to multiplying the data with the product of window
and a sine function. So this product can be,in fact, considered to be a sampling
function. In order for this function to satisfy the desired moment conditions
polynomial trends up to desired order can be removed and then the result can be
used as a sampling function. We have taken the Hann window with a unit time
interval, multiplied it with a sine function with a unit time period, removed the
cubic trend from the data and found the frequency responses of this sampling
function for three different order noises (r=1,r=2,r=3). The results are given in
Figure 4.4. The results show that the responses are mostly unimodal and highly
centered at the frequencies larger than the nominal frequency. The presence of
window function reduced the bimodal structure of pure sinusoid. Horizontally to
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the right the order of the noise is increasing.

A similar procedure was applied to the product of Hann window and a sine
function, without removing the polynomial trend, defined in a unit time interval
(i.e. with a nominal frequency f=1). The results show that the frequency re-
sponses are unimodal but concentrated at very low frequencies, especially for the
higher order noise processes. As a result, the study here is a good indication of

the limitation of the use of window functions in the previous chapters.

4.3.4 Experimental Sensitivity

There is also a question that must be answered that why we use cubic poly-
nomials in the case of the determination of the second order red noise or quartic
polynomial for third order red noise. While using the method, the noise strength
at a set of analysis frequencies with octave spacing are estimated. Systematic
use of the same degree polynomial from an orthogonal set on every analysis time
scale yields a set of local noise strength estimators that would have identical
relative bandpasses if applied to equispaced data. This property of similarity is
important for the recovery of power-law power spectra with large, negative ex-
ponents. The minimum polynomial degree is set by the power-law exponent and
by the level of protection desired against contamination of the estimator. For
instance, for a second order red noise in pulse phase, one would need to use at
least the second-degree polynomial from the orthogonal sequence. However, the
cubic polynomial would have to be used in order to provide protection against the
possibility that the noise might be slightly redder than second order (one level of
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protection). There are several reasons for employing the lowest possible degree
consistent with adequate protection (Deeter et.al. 1989). First, higher degree
polynomials can not be applied to the small number of data points. Depending
our observations, contamination of quartic polynomial is more dominant (after
0.042 unit frequency, i.e. below 24 unit time) than that of cubic polynomial (after
0.13 unit frequency, i.e. below 8 unit time) while determining the second order
red noise. This means that one can construct power density estimators, not con-
taminated from the estimator, up to larger analysis frequencies with the use of a
lowest possible degree estimator. Also, responses of the estimators with one level
of protection are more likely to be unimodal and centered approximately at the

inverse of the sampling interval (i.e. at f~1/T).
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CHAPTER 5

APPLICATION

5.1 Sax J2103.5+4545

The transient X-ray source SAX J2103.5+4545 was discovered by the Wide
Field Camera on the BeppoSAX X-ray satellite during the outburst between
1997 February and September(Hulleman et.al. 1998). The source showed 358.61
s pulsations. The pulse arrival times provided by the RXTE proportional counter
array (PCA) yielded an eccentric orbit (e=0.4F0.2) (Baykal et al. 2000). The
X-ray spectrum was consistent with a power-law model. The photon index was
1.27 F 0.14 and the absorption column density was (3.1 F 1.4)x10%2c¢m™2. The
orbital parameters suggest that the source has a high-mass companion. Another
outburst was detected 2 years later by the all-sky monitor (ASM) on the Rossi X-
Ray Timing Explorer (RXTE). SAX J2103.5+4545 continued to be active more
than a year after the ASM detectors detected it in 1999 November. The 358 s
pulsar spun up for 150 days, at which point the flux dropped quickly by a factor
of 7, the frequency saturated, and, as the flux continued to decline, a weak spin-
down began. The spin-up/flux correlation can be fitted to the Ghosh and Lamb
derivations for the spin-up caused by accretion from a thin, pressure dominated
disk (Ghosh et al. 1979). A distance of 3.2 F 0.8 kpc and a magnetic field of
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(12F3)x 102G were obtained (Baykal et.al. 2002). The outburst could have been
caused by an episode of increased wind from a Be star, such that a small accretion
disk was formed during each periastron passage. The distance estimate implied

that the X-ray luminosity observed was between 1x10%¢ and 6x103* erg s=*.

5.2 Application of the Low Resolution Technique

For the timing noise analysis of SAX J2103.544545, the phase noise data
extending over a time interval of 380 days was used. The data set was divided
octave by octave, cubic polynomial was used as a sampling function for each
portion assuming the presence of the second order noise process, for each analysis
frequency logarithmic averages of the noise strength estimates found were used
and at the end the correction for the biasses was considered (as it was discribed
in the previous section). For the lowest possible analysis frequency, obviously we
have 1 degree of freedom, and for the larger frequencies the degrees of freedoms go
on like 2,4,8.12,17. The weight of each estimate was calculated depending on the
degree of freedom as mentioned before. After the fifth division measuremental
error tends to dominate.

The log-log graph of noise strength versus analysis frequency shows that the
assumption that there may be a second order red noise process turned out to
be favourable since after linear fitting (taking into account the weights of all
points), the linear coefficent is around 0.048457 with an error 0.271781. The
noise strength turns out to be -19.319009 with an error 1.718067. So the linear
trend is somewhat negligible and the application of the low resolution method to
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Figure 5.1: log-log graph of noise strength versus analysis frequency for SAX
J2103.5+4545 using r=2, crosses show the measuremental error

this source revealed that the timing noise of SAX J2103.544545 can be modelled
by a frequency noise (FN) or a random walk in frequency. This is also equivalent
to a white torque noise.

Application of several windows to recover the expected power-law for this
source (interpolating the data with a cubic spline routine in order to have a
equispaced data, Press 1992) revealed that the power-law index, m, should be
greater than 3.5 (m must be 4 for a second order red noise process). Since
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Table 5.1: Noise Strength versus Analysis Frequency of SAX J2103.54-4545 using
r=2

Log f(1/sec) Log S(rad?/sec?) Measuremental Error
(-7.868616 , -7.352865) (-17.292905 , -15.282905) -26.065305
(-7.581515 , -7.065764) (-19.413962 , -18.283962) -23.657153
(-7.278862 , -6.763111)  (-20.27789 , -19.57789) -22.959205
(-6.952960 , -6.437210) (-20.032835 , -19.582835) -22.295984
(-6.542362 , -6.026611) (-20.018142 , -19.658142) -20.744804
(-6.342198 , -5.826447)  (-19.596841 , -19.286841) -19.658635

they were just single estimates they can be simply from the far end tail of the
distribution. In addition, we could not apply the windows to whole data due to
the large gaps between the data points (preventing us from interpolating the data
thoroughly); i.e. we used at most half of the data in this application (remember
the sensitivity of this windowing method to the number of data points, dense
sampling and length of the window, especially to the red noise processes with

order greater than 2).
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CHAPTER 6

DISCUSSION AND CONCLUSION

In the last part of this study the results and accuracies of the techniques that
are used to determine the red noise processes and their application to the source
SAX J2103.5+4545 will be discussed. The simplest way to determine a power
spectrum is mostly done by using the well-known Fourier Techniques whereas
it is the worst choice while determining the red noise due to the leakage prob-
lem discussed in Chapter 2. However using an appropriate window function can
be a remedy to recover this problem. Simulations show that this is applica-
ble;especially after removing a polynomial trend from the time series, for low
order red noise realizations (compare Table 2.1 and Table 2.2). The strong de-
pendence on the number of points, the need of removing a polynomial trend and
the applicability up to at most second order red noise costitutes the defects of
the windowing method. Being a more convenient and powerful method, low res-
olution technique is reviewed; the use of Legendre-like function which satisfies
certain moment coditions (equation 4.3) and has a narrow bandpass peaked at
the nominal frequency (corresponds to one-level of protection, Figure 4.1) is re-
quired as a sampling function. The low resolution technique turns out to be a
mixed type, a bridge between the time domain and frequency domain. The tables
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4.1, 4.2, and 4.3 indicate the accuracy of the method and Figure 4.3 reflects the
stability of a single noise strength estimate that is turned out to be a x? distribu-
tion. As the order of the red noise increases, the smooth functional behaviour is
also apparent (Figures 3.1 and 3.2) and so is non stationarity (section 4.1) which
must be removed in timing analysis. The non-stationarity can also be removed
by the low resolution technique (equation 4.7)i.e. while determining the noise
strength estimate only time differences between the data points are important,
not the local times. Application of this technique to the transient source SAX
J2103.5+4545 reveals the presence of a white torque noise behaviour with a noise
strength value in between (5.4 x 1072! 1 x 107')rad?sec™3. We found that this
source appears also on the linear trend in the Noise strength versus Luminosity
graph (Figure 1.1) like the other accretion powered X-ray sources shown in Chap-
ter 1. The low noise strength observed for this source may also be a signiture of

its being a transient system.
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APPENDIX A

x? DISTRIBUTION

If X is a random variable, the function given by f(z) = P(X = z) for each
x within the range X is called the probability distribution of X which has the
following properties: (a) f(x) > 0 for each value within its domain, (b) >, f(z) =
1 where the summation extends over all the values within its domain. Using this
function the mean, the variance and several other statistical properties of X can
be found easily. So, the functional form of f(z) should be known for any random
variable X.In the continuous case, the summation turns out to be an integral. As

an other definition, the function

F(z) = P(X <2) =Y /(1)

t<z

is called the distribution function, or the cumulative distribution of X. From the

definitions it follows that

F(a) < F(b) for any real numbers a and b and if a < b

In the continuous case P(a < X < b) = [’ f(z)dz where f(x) is now the

a

probability density function. And hence

/_o:of(x)da: =1
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From these definitions;

_dF(@)
dx

where derivative exists

A.0.1 Moment Generating Functions

The rth moment about the origin of a random variable X, denoted by ,u’r is
the expected value of X7:

b= B(X7) =Y 0" - f(2)

T

These moments can easily be found by introducing a moment generating function

as:

Mx(t) = BE(e™) =3 e - f(2)

z

and expanding e'X, inserting the expansion into summation and eventually finding
the coefficients of i—: The coefficients turn out to be the desired moments of the
distribution. It is also easy to see that the rth derivative of the moment generating
function with respect to ¢t at ¢ = 0 is the rth moment about the origin (see Miller
M., page 148).
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A.0.2 Gamma Distribution

A random variable X has a gamma distribution and it is referred to as a

gamma random variable if and only if its probability density is given by

9(z;0,8) = mr;m)xa_le_m/ﬂ

forz >0and a> 0,5 > 0.

ING) :/0 y* e Vdy

for @« > 0, is the well-known gamma function.When o« = v/2 and § = 2 the
distribution has a special name called chi-square distribution:

1 v=2
f(z) = mm 2

-z
2

(&

for x;0. The parameter v is referred to as the number of degrees of freedom. The

mean and the variance of the chi-square distribution are given by;

p=v
2

o‘=2v

The moment generating function can be found as:

Mx(t) = (1 - 2)™/2

A.0.3 Normal Distribution

The distribution function




is called the normal distribution function where p and o are the mean and the
variance respectively. If the former is 0 and the latter is 1 the distribution is

called the standard normal distribution.
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APPENDIX B

FINDING THE PROBABILITY DENSITY FUNCTIONS

By the help of three techniques; distribution function technique (DFT), transfor-
mation technique (TT) and the moment-generating function technique (MGFT)
the probability density function of a random variable Y = u(X;, Xo, -+, X,,).
can be found. As an example, by using DFT and TT, it can be shown that the
probability density distribution of Z = X?2 is a chi-square distribution with 1
degree of freedom if X has the standard normal distribution. (see Miller, page

248)

B.1 Moment Generating Function Technique

This technique is powerful when we deal with the linear combinations of in-
dependent random variables (i.e. the multivariate distribution can be separated
flz,y,2,...) = f(x).f(y).f(2)...). By the help of this technique, it can be shown
that the moment generating function of ¥ = X; + Xy + X3+ -- -+ X,, where X;

are all independent can be given as:
My (t) = J] Mx,(?)
i=1

where My, (t) is the moment-generating function of X;(¢)(see Miller, page 262).
So, if all the X;’s have chi-square distributions, the distribution of Y is again a
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chi-square distribution with a number of degree of freedom which is equal to the
addition of individual degrees of freedom. At this point we should remember the
moment-generating function of chi-square distribution and notice that the mul-
tiplication of several of this brings an exponential which is equal to the addition
of the all v’s.

Mx(t) = (1—2t)™/"
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APPENDIX C

C ROUTINES

C.1 Finding The Average Noise Strength of Uncorrelated Sets Of Distinct Noise

Processes With Equal Length And Order

#include <stdio.h>

#include <math.h>

#define N //number of the points that will be read from the whole data

#define B //number of subsets

#define M //must be greater than D

#define D // D-1 is the degree of polynomial that will be used as a
sampling function

#define R //order of the noise

int main(void) {

int 1,k,i,n,j,s,r,jj;
double m,q,sum,suml,norm;
double g[N+1] [M+1];
double w[N+1];

double t[N+1];
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double x[N+1];
double diff,c,power,ortapower,ave,max,min,ortalogpower;
double p[B+1];

FILE* inp;

inp=fopen("noisedata.txt","r");

// read the data
for (k=1;k<=N;k++) {
fscanf (inp, "%d%1f",&1,&m) ;
t[k]=(double) (1);
x[k]=m;
}
s=N/B;
for(j=1;j<=B;j++) {
9=0.0; sum=0.0;
for(i=1;i<=s;i++) {
sum=sum+t [(j-1)*s+i] ;
q++;
ave=sum/q;
for(i=1;i<=s;i++) {
t[(j-1)*s+il=t[(j-1) *s+i]-ave;
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}
// construct orthonormal polynomials
n=M-1;
for(i=1;i<=s;i++) {
wl(j-1)*s+i]=1.0;
}

for(r=1;r<=n+1;r++){

if(r==1) {
for(i=1;i<=s;i++) gl(j-1)*s+i][1]1=1.0;
}

else {

for(i=1;i<=s;i++) gl(j-1)*s+i] [r]l=pow(t[(j-1)*s+i],(r-1));

for (jj=1;jj<=r-1;jj++) 1
sum=0.0;
for(i=1;i<=s;i++)

gl(j-1)*s+i] [r]=g[(j-1) *s+i] [r]-sum*g[(j-1)*s+i] [jj];

}
sum=0.0;
for(i=1;i<=s;i++)
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sum=sum+w[(j-1) *s+il*g[(j-1)*s+i] [r] *g[(j-1) *s+i] [r];
sum=sqrt (sum) ;
for(i=1;i<=s;i++) gl(j-1)*s+i] [r1=g[(j-1)*s+i] [r]/sum;

3

// estimate the noise strength

sum=0.0;
for(i=1;i<=s;i++) {
sum=sum+x [(j-1) *s+il*g[(j-1)*s+i] [D];
}
sum=sum*sum;
sumi1=1.0;
for(k=1;k<=2*R-1;k++) suml=sumixk;
g=(double) (pow(-1,R))/(2.0%suml) ;
¢c=0.0;
for(k=1;k<=s;k++) {
for(i=1;i<=s;i++) {
diff=fabs(t[(j-1)*s+k]-t[(j-1)*s+i]);
c=c+g[(j-1)*s+i] [D]1*g[(j-1) *s+k] [D]*(pow(diff,2*R-1));

3
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NOrm=qg*c;

power=sum/norm;
pljl=power;
printf ("%f\n" ,power) ;

}

// for each subset noise strength is found. You can take the average
// or the logarithmic average of those, check for the bias,plot the

// histogram of your results,....

return(0) ;

}

C.2 Plotting Histogram

#include <stdio.h>
#include <math.h>
#define N // number of points in the data

#tdefine BLM // number of bins

int main(void) {
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int i,t;

double y[BLM+1];
double p[N+1];

double m,max,min,fark;

int out[BLM+1];

FILE *inp;

inp=fopen("gts.out","r");

// read the data
for(i=1;i<=N;i++) {
fscanf (inp, "%d%1f\n",&t,&m) ;

plil=m;

min=p[1];
for(i=2;i<=N;i++) {
if (pl[il<min) min=p[il;
}
// find the minimum value and subtract it from the whole values
for(i=1;i<=N;i++) {
plil=p[i]l-min;
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}
// find the maximum of the values after the above subtraction
max=p[1];
for(i=2;i<=N;i++) {
if(p[il>max) max=p[i];
}

// reset the counter
for(i=0;i<=BLM;i++){

out[i]=0;

}

for(i=1;i<=N;i++) {
out [(int) ((double) (BLM)* (p[i]/max))]++;
}
// construct the bins
for(i=0;i<=BLM;i++) {

y[i]l=min+(double) (i) *(max/(double) (BLM)) ;

for(i=0;i<=BLM;i++){
printf ("%flchehd\n",y[il,’> ’,’ ’,out[il);
}
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fclose(inp);
return(0) ;

}

C.3 Finding Noise Strength By Using Orthonormal Polynomials With Imple-

menting The Required Division For Each Analysis Frequency

#include <stdio.h>

#include <math.h>

#define N \\number of data points
#define Mo \\ choose larger than D
#define D \\ D-1 is the polynomaial that is used for sampling
#define R \\ order of the noise process
int main(void) {

int 1,k,i,n,j,s,r,jj,a,z,m2,u;

double m,q,sum,suml,sum2,norm,ml1,12,T;
double f[ ];

double bl ];

double fi[ 1;

double sigmal ];

double pil 1;

double M[ ];

double g[ 1[ 1;

double w[ 1;
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double t[ 1;

double t2[ 1;

double x[ 1;

double diff,c,power,ave;

double p[ 1;

FILE* inp;

FILE* inpl;

inp=fopen("data.txt","r");

inpl=fopen("divide.txt","r");

for (k=1;k<=N;k++) {
fscanf (inp, "%1£%1£f%1f\n" ,&12,&m,&nl) ;
t2[k]=12;
t2[k]=(double) (j);
x[k]=m;

}

// we have read the data

for(j=1;j<="number of lines in divide.txt";j++) {

fscanf (inp1,"%d%d\n",&1,&a) ;

// find the mid time for each set and subtract it from all the times in

//that set
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q=0.0; sum=0.0;
for(i=a;i<=1l;i++) {
q=q+1.0;
t[i]=t2[i];
sum=sum+t [i] ;
}

ave=sum/q;

for(i=a;i<=1;i++) {
t[il=t[i]-ave;

}

// for each set construct orthonormal polynomials

n=Mo-1;

for(i=a;i<=1;i++) {

wl[i]=1.0;

for(r=1;r<=n+1;r++){

if(r==1) {

for(i=a;i<=1;i++) gl[i][1]=1.0;
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else {

for(i=a;i<=1;i++) glil [r]1=pow(t[i], (r-1));

for(ji=1;jj<=r-1;jj++) {
sum=0.0;
for(i=a;i<=1;i++) sum=sum+w[il*g[i] [r1*gl[i][jj];
for(i=a;i<=1;i++) glil [r]1=gl[i] [r]-sum*g[il[jjl;

}

sum=0.0;
for(i=a;i<=1;i++) sum=sum+w[il*g[i] [r]1*g[i][r];
sum=sqrt (sum) ;
for(i=a;i<=1;i++) glil[r]=g[i] [r]/sum;
}
// choose the polynomial with order D-1 by inserting D

// find the noise strength

sum=0.0;
for(i=a;i<=1;i++) {
sum=sum+x [1]*g[i] [D] ;
}
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sum=sum*sum;

// normalization

sum1=1.0;

for(k=1;k<=2*R-1;k++) suml=sumilx*k;

g=(double) (pow(-1,R))/(2.0%suml);

¢=0.0;
for(k=a;k<=1;k++) {
for(i=a;i<=1;i++) {
diff=fabs(t[k]-t[il);
c=c+g[i] [D]1*g[k] [D]*(pow(diff,2%R-1));

}

NOTM=Q*C;
power=sum/norm;

pLjl=power;

// using second moments find f(med)!
m2=D-1;
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for (k=0;k<=2;k++) {
suml=1.0; sum=1.0;
for(i=1;i<=k;i++) {

suml=sumilx*i;

for(i=1;i<=(k+m2) ;i++) {
Sum=sumx1i;
}

c=(double) (pow(-1,m2))*suml/sum;

sum2=0.0;

for(i=a;i<=1;i++) {

sum2=sum2+g[i] [D]*pow (t [i] ,m2+k) ;
}

M[k]=c*sum2;

T=(M[2]/M[0])-C(M[1]*M[1])/ (M[0]*M[0])) ;
T=sqrt(T);
£[j1=0.1584/T; // from the beta factor calibration(for cubic polynomial

//and second order noise process)
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sigmal[j]=(£[j]1/0.92)%0.49; // bandpass for the above case due to

//simulations

}

return(0) ;

}

76



