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ABSTRACT

NUCLEAR DISSIPATIVE DYNAMICS IN LANGEVIN APPROACH

Tanrıverdi, Vedat

Ms., Department of Physics

Supervisor: Prof. Dr. Ahmet Gökalp

Co-Supervisor: Prof. Dr. Şakir Ayık

June 2004, 43 pages.

In this thesis Langevin approach is applied to analyze the nuclear dissipative

dynamics in fission and fusion reactions. In these investigations, the nuclear

elongation coordinate and the corresponding momentum are chosen as collective

variables. By considering changes in these variables the decay rate of fission

and the formation probability of fusion for heavy ion reactions are calculated.

These calculations are performed using simulation techniques and the results

thus obtained are compared with the corresponding results of analytic solutions.

Keywords: Dissipative nuclear dynamics, Brownian motion, decay rate, fission,

fusion, heavy-ion fusion
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ÖZ

LANGEVIN YAKLAŞIMI ÇERÇEVESİNDE ÇEKİRDEKSEL DAĞITICI

HAREKETLER

Tanrıverdi, Vedat

Yüksek Lisans, Fizik Bölümü

Tez Yöneticisi: Prof. Dr. Ahmet Gökalp

Ortak Tez Yöneticisi: Prof. Dr. Şakir Ayık

Haziran 2004, 43 sayfa.

Bu tezde fizyon ve füzyon tepkimelerinde çekirdeklerinin çarpışma dinamiğini

analiz etmek için Langevin yaklaşımı uygulandı. Bu araştırmalarda nükleer

uzama koordinatı ve karşılık gelen momentum kollektif değişkenler olarak seçildi.

Bu değişkenlerdeki değişimler göz önüne alınarak fizyonun bozunma hızı ve ağır

iyonlar için oluşum olasılığı hesaplandı. Bu hesaplar simülasyon teknikleri kul-

lanılarak yapıldı ve elde edilen sonuçlar analitik çözümlerin sonuçlarıyla karşılaştı-

rıldı.

Anahtar Sözcükler: Atom çekirdeklerinin çarpışma dinamiği, Brown tipi hareket,

bozunma hızı, fizyon, füzyon, ağır iyon füzyonu

v



To My Family...

vi



ACKNOWLEDGMENTS

I am deeply indebted to my supervisor Prof. Dr. Ahmet Gökalp for his guidance,
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CHAPTER 1

INTRODUCTION

It is known that a nucleus is made up with protons and neutrons together known

as nucleons. The main difference between them is their charges. Proton is a

positively charged particle. On the other hand, neutron is a chargeless particle.

In addition, there is a small difference between their masses. Of course their

quark structure is different, however this is out of the scope of this thesis. The

main interaction between the nucleons is strong interaction and this interaction

holds nucleons together in a nucleus [1]. Also there is another interaction between

the protons due to the their charges, electromagnetic interaction. Since proton

charges are of the same sign, the electromagnetic interaction shows itself as a

repulsion. Although the strong force is more powerful than the electromagnetic

force, it is short ranged force. On the other hand, the range of electromagnetic

force is infinite. So this electromagnetic interaction results with instabilities on

nuclei with high atomic number. In order to learn more on these instabilities we

should study them from the point of view of energy considerations.

Fig. 1.1 shows the dependence of binding energy per nucleon B/A on the mass

number A. It is seen from the figure that for A > 16 binding energy per nucleon is

in the range 7.3-8.7 MeV. Maximum binding energy is seen around A ' 60. So a

1



Figure 1.1: Binding energies per nucleon as function of A. This figure represents
binding energy per nucleon with respect to mass number. The maximum of this
figure is seen for A ' 60. For A < 60 there are local maximums, which can be
explained by shell model [2].

nucleus with A ' 60 is more stable than the nuclei A > 60. Therefore, if a mother

nucleus with mass number 2A is divided into two daughter nuclei with mass

number A some energy is released, that is the sum of the masses of the daughter

nuclei is not equal to the mass of the mother nucleus. The released energy in

this process is explained by the Einstein’s mass-energy relation E = mc2. This

process is called fission. Such a process is observed firstly in the neutron-induced

fission in 1939 by O. Hahn and F. Strassman in Germany and explained by L.

Meitner as: ”After absorbing a neutron, the excited uranium divides into two

fragments with about equal masses” [2]. Before this experiment there were other

observations about nuclear decays. In 1896 Becquerel observed radioactivity and

some other physicist performed other experiments on nuclear decays. However,

they had not had the knowledge about structure of atom and quantum physics,
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and they had not been able to recognize the physics behind these observations.

Figure 1.2: Nuclear deformation in the fission process. This figure represents
fission process schematically. First we see a sphere, which represents a stable
mother nucleus. The next ones are drawn to represent fluctuations of this mother
nucleus. At the last figure we see two daughter nuclei.

Today it is known that these radioactive processes are nuclear reactions. These

nuclear reactions occur due to the interactions between the nucleons. Fission

process is represented in Fig. 1.2 schematically. A mother nucleus is firstly

fluctuating and after some time these fluctuations overcome the barrier due to

the strong interactions and the mother nucleus splits into two daughter nuclei.

In fact fission can take place in many different ways, and this figure is only

a schematic representation. For a mother nucleus 205At undergoing fission we

have 205 interacting particles. Even with the help of computers the solution of

such a problem nearly impossible. There are some simulation techniques such as

Molecular Dynamics which consider every particle in the system. However, in

such a techniques one considers firstly one particle in the system and finds the

interaction of this particle with the others by using a potential which defines the

interactions between these particles. Then one finds the resultant interaction and

then studies the motion of that particle in the effect of this resultant interaction
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in the time interval 4t. One then repeats the same procedure for all particles

in the system. By this simulation technique one can find configuration of the

system at time t corresponding to an initial condition of the system [3, 4, 5]. In

this thesis, we will follow a different approach to this problem.

Before explaining this approach let us turn back to Fig. 1.1. It is noted above

that as a result of the binding energy difference, some energy is released in the

fission of a nucleus with high mass number. In Fig. 1.1 it is seen that there is

also binding energy difference between binding energy per nucleon for nuclei with

small mass number if one climbs the curve from low A side. This means that

if two small nuclei combine into a nucleus with larger mass number, again some

energy is released and this reaction is named fusion process. In this case released

energy per nucleon is much larger than that of in the fission process. In fact the

source of the energy of the stars is mainly the fusion reactions. Nuclei should

firstly overcome the Coulomb barrier to participate in fusion. In the stars fusion

takes place with the help of their huge temperature and gravitational attraction.

The energy to overcome the Coulomb barrier is high and one of the ways of

obtaining this energy is the fission process. Therefore, yet there is no practical

way of using fusion in order to obtain energy for everyday life. In this thesis

fusion is not considered as an energy supply. We will discuss it to synthesize

super heavy elements. So we will deal with heavy ion fusion reactions. In

the Fig. 1.3 fusion process and potentials are schematically represented for the

formation of super heavy elements. It is seen from the figure that there are two

potential barriers. One of them is Coulomb barrier and the other barrier shows
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Figure 1.3: Fusion potentials and shapes of nuclei. This figure represents shapes
and potentials for the fusion process. The drawings at the top represent nuclei
in the fusion process with respect to the position. First, we see nuclei which will
participate in the fusion. The next one represents touching configuration and the
last one represents the product of the fusion process, a stable large nucleus. The
curves represent potential for fusion process with respect to the position. The
local maximum of the first curve occurs due to the electromagnetic interactions,
called the Coulomb barrier. In this figure, its height is shown as VB. Total energy
of nuclei shown with ECM on the left. In the second curve strong interaction is
added and the local maximum represents saddle point for the formation. Its
height with respect to the local minimum is represented by BS. Local minimum
occurs at the position A, at which energy of stable nucleus is shown by E∗ [6].

itself due to the strong interactions in the diffusion process. As a result we can

say that to form a super heavy element the system of particles should overcome

these two barriers. Therefore, we can say that fusion probability is multiplication

of two probabilities: sticking probability that is passing probability of the system

over the Coulomb barrier, and formation probability that is passing probability

of the system over the barrier due to the strong interaction [7]. Hence fusion

probability can be written as

Pfusion = Pstick ∗ Pform. (1.1)
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In this thesis we will deal with only the formation probability. In order to calculate

the formation probability we will follow same technical procedure in the case of

solution of fission reaction.

In this thesis we will study nuclear dynamics in the framework of Langevin ap-

proach which includes fluctuation dissipation theorem. For this purpose Langevin

equation is used which is historically first investigated to explain Brownian mo-

tion. Brownian motion is firstly examined by the Scottish botanist Robert Brown

at 1827 [8]. He discovered that pollens ceaselessly move in a irregular way. How-

ever this can not have a biological explanation because pollens are not living

things. This subject is later studied by some physicist and now it is known as

Brownian motion, which for small dust particles immersed in a fluid occurs due

to the random collisions of the dust particles with the molecules of the fluid. Fig.

1.4 shows a two dimensional Brownian motion. One of scientist who studied

the Brownian motion is Albert Einstein. Related to this subject Einstein wrote

that ”I discovered that there would have to be [observable] movement of sus-

pended particles without knowing the observations concerning Brownian motion

were already long familiar” in 1905 while investigating atomic theory [9]. An-

other physicist who studied Brownian motion is Paul Langevin. While studying

this subject in order to explain this motion Langevin investigated the following

equation

m
dv

dt
= Ff (t) − βv. (1.2)

This equation is a stochastic equation because it contains the random force Ff (t)

6
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Figure 1.4: Two-dimensional Brownian motion. This figure represents two di-
mensional Brownian motion. The fluctuations of the dust particle results in a
change of its position. This zigzag line in the figure shows changes in position of
dust particle.

and it has fluctuation and dissipation parts. The relation between these parts

should be determined in accordance with the equipartition theorem. In order to

solve this equation statistical methods of physics should be used, because random

force is known with its statistical properties. Hence Langevin equation can be

applied problems having fluctuation and dissipation parts in a statistical way

[10, 11]. In this thesis we will apply Langevin equation to the nuclear reactions.

Firstly we will choose a Brownian coordinate in the nucleus. The size and the

mass associated this coordinate should be larger than those of the medium. In

our case the medium or the heat bath consist of nucleons and we take as the

Brownian coordinate the distance between the centers of the daughter nuclei

in fission process. This coordinate changes as mother nucleus fluctuates. The
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elongation coordinate which is the distance between the centers of daughter nuclei

is represented schematically in Fig. 1.2. It is noted above that nucleons are

held in the nucleus by the strong interaction so there is a potential which effects

particles in the nuclear medium due to the interactions between the nucleons. The

calculation of this potential is performed by using the liquid drop model because

the shape can be used as a parameter during calculations of the potential. In

this thesis we employ the potential suggested by Y. Abe et al. [12]. With a few

simple considerations we can draw some conclusions on the form of the potential.

Firstly, the existence nuclei in nature shows us that there should be a well in the

shape of this potential. Secondly since this nucleus can be divided, then there

should be a saddle point, representing interaction between the daughter nuclei.

Also we know that strong interaction is short ranged, thus away from the saddle

point there should be a quick decrease. Hence shape of the potential looks like

as in Fig. 1.5. Using this potential we will solve the Langevin equation and

calculate decay rate for fission process. In order to calculate the decay rate by

simulation we take ensembles which are initially distributed with respect to their

elongation coordinate and corresponding momentum. Then the corresponding

Brownian particles will move by the effect of the random force and under the

friction in the potential which is shown in Fig. 1.5. This motion will continue

in time interval 4t and after this time interval another random force will effect

the Brownian particle. This will be repeated n times and after n step we will

reach the Brownian particle’s position at time t which is given by t = n ·4t. Due

to the nature of this position we will conclude whether the nucleus is compound

8
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Figure 1.5: Fission potential. This figure represents potential with respect to
the elongation coordinate for the fission process. Around the local minimum A
mother nucleus is stable. Local maximum at B represents saddle point of fission
process, and height of this barrier is shown by Bf .

or not i.e. if position of particle is grater than the saddle point, nucleus is not

compound and vice versa. We will repeat the same procedure for all ensembles

and in order to calculate decay rate we will perform the ensemble average.

In a similar way we will find the passing probability over the barrier for fusion.

For this case we will begin with initially sticking two nuclei. In other words we

will not include Coulomb barrier in our calculations. This means that there is

only one barrier for the potential and if sticken system goes over this barrier, we

assume that fusion takes place. Second barrier in the Fig. 1.3 represents this

potential barrier. So this is not a realistic fusion probability calculation. This is

the calculation of the passing probability over the barrier which occur due to the

strong interactions between the nucleons.
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CHAPTER 2

FORMALISM

In this chapter, we present the theoretical framework for decay rate and passing

probability calculations. We develop firstly Langevin equation and then Fokker-

Planck equation and Kramers equation. We give the solution of the Langevin

equation and the derivation of the Kramers decay rate.

2.1 Langevin Equation

To develop Langevin equation we start with the motion of a small particle with

mass m which is immersed in a fluid. This particle will move under a friction

force due to the collisions between that particle and the molecules of the fluid.

The expression for this force is given by the Stokes’ law

Fc = −βv (2.1)

and equation of motion given by

m
dv

dt
= −βv (2.2)

where β is friction coefficient. In this motion if the only force is this friction force

then particle should stop at some point. However for a small enough particle,

dust or Brownian particle, it is known from the Brownian motion that it does not

10



stop. So to explain this motion we need another force. We insert a fluctuation

force into this equation. Hence the equation of motion becomes

m
dv

dt
= Ff (t) − βv (2.3)

where Ff (t) is fluctuation force. Dividing Eq. (2.3) by mass m we get

dv

dt
= Γ(t) − γv (2.4)

where Γ is fluctuating force per unit mass and γ = β
m

. In this equation Γ is

a stochastic quantity so this equation is a stochastic equation. This stochastic

quantity Γ can be known in its average properties. As noted before fluctuating

force occurs due to the collisions between the dust particle and the molecules of

the fluid. These collisions occur at all directions with equal probability because

dust particle is surrounded with the molecules of liquid and these molecules move.

Hence we can assume that ensemble average of the fluctuation force given by

< Γ(t) >= 0. (2.5)

Other property of this force is average of multiplications. Average of multiplica-

tion of two fluctuation force is given by

< Γ(t)Γ(t′) >= 0, (2.6)

provided that the duration time τ0 of a collision is much smaller than the relax-

ation time τ = 1
γ

of the velocity of the dust particle. In other words the time

passing between two collisions is larger than the time in which the dust particle

is contact with the molecule, which plays a role in first collision. However if sec-

ond collision occur while the interaction, which occurs due to the first collision,

11



between the dust particle and molecule is still effective, then there is a relation

between the average of this multiplication. In the limit τ → 0, it is given as

< Γ(t)Γ(t′) >= qkδ(t − t′). (2.7)

In this equation the term on the right hand side qk will be determined in the

later parts of this section. Now we continue with the moments of fluctuation

force. Higher moments of this stochastic force can be found in terms of second

moments by using properties Gaussian distribution function [13]. Then we obtain

< Γ(t1)Γ(t2) . . . Γ(t2n) > =
∑

i1...in

< Γ(ti1)Γ(ti2) > . . . < Γ(ti2n−1)Γ(ti2n) >

< Γ(t1)Γ(t2) . . . Γ(t2n+1) > = 0 (2.8)

where sum denotes summations on all possible combinations. Even moments

give an expected result as summations of the multiplications of second moments.

Here it is assumed that the collisions with three particles, one of them is dust

particle and the other two are molecules of the liquid, can be ignorable. On the

other hand odd moments vanish because the one of the random force remains

and average of it is zero.

Up to this point Langevin equation is obtained in its simple form and the

properties of the moments of random force is determined. It is seen that Eq. (2.4)

is a differential equation and as noted have an stochastic term. It can be solved by

the help of the computer techniques by using the properties of the stochastic term.

One of the techniques will be explained in a detailed form in the next chapters.

However this stochastic force and its effects on this equation should be determined

12



in a detailed way. In this equation the velocity shows stochastic properties due

to the stochastic force. In the motion of the dust particle, it is assumed that

collisions happen one after the other and these collisions show themselves in the

Langevin equation as random force and friction. Hence random force and friction

force have same microscopic origin. Then there should be a relation between

them. This relation can be expressed as the fluctuation dissipation theorem and

it can be found by using the fact that Brownian particles come into the equilibrium

with the heat bath after some time passed over the contact time. This situation

is expressed by Eq. (2.4) and its solution for the initial velocity v0 is

v(t) = v0e
−γt +

∫ t

0
e−γ(t−t′)Γ(t′)dt′. (2.9)

By using Eq. (2.5) and Eq. (2.7) the correlation function of the velocity can be

found as

< v(t1)v(t2) >= v2
0e

−γ(t1+t2) +
qk

2γ
(e−γ(t1−t2) − e−γ(t1+t2)). (2.10)

For large times, in the case of the equilibration, velocity correlation function

reduces to

< v(t1)v(t2) >=
qk

2γ
e−γ(t1−t2). (2.11)

Then in the equilibrium, average energy of the Brownian particle is obtained as

< E > =
1

2
m < [v(t)]2 >

=
1

2
m

qk

2γ
(2.12)
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and from the equipartition law of the classical statistical mechanics, average en-

ergy is given by

< E >=
1

2
kT. (2.13)

Hence the relation between the friction coefficient and the random force obtained

as

qk = 2γkT/m. (2.14)

Up to this point we considered a dust particle without any potential. If a potential

effects to dust particle, another term should be inserted to the equation of motion.

This term should have position dependence due to the position dependence of the

potential. After inserting this term, derivative of velocity is a function of position

in the Langevin equation and we know that velocity is the derivative of position.

Then Langevin equation becomes a coupled equation as

dp

dt
= −∂V

∂q
− βp + Ff (t)

dq

dt
=

1

m
p. (2.15)

With the help of the given properties of the random force Langevin equation can

be solved in its simplest form.

2.2 Fokker-Planck Equation and Kramers Equation

In this section Fokker-Planck equation will be derived from the Langevin

equation. As noted before in the Langevin equation there is a random force.

From Eq. (2.4) it is seen that velocity depends on this force so sadden changes

occur in the velocity. This means that velocity is not a continuous quantity. If

14



it is not a continuous quantity it can be considered in an interval. Taking into

account these consideration one can think distribution in the velocity space and

for this case Fokker-Planck equation is given as [12]

∂

∂t
w(v, t) = − ∂

∂v

[

βv +
1

2

qk

m2

∂

∂v

]

w(v, t). (2.16)

This equation describes the time evaluation of the distribution function of a

Brownian particle and it is an equation of motion for that particle. Now we

will derive Fokker-Planck equation by using Langevin equation and starting with

Liouville equation [12] which describes the conservation of probability

∂

∂t
w(v, t) +

∂

∂v
[v̇w(v, t)] = 0. (2.17)

This equation corresponds to the continuity equation and it is given in the velocity

space. Second term of this equation ,which is the multiplication of time derivative

of velocity, gives flow of the probability. The derivative of the velocity can be

obtained from the Langevin equation Eq. (2.4) and when this is replaced in the

Eq. (2.17) derivative of the distribution obtained as

∂

∂t
w(v, t) = −Ω(v, t)w(v, t) (2.18)

where Ω(v, t) = − ∂
∂v

[−βv + 1
m

R(t)]. Integrating Eq. (2.18) over t between t and

t + ∆t the probability at time t + ∆t is obtained as

w(v, t + ∆t) = w(v, t) +
∫ t+∆t

t
dt1Ω(v, t1)w(v, t1)

=

[

1 +
∫ t+∆t

t
dt1Ω(v, t1)

+
∫ t+∆t

t
dt1

∫ t1

t
dt2Ω(v, t1)Ω(v, t2) + . . .

]

w(v, t). (2.19)
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This equation contains random force. If its average is taken using the properties

Eq. (2.5) and (2.7) we obtain

w(v, t + ∆t) − w(v, t)

∆t
=

∂

∂v
βvw(v, t) +

1

2

∂

∂v
βvw(v, t)∆t

+
1

2

qk

m2

∂2

∂v2
w(v, t) + O(∆t) (2.20)

and in the lim ∆t → 0

∂

∂t
w(v, t) = − ∂

∂v

[

βv +
1

2

qk

m2

∂

∂v

]

w(v, t) (2.21)

where qk is given in Eq. (2.14). With this property Fokker-Planck equation

is obtained from the Langevin equation as Eq. (2.16). This means that they

are equivalent equations. However their treatments are different. Argument

of Fokker-Planck equation is distribution function. On the other hand in the

Langevin equation, deterministic equation is used with a random force.

As the next step we consider Brownian motion in a potential. Again by

starting with Liouville equation and using Langevin equation Eq. (2.15) we will

obtain Kramers equation. This time Liouville equation contains one more term

due to the position dependence of the potential and it is given by

∂

∂t
w(p, q, t) = − ∂

∂p
[ṗw(p, q, t)] − ∂

∂q
[q̇w(p, q, t)] (2.22)

and putting momentum from Eq. (2.15) to Eq. (2.22) and by integrating it over

t, we can find distribution function at time t + ∆t as

w(p, q, t + ∆t) = w(p, q, t) +
∫ t+∆t

t
dt1Ω̃(p, q, t1)w(p, q, t1)

=

[

1 +
∫ t+∆t

t
dt1Ω̃(p, q, t1) (2.23)

+
∫ t+∆t

t
dt1

∫ t1

t
dt2Ω̃(p, q, t1)Ω̃(p, q, t2) + . . .

]

w(p, q, t)
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where

Ω̃(p, q, t) = − ∂

∂v

[

−∂V

∂q
− γp + Γ(t)

]

− ∂

∂q

p

m
(2.24)

and similarly taking its average Kramers equation is obtained as

∂

∂t
w(p, q, t) =

[

− ∂

∂q

p

m
+

∂

∂p

∂V

∂q
+

∂

∂p

(

βp + mβt
∂

∂p

)]

w(p, q, t). (2.25)

This equation can be applied to Brownian systems which contains potential and

it was first derived by Kramers and applied to the decay rate of nuclear fission.

2.3 Solution of Langevin Equation

In this section solution of the Langevin equation will be obtained. As noted

before it has an stochastic force which rapidly changes, so it has no derivative.

Hence this equation can not be solved by the Runge-Kutta method [9] because

this method assumes that the equation contains terms with defined derivatives.

Then this equation should be solved by other method. We will use iteration

method [14]. To solve Langevin equation iteratively we will start with rewriting

this equation as

dp

dt
= h(p, q) + gΓ(t)

dq

dt
=

1

m
p (2.26)

where

h(p, q) = −∂U

∂q
− γ̃

m
p (2.27)

g =
√

γ̃kT (2.28)

γ̃ = mγ. (2.29)

17



By integrating Eq. (2.26) over t between t and t + ∆t, the details of which are

given in Appendix A, we obtain

p(t + τ) − p(t) = τh +
1

2
τ 2

(

∂h

∂q

p

m
+

∂h

∂p
h

)

+
1

6
τ 3 ∂2h

∂q2

(

p

m

)2

+
∂h

∂p

(

∂h

∂q

p

m
+

∂h

∂p

)

+
h

m

∂h

∂q
+ . . .

+gΓ̃1(t) +
∂h

∂p
gΓ̃2(t) +

(

∂2h

∂p2
+

1

m

∂h

∂q

)

gΓ̃3(t) + . . .(2.30)

q(t + τ) − q(t) = τ
p

m
+

1

2
τ 2 h

m
+

1

6
τ 3 1

m

(

∂h

∂q

p

m
+

∂h

∂p
h

)

+ . . .

+
g

m
Γ̃2(t) +

g

m
Γ̃3(t) + . . . (2.31)

where

Γ̃1(t) =
∫ t+τ

t
dt′Γ(t′)

=
√

τw1(t) (2.32)

Γ̃2(t) =
∫ τ

0
dτ ′

∫ t+τ ′

t
dt′Γ(t′)

= τ 3/2

[

1

2
w1(t) +

1

2
√

3
w2(t)

]

(2.33)

Γ̃3(t) =
∫ τ

0
dτ ′

∫ τ ′

0
dτ ′′

∫ t+τ ′

t
dt′Γ(t′)

= τ 5/2

[

1

6
w1(t) +

1

3
√

5
w3(t)

]

. (2.34)

The details of the second part of this calculation are shown in Appendix B. In

this equation Γ(t) satisfies

< Γ(t) > = 0

< Γ(t1)Γ(t2) > = 2δ(t1 − t2) (2.35)

and w(t) is an Gaussian random number with properties

< w > = 0

18



< w2 > = 2. (2.36)

2.4 Derivation of Kramers Decay Rate for Fission

To derive the decay rate we should find probability flow over the barrier js

and total probability inside the well nA since decay rate is given by [12, 15]

rK =
js

nA

. (2.37)

To find js and nA we need the quasistationary solution of the Kramers equation

Eq. (2.25) and the form of the solution is [12]

w(p, q) = W (p, q) exp

[

−p2/2m + U(q)

T

]

. (2.38)

The potential for the dust particle is

U(q) = Bf −
1

2
mw′2(q − qs)

2 (2.39)

where Bf is the barrier height. We obtain W (p, q) from the integration of the

distribution function around the saddle point as

W (p, q) = N
∫ u

−∞
du′e−

α−γ
2mγT

u′2

(2.40)

where

u = p − α(q − qs) (2.41)

α =
γ +

√
γ2 + 4m2w′2

2
(2.42)

and N is the normalization constant. Kramers quasistationary solution is then

obtained as

w(p, q) = N
∫ u

−∞
du′e−

α−γ
2mγT

u′2

(2.43)
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Using this we obtain the probability inside the pocket as

wA(p, q) = N
√

2mγα − γe−
p2/(2m)+U(q)

T (2.44)

and using this expression the total probability nA around A can be calculated as

nA =
∫ ∞

−∞

∫ ∞

−∞
dpdqwA(p, q)

= N

√

2πmγT

α − γ

2πT

w
(2.45)

with the approximation

U(q) ' 1

2
mw2q2 (2.46)

around A which is minimum of the potential and using quassistationary solution

probability flow can be calculated as

js =
∫ ∞

−∞
dp

p

m
w(p, q)|q=qs

= NT

√

2πmγT

α
e−Bf /T . (2.47)

Then we obtain the Kramers decay rate as

rk =
w

2π

[
√

β̃2 + 1 − β̃
]

e−Bf /T (2.48)

where

β̃ =
β

2w′
=

1

2w′

γ

m
. (2.49)
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CHAPTER 3

CALCULATIONS

In this chapter, we give the results of calculations. Firstly we give comparison

for the elongation coordinate and corresponding momentum in the free potential

case between the results of simulation and analytic calculations. Then we give

decay rate results for simulation and Kramers solution. Lastly we give passing

probability results for simulation and analytic solution.

3.1 Elongation Coordinate and Corresponding Momentum Calculations

For comparison, we obtain analytic solution of the Langevin equation for free

potential case. These calculations are given in Appendix C. The average of p2 is

found as

< p2 >= m · kT
[

1 − e−2 γ̃
m
·t
]

+ p2
0e

−2 γ̃
m
·t. (3.1)

This solution will be compared with the one obtained by simulation. To

simulate Langevin equation we need gaussian random numbers since Langevin

force is a random force, and its this property is shown in Fig. 3.1. By using this

random force we will find elongation coordinate and corresponding momentum

and then we will perform its ensemble average. Comparison of the results of Eq.
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Figure 3.1: An example Gaussian random number. In this figure dotted line
shows Gaussian distribution. Boxes are drawn by using output of the random
number generator for 100000 random numbers.

(3.1) with simulated ones is shown in Fig. 3.2 for p2.

Now we will solve Langevin equation for the elongation coordinate. The av-

erage of (q − q0)
2 for the potential free case is found as

< (q−q0)
2 >=

p2
0 − 3mkT

γ̃2
+

2kT

γ̃
·t+2

2mkT − p2
0

γ̃2
·e− γ̃

m
·t+

p2
0 − mkT

γ̃2
e−2 γ̃

m
·t. (3.2)

Comparison of the results of Eq. (3.2) with simulated ones is shown in Fig. 3.3

for (q − q0)
2.

These calculations are made for two different initial conditions for p = 0 and

p = 2peq. Here in fact the results of the simulation for < p2 > and < (q − q0)
2 >

are obtained simultaneously since the main reason of the change in the position

is corresponding momentum and it changes randomly due to the Langevin force.

In other words they are coupled equations and they can not be solved separately.
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Figure 3.2: < p2 > versus time graph. This figure shows changes in < p2 > with
respect to time for a free Brownian particle. The curve at the bottom is drawn
by using analytic solution of < p2 > for p0 = 0 and the � points show results of
simulation. The dotted curve is the analytic solution of < p2 > for p0 = 2peq,
and the + points show results of simulation. For the simulation 100000 sample
are used.

3.2 Decay Rate Calculation

In this section 205At decay rate calculations are given. For the 205At potential

is given as [14]

V (q, p) =



















37.46(q − 1)2 0 < q < 1.27

8.0 − 18.73(q − 1.8)2 1.27 < q.

(3.3)

This potential is shown in Fig. 1.5. Here Bf = 8 MeV and B = 1.8 . Initial

distribution is given by [14]

d(q, p) =



















N exp− [ p2

2B
+V (q)]

kT
q ≤ 1.8

d(q = 1.8) 1.8 < q

(3.4)

where N is normalization constant and it is shown in Fig 3.4. Here collective
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Figure 3.3: < (q − q0)
2 > versus time graph. This figure shows changes in

< (q − q0)
2 > with respect to time for a free Brownian particle. The curve at

the bottom is drawn by using analytic solution of < (q − q0)
2 > for p0 = 0

and the � points show results of simulation. Similarly the dotted curve is the
analytic solution of < (q − q0)

2 > for p0 = 2peq, and the + points show results of
simulation. For the simulation 100000 sample are used.

mass of the elongation is given by Bc = m0 = A5/3

160
[ h̄2

MeV
] and friction coefficient

γ̃ = m0 [h̄]. Using this initial conditions and parameters to find elongation

coordinate and corresponding momentum, iteration method is followed. After

finding these at each iteration step, number of compound nuclei is calculated and

decay rate is found by using

r(t) = − 1

PCN

dPCN

dt
(3.5)

where PCN is total number of compound nucleus at each iteration step. The

result of the simulation is given in the Fig. 3.5. The result is compared with the
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Figure 3.4: Initial distribution. This figure shows initial distribution with respect
to elongation coordinate and corresponding momentum. In this distribution if
we take corresponding momentum as zero mean of elongation coordinate occur
at 1 and if we take elongation coordinate as 1 mean of corresponding momentum
occur at zero.

result of Kramers decay rate formula

rk =
h̄w

2πh̄w′







√

√

√

√(h̄w′)2 +
(

γ̃

2Bc

)2

− γ̃

2Bc





 e−
Vs
kT (3.6)

where

h̄w = h̄

√

√

√

√

∣

∣

∣

∣

∣

∂2V

∂q2

∣

∣

∣

∣

∣

q=1

/Bc (3.7)

h̄w′ = h̄

√

√

√

√

∣

∣

∣

∣

∣

∂2V

∂q2

∣

∣

∣

∣

∣

q=1.8

/Bc, (3.8)

Vs is the barrier height and kT =
√

E∗/a. The excitation energy E* is taken to be

80 MeV and level density parameter a to be A/10. The given Kramers equation

is valid only for γ̃
B

> h̄wkT
Vs

.
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Figure 3.5: Decay rate calculation. This figure shows change in the decay rate
with respect to time. In the figure dashed line shows the result of decay rate
calculation by using Kramers formula. The � points show simulation results
performed using Langevin approach.

3.3 Formation Probability Calculation for Fusion

Langevin equation can also be applied to calculate the fusion probability.

As expressed before there are two parts of fusion probability. In this paper we

calculate only one part of it which refers to the passing probability over the

barrier. Here we take barrier as an inverted parabola. We find an analytic

solution and results of analytic solution and the solution obtained by simulation

are compared. To find analytic solution we start with the eigencoordinates, which

read with p1 = q̇1

X =
β′

1 + β1

2
q1 + p1

Y =
β1 − β′

1

2
q1 + p1 (3.9)
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where β1 is the friction coefficent and β ′
1 =

√

β2
1 + 4w2

1 with h̄w1 = 1 MeV. Then

the Euler type variables are defined as

x = Xe−at − X0

=
√

2Tβ1/m1

∫ t

0
dτe−aτυ1(τ)

y = Y e−bt − Y0

=
√

2Tβ1/m1

∫ t

0
dτe−bτυ1(τ) (3.10)

where a = (β ′
1 − β1)/2 and b = −(β ′

1 + β1)/2. Here Euler type variables are

Gaussian random variables and have the properties[16]

< x2(t) > =
Tβ1

am1

(1 − e−2at)

< y2(t) > =
Tβ1

bm1

(1 − e−2bt)

< x(t)y(t) > =
2Tβ1

(a + b)m1

(1 − e−(a+b)t). (3.11)

For the evaluation of passing probability over the barrier there should be Gaussian

distribution function as

W (q1, t; q10, p10) =
1√

2πσq1(t)
exp− [q1− < q1(t) >]2

2σ2
q1

(t)
. (3.12)

From the eigencoordinates equation one can get q as

q1 =
1

β′
1

(xeat − yebt) +
1

β′
1

(X0e
at − Y0e

bt). (3.13)

In this equation the first part corresponds to the diffusion and second part

corresponds to the average trajectory of the Brownian particle. By using Eq.

(3.13) < q1 > and σ2
q1

(t) obtained as

< q1(t) >= q10e
β1t/2

[

cosh
β′

1t

2
+

β1

β′
1

sinh
β′

1t

2

]

+
2p10

β′
1

e−β1t/2 sinh
β′

1t

2
(3.14)
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Figure 3.6: Passing probability for the fusion. This figure represents formation
probability of the fusion process. The full curve is the analytic solution and the
dashed curve shows the results of simulation.

and

σ2
q1

(t) = < q2
1 > − < q1 >2

= − T

m1w2
1

1 − e−β1t

[

2β2
1

β′2
1

sinh2(
β′

1t

2
) +

β1

β′
1

sinh(β ′
1t) + 1

]

. (3.15)

Using these equations one can easily obtain passing probability over the barrier

as

P (t; q10, p10) =
∫ +∞

0
W (q1, t; q10, p10)dq1

=
1

2
erfc

(

−< q1(t) >√
2σq1(t)

)

(3.16)

The results of analytic solution and simulation are given in Fig. 3.6.
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CHAPTER 4

CONCLUSION

In this thesis we have tried to apply Langevin approach, which was originally

proposed to explain the Brownian motion, to nuclear dissipative dynamics by

choosing observable variables, elongation coordinate and corresponding momen-

tum. As a check point of these calculations we compare the results of simulation

with the results of analytic solution. In Fig. 3.2 and Fig. 3.3, we see that the re-

sults are very close to each other for free potential case. This means that Langevin

approach is a self-consistent approach. Also in Fig. 3.2 we see that for two dif-

ferent initial values of corresponding momentum, at large times < p2 > reaches a

constant value, which is equal to the equilibrium solution peq =
√

m · kT . In other

words if a small enough particle, which is bigger than the particles or molecules of

the medium, enters in a fluid medium, in the equilibrium it has some momentum.

The ensemble average of this momentum can be found by using equipartition law.

As a result of this momentum there should be change in the position of this dust

particle in the equilibrium. This change is shown in Fig. 3.3 and we see that it

increases with time as expected.

As a next step we calculated the decay rate for fission in this model. The

results in Fig. 3.5 are obtained by using two different methods. One of them is

29



Kramers decay rate calculation and the other is calculated with the simulation

technique by using Langevin approach. There is a small difference between them.

This difference raises due to not considering asymmetries in the mother nucleus

during its fluctuations and taking friction as a constant value.

Lastly we calculated formation probability in the fusion process. Results are

shown in Fig. 3.6. There is a small difference between the result of analytic

solution and simulation. Again friction and mass asymmetry is a problem. As

noted before this is not a realistic calculation. For a realistic calculation one may

obtain better results using more realistic parameters in the simulation. Also there

are some better and more realistic calculations [17, 18].

It is noted above that in the fluctuation dissipation theorem fluctuations and

dissipation have same microscopic origin. Fluctuations show themselves in the

Langevin equation as a stochastic force and dissipation shows itself as friction

and the relation between them is found in Eq.(2.14) by using equipartition law.

However this an only a relation, so we do not know them exactly. There are some

reviews on the calculations of them from microscopic Hamiltonian [19, 20]. Also

we considered a constant friction in our calculations which is an approximation.

In fact it does not have a constant value because during the fluctuations shape

of mother nucleus changes and this should effect the friction.

As a result of these calculations we can say that Langevin approach is a self-

consistent approach and it can be applied to nuclear dissipative dynamics. By

this approach we can calculate decay rates of different nuclei. Also this approach

can be applied to dynamic systems where the dynamics of the system arises from
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collisions of small particles. In fact there are some applications of this approach

to current in an electrical circuit, electrical field in a laser and to other similar

systems [13].
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APPENDIX A

ELONGATION COORDINATE AND CORRESPONDING

MOMENTUM EQUATIONS

Here we will obtain two equations for elongation coordinate and corresponding

momentum which will be used to simulate them. To find corresponding momen-

tum at time t + τ we integrate momentum part of Langevin equation given in

Eq. (2.15)

p(t + τ) − p(t) =
∫ t+τ

t
dt′h(p′, q′) +

∫ t+τ

t
dt′gΓ(t′) (A.1)

where

h(p′, q′) = h(p, q) +
∂h

∂p
(p′ − p) +

∂h

∂q
(q′ − q) +

1

2

∂2h

∂q2
(q′ − q)2. (A.2)

Here h, q, p, q′ and p′ denote h(p, q), q(t), p(t), q(t′) = q(t+τ) and p(t′) = p(t+τ)

respectively. In Eq. (A.1) we replace h(p′, q′) with Eq. (A.2) and we obtain

p(t + τ) − p(t) =
∫ t+τ

t
dt′
[

h(p, q) +
∂h

∂p
(p′ − p) +

∂h

∂q
(q′ − q) +

1

2

∂2h

∂q2
(q′ − q)2

]

+
∫ t+τ

t
dt′gΓ(t′). (A.3)

Then by replacing p′ − p with Eq. (A.1) and using

q′ − q =
1

m

∫ t+t′

t
dt′′p(t′′) (A.4)
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we rewrite Eq. (A.3) as

p(t + τ) − p(t) =
∫ t+τ

t
dt′

[

h(p, q) +
∂h

∂p

∫ t+t′

t
dt′′h(p′′, q′′) +

∫ t+t′

t
dt′′gΓ(t′′)

+
∂h

∂q

1

m

∫ t+t′

t
dt′′p(t′′) +

1

2

∂2h

∂q2

(

1

m

∫ t+t′

t
dt′′p(t′′)

)2




+
∫ t+τ

t
dt′gΓ(t′). (A.5)

Similarly by replacing p(t′) and h(p′, q′) with Eq. (A.1) and Eq. (A.2) respectively

we obtain

p(t + τ) − p(t) =
∫ t+τ

t
dt′h(p, q) +

∂h

∂p

∫ t+τ

t
dt′
∫ t+t′

t
dt′′h(p, q)

+

(

∂h

∂p

)2
∫ t+τ

t
dt′
∫ t+t′

t
dt′′

∫ t+t′′

t
dt′′′[h(p, q) + . . .]

+

(

∂h

∂p

)2
∫ t+τ

t
dt′
∫ t+t′

t
dt′′

∫ t+t′′

t
dt′′′Γ(t′′′)

+
1

m

∂h

∂q

∂h

∂p

∫ t+τ

t
dt′
∫ t+t′

t
dt′′

∫ t+t′′

t
dt′′′[p + . . .]

+
1

2m2

∂2h

∂q2

∂h

∂p

∫ t+τ

t
dt′
∫ t+t′

t
dt′′

[

∫ t+t′′

t
dt′′′(p + . . .)

]2

+
∫ t+τ

t
dt′gΓ(t′) +

∂h

∂q

1

m

∫ t+τ

t
dt′
∫ t+t′

t
dt′′p

+
∂h

∂q

1

m

∫ t+τ

t
dt′
∫ t+t′

t
dt′′

∫ t+t′′

t
dt′′′[h(q, p) + . . .]

+
∂h

∂p
g
∫ t+τ

t
dt′
∫ t+t′

t
dt′′Γ(t′′) +

1

2m2

∂2h

∂q2

∫ t+τ

t
dt′
[

∫ t+t′

t
dt′′p

]2

+ . . . , (A.6)

and finally by performing the integrations we arrive at

p(t + τ) − p(t) = τh(p, q) +
1

2
τ 2

[

∂h

∂p
h(p, q) +

∂h

∂q

p

m

]

+
1

6
τ 3

[

∂h

∂p

(

∂h

∂p
h(p, q) +

∂h

∂q

p

m

)

+
∂h

∂q

1

m
h(p, q) +

∂2h

∂q2

(

p

m

)2
]

+ . . .

+gΓ̃1(t) +
∂h

∂p
gΓ̃2(t) +





(

∂h

∂p

)2

+
∂h

∂q

1

m



 gΓ̃3(t) + . . . (A.7)
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where Γ̃’s are given in the formalism chapter and they are determined in the Ap-

pendix B. Now we will obtain an equation for the elongation coordinate similarly

for potential free case. To do this firstly we perform integral of the second part

of the Langevin equation

q(t + τ) − q(t) =
1

m

∫ t+τ

t
dt′p(t′) (A.8)

and replacing p(t′) with Eq. (A.1) we obtain

q(t + τ) − q(t) =
1

m

∫ t+τ

t
dt′
[

p +
∫ t+t′

t
dt′′h(p′′, q′′) +

∫ t+t′

t
dt′′gΓ(t′′)

]

. (A.9)

Similarly putting h(p′′, q′′) from Eq. (A.2) gives

q(t + τ) − q(t) =
p

m

∫ t+τ

t
dt′ +

1

m

∫ t+τ

t
dt′
∫ t+t′

t
dt′′gΓ(t′′)

+
1

m

∫ t+τ

t
dt′

∫ t+t′

t
dt′′

[

h(p, q) +
∂h

∂p
(p′′ − p)

+
∂h

∂q
(q′′ − q) +

1

2

∂2h

∂q2
(q′′ − q)2

]

. (A.10)

With further manipulation we obtain

q(t + τ) − q(t) =
p

m

∫ t+τ

t
dt′ +

1

m

∫ t+τ

t
dt′
∫ t+t′

t
dt′′gΓ(t′′)

+
∫ t+τ

t
dt′
∫ t+t′

t
dt′′

h(p, q)

m

+
1

m

∂h

∂p

∫ t+τ

t
dt′
∫ t+t′

t
dt′′

∫ t+t′′

t
dt′′′[h(p, q) + . . .]

+
g

m

∂h

∂p

∫ t+τ

t
dt′
∫ t+t′

t
dt′′

∫ t+t′′

t
dt′′′Γ(t′′′)

+
1

m2

∂h

∂q

∫ t+τ

t
dt′
∫ t+t′

t
dt′′

∫ t+t′′

t
dt′′′[p + . . .], (A.11)

and then finally by performing the integrations we arrive at

q(t + τ) − q(t) = τ
p

m
+

1

2
τ 2 h(p, q)

m
+

1

6
τ 3 1

m

[

∂h

∂p
h(p, q) +

∂h

∂q

p

m

]

+ . . .

+
g

m
Γ̃2(t) +

∂h

∂p

g

m
Γ̃3(t) + . . . . (A.12)
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APPENDIX B

INTEGRALS OF RANDOM FORCE

Here we will find integrations of Γ in terms of w which is a Gaussian random

number and properties of it are given in Eq. (2.36). Firstly we start with the

definition

Γ̃1(t) =
∫ t+τ

t
dt′Γ(t′) =

√
τw1(t), (B.1)

thus

< Γ̃1(t)Γ̃1(t) > =
∫ τ

0
dτ ′

∫ τ

0
dt′ < Γ(τ ′)Γ(t′) >

=
∫ τ

0
dτ ′

∫ τ

0
dt′2δ(t′ − τ ′)

= 2τ. (B.2)

Now we will find Γ̃2(t) which is

Γ̃2(t) =
∫ τ

0
dt′
∫ t+t′

t
dt′′Γ(t′′). (B.3)

To find it in terms of w, we start with average of its square

< Γ̃2(t)Γ̃2(t) > =
∫ τ

0
dτ ′

∫ t+τ

t
dt′
∫ τ

0
dξ
∫ t+ξ

t
dξ′ < Γ(t′)Γ(ξ′) >

=
∫ τ

0
dτ ′

∫ t+τ ′

t
dt′
∫ τ

0
dξ
∫ t+ξ

t
dξ′2δ(t′ − ξ′)

=
2

3
τ 3 (B.4)
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and we write Γ̃2(t) in term of w’s as

Γ̃2(t) = τ 3/2 [a1w1(t) + a2w2(t)] (B.5)

and we take average of Γ̃1(t)Γ̃2(t) by using integral and w representation to find

a1. We start with

< Γ̃1(t)Γ̃2(t) > = <
[

τ 1/2w1(t)
] [

τ 3/2(a1w1(t) + a2w2(t))
]

>

= τ 2 < a1w
2
1(t) + a2w1(t)w2(t) >

= τ 22a1. (B.6)

Here average of multiplications of w1 and w2 gives zero since they are independent

random variables and their averages are zero. Now we find

< Γ̃1(t)Γ̃2(t) > =
∫ τ

0
dτ ′

∫ τ

0
dξ
∫ t+ξ

t
dξ′ < Γ(τ ′)Γ(ξ′) >

=
∫ τ

0
dτ ′

∫ τ

0
dξ
∫ t+ξ

t
dξ′2δ(ξ′ − τ ′)

= τ 2, (B.7)

then using results of Eq. (B.6) and Eq. (B.7) we find 2a1 = 1 and from this we

obtain a1 = 1
2
. We take average of Γ̃2(t)Γ̃2(t) by using w representation to find

a2

< Γ̃2(t)Γ̃2(t) > = <
[

τ 3/2(a1w1(t) + a2w2(t))
] [

τ 3/2(a1w1(t) + a2w2(t))
]

>

= τ 2 < a2
1w

2
1(t) + a2

2w
2
2(t) >

= τ 32(a2
1 + a2

2) (B.8)
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then using results of Eq. (B.4) and Eq. (B.8) we find 2(a2
1 + a2

2) = 2
3

and from

which we obtain a2 = 1
2
√

3
. Finally we find Γ̃2 as

Γ̃2(t) = τ 3/2

[

1

2
w1(t) +

1

2
√

3
w2(t)

]

. (B.9)

Similarly we will find Γ̃3(t) in terms w. Firstly we note that it is given as

Γ̃3(t) =
∫ τ

0
dt′
∫ t+t′

t
dt′′

∫ t+t′′

t
dt′′′Γ(t′′′). (B.10)

To find it in terms of w we start with

< Γ̃3(t)Γ̃3(t) > =
∫ τ

0
dτ ′

∫ t+τ ′

t
dt′
∫ t+t′

t
dt′′

∫ τ

0
dξ
∫ t+ξ

t
dξ′

∫ t+ξ′

t
dξ′′ < Γ(ξ′′)Γ(t′′) >

=
∫ τ

0
dτ ′

∫ t+τ ′

t
dt′
∫ t+t′

t
dt′′

∫ τ

0
dξ
∫ t+ξ

t
dξ′

∫ t+ξ′

t
dξ′′2δ(ξ′′ − t′′)

=
1

10
τ 5 (B.11)

and we write Γ̃3(t) in term of w’s

Γ̃3(t) = τ 5/2 [b1w1(t) + b2w2(t) + b3w3(t)] . (B.12)

We then take average of Γ̃1(t)Γ̃3(t) by using integral and w representation to find

b1. We first calculate

< Γ̃1(t)Γ̃3(t) > = <
[

τ 1/2w1(t)
] [

τ 5/2(b1w1(t) + b2w2(t) + b3w3(t))
]

>

= τ 3 < b1w
2
1(t) >

= τ 32b1. (B.13)
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We then find < Γ̃1(t)Γ̃3(t) > by using integral representations as

< Γ̃1(t)Γ̃3(t) > =
∫ τ

0
dτ ′

∫ τ

0
dξ
∫ t+ξ

t
dξ′

∫ t+ξ′

t
dξ′′ < Γ(τ ′)Γ(ξ′) >

=
∫ τ

0
dτ ′

∫ τ

0
dξ
∫ t+ξ

t
dξ′

∫ t+ξ′

t
dξ′′2δ(ξ′′ − τ ′)

=
1

3
τ 3. (B.14)

Then using results of Eq. (B.13) and Eq. (B14) we find 2b1 = 1
3

or b1 = 1
6
. We

take average of Γ̃2(t)Γ̃3(t) by using integral and w representation to find b2. We

start with

< Γ̃2(t)Γ̃3(t) > = <

[

τ 3/2(
1

2
w1(t) +

1

2
√

3
w2(t))

]

[

τ 5/2(b1w1(t) + b2w2(t) + b3w3(t))
]

>

= τ 4 <
1

2
b1w

2
1(t) +

1

2
√

3
b2w

2
2 >

= τ 4

(

b1 +
b2√
3

)

. (B.15)

We also find

< Γ̃2(t)Γ̃3(t) > =
∫ τ

0
dτ ′

∫ t+τ ′

t
dt′′

∫ τ

0
dξ
∫ t+ξ

t
dξ′

∫ t+ξ′

t
dξ′′ < Γ(t′′)Γ(ξ′′) >

=
∫ τ

0
dτ ′

∫ t+τ ′

t
dt′′

∫ τ

0
dξ
∫ t+ξ

t
dξ′

∫ t+ξ′

t
dξ′′2δ(ξ′′ − t′′)

=
1

6
τ 4. (B.16)

Then using results of Eq. (B.15) and Eq. (B.16) we find (b1 + b2√
3
) = 1

6
so b2 = 0.

We take average of Γ̃2(t)Γ̃3(t) by using w representation to find b3. We start with

< Γ̃3(t)Γ̃3(t) > = <
[

τ 5/2(b1w1(t) + b2w2(t) + b3w3(t))
]

·
[

τ 5/2(b1w1(t) + b2w2(t) + b3w3(t))
]

>
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= τ 5 < b2
1w

2
1(t) + b2

2w
2
2(t) + b2

3w
2
3(t) >

= τ 52(b2
1 + b2

2 + b2
3), (B.17)

then using results of Eq. (B.11) and Eq. (B.17) we find 2(b2
1 + b2

2 + b2
3) = 1

10
so

we find b3 = 1
3
√

5
. Finally we obtain

Γ̃3(t) = τ 5/2

[

1

6
w1(t) +

1

3
√

5
w3(t)

]

. (B.18)
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APPENDIX C

ANALYTIC SOLUTIONS OF < p2 > AND < (q − q0)
2 >

Here we will find analytic solution of Langevin equation Eq. (2.15) for < p2 >

and < (q − q0)
2 > for potential free case V = 0. Firstly momentum part of the

Langevin equation Eq. (2.15) is multiplied with e
γ̃
m

t to solve it which results in

d

dt
(pe

γ̃
m

t) = g · Γ(t) (C.1)

and integrating this equation over t between 0 and t we obtain

p =
∫ t

0
dt′e−

γ̃
m

(t−t′)gΓ(t′) + ce
γ̃
m

t. (C.2)

In this equation the last term comes from the integration. We can determine it

by solving this equation at t = 0 and we obtain c = p0 as it should be. Then, we

take square of this equation and we arrive at

p2 =
∫ t

0
dt′
∫ t

0
dt′′e−

γ̃
m

(t−t′)e−
γ̃
m

(t−t′′)g2Γ(t′)Γ(t′′)

+2
∫ t

0
dt′e−

γ̃
m

(t−t′)gΓ(t′)p0e
γ̃
m

t + p2
0e

2 γ̃
m

t (C.3)

and by using Eq. (2.35) we take average of Eq. (C.3) and we obtain

< p2 >= m · kT
[

1 − e−2 γ̃
m

t
]

+ p2
0e

2 γ̃
m

t. (C.4)
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To obtain analytic solution of < (q− q0)
2 > we use second part of Eq. (2.15) and

if we integrate it over t as

q − q0 =
1

m

∫ t

0
dt′p (C.5)

and using Eq. (C.2) we obtain

q − q0 =
p0

γ̃

[

1 − e−
γ̃
m

t
]

+
1

γ̃

∫ t

0
dt′
[

1 − e−
γ̃
m

(t−t′)
]

gΓ(t′) (C.6)

and similarly we take square of this equation and using Eq. (2.35) we take average

of this equation and finally we arrive at

< (q−q0)
2 >=

1

γ̃2

[

p2
0 − 3mkT + 2γ̃kT t + 2(2mkT − p2

0)e
− γ̃

m
t + (p2

0 − mkT )e−2 γ̃
m

t
]

(C.7)
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