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ABSTRACT 

MODEL PREDICTIVE CONTROL (MPC) PERFORMANCE FOR 

CONTROLLING REACTION SYSTEMS 

 

Aşar, Işık 

M.S., Department of Chemical Engineering 

Supervisor:  Prof. Dr. Canan ÖZGEN 

Co-Supervisor: Prof. Dr. Kemal LEBLEBİCİOĞLU 

 

June 2004, 145 pages 

 
 

In this study, the performance of the Model Predictive Controller (MPC) algorithm 

is investigated in two different reaction systems. The first case is a saponification 

reaction system where ethyl acetate reacts with sodium hydroxide to produce 

sodium acetate and ethanol in a CSTR. In the reactor, temperature and sodium 

acetate concentration are controlled by manipulating the flow rates of ethyl 

acetate and cooling water. The model of the reactor is developed considering 

first principal models. The experiments are done to obtain steady state data from 

the reaction system and these are compared with the model outputs to find the 

unknown parameters of the model. Then, the developed model is used for 
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designing SISO and MIMO-MPC considering Singular Value Decomposition (SVD) 

technique for coupling.  

 

The second case is the reaction system used for the production of boric acid by 

the reaction of colemanite and sulfuric acid in four CSTR’s connected in series. In 

the reactor, the boric acid concentration in the fourth reactor is controlled by 

manipulating the sulfuric acid flow rate fed to the reactor. The transfer functions 

of the process and disturbance (colemanite flow rate) are obtained 

experimentally by giving step changes to the manipulated variable and to the 

disturbance. A model-based and constrained SISO-MPC is designed utilizing 

linear step response coefficients.   

 

The designed controllers are tested for performance in set point tracking, 

disturbance rejection and robustness issues for the two case studies. It is found 

that, they are satisfactory except in robustness issues for disturbance rejection 

in boric acid system. 

 

Keywords: Model Predictive Control, CSTR, Saponification, Boric Acid 
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ÖZ 

REAKSİYON SİSTEMLERİNDE MODEL ÖNGÖRÜMLÜ 

DENETLEYİCİ PERFORMANSI  

Aşar, Işık 

Yüksek Lisans, Kimya Mühendisliği 

Tez Yöneticisi:  Prof. Dr. Canan ÖZGEN 

Ortak Tez Yöneticisi: Prof. Dr. Kemal LEBLEBİCİOĞLU 

 

Haziran 2004, 145 sayfa 

 

Bu çalışmada, Model Öngörümlü Deneyleyicilerin (MÖD) performansı iki farklı 

reaksiyon sistemi için incelenmiştir. Önce, sabunlaştırma reaksiyonu olan etil 

asetatın sodyum hidroksit reaksiyonu ile sodium asetat ve etanole dönüşen 

tepkime kabı ele alınmıştır. Bu tepkime kabında, reaktör sıcaklığı ve sodyum 

asetat konsantrasyonu, etil asetat ve soğutma suyu akış hızı ile denetlenmiştir. 

Madde ve enerji denklemleri kullanılarak reaktörün dinamik modeli 

geliştirilmiştir. Modeldeki bilinmeyen parametreleri elde etmek için yatışkın 

durum deneyleri yapılmıştır. Geliştirilen model, tek girdili tek çıktılı (TGTÇ) ve 

çok girdili çok çıktılı (ÇGÇK)-MÖD tasarlamak için kullanılmıştır.   
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Daha sonra, kolemanit ile sülfürik asidin dört adet sürekli karıştırıcılı tank 

reaktöründeki reaksiyonu sonucunda elde edilen borik asit sistemi incelenmiştir.  

Bu sistemde, dördüncü reaktördeki borik asit konsantrasyonu, sülfürik asidin akış 

hızı ile denetlenmesi incelenmiştir. Sistemin ve bozan etkenin (kolemanit akış 

hızı) aktarım fonksiyonlarını elde etmek için ayarlanan değişkene ve bozan 

etkene adım değişikliği verilerek borik asit konsantrasyonunun cevap eğrisi elde 

edilmiştir. Aktarım fonksiyonları TGTÇ-MÖD tasarlamak için kullanılmıştır.     

Her iki reaktör sistemi için tasarlanan denetleyicilerin performansları, istek değeri 

takibi, bozan etkenin ortadan kaldırılması ve gürbüzlük açılarından incelenmiştir. 

Tasarlanan denetleyicilerin, istek değeri takibi ve bozan etkenin ortadan 

kaldırılmasına göre başarılı oldukları bulunmuştur. Ancak, borik asit üretiminde 

kullanılan reaktörün, bozan etkenin performansının gürbüz olmadığı diğerlerinin 

ise gürbüz olduğu belirlenmiştir.  

 

Anahtar Kelimeler: Model Öngörümlü Denetim, Sürekli Karıştırılan Tank 

Reaktörü, Sabunlaştırma, Borik Asit 
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CHAPTER 1 

INTRODUCTION 

 

 

Reactors are one of the most major equipments in the chemical industries. Their 

controls in different levels are important for achieving high yields, rates and to 

reduce side products if possible. 

 

The performance of the use of Model Predictive Controller (MPC) in reactors is 

investigated in this study. “MPC is the family of controllers in which there is a 

direct use of an explicit and separately identifiable model” (Prett and Garcia, 

1988). MPC algorithm can be described shortly by a model that must be 

obtained off-line, an objective function, a reference trajectory to follow and the 

constraints (input/output) to apply. MPC is a user friendly and applicable 

technique for different industrial needs, where, the objective function, the model 

and optimization method are flexible. The advantages of MPC compared with 

many other control techniques can be listed as follows (Li et al., 1989): 

• It can use step and impulse response data which can easily be obtained, 

• It can handle input/output constraints directly, 

• It gives satisfactory performance even with time delays and high 

nonlinearities, 
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• It can be used in multivariable format, 

• It is robust in most cases, 

• Implementation of the technique is simple, 

• It can optimize over a trajectory, 

• It can be used to control various processes, whether simple or complex 

ones. 

 

In this study, two case studies are considered; a saponification reaction system 

and boric acid production system.  In the saponification system, a CSTR is used. 

The system is simple to model theoretically. Thus, it is aimed to investigate for 

the MPC performance for a system which can easily be modeled theoretically. 

However, unknown parameters of the model are found experimentally at steady 

state conditions. Thus, a dynamic theoretical model is checked with dynamic 

experiments. As a result of a good match between experimental and model 

results, the developed model is used for designing MPC. A multi-input multi-

output (MIMO)-MPC is used for the control of temperature of the reactor and 

sodium acetate concentration which is obtained from the reaction of sodium 

hydroxide and ethyl acetate in the CSTR. In the simulation studies, previously 

written software by Dokucu (2002) in Fortran and modified by Bahar (2003) in 

MATLAB is adopted for the control of the system in a MIMO structure. 

 

The second case study is done in a boric acid production system where boric acid 

is produced by the reaction between colemanite and sulfuric acid in four CSTR’s 

connected in series. The control of this system necessitates the design of a 

MIMO-MPC where the controlled variables must be the temperatures in the four 

reactors and boric acid concentration in the fourth reactor. However, it is 

planned to keep temperature constant in all the reactors due to the complexity 
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of the experimental system and the difficulty of performing experiments at 

different temperatures. Therefore, in the scope of this study only concentration 

of boric acid is considered as the controlled variable. Experiments are performed 

by giving step change to the manipulated variable and to the disturbance, and 

by obtaining the response of the boric acid concentration to obtain the process 

and disturbance transfer functions. The transfer functions are then used in the 

design of SISO-MPC.  

 

The performances of the designed controllers are checked for setpoint tracking, 

disturbance rejection and robustness for the two systems. 
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CHAPTER 2 

LITERATURE SURVEY 

2.1 Model Predictive Control (MPC) 
 
Model predictive control (MPC) technique started to be implemented in industrial 

applications practically since 1970’s. The studies related with MPC initialized with 

Richalet et al. (1978) as Model Predictive Heuristic Control (MPHC) technique and 

named as Model Algorithmic Control (MAC). This strategy is constructed basing 

on three issues. The first is to represent the multivariable process to be 

controlled by its impulse response model. The model’s inputs and outputs are 

updated according to the actual state of the process since it is used for on-line 

prediction. The second issue is to use reference trajectory for the closed-loop 

behavior of the plants. This trajectory is initiated on the actual output of the 

process and tends to approach the desired set point. The third issue is to 

compute the control variables in a heuristic way that, when applied to the model, 

they change outputs as close as possible to the desired reference trajectory. 

 

Rouhani and Mehra et al. (1982) suggested mathematical issues for the 

utilization of model algorithmic control (MAC) analysis and defined the 

fundamental components of the control structure. They analyzed the stability 
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and the robustness of  both of the deterministic and stochastic systems of SISO 

system. They verified analytically and experimentally that slowing down the 

reference trajectory strenghtens the robustness of the control. 

 

After the developments of MPHC and MAC, dynamic matrix control (DMC) was 

used as a new technique by Cutler and Ramaker in 1979. The characteristics of 

this technique when compared with previous ones are as follows; 1) step 

response model replacing the impulse response model, 2) quadratic performance 

objective function over a finite horizon is used, 3) future behavior of the plant is 

organized in accordance with the setpoint and optimal control inputs are 

computed to avoid least square problems. 

 

In 1986, Garcia and Morshedi presented quadratic dynamic matrix control 

(QDMC) in which they concentrated on the associated variable constraints. They 

established the relationship between the input and output inequality constraints 

and the manipulated inputs by dynamic matrix. The QDMC algorithm enabled a 

satisfactory and robust  control by maintaining the controlled variables within the 

constraints. 

 

Clarke et al. (1987) proposed a new control algorithm called Generalized 

Predictive Control (GPC). This method was claimed to be applicable also to open 

loop unstable systems, non-minimum phase plants and poorly identified plants 

with unknown order or dead time. Controlled Auto Regressive Integrated Moving 

Average (CARIMA) model was used in order to model the disturbances by 

defining the developed process model in discrete time and by dividing 

disturbance by the differencing operator.  
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Lee and Sullivan et al. (1988) developed a generic model control (GMC) 

algorithm. The advantage of this method was that easy online implementation 

took place. Finally, various control strategies could be derived in the presence of 

suitable problem formulation and a reasonable selection of performance index.  

 

Garcia et al. (1989) included in their papers some MPC algorithms such as 

Dynamic Matrix Control (DMC), Model Algorithmic Control (MAC) and Internal 

Model Control (IMC) and made their comparisons.  They suggested that there is 

a significant advantage of MPC in terms of the overall operating objectives of the 

process industries which is the flexible constraint handling capability. They also 

investigated the applications of MPC to nonlinear systems and identified it is 

main attractions. It was concluded that in spite of not being inherently more or 

less robust than classical feedback, MPC can be adjusted more easily.     

     

Riggs and Rhinehart et al. (1990) compared nonlinear internal model control 

(IMC) and generic model control (GMC) on a SISO exothermic CSTR and SISO 

heat exchanger. The advantage of choosing these systems was that, they could 

be easily adjusted so as to change process nonlinearity and process/model 

mismatch. They concluded that these nonlinear process model based control 

methods were relatively insensitive to process/model mismatch and have 

relatively wide tuning bands.    

 

Sistu and Bequette et al. (1992) studied a comparison of globally linearizing 

control (GLC), a differential geometry based control, and nonlinear predictive 

control (NLPC), an optimization based technique, for temperature control of an 

exothermic continuous stirred tank reactor (CSTR). GLC linearize the 

output/input or the state/input closed loop nonlinear system. This technique was 
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only used on minimum phase systems, in which the inverse dynamics were 

stable. All state variables assumed to be measured for GLC. If there were 

unmeasured state variables, estimation techniques must be used. The results 

were obtained for considering perfect model, with measured and unmeasured 

disturbances, an uncertain model, and finally constraints on manipulated 

variable. For an unconstrained case, GLC gave same performance to NLMPC. 

However, NLMPC gave better performance than GLC considering constraints on 

manipulated variable. 

 

Özgülşen et al. (1993) developed a nonlinear model predictive control (NMPC) 

strategy for controlling periodically forced processes. The system was a non-

adiabatic CSTR where ethylene oxide was produced by catalytic oxidation of 

ethylene with air. Nonlinear autoregressive model with exogenous inputs (NARX) 

model of the forced CSTR was built by using an orthogonal forward regression 

estimator for off-line identification of the system and incorporated into NMPC 

algorithm. The effect of dead time on controller performance was not included in 

this study. The performance of the predictive controller was investigated 

considering unmeasured disturbances and parametric uncertainty, and gave 

good performance. 

 

Lee et al. (1994) proposed a new control scheme, which consisted of an Adaptive 

Model Predictive Control (AMPC) and state feedback control, for unstable 

nonlinear processes. Then, the final control inputs were the summation of 

feedback outputs and the control actions of the AMPC. The control law of AMPC 

was similar to that of Dynamic Matrix Control (DMC) but the output prediction 

was obtained by ARMA models, which is very useful for model parameter 

identification, in AMPC. The advantages of this proposed method were easy 
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implementation to unstable nonlinear processes with robustness and simplicity of 

design. The performance of AMPC was tested by a jacketed continuous stirred 

tank reactor (CSTR) and two jacketed CSTRs in series with a seperator and 

compared with Generalized Predictive Control (GPC) and Adaptive Generalized 

Predictive Control (AGPC). The results showed that AGPC gave good 

performance for good set-point tracking, in contrast GPC failed to overcome the 

effect of process change, and AMPC showed better stable control performance 

than the AGPC. 

 

Afonso et al. (1996) investigated the performance of a receding horizon model 

predictive control (MPC) applied to a continuous stirred tank reactor (CSTR), 

where a pseudo zero order exothermic chemical reaction was simulated in order 

to control temperature and level of a CSTR. By making MPC algorithm 

formulation, the manipulated variables were calculated so as to minimize an 

objective function considered desired trajectories over the horizon. The control 

law was obtained at each iteration by the solution of quadratic program. The 

performance of receding horizon model predictive control applied in a CSTR was 

compared with PI controller. It can be said that MPC gave better performance 

than PI controller, operating in steady state or dynamically, despite both MPC 

and PI strategies showed the similar performance for level control.   

 

Al-Ghazzawi et al. (2001) used the closed-loop prediction of the output and its 

sensitivity to the tuning parameters in order to establish an on-line tuning 

algorithm. Linear model predictive controllers (LMPC) based on finite impulse 

response (FIR) models were developed. It was not obligated that dynamic output 

constraints over the prediction horizon was utilized for the on-line optimization 

since hard dynamic output constraints were not made use of commercial MPC 
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software. Al-Ghazzawi developed analytical expressions for the sensitivity of the 

closed-loop response of MPC with respect to output and input weights of the 

objective function. Both of the control and prediction horizon were kept constant 

predetermined values by depending on conventional tuning guidelines. The 

performance of the proposed strategy was illustrated by using a linear model for 

a three product distillation column and a non-linear model for a CSTR. In CSTR, 

a linearized model was developed and converted to FIR to use it for MPC 

algorithm. The set point tracking, disturbance rejection and effect of modeling 

errors were considered, the performance of proposed method gave good results. 

There is also a comparison of the proposed on-line tuning method with an 

existing off-line tuning method. The off-line method had the control performance 

better than the proposed method. In addition to that, off-line method expressed 

a considerably high sluggish response in distillation column example and 

unstable response in the CSTR example. 

 

Wu et al. (2001) studied linear matrix inequality (LMI) based robust MPC for a 

class of uncertain linear systems with time varying, linear fractional 

transformation (LFT) perturbations. This class of uncertain systems was utilized 

for modeling of nonlinear systems. An adequate state-feedback synthesis 

condition was developed and formulated as LMI optimization. Then, the control 

action could be calculated on-line. The stability of robust MPC was decided by the 

feasibility of the optimization problem. The performance of the robust MPC 

technique was implemented to an industrial CSTR with explicit input and output 

constraints for set point tracking without disturbance and disturbance rejection. 

According to simulation results, it was concluded that robust MPC technique was 

capable of incorporating model mismatch and constraints as well as stability 

guarantee.  
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Park et al. (2001) studied a linear matrix inequality (LMI)-based robust model 

predictive control (MPC) so as to control the monomer conversion and the 

weight-average molecular weight of polymer product in a CSTR for the 

polymerization of methyl methacrylate (MMA) with the polytopic uncertain 

model. The controller was designed to minimize an upper bound objective 

function subject to constraints on the control input and plant output. The 

controller performance was checked for two cases;  SISO and MIMO. In the SISO 

system, the manipulated variable was the jacket inlet temperature and the 

controlled variable was the monomer conversion. In MIMO system, the 

manipulated variables were the jacket inlet temperature and the feed flow rate, 

the controlled variables were the monomer conversion and the weight average 

molecular weight. According to the simulation results, it can be shown that the 

LMI-based robust model predictive controller gave good performance for the 

property of continuous polymerization reactor and the robust stability was 

guaranteed. It can be concluded that LMI-based robust MPC was so applicable to 

polymerization processes. 

 

Santos et al. (2001) implemented a Newton-type nonlinear model predictive 

control (NMPC) algorithm in a continuous stirred tank reactor (CSTR) to control 

the liquid level and temperature by manipulating the outlet of the reactor and 

coolant flow rate. NMPC utilized the nonlinear dynamic model in order to predict 

the effect of sequences of control steps on the controlled variables. It is very 

useful for processes operating at or near singular points which can’t be captured 

by linear models. NMPC formulation involves integral action to eliminate the 

steady state offset due to disturbances and model mismatch. The set point 

changes operating at an unstable point, influence of saturation constraints and 

effects of unmeasured disturbances and model mismatch to the NMPC controller 
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were considered with experimental and simulation. Although comparison of 

simulated and experimental results gave good results, several sources of 

unmeasured disturbances and model mismatch were observed in this system. In 

spite of model mismatch and unmeasured disturbances, nonlinear model 

predictive controller performed well for setpoint tracking and disturbance 

rejection. In order to accomplish better performance, on-line parameter 

estimation can be considered.   

 

Seki et al. (2001) developed a nonlinear model predictive control (NMPC) and 

applied it to an industrial polypropylene semi-batch reactor and a high density 

polyethylene (HDPE) continuous stirred tank reactor. The developed NMPC 

algorithm was composed of an optimal trajectory generator and a feedback 

tracking controller. Linear quadratic control with integrator (LQI) was solved with 

the successively linearized nonlinear process model. Optimal trajectory generator 

did not include process constraints, therefore, so as to satisfy the constraints, 

the feedback tracking controller, which solved a quadratic programing (QP) by 

using the local linearization of the model around the trajectory, was used. A 

state estimator was designed in order to provide offset-free responses of the 

outputs to constant set points. In semi-batch reactor, the NMPC prevented 

thermal runaway of the reactor temperature control because of the heat removal 

constraint. In the high density polyethylene reactor, the NMPC improved the 

performance of the grade changeover operation. In order to improve the 

performance of the control system, the optimal grade transition trajectories can 

be employed as the set points to the controlled variables. 
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Nagrath et al. (2002) developed a MPC-based cascade control approach and 

applied it to an open loop unstable jacketed exothermic CSTR, where the jacket 

temperature was used as a secondary measurement so as to see disturbances in 

jacket feed temperature and reactor feed flow rate. State estimation was 

accomplished by using a discrete dynamic Kalman filter, while a quadratic 

programming (QP)-based optimization for the predictive controller explicitly 

handled the manipulated variable constraints. The MPC-based cascade strategy 

was compared to classical cascade control, and it can be shown that MPC-based 

cascade method performed better than it in the presence of constraints on jacket 

flow rate.       

 

Prasad et al. (2002) studied a multivariable multi-rate NMPC and applied it to 

styrene polymerization continuous stirred tank reactor in order to control 

number average molecular weights (NAMW) and polydispersity (PD). The NMPC 

algorithm included a multi-rate extended Kalman Filter (EKF) in order to handle 

state variable and parameter estimation. The multi-rate EKF was used for the 

design of the augmented disturbance model as estimator. Plant-model structural 

mismatch, parameter uncertainty and disturbances were considered for control 

simulations in open loop unsteady state CSTR. The results showed that the 

proposed multi-rate NMPC algorithm gave good performance compared with 

linear multi-rate and nonlinear single-rate MPC algorithms.     

 

Cervantes et al. (2002) presented a NMPC based on a Wiener piecewise linear 

model. The L-N approach was used for Wiener model identification since it is 

straightforward and guarantees an accuracy of the static nonlinearity. In this 

approach, firstly the linear block is identified using a correlation technique and 

then, the intermediate signal is generated from the input signal and finally the 



 13

static non-linearity is estimated. A good representation of the inverse of the 

nonlinearity is necessary to implement NMPC algorithm. In order to identify it, 

direct identification, which is the identification of the nonlinear element of the 

model but switching inputs and outputs, is used. This proposed technique was 

illustrated by a SISO CSTR and a MIMO polymerization reactor and the response 

of NMPC and LMPC are compared. The results showed that the LMPC step 

response to a lower set point was slower but LMPC was faster for an upper step 

input. 

 

Wang et al. (2003) proposed an alternative robust MPC design strategy for 

dealing with model-plant mismatch based on the use of a generalized objective 

function. The stability of the proposed controller might be verified by using a 

generalized positive definite objective function due to the conventional quadratic 

function. Under the circumstances of stability consideration, the infinite 

prediction horizon was selected.  For the sake of feasibility, if the manipulated 

variable constraints are the only constraints, the optimization problem is always 

feasible. The optimization was infeasible by the state constraints. The 

performances of the proposed MPC based on a generalized objective function 

(GOFMPC), a conventional MPC based on quadratic objective function (QOFMPC) 

and the min-max algorithm were compared in CSTR. In this study, 

unconstrained case was also considered. All three controllers gave good 

performance in the presence of model-plant mismatch. If there is no model-plant 

mismatch, the response of GOFMPC was faster than that of min-max method, 

but slightly slower than that of QOFMPC.  

 

Özkan et al. (2003) presented a MPC algorithm depend on multiple piecewise 

linear models and applied it to copolymerization of methyl methacrylate and 
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vinyl acetate in CSTR. The control approach based on a receding horizon scheme 

with the quadratic objective function consisting of a finite horizon cost and an 

infinite horizon cost. The finite horizon cost is composed of the future control 

outputs that force the system in order to move the desired operating point. The 

infinite horizon cost has an upper bound and takes the system to the desired 

steady-state operating point. The proposed control method gave good 

performance in the case of disturbance rejection.   

 

2.2 Boric Acid Studies  

Gürbüz (1998) looked at the solubility of colemanite in distilled water and boric 

acid solutions. In this study, boric acid concentrations were chosen as 7.5 %, 10 

% and 20 % H3BO3. According to the results obtained, dissolution of colemanite 

is a very fast reaction in both water and boric acid solutions, and all boric acid 

concentrations reached saturation during the first five minutes. Dissolution of 

colemanite in distilled water increased the pH of solution at a considerably high 

measure. On the other hand, in boric acid solutions the pH variation was 

observed to be less and seemed to be constant, that is, it is independent of 

solution concentration.  

 

Tunç and Kocakerim (1998) investigated how reaction temperature, particle size, 

acid concentration, stirring rate and solid-liquid ratio affect dissolution kinetics of 

colemanite in H2SO4 solutions. It came out to be that rate of conversion 

increased by decreasing particle size and solid-liquid ratio, and by increasing 

both temperature and stirring rate. Also, conversion rate increased with 

increasing acid concentration up to 1 M, after exceeding the acid concentration 

of 1 M, it decreased. 
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Kalafatoğlu (2000) studied dissolution characteristics of Hisarcık colemanite in 

the presence of sulfuric acid. In this study, compositions of reaction solutions 

with different initial concentrations of sulfuric acid were obtained. Due to 

stoichiometric ratio, the calcium content showed a minimum at 5 % H2SO4 

concentration. At the concentrations below this level, dissolved calcium was in 

equilibrium with colemanite, whereas above this level on account of the reaction 

conditions, because of supersaturation, high calcium solubilities were observed. 

 

Çetin et al. (2001) studied the formation and growth kinetics of gypsum during 

dissolution of colemanite in sulfuric acid in a batch reactor by changing 

temperature (60-90°C), stirring rate (150-400 rpm), and initial concentrations of 

the reactant. The initial CaO / H2SO4 ratio was changed between 0.21-0.85 by 

keeping initial concentrations of sulfate at 0.623 mol/l and 0.85-3.41 by keeping 

initial concentrations of colemanite at 0.777 mol/l. Boric acid production reaction 

is a very fast reaction and almost all of the boric acid was produced in the first 

minute. It was found that dissolution of colemanite in sulfuric acid was 

independent of the stirring rate in the range of 150-400 rpm. Also, it was 

observed that boric acid concentration in the solution decreased by decreasing 

initial concentration of sulfuric acid.  
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CHAPTER 3 

BORON 

Boron is one of the most important elements in the world whose compounds are 

used in manufacture of glasses, porcelain, soaps, detergents, textile, nuclear 

reactors and material processing. Its color is black and it is a better 

semiconductor than a metal. It has a great affinity for oxygen. In nature, boron 

always occurs in the oxygenated state, mainly as borate. On account of this 

characteristic, boron is available as approximately 230 boron minerals, the 

principal of which are listed in Table 3.1.  

 
Turkey has the largest share of known boron minerals. Borate producing 

countries with their corresponding minerals and reserves are presented in Table 

3.2.  
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Table 3.1 Important boron minerals (Tübitak, 2002) 
 
Mineral   Formula   B2O3, wt% 

Colemanite   2CaO.3B2O3.5H2O       50.8 

Pandermite   4CaO.5B2O3.7H2O       49.8 

Hydroboracite   CaO.MgO.3B2O3.6H2O       50.5 

Datolite   Ca2B4Si2O122H2O       26.7 

Tinkal    Na2O.2B2O3.10H2O       36.5 

Kernite   Na2O.2B2O3.4H2O       50.9 

Ulexite    Na2O.2CaO.5B2O3.16H2O      43.0 

Szaybelite   MgBO2(OH)        41.4   

Sassolite   B(OH)3        56.3  

 

 

Table 3.2 Distribution of Boron Minerals (KIGEM, 1999) 
 
Country  Principal Minerals  Reserves of B2O3, tons    % 

Turkey   ulexite, colemanite, tinkal  803,000,000          63 

United States  tinkal, kernite, colemanite  209,000,000           16,4 

   ulexite 

Russia   datolite, hydroboracite  136,000,000          10,7 

Chile   ulexite       41,000,000            3,2        

China   ascharite      36,000,000            2,8 

Peru   ulexite       22,000,000           1,7 

Bolivia          19,000,000            1,5 

Argentina  tinkal, kernite, ulexite      9,000,000            0,7 

Total        1,275,000,000        100 
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Tincal is mined in Kırka, colemanite in Emet, Bigadiç and Kestelek, and ulexide is 

mined in Bigadiç (Özbayoğlu et al., 1992). 

 

3.1 Boric Acid 

Boric acid can be found as a hydrate of boric oxide and exists both as a 

trihydrate, orthoboric acid (H3BO3) and monohydrate, metaboric acid (HBO3). 

Only the more stable orthoboric acid form is commercially important and usually 

referred as boric acid.   

 

Boric acid is widely used in glass, ceramic, nuclear power, electronic, medical 

and pharmaceutical industries. 

 

3.1.1 Properties of Boric Acid 

Boric acid is an odorless, white, crystalline, powdered material. It is soluble in 

hot water, alcohol and glycerin. The solubility of boric acid in water increases 

rapidly with temperature. The solubility of boric acid in water is increased by the 

addition of salts, such as KCl, KNO3, Na2SO4, whereas the addition of LiCl, NaCl 

tends to lower the solubility. It behaves as a weak acid in aqueous solutions, pKa 

of 9.23 at 250C. Also, it is volatile with steam.  

 

Boric acid reacts with strong bases to form metaborate ion B(OH)4
- and with 

alcohols to form borate esters. Boric acid reacts with fluoride ion to form 

tetrafluoroboric acid H(F3BOH).   

 

3.1.2 Boric Acid Production 

Tinkal, kernite, colemanite and ulexide react with strong mineral acids to form 

boric acid. 
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In Turkey and Europe, boric acid is produced from crushed colemanite ore by 

reaction with sulfuric acid. In Bandırma boric acid plant, it is produced in a batch 

reactor. During calcinations, colemanite decrepitation takes place. Before adding 

sulfuric acid, ball milling leads to size reduction. The crushed colemanite and 

sulfuric acid are mixed at 950C. By product gypsum particles and other insolubles 

are filtered and the hot mother liquor cooled to crystallize boric acid. The boric 

acid crystals are centrifuged and dried (Özbayoglu et al., 1992). The boric acid 

production from colemanite with sulfuric acid is as follows: 

 

Ca2B6O11.5H2O + 2 H2SO4 + 6 H2O → 2 CaSO4.2H2O + 6 H3BO3  (3.1) 

 

In order to increase the production rate of boric acid in Turkey, a new plant was 

constructed and started to operate in Emet, Kütahya in 2003. In this new plant, 

boric acid production is made by a continuously stirred tank reactor.  

 

In the United States, boric acid is produced by reacting crushed kernite ore with 

sulfuric acid in recycled weak liquor at 1000C. Coarse gangue is separated by 

rake classifiers and fine particles are settled in a thickener. Boric acid crystallizes 

from strong liquor, saturated in sodium sulfate in continuous evaporative 

crystallizers. Crystals are filtered and washed with progressively weaker liquor in 

a countercurrent circuit. The final product is dried in rotary driers and screened 

for packaged (Kirk-Othmer, 1992). The reaction is as follows; 

 

Na2B4O7.4H2O + H2SO4 + H2O→ 4H3BO3 + Na2SO4   (3.2) 

 



 20

 

CHAPTER 4 

MODEL PREDICTIVE CONTROL (MPC) 

“Model predictive control refers to the class of control algorithms that compute a 

manipulated input profile by utilizing a process model to optimize an open loop 

performance objective subject to constraints over a future time horizon” 

(Rawling et al., 1993). Recently, the popularity of MPC has been increased for 

industrial applications and academic world. The reason is the ability of MPC 

designs to produce high performance control systems having capacity of 

operating without expert intervention for long durations.  

 

4.1 MPC Strategy (Camacho and Bordons, 1999) 

The strategy of MPC can be well understood from Figure 4.1. At the present time 

n, the future outputs (y(n+k) for k=1...P) of the system over a prediction 

horizon (P), are predicted at each instant by using the model of the process, 

knowing values up to instant n (past inputs and outputs) and future inputs  

(u(n), u(n+1),..., u(n+C)) where C is the control horizon. In Figure 4.1, the past 

inputs (u(n-k) for k=1...M-1) are expressed by solid lines and the future inputs 

(u(n+k) for k=1...C) are shown by dashed lines. The set of future inputs which 

minimize the objective function are applied to the system.  Only the first element 
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of the future input is applied to the process since a new measurement of the 

output can be present at the next sampling instant. This procedure is repeated 

for next sampling time with addition of the new measurements, this is called 

receding strategy. 

 

 

 

Figure 4.1: MPC Strategy (Garcia et al., 1989). 

 

Figure 4.2 shows the basic structure of MPC. A model is used in order to predict 

the future outputs based on past inputs and outputs of the system. A 

comparison is made between the predicted output of the plant and the reference 

trajectory of it and the future errors of the plant are calculated at each time 

step. The optimizer calculates the best future inputs considering the objective 

function and the constraints. Only the first element of this optimal set is applied 

to the plant and the same procedure repeated at the next sampling time.  
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Figure 4.2: Basic Structure of MPC (Camacho and Bordons, 1999). 

 

4.2 MPC Models 

The process model is the most important characteristic of MPC. The model is 

very vital for ability to implement MPC. Many alternative categories of MPC 

models exist, namely, linear or nonlinear, continuous or discrete-time, 

distributed parameter or lumped parameter, deterministic or stochastic, input-

output or state-space, frequency domain or time domain, first principles or black 

box. 

 

In the MPC framework mostly used model is discrete step response (convolution) 

model. The advantage of step response model is that, the model coefficients can 

be obtained from input output information of the process without assuming a 

model structure and can be applicable for any linear system. Figure 4.3 shows 

an 
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open loop step response of a linear process. A unit step is given to the system so 

as to obtain a process step response model.  

 

 
Figure 4.3: An Open Loop Step Response of a Linear Process (Seborg et al., 
1989). 
  

In Figure 4.3, the “ai” values are the step response coefficients and “hi” values 

are the impulse response coefficients. The step response coefficients are the 

summation of all impulse response coefficients as given in Equation (4.1) 

(Seborg et al., 1989). 

 

i

i j
j 1

a h
=

= ∑        (4.1) 

 

Using Equation (4.1) for M input changes to predict the system’s output, the 

discrete convolution model using step response coefficients can be written as in 

Equation (4.2). 

 

M

n 1 0 i n 1 i
i 1

y y a u
∧

+ + −
=

= + ∆∑       (4.2) 
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Rearranging Equation (4.2) for impulse response coefficients, the discrete 

convolution model in recursive form can be obtained as in Equation (4.3). 

 

M

n 1 n i n 1 i
i 1

y y h u
∧ ∧

+ + −
=

= + ∆∑                       (4.3)                     

  

Equation (4.3) is an open loop prediction, therefore there is no correction for 

model errors and disturbances that can have occurred at any previous time step.  

n 1y∗
+  is used for the corrected prediction of n 1y

∧

+ . At any sampling time n, the 

difference between the actual value ( ny ) and the predicted value ( ny
∧

)  is 

assumed to be constant for next sampling time. This prediction can be 

formulated as: 

 

*
n n n 1 n 1ˆ ˆy y y y+ +− = −       (4.4) 

 

In order to obtain recursive form, Equation (4.4) is added to Equation (4.3),  

resulting in Equation (4.5) 

                     

M

n 1 n i n 1 i
i 1

y y h u∗
+ + −

=

= + ∆∑      (4.5) 

 

Equation (4.5) is used only for single-step prediction. When the error comes out 

to be the same for the future times up to prediction horizon (P), the multistep 

predictions can be expressed as: 

 

M

n j n j 1 i n j i
i 1

y y h u∗ ∗
+ + − + −

=

= + ∆∑   for j = 1, 2,..., P and if j = 1, n ny y∗ =  (4.6)                     
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Equation (4.6) is the final form of multistep convolution model.  

 

4.3 Multi-Input Multi-Output (MIMO) Predictive Control  

The step response model is developed for single-input single-output (SISO) 

systems in Section 4.2. However, most chemical processes are multi-input multi-

output systems. Therefore, the step response model for MIMO system with two 

inputs and two outputs will be developed by using principle of superposition 

shown in Equation (4.7), 
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,22,1

1
,121,2,2    for    j = 1, 2, ..., P (4.7) 

 

4.4 Objective Function 

In order to follow a reference trajectory by the future outputs on the prediction 

horizon and at the same time to penalize the control effort, an objective function 

must be developed. A general objective function can be expressed as follows: 

 

( )
P C

2 2
1 2u(n) u(n C 1)

i 1 i 1

min W y n i n r (n i) W u (n i 1)
∧

∆ ∆ + −
= =

⎡ ⎤+ − + + ∆ + −⎡ ⎤⎣ ⎦⎢ ⎥⎣ ⎦
∑ ∑

L
  (4.8) 

                                        

where the first term is the squared summation of the errors throughout the 

prediction horizon. The second term is the summation of control effort 

throughout control horizon. The positive-definite weighing matrices 1W  and 2W , 
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which are usually diagonal matrices, are used to penalize the output and control 

effort.  

 

4.5 Controller Design  

A model based controller can be designed basing on the step response model for 

MIMO systems. Initially, error must be defined since the controllers behave 

according to the error. Therefore, subtracting the predicted values from the 

corresponding setpoints (r), Equation (4.9) can be obtained as   
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  (4.9) 

 

where A11 and A12 indicate the first manipulated input’s effect on the first and 

second controlled outputs, A21 and A22 indicate the second manipulated input’s 

effect on the first and second controlled outputs, and P1,P and P2,P are functions 

of “hi” as given in Appendix A.  

 

Equation (4.9) can be written in a simpler form as follows: 

 

ˆE A u E
∧

′= − ∆ +       (4.10) 
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There are two predicted error vectors, namely E
∧

 and Ê′ . The vector E
∧

 predicts 

the current and future errors assuming closed loop prediction whereas the vector 

is Ê′ an open loop prediction since it calculates the past control actions.  

 

Thus, the resulting control law is obtained as follows; (see Appendix A for 

derivation) 

 

( ) 1T T
1 2 1 MPC

ˆ ˆu A W A W A WE K E
−

′ ′∆ = + =    (4.11) 

 

where MPCK  is the matrix of the feedback gains and it is constant for 

unconstrained control and evaluated only once. 

 

If constraints are imposed on controller and system’s output, the minimization 

becomes more complex due to adding the constraints to objective function. 

Therefore, the solution cannot be solved explicitly.    

 

Manipulated variable, manipulated rate variable and the output variable  

constraints are shown in Equations (4.12)-(4.14). 

 

                                   min maxu u(t) u≤ ≤                t∀                              (4.12) 

                             min maxu u(t) u(t 1) u∆ ≤ − − ≤ ∆    t∀                              (4.13) 

                                   min maxy y(t) y≤ ≤               t∀                              (4.14) 
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The objective function for quadratic program is as follows:  

 

T T

min u

1
J u u H u g u

2∆

∆ = ∆ ∆ − ∆⎡ ⎤⎣ ⎦     (4.15) 

                               

            subject to    1 1C u c∆ =        

            2 2C u c∆ ≥             (4.16) 

where H is QP Hessian matrix and g  is QP gradient vector. The solution of 

Equation (4.15) at each sampling time will produce an optimal set satisfying 

constraints. QP Hessian matrix and QP gradient vector are written as: 

 

T
1 2H A WA W= +      (4.17)  

   

                      T
1g A WE′=       (4.18)  

       

In Equation (4.17), H is fixed at all times. Therefore, a parametric QP algorithm 

is preferred rather than an algorithm that searches for the minimum in order to 

reduce the computation time. Hessian matrix is the second derivative and 

gradient vector is the first derivative. The quadratic dynamic matrix control 

(QDMC) uses quadratic objective function and minimizes the objective function 

with quadratic programming algorithm in order to find the optimal set of the 

future input moves. While formulating the constraints for QP algorithm, the 

dynamic matrix formulation are preserved.  
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4.6 Tuning the MPC  

The tuning parameters for MPC are the model horizon (M), control horizon (C), 

prediction horizon (P), weighting matrices for predicted errors ( 1λ ) and control 

moves ( 2λ ) and sampling period ( )t∆ . 

 

The model horizon, M, should be selected to be equal to 99% of the settling 

time. The control horizon, C, is used in the optimization calculations in order to 

decrease the predicted errors. It can be selected as the 60% of the open loop 

settling time. Too large value of C causes an excessive control action whereas a 

smaller values of C leads to a robust controller which is insensitive to model 

errors. Prediction horizon ,P, which is used as tuning parameter (Maurath et 

al.,1988), is used in the optimization calculations. Increasing P results in more 

conservative control action but also increases the computational effort. P is 

chosen as 85% of model horizon (Camacho and Bordons, 1999). The weighting 

matrix for predicted errors 1λ  is usually selected as identity matrix, I, and the 

weighting matrix for control moves is chosen as If × , where f is a scalar design 

parameter. Larger values of f penalize the control actions more, therefore gives 

less vigorous control. On the other hand, if the value of f is equal to zero, the 

controller gains are very sensitive to control horizon C. In order not to lose the 

important dynamic information, the sampling period ( )t∆  should be small. 

However, when the sampling period is too small, model horizon M must be very 

large, which is not desirable condition (Seborg et al.,1989).  
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CHAPTER 5 

CASE STUDY I: SAPONIFICATION REACTION IN CSTR 

The MPC methodology explained in Chapter 4 is used in the temperature and 

product concentration control of saponification reaction in CSTR. 

 

The CSTR is used for an exothermic, irreversible reaction of ethyl acetate 

(EtOAc) and sodium hydroxide (NaOH) in an aqueous medium to produce 

sodium acetate (NaOAc) and ethanol (EtOH). The reaction is written as 

 

3 2 3 3 3 2CH COOCH CH NaOH CH COONa CH CH OH+ → +    (5.1) 

 

The experimental set-up and experimental procedure together with the model of 

the chemical reactor and description of the simulation program will be given 

below.  
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5.1 Experimental 

 

5.1.1 Experimental Set-up 

The experimental set-up shown in Figure 5.1 is composed of an Armfield CSTR 

and a bench-mounted main frame carrying a PVC tank divided into two sections 

fitted with drain taps. Feed liquids are supplied by means of two displacement 

pumps through two control valves. Liquids within the reactor are mixed by a 

motor driven stirrer and there is a baffle to obtain homogeneous mixture without 

vortex formation. Cooling water, the temperature of which is measured by a 

thermocouple and monitored on the panel, is circulated through a stainless steel 

coil immersed in the reactor. The system is equipped with a temperature 

controller. 

 

Figure 5.1: Experimental Set-up of Saponification System. 
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5.1.2 Experimental Procedure 

In the experiments, 0.1 M NaOH, 0.1 M EtOAc are used as reactants, where 0.1 

M HCl is used to stop the reaction and phenolphthalein is used for titration 

indicator. 

 

Before starting the experiment, the calibrations of rotameters are done for NaOH 

and EtOAc separately. The temperature, stirring rate and equal molar flow rates 

of NaOH and EtOAc are adjusted to 300C, 90 rpm and 40 ml/min, respectively. 

The reactants are supplied to the reactor from two feed tanks. The samples can 

only be taken after reaching the desired level in the CSTR constant volume, 1.24 

l. The system is operated to reach the steady state condition while samples are 

taken every two minutes. Then, the flow rate of ethyl acetate is increased from 

40 ml/min to 44 ml/min by giving +10% step change, and the flow rate of other 

reactant NaOH is kept constant.   

 

The samples of 10 ml are taken from the outlet for analyzing concentrations. The 

concentration analysis is done by adding 10 ml HCl solution to 10 ml sample 

immediately. After it is withdrawn, phenol phthalein is used as an indicator. The 

samples later are titrated with 0.1 M NaOH in order to obtain un-reacted amount 

of NaOH. 

 

5.2 Model of the Chemical Reactor 

The model of the CSTR is developed from material and energy balances. The 

assumptions are made as follows; 

1. Densities and heat capacities of all components are assumed to be constant 

and equal to that of water due to small fractions of components, 
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2. The exit coolant temperature is assumed to be 200C when the coolant inlet 

temperature is 180C and the reactor temperature is 300C assuming a 100C 

temperature difference between the reactor and exit coolant temperature, 

3. A quasi steady state is assumed for energy balance on heat exchanger and 

accumulation term is neglected.  

 
Overall mass balance over reactor can be written as  

 

N EA 0

dV
F F F

dt
= + −      (5.2) 

 

From Equation (5.2) at constant volume, the outlet flow rate is 

 

0 N EAF F F= +       (5.3)        

                    

Mass balances of components in the reactor are  

 

NaOH balance: 

 

( )N
N N1 N EA N N

dC
V F C F F C r V

dt
= − + +     (5.4) 

 

EtOAc balance: 

 

 ( )EA
EA EA1 N EA EA EA

dC
V F C F F C r V

dt
= − + +    (5.5) 
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NaOAc balance: 

 

 ( )NA
N EA NA NA

dC
V F F C r V

dt
= − + +     (5.6) 

 

EtOH balance: 

 

  ( )E
N EA E E

dC
V F F C r V

dt
= − + +      (5.7) 

 

where 

 
   N EA NA E N EAr r r r kC C= = − = − = −     (5.8) 

 
 
 
 
The energy balance around the reactor is written as 

 

( )N N EA EA NA NA E E N N1 N N

EA EA1 EA EA N EA N N EA EA NA NA E E

rxn N

dT
V C Cp C Cp C Cp C Cp F C Cp T

dt
F C Cp T (F F ) (C Cp C Cp C Cp C Cp ) T

H r V Q
•

⎡ ⎤+ + + =⎣ ⎦

+ − + + + +

+∆ +

  (5.9) 

 
 
The energy balance on heat exchanger (Fogler, 1999) is 
 
 

( ) ( )
a1 a2

cc cw a1 cw a2
a1 a2

UA(T T )
m Cp T m Cp T 0

ln T T / T T

• • −
− − =

⎡ ⎤− −⎣ ⎦
  (5.10) 

 
 

where   
 

cw w
c

F
m

MW

• ρ
=        (5.11)  
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Simplifying Equation (5.10),  

( ) ( )
a1 a2

c cw a1 a2
a1 a2

UA(T T )
Q m Cp (T T )

ln T T / T T

• • −
= − =

⎡ ⎤− −⎣ ⎦
  (5.12) 

 

Solving Equation (5.12) for the exit temperature of the coolant water,  

 

a2 a1

c cw

UA
T T (T T ) exp

m Cp
•

⎛ ⎞−⎜ ⎟= − − ⎜ ⎟⎜ ⎟
⎝ ⎠

    (5.13) 

 

Solving for the heat transfer rate, 
•

Q , using Equation (5.12) and (5.13), Equation 

(5.14) is attained as   

 

c cw a1

c cw

UA
Q m Cp (T T) 1 exp

m Cp

• •

•

⎧ ⎫⎡ ⎤⎛ ⎞−⎪ ⎪⎢ ⎥⎜ ⎟= − −⎨ ⎬⎢ ⎥⎜ ⎟⎜ ⎟⎪ ⎪⎢ ⎥⎝ ⎠⎣ ⎦⎩ ⎭

   (5.14) 

 

where UA and 
•

m are unknown and must be evaluated using the experimental 

data. 

Then, the energy balance on reactor is obtained by using Equation (5.14) in 

Equation (5.9) as follows  

 

( )N N EA EA NA NA E E N N1 N N EA EA1 EA EA

N EA N N EA EA NA NA E E

crxn N cw a1

c cw

dT
V C Cp C Cp C Cp C Cp F C Cp T F C Cp T

dt

(F F ) (C Cp C Cp C Cp C Cp ) T

UA
H r V m Cp (T T) 1 exp

m Cp

•

•

⎡ ⎤+ + + = +⎣ ⎦

− + + + +

⎧ ⎫⎡ ⎤⎛ ⎞−⎪ ⎪⎢ ⎥⎜ ⎟+ ∆ + − −⎨ ⎬⎢ ⎥⎜ ⎟⎜ ⎟⎪ ⎪⎢ ⎥⎝ ⎠⎣ ⎦⎩ ⎭

(5.15) 



 36

The enthalpies and heat capacities of components are obtained from literature 

(Perry’s Chemical Engineering Handbook, 1980). The reaction rate constant, k, is 

taken from Balland et al. (2000). Cooling water flow rate, Fcw, overall heat 

transfer coefficient times transfer area, UA, are calculated by using the 

Equations (5.9), (5.12) and (5.13) at steady state condition while concentrations 

of products and reactants are measured during the experiment. The calculated 

values of Fcw and UA are given in Table 5.1. Model of the reactor is written in 

MATLAB by using Equations (5.2)-(5.7) and (5.15). Table 5.1 shows the 

operating, assumed and calculated data. Thermodynamic and kinetic properties 

are given in Table B.3. 

 
Table 5.1: Operating Conditions and Calculated Parameters 
 
Parameters       Values 

FN           40 ml/min    

FEA         40 ml/min   

Fcw (calculated)      24 ml/min 

Vi       0.04 l  

CN1        0.1 M 

CEA1        0.1 M  

CNi               0.05 M 

CEAi               0.05 M 

CNAi               0 

CEi               0 

TN        298.15 K 

TEA        298.15 K 

Ta1        291.15 K 

Ta2 (assumed)      293.15 K 

UA (calculated)     18.3 J/min.K 



 37

5.3 Control Studies 

The controlled variables of the system are considered as sodium acetate 

concentration (CNA) and temperature of the reactor (T) whereas the manipulated 

variables are selected as ethyl acetate flow rate (FEA) and cooling water flow rate 

(FCW). A change in a manipulated variable affects both of the controlled variables 

showing MIMO structure is used. Moreover, inputs such as sodium hydroxide 

flow rate (FN) and cooling water temperature (TCW) also affect the controlled 

variables. They are considered as disturbances. The block diagram of the system 

to be used in control studies is shown in Figure 5.2. 

 

Figure 5.2: Saponification Reactor System. 
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CHAPTER 6 

CASE STUDY II: BORIC ACID PRODUCTION FROM 
COLEMANITE AND SULFURIC ACID IN CSTR 

In this case study, four continuously stirred tank reactors connected in series are 

used to obtain boric acid by the reaction between colemanite and sulfuric acid as 

follows:  

 

2 6 11 2 2 4 2 4 2 3 3Ca B O 5H O 2H SO 6H O 2CaSO 2H O 6H BO⋅ + + → ⋅ +   (6.1) 

 

This chapter is focused on the description of the experimental set-up, the 

variables of the system and the experimental studies. 

 

6.1 Description of the Experimental Set-up 

The boric acid production system which is constructed by Çakal (2004) is shown 

in Figure 6.1. There are four CSTR’s in the reactor system, a liquid feed tank, a 

colemanite feeder and a filtration unit. Temperatures of all reactors are kept 

constant. Detailed information about experimental set-up can be found in Çakal 

(2004). 
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Figure 6.1: Experimental Set-up of Boric Acid Production System. 

 

6.2 The Variables of the System 

The aim of this case study is to control the boric acid concentration in the fourth 

reactor obtained from the reaction between colemanite with sulfuric acid. The 
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(CB) and temperature of the reactors (T). The block diagram of the system is 

shown in Figure 6.2. As it is well know, there is a strong interaction between 

concentration and temperature. Therefore, while controlling the boric acid 

concentration, temperature of the reactors must also be controlled. Heat input, 

Q, can be considered as a manipulated variable for controlling temperature of 

the reactors. However, in this study due to the complexity of the experimental 

system and the difficulty of performing experiments with changing temperature, 
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it is planned to keep temperature constant in the process and to model and 

design a controller only for the control of boric acid concentration in the fourth 

reactor. Thus, the temperature of the first reactor is controlled by a temperature 

controller and in the other three reactors; hot water supplied from a constant 

temperature water bath is circulated through their jackets to keep temperature 

constant.  

 

The boric acid concentration is a function of the acid feed flow rate (FA) and 

colemanite flow rate (FC). However, flow rate of colemanite cannot be fixed 

continuously as a constant value, it considered as a disturbance to the system. 

Thus, acid feed flow rate is chosen as manipulated variable in order to control 

the boric acid concentration.  

 

 

Figure 6.2: Block Diagram of the Boric Acid Production System. 

 

6.3 Experimental Studies 
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6.3.1 Dynamic Experiments-Step Change in Acid Feed Flow Rate 

The experiments to obtain response data for a change in the acid feed flow rate 

are performed by two runs. In the first run, the flow rates of colemanite and acid 

feed are chosen to be 5 g/min and 48.5 g/min respectively, giving CaO/SO4
2- 

molar ratio as 1 for -250 µm size of colemanite. After reaching the steady state 

condition, the acid feed flow rate is increased from 48.5 g/min to 50.9 g/min 

reducing the CaO/SO4
2- molar ratio to 0.94. In run II, the flow rates of 

colemanite and acid feed are chosen to be 10 g/min and 70 g/min respectively, 

giving CaO/SO4
2- molar ratio as 1.38 for -250 µm size of colemanite. The flow 

rate of acid feed is increased from 70 g/min to 72.7 g/min reducing CaO/SO4
2- 

molar ratio was 1.32. The samples from each reactor are collected in 25 min 

intervals. Boric acid concentrations are calculated by using Equation (G.11).  

 

6.3.2 Dynamic Experiments-Step Change in Colemanite Flow Rate 

In addition to acid flow rate, the experiments are done to collect response data 

for giving a step change in colemanite flow rate from 10 g/min to 11 g/min. In 

run III, the initial flow rates of colemanite and acid feed are selected to be 10 

g/min and 70 g/min respectively giving CaO/SO4
2- molar ratio as 1.27 for -150 

µm size of colemanite. After giving the step input to the flow rate of colemanite 

from 10 to 11 g/min as a result CaO/SO4
2- ratio is increased to 1.37. In run IV, 

initially the flow rates of colemanite and acid feed are selected to be 10 g/min 

and 90 g/min respectively giving CaO/SO4
2- molar ratio as 1.00 for -150 µm size 

of colemanite. After giving the step input to flow rate of colemanite, CaO/SO4
2- 

ratio is increased to 1.09. The samples from each reactor are taken in 25 min 

intervals.  
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CHAPTER 7 

RESULTS AND DISCUSSIONS 

 

 

 

The performance of MPC used to control two different CSTR’s is investigated. In 

the two case studies, the modeling and control studies of saponification reaction 

in CSTR and of  boric acid production by the reaction of colemanite and sulfuric 

acid in CSTR are studied both experimentally and theoretically. The results of 

both studies will be given below. 

 

7.1 Case Study I: Saponification Reaction in CSTR 

 

7.1.1 Model Verification 

As stated before, the experiments are done to obtain steady state data from the 

reaction system and these are compared with the model outputs to find the 

unknown parameters (Fcw and UA) of the model. These calculated values are 

used in the unsteady state modeling studies. The experimental (Table B.1) and 

modeling results are shown in Figure 7.1 at the same flow rates of sodium 

hydroxide and ethyl acetate as 40 ml/min and at 300C until steady state is 

reached. After reaching the steady state condition, the system is disturbed by 

+10% step input in EtOAc flow rate, while keeping the NaOH flow rate constant 
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and the experimental (Table B.2) and theoretical findings are shown in Figure 

7.2. It can be seen from Figures 7.1 and 7.2 that there is a good match between 

experimental and modeling results prevailing the developed model in the design 

of the MPC. 
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  Figure 7.1: Experimental and Simulated Data for FN=FEA=40 ml/min at 300C. 
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Figure 7.2: Experimental and Simulated Data for +10% step input to FEA=44 
ml/min and FN=40 ml/min at 300C. 
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7.1.2 Calculation of Step Response Coefficients for MPC 

In this study, step response model is used for MPC design. In order to get 

coefficients of step response model, it is necessary to obtain the open loop 

responses of controlled variables by giving unit step changes to the manipulated 

variables. The open loop responses of controlled variables, sodium acetate 

concentration (CNA) and reactor temperature (T), are shown in Figures 7.3 and 

7.4 for step input changes in the manipulated variables, ethyl acetate flow rate 

and cooling water flow rate, respectively. 

  

 

Figure 7.3: Open loop responses of sodium acetate concentration and reactor 
temperature to unit step change in ethyl acetate flow rate.   
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Figure 7.4: Open loop response of sodium acetate concentration and reactor 
temperature to unit step change in cooling water flow rate.   
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7.1.3 Pairing Between Controlled and Manipulated Variables  

In order to determine the interactions between controlled and manipulated 

variables of the system and to determine the coupling between variables, 

Singular Value Decomposition (SVD) method must be used. The short 

explanation of the SVD method is given in Appendix C. 

 

The steady state gain matrix, G, is obtained from positive unit step changes in 

both of ethyl acetate and cooling water flow rates. G matrix includes the ratio of 

the deviations of the output divided by steady state value and the deviations of 

input divided by steady state value. G is found as 

 

EANA

CW

G

FC 0.0565 0.0143
F0.0169 0.0037T

⎡ ⎤− −⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦⎣ ⎦ ⎣ ⎦14444244443

    (7.3) 

                             

Then, U, Σ and VT are determined by using MATLAB as in (7.4). 

 

Tu V

0.9654 0.2606 0.0603 0 0.9771 0.2126
G

0.2606 0.9654 0 0.0075 0.2126 0.9771
Σ

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦14444244443 14444244443 14444244443

  (7.4) 

 

Largest vector component of column U1, CNA, is paired with largest vector 

component of column V1, FEA and largest vector component of column U2, T, is 

paired with largest vector component of column V2, Fcw. 

 

The condition number is calculated as 8 from Equation (7.2), and the small 

condition number result indicates good conditioning. Therefore, the SISO control 

is possible for the pairing between concentration of sodium acetate (CNA) and 

flow rate of ethyl acetate (FEA), and between temperature of reactor (T) and flow 
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rate of cooling water (Fcw). Since there is a strong interaction between 

temperature and concentration, MIMO-MPC is also designed and simulated. 

 

7.1.4 Design of SISO-MPC  

From the SVD analysis it can be concluded that, concentration of sodium acetate 

must be controlled by manipulating flow rate of ethyl acetate and temperature of 

reactor (T) must be controlled by manipulating cooling water flow rate (Fcw). 

The controllers are tested by performing simulations using the MATLAB program 

(Appendix D) which is composed of a model of the chemical reactor and MPC 

algorithm which was previously written by Dokucu (2002) in FORTRAN and 

modified by Bahar (2003) in MATLAB. 

 

In the control loop for sodium acetate concentration, the 99% completion of 

open loop response of sodium acetate concentration for a unit step change of 

ethyl acetate flow rate takes place in 58 min time as can be observed from 

Figure 7.3. Thus, the model horizon (M) is found as 116 by dividing 99% 

completion time by the controller sampling time of 0.5 min. The prediction 

horizon (P) is kept constant at 85% of the model horizon as 99. In the second 

loop for control temperature of the reactor, the model horizon M is found as 24 

from Figure 7.4 and prediction horizon P is kept constant at 20. In these two 

SISO-MPC controllers, the tuning parameters are the control horizon, C, and the 

f ( 2λ / 1λ ) values. 
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7.1.4.1 SISO-MPC Performance in Set Point Tracking 

The two SISO-MPC performances are tested for set-point tracking. The effect of f 

values and control horizon C are analyzed. The integral absolute error (IAE) 

scores are evaluated for each controlled output. The set point of sodium acetate 

concentration (CNA) is changed as magnitude of -2% CNA at 35th min and 

magnitude of +2% CNA at 105th min consecutively while keeping reactor 

temperature constant. The performance of SISO-MPC is shown in Figure 7.5 for 

different f values, 1×10-5, 1×10-6 and 1×10-7 and control horizon C is taken as 

70.  

 

 
Figure 7.5: Response of CNA to -2% decrease in the set point of CNA followed by 
+2% increase in set point of CNA for f= 1×10-5, 1×10-6 , 1×10-7 and 1×10-8 with 
C=70. 
 

It can be seen from Figure 7.5 that, there is offset in the response for f=1×10-5 

whereas for the smallest f value, 1×10-8, sodium acetate concentration reaches 

the new set point with least response time and IAE score. However, as can be 

seen from Figure 7.5, the response is highly oscillatory. Therefore, the best f 

value is chosen as 1×10-7.  
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In order to observe the effect of control horizon (C), the controller performance 

is tested with different C values, 70, 30 and 5 with f=1×10-7 as shown in Figure 

7.6. Small control horizon, C=5, give better performance than others due to 

small response time and less IAE score. The responses of C=70 or C=30 are 

almost the same.  

 

 

Figure 7.6: Response of CNA to -2% decrease in the set point of CNA and 
followed by +2%  increase in CNA for C= 70, 30 and 5 with f= 1×10-7. 
 

The performance of SISO-MPC for set point tracking of temperature of reactor is 

also tested. The consequent set point change is given as +10% of reactor 

temperature, +30C, at 35th min and -10% of reactor temperature -30C at 95th 

min. The response of temperature of reactor for f values of 1×10-1,1×10-2 , 

2×10-3 and 1×10-4 control horizon C=14 is presented in Figure 7.7. 
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Figure 7.7: Response of T to +30C increase in the set point of T and followed by 
-30C decrease in set point of T for f=1×10-1, 1×10-2 and 2×10-3  with C=14.  
 

The smallest IAE score is obtained for f=2×10-3 and the response time is also 

smaller than others. As can be seen from Figure 7.7 for f=1×10-4, oscillations 

are observed for both the controlled and the manipulated variables. Therefore, 

the best f value is chosen as 2×10-3 to control the temperature of the reactor. 

 

In order to see the effect of control horizon (C), the controller performance is 

tested with three different C values (C=14, 8 and 2) with f=2×10-3 as shown in 

Figure 7.8. It can be seen for in Figure 7.8, the control horizon doesn’t have an 

important effect on the response of the temperature of the reactor with the 

almost same IAE scores.  
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Figure 7.8: Response of T to +30C step change in the set point of T and -30C 
step change in the set point of T for C= 14, 6 and 2 with f= 2×10-3. 
 

7.1.4.2 SISO-MPC Performance in Disturbance Rejection 

The disturbance rejection performance of the SISO-MPC for controlling sodium 

acetate concentration is tested by disturbing by -10 % the sodium hydroxide 

flow rate (-4 ml/min) at 35th min and the SISO-MPC for controlling the 

temperature of reactor by disturbing by -10 % the cooling water temperature  

(-1.80C) at 35th min. In Figure 7.9, the effect of different f values, 1×10-5, 

1×10-6 and 1×10-7 for C=70 is shown for disturbance rejection of sodium 

hydroxide flow rate. It can be seen that CNA is returned to its initial value for 

f=1×10-6 and 1×10-7 whereas offset occurred for f=1×10-5. It can be concluded 

that the best performance is obtained for f=1×10-7 because of small response 

time and least IAE score.   

 

In Figure 7.10, the effects of different f values, 1×10-1 1×10-2 and 2×10-3 for 

C=70 are shown for disturbance rejection of sodium hydroxide flow rate. 



 52

Although all temperature responses attains the initial steady state values for all f 

values with approximately same response times, the least IAE is obtained for 

f=2×10-3. For f=1×10-4 no logical solution is obtained. Therefore, the best f 

value is selected as 2×10-3.  

 

Figure 7.9: Response of CNA for -10% disturbance changes in flow rate of 
sodium hydroxide for f=1×10-5, 1×10-6 and 1×10-7 with C=70. 

 

Figure 7.10: Response of T for -10% disturbance change in cooling water 
temperature, -1.80C, for f=1×10-1, 1×10-2 and 2×10-3 with C=14.  
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7.1.5 Design of MIMO-MPC 

The saponification CSTR signal flow diagram is given in Figure 5.2. It is clear 

that, the reactor temperature and sodium acetate concentration can be 

controlled by manipulating ethyl acetate and cooling water flow rates. Therefore, 

the system can be considered also as a MIMO structure. For this 2×2 system, 

four step response curves given in Figures 7.3 and 7.4 must be utilized to obtain 

the step response coefficients.  

 

In MIMO system, the model horizon M is determined according to the slowest 

response output. The slowest step response curve is observed for the sodium 

acetate concentration to unit step change in Fea (Figure 7.3). Therefore, M is 

found as 116 by dividing 99% completion time by the controller sampling time of 

0.5 min. The prediction horizon (P) is kept constant at 85% of the model horizon 

as 99.  The control horizon (C) is first chosen as 60% of model horizon as 70. 

Similarly, the control horizon (C) and f ( )12 /λλ  are the tuning parameters. 

Integral Absolute Error (IAE) is the performance index which is calculated for all 

the outputs of the system utilizing MATLAB program. 

  

7.1.5.1 MIMO-MPC Performance in Set Point Tracking 

The set point tracking of the MIMO-MPC is tested by changing the set point of 

sodium acetate concentration (CNA). The effect of tuning parameters, f and 

control horizon C, are also analyzed. The range of f values is selected 

considering the results of SISO-MPC’s. 

 

The runs are carried out by changing set-points as follows: 

-2% changes in CNA at 35th min, +2% changes in CNA at 95th min while 

keeping the temperature of reactor constant. The responses of controlled 
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variables and the controller moves are given in Figure 7.11 for different f values, 

1×10-5, 1×10-6 and 1×10-7 with C=70. 

   

 

Figure 7.11: Responses of CNA and T to -2 % and +2% step changes in the set  
point of CNA consecutively for f=1×10-5, 1×10-6 and 1×10-7 with C=70.  
 

In the response of CNA, offset is observed for f=1×10-5. On the other hand, for 

temperature of reactor least IAE score is obtained for 1×10-5. For the CNA 

response, IAE scores for the two values of 1×10-6 and 1×10-7 are approximately 

same. However, the response time is small for 1×10-7. Therefore, for both 

control variables the best f value can be considered as 1×10-7 for the set point 

tracking of CNA and to keep temperature of the reactor constant.  

 

The effect of control horizon for set point tracking of CNA is presented in Figure 

7.12. Decreasing the control horizon does not have a pronounced performance 

with the least IAE effect on set point tracking for CNA. However, smallest IAE 

 

 

 

 



 55

score is determined for the temperature of the reactor for C=70. Therefore, 

C=70 is selected for this MIMO-MPC.  

 

 

Figure 7.12: Responses of CNA and T to -2% step change in the set point of CNA 
and +2% step change in the set point of CNA consecutively for C=70, 35 and 5 
with f= 1×10-7.  
 

7.1.5.2 MIMO-MPC Performance in Disturbance Rejection 

The disturbance rejection performance of MIMO-MPC is tested by disturbing the 

sodium hydroxide flow rate by step change.  

 

First, the performance of MIMO-MPC is analyzed by giving a -10 % disturbance 

to sodium hydroxide flow rate at 35th min for f= 1×10-5, 1×10-6 and 1×10-7 with 

C=70, shown in Figure 7.13. The least IAE score and smallest response time is 

observed for 1×10-7 for sodium acetate concentration but higher IAE score for 

temperature of reactor. The response time for temperature is very small as 5 
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min. Therefore, the best f value is chosen as 1×10-7. The MIMO-MPC is very 

satisfactory for disturbance rejection. 

 

Figure 7.13: Responses of CNA and T to -10% disturbance changes in flow rate 
of sodium hydroxide for f=1×10-5, 1×10-6 and 1×10-7 with C=70. 
 
 

In Figure 7.14, the effect of control horizon is shown for different C values and 

f=1×10-7. The least IAE score is obtained for C=30 for sodium acetate 

concentration and for C=70 for temperature of reactor. The effect of C is not 

very pronounced in this example. The MIMO-MPC is very satisfactory for 

disturbance rejection. 
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Figure 7.14: Responses of CNA and T for -10% disturbance change in flow rate 
of sodium hydroxide for C=70, 30 and 5 with f=1×10-7. 
 

 

The performance of MIMO-MPC is also analyzed by giving 10C decrease in cooling 

water temperature for f=1×10-7 and C=70. In Figure 7.15, it is seen that both 

temperature of the reactor and sodium acetate concentration return the initial 

condition for a small response time and oscillations are observed for temperature 

of the reactor.  
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Figure 7.15: Responses of CNA and T for 10C decrease in cooling water 
temperature for f=1×10-7 and C=70. 
 

7.1.5.3 MIMO-MPC Performance for Robustness 

The performance of MIMO-MPC is also presented for robustness which is defined 

to be “insensitive to changes in process conditions and to errors in the assumed 

process model” (Seborg et al., 1989). In order to analyze the robustness of 

MIMO-MPC, the reaction rate constant k0 is decreased from 1.83 × 108 to  

1.556 × 108 by 15% to change the model (i.e the plant). When the plant is 

changed, the initial steady state points of sodium acetate concentration and 

temperature of the reactor are also changed. Therefore, in using the same step 

response model, new steady state points are actualized. In Figure 7.16, set point 

tracking performances of MPC are demonstrated for sodium acetate 

concentration. In addition to this, MPC is tested for -10% disturbance change in 
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sodium hydroxide flow rate (-4) and 10C decrease in cooling water temperature 

and the responses of controlled and manipulated variables are presented in 

Figure 7.17 and Figure 7.18. As can be seen from the figures, the controller is 

robust in spite of variations in the derived model of the process. 

 

Figure 7.16: Responses of CNA and T to -2 % and +2% step changes in the set 
point of CNA consecutively for a 15% change in the model parameter,k, for 
f=1× 10-7 and C=70.  

 

Figure 7.17: Responses of CNA and T to -10%, -4 ml/min,  disturbance change 
in sodium acetate flow rate for a 15% change in the model parameter,k, for 
f=1×10-7 and C=70. 
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Figure 7.18: Responses of CNA and T to 10C decrease in cooling water 
temperature for a 15% change in the model parameter,k, for f=1×10-7 and 
C=70 
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7.2 CASE STUDY II: Boric Acid Production from Colemanite and Sulfuric 

Acid in Four CSTR’s 

 

7.2.1 System Identification 

The identification of the boric acid system is done by giving step inputs to acid 

flow rate (manipulated variable) and to colemanite flow rate (disturbance). The 

open loop responses of the process are used to find transfer functions as will be 

explained below. 

 

7.2.1.1 Process Transfer Function Determination   

Two experiments are performed in order to observe the effect of acid flow rate 

on the concentration of boric acid in four reactors. The results of both of the 

experiments are close to each other. However, in the second experiment, the 

operation is believed to be more stabilized and therefore, in the evaluation, 

second experiment results are used.  

 

In the experiment, the acid flow rate is changed by 4% (from 70 g/min to 72.7 

g/min), and colemanite flow rate is kept constant at 10 g/min. The experimental 

data obtained boric acid concentrations in all four reactors are shown in Figures 

7.19-7.23 for a 4% increase in acid flow rate. The transfer function that fits the 

experimental data is found by utilizing the Sundaresan and Krishnaswamy 

method (Seborg et al., 1989) as
6.4s0.039e

G
44s 1

−−
=

+
. Although a first order transfer 

function with time delay is considered, it is observed from the experimental data 

that delays in the reactor is very small. Thus, 1 min time delay is assumed for 

the first reactor. This is also considered for the other reactors which are in 

dimensions same with the first reactor. The time constant of the first reactor is 



 62

evaluated as an initial estimate by the above method and then fine tuning in the 

value is done by considering least Sum of Squared Error (SSE) score. The results 

of these are given Table 7.1. 

 

Table 7.1: Different 1τ values with SSE score for process transfer function 
 

1τ  SSE 

44 (Sundaresan) 0.000272 

44 0.000140 

40 0.000093 

36 0.000102 

 

The transfer function of the first reactor is found as in Equation (7.1) by using 

MATLAB-SIMULINK. 

 

s

1 1

0.039 e
y u

40s 1

−⎡ ⎤−⎡ ⎤ ⎡ ⎤′ ′= ⎢ ⎥⎣ ⎦ ⎣ ⎦+⎣ ⎦      (7.1) 

 

where 

1y ′ is boric acid concentration of the first reactor in deviation form 

1u ′  is acid flow rate of the first reactor in deviation form 

 

The response curve of transfer function model of the first reactor is given in 

Figure 7.19.  

 

The response obtained from the second reactor is actually the response of both 

the first and the second reactors. Therefore, the transfer function is of second 
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order representing the first two reactors. The second time constant, 2τ , is found 

as 25 with respect to SSE and other trials are given in Table 7.2. 

 

Table 7.2: Different 2τ values with SSE score for process transfer function 
 

2τ  SSE 

20 0.000239 

25 0.000124 

30 0.000141 

 
 

The transfer function of the first two reactors is given in Equation (7.2). 

 

2s

2 1

0.039 e
y u

(40s 1)(25s 1)

−⎡ ⎤−⎡ ⎤ ⎡ ⎤′ ′= ⎢ ⎥⎣ ⎦ ⎣ ⎦+ +⎣ ⎦      (7.2) 

 

where  

2y ′  is boric acid concentration in the second reactor in deviation form 

 

The response curve of transfer function model of the first two reactors is given in 

Figure 7.20.  

 

Consequently, the transfer function of the first three reactors is considered as 

third order with time delay. Different time constants of third reactor, 3τ , with SSE 

scores are tabulated in Table 7.3.  
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Table 7.3: Different 3τ values with SSE score for process transfer function 
 

3τ  SSE 

10 0.000375 

15 0.000225 

20 0.000236 

 

 

The transfer function of the first three reactors is presented in Equation (7.3). 

 

3s

3 1

0.041 e
y u

(40s 1)(25s 1)(15s 1)

−⎡ ⎤−⎡ ⎤ ⎡ ⎤′ ′= ⎢ ⎥⎣ ⎦ ⎣ ⎦+ + +⎣ ⎦
   (7.3) 

 

where 

3y ′ is boric acid concentration in the second reactor in deviation form 

 

The response curve of transfer function model of the first three reactors is given 

in Figure 7.21.  

 

Finally, the overall process transfer function is considered as fourth order with a 

delay term. Time constant of the fourth reactor, 4τ , for different 4τ  values with 

SSE are given in Table 7.4. 

 

Table 7.4: Different 4τ values with respect to SSE for process transfer function 
 

4τ  SSE 

10 0.000431 

5 0.000427 

2 0.000484 
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The overall process transfer function is expressed as in Equation (7.4). 

 

        
4s

4 1

0.042 e
y u

(40s 1)(25s 1)(15s 1)(5s 1)

−⎡ ⎤−⎡ ⎤ ⎡ ⎤′ ′= ⎢ ⎥⎣ ⎦ ⎣ ⎦+ + + +⎣ ⎦
  (7.4) 

 

where 

4y ′ is boric acid concentration in the second reactor in deviation form 

 

The boric acid concentration response to a step change (4%) in acid flow rate is 

shown in Figures 7.22. The experimental data are given in Table E.5-E.8.  

 

 

Figure 7.19: Response of boric acid concentration in Reactor I to 2.7 g/min step 
change in acid flow rate.  
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Figure 7.20: Response of boric acid concentration in Reactor II to 2.7 g/min 
step change in acid flow rate. 
 
 
 
 

 

Figure 7.21: Response of boric acid concentration in Reactor III to 2.7 g/min 
step change in acid flow rate.  
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Figure 7.22: Response of boric acid concentration in Reactor IV to 2.7 g/min 
step change in acid flow rate.  
 

The four reactors in series shown in Figure 7.23(a) can be approximated by a 

single transfer function as shown in Figure 7.23(b). 

 

 

Figure 7.23: (a) Four CSTR’s with inputs and outputs (b) The overall transfer 
function for the four CSTR’s. 
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The overall transfer function is approximated first order transfer function with 

time delay as given in Equation (7.5) using the experimental data shown in 

Figure 7.22. 

 

dO
t s

O
4 1

O

K e
y u

s 1

−
′ ′⎡ ⎤ ⎡ ⎤=

⎣ ⎦ ⎣ ⎦τ +
     (7.5) 

 

where 

OK  is the overall steady state gain for the four reactors 

Oτ  is the overall time constant for the four reactors 

Odt is the overall time delay for the four reactors 

 

By using Sundaresan and Krishnaswamy method and approximated transfer 

function is expressed as in Equation (7.6). 

 

31s

4 1

0.042 e
y u

54s 1

−⎡ ⎤−⎡ ⎤ ⎡ ⎤′ ′= ⎢ ⎥⎣ ⎦ ⎣ ⎦+⎣ ⎦     (7.6) 

 

The comparison of the experimental data obtained from Reactor IV and of the 

approximated model is shown in Figure 7.24. 
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Figure 7.24: Response of boric acid concentration in Reactor IV to 2.7 g/min 
step change in acid flow rate obtained from approximated transfer function 
model for the whole system. 
 

7.2.1.2 Disturbance Transfer Function Determination   

Run III is done in order to obtain disturbance transfer function for the step 

change in colemanite flow rate (disturbance). In Run III, colemanite flow rate is 

increased by 10% (from 10 g/min to 11 g/min) while keeping acid flow rate 

constant at 70 g/min. The disturbance transfer function for the first reactor is 

found using the experimental data given in Table E.9-E.12 and shown in Figure 

7.25. The parameters of the first order transfer function with delay are found 

using the Sundaresan and Krishnaswamy as first estimates, =1τ 43, =1θ  6.9.  

However, time delay is not apparently seen in the experimental findings (Figure 

7.25). Therefore, as is done in Section 7.2.1.1, time delay terms are taken 1 min 

for all four reactors. Thus, trials for better 1τ values are done and response 

curves are obtained. SSE scores for each 1τ are given in Table 7.5. Thus, =1τ 35 

is selected resulting in the least SSE score for which the response is given in 

Figure 7.25 for a disturbance of 10% in colemanite flow rate. 
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Table 7.5: Different 1τ values with SSE score for disturbance transfer function 
 

1τ  SSE 

43 (Sundaresan) 0.001037 

43 0.000476 

38 0.000254 

35 0.000206 

32 0.000231 

 

 

The disturbance transfer function for the first reactor is expressed as in Equation 

(7.7). 

 

s

1 1

0.130 e
y d

35s 1

−⎡ ⎤⎡ ⎤ ⎡ ⎤′ ′= ⎢ ⎥⎣ ⎦ ⎣ ⎦+⎣ ⎦     (7.7) 

 

where  

y1 is boric acid concentration of the first reactor in deviation form 

d1 is colemanite flow rate of the first reactor in deviation form 

 

The disturbance transfer functions between the disturbance and the boric acid 

concentration in the effluent leaving each reactor are obtained by a similar 

procedure and given below. The best 2τ , 3τ and 4τ  resulting in SSE score are found 

as 15, 8 and 7. The different 2τ , 3τ and 4τ  values with SSE score are tabulated in 

Tables 7.6-7.8. The response curves for the disturbance of 10% are shown in 

Figures 7.26-7.28. 

 
 
 
 
 



 71

Table 7.6: Different 2τ values with SSE score for disturbance transfer function 
 

2τ  SSE 

10 0.000757 

15 0.000681 

20 0.000742 

 

 
 
 
Table 7.7: Different 3τ values with SSE score for disturbance transfer function 
 

3τ  SSE 

5 0.000470 

8 0.000458 

10 0.000500 

 

 

Table 7.8: Different 4τ values with SSE score for disturbance transfer function 
  

4τ  SSE 

5 0.000265 

7 0.000246 

9 0.000269 
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y d
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     (7.8) 
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   (7.9) 
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  (7.10) 
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Figure 7.25: Response of boric acid concentration in Reactor I to 1 g/min step 
change in colemanite flow rate.  
 

 

 

 

Figure 7.26: Response of boric acid concentration in Reactor II to 1 g/min step 
change in colemanite flow rate.  
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Figure 7.27: Response of boric acid concentration in Reactor III to 1 g/min step 
change in colemanite flow rate.  
 
 
 
 
 
 

  
 
Figure 7.28: Response of boric acid concentration in Reactor IV to 1 g/min step 
change in colemanite flow rate. 
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The approximated disturbance transfer function of the four reactors in terms of 

4y ′  and 1d ′  is obtained using the experimental data given in Table E.9-E.12 by 

using Sundaresan and Krishnaswamy method. Disturbance transfer function of 

the four reactors is considered as first order with time delay and given in 

Equation (7.11). 

 

29s

4 1

0.123 e
y d

48s 1

−⎡ ⎤⎡ ⎤ ⎡ ⎤′ ′= ⎢ ⎥⎣ ⎦ ⎣ ⎦+⎣ ⎦
    (7.11) 

 

The comparison of the experimental data points for Reactor IV and the obtained 

response obtained used the approximated transfer function model giiven in 

Equation (7.11) for a 10% step input change in colemanite flow rate is given in 

Figure 7.29. 

 

Figure 7.29: Response of boric acid concentration in Reactor IV to 1 g/min step 
change in colemanite flow rate obtained from approximated transfer function 
model for the whole system. 
 

The comparison of Figures 7.28 and 7.29 and SSE scores reveals that the 

approximated transfer function for the overall system can be used satisfactorily. 
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7.2.2 Design of SISO-MPC 

After obtaining the overall transfer functions of the process and disturbance, 

SISO-MPC is designed for this system by using MPC toolbox in MATLAB.  

 

The model horizon N is found as 110 with the controller sampling time of 2 min. 

The control horizon M is selected as 66 to reach 60 % of the steady state. 

Prediction horizon P is taken as 85% of model horizon, 94. The output weight 

(λ1) is taken as 1, in which the input weight (λ2) is taken as variable, and f 

(λ2/λ1) is chosen as the tuning parameter. 

 

7.2.2.1 Unconstrained SISO-MPC Performance in Set-Point Tracking 

The performance of SISO-MPC for set point tracking is tested for a step change 

of 0.3 mol/l for the boric acid concentration of the fourth reactor for different f 

values; 1, 0.5, 0.1, 0.05, 0.02 with constant control horizon and prediction 

horizon. The Integral Absolute Error (IAE) score is calculated for different f 

values. The response of boric acid concentration and the manipulated input is 

presented in Figure 7.30. It is found that, the least IAE score and settling time is 

obtained for f=0.02. However, the overshoot is observed for both the controlled 

variable and manipulated variable. Although there is no oscillation and overshoot 

for f=1.00, the response of controlled output is slow and the IAE score is high. 

Therefore, the best f value is selected as 0.02. If the training parameters f is 

further reduced, the acid flow rate shows very high oscillations which are not 

preferred due to an approach which resembles on-off control. 
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Figure 7.30: Change of controlled and manipulated variables wrt time for a 0.3 
mol/l  step change in the set point of boric acid concentration for f= 1.00, 0.50, 
0.10, 0.05 and 0.02. 
 

7.2.2.2 Unconstrained SISO-MPC Performance in Disturbance Rejection 

The disturbance rejection performance of the designed SISO-MPC is analyzed by 

decreasing 10 % the colemanite flow rate by 1 g/min. The responses of the 

controlled and manipulated variables for different f values are given in Figure 

7.31. It can be seen from the figure that, the designed controller is capable of 

returning boric acid concentration to its initial value for all f values. The best f 

value is again found to be 0.02 due to small response time and least IAE score.  

Figure 7.31: Change of controlled and manipulated variables wrt time for a 
10% decrease in the colemanite flow rate for f= 1.00, 0.50, 0.10, 0.05 and 0.02. 
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7.2.2.3 Constrained SISO-MPC Performance in Set-Point Tracking 

The most important advantage of MPC is to handle input/output constraints. In 

the presence of unexpected conditions for the unconstrained MPC controller, 

input constraints can be present due to the valve saturations, and output 

constraints are used to avoid overshoots in the controlled variables. Thus, the 

designed controllers are considered to handle the constraints both in input and 

output to end up with appropriate control actions. 

 

In order to eliminate overshoot in the response of boric acid concentration for 

f=0.02, the controlled variable (boric acid concentration) upper constraint is 

used and the performance of SISO-MPC is shown in Figure 7.32.  

 

Figure 7.32: Change of controlled and manipulated variables in the presence of 
upper controlled variable constraint wrt time for a 0.3 mol/l  step change in the 
set point of boric acid concentration for f=0.02. 
 

It can be seen that, the overshoot of boric acid concentration is reduced 

significantly by giving the upper constraint to the boric acid concentration and 

that the IAE score for the constrained MPC is less than that of unconstrained 

MPC. Therefore, it is found that the constrained SISO-MPC give better 

performance.  
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In addition, the performance of SISO-MPC is investigated for manipulated 

variable constraints. A lower manipulated constraint is used. The performance of 

SISO-MPC in the presence of lower manipulated variable constraint is shown in 

Figure 7.33. Although the overshoot of boric acid concentration decreased in 

constrained case, the response time increased and therefore, the IAE score for 

this constrained case is higher than unconstrained case.  

 

Figure 7.33: Change of controlled and manipulated variables in the presence of 
lower manipulated variable constraint wrt time for a 0.3 mol/l  step change in 
the set point of boric acid concentration for f=0.02. 
 

The upper manipulated variable constraint is also considered to reduce the 

overshoot seen in Figure 7.34. The responses of controlled and manipulated 

variables for a 0.3 mol/l setpoint change in boric acid concentration in the 

presence of upper manipulated variable constraint are shown in Figure 7.34. The 

overshoot in the manipulated variable is eliminated; however, in the controlled 

variable, overshoot is increased with an increase in IAE score. 
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Figure 7.34: Change of controlled and manipulated variables in the presence of 
upper manipulated variable constraint wrt time for a 0.3 mol/l set point change 
in boric acid concentration for f=0.02. 
 

The performance of MPC in the presence of both upper controlled and upper and 

lower manipulated variable constraints for a set point change of 0.3 mol/l is 

presented in Figure 7.35. In this case, upper manipulated variable constraint is 

taken as -3 since optimization program cannot solve the problem for a higher 

constraint. Although, an overshoot is not observed for the controlled variable in 

constraint case, the response time and IAE score increases due to a slower 

response in the controlled variable. Thus, it can be concluded that variation in 

the manipulated variable is reduced within the constraints. This resulted in a 

slower response in the controlled variable with a higher IAE score. Therefore, if 

these upper and lower constraints in the manipulated variable are derived, the 

slow response must be accepted. 
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Figure 7.35: Change of controlled and manipulated variables in the presence of 
controlled, upper and lower manipulated variable constraint wrt time for a 0.3 
mol/l set point change in boric acid concentration for f=0.02. 
 

7.2.2.4 Constrained SISO-MPC Performance in Disturbance Rejection 

The performance of SISO-MPC in the presence of lower controlled variable 

constraint for 10 % decrease in colemanite flow rate is shown in Figure 7.36. As 

can be seen from the figure, the IAE score of the constrained response is smaller 

than the unconstrained due to smaller overshoot of boric acid concentration and 

the faster response. Constrained controller gives better result than the 

unconstrained one. 

Figure 7.36: Change of controlled and manipulated variables in the presence of 
lower controlled variable constraint wrt time for a 10% decrease in colemanite 
flow rate for f=0.02. 
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The performance of designed controller is also tested in the presence of 

manipulated variable constraints. In Figure 7.37, the responses of the controlled 

and manipulated variables are given for 10 % decrease in colemanite flow rate 

when lower manipulated variable constraint is imposed on the controller. In 

constrained case, the overshoot in the boric acid concentration response is 

increased with a slower response resulting with a higher response time and 

higher IAE score. Thus, in disturbance rejection, it is not recommended to use 

constraint on manipulated variable which is not oscillating with high overshoot as 

in the case of set point tracking. 

 

Figure 7.37: Change of controlled and manipulated variables in the presence of 
lower manipulated variable constraint wrt time for a 10% decrease in colemanite 
flow rate for f=0.02. 
 
 

7.2.2.5 SISO-MPC Performance for Robustness 

In order to analyze the robustness of SISO-MPC, the plant/model mismatch is is 

considered as -10 % changes in time constants, time delay and gains for each 

reactor. Then, the overall plant transfer function is written as in Equation (7.12).  

 

 
3.6s

4 1

0.0378 e
y u

(36s 1)(22.5s 1)(13.5s 1)(4.5s 1)

−⎡ ⎤−⎡ ⎤ ⎡ ⎤′ ′= ⎢ ⎥⎣ ⎦ ⎣ ⎦+ + + +⎣ ⎦
  (7.12) 
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The plant in Equation (7.12) is controlled by the MPC designed for the model in 

Equation (7.4). 

 

The set point tracking and disturbance rejection performances of SISO-MPC are 

presented in Figures 7.38 and 7.39 in the presence of model/plant mismatch 

given above. 

 

  

Figure 7.38: Change of controlled and manipulated variables wrt time for a 0.3 
mol/l set point change in boric acid concentration when the plant is changed by 
-10%.  
 

 

Figure 7.39: Change of controlled and manipulated variables wrt time for a 
10% decrease in colemanite flow rate when the plant is changed by -10%.  
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It can be seen from the Figure 7.38 that the SISO-MPC performance is good in 

the presence of model/plant mismatch, i.e it is robust, in set point tracking. 

However, the performance of the same MPC in disturbance rejection is not as 

good as for set point tracking (Figure 7.39).  

 

7.2.2.6 Performance of SISO-MPC by Using Approximated Transfer 

Function Model in Setpoint Tracking 

SISO-MPC is designed by using approximated transfer function of process given 

in Equation (7.5). The model horizon, control horizon and prediction horizon are 

taken as same as the fourth order process.  

 

The responses of boric acid concentration and the manipulated input for a set 

point change of 0.3 mol/l in boric acid concentration are given in Figure 7.40 for 

different f values. The best f value is selected as 0.02 similar to actual model 

based MPC due to small response time and less IAE score. 

 

The responses of controlled and manipulated variables using the actual transfer 

function model and the approximated transfer function for f=0.02 are presented 

in Figure 7.41. It can be seen that the response of controlled variable for 

approximated transfer function model give less overshoot than that of actual 

transfer function model, and it gives better result with small response time and 

less IAE score. 
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Figure 7.40: Change of controlled and manipulated variables wrt time for a 0.3 
mol/l step change in the set point of boric acid concentration for f=1.00, 0.50, 
0.10, 0.05 and 0.02. 
 
 
 
 
 

Figure 7.41: Change of controlled and manipulated variables wrt time for a 0.3 
mol/l step change in the set point of boric acid concentration for actual and 
approximated transfer function model with f=0.02. 
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7.2.2.7 Performance of SISO-MPC by Using Approximated Transfer 

Function Model in Disturbance Rejection 

The performance of the MPC is investigated for a 10% decrease in colemanite 

flow rate by using approximated transfer functions of the process and 

disturbance and the responses of controlled and manipulated variables are 

shown in Figure 7.42.   

 

Figure 7.42: Change of controlled and manipulated variables wrt time for a 
10% decrease in colemanite flow rate for f=1.00, 0.50, 0.10, 0.05 and 0.02. 
 

It can be seen from Figure 7.42 that controlled variable, boric acid 

concentration, returns its initial condition for all the f values when colemanite 

flow rate decreases by 10%. However, the best f value is chosen as 0.02 same 

as the actual model based MPC since the response time is fast and IAE score is 

low.  

 

The changes of controlled and manipulated variables for a 10% decrease in 

colemanite flow rate are compared for actual and approximated transfer function 

model for f=0.02 and given in Figure 7.43. Approximated model gives better 

result than actual model with smaller response time and with less overshoot. 
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Figure 7.43: Change of controlled and manipulated variables wrt time for 10% 
decrease in colemanite flow rate for actual and approximated transfer function 
model with f=0.02. 
 

7.2.2.8 Performance of SISO-MPC by Using Approximated Transfer 

Function Model for Robustness   

In order to analyze the robustness of SISO-MPC for aproximated model, the 

plant/model mismatch is assumed for -10 % changes in time constants, time 

delay and gains for each reactor. Then, the new plant transfer function is 

expressed as in Equation (7.13).  

 

27.9s

4 1

0.0378 e
y u

48.6s 1

−⎡ ⎤−⎡ ⎤ ⎡ ⎤′ ′= ⎢ ⎥⎣ ⎦ ⎣ ⎦+⎣ ⎦    (7.13) 

 

The plant in Equation (7.12) is controlled by the MPC designed using the model 

in Equation (7.6). 

 

The performance of designed MPC is analyzed for both setpoint tracking and 

disturbance rejection and robustness. The changes in the responses of controlled 

and manipulated variables as a function of time are presented in Figures 7.44 
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and 7.43. It can be said that the controller is robust in set point tracking. It is 

found that, similar to the actual model case in the use of the approximate model 

the MPC is not robust for disturbance rejection. 

    

  

Figure 7.44: Change of controlled and manipulated variables wrt time for a 0.3 
mol/l set point change in boric acid concentration when the approximated plant 
is changed by -10%.  
 
 
 
 

Figure 7.45: Change of controlled and manipulated variables wrt time for a 
10% decrease in colemanite flow rate when the approximated plant is changed 
by -10%.  
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7.2.3 Design of Cohen-Coon (PID) and ITAE (PID) Controllers 

Using the approximated transfer function of the process given in Equation (7.6), 

controller gain (KC), integral time (τI) and derivative time (τD) are found as  

-61.3, 62.5 and 10.2 using the tuning relationship given by Cohen-Coon (PID) 

and  -36.8, 75.9 and 9.9 for ITAE (PID)-setpoint tracking and -54.6, 42.6 and 

11.8 for ITAE (PID)-load. The controller parameters calculated are given in 

Appendix G.2. 

 

The performances of the controllers, namely SISO-MPC, Cohen-Coon (PID) and 

ITAE (PID) are compared for setpoint tracking by 0.3 mol/l changing boric acid 

concentration and for a disturbance rejection in a 10% decrease in colemanite 

flow rate as disturbance. The responses of controlled and manipulated variable 

are presented in Figure 7.46 and Figure 7.47. 

.  

Figure 7.46: Change of controlled and manipulated variables wrt time for a 0.3 
mol/l setpoint change of boric acid concentrations for different controllers. 
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Figure 7.47: Change of controlled and manipulated variables wrt time for a 
10% decrease in colemanite flow rate for different controllers.   
 

In Figure 7.46, the best performance is obtained for SISO-MPC considering the 

response time and the IAE score. ITAE (PID) also gives good performance 

whereas oscillations are observed and setpoint is not reached for Cohen-Coon 

(PID) until 300 min. 

 

It can be seen from Figure 7.47 that MPC reject the disturbance in a shorter time 

while Cohen-Coon (PID) and ITAE (PID) give similar performance where 

oscillations are observed.  

 

 

 



 90

 

CHAPTER 8 

CONCLUSIONS 

 

 

This study is considered to investigate the performance of the Model Predictive 

Controller (MPC) algorithm in CSTR’s for saponification and boric acid production 

systems. 

 

In saponification system; 

 

1. The experimental and model results for a set point change in ethyl acetate, 

Fea, are compared under unsteady-state conditions and a good match is found 

between them. 

 

2. According to SVD analysis, sodium acetate concentration is coupled with ethyl 

acetate flow rate, and reactor temperature is coupled with cooling water flow 

rate for the control configuration. 

 

3. SISO-MPC and MIMO-MPC are designed. For SISO-MPC, the tuning 

parameters, f and C, are found as 1×10-7 and 70 for controlling sodium acetate 

concentration, 2×10-3 and 14 for controlling temperature of the reactor. For 
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MIMO-MPC, f and C are found as 1×10-7 and 70 respectively for both 

concentration and temperature control loops.  

 

4. It is found that, the SISO-MPC and MIMO-MPC performances are good for 

setpoint tracking, disturbance rejection. 

 

5. MIMO-MPC is found to be robust. 

 

In boric acid production system; 

 

1. Experiments are performed in order to find the transfer functions between 

boric acid concentration of the fourth reactor (controlled variable) and acid flow 

rate (manipulated variable), and between boric acid concentration of the fourth 

reactor and colemanite flow rate (disturbance) as give below; 

The process transfer function, 
4s

P

0.042 e
G

(40s 1)(25s 1)(15s 1)(5s 1)

−⎡ ⎤−
= ⎢ ⎥+ + + +⎣ ⎦

 

The disturbance transfer function, 
4s

d

0.123e
G

(35s 1)(15s 1)(8s 1)(7s 1)

−⎡ ⎤
= ⎢ ⎥+ + + +⎣ ⎦

 

 

2. Approximated transfer functions of the process and the disturbance are 

obtained by considering first order transfer function with a time delay as;  

 

31s

P
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G

54s 1

−⎡ ⎤−
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3. SISO-MPC’s are designed using both actual and approximated transfer 

function models. 

 

4. The tuning parameter f is found as 0.02 for both SISO-MPC and C is selected 

as 60% of the model horizon, C= 66. 

 

5. The designed controllers give good performance for setpoint tracking and 

disturbance rejection. SISO-MPC’s (actual and approximated) are robust for 

setpoint tracking whereas, for disturbance rejection they are not robust.  

 

6. In the presence of controlled variable constraints, the designed controllers 

performance are good for setpoint tracking and disturbance rejection. However, 

the manipulated variable constraints are not recommended due to excess 

overshoot in the controlled variable. 

 

7. Using approximated transfer function models, Cohen and Coon (PID) and ITAE 

(PID) are designed and when compared with MPC, MPC is found to be superior to 

others. 
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APPENDIX A 

FORMULATION OF CONTROLLER DESIGN 

In Controller Design equation in Section 4.5: 

 

 
i

1,i 1,j
j 1

P S
=

= ∑    for i = 1, 2, ..., P    (A.1) 

 

i

2,i 2,j
j 1

P S
=

= ∑      for i = 1, 2, ..., P   (A.2) 

 

M M

1,j 11,i 1,n j i 12,i 2,n j i
i j 1 i j 1

S h u h u+ − + −
= + = +

= ∆ + ∆∑ ∑   for i = 1, 2, ..., P  (A.3) 

 

         
M M

2,j 21,i 1,n j i 22,i 2,n j i
i j 1 i j 1

S h u h u+ − + −
= + = +

= ∆ + ∆∑ ∑        for i = 1, 2, ..., P        (A.4) 

 

The simpler form of controller design requation can be written as follows: 

 

'E A u E
∧∧

= − ∆ +       (A.5) 
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If there is a perfect match between the predicted output and desired trajectory, 

E 0
∧

= , from Equation (A.5) , then: 

 

 '0 A u E
∧

= − ∆ +       (A.6) 

 

If control horizon and prediction horizon are equal to each other, i.e C = P, then 

 

( ) 1 'u A E
∧

−
∆ =       (A.7) 

 

where A is of type square matrix. 

 

In Dynamic Matrix Control (DMC), control horizon (C) is less than prediction 

horizon (P), so the system of equations is overdetermined. Therefore, only C 

control actions ( u∆ ) are calculated. The best solution is obtained by minimizing 

the performance index:  

 

TJ u E E
∧ ∧

∆ =⎡ ⎤⎣ ⎦        (A.8) 

 

The optimal solution can be written as: 

 

( ) 1T T ' '
MPCu A A A E K E

∧ ∧−
∆ = =      (A.9) 

 

The benefit of this procedure is that disturbances or modeling errors are 

detected early and corrected by an approximate manner. However, the 

disadvantage of the procedure is that considerably large changes in the 
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manipulated variable could occur. This problem takes place if TA A  matrix is ill-

conditioned or singular. Therefore, another approach can be applied in order to 

modify the objective function by penalizing movements of the manipulated 

variable:  

 

T T
1 2

min u

J u E W E u W u
∧ ∧

∆

∆ = + ∆ ∆⎡ ⎤⎣ ⎦     (A.10) 

 

where the first term is called future errors of the systems, and the second is 

future control effort of the system.  

 

Then, the resulting control law is obtained as follows: 

 

( ) 1T T ' '
1 2 1 MPCu A W A W A W E K E

∧ ∧−
∆ = + =    (A.11 ) 
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APPENDIX B 

EXPERIMENTAL DATA FOR SAPONIFICATION SYSTEM 
 

 
 
 
 
 
Table B.1 Experimental Data for FEA= 40 ml/min, FN=40 ml/min at 300C 
 

T (min) VNaOH (ml) CNaOH (mol/l) 
15 8.0 0.020 
17 8.0 0.020 
19 8.1 0.019 
21 8.1 0.019 
23 8.2 0.018 
25 8.2 0.018 
27 8.2 0.018 
29 8.2 0.018 

 

 
Table B.2 Experimental Data after +10% step input to FEA, FEA= 44 ml/min,  
FN= 40 ml/min at 300C 
 

T (min) VNaOH (ml) CNaOH (mol/l) 
0 8.2 0.018 
2 8.2 0.018 
4 8.2 0.018 
6 8.3 0.017 
8 8.3 0.017 
10 8.3 0.017 
12 8.3 0.017 
14 8.3 0.017 
16 8.4 0.016 
18 8.4 0.016 
20 8.4 0.016 
22 8.4 0.016 
24 8.4 0.016 
26 8.4 0.016 
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Table B.3: Thermodynamic and Kinetic Data  
 
Parameters             Values 

k      1.83×108×exp(-5208/T) l/mol.min 

CpN           75.2 J/mol.K 

CpEA           75.2 J/mol.K 

CpNA           75.2 J/mol.K 

CpE           75.2 J/mol.K 

Cpcw           75.2 J/mol.K 

∆Hrxn                                      -79,076J/mol 
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APPENDIX C 

SINGULAR VALUE DECOMPOSITION (SVD) ANALYSIS 

In order to determine the interactions between inputs and outputs of the 

system,  

Singular Value Decomposition (SVD) method is used. The steady state gain 

matrix, G, is written as follows: 

 

 TVUG Σ=       (C.1) 

 

where U is left singular vector, V is right singular vector and Σ is called singular 

values. 

 

Controller pairing is the most important aspect of SVD. The largest vector 

component of column “Ui” is paired with the largest vector component of “Vi. 

 

Another property of SVD analysis is focusing on condition number, CN. The 

condition number is defined as the ratio of the largest and smallest nonzero 

singular values: 
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r

lCN
σ
σ

=        (C.2) 

 

Large condition number indicates the poor conditioning. If G is singular, then it is 

ill-conditioned. 

 

 

 

 

 

 

 

 



 106

 

APPENDIX D 

SIMULATION PROGRAM FOR SAPONIFICATION SYSTEM 

 

 

 

D.1 cstr.m 

function cstr 
 
% ===================== Main program ================== 
 
% Clear command window 
clc; 
% Include all global variables 
glob_decs; 
% Initialize all global variables 
display('Global variables are initializing ...'); 
glob_initial; 
display('Global variables have been initialized.'); 
 
%------------------------------------- Plant Variables 
% NaOH Concentration (mol/l) 
Cn=zeros(1); 
 
% Ethyl acetate concentration (mol/l) 
Cea=zeros(1); 
 
% Sodium acetate concentration (mol/l) 
Cna=zeros(1); 
 
% Ethanol concentration (mol/l) 
Ce=zeros(1); 
 
% Reactor temperature (K) 
T=zeros(1); 
 
% Volume of the reactor (l) 
V=zeros(1); 
 
% Differential NaOH concentration (mol/l.min) 
dCn=zeros(1); 
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% Differential Ethyl acetate concentration (mol/l.min) 
dCea=zeros(1); 
 
% Differential Sodium acetate concentration (mol/l.min) 
dCna=zeros(1); 
 
% Differential Ethanol concentration (mol/l.min) 
dCe=zeros(1); 
 
% Differential Reactor temperature (K/min) 
dT=zeros(1); 
 
% Differential Reactor volume (l/min) 
dV=zeros(1); 
 
% Initial concentration of NaOH (mol/lt) 
Cn1=zeros(1); 
 
% Initial concentration of Ethyl acetate(mol/lt) 
Cea1=zeros(1); 
 
% Flowrate of NaOH (lt/min) 
Fn=zeros(1); 
 
% Flowrate of Ethyl Acetate (lt/min) 
Fea=zeros(1); 
 
% Flowrate of cooling water (lt/min) 
Fcw=zeros(1); 
 
% Inlet Temperature of NaOH and Ethyl Acetate (K) 
T1=zeros(1); 
 
% Heat of reaction at standart Temperature (J/mol) 
H=zeros(1); 
 
% Heat capacity of NaOH (J/mol.K) 
cpn=zeros(1); 
 
% Heat capacity of Sodium acetate (J/mol.K) 
cpna=zeros(1); 
 
% Heat capacity of Ethyl Acetate (J/mol.K) 
cpea=zeros(1); 
 
% Heat capacity of Ethanol (J/mol.K) 
cpe=zeros(1); 
 
% Heat capacity of water (J/mol.K) 
cpw=zeros(1); 
 
% Cooling Water Inlet temparature (K) 
Tw1=zeros(1); 
 
% Overall Heat transfer coefficient times area (J/min.K) 
UA=zeros(1); 
 
% ------------------------------------ Initiliaze Plant Variables 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Initialize states 
 
% NaOH Concentration (mol/l) 
Cn=0.05; 
 
% Ethyl acetate concentration (mol/l) 
Cea=0.05; 
 
% Sodium acetate concentration (mol/l) 
Cna=0.0; 
 
% Ethanol concentration (mol/l) 
Ce=0.0; 
 
% Initial Reactor temperature (K) 
T=298.15; 
 
% Initial Volume of the reactor (l) 
V=0.04; 
 
% Initial Error 
E=zeros(1); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Initialize parameters 
 
% Initial concentration of NaOH (mol/lt) 
Cn1=0.1; 
 
 
% Initial concentration of Ethyl acetate(mol/lt) 
Cea1=0.1; 
 
% Flowrate of NaOH (ml/min) 
Fn=40; 
 
% Flowrate of Ethyl Acetate (ml/min) 
Fea=40; 
 
% Flowrate of cooling water (ml/min) 
Fcw=24; 
 
% Inlet Temperature of NaOH and Ethyl Acetate (K) 
T1=298.15; 
 
% Heat of reaction at standart Temperature (J/mol) 
H=-79076; 
 
% Heat capacity of NaOH (J/mol.K) 
cpn=75.2; 
 
% Heat capacity of Sodium acetate (J/mol.K) 
cpna=75.2; 
 
% Heat capacity of Ethyl Acetate (J/mol.K) 
cpea=75.2; 
 
% Heat capacity of Ethanol (J/mol.K) 
cpe=75.2; 
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% Heat capacity of water (J/mol.K) 
cpw=75.2; 
 
% Reaction rate constant k=1.83e8*exp(-5208/T) (lt/mol.min) 
 
% Reaction rate -ra=k*Cn*Cea (mol/lt.min) 
 
 
% Cooling Water Inlet temparature (K) 
Tw1=291.15; 
 
% Cooling Water Outlet temparature (K) Tw2= T-(T-Tw1)*exp(-
UA/(Fcw*55.56*cpw)) 
 
% Overall Heat transfer coefficient times area (J/min.K) 
UA=18.3; 
 
% Integral Absolute Error 
E=zeros(1); 
 
% Integral Absolute Error for Cna 
E1=zeros(1); 
 
% Integral Absolute Error for T 
E2=zeros(1); 
 
% ---------------------------------- Controller Variables 
 
% Flowrate of the Ethyl acetate (mol/min) 
Fea_s = zeros(1); 
% max Flowrate of the Ethyl acetate (mol/min) 
Fea_s_max = zeros(1); 
% min Flowrate of the Ethyl acetate (mol/min) 
Fea_s_min = zeros(1); 
% Cooling water flowrate (l/min)  
Fcw_s = zeros (1); 
% max Cooling water flowrate (l/min)  
Fcw_s_max = zeros(1); 
% min Cooling water flowrate (l/min)  
Fcw_s_min = zeros(1); 
 
% 
Cna_max = zeros(1,n_ph); 
% 
Cna_min = zeros(1,n_ph); 
% 
T_max   = zeros(1,n_ph); 
% 
T_min   = zeros(1,n_ph); 
 
 
s_Cna_Fea  = zeros(1,n_mh); 
s_Cna_Fcw  = zeros(1,n_mh); 
s_T_Fea    = zeros(1,n_mh); 
s_T_Fcw    = zeros(1,n_mh); 
h_Cna_Fea  = zeros(1,n_mh); 
h_Cna_Fcw  = zeros(1,n_mh); 
h_T_Fea    = zeros(1,n_mh); 
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h_T_Fcw    = zeros(1,n_mh); 
 
 
hessian = zeros(nu*n_ch,nu*n_ch); 
eprimecoeff = zeros(nu*n_ch,ny*n_ph); 
mpcgain = zeros(nu*n_ch,ny*n_ph); 
 
 
gradient = zeros(1,nu*n_ch); 
 
dyn_matrix = zeros(ny*n_ph,nu*n_ch); 
dyn_matrix_Cna_Fea  = zeros(n_ph,n_ch); 
dyn_matrix_Cna_Fcw  = zeros(n_ph,n_ch); 
dyn_matrix_T_Fea    = zeros(n_ph,n_ch); 
dyn_matrix_T_Fcw    = zeros(n_ph,n_ch); 
 
ineq_matrix = zeros(2*nu*n_ch+2*ny*n_ph,nu*n_ch); 
ineq_vector = zeros(1,2*nu*n_ch+2*ny*n_ph); 
 
delta_u = zeros(1,nu*n_ch); 
e_prime = zeros(1,ny*n_ph); 
current_st = zeros(1,ny); 
lambda1 = zeros(1); 
lambda2 = zeros(1); 
setpoint = zeros(1,ny*n_ph); 
 
temp1 = zeros(nu*n_ch,ny*n_ph); 
invhessian = zeros(nu*n_ch,nu*n_ch); 
 
temps1 = zeros(1); 
temps2 = zeros(1); 
temps3 = zeros(1); 
temps4 = zeros(1); 
 
setpoint0 = zeros(1,ny); 
 
% scalar equal to the multiple of the identity matrix added to H to 
give a positive definite matrix (output) 
diag = zeros(1); 
% vector of length NVAR (the number of variables) containing 
solution (output) 
sol = zeros(1,nu*n_ch); 
% final number of active constraints (output) 
nact = zeros(1); 
% vector of length NVAR containing the indices of the final active 
constraints in the first NACT positions (output) 
iact = zeros(1,nu*n_ch); 
% vector of length NVAR containing the Lagrange multiplier estimates 
of the final active constraints in the first NACT (output) 
alamda = zeros(1,nu*n_ch); 
 
%------------------------------------- Initialization 
 
pass             = 0; 
prnt_flag        = 0; 
dist_flag        = 35000; 
step_flag        = 35000; 
cont_flag        = 35000; 



 111

dist_int         = 100000; 
step_int         = 60000; 
cont_int         = 500; 
prnt_int         = 500; 
 
 
dist_magntd      = -1.8; 
step_magntd      = -2; 
time             = 0; 
sim_time         = 120; 
delta_t          = 0.001; 
sim_time_steps   = sim_time / delta_t; 
 
uncnstrnt        = 1; 
disturb          = 1; 
step             = 0; 
 
lambda1          = 1; 
lambda2          = 1E-4; 
 
 
% ---------------------------------- Initialize Controller 
 
controller_initialize; 
 
 for i = 1:n_ph; 
    setpoint(i)      = 0.030536; 
    setpoint(n_ph+i) = 302.541; 
end; 
 
setpoint0(1) = 0.030536; 
setpoint0(2) = 302.541;  
    
 
Fea_s  = Fea; 
Fcw_s  = Fcw; 
 
% % %--------------------------------------------------- 
 
multip = 1; 
 
 
for i = 1:sim_time_steps; 
     
if (pass == prnt_flag) 
    
   prnt_flag = prnt_flag + prnt_int; 
     
% Write plant to screen 
   
write_plant_to_scrr(time,delta_u(1),delta_u(n_ch+1),Cna,T, 
setpoint0(2),Cn1,Fea,Fcw,E1,E2,E); 
        
 
% Write plant data to file 
 
write_plant_to_file(time, Cn, Cea, Cna, Ce, Cn1, T, V, Fea, Fcw,E);    
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end; 
%-------------------------------------Disturbances & Step Test 
 
if ((pass == dist_flag) & (disturb == 1)) 
       %Fn          = Fn + dist_magntd 
       
       Tw1        = Tw1 + dist_magntd  
        
    %Cea1        = Cea1 + dist_magntd  
    dist_flag = dist_flag + dist_int; 
    dist_magntd = -dist_magntd; 
 
% if ((pass == 35000) & (disturb == 1)) 
%      Tw1 = Tw1 + dist_magntd  
% end 
%   
% if ((pass==95000) & (disturb == 1)) 
%      Tw1 = Tw1 - dist_magntd  
% end 
     
    for i = 1:n_ph; 
        setpoint(i)        = setpoint0(1); 
        setpoint(n_ph+i)   = setpoint0(2); 
    end; 
           
end; 
 
if ((pass == step_flag) & (step  == 1))  
   for i = 1:n_ph; 
       setpoint(i)         = setpoint0(1);%*(1+step_magntd/100); 
       setpoint(n_ph+i)    = setpoint0(2);%+step_magntd;  
        
   end 
   step_magntd = 0.0; 
   step_flag   = step_flag   + step_int ; 
end; 
 
% if (pass>=35000)& (pass<=95000) 
%      E1=E1+abs(setpoint0(1)*(1+step_magntd/100)-Cna)*delta_t; 
% elseif (pass>95000)& (pass<=150000) 
%      E1=E1+abs(setpoint0(1)-Cna)*delta_t; 
% end 
 
if (pass>=35000) 
    E1=E1+abs(setpoint0(1)-Cna)*delta_t; 
end 
 
  
% if (pass>=35000)& ((pass<=95000)) 
%       E2=E2+abs(setpoint0(2)-2-T)*delta_t; 
% elseif ((pass>95000)& ((pass<=150000))) 
%      E2=E2+abs(setpoint0(2)-T)*delta_t; 
%        
% end 
if (pass>35000) 
     E2=E2+abs(setpoint0(2)-T)*delta_t; 
end 
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 if (time==95) 
    step_magntd=+2; 
end 
 
 
%-------------------------------------- Insert Controller 
 
if (pass == cont_flag)  
   cont_flag  = cont_flag + cont_int; 
   current_st(1) = Cna; 
   current_st(2) = T; 
   
   eprimefinal; 
 
   if (uncnstrnt) 
      
      delta_u  = (mpcgain*e_prime').'; 
   else 
       eval_gradient; 
       eval_ineq_vector(setpoint0, Fea, Fea_s, Fea_s_min, Fea_s_max… 
                        ,Fcw, Fcw_s, Fcw_s_min, Fcw_s_max... 
                        ,Cna_max,Cna_min,T_max,T_min); 
 
        iev=ineq_vector.';             
 
 
 
% calling qprog.dll for   optimization 
                  
   delta_u = qprog(ineq_matrix,iev,gradient,hessian);  
 
   delta_u  = delta_u.'; 
 
   end; 
      
     Fea  = Fea  + (Fea_s /100 * delta_u(1)); 
     Fcw  = Fcw  + (Fcw_s /100 * delta_u(n_ch+1)); 
 
    shift_control_history; 
end; 
 
 
 
%------------------------------------ Calculation of derivatives  
 
dCn=(1/V)*(1E-3*Fn*Cn1)-(1/V)*(1E-3*Fn+1E-3*Fea)*Cn-1.83e8*exp(-
5208/T)*Cn*Cea; 
 
dCea=(1/V)*(1E-3*Fea*Cea1)-(1/V)*(1E-3*Fn+1E-3*Fea)*Cea-1.83e8*exp(-
5208/T)*Cn*Cea; 
 
dCna=-(1/V)*(1E-3*Fn+1E-3*Fea)*Cna+1.83e8*exp(-5208/T)*Cn*Cea; 
 
dCe=-(1/V)*(1E-3*Fn+1E-3*Fea)*Ce+1.83e8*exp(-5208/T)*Cn*Cea; 
 
dT=(1E-3*Fn*Cn1*cpn*T1+1E-3*Fea*Cea1*cpea*T1-(1E-3*Fn+1E-
3*Fea)*(Cn*cpn+Cea*cpea+Cna*cpna+Ce*cpe)*T... 
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    -H*1.83e8*exp(-5208/T)*Cn*Cea*V+1E-3*Fcw*55.56*cpw*(Tw1-T)*(1-
exp(-UA/(1E-3*Fcw*55.56*cpw))))... 
    /(V*(Cn*cpn+Cea*cpea+Cna*cpna+Ce*cpe)); 
 
if (time < 15) 
    dV=1E-3*Fn+1E-3*Fea; 
else 
    dV=0; 
end; 
 
 
%------------------------------------- Update states 
 
Cn=Cn+dCn*delta_t; 
 
Cea=Cea+dCea*delta_t; 
 
Cna=Cna+dCna*delta_t; 
 
Ce=Ce+dCe*delta_t; 
 
T=T+dT*delta_t; 
 
V=V+dV*delta_t; 
 
 
%  if (pass>=35000) 
%      E=E1+E2; 
%  end 
time = time + delta_t; 
pass = pass + 1;     
 
end;     
 
% ================================================== 
% Close Output Files 
% ================================================== 
 
% NaOH concentration output  file 
fclose(FID_NaOH_concentration); 
 
% Ethyl Acetate concentration output file 
fclose(FID_Ethylacetate_concentration); 
 
% Sodium Acetate concentration output file 
fclose(FID_Sodiumacetate_concentration); 
 
% Initial Sodium Acetate concentration output file 
fclose(FID_Initial_Sodiumacetate_concentration); 
 
% Ethanol concentration output file 
fclose(FID_Ethanol_concentration); 
 
% Temperature output file 
fclose(FID_Reactor_temperature); 
 
% Reactor volume output file 
fclose(FID_Reactor_volume); 
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% Main output file 
fclose(FID_main); 
 
 
% Integral Absolute Error file 
fclose(FID_IAE); 
 
%----------------------------------- Output functions 
 
 
%=============================================== 
% write_plant_to_scrr 
%=============================================== 
 
function write_plant_to_scrr(t,u1,u2,Cnacon,Tmp,sp,Cn1con,flowea, 
flowcw,Err1,Err2,Err) 
 
glob_decs; 
 
fprintf('%9.4f  %9.4f  %9.4f  %9.6f  %9.4f %9.6f %9.6f %9.6f %9.6f 
%9.6f%9.6f%9.6f\n',t,u1,u2,Cnacon,Tmp,sp,Cn1con,flowea,flowcw,Err1, 
Err2,Err); 
 
%end write_plant_to_scrr 
 
 
%=================================================================== 
% write_plant_to_file 
%=================================================================== 
 
function  write_plant_to_file(t, Cnconc, Ceaconc, Cnaconc, Ceconc, 
Cn1conc, temp, vol, flowea, flowcw,Err) 
glob_decs; 
 
% NaOH concentration output  file 
l = prod(size(Cnconc)); 
formats = ''; for i=1:l; formats = [formats '; %9.6f']; end;   
fprintf(FID_NaOH_concentration,['%9.4f'formats'\n'],t,reshape(Cnconc
,1,l)); 
 
% Ethyl Acetate concentration output file 
l = prod(size(Ceaconc)); 
formats = ''; for i=1:l; formats = [formats '; %9.6f']; end;   
fprintf(FID_Ethylacetate_concentration,['%9.4f'formats'\n'],t, 
reshape(Ceaconc, 1, l)); 
 
% Sodium Acetate concentration output file 
l = prod(size(Cnaconc)); 
formats = ''; for i=1:l; formats = [formats '; %9.6f']; end;   
fprintf(FID_Sodiumacetate_concentration, ['%9.4f' formats '\n'], t, 
reshape(Cnaconc, 1, l));  
  
% Ethanol concentration output file 
l = prod(size(Ceconc)); 
formats = ''; for i=1:l; formats = [formats '; %9.6f']; end;   
fprintf(FID_Ethanol_concentration,['%9.4f'formats'\n'],t,reshape 
(Ceconc, 1, l)); 
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% Initial Sodium Acetate concentration output file 
l = prod(size(Cn1conc)); 
formats = ''; for i=1:l; formats = [formats '; %9.6f']; end;   
fprintf(FID_Initial_Sodiumacetate_concentration,['%9.4f'formats'\n']
, t, reshape(Cn1conc, 1, l)); 
% Reactor temperature output file 
l = prod(size(temp)); 
formats = ''; for i=1:l; formats = [formats '; %9.4f']; end;   
fprintf(FID_Reactor_temperature,['%9.4f'formats'\n'],t,reshape 
(temp, 1, l)); 
 
% Reactor volume output file 
l = prod(size(vol)); 
formats = ''; for i=1:l; formats = [formats '; %9.4f']; end;   
fprintf(FID_Reactor_volume, ['%9.4f' formats '\n'], t, reshape(vol, 
1, l)); 
     
% Main output file 
l = prod(size(flowea)) +  prod(size(flowcw)); 
formats = ''; for i=1:l; formats = [formats '; %9.6f']; end;   
fprintf(FID_main,['%9.4f'formats'\n'],t,reshape([flowea;flowcw],1, 
l)); 
     
% Integral Absolute Error output file 
l = prod(size(Err)); 
formats = ''; for i=1:l; formats = [formats '; %9.6f']; end;   
fprintf(FID_IAE, ['%9.4f' formats '\n'], t, reshape([Err],1, l)); 
 
%end write_plant_to_file 
 
 
% ------End Simulation loop control user interface functions------ % 
  
 
 
D.2 Controller.m 
 
======================Controller.m========================== 
 
function controller_initialize 
glob_decs; 
 
cntrl_hist  = zeros(n_mh,nu); 
w1          = zeros(ny*n_ph,ny*n_ph); 
w2          = zeros(nu*n_ch,nu*n_ch); 
 
for i = 1:n_ph; 
    w1(i,i) = lambda1*1.0; 
end; 
 
for i = n_ph+1:ny*n_ph; 
    w1(i,i)= lambda1*1.0; 
end; 
 
for i = 1:nu*n_ch; 
    w2(i,i)= lambda2*1.0; 
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end; 
 
read_step_response_coeff; 
eval_imp_resp_coeff; 
construct_dyn_matrix; 
eval_hessian; 
eval_mpcgain; 
 
% end controller_initialize 
 
%------------------------------------------------------------- 
 
function read_step_response_coeff 
glob_decs; 
 
for i = 1:n_mh; 
  s_Cna_Fea((i))= dlmread('stepcoefficients.dat',';',[i-1 0 i-1 0]); 
  s_Cna_Fcw((i))= dlmread('stepcoefficients.dat',';',[i-1 1 i-1 1]); 
  s_T_Fea((i))= dlmread('stepcoefficients.dat',';',[i-1 2 i-1 2]); 
  s_T_Fcw((i))= dlmread('stepcoefficients.dat',';',[i-1 3 i-1 3]); 
end; 
 
 
% end read_step_response_coeff 
 
%------------------------------------------------------------- 
 
function eval_imp_resp_coeff 
glob_decs; 
 
h_Cna_Fea(1)  = s_Cna_Fea(1); 
h_Cna_Fcw(1)  = s_Cna_Fcw(1); 
h_T_Fea(1)    = s_T_Fea(1); 
h_T_Fcw(1)    = s_T_Fcw(1); 
 
for i=2:n_mh; 
    h_Cna_Fea(i) = s_Cna_Fea(i) - s_Cna_Fea(i-1); 
    h_Cna_Fcw(i) = s_Cna_Fcw(i) - s_Cna_Fcw(i-1);  
    h_T_Fea(i)   = s_T_Fea(i)   - s_T_Fea(i-1); 
    h_T_Fcw(i)   = s_T_Fcw(i)   - s_T_Fcw(i-1); 
end; 
 
% end eval_imp_resp_coeff 
 
%------------------------------------------------------------- 
 
function construct_dyn_matrix 
glob_decs; 
 
for j=1:n_ch; 
    for i=1:j-1; 
        dyn_matrix_Cna_Fea(i,j)  = 0.0; 
        dyn_matrix_Cna_Fcw(i,j)  = 0.0; 
        dyn_matrix_T_Fn(i,j)     = 0.0; 
        dyn_matrix_T_Fcw(i,j)    = 0.0; 
    end; 
end; 
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for j=1:n_ch; 
    for i=j:n_ph; 
        dyn_matrix_Cna_Fea(i,j)  = s_Cna_Fea(i-j+1); 
        dyn_matrix_Cna_Fcw(i,j)  = s_Cna_Fcw(i-j+1); 
        dyn_matrix_T_Fea(i,j)    = s_T_Fea(i-j+1); 
        dyn_matrix_T_Fcw(i,j)    = s_T_Fcw(i-j+1); 
    end; 
end; 
 
for j=1:n_ch; 
    for i=1:n_ph; 
        dyn_matrix(i      ,      j) = dyn_matrix_Cna_Fea(i,j); 
        dyn_matrix(i     ,  n_ch+j) = dyn_matrix_Cna_Fcw(i,j);  
        dyn_matrix(i+n_ph ,       j)= dyn_matrix_T_Fea(i,j); 
        dyn_matrix(i+n_ph , n_ch+j) = dyn_matrix_T_Fcw(i,j); 
    end; 
end; 
% end construct_dyn_matrix 
 
%--------------------------------------------------------------- 
 
function eval_hessian 
glob_decs; 
 
temp1   = ((dyn_matrix)')*w1; 
hessian = (temp1*dyn_matrix) + w2; 
 
% end eval_hessian 
 
%--------------------------------------------------------------- 
 
function eval_mpcgain 
glob_decs; 
 
invhessian  = inv(hessian); 
eprimecoeff = ((dyn_matrix)')*w1; 
mpcgain     = invhessian*eprimecoeff; 
      
%end eval_mpcgain 
 
%-------------------------------------------------------------- 
 
 
function shift_control_history 
glob_decs; 
 
% store the first element of the control vector on temporary space 
#1 
temps1 = delta_u(1); 
 
for i = 1:n_mh; 
    % store the i-th element of the control history on temporary 
space #2 
    temps2=cntrl_hist(i,1); 
    % the new i-th element of the control history is temporary space 
#1 
    cntrl_hist(i,1)=temps1; 
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% make the temporary space #1 equal to temporary space #2 which will 
% make the next element of the control history equal to the  the 
previous one  
    temps1=temps2; 
end; 
       
temps3=delta_u(n_ch+1); 
 
for i=1:n_mh; 
    temps4=cntrl_hist(i,2); 
    cntrl_hist(i,2)=temps3; 
    temps3=temps4; 
end; 
 
% end shift_control_history 
 
% -------------------------------------------------------------- 
 
function eprimefinal 
glob_decs; 
 
l = zeros(n_ph,ny); 
s = zeros(n_ph,ny); 
 
for j = 1:n_ph; 
    for i = j+1:n_mh; 
        s(j,1) =  s(j,1) + h_Cna_Fea(i)*cntrl_hist(i-j,1) + 
h_Cna_Fcw(i)*cntrl_hist(i-j,2); 
        s(j,2) =  s(j,1) + h_T_Fea(i)*cntrl_hist(i-j,1) + 
h_T_Fcw(i)*cntrl_hist(i-j,2); 
    end; 
end; 
 
l(1,1) = s(1,1); 
l(1,2) = s(1,2); 
 
for i=2:n_ph; 
    l(i,1)=l(i-1,1) + s(i,1); 
    l(i,2)=l(i-1,2) + s(i,2); 
end; 
 
for i = 1:n_ph; 
    e_prime(i) = setpoint(i) - current_st(1) - l(i,1); 
    
end; 
 
for i = n_ph+1:ny*n_ph; 
    e_prime(i) = setpoint(i) - current_st(2) - l(i-n_ph,2); 
end; 
% --------------------------------------------------------------- 
 
function eval_gradient 
glob_decs; 
 
temp1    = (dyn_matrix)'*w1; 
gradient = temp1*e_prime'; 
 
%end eval_gradient 
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% --------------------------------------------------------------- 
 
function construct_ineq_matrix 
glob_decs; 
 
ineq_matrix = 0 
 
% construct input constraints part of inequality matrix 
for i = 1:n_ch; 
    for j = 1:i; 
        ineq_matrix (i+0*n_ch,     j) = -1.0; 
        ineq_matrix (i+1*n_ch,n_ch+j) = -1.0; 
        ineq_matrix (i+2*n_ch,     j) =  1.0; 
        ineq_matrix (i+3*n_ch,n_ch+j) =  1.0; 
    end; 
end; 
 
% construct output constraints part of inequality matrix 
for i = 1:ny*n_ph; 
    for j = 1:nu*n_ch; 
        ineq_matrix (i+4*n_ch+0*n_ph,j) = -1.d0*dyn_matrix(i,j); 
        ineq_matrix (i+4*n_ch+2*n_ph,j) =  1.d0*dyn_matrix(i,j); 
    end; 
end; 
 
% end construct_ineq_matrix 
 
% --------------------------------------------------------------- 
 
function eval_ineq_vector(setpoint0, Fea, Fea_s, Fea_s_min, 
Fea_s_max, Fcw, Fcw_s, Fcw_s_min,...                      
Fcw_s_max,Cna_max,Cna_min,T_max,T_min) 
 
glob_decs; 
 
ineq_vector = zeros(1,2*nu*n_ch+2*ny*n_ph); 
 
Fea_scaled  = (Fea-Fea_s)/Fea_s*100; 
Fcw_scaled  = (Fcw-Fcw_s)/Fcw_s*100; 
       
for i = 1:n_ch; 
    ineq_vector(i+0*n_ch) =   Fea_scaled - Fea_s_max; 
    ineq_vector(i+1*n_ch) =   Fcw_scaled - Fcw_s_max; 
    ineq_vector(i+2*n_ch) =   Fea_s_min  - Fea_scaled; 
    ineq_vector(i+3*n_ch) =   Fcw_s_min -  Fcw_scaled; 
end; 
 
 
 
 
for i = 1:n_ph; 
    ineq_vector(i+4*n_ch+0*n_ph) = setpoint0(1) - Cna_max - 
e_prime(i); 
    ineq_vector(i+4*n_ch+1*n_ph) = setpoint0(2) - T_max - 
e_prime(i+n_ph); 
    ineq_vector(i+4*n_ch+2*n_ph) = Cna_min - setpoint0(1) + 
e_prime(i); 
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    ineq_vector(i+4*n_ch+3*n_ph) = T_min - setpoint0(2) + 
e_prime(i+n_ph); 
end; 
 
% end eval_ineq_vector 
%-------------------------------------------------------------- 
 
 
 
 
 
D.3 Global_ decs.m 
 
% ------------- Programming Definitions  -------------- % 
 
% ======================================================= 
% Simulation Parameters 
% ======================================================= 
 
% --------------------------------Output File ID 
 
%% NaOH concentration output file 
global FID_NaOH_concentration; 
 
% Ethyl acetate concentration output file 
global FID_Ethylacetate_concentration; 
 
% Sodiumacetate concentration output file 
global FID_Sodiumacetate_concentration; 
 
% Initial Sodiumacetate concentration output file 
global FID_Initial_Sodiumacetate_concentration; 
 
% Ethanol concentration output file 
global FID_Ethanol_concentration; 
 
% Reactor temperature output file 
global FID_Reactor_temperature; 
 
% Reactor volume output file 
global FID_Reactor_volume; 
 
% Main output file 
global FID_main; 
 
% Integral Absolute Error file 
global FID_IAE; 
 
global time; 
% --------------------------------------------------------    
 
% -----------------End Programming Definitions------------ % 
 
 
 
% -----------------Simulation Parameters------------------ % 
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% ======================================================== 
% Physical System Definitions 
% ======================================================== 
 
% Number of outputs 
global ny; 
% Number of inputs 
global nu; 
% Model horizon 
global n_mh; 
% Prediction horizon 
global n_ph; 
% Control horizon 
global n_ch; 
 
global lambda1; 
global lambda2; 
% measured value at present sampling time 
global current_st; 
% Optimal input vector 
global delta_u; 
% 
global e_prime; 
% vector containing the values of reference setpoint 
global setpoint; 
% step resp coeff for sodium acetate concentration-ethyl acetate 
flowrate  
global s_Cna_Fea; 
%global s_Cna_Fn; 
% step resp coeff for sodium acetate concentration-cooling water 
flowrate 
 global s_Cna_Fcw; 
% step resp coeff for reactor temperature-ethyl acetate flowrate  
 global s_T_Fea; 
 %global s_T_Fn; 
% step resp coeff for reactor temperature-cooling water flowrate  
 global s_T_Fcw; 
% imp  resp coeff for sodium acetate concentration-ethyl acetate 
flowrate  
 global h_Cna_Fea; 
 %global h_Cna_Fn; 
% imp  resp coeff for sodium acetate concentration-cooling water 
flowrate 
global h_Cna_Fcw; 
% imp  resp coeff for reactor temperature-ethyl acetate flowrate  
 global h_T_Fea; 
 %global h_T_Fn; 
% imp  resp coeff for reactor temperature-cooling water flowrate  
global h_T_Fcw; 
% 
global cntrl_hist; 
%  
global hessian; 
% 
global eprimecoeff; 
% 
global mpcgain; 
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% 
global w1; 
% 
global w2; 
% 
global gradient; 
% 
global dyn_matrix; 
% 
global dyn_matrix_Cna_Fea; 
%global dyn_matrix_Cna_Fn; 
% 
global dyn_matrix_Cna_Fcw; 
% 
global dyn_matrix_T_Fea; 
%global dyn_matrix_T_Fn; 
% 
global dyn_matrix_T_Fcw; 
% 
global ineq_matrix; 
% 
global ineq_vector; 
 
global time; 
 
% ------------------------------------------------------------- 
 
 
D.4 Glob_initial.m 
 
 
% ------------    Programming Initialization  ------------ % 

 
% =========================================================== 

% Simulation Parameters Settings 
% =========================================================== 

  
% ------------------------ Output File ID Creation  
fclose all;  Current_Directory = cd; 
% NaOH concentration output file 
delete([Current_Directory '\' 'Cn.txt']);                    
FID_NaOH_concentration = fopen('Cn.txt','at'); 

 
% Ethyl acetate concentration output file 
delete([Current_Directory '\' 'Cea.txt']);                   
FID_Ethylacetate_concentration = fopen('Cea.txt','at'); 

 
% Sodiumacetate concentration output file delete([Current_Directory 
'\' 'Cna.txt']);                   FID_Sodiumacetate_concentration = 
fopen('Cna.txt','at'); 

   
% Initial Sodiumacetate concentration output file 
delete([Current_Directory '\' 'Cn1.txt']);                   
FID_Initial_Sodiumacetate_concentration = fopen('Cn1.txt','at'); 

  
% Ethanol concentration output file 
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delete([Current_Directory '\' 'Ce.txt']);                    
FID_Ethanol_concentration = fopen('Ce.txt','at'); 

 
% Reactor temperature output file 
delete([Current_Directory '\' 'T.txt']);                     
FID_Reactor_temperature = fopen('T.txt','at'); 
 
% Reactor volume output file 
delete([Current_Directory '\' 'V.txt']);                     
FID_Reactor_volume = fopen('V.txt','at'); 

 
% Main output file 
delete([Current_Directory '\' 'main.txt']);                  
FID_main = fopen('main.txt','at'); 

   
% Integral Absolute Error output file 
delete([Current_Directory '\' 'E.txt']);      
FID_IAE = fopen('E.txt','at'); 
 
% -------------------------------------------------------------  

 
% ------------End Programming Initialization ------------- % 

 
 
 
% -----------Simulation Initialization-------------------- % 

 
%Number of outputs 
ny = 2; 
%Number of inputs 
nu = 2; 
%Model horizon 
n_mh = 116; 
%Prediction horizon 
n_ph = 99; 
%Control horizon 
n_ch =70; 
% ------------------------------------------------------------ 
 
 
D.5 stepcoefficients.dat 
 
 S_Cna_Fea         s_Cna_Fcw        s_T_Fea        s_T_Fcw  
 0.0000000;    0.0000000;  0.00000000;   0.00000000; 
-0.0000119;  -0.0000010;  0.00500254;  -0.03193835; 
-0.0000217;  -0.0000032;  0.01971825;  -0.05339092; 
-0.0000291;  -0.0000061;  0.03920786;  -0.06627828; 
-0.0000344;  -0.0000091;  0.05991901;  -0.07260313; 
-0.0000379;  -0.0000119;  0.07949145;  -0.07422785; 
-0.0000399;  -0.0000143;  0.09653106;  -0.07275286; 
-0.0000408;  -0.0000163;  0.11038298;  -0.06946675; 
-0.0000410;  -0.0000177;  0.12092255;  -0.06534452; 
-0.0000406;  -0.0000188;  0.12837480;  -0.06107524; 
-0.0000400;  -0.0000195;  0.13316741;  -0.05710551; 
-0.0000392;  -0.0000198;  0.13581818;  -0.05368870; 
-0.0000385;  -0.0000200;  0.13685465;  -0.05093347; 
-0.0000379;  -0.0000200;  0.13676188;  -0.04884744; 
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-0.0000374;  -0.0000199;  0.13595289;  -0.04737398; 
-0.0000371;  -0.0000198;  0.13475663;  -0.04642117; 
-0.0000368;  -0.0000196;  0.13341807;  -0.04588334; 
-0.0000368;  -0.0000195;  0.13210615;  -0.04565584; 
-0.0000368;  -0.0000193;  0.13092583;  -0.04564436; 
-0.0000368;  -0.0000192;  0.12993180;  -0.04576969; 
-0.0000370;  -0.0000191;  0.12914177;  -0.04596945; 
-0.0000371;  -0.0000191;  0.12854836;  -0.04619759; 
-0.0000373;  -0.0000190;  0.12812902;  -0.04642255; 
-0.0000376;  -0.0000190;  0.12785360;  -0.04662478; 
-0.0000378;  -0.0000190;  0.12768999;  -0.04679410; 
-0.0000380;  -0.0000190;  0.12760776;  -0.04692714; 
-0.0000382;  -0.0000190;  0.12758036;  -0.04702513; 
-0.0000384;  -0.0000190;  0.12758617;  -0.04709207; 
-0.0000385;  -0.0000190;  0.12760867;  -0.04713332; 
-0.0000387;  -0.0000190;  0.12763607;  -0.04715463; 
-0.0000389;  -0.0000190;  0.12766070;  -0.04716145; 
-0.0000390;  -0.0000190;  0.12767814;  -0.04715853; 
-0.0000392;  -0.0000190;  0.12768649;  -0.04714977; 
-0.0000393;  -0.0000190;  0.12768555;  -0.04713813; 
-0.0000395;  -0.0000190;  0.12767625;  -0.04712576; 
-0.0000396;  -0.0000190;  0.12766011;  -0.04711408; 
-0.0000397;  -0.0000190;  0.12763888;  -0.04710389; 
-0.0000399;  -0.0000190;  0.12761429;  -0.04709559; 
-0.0000400;  -0.0000190;  0.12758787;  -0.04708924; 
-0.0000402;  -0.0000190;  0.12756090;  -0.04708469; 
-0.0000403;  -0.0000190;  0.12753435;  -0.04708171; 
-0.0000404;  -0.0000190;  0.12750890;  -0.04707997; 
-0.0000405;  -0.0000190;  0.12748500;  -0.04707918; 
-0.0000407;  -0.0000190;  0.12746286;  -0.04707906; 
-0.0000408;  -0.0000190;  0.12744257;  -0.04707937; 
-0.0000409;  -0.0000190;  0.12742407;  -0.04707992; 
-0.0000410;  -0.0000190;  0.12740726;  -0.04708058; 
-0.0000411;  -0.0000190;  0.12739197;  -0.04708123; 
-0.0000412;  -0.0000190;  0.12737805;  -0.04708183; 
-0.0000414;  -0.0000190;  0.12736532;  -0.04708234; 
-0.0000415;  -0.0000190;  0.12735361;  -0.04708274; 
-0.0000416;  -0.0000190;  0.12734281;  -0.04708304; 
-0.0000417;  -0.0000190;  0.12733278;  -0.04708325; 
-0.0000418;  -0.0000190;  0.12732343;  -0.04708338; 
-0.0000419;  -0.0000190;  0.12731469;  -0.04708345; 
-0.0000420;  -0.0000190;  0.12730649;  -0.04708348; 
-0.0000421;  -0.0000190;  0.12729879;  -0.04708347; 
-0.0000421;  -0.0000190;  0.12729155;  -0.04708345; 
-0.0000422;  -0.0000190;  0.12728473;  -0.04708342; 
-0.0000423;  -0.0000190;  0.12727831;  -0.04708338; 
-0.0000424;  -0.0000190;  0.12727227;  -0.04708335; 
-0.0000425;  -0.0000190;  0.12726660;  -0.04708332; 
-0.0000426;  -0.0000190;  0.12726127;  -0.04708329; 
-0.0000426;  -0.0000190;  0.12725627;  -0.04708327; 
-0.0000427;  -0.0000190;  0.12725157;  -0.04708326; 
-0.0000428;  -0.0000190;  0.12724717;  -0.04708325; 
-0.0000429;  -0.0000190;  0.12724305;  -0.04708324; 
-0.0000429;  -0.0000190;  0.12723918;  -0.04708324; 
-0.0000430;  -0.0000190;  0.12723557;  -0.04708324; 
-0.0000431;  -0.0000190;  0.12723218;  -0.04708324; 
-0.0000431;  -0.0000190;  0.12722901;  -0.04708324; 
-0.0000432;  -0.0000190;  0.12722604;  -0.04708324; 
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-0.0000432;  -0.0000190;  0.12722326;  -0.04708325; 
-0.0000433;  -0.0000190;  0.12722066;  -0.04708325; 
-0.0000434;  -0.0000190;  0.12721822;  -0.04708325; 
-0.0000434;  -0.0000190;  0.12721594;  -0.04708325; 
-0.0000435;  -0.0000190;  0.12721380;  -0.04708325; 
-0.0000435;  -0.0000190;  0.12721180;  -0.04708325; 
-0.0000436;  -0.0000190;  0.12720993;  -0.04708325; 
-0.0000436;  -0.0000190;  0.12720817;  -0.04708325; 
-0.0000437;  -0.0000190;  0.12720652;  -0.04708325; 
-0.0000437;  -0.0000190;  0.12720498;  -0.04708325; 
-0.0000437;  -0.0000190;  0.12720354;  -0.04708325; 
-0.0000438;  -0.0000190;  0.12720219;  -0.04708325; 
-0.0000438;  -0.0000190;  0.12720092;  -0.04708325; 
-0.0000439;  -0.0000190;  0.12719973;  -0.04708325; 
-0.0000439;  -0.0000190;  0.12719862;  -0.04708325; 
-0.0000441;  -0.0000190;  0.12719483;  -0.04708325; 
-0.0000441;  -0.0000190;  0.12719403;  -0.04708325; 
-0.0000441;  -0.0000190;  0.12719328;  -0.04708325; 
-0.0000442;  -0.0000190;  0.12719257;  -0.04708325; 
-0.0000442;  -0.0000190;  0.12719191;  -0.04708325; 
-0.0000442;  -0.0000190;  0.12719129;  -0.04708325; 
-0.0000442;  -0.0000190;  0.12719072;  -0.04708325; 
-0.0000443;  -0.0000190;  0.12719017;  -0.04708325; 
-0.0000443;  -0.0000190;  0.12718967;  -0.04708325; 
-0.0000443;  -0.0000190;  0.12718919;  -0.04708325; 
-0.0000444;  -0.0000190;  0.12718874;  -0.04708325; 
-0.0000444;  -0.0000190;  0.12718833;  -0.04708325; 
-0.0000444;  -0.0000190;  0.12718794;  -0.04708325; 
-0.0000444;  -0.0000190;  0.12718757;  -0.04708325; 
-0.0000444;  -0.0000190;  0.12718723;  -0.04708325; 
-0.0000445;  -0.0000190;  0.12718690;  -0.04708325; 
-0.0000445;  -0.0000190;  0.12718660;  -0.04708325; 
-0.0000445;  -0.0000190;  0.12718632;  -0.04708325; 
-0.0000445;  -0.0000190;  0.12718606;  -0.04708325; 
-0.0000445;  -0.0000190;  0.12718581;  -0.04708325; 
-0.0000446;  -0.0000190;  0.12718558;  -0.04708325; 
-0.0000446;  -0.0000190;  0.12718536;  -0.04708325; 
-0.0000446;  -0.0000190;  0.12718516;  -0.04708325; 
-0.0000446;  -0.0000190;  0.12718497;  -0.04708325; 
-0.0000446;  -0.0000190;  0.12718479;  -0.04708325; 
-0.0000447;  -0.0000190;  0.12718462;  -0.04708325; 
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APPENDIX E 

EXPERIMENTAL DATA FOR BORIC ACID PRODUCTION 
SYSTEM 

 

 

 
 
Table E.1 Experimental Data in Reactor I for Run I  
  

Time (min) VNaOH (ml) CH3BO3 (mol/l) 
0 26.80 2.680 
25 26.44 2.644 
60 26.25 2.625 
95 26.01 2.601 
128 25.88 2.588 
156 25.79 2.579 
176 25.83 2.583 

 

 

 
Table E.2 Experimental Data in Reactor II for Run I 
   

Time (min)  VNaOH (ml) CH3BO3 (mol/l) 
0 26.23 2.623 
26 25.96 2.596 
53 25.76 2.576 
92 25.59 2.559 
125 25.39 2.539 
149 25.33 2.533 
181 25.27 2.527 
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Table E.3 Experimental Data in Reactor III for Run I   
 

Time (min) VNaOH (ml) CH3BO3 (mol/l) 
0 26.41 2.641 
28 26.22 2.622 
51 26.01 2.601 
89 25.88 2.588 
123 25.67 2.567 
148 25.60 2.560 
183 25.54 2.554 

 
 

 

 
Table E.4 Experimental Data in Reactor IV for Run I   
 

Time (min) VNaOH (ml) CH3BO3 (mol/l) 
0 26.84 2.684 
19 26.70 2.670 
40 26.58 2.658 
63 26.47 2.647 
98 26.31 2.631 
120 26.16 2.616 
145 26.08 2.608 
187 25.99 2.599 

 
 
 
 
 
 
 
Table E.5 Experimental Data in Reactor I for Run II   
 

Time (min) VNaOH (ml) CH3BO3 (mol/l) 
0 32.11 3.211 
30 31.60 3.160 
50 31.34 3.134 
80 31.27 3.127 
105 31.15 3.115 
128 31.09 3.109 
156 31.00 3.100 
180 31.06 3.106 
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Table E.6 Experimental Data in Reactor II for Run II   
 

Time (min) VNaOH (ml) CH3BO3 (mol/l) 
0 32.14 3.214 
32 31.83 3.183 
64 31.56 3.156 
83 31.42 3.142 
106 31.33 3.133 
130 31.21 3.121 
158 31.08 3.108 
175 31.13 3.113 

 
 
 
 
Table E.7 Experimental Data in Reactor III for Run II   
 

Time (min) VNaOH (ml) CH3BO3 (mol/l) 
0 31.80 3.180 
34 31.56 3.156 
65 31.33 3.133 
85 31.17 3.117 
108 31.05 3.105 
133 30.94 3.094 
154 30.82 3.082 
181 30.77 3.077 

 
 
 
 
 
 
Table E.8 Experimental Data in Reactor IV for Run II   
 

Time (min) VNaOH (ml) CH3BO3 (mol/l) 
0 32.30 3.230 
20 32.15 3.215 
50 31.99 3.199 
73 31.79 3.179 
94 31.66 3.166 
119 31.54 3.154 
145 31.37 3.137 
189 31.23 3.123 
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Table E.9 Experimental Data in Reactor I for Run III   
 

Time (min) VNaOH (ml) CH3BO3 (mol/l) 
0 27.15 2.715 
30 27.96 2.796 
57 28.14 2.814 
83 28.35 2.835 
107 28.29 2.829 
136 28.41 2.841 
155 28.48 2.848 
175 28.45 2.845 

 

 
 
 
 
 
 
Table E.10 Experimental Data in Reactor II for Run III   
 

Time (min) VNaOH (ml) CH3BO3 (mol/l) 
0 27.26 2.726 
28 27.89 2.789 
59 28.14 2.814 
81 28.29 2.829 
111 28.33 2.833 
138 28.42 2.842 
157 28.49 2.849 
178 28.54 2.854 

 
 
 
 
 
 
Table E.11 Experimental Data in Reactor III for Run III   
 

Time (min) VNaOH (ml) CH3BO3 (mol/l) 
0 27.40 2.740 
33 27.84 2.784 
61 28.12 2.812 
78 28.33 2.833 
109 28.42 2.842 
134 28.50 2.850 
161 28.59 2.859 
184 28.66 2.866 
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Table E.12 Experimental Data in Reactor IV for Run III  
 

Time (min) VNaOH (ml) CH3BO3 (mol/l) 
0 27.53 2.753 
34 27.83 2.783 
56 28.08 2.808 
76 28.33 2.833 
102 28.49 2.849 
130 28.57 2.857 
167 28.70 2.870 
186 28.76 2.876 

 

 

 
Table E.13 Experimental Data in Reactor I for Run IV   
 

Time (min) VNaOH (ml) CH3BO3 (mol/l) 
0 24.70 2.470 
25 25.37 2.537 
55 25.54 2.554 
80 25.68 2.568 
110 25.90 2.590 
132 25.77 2.577 
160 25.84 2.584 
175 25.87 2.587 

 
 
 
 
 
 
Table E.14 Experimental Data in Reactor II for Run IV   
 

Time (min) VNaOH (ml) CH3BO3 (mol/l) 
0 24.84 2.484 
27 25.37 2.537 
58 25.56 2.556 
84 25.72 2.572 
113 25.88 2.588 
135 25.82 2.582 
155 25.91 2.591 
180 25.97 2.597 
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Table E.15 Experimental Data in Reactor III for Run IV   
 

Time (min) VNaOH (ml) CH3BO3 (mol/l) 
0 24.90 2.490 
30 25.33 2.533 
60 25.54 2.554 
86 25.70 2.570 
115 25.85 2.585 
135 25.79 2.579 
158 25.91 2.591 
184 26.01 2.601 

 

 
 
 
 
Table E.16 Experimental Data in Reactor IV for Run IV  
 

Time (min) VNaOH (ml) CH3BO3 (mol/l) 
0 25.12 2.512 
20 25.29 2.529 
50 25.64 2.564 
80 25.81 2.581 
105 25.93 2.593 
130 25.97 2.597 
163 26.11 2.611 
188 26.19 2.619 
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APPENDIX F 

MPC TOOLBOX IN MATLAB AND SIMULATION PROGRAMS 
FOR BORIC ACID PRODUCTION SYSTEM 

 
 

 
 
 
 
 
F.1 MPC Toolbox in MATLAB 
 
 
The MPC toolbox is composed of functions (commands) that are made use of for 

the analysis and design of model predictive control systems. The routines 

involved in the MPC toolbox were divided into two basic categories; routines 

using a step response model and routines using a state-space model.  

 

MIMO step response coefficient matrix is written as in Equation (F.1) for nm 

inputs and ny outputs. 

 

m

y y y m

1,1,i 1,2,i 1,n ,i

2,1,i
i

n ,1,i n ,2,i n ,n ,i

a a a

a
A

a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

L

M M

L

    (F.1) 

where al,m,i is the ith step response coefficient relating the mth input to the lth 

output and Ai is the step response coefficient matrix at the ith step. 
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The step response model can be achieved from identification experiments, or 

generated from a continuous or discrete transfer function or state-space model. 

In this study, step-response models are created from continuous transfer 

functions obtained in the identification experiments. 

 

The step response model is kept in MPC Toolbox as in Equation (F.2). 

 

( )y y m

1

2

n

y

n.n n 2 n

A
A

A
nout(1) 0 0

model
nout(2) 0 0

nout(ny) 0 0
n 0 0

deltt 0 0 + + ×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

M

L

L

M M M

L

L

L

   (F.2) 

 

The elements of the transfer function matrix are transferred to the MPC toolbox 

in Equation (F.3). 

 

ijg poly2tfd num,den,delt,delay= ⎡ ⎤⎣ ⎦     (F.3) 

 

The function poly2tfd converts a transfer function (continuous or discrete) from 

the standard MATLAB poly format into the MPC tf format. In Equation (F.3), num 

consists of the coefficients of the transfer function numerator, and den includes 

the coefficients of the transfer function denominator, delt is sampling time, if a 

discrete time transfer function is used, delt must be specified, and for continuous 

time system, delt is zero. The delay is the time delay in the transfer function. 
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The function tfd2step calculates the MIMO step response of a model in the MPC 

tf format and converts a model MPC tf format to MPC step format as in Equation 

(F.4). 

 

y ijmodel tfd2step tfinal,deltt,n ,g
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

    (F.4) 

 

After the model is stored in MATLAB, the function mpccon calculates MPC 

controller gain, KMPC, using a model in MPC step format as in Equation (F.5). 

     

( )Kmpc mpccon model,ywt,uwt,M,P=     (F.5) 

 

where model is the model of the process to be used in the controller design in 

the stepformat, ywt is the output weight and uwt is input weight, M is the control 

horizon  and P is the prediction horizon. 

 

The MPC is simulated by using mpcsim as expressed by Equation (F.6). 

 

( )MPCy,u mpcsim plant,model,K , tend,r=⎡ ⎤⎣ ⎦    (F.6) 

 

In Equation (F.6), plant is a model in the MPC step format that is to represent 

the plant, model is a model in the MPC step format that is to be used for state 

estimation in the controller, KMPC is the MPC controller gain matrix, tend is the 

simulation time and r is the set-point changes. 
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In order to simulate MPC for disturbance, Equation (F.7) is used. 

 

( )MPCy,u mpcsim plant,model,K , tend,r, usat, tfilter, dplant,dmodel,dstep=⎡ ⎤⎣ ⎦  (F.7) 

 

where usat is a matrix giving the limits on the manipulated variables, tfilter is a 

matrix of time constants for the noise filter and the unmeasured disturbances 

entering at the plant output, dplant is a model in MPC step format representing 

all the disturbances (measured and unmeasured) that affect plant, dmodel is a 

model in MPC step format representing the measured disturbances. If dmodel is 

provided, then input dstep is also required. If there are no measured 

disturbances, set dmodel= [ ]. 

 

In case of constraints on manipulated variables or controlled variables, the 

model predictive controller is simulated by using cmpc function expressed in 

Equation (F.8), for disturbance rejection Equation (F.9) is used. 

 

( )y,u mpcsim plant,model,ywt, uwt, M, P, tend,r, ulim, y lim=⎡ ⎤⎣ ⎦   (F.8) 

 

where ulim is a matrix givingthe limits on the manipulated variables, ylim is 

same as ulim, but for the lower and upper bounds of the outputs.  

 

MPCplant,model,K , tend,r,ulim,y lim,usat, tfilter,
y,u mpcsim

dplant,dmodel,dstep

⎛ ⎞
=⎡ ⎤ ⎜ ⎟⎣ ⎦

⎝ ⎠
  (F.9) 
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F.2 MPC Simulation Program for Boric Acid Production System 
 
 
% SISO-MPC Design 
 
% Sampling time 
 
deltt=2; 
 
% Truncation time 
 
tfinal=220; 
 
% Model Horizon, N=tfinal/deltt 
 
N=110; 
 
% Process model 
 
g11=poly2tfd(-0.042,[75000 24875 2375 85 1],0,4); 
% Number of Outputs 
 
ny=1; 
 
% Model of transfer function 
 
model=tfd2step(tfinal,deltt,ny,g11); 
 
% Plant/Model Mismatch 
 
plant=model; 
 
% Weights on Outputs 
 
ywt=[1]; 
 
% Weights on Inputs 
 
uwt=[0.02]; 
 
% Control Horizon 
 
M=66; 
 
% Prediction Horizon 
 
P=94; 
 
% MPC Gain 
 
Kmpc=mpccon(model,ywt,uwt,M,P); 
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%-------------Set-Point Tracking--------------- 
 
%Simulation time 
 
tend=300; 
 
%Set Point Change 
 
r=[0.300]; 
 
% For unconstrained Case 
 
% MPC Simulation 
 
[y,u]=mpcsim(plant,model,Kmpc,tend,r); 
% IAE Calculation  
 
e=abs(r*ones(size(y))-y); 
 
t=0:deltt:tend; 
 
trapz(t,e); 
 
  
ploteach(y,u,deltt); 
 
%For Constrained MPC 
 
ulim=[]; 
 
ylim=[-inf 0.302]; 
 
[y,u]=cmpc(plant,model,ywt,uwt,M,P,tend,r,ulim,ylim); 
 
 
% IAE Calculation  
 
e=abs(r*ones(size(y))-y); 
 
t=0:deltt:tend; 
 
trapz(t,e) 
 
ploteach(y,u,deltt); 
 
 
%---------Disturbance Rejection--------------- 
 
%Simulation time 
 
tend=300; 
 
 
% Disturbance model 
 
gd=poly2tfd(0.123,[29400 10675 1331 65 1],0,4); 
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% Disturbance plant 
 
dplant=tfd2step(tfinal,deltt,ny,gd); 
 
 
% Disturbance Model 
 
dmodel=dplant; 
 
 
%Set Point Change 
r=[0]; 
 
 
usat=[]; 
 
tfilter=[]; 
 
% Step Change in Input 
 
 dstep=[-1]; 
 
%MPC Simulation 
 
[y,u]=mpcsim(plant,model,Kmpc,tend,r,usat,tfilter,dplant,dmodel,dste
p); 
% IAE Calculation  
e=abs(r*ones(size(y))-y); 
 
t=0:deltt:tend; 
 
trapz(t,e) 
 
ploteach(y,u,deltt); 
 
 
%-----------Robustness--------------------------- 
 
% A plant/model mismatch was assumed for -10 % changes in time 
constants,  
%time delay and gains for each reactor  
 
% Plant model 
 
 p11=poly2tfd(-0.0378,[49207.5 18133.9 1923.8 76.5 1],0,3.6); 
 
% Plant 
 
plant=tfd2step(tfinal,deltt,ny,p11); 
 
%Simulation time 
 
tend=300; 
 
%Set Point Change 
 
r=[0.3]; 
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%MPC Simulation 
 
[y,u]=mpcsim(plant,model,Kmpc,tend,r); 
 
% IAE Calculation  
 
e=abs(r*ones(size(y))-y); 
 
t=0:deltt:tend; 
 
trapz(t,e) 
 
ploteach(y,u,deltt); 
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F.3 Cohen and Coon (PID) Model by Simulink 
 
 

 
Figure F.1: Cohen and Coon Model by Simulink  
 
 
 
 
F.4 ITAE (PID) Model by Simulink 
 
 
 

 
Figure F.2: ITAE (PID) Model by Simulink  
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APPENDIX G 
 
 
 
 

SAMPLE CALCULATIONS 
 
 
 
 
 

G.1 Calculation of Sodium Hydroxide Concentration for Saponification 

System 

T=300C 

FNaOH = 40 ml/min 

FEtOAc = 40 ml/min 

MHCl   = 0.1 M 

VHCl   = 10 ml 

VNaOH = 8.2 ml (from titration) 

MNaOH = 0.1 M 

Vsample= 10 ml 

 

Unreacted amount of NaOH is found from back-titration; 

VHCl * MHCl - VNaOH * MNaOH = CNaOH-unreacted * Vsample            (G.1) 

10 ml * 0.1 M - 8.2 ml * 0.1 M = CNaOH-unreacted * 10 ml 

CNaOH-unreacted = 0.018 mol/l 
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G.2 Calculations of Cohen-Coon (PID) and ITAE (PID) Design 

Parameters  

From Approximated Transfer Function of Process in Equation (7.5): 

K = -0.042, τ = 54, θ = 31 

For Cohen and Coon (PID): (Seborg, 1989) 

 

C

1 16 3
K

K 12
τ τ + θ⎡ ⎤= ⎢ ⎥θ τ⎣ ⎦

     (G.2)  

 

( )
( )I

32 6 /

13 8 /

⎡ ⎤θ + θ τ⎣ ⎦τ =
+ θ τ

     (G.3) 

 

( )D

4
11 2 /

θ
τ =

+ θ τ
     (G.4) 

 

By using Equations (G.2), (G.3) and (G.4), CK , Iτ  and Dτ  are calculated as -61.3, 

62.5 and 10.2 respectively.  

 

For ITAE (PID)- Setpoint: 

 

( ) 0.85

CKK 0.965 /
−

= θ τ      (G.5) 

 

( )I/ 0.796 0.1465 /τ τ = − θ τ     (G.6) 

 

( )0.929

D / 0.308 /τ τ = θ τ      (G.7) 
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By using Equations (G.5), (G.6) and (G.7), CK , Iτ  and Dτ  are calculated as -36.8, 

75.9 and 9.9 respectively.  

 

For ITAE (PID)- Load: 

 

( ) 0.947

CKK 1.357 /
−

= θ τ      (G.8) 

 

( ) 0.738

I/ 0.842 /
−

τ τ = θ τ      (G.9) 

 

( )0.995

D / 0.381 /τ τ = θ τ      (G.10) 

 

Using Equations (G.8), (G.9) and (G.10), CK , Iτ  and Dτ  are calculated as -54.6, 

42.6 and 11.8 respectively.  

 

G.3 Determination of Boric Acid Concentration 

The substances used to determine boric acid concentration were H2SO4 (1/3 by 

volume), 6N NaOH, 0.5 N NaOH, mannitol, methyl red indicator, phenolphthalein 

indicator. 

 

In the experimental studies, 2-3 drops methyl red indicator was added to 5 ml 

sample of solution. Then, H2SO4 (1/3 by volume) was added to the solution up to 

color change was occurred from yellow to pink. The mixture was titrated with 6 

N NaOH until it became yellow. H2SO4 was then mixed with the solution until the 

color of solution was changed from yellow to pink. The solution was titrated with 

0.5 N NaOH solution until the pH of solution became 4.5. After that, 2-3 g 

mannitol was added to the solution. The solution was then titrated with 0.5 N 
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NaOH until the pH of the solution was equal to 8.5. This volume was used to find 

boric acid concentration.  

 

Boric acid concentration was calculated by using Equation (G.11). 

 

[H3BO3] = (VNaOH × FNaOH × NNaOH)/ Vsample                         (G.11) 

where 

VN : Volume of NaOH for titration after adding mannitol to the solution (ml) 

FN : Factor of 0.5 N NaOH solution, (1) 

NN : Normalite of NaOH, (0.5 N) 

Vsample: Volume of sample taken from filtering, (5 ml)   

 

 

 

 

 

 

 

 

 

 

 

 

 


