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ABSTRACT 
 

NEW APPROACHES FOR PERFORMANCE EVALUATION  

USING DATA ENVELOPMENT ANALYSIS 

 

 

ÖZPEYNİRCİ, N. Özgür 

 

M. Sc. Thesis, Department of Industrial Engineering 

Supervisor: Prof. Dr. Murat KÖKSALAN 

 

May 2004, 69 pages 

 

 Data Envelopment Analysis (DEA) assigns efficiency values to decision 

making units (DMU) in a given period by comparing the outputs with the inputs. In 

many applications, inputs and outputs of DMUs are monitored over time. There 

might be a time lag between the consumption of inputs and production of outputs. 

We develop approaches that aim to capture the time lag between the outputs and the 

inputs in assigning the efficiency values to DMUs. We present computational results 

on randomly generated problems as well as on an application to R&D institutes of 

the Scientific and Technical Research Council of Turkey (TÜBİTAK). 

 

Keywords: Data Envelopment Analysis, DEA, Performance Evaluation, R&D 

Institute 
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ÖZ 
 

PERFORMANS DEĞERLENDİRMEYE VERİ ZARFLAMA ANALİZİ İLE 

YENİ YAKLAŞIMLAR 

 

 

ÖZPEYNİRCİ, N. Özgür 

 

Yüksek Lisans Tezi, Endüstri Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Murat KÖKSALAN 

 

Mayıs 2004, 69 sayfa 

 

 Veri Zarflama Analizi (DEA) karar verme birimlerinin (DMU) herhangi bir 

dönemdeki verimlilik değerlerini girdi ve çıktıları kıyaslayarak belirler. Birçok 

uygulamada,  DMU’ların girdi ve çıktıları zamana bağlı olarak izlenir. Girdilerin 

tüketimi ile çıktıların üretimi arasında bir zaman farkı olabilir. Bu çalışmada, 

DMU’ların verimlilik değerlerini belirlerken çıktılarla girdiler arasındaki zaman 

farkını yakalamayı amaçlayan bir yaklaşım geliştirdik. Rassal olarak oluşturulmuş 

problemlerin sonuçlarının yanısıra Türkiye Bilimsel ve Teknik Araştırma 

Kurumu’nun (TÜBİTAK) Araştırma-Geliştirme (Ar-Ge) enstitüleri için yaptığımız 

bir uygulamayı da sunuyoruz. 

 

Anahtar Kelimeler: Veri Zarflama Analizi, DEA, Performans Değerlendirme, Ar-Ge 

Enstitüsü 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 
Both profit-seeking and non-profit organizations have to perform their best in order 

to be competitive and to survive in the future. Many people such as the owners, 

partners, investors, and also public bodies are interested in the performances of the 

organizations in producing goods and/or providing services. These people are usually 

decision makers for the organizations. They are responsible from making strategic 

decisions such as the allocation of the resources, target setting for future periods or 

shutting down the business, etc.  

 

 In order to provide information about the performance of the organizations, 

researchers developed performance evaluation systems. Many people still develop 

new systems and/or improve the existing ones in order to provide better information, 

because as stated above, many crucial decisions are made by utilizing the 

information obtained by the performance evaluation systems. 

 

 This thesis study has started with the motivation of demonstrating a 

performance evaluation system for the research and development (R&D) institutes of 

the Scientific and Technical Research Council of Turkey, TÜBİTAK. In this study, 

we develop a performance evaluation system applicable to R&D institutes as well as 

many other organizations.  

 



 

 The R&D institutes have multiple inputs such as researchers, technicians, 

R&D laboratories with high-tech equipments, etc. and multiple outputs such as high-

tech end-user products, scientific articles, patents, loyalty incomes, etc. Therefore, 

we can say that the performance evaluation of R&D institutes and many other 

organizations is a multi-criteria problem. We have examined several systems for the 

performance evaluation and we utilize an approach called Data Envelopment 

Analysis in this study.  

  

 After making an introduction in Chapter 1, we briefly review literature on 

both the performance evaluation and the Data Envelopment Analysis in Chapter 2. 

 

 In Chapter 3, we review the basic Data Envelopment Analysis models and 

introduce the new models and ideas developed during this study. 

 

 In Chapter 4, we conduct two experiments. We explain the factors of the 

experiments and report the results. 

 

 In Chapter 5, we consider the case of TÜBİTAK and demonstrate our 

approach on the R&D institutes of TÜBİTAK. This is an exercise application as we 

only use the inputs and outputs for which data is readily available and ignore other 

relevant factors. 

  

 In Chapter 6, we conclude the study and discuss the further research areas.  
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CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

 
In this chapter, we review the literature on performance evaluation and data 

envelopment analysis (DEA). 

 

2.1  Performance Evaluation 

  

Researchers developed and reported many different approaches for performance 

evaluation. Most of these approaches propose the use of non-financial indicators in 

addition to financial ones. Appropriate non-financial indicators are determined 

according to the organizations being evaluated.   

 

Suwignjo et al. (2000) developed the Quantitative Model for Performance 

Measurement System (QMPMS). A hierarchical performance system is constructed 

by QMPMS in three steps: 

1) identification of factors affecting the performance and their relationships, 

2) structuring the factors hierarchically, 

3) quantifying the effect of the factors on performance. 

Analytical Hierarchy Process (AHP) is used in the last step. In a further study, Bititci 

et al. (2001) evaluated the performances of possible strategies by QMPMS. Sarkis 
3



 

(2003) proposed to use Analytical Network Process (ANP) instead of AHP. He also 

studied the evaluation of strategies on a planning horizon using QMPMS.  

 

 Spronk and Vermeulen (2003) introduced the comparative conditional 

performance review (CCPR) approach. This approach takes into account the effect of 

risk on the performance, which is beyond the control of decision maker. CCPR 

evaluates the performance of firms after removing the effects of risk factors. 

 

 Önel and Saatçioğlu (1995) worked on a trend analysis and regression model 

for the evaluation of university performance. They collected data for the following 

variables for a period of 21 years: 

1) number of articles published in international journals per professor, 

2) ratio of full professors to professors(full, associate and assistant), 

3) ratio of undergraduate students to professors, 

4) ratio of research assistants to professors, 

5) number of Ph.D degrees awarded per professor, 

6) ratio of Ph.D students to professors. 

They tried to find out a relation between the number of published articles and 

remaining variables. They showed that “ratio of full professors to professors” and 

“number of Ph.D degrees awarded per professor” had significant effects on the 

“number of articles published in international journals per professor”. 

 

 Fandel and Gal (2001) studied fund distribution among universities. They 

presented the pre-determined criteria set and the final solution accepted by the group 

of DMs. They analyzed the accepted solution and proposed different solutions using 

goal programming and distance minimization techniques.  

 

2.2  Data Envelopment Analysis 

 

DEA evaluates the relative performances of comparable units having the authority to 

make decisions. These units are called decision making units (DMUs). DEA models 

use the input and output quantities of DMUs in efficiency assignments. Each DMU is 
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considered one by one and a linear program is solved for each DMU. The efficiency 

of a DMU is defined as the ratio of weighted outputs to weighted inputs. These 

weights are positive decision variable of the linear program. When a DMU is under 

consideration, DEA maximizes the efficiency ratio of that DMU by changing the 

weights of inputs and outputs. There is only one constraint type in standard DEA, 

none of the DMUs can be more efficient than 100%. Weighted outputs of a DMU 

can not be more than weighted inputs of that DMU.  DEA approach is based on the 

original work of Farrell (1957) and became popular with the work of Charnes et al. 

(1978). Standard DEA models only use the input and output quantities of DMUs. 

However, adding the preferences of decision makers to DEA models is possible and 

studied in many papers. We discuss some of these below. 

 

 An interactive DEA procedure (IDEA) was developed by Post and Spronk 

(1999). IDEA incorporates the DM preference information to DEA in an iterative 

manner by setting minimum (maximum) acceptable levels of outputs (inputs). The 

authors illustrated IDEA model in the assessment of physics departments of UK 

Universities. They used the following inputs and outputs of the departments: 

1) The amount of general expenditure (input), 

2) The amount of equipment expenditure (input), 

3) The amount of research income (output), 

4) The number of undergraduate students (output), 

5) The number of post-graduate students on taught courses (output), 

6) The number of post-graduate students doing research (output), 

7) University Grant Committee research rating (output). 

The last output is a subjective criterion whereas the other inputs and outputs are 

objective criteria. They also introduced a combined DEA model which 

simultaneously solves many DEA models. We will further discuss the combined 

DEA model in the next chapter. 

 

 Halme et al. (1999) introduced the value efficiency analysis approach. By this 

approach, DEA uses the preference information of DM and assigns efficiency scores 

by using the estimated value function of DM. Korhonen et al. (2001) introduced a 

systematic approach for the performance analysis of academic research in R&D 
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institutions and universities using value efficiency analysis. They proposed five 

criteria: 

1) Quality of research, 

2) Research activity, 

3) Impact of research, 

4) Activity in educating young scientists, 

5) Activity in scientific community. 

Quantitative values for these criteria are calculated by the weighted sum of indicators 

(i.e. number of visitors in a research unit, number of citations) whereas AHP is used 

to generate the weights of indicators. These indicators are introduced as outputs and 

operation cost as the single input. 

 

 Kornbluth (1991) analyzed the policy effectiveness of player teams in a 

business game. Firstly, the efficient DMUs are determined by DEA. Afterwards, 

input weights are restricted since the author knows the policies of teams, i.e. the 

importance of inputs. Restrictions are made with constraints such as the weight of 

first input is not less than that of second input or the weight of first input is not less 

than 20% of the sum of all input weights.  By introducing weight restrictions in 

DEA, some efficient DMUs become inefficient. The author classifies inefficiency as 

technical inefficiency and policy inefficiency. Technical inefficiency is the 

inefficiency of DMU in DEA model. Policy inefficiency is the difference of 

efficiency values of DMU in DEA model and weight restricted DEA model. Since 

this difference is due to the inefficient policy of the DMU. 

 

 Dyson and Thanassoulis (1988) used coefficients of regression analysis as 

lower bounds for output weights in a single input DEA model. Wong and Beasley 

(1990) introduced a bound restriction on the ratio of a weighted input to the sum of 

all weighted inputs. Thompson et al. (1990) described the Assurance Region (AR) 

concept and defined two types of ARs. In AR I, the restrictions on input and output 

weights are separable, but AR II type constraints create relations between input and 

output weights.  

 

 

6



 

 All restrictions represented up to now are set for a single DMU which is 

under observation.  The input and/or output weights and/or level for that DMU are 

constrained.  To our best knowledge, all restrictions are within DMU restrictions; 

however, between DMU restrictions have never been considered before.  

 

 A general analysis of DEA models is made by Kleine (2004). In this study 

DEA models are classified and new DEA approaches are shown with the use of multi 

criteria decision making approaches. Joro et al. (1998) analyzed and compared data 

envelopment analysis models and multiple objective linear programming. Both 

articles have represented different reviews of DEA models and approaches. 

 

 DEA is used in efficiency, effectiveness and/or performance analysis of 

banks and bank branches by Yeh (1996) and Golany and Storbeck (1999), transit 

systems by Karlaftis (2004) and technology selection problems by Khouja (1995). 

Multiple period analyses are done in both banking papers. Many inputs (financial 

ratios, number of employees, ATM’s etc.) are collected and the irrelevant ones are 

determined with a regression analysis. The banks and the bank branches are 

compared and evaluated with other banks and bank branches in the same period. The 

efficiencies of banks and bank branches are monitored over a time period. Karlaftis 

(2004) analyzed the efficiency and effectiveness of urban transit systems of US.  He 

studied the scale economies of these systems using DEA. Khouja (1995), established 

a two phase procedure for technology selection problems and used DEA in the first 

phase to find out the non-dominated alternatives. In the second phase, DM selects a 

technology from the non-dominated alternatives set.  
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CHAPTER 3 

 

 

MODELS 

 

 

 
In this chapter, we first represent a general overview of data envelopment analysis 

model and then introduce two new DEA models considering the time lag between 

consumption of inputs and production of outputs. Finally, we introduce a new type of 

constraint set that implies some restrictions on the input and/or output weights. 

 

3.1  DEA model 

 

We have n DMU’s consuming m inputs and producing s outputs. Xij and Yrj stand for 

the amount of ith input and rth output of jth DMU, respectively. All inputs and outputs 

are assumed to be non-negative. vi and ur are the weights of ith input and rth output,  

respectively. 

 

 DEA defines the efficiency of a DMU as the ratio of weighted sum of outputs 

to weighted sum of inputs. The weight set (v and u vectors) is chosen so as to 

maximize the efficiency of the DMU under consideration, DMU0. The v and u 

vectors can be thought of as the prices of inputs and outputs, respectively. The 

weight set is constrained with the fact that a DMU can not be more efficient than 

100%. This model, M1 is given below.  Note that it is a non-linear model. The linear 

version of DEA model, M2 is also given below. The efficiency of DMU0 is 
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represented by h0. ε is a very small positive number which ensures that every input 

and output has a value greater than zero.  

  

(M1) s
r r0

r 1
0 m

i i0
i 1

s
r rk

r 1
m

i ik
i 1

r i

u Y
Max h

v X

Subject to

u Y
1  k=1,...,n

v X

u , v   r=1,...,s,  i=1,...,m

=

=

=

=

∑
=

∑

∑
≤ ∀

∑

≥ ε ∀ ∀

 

 

(M2) s
0 r r0

r 1

m
i i0

i 1
s m

r rk i ik
r 1 i 1

r i

Max h u Y

Subject to

v X 1  

u Y v X 0  k=1,...,n

u , v   r=1,...,s ,  i=1,...,m

=

=

= =

= ∑

=∑

− ≤ ∀∑ ∑

≥ ε ∀ ∀

 

 

 In M2, most favorable weight set for DMU0 is chosen which maximizes the 

weighted sum of outputs of DMU0. M2 assigns higher weights to the outputs which 

DMU0 is good at producing (ie. produces in large amounts). Also M2 assigns higher 

weights to the inputs which DMU0 is good at consuming (ie. consumes small 

amounts of).   

 

 M2 is the original formulation represented in Charnes et al.(1978). Dual of 

this model is M3. M3 constructs a hypothetical DMU which is the weighted sum of 

all DMUs. λj is the weight of jth DMU in the hypothetical DMU. Hypothetical DMU 
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produces each output at least at the level of DMU0 and consumes inputs at most θ% 

of DMU0. θ value represents the efficiency of DMU0. M3 is an input oriented model 

since it points out the inefficiencies in the input consumption of DMU0. 

 

 If the DMU0 is not 100% efficient, this means that there exists a hypothetical 

DMU which dominates DMU0. The input and output levels of the hypothetical DMU 

can be considered as target levels for DMU0 since DMU0 will be 100% efficient if it 

consumes inputs and produces outputs at the level of hypothetical DMU. Also the 

DMUs used to form the hypothetical DMU can be used as the benchmarks for 

DMU0. 

 

 M2 assumes that there is a constant returns to scale (CRS). According to 

CRS, if the inputs of a DMU is doubled (or halved) also the outputs will be doubled 

(or halved). In our study, we assume constant returns to scale. See Kleine (2004) and 

Karlaftis (2004). 

 

 Although M2 is the original model, it is called as CCR-Input Dual and M3 is 

called as CCR-Input Primal in the literature. In addition to input oriented models, 

output oriented and combined models exist, see Joro et al. (1998). We use the input 

oriented model.  

(M3) s m
0 r

r 1 i 1

n
j rj r r0

j 1

n
j ij i ij

j 1

j

i

r

Min z ( s s )

Subject to

Y s =Y   r=1,...,s

X s X  i=1,...,m

  j=1,...,n 

s   i=1,...,m 

s   r=1,...,s 

+ −

= =

+

=

−

=

−

+

= θ + ε +∑ ∑

λ − ∀∑

λ + = θ ∀∑

λ ≥ ε ∀

≥ ε ∀

≥ ε ∀

i

 

 

 

10



 

 In order to find all DMUs’ efficiency values, M2 has to be solved n times, 

once for each DMUj (j=1,…,n). Post and Spronk (1999) offered to combine n models 

in a single model and to find all DMU’s efficiencies simultaneously in a single 

model. Combined model is represented as M4. In this model, vij and urj are the 

weights of ith input and rth output when jth DMU is under consideration. 

 

(M4) n n s
j rj rj

j 1 j 1 r 1

m
ij ij

i 1
s m

rj rk ij ik
r 1 i 1

rj ij

Max h u Y

Subject to

v X 1                    j=1,...,n

u Y v X 0  k=1,...,n , j=1,...,n

u , v                       r=1,...,s ,  i=1,...,m , j=1,...,n

= = =

=

= =

=∑ ∑ ∑

= ∀∑

− ≤ ∀ ∀∑ ∑

≥ ε ∀ ∀ ∀

 

 

 

 If multiple periods of data are available, a period index t is added to all 

variables. Xijt and Yrjt stand for the ith input and rth output of jth DMU at period t 

(t=1,…,T). For multiple period instances, combined DEA model is to be solved once 

for each period. We add period index t to all terms and combined models over 

periods in model M5. The efficiency values of all DMUs for all periods are found by 

a single model. The efficiency value of jth DMU in period t is represented by hjt in 

the model.  
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(M5) T n T n s
jt rjt rjt

t 1 j 1 t 1 j 1 r 1

m
ijt ijt

i 1
s m

rjt rkt ijt ikt
r 1 i 1

rjt ijt

Max h u Y

Subject to
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=
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= ∀ ∀∑
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                                          j=1,...,n , t=1,...,T

∀ ∀
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3.2  Multi-period Input (MpI) Model 

 

All DEA models represented above assume that inputs are converted to outputs in the 

same period. However in some cases, inputs are consumed and outputs are produced 

after a period of time. Number of published articles is an output example in which 

there is a time lag between the usage of inputs and obtaining the corresponding 

output. Also some transactions occurring in a bank may be due to the advertisements 

done in previous periods. Multi-period input model (MpI) we developed tries to 

capture the time lag while assigning efficiency values to DMUs.  

 

 DEA uses the input and output values of a single period and assigns the 

efficiency values to DMUs. In addition to these data, MpI uses the input values of 

previous periods. MpI model is given below. The inputs of previous periods are 

introduced as if they were new types of inputs for the current period. 
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(MpI) T n T n s
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                                                  t=P+1,...,T

u , v       r=1,...,s , i=1,...,m , 

= = =
≤ ∀∑ ∑ ∑

∀
∀

≥ ε ∀ ∀ ∀j=1,...,n , 

                       t=P+1,...,T , p=0,...,P∀ ∀

 

 

 

 In the MpI model, Xij(t p)−
 represents the amount of input i consumed by 

DMU j in period t-p. MpI uses input data of P+1 periods and output data of the 

current period. Since there is a time lag of P periods, first output is produced in 

period P+1. is the weight of ip
ijtv th input of jth DMU p periods ago while DMU j is 

under consideration. MpI assigns efficiency scores for periods [P+1, T]. Note that 

when P = 0, MpI is equivalent to the combined DEA model. 

 

 Optimal v weights give the relative input values of the current and the 

previous periods. Consider the i

p
ijt

th input of jth DMU in period t. Suppose that the p
ijtv ′  

value for period t  is less than other  v  values. This implies that the DMU is 

willing to use the inputs of period t

p′− p
ijt

p′−  more than other periods’ inputs, since the 

inputs of period t  are cheaper than the inputs of other periods. Using this fact, 

we developed the Effective Input model.  

p′−
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3.3  Effective Input (EI) Model 

 

EI model introduces the Effective Input concept. Effective input is the “real” amount 

of input used in the current or the previous periods in order to produce outputs in the 

current period.  Effective input is the weighted sum of current and previous periods’ 

inputs. There is an inverse relation with  v   values and input consumption. As the 

 value increases, DMUs want to use the input i of the other periods where it is 

cheaper. We assume that all DMUs in all periods have similar patterns of using 

current and previous periods’ inputs. The weight w

p
ijt

p
ijtv

n(T-

ip represents the portion of input i 

used p periods ago. Number of v  values used to calculate each wp
ijt ip weight is 

. The weights are calculated and normalized as follows: P)

 

ip T n p
ijt

t P 1 j 1

ip
ip P

ip
p 0

1w  i=1,...,m , p=0,...,P
v

w
w         i=1,...,m, p=0,...,P

w

= + =

=

′ = ∀ ∀
∑ ∑

′
= ∀ ∀

′∑

 

 

 Eijt represents the effective input value of ith input of DMU j in period t. 

Effective input values are calculated using the input values and wip values as follows: 
P

ijt ip ij(t p)
p 0

E w X  i=1,...,m , j=1,...,n , t=P+1,...,T−
=

= ∀ ∀ ∀∑  

 

 The effective input (EI) model is given below. EI model assumes that weights 

of effective input do not change in time and are the same for all DMU’s. Note that EI 

is very similar to the combined DEA model. Xijt values are changed with Eijt and 

index of t starts at P+1 instead of 1. Also note that, Eijt values are calculated as above 

and are knownconstant values in the EI model. 
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(EI) T n T n s
jt rjt rjt

t=(P+1) j 1 t (P 1) j 1 r 1

m
ijt ijt

i 1
s m

rjt rkt ijt ikt
r 1 i 1

rjt ijt

Max h u Y

Subject to

v E 1  j=1,...,n, t=P+1,...,T

u Y v E 0  k=1,...,n, j=1,...,n, t=P+1,...,T

u , v   r=1,...,s,  i=1,...,

= = + = =

=

= =

=∑ ∑ ∑ ∑ ∑

= ∀ ∀∑

− ≤ ∀ ∀ ∀∑ ∑

≥ ε ∀ ∀ m, j=1,...,n, t=P+1,...,T∀ ∀

 

 

3.4  Models with Weight Range Constraint (WRC) 

 

All models represented up to now are free to assign any positive weight sets in order 

to maximize the efficiency values of each DMU at each period separately. These 

weight sets for different DMUs and periods may take diverse values. However, this 

may not be the case in the real life, the weights of inputs and outputs may not be 

much more different than the average weights and it might make more sense to 

restrict them to lie within a reasonable range. Using this idea, we introduce a new 

type of weight restriction. This restriction enables an interaction between DMUs 

which have not been proposed before.  

 

 Consider the single period combined DEA model, M4. This model assigns 

positive values to input weights, vij’s. We define a bound for each input i. The center 

of bound for input i is set as the average value of vij’s over all DMUs. iv  value 

represents the average value for input i. We let vij’s take values in the interval 

(1±α) iv . A nonnegative parameter α is used to set the allowable range width. Weight 

range constraints (WRC) are represented below.  
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(WRC) n
ij

j=1
i

iij

iij

v
v     i=1,...,m 

n
v (1 )v  i=1,...,m , j=1,...,n

v (1 )v  i=1,...,m , j=1,...,n

∑
= ∀

≤ + α ∀ ∀

≥ − α ∀ ∀

 

 

 

 However simply adding WRC to M4 is not suitable. Because the resulting 

model will maximize the total efficiency of DMUs by favoring the ones having 

similar input levels and sacrificing the DMUs having extreme input levels for some 

or all inputs (i.e. a DMU using first input very much and all other inputs very little). 

We change the objective function of the resulting model. Instead of maximizing the 

total efficiency, we minimize the maximum sacrifice due to the addition of WRC. 

DEA model with new objective and WRC, namely M6, is represented below. 

 

 In M6, hj and qj represent the estimated efficiency value of DMU j by M4 and 

M6, respectively. That is hj is the efficiency value obtained with the original DEA 

model when there are no weight restrictions. In M6, we try to minimize the 

maximum deviation from those hj values. Note that, we allow only positive 

deviations in the efficiency estimates, since adding additional constraints to weight 

space should not increase the efficiency estimates of DMUs. 

 

 A model may become infeasible with the addition of WRC, especially with a 

small α value. In order to handle the infeasibility, we use an iterative procedure. If a 

model is infeasible, α is increased and the model is solved again. This is done until 

the model with WRCs becomes feasible. Increasing α allows a wider range for 

weights. The lower bound range constraint of WRC becomes redundant for α>1. In 

this procedure, an initial α value is to be determined.  In M6, WRC are applied only 

to the input weights. It is possible to add similar constraints for output weights. 
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∀
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j j

rj ij
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+ ≥ ∀

≥ ε ∀ ∀ ∀

 

 

 M6 is constructed for one period in the above example. If multiple periods of 

data exist then the objective is changed as follows in order to minimize the sum of 

maximum deviations for each period: 

 
T

t
t=1

Min dev∑  

where devt represents the maximum deviation of efficiency values in period t.  

 

 We represent an example problem to illustrate the effect of WRC with both 

types of objective functions, maximizing the total efficiency and minimizing the 

maximum sacrifice. The data of this example is taken from Thompson et al. (1990). 
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There are two inputs and a single output. The input and output values are given in 

Table 3.1. Since output values are same for all DMUs, we represent only the input 

values in Figure 3.1.  

 

Table 3.1. Output and input values of example problem 

 

DMU 1 2 3 4 5 6 

Output, y 1 1 1 1 1 1 

Input 1, x1 4 2 1 5 4 3 

Input 2, x2 1 2 4 1 4 1.5 

 

1 2 3 4 5

1

2

3

4

5

x1

x2

DMU 1

DMU 2

DMU 3

DMU 4

DMU 5

DMU 6

 
Figure 3.1. Input values of DMUs 

 

 We solve this problem using M4, M4 with WRC, and M6 The efficiency 

values of DMUs are given in Table 3.2 for all models. We use ε =0.00001 for all 

models and α = 0.5 for the models with WRC. There are two DMUs in the inefficient 

DMU set for M4; namely, DMUs 4 and 5. DMU 3 is also added to the inefficient 

DMU set if model M4 with WRC is used. DMU 6 is also added to inefficient DMU 

set in M6 model. Note that, although the average sacrifice increases, the maximum 

sacrifice of a DMU decreases. 
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Table 3.2. Efficiency values 

 

Efficiency 

DMU M4 M4 with WRC M6 

1 100.00 100.00 100.00 

2 100.00 100.00 100.00 

3 100.00 95.44 88.99 

4 99.99 85.71 88.98 

5 50.00 50.00 50.00 

6 100.00 100.00 99.00 

Maximum Sacrifice 14.28 11.01 

Average Sacrifice 3.14 3.84 

 

 As it can be seen in Table 3.3, optimal weights for DMUs vary between 

models. The standard deviation of optimal input weights of M4 is much higher than 

those of other two models. This is due to the WRC, since they enforce the model to 

take input weights in a range where its center is also determined by the model itself. 

The weights on the boundaries are written in bold.  In M4 with WRC model, the 

weights of first input for DMUs 2 and 3 are on the upper bound. This can be 

interpreted as there is a pressure for these DMUs to increase the consumption of the 

first input while decreasing that of second input. In M6, weights of first input for 

DMUs 2 and 3, weights of second input for DMUs 1 and 4 are on the respective 

upper bounds. The second input weight for DMU 5 is also on the lower bound. These 

results demonstrate that, M6 distributes the pressure between more DMUs while 

minimizing the maximum sacrifice. 
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Table 3.3. Optimal input weights 

 

Weights  

M4 M4 with WRC  M6 

DMU v1j v2j v1j v2j  v1j v2j 

1 16.67 33.33 16.67 33.33 13.77 44.91

2 33.33 16.67 30.29 19.71 25.99 24.01

3 100.00 0.00 30.29 17.43 25.99 18.50

4 0.00 100.00 14.29 28.57 11.02 44.91

5 16.67 8.33 12.97 12.34 10.03 14.97

6 16.67 33.33 16.67 33.33 17.17 32.34

Average 30.56 31.94 20.20 24.12 17.33 29.94

Std.Dev 35.62 35.91 7.95 8.86 7.15 12.99

Upper Bound 30.29 36.18 25.99 44.91

Lower Bound 10.10 12.06 8.67 14.97

 

20



 

 

 

 

CHAPTER 4 

 

 

EXPERIMENTS 

 

 

 
In order to analyze the effects of the new models and weight range constraints 

introduced in the previous chapter, we designed two experiments and defined 

performance indicators. In this chapter, we explain the performance indicators and 

the design of experiments. Finally, we present and discuss the results. 

 

4.1  Performance Evaluation of Models 
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In the experiments, we assume that the efficiency values of DMUs exist and we try 

to estimate these values by the models. We call the assumed efficiency values as 

“true” and calculated efficiency values as “estimated”. A model performs well if the 

estimated efficiency values are close to the true efficiency values. We denote the 

deviation of the estimated value from the true value as the error. In order to see the 

performances of models and ideas in estimating the efficiency values, we use two 

performance indicators; root mean squared error (RMSE) and maximum error (ME). 

RMSE sums up squares of all error terms. ME, on the other hand, looks for the 

maximum error term in the efficiency estimates. Let Hjt and hjt be the true and 

estimated efficiency values of DMU j in period t, respectively. RMSE and ME are 

calculated as follows: 



 

 

( )2

1 1

( )

n T

jt jt
j t P

h H
RMSE

n T P
= = +

−
=

× −

∑ ∑
 

 

{ },max j t jt jtME h H= −  

where P represents the time lag between the consumption of inputs and production of 

outputs and (T-P) represents the number of periods where efficiency estimates are 

done for n DMUs. We mention this issue in the next section. 

 

 Moreover, the correlation between the true and the estimated efficiencies is 

calculated. However, this information is only used to monitor the results. Correlation 

is calculated as follows: 

 

1 1

2 2

1 1 1 1

( ) ( )
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jt jt
j t P

n T n T

jt jt
j t P j t P

h h H H
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h h H H
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= = + = = +

 − × − 
=

  
− × −  

  

∑ ∑

∑ ∑ ∑ ∑




 

where H  and h  are the mean values of true and estimated efficiencies, respectively.  

 

4.2  Design of Experiments 

 

We designed two experiments to study the factors that may affect the model 

performances. We generated random inputs, input consumption patterns, and 

efficiency values. Using assumed production functions related with inputs, we 

generated outputs and added random error terms. Finally, we used six different 

models to find the efficiency values of DMUs by using the generated inputs and 

outputs. 
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 There are seven different factors used in the experiments. These factors are: 

1. Model  

2. Input Set  

3. Input Standard Deviation  

4. Weight Set  

5. Efficiency Standard Deviation  

6. Error Standard Deviation  

7. Time Lag  

 

The details of factors and their different levels are described below. 

 

• Model 

 The model used for the efficiency estimation is the first factor of the 

experiment. There are six levels for this factor:  

1. DEA: Combined DEA model is used. 

2. DEA-WRC: Combined DEA model is used with weight restriction 

constraints. 

3. MpI: Multi-period input model is used. 

4. MpI-WRC: Multi-period input model is used with weight restriction 

constraints. 

5. EI: Effective input model is used. 

6. EI-WRC: Effective input model is used with weight restriction 

constraints. 

Note that models DEA and DEA-WRC are represented in Section 3.1 and 

Section 3.4 as M5 and M6, respectively. We call these models as DEA and 

DEA-WRC in order to have a consistency in the names of compared models 

in the experiments.  

• Input Set 

 The amount of inputs consumed by a DMU in a period may be related to the 

amount consumed in previous periods in real life. We use three different patterns for 

the inputs of consecutive periods. These are independent, positively correlated and 

negatively correlated patterns. Remember that, Xijp represents the amount of ith input 

consumed by DMU j in period p. 
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1. Independent : All Xijp values are independently generated from a normal 

distribution with  mean µ1 and variance σ1
2 

Xijp ∼ N(µ1,σ1
2)  

 

2. Positively Correlated: Input of a DMU is positively correlated with the 

previous period’s input.  Xijp and Xij(p+1) are positively correlated.  

Xijp ∼ N(µ1,σ1
2)  for p=1 

Xijp = 0.7 Xij(p-1) + 0.3 ß for p=2,…,T   

where ß ∼ N(µ1,σ1
2)   

  

3. Negatively Correlated: Xijp and Xij(p+1) are negatively correlated. 

Xijp ∼ N(µ1,σ1
2)  for p=1,3,5,7… 

Xijp = 0.7 (2 µ1 - Xij(p-1))+ 0.3 ß for p=2,4,6,8… 

 

• Input Standard Deviation 

 We set µ1 to 100 and use two levels for the standard deviation σ1. Two levels 

of σ1 value are: 

1. Low: The standard deviation σ1 is set to 20,  

2. High: The standard deviation σ1 is set to 40.  

 Using a higher standard deviation value decreases the correlation between the 

input values of current and previous periods and vice versa. In addition to the factor 

“input set”, we wanted to see the effect of standard deviation of input on the 

performance of models. 

 

• Input Weight 

 This factor controls the distribution of input consumption weights of current 

and previous periods. Let  be the true weight of ip
ijrw th input of p periods ago used 

by DMU j in order to produce the current value of output r. We produce the weight 

set for P periods. We use four different patterns of weight sets. These are: 

1. Independent: values are generated independently from a uniform p
ijrw
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distribution between 0 and 1.  
p
ijrw ∼ U (0, 1) for p=0,…,P-1  

 

2. Non-increasing: values are generated with a non increasing pattern. 

The weights of periods follow a non-increasing pattern as you go previous 

periods. Weights are calculated as follows: 

p
ijrw

0
ijrw ∼ U (0,1) and  

p 1
ijrw +  = w  µ  for p=1,…,P-1  p

ijr

 

where µ∼U(0,1) is a uniformly distributed random number between 

0 and 1. 

 

3. Special: In this pattern, the inputs of the current period have no effect on 

the outputs. All inputs of current period have zero weights. The weights 

of the inputs of previous periods take values with a non-increasing pattern 

as follows: 
0
ijrw = 0, 

1
ijrw ∼ U (0,1) and 

p 1
ijrw +  =w  µ for p=2,…,P-1 p

ijr

 

4. No time lag: In this pattern, the inputs are used without any time lag. Only 

current period’s inputs affect current period’s outputs as assumed by 

standard DEA. As a result, the weights of the previous periods are all 

zero. 
0
ijrw  ∼ U (0, 1), 

p
ijrw = 0 for p=1,…,P-1 

 

 After the generation of weights,  values are normalized to satisfy: p
ijrw
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p
ijr

i, j,p
w 1  r=1,...,s= ∀∑  

 

Note the difference between v and w vectors. v vector is used in the models 

and keeps the optimal weights of the inputs. However, w vector is generated 

in the experiments and keeps two types of information; (i) the contribution of 

each input to each output, (ii): distribution of these contribution between 

periods. 

 

• Efficiency Standard Deviation 

 The true efficiency values of DMUs, jtH ′ ’s, are generated from a normal 

distribution with mean µ2 and standard deviation σ2. We set µ2=100. If we use a high 

standard deviation then all DMUs will have very distinct efficiency values and it will 

be easier for models to distinguish the efficient and inefficient DMUs. If a small 

standard deviation is used, the task of the models will be harder. In order to examine 

the effects of the standard deviation, we use two levels for this factor: 

1.  Low: The standard deviation σ2 is set to 10,  

2. High: The standard deviation σ2 is set to 20.  

 

 We shift the efficiency values as follows in order to obtain at least one DMU 

in each period to have a true efficiency value of 100:  

MaxHt = maxj { } for t=1,…,T jtH ′

Hjt= jtH ′  - MaxHt +100 for t=1,…,T and j=1,…,n 

 

• Error Term 

 Different levels of the error term are used in order to see the performance of 

the models when the relation between inputs and outputs change from a deterministic 

structure to a stochastic one. Error term for output r of DMU j in period t is 

represented by erjt.  

erjt ~ N(µ3, σ3
2) where µ3= 0. 

Two levels for the standard deviation of the error term are used: 

1. Deterministic: The standard deviation σ3 is set to 0,  
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2. Probabilistic: The standard deviation σ3 is set to 20.  

 

• Time Lag 

 There are two types of time lags. The first type is the time lag used in the 

generation of outputs. We may call it as “production time lag”. The second one is the 

time lag used in the models for the estimation of efficiency values. This may be 

called as “model time lag”.  In the experiments, we set the production time lag as two 

periods. This means that the inputs are converted to outputs at most in two periods 

excluding the current period. This factor is analyzed to examine the under- or over-

estimation of the production time lag in the real life application. Three levels for 

model time lag are used: 

 

1. Short time lag: The model  time lag is set to 1 (Model uses the inputs of 

current and the previous period),  

2. Normal time lag: The model  time lag is set to 2, 

3. Long time lag:  The model time lag is set to 3. 

 

After describing the levels of factors, we represent the output function which uses 

these factors. The output is a function of a weighted combination of inputs from 

several periods that is adjusted by an efficiency factor plus the error term. That is, 

( )( )
1 0

   1,...,  , 1,...,  , 1,...,
m P

p
rjt jt ijr ij t p rjt

i p
Y H w X e r s j n t P−

= =

 
= + ∀ = ∀ = ∀ 

 
∑∑ T= +  

 

 We set the number of inputs m=3, outputs s=2 and DMUs n=15. The number 

of periods is set to 10. P value changes as the level of “time lag” factor changes. We 

increase the T value as P increases in order to keep the number of periods at 10. 

  10 P [1,3]T P= + ∀ ∈

  

 There is a relation between “weight set” and “time lag” factors. If “no time 

lag” level of “weight set” factor is used then the levels of “time lag” do not affect the 

output generation function. For this case, only the inputs of current period will be 

used for output generation. Due to this reason, we have done two separate 

experiments.  In Experiment I, we do not use the “no time lag” level of “weight set” 
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factor. There are 1296 treatments in this experiment. The factors and factor levels for 

Experiment I are given in Table 4.1. In Experiment II, we do not use “time lag” 

factor. There are only 144 treatments in this experiment. The factors and factor levels 

for Experiment II are given in Table 4.2. 20 replications are done for each factor 

level combination in both experiments. The inputs, efficiency values, error terms, 

outputs and the models were generated by C++ code compiled with Borland C++ 

Builder Version 6.0. The models were solved on GAMS IDE 2.0 with Cplex 7.5 

solver. The experiments are done on an Intel Celeron 1.700 GHz CPU and 256 MB 

Ram PC.  

 

Table 4.1. Factors and Factor Levels for Experiment I 

 

Factor  Levels 
DEA MpI EI 

Model 
DEA-WRC MpI-WRC EI-WRC 

Input Set Independent Positive Correlated Negative Correlated 

Input Standard Deviation Low High  

Weight Set Independent Non-increasing Special 

Efficiency Standard Deviation Low High 

Error Standard Deviation Deterministic  Probabilistic 

 

Time Lag Short time lag Normal time lag Long time lag 

 

Table 4.2. Factors and Factor Levels for Experiment II 

 

Factor  Levels 
DEA MpI EI 

Model 
DEA-WRC MpI-WRC EI-WRC 

Input Set Independent Positive Correlated Negative Correlated 

Input Standard Deviation Low  High 

Efficiency Standard Deviation Low  High 

Error Standard Deviation Deterministic Probabilistic 

 

 

 Before analyzing the results of above experiments, we consider the effects of 

assigning efficiency values randomly, without using any input-output data and 

models. By doing it, we aim to create a base level for both performance indicators. 
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We made 20 replications for both levels of “Efficiency Standard Deviation” factor 

since only this factor affects the “true” efficiency values of DMUs. Random 

efficiency values are generated by a uniform distribution between 0 and 100.  

Afterwards, as it is done in the “true” efficiency value calculations, all random 

efficiency values are shifted in order to set the maximum random efficiency value of 

each period to 100.  

 

 

4.3 Results 

 

In this section, we represent and discuss the results of experiments and analyze the 

effects of factors on the performance.  

  

 If we have input and output values of DMUs for a time period, we have to 

choose the model in order to estimate the efficiency values. Based on this, we group 

7 factors in two groups, controllable and uncontrollable factors. The only 

controllable factor is “model” factor. Remaining factors are all uncontrollable 

factors. We analyze the main effects of controllable and uncontrollable factors on 

performance indicators for both experiments.  Then, we analyze the two way 

interactions between controllable factor “model” and uncontrollable factors.  If there 

is a significant interaction and the best model changes with the different levels of 

uncontrollable factor, we report the best model for each level of uncontrollable 

factor. We run two general linear models (GLM) in order to see whether the mean 

values of performance indicators differ at different levels. The null hypothesis, H0 in 

GLM is: 

 Ho: different levels of factor i have the same mean 

If the p value of factor i is less than 0.05, we reject H0 and argue that mean value 

changes with the different levels of factor i. Otherwise we fail to reject H0. 

 For Experiment I, we analyze 25920 runs. The results of GLMs for main 

effects are given in Figure 4.1.  All factors have significant effects on RMSE and ME 

means since all factors have p values those are practically zero. 
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Analysis of Variance for RMSE, using Adjusted SS for Tests 
 

Source     DF     Seq SS     Adj SS     Adj MS       F      P 

MODEL       5      99808      99808      19962 1408.20  0.000 

inputSet    2      67776      67776      33888 2390.66  0.000 

inputStd    1      67442      67442      67442 4757.72  0.000 

wSet        2      29923      29923      14962 1055.48  0.000 

effStd      1      15134      15134      15134 1067.65  0.000 

errStd      1     149629     149629     149629 1.1E+04  0.000 

TimeLag     2       5071       5071       2535  178.86  0.000 

Error   25905     367208     367208         14 

Total   25919     801991   

 

Analysis of Variance for ME, using Adjusted SS for Tests 
 

Source     DF     Seq SS     Adj SS     Adj MS       F      P 

MODEL       5     515506     515506     103101 1064.13  0.000 

inputSet    2     308567     308567     154284 1592.39  0.000 

inputStd    1     390702     390702     390702 4032.52  0.000 

wSet        2     201347     201347     100674 1039.07  0.000 

effStd      1      47893      47893      47893  494.31  0.000 

errStd      1    1569131    1569131    1569131 1.6E+04  0.000 

TimeLag     2      94075      94075      47037  485.48  0.000 

Error   25905    2509882    2509882         97 

Total   25919    5637104   

 

 

Figure 4.1. General Linear Model: RMSE, ME versus all factors  (Experiment I) 

 

 We use a coding system for the factor levels. The six models are coded with 

their names. We represent the other factors, factor levels and corresponding codes in 

Table 4.3.  
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Table 4.3. Factor Level Codes 

 

Factor Factor Level Code 

Independent L-1 

Positive Correlated L-2 Input Set 

Negative Correlated L-3 

Low L-20 
Input Standard Deviation 

High L-40 

Independent L-1 

Non-increasing L-2 Weight Set 

Special L-3 

Low L-10 
Efficiency Standard Deviation 

High L-20 

Deterministic L-0 
Error Standard Deviation 

Probabilistic L-20 

Short time lag L-1 

Normal time lag L-2 Time Lag 

Long time lag L-3 

 

 The overall mean values of factor levels are plotted for RMSE and ME in 

Figures 4.2 and 4.3, respectively. In these and later figures, dashed lines show the 

overall means of corresponding performance indicators.  Both graphs have similar 

shapes for all factors. MpI-WRC model performs best for both performance 

indicators. All models perform better if the input levels are positively correlated with 

the previous year’s input level, input levels do not deviate so much, input weights of 

previous periods are not increasing, DMUs have similar efficiency values, there is no 

error term and the time lag is not less than the level used in models. 

 

 In Experiment II, there are 2880 runs. The results of GLMs for main effects 

are given in Figure 4.4.  All factors have significant effects on RMSE and ME means 

since all factors have practically zero p values. 
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Figure 4.2. Main Effects Plot - Data Means for RMSE (Experiment I) 
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Figure 4.3. Main Effects Plot - Data Means for ME (Experiment I) 
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Analysis of Variance for RMSE, using Adjusted SS for Tests 
 

Source     DF     Seq SS     Adj SS     Adj MS       F      P 

MODEL       5     5258.2     5258.2     1051.6  124.17  0.000 

inputSet    2     3774.3     3774.3     1887.1  222.83  0.000 

inputStd    1     4456.5     4456.5     4456.5  526.20  0.000 

effStd      1     2818.3     2818.3     2818.3  332.77  0.000 

errStd      1    21453.8    21453.8    21453.8 2533.19  0.000 

Error    2869    24297.8    24297.8        8.5 

Total    2879    62058.8   

 

Analysis of Variance for ME, using Adjusted SS for Tests 
 

Source     DF     Seq SS     Adj SS     Adj MS       F      P 

MODEL       5      36445      36445       7289   86.49  0.000 

inputSet    2      39037      39037      19518  231.61  0.000 

inputStd    1      48476      48476      48476  575.23  0.000 

effStd      1       9429       9429       9429  111.89  0.000 

errStd      1     229935     229935     229935 2728.45  0.000 

Error    2869     241779     241779         84 

Total    2879     605101 

 

 

Figure 4.4. General Linear Model: RMSE, ME versus all factors  (Experiment II)

 

 The overall mean values of factor levels are plotted for RMSE and ME in 

Figures 4.5 and 4.6, respectively. Both graphs have similar shapes for all factors 

except the model. MpI performs higher than overall average for RMSE, but performs 

lower than average for ME. MpI-WRC model performs best for RMSE and DEA for 

ME. On the average, models perform better if the input levels are positively 

correlated with the previous year’s input level, input levels do not deviate so much, 

DMUs have similar efficiency values and there is no error term. 
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Figure 4.5. Main Effects Plot – Data Means for RMSE (Experiment II) 
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Figure 4.6. Main Effects Plot - Data Means for ME (Experiment II) 

 

 

 For Experiment I, two ANOVA tables for the “Model” factor are represented 

in Figure 4.7. MpI-WRC is the best model for RMSE and ME.  We conduct Tukey, 
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Sidak and Bonferroni tests for the pair-wise comparisons of models. The differences 

between the means of models are significant for all pair-wise comparisons for RMSE 

and ME. The only exception is that there is no significant difference between the 

means of EI and MpI models for ME. MpI-WRC is the best model according to both 

performance indicators. Using any of the newly introduced models is better than 

using DEA if the existence of a time lag is for sure.  

 

 For Experiment II, two ANOVA tables for the “Model” factor are represented 

in Figure 4.8. MpI-WRC has the lowest RMSE value; however, the differences 

between the means of DEA, DEA-WRC and MpI-WRC are not significant. Tukey, 

Sidak and Bonferroni tests for the pair-wise comparisons of models offer three 

groups, where DEA, DEA-WRC and MpI-WRC are in the first group, EI and MpI 

are in the second group and EI-WRC is in the last group. For ME, there are only two 

groups of models. DEA, DEA-WRC, MpI and MpI-WRC models are in the first 

group. MpI-WRC is the best model in RMSE and DEA in ME. However, there is no 

significant difference between these two models when there is no time lag.  

 

 The residual graphs and normal probability plots are generated with the 

ANOVA tables for all main factors. Normal distribution of residuals and equal 

variance of residuals for all fitted values assumptions are checked. These graphs and 

plots do not indicate serious violations of the assumptions. . For instance, the residual 

graphics of model versus ME for Experiment I and model versus RMSE for 

Experiment II are given in Appendix 1.  

 

 All two-way interactions between model and other factors are analyzed. All 

interactions are significant in both experiments. For all factors, the ranking of models 

change with different levels of a factor. However, only for some factors, the best 

model for different levels of a factor changes. The related ANOVA tables are given 

in Appendix 2. Again, no serious violations of normality and equal variance 

assumptions are detected in two-way interactions. Two residual graphics for two-way 

interactions are given in Appendix 3. 
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One-way ANOVA: RMSE versus MODEL 
 
Analysis of Variance for RMSE     

Source     DF        SS        MS        F        P 

MODEL       5   99807.6   19961.5   736.68    0.000 

Error   25914  702183.2      27.1 

Total   25919  801990.8 

                                   Individual 95% CIs For Mean 

                                   Based on Pooled StDev 

Level       N      Mean     StDev  -+---------+---------+---------+----- 

DEA      4320    13.754     5.359                     (*)  

DEA-WRC  4320    16.021     8.186                                (*)  

EI       4320    10.981     3.539       (*)  

EI-WRC   4320    11.756     5.252           (*)  

MpI      4320    12.356     3.741              (*)  

MpI-WRC  4320    10.000     3.570  (*)  

                                   -+---------+---------+---------+----- 

Pooled StDev =    5.205          10.0      12.0      14.0      16.0 

 

One-way ANOVA: ME versus MODEL 
 
Analysis of Variance for ME       

Source     DF        SS        MS        F        P 

MODEL       5    515506    103101   521.67    0.000 

Error   25914   5121598       198 

Total   25919   5637104 

                                   Individual 95% CIs For Mean 

                                   Based on Pooled StDev 

Level       N      Mean     StDev  -------+---------+---------+--------- 

DEA      4320     39.47     14.29                           (*)  

DEA-WRC  4320     43.15     18.96                                    (*)  

EI       4320     33.40     11.80           (*-)  

EI-WRC   4320     34.57     14.79              (*)  

MpI      4320     32.65     10.43          (*)  

MpI-WRC  4320     29.87     12.47   (*)  

                                   -------+---------+---------+--------- 

Pooled StDev =    14.06                32.0      36.0      40.0 

 

 

 

Figure 4.7. One-way ANOVAs: RMSE, ME versus Model (Experiment I) 
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One-way ANOVA: RMSE versus MODEL 
 
Analysis of Variance for RMSE     

Source     DF        SS        MS        F        P 

MODEL       5    5258.2    1051.6    53.21    0.000 

Error    2874   56800.6      19.8 

Total    2879   62058.8 

                                   Individual 95% CIs For Mean 

                                   Based on Pooled StDev 

Level       N      Mean     StDev  ------+---------+---------+---------+ 

DEA       480    10.292     3.147    (--*-)  

DEA-WRC   480    10.607     5.220      (--*-)  

EI        480    12.617     4.242                   (--*--)  

EI-WRC    480    13.809     5.965                           (--*--)  

MpI       480    12.022     3.506               (--*--)  

MpI-WRC   480    10.128     3.946   (--*-)  

                                   ------+---------+---------+---------+ 

Pooled StDev =    4.446               10.5      12.0      13.5      15.0 

 

 
One-way ANOVA: ME versus MODEL 
 
Analysis of Variance for ME       

Source     DF        SS        MS        F        P 

MODEL       5     36445      7289    36.84    0.000 

Error    2874    568656       198 

Total    2879    605101 

                                   Individual 95% CIs For Mean 

                                   Based on Pooled StDev 

Level       N      Mean     StDev  ----+---------+---------+---------+-- 

DEA       480     31.54     10.64   (--*---)  

DEA-WRC   480     32.47     15.87     (---*--)  

EI        480     38.84     14.55                       (---*---)  

EI-WRC    480     40.58     17.05                            (---*---)  

MpI       480     32.61     10.04      (--*---)  

MpI-WRC   480     32.49     14.80     (---*--)  

                                   ----+---------+---------+---------+-- 

Pooled StDev =    14.07             31.5      35.0      38.5      42.0 

 

 

Figure 4.8. One-way ANOVAs: RMSE, ME versus Model (Experiment II) 
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 In Experiment I, the best model for ME changes for different levels of 

“Efficiency Standard Deviation” factor. Table 4.4 represents the first and second 

ranked models for both levels of this factor. According to Tukey’s pair-wise 

comparison with a 5% family error rate, there is no significant difference between 

the means of EI-WRC and EI when the efficiency standard deviation is 20. 

Interaction plot is given in Figure 4.9. When the efficiency standard deviation is 

increased from 10 to 20, only EI-WRC and DEA-WRC models estimate the 

efficiency values better. Other models estimate better when the efficiency standard 

deviation is 10. 

 

Table 4.4. Efficiency Standard Deviation Analysis for Experiment I 

 

Efficiency Standard Deviation  

Low High 

Rank Model ME  Model ME 

1 MpI 26.20 MpI-WRC 31.05 

EI-WRC   33.85 
2 MpI-WRC 28.69 

EI   34.69 

 

 Best model for both RMSE and ME changes for different levels of “Error 

Standard Deviation” factor. First and second ranked models are represented in Table 

4.5. Interaction plots for RMSE and ME are given in Figures 4.10 and 4.11, 

respectively. It can be observed that, MpI is robust to changes in error standard 

deviation. It becomes the best model for higher error standard deviation. However, 

according to Tukey’s pair-wise comparison, the difference between the means of 

MpI and MpI-WRC is not significant for RMSE when the error standard deviation is 

high.  
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Figure 4.9. Interaction Plot of Model and Efficiency Standard Deviation – Data 

Means for ME (Experiment I) 

 

 

Table 4.5. Error Standard Deviation Analysis for Experiment I 

 

Error Standard Deviation  
 

Deterministic Probabilistic 

Rank Model RMSE Model RMSE 

MpI 12.82 
1 MpI-WRC 6.91 

MpI-WRC 13.09 

EI-WRC 8.06 
2 

EI 8.37 
EI 13.60 

 

Rank Model ME Model ME 

1 MpI-WRC 19.33 MpI 36.14 

EI-WRC 24.12 MpI-WRC 40.41 
2 

EI 25.25 EI 41.54 
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Figure 4.10. Interaction Plot of Model and Error Standard Deviation – Data Means 

for RMSE (Experiment I) 

 

L-20L-20L-0L-0MpI-W
RC

MpI-W
RC

MpI
MpI

E I-W
RC

EI-W
RC

EIEIDEA-W
RC

DEA-W
RC

DEA
DEA

50

35

20

50

35

20

MODEL

errStd
L-20

L-0

MpI-WRC

MpI

EI-WRC

EI

DEA-WRC

DEA

L-20

L-0

MpI-WRC

MpI

EI-WRC

EI

DEA-WRC

DEA

Interaction Plot - Data Means for ME

 
Figure 4.11. Interaction Plot of Model and Error Standard Deviation – Data Means 

for ME (Experiment I) 
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 For Experiment II, all two-way interactions between model and other factors 

are significant. Also the best model changes as the levels of factors change.  We first 

observe the “Input Set” factor. Ranking of models is not possible for this factor; we 

group the models for all levels and both indicators by the information generated by 

Tukey’s pair-wise comparisons. Groupings are represented in Figures 4.12a and 

4.12b. Interaction plots for RMSE and ME are given in Figures 4.13 and 4.14, 

respectively. All models perform better if the input levels for different periods are 

positively correlated. 
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Figure 4.12a. Model Groups for Different Levels of Input Set (Experiment II) 
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Figure 4.12b. Model Groups for Different Levels of Input Set (Experiment II) 
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Figure 4.13. Interaction Plot of Model and Input Set – Data Means for RMSE  

(Experiment II) 
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Figure 4.14. Interaction Plot of Model and Input Set– Data Means for ME  

(Experiment II) 
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 The best model and the rankings of other models change for the different 

levels of “Input Standard Deviation” factor. It is also impossible for this factor to 

make a complete ranking for both indicators and levels. Therefore, we group the 

models as represented in Figure 4.15. Note that, MpI-WRC is always in the best 

group. The interaction plots are given in Figures 4.16 and 4.17. 
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Figure 4.15. Model Groups for Different Levels of Input Standard Deviation 

(Experiment II) 
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Figure 4.16. Interaction Plot of Model and Input Standard Deviation – Data Means 

for RMSE (Experiment II) 
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Figure 4.17. Interaction Plot of Model and Input Standard Deviation – Data Means 

for ME (Experiment II) 
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 The next factor we analyzed is the “Efficiency Standard Deviation”.  We 

represented the groups of models in Figure 4.18. The interaction plots are given in 

Figures 4.19 and 4.20. Also for this factor, MpI-WRC is in the best group for both 

factor levels and both performance indicators. MpI-WRC and DEA-WRC are robust 

to the changes in the efficiency standard deviation; they make good estimates 

independent of this factor. 
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Figure 4.18. Model Groups for Different Levels of Efficiency Standard Deviation 

(Experiment II) 
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Figure 4.19. Interaction Plot of Model and Efficiency Standard Deviation – Data 

Means for RMSE (Experiment II) 
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Figure 4.20. Interaction Plot of Model and Efficiency Standard Deviation – Data 

Means for ME (Experiment II) 
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 The last factor is the “Error Standard Deviation”. The best models as well as 

the rankings of models change with the error standard deviation. The grouping of 

models and the interaction plots are given in Figures 4.21, 4.22 and 4.23, 

respectively. MpI is robust to the changes in error standard deviation whereas the 

other models’ performance measure values double. 
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Figure 4.21. Model Groups for Different Levels of Error Standard Deviation 

(Experiment II) 
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Figure 4.22. Interaction Plot of Model and Error Standard Deviation – Data Means 

for RMSE (Experiment II) 
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Figure 4.23. Interaction Plot of Model and Error Standard Deviation – Data Means 

for ME (Experiment II) 
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 We represent the results of the experiments. We analyze the overall effects of 

uncontrollable factors and the effects of uncontrollable factors levels on the 

performances of models. It is seen that, MpI-WRC is the best model if the existence 

of a time lag is known. However, if there is no time lag, no model can be identified 

as the best model. For different levels of factors, the best model changes. On the 

other hand, when an overall comparison is made, there is no significant difference 

between MpI-WRC and DEA models. 

 

 Finally, we analyze the experiment where we assign the efficiency values 

randomly. We intend to see how much the approaches improve over the case where 

the efficiency values are assigned arbitrarily.  On the average, assigning efficiency 

values randomly will result with a RMSE value of 42.20. RMSE value increases 

when the efficiency standard deviation decreases. A similar pattern is observed for 

ME. Results of random assignment are represented in Table 4.6. It is obvious that, 

using even the worst model is better than assigning the efficiency values randomly. 

 

Table 4.6. Performance of random assignment of efficiency values 

 

 Performance Indicator 

Efficiency Standard Deviation RMSE ME 

Low  44.54 88.42 

High  39.85 87.46 

Average 42.20 87.94 
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CHAPTER 5 

 

 

TÜBİTAK APPLICATION 

 

 

 
In this chapter, we first introduce the Scientific and Technical Research Council of 

Turkey (TÜBİTAK) and the research and development (R&D) institutes of it. 

Afterwards, we propose a method for the performance evaluation for the R&D 

institutes of TÜBİTAK. Finally, we conduct an assessment with the readily available 

data and report the results of it. 

 

5.1 About TÜBİTAK  

 

TÜBİTAK is founded in 1963 and responsible for the promotion, development, 

organization and coordination of research and development in the exact science 

fields. It functions under the Prime Ministry. Science Board, with 12 members and 

the President, is the main decision maker of TÜBİTAK.  President is also the 

chairman of the Science Board and responsible for the implementation of the 

decisions made in the Science Board.   

 

TÜBİTAK performs the following tasks as presented in its web site (2004):   

• “determining Turkey’s science and technology policies;  

• supporting, encouraging and coordinating scientific research;  
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• establishing and operating special institutes to conduct research and 

development activities geared to the targets of the five-year economic 

development plans and the priorities set by the Science Board;  

• providing scholarships and other kinds of support to researchers and 

organizing   contests to discover and train future scientists;  

• supporting R&D activities and innovations in industry, promoting university-

industry collaborations and establishing techno-parks to facilitate their 

realization; 

• implementing tasks undertaken through international scientific and technical 

cooperation agreements; 

• publishing scientific journals, as well as books and monthly popular science 

magazines that make science accessible to the public;  

• supporting scientists and researchers with awards and programs that incent 

scientific publication;” 

 

 TÜBİTAK has two types of institutes. In the first type of institutes, R&D 

activities are performed. The second type of institutes provides services for R&D 

activities. TÜBİTAK has 7 first type institutes and 7 second type institutes. The 

R&D institutes are:   

o Marmara Research Center (MAM), 

o Information Technologies and Electronics Research Institute (BİLTEN), 

o Defense Industry R&D Institute (SAGE), 

o National Research Institute of Electronics and Cryptology (UEKAE), 

o Feza Gürsey Institute (TBAE), 

o Research Institute of Gene Engineering and Biotechnology (GMBAE), 

o Çukurova Advanced Agriculture Technologies R&D Institute (ÇİTTAGE). 

 

R&D Support Intuitions are: 

o National Metrology Institute (UME) 

o Turkish National Academic Network and Information Center (ULAKBİM) 

o TÜBİTAK National Observatory (TUG) 

o Ankara Test and Analysis Laboratory (ATAL) 

o TUBITAK DNA/Cell Bank & Gene Research Laboratory  
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o Bursa Test and Analysis Laboratory (BUTAL) 

o Turkish Institute for Industrial Management (TÜSSİDE) 

  

Institutes send their budget requests to TÜBİTAK. Requested budgets are 

analyzed and approved by TÜBİTAK. Institutes have the authority to use allocated 

budgets in the line of their visions without violating the TÜBİTAK law. We treat 

these institutes as decision making units (DMUs). 

 

After mentioning the types of TÜBİTAK institutions, we briefly state the 

method offered for the performance evaluation method of these institutes. 

 

5.2 Performance Evaluation and Results 

 

In this section we describe the study in which real TÜBİTAK data is used and report 

the results. We perform a simple study in order to demonstrate how the MpI-WRC 

can be used for the performance evaluation of R&D institutes of TÜBİTAK if the 

data is readily available. In this study, we use the data in the TÜBİTAK’s Annual 

Activity Reports for the period of 1998-2003.  

 

We use two inputs and a single output data. The first input is the actual 

budget. This is the total amount of money spent during the reporting period. This 

amount is the summation of personnel costs, provisions, infrastructure expenses and 

costs of acquired services. 

 

The second input is the number of researchers employed. The researcher is 

one of the five types of employees in TÜBİTAK. The cost of researchers is reported 

in personnel costs and actual budget includes personnel costs. Although there seems 

to be a duplicate use of researcher information, we think using these two inputs 

provides better information since researchers perform most of the value-added tasks 

and are one of the main sources of scientific and/or economic outputs.  

We use the actual income of the institute during the reporting period as the 

single output. This amount does not include the money allocated to the institute by 
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TÜBİTAK. We collect the data for 5 R&D and 3 R&D support institutes of 

TÜBİTAK as well as the TÜBİTAK Headquarters itself.  

 

Actual budget and actual income values are converted to the 1994’s monetary 

terms by “other sectors” deflator. The number of researchers and deflated data for 

actual income and actual budget are given in Appendix 4. The actual names of 

institutes are not used since this part of the study is done not to evaluate the 

performances of institutes but to represent the use of the model. We should 

emphasize that the results are not expected to be meaningful since we only use a 

subset of the meaningful inputs and outputs; those for which data are readily 

available.  

 

We use the data of 1998-2003 and assume that the time lag is one year. We 

get the efficiency values for years 1999-2003. We first solve the MpI model and then 

use the efficiency values in MpI-WRC model. The efficiency values estimated by 

MpI-WRC are given in Table 5.1. It can be seen that, there is not any stability in the 

efficiency values of the DMUs. This may be due to lack of inputs and outputs 

spanning many of the activities done by these institutes.  We think that using more 

inputs and outputs combined under some generic criteria, not only will the efficiency 

values of DMUs get more stable but also increase to some extend from the extremely 

low values of 0.1s. 

 

Although we represent an evaluation with a few indicators, TÜBİTAK may 

use many of them. These performance indicators can be the easily measurable ones 

such as number of patents or annual project income. Then, these indicators should be 

combined in higher level indicators such as quality of research or impact of research. 

The decision makers of TÜBİTAK should decide the measurable indicators, higher 

level indicators and their relations. 
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Table 5.1. Efficiency values estimated by MpI-WRC 

 

 Years 

DMU 1999 2000 2001 2002 2003 

1 39.5 100.0 100.0 100.0 70.4 

2 46.7 13.0 34.2 80.3 93.6 

3 10.9 11.2 37.0 100.0 87.1 

4 47.5 82.1 59.2 27.2 25.4 

5 9.7 8.2 19.7 14.1 0.1 

6 2.7 13.4 0.6 2.2 3.7 

7 0.3 0.9 1.2 8.6 8.9 

8 1.1 87.6 59.2 100.0 100.0 

9 100.0 100.0 13.6 30.9 0.1 

 

We want to call attention to the interpretation of results for the second time. 

100% efficient DMUs are the high performers and utilizing their inputs in the best 

way to produce outputs. The inefficient DMUs have the possibility of increasing 

their outputs with the same level of inputs or producing same level of outputs by 

using fewer inputs.  

 

In Table 5.1, the efficiency values for R&D institutes are represented. As it 

can be observed, some of the efficiency values are very low and also they are not 

stable over periods. The actual income is a meaningful outcome, but is not the only 

outcome of these institutes. Scientific outputs such as number of patents and number 

of articles should also be considered. Also we may add the number of projects 

completed in a period and the total budget of those projects.  A similar comment is 

possible in input side. We may add some information about the scientific 

infrastructure such as the number of laboratories and the total cost of scientific 

equipment.  There could be other relevant inputs and outputs.  When such relevant 

inputs and/or outputs are omitted DEA-related approaches would give results that are 

not very meaningful as is the case in Table 5.1.   
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CHAPTER 6 

 

 

CONCLUSIONS AND FURTHER RESEARCH AREAS 

 

 

 
In this study, we focus on the performance evaluation of decision making units such 

as the R&D institutes and the universities. We represent the use of the Data 

Envelopment Analysis and introduce new models and ideas as extensions to it.   We 

compare these models and ideas by designed experiments. Finally, we use the best 

model for a sample performance evaluation of the R&D institutes of TÜBİTAK with 

the readily available data. 

 

 Basic DEA models assume that DMUs consume the inputs and produce the 

outputs in the same reporting period. However, the research activities produce the 

outputs with a time lag. Knowing this fact, we offered two new models, namely 

Multi-period Input (MpI) model and Effective Input (EI) model.  

 

 We also introduce the weight range constraints (WRC) and a new objective 

function applicable to DEA, MpI and EI models. WRC are a new type of weight 

restriction constraints. WRC force the model not to assign very diverse input or 

output weights for different DMUs. Optimal weights lie in a reasonable range. The 

center of the range for an input or output is the average of optimal weights of that 

input or output for all DMUs.  
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 Using WRC with “maximize total efficiency” objective favors similar DMUs 

and DMUs having extremely high or low levels of inputs or outputs are punished by 

getting low efficiency values. We offer to use a new objective function for the 

models with WRC. This objective function minimizes the maximum deviation of 

efficiency values from the efficiency values assigned by the model without WRC.  

 

 In DEA-WRC, MpI-WRC and EI-WRC models, we use both WRC and new 

objective function. These models not only find optimal weights within reasonable 

ranges but also minimize the maximum deviation of efficiency values.  

 

 We design two experiments. The first one represents a time lag. We do not 

use any time lag in the Experiment II. We compare six models with the two 

experiments. If the existence of time lag is for sure, MpI-WRC model is the best 

model. However, if there is no time lag, MpI-WRC, DEA and DEA-WRC models 

are all in the best models set and they have no significant difference. In general, MpI-

WRC model dominates the DEA model. 

 

 Our study can be extended to a number of research areas, some of which are 

mentioned below: 

• In addition to WRC, decision maker’s preference information can be 

incorporated in models. 

• The optimal solution of a DEA model includes the information of possible 

increases in outputs and decreases in inputs in order to make a DMU efficient. A 

further research area may be to make a similar analysis using the WRC idea and 

to further study the implications of WRC.    

• In TÜBİTAK application, we use two types of institutes (R&D and R&D 

support) as well as the TÜBİTAK Headquarters as DMUs in the same model. 

Further research may be done to find a way of taking differences in the types of 

DMUs into account. 
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APPENDICES 

 

 

 

A. Residual Graphics (Main Effect) 

 
 

Figure A.1 : Residual versus Fitted Values for ME (Experiment I) 

61



 

 
 

 
 

Figure A.2 : Residual versus Fitted Values for RMSE (Experiment II) 
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B. ANOVA Tables 

 
Two-way ANOVA: RMSE versus MODEL, inputSet 
 
Analysis of Variance for RMSE     
Source        DF        SS        MS        F        P 
MODEL          5   99807.6   19961.5   880.45    0.000 
inputSet       2   67776.2   33888.1  1494.71    0.000 
Interaction   10   47157.7    4715.8   208.00    0.000 
Error      25902  587249.3      22.7 
Total      25919  801990.8 
 
Two-way ANOVA: ME versus MODEL, inputSet 
 
Analysis of Variance for ME       
Source        DF        SS        MS        F        P 
MODEL          5    515506    103101   586.97    0.000 
inputSet       2    308567    154284   878.36    0.000 
Interaction   10    263349     26335   149.93    0.000 
Error      25902   4549681       176 
Total      25919   5637104 
 
Two-way ANOVA: RMSE versus MODEL, inputStd 
 
Analysis of Variance for RMSE     
Source        DF        SS        MS        F        P 
MODEL          5   99807.6   19961.5   860.61    0.000 
inputStd       1   67441.6   67441.6  2907.65    0.000 
Interaction    5   33817.1    6763.4   291.59    0.000 
Error      25908  600924.5      23.2 
Total      25919  801990.8 
 
Two-way ANOVA: ME versus MODEL, inputStd 
 
Analysis of Variance for ME       
Source        DF        SS        MS        F        P 
MODEL          5    515506    103101   585.48    0.000 
inputStd       1    390702    390702  2218.67    0.000 
Interaction    5    168564     33713   191.44    0.000 
Error      25908   4562331       176 
Total      25919   5637104 
 

 
Figure B.1. ANOVA Tables of Experiment I 
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Two-way ANOVA: RMSE versus MODEL, wSet 
 
 
Analysis of Variance for RMSE     
Source        DF        SS        MS        F        P 
MODEL          5   99807.6   19961.5   810.43    0.000 
wSet           2   29923.2   14961.6   607.43    0.000 
Interaction   10   34274.3    3427.4   139.15    0.000 
Error      25902  637985.7      24.6 
Total      25919  801990.8 
 
Two-way ANOVA: ME versus MODEL, wSet 
 
 
Analysis of Variance for ME       
Source        DF        SS        MS        F        P 
MODEL          5    515506    103101   558.02    0.000 
wSet           2    201347    100674   544.88    0.000 
Interaction   10    134554     13455    72.83    0.000 
Error      25902   4785697       185 
Total      25919   5637104 
 
Two-way ANOVA: RMSE versus MODEL, effStd 
 
Analysis of Variance for RMSE     
Source        DF        SS        MS        F        P 
MODEL          5   99807.6   19961.5   792.91    0.000 
effStd         1   15134.1   15134.1   601.16    0.000 
Interaction    5   34817.9    6963.6   276.61    0.000 
Error      25908  652231.3      25.2 
Total      25919  801990.8 
 
Two-way ANOVA: ME versus MODEL, effStd 
 
Analysis of Variance for ME       
Source        DF        SS        MS        F        P 
MODEL          5    515506    103101   542.92    0.000 
effStd         1     47893     47893   252.20    0.000 
Interaction    5    153728     30746   161.90    0.000 
Error      25908   4919977       190 
Total      25919   5637104 
 

 
Figure B.1. ANOVA Tables of Experiment I (cont) 
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Two-way ANOVA: RMSE versus MODEL, errStd 
 
Analysis of Variance for RMSE     
Source        DF        SS        MS        F        P 
MODEL          5   99807.6   19961.5   983.92    0.000 
errStd         1  149629.3  149629.3  7375.32    0.000 
Interaction    5   26936.6    5387.3   265.54    0.000 
Error      25908  525617.4      20.3 
Total      25919  801990.8 
 
Two-way ANOVA: ME versus MODEL, errStd 
 
Analysis of Variance for ME       
Source        DF        SS        MS        F        P 
MODEL          5    515506    103101   785.99    0.000 
errStd         1   1569131   1569131  1.2E+04    0.000 
Interaction    5    154034     30807   234.86    0.000 
Error      25908   3398433       131 
Total      25919   5637104 
 
Two-way ANOVA: RMSE versus MODEL, TimeLag 
 
Analysis of Variance for RMSE     
Source        DF        SS        MS        F        P 
MODEL          5   99807.6   19961.5   745.92    0.000 
TimeLag        2    5070.9    2535.4    94.74    0.000 
Interaction   10    3948.6     394.9    14.75    0.000 
Error      25902  693163.8      26.8 
Total      25919  801990.8 
 
Two-way ANOVA: ME versus MODEL, TimeLag 
 
Analysis of Variance for ME       
Source        DF        SS        MS        F        P 
MODEL          5    515506    103101   535.11    0.000 
TimeLag        2     94075     47037   244.13    0.000 
Interaction   10     36943      3694    19.17    0.000 
Error      25902   4990580       193 
Total      25919   5637104 
 

 
Figure B.1. ANOVA Tables of Experiment I (cont) 
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Two-way ANOVA: RMSE versus MODEL, inputSet 
 
Analysis of Variance for RMSE     
Source        DF        SS        MS        F        P 
MODEL          5    5258.2    1051.6    59.43    0.000 
inputSet       2    3774.3    1887.1   106.64    0.000 
Interaction   10    2379.3     237.9    13.45    0.000 
Error       2862   50647.0      17.7 
Total       2879   62058.8 
 

Two-way ANOVA: ME versus MODEL, inputSet 
 
Analysis of Variance for ME       
Source        DF        SS        MS        F        P 
MODEL          5     36445      7289    40.83    0.000 
inputSet       2     39037     19518   109.33    0.000 
Interaction   10     18698      1870    10.47    0.000 
Error       2862    510921       179 
Total       2879    605101 

 
Two-way ANOVA: RMSE versus MODEL, inputStd 
 
Analysis of Variance for RMSE     
Source        DF        SS        MS        F        P 
MODEL          5    5258.2    1051.6    59.85    0.000 
inputStd       1    4456.5    4456.5   253.63    0.000 
Interaction    5    1951.4     390.3    22.21    0.000 
Error       2868   50392.7      17.6 
Total       2879   62058.8 
 
Two-way ANOVA: ME versus MODEL, inputStd 
 
Analysis of Variance for ME       
Source        DF        SS        MS        F        P 
MODEL          5     36445      7289    41.46    0.000 
inputStd       1     48476     48476   275.76    0.000 
Interaction    5     16003      3201    18.21    0.000 
Error       2868    504177       176 
Total       2879    605101 
 

 
Figure B.2. ANOVA Tables of Experiment II 
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Two-way ANOVA: RMSE versus MODEL, effStd 
 
Analysis of Variance for RMSE     
Source        DF        SS        MS        F        P 
MODEL          5    5258.2    1051.6    59.34    0.000 
effStd         1    2818.3    2818.3   159.03    0.000 
Interaction    5    3156.6     631.3    35.62    0.000 
Error       2868   50825.8      17.7 
Total       2879   62058.8 
 
Two-way ANOVA: ME versus MODEL, effStd 
 
Analysis of Variance for ME       
Source        DF        SS        MS        F        P 
MODEL          5     36445      7289    38.38    0.000 
effStd         1      9429      9429    49.65    0.000 
Interaction    5     14545      2909    15.32    0.000 
Error       2868    544682       190 
Total       2879    605101 
 
Two-way ANOVA: RMSE versus MODEL, errStd 
 
Analysis of Variance for RMSE     
Source        DF        SS        MS        F        P 
MODEL          5    5258.2    1051.6    94.65    0.000 
errStd         1   21453.8   21453.8  1930.79    0.000 
Interaction    5    3479.3     695.9    62.63    0.000 
Error       2868   31867.5      11.1 
Total       2879   62058.8 
 
Two-way ANOVA: ME versus MODEL, errStd 
 
 
Analysis of Variance for ME       
Source        DF        SS        MS        F        P 
MODEL          5     36445      7289    65.66    0.000 
errStd         1    229935    229935  2071.30    0.000 
Interaction    5     20345      4069    36.65    0.000 
Error       2868    318376       111 
Total       2879    605101 
 

 
Figure B.2. ANOVA Tables of Experiment II (cont) 
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C. Residual Graphics (Two-way Interactions) 

 
 

Figure C.1 : Residual versus Fitted Values (ModelinputStd) for RMSE  
(Experiment I) 

 

 
 

Figure C.2 : Residual versus Fitted Values (ModelInputSet) for ME 
(Experiment II) 
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D. TÜBİTAK Data 

Table D.1.Actual Budget Values 

Actual Budget (Deflated) 
 Years 

DMU 1998 1999 2000 2001 2002 2003 
1 6762 6079 9713 14533 29815 44597 
2 3354 3384 5899 7325 13961 18692 
3 4460 8152 23390 15196 16419 15447 
4 2441 4706 11341 14134 19466 29382 
5 22307 12187 3401 136607 48442 41376 
6 13141 13891 35414 17265 29008 80676 
7 1601 2459 2520 4295 5803 9432 
8 5890 7669 64809 101313 159514 213214 
9 3534 9801 3143 13864 17465 30764 

 

Table D.2.Number of Researchers 

Number of Researchers 
 Years 

DMU 1998 1999 2000 2001 2002 2003 
1 4 5 6 6 8 8 
2 78 92 105 104 102 90 
3 232 263 263 237 274 234 
4 73 83 85 89 105 108 
5 29 26 27 26 27 26 
6 1 1 1 1 2 2 
7 94 114 124 125 130 131 
8 11 10 10 9 9 10 
9 72 74 84 90 103 101 

 

Table D.3.Actual Income Values 

Actual Income (Deflated) 
 Years 
DMU 1998 1999 2000 2001 2002 2003 

1 5093 10100 12096 13059 9191 16170 
2 3491 6198 5802 9800 5785 4687 
3 11828 13471 7575 15969 20267 25449 
4 3811 3841 2813 3235 4559 4760 
5 97 376 2148 77 275 419 
6 112 215 147 425 423 144 
7 12888 22406 44651 62533 44693 34242 
8 2133 3865 732 956 869 1262 
9 2616 1710 10825 4756 6200 3964 
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