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ABSTRACT 
 
 
 

SYSTEM PARAMETER ADAPTATION BASED ON IMAGE 
 

METRICS FOR AUTOMATIC TARGET DETECTION 
 
 
 

KÜREKLİ, Kenan 

M.S., Department of Electrical and Electronics Engineering 

Supervisor: Assoc. Prof. Dr. Gözde Bozdağı AKAR 

April 2004, 88 pages 

 

Automatic object detection is a challenging field which has been evolving over 

decades. The application areas span many domains such as robotics inspection, 

medical imaging, military targeting, and reconnaissance. Some of the most 

concentrated efforts in automatic object detection have been in the military domain, 

where most of the problems deal with automatic target detection and scene analysis 

in the outdoors using a variety of sensors.  

One of the critical problems in Automatic Target Detection (ATD) systems is multi-

scenario adaptation. Most of the ATD systems developed until today perform 

unpredictably i.e. perform well in certain scenarios, and poorly in others. Unless 

ATD systems can be made adaptable, their utility in battlefield missions remains 

questionable. 
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This thesis describes a methodology that adapts parameterized ATD systems with 

image metrics as the scenario changes so that ATD system can maintain better 

performance. The methodology uses experimentally obtained performance models, 

which are functions of image metrics and system parameters, to optimize 

performance measures of the ATD system. Optimization is achieved by adapting 

system parameters with incoming image metrics based on performance models as 

the system works in field. A simple ATD system is also proposed in this work to 

describe and test the methodology. 

Keywords: Automatic Target Detection, Image Metrics, Performance Models, 

Experimental Design 
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ÖZ 
 
 
 

GÖRÜNTÜ ÖLÇÜTLERİ KULLANIMI İLE 
 

 OTOMATİK HEDEF TESPİT 
 

SİSTEMLERİ İÇİN PARAMETRE ADAPTASYONU 
 
 
 

KÜREKLİ, Kenan 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi : Doç. Dr. Gözde Bozdağı AKAR 

Nisan 2004, 88 sayfa 

 

Otomatik nesne tespiti son yıllarda üzerinde çalışmaların yoğunlaştığı önemli bir 

araştırma alanıdır. Uygulamaları kapsamında tıbbi görüntüleme, robot görüşü, 

keşif ve askeri hedef tespiti bulunan otomatik nesne tespit çalışmalarında askeri 

alana yoğun önem verilmiştir. Bu alanda, çeşitli algılayıcılardan gelen işaretler 

üzerinden otomatik hedef tespiti ve sahne analizi yapılmaya çalışılmıştır. 

Otomatik hedef tespit çalışmalarında önemli problemlerden biri her senaryoda 

çalışabilecek sistemler geliştirmek olmuştur. Bugüne kadar geliştirilen 

sistemlerin büyük kısmı bu konuda yetersiz kalmaktadır ve bu konu çözülene 

kadar otomatik hedef tespit sistemlerinin savaş alanında kullanımı soru işareti 

olarak kalacaktır. 
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Bu tez çalışmasında parametreli otomatik hedef tespit sistemlerini, değişen 

çalışma senaryolarında, görüntü ölçütlerine göre performansı arttıracak şekilde 

uyumlayan bir metodoloji anlatılmaktadır. Metodoloji, deneysel olarak elde 

edilmiş, görüntü ölçütleri ve sistem parametrelerinin bir fonksiyonu olan 

performans modellerini sistem performansını optimize etmek için 

kullanmaktadır. Optimizasyon sistem çalışması sırasında, gelen görüntülerden 

elde edilen ölçütlerin kullanılması ve buna bağlı olarak sistem parametrelerinin 

değiştirilmesiyle sağlanmaktadır. Önerilen metodolojinin tanımlanması ve test 

edilmesi için örnek bir otomatik hedef tespit sistemi geliştirilmiştir. 

Anahtar Kelimeler : Otomatik Hedef Tespiti, Görüntü Ölçütleri, Performans 

Modeli, Deneysel Tasarım 
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CHAPTER 1 
 
 
 

INTRODUCTION 
 
 

 

1.1 Problem Definition 

Automatic object detection is a challenging field that has been evolving over 

decades. The application areas span many domains such as robotics inspection, 

medical imaging, military targeting, and reconnaissance. Some of the most 

concentrated efforts in automatic object detection have been in the military domain, 

where most of the problems deal with detection of targets and scene analysis in the 

outdoors using a variety of sensors [1]. 

Multi-scenario adaptability is by far the most serious and challenging problem in 

Automatic Target Detection (ATD) technology. ATD adaptation is not just a 

desirable feature, but also rather a very critical functional requirement. The problem 

of multi-scenario adaptation was early realized in the ATD technology. It was well 

understood that algorithms would perform well with whatever assumptions they 

were based upon, and that they would detect and recognize targets similar to the 

ones they were trained on. However, it was assumed that the algorithms were 

flexible enough, to span a wide range of scenarios. This assumption proved to be 

wrong when ATD systems were tested in field. Real world scenarios, and even 

terrain boards, showed that there was too much variation in the content, context and 

quality of the images. However the ATDs were set up to deal with only a small 

subset of them [2]. 
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One promising aspect of the adaptation problem is that most ATD systems are 

parameterized. When tests are performed, tuning a number of algorithm parameters 

improves the ATD performance. This parameter adaptation requires a human expert 

because it requires intimate knowledge of the ATD algorithms and its parameters 

(there are typically many critical parameters in a given ATD). As a result, in the 

literature the ATD adaptation challenge was slightly scoped to automatic adaptation 

of ATD system parameters [3]. 

1.2 Scope of the Thesis 

The concern of this thesis is to give details of a methodology for adapting the ATD 

system parameters, based on image metrics and using formal performance 

prediction models. The overall approach is highlighted in Figure 1.1. 

Figure 1.1 Overall approach. 
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With this approach, while the ATD system is working in the field, the system 

measures image metrics from incoming images. Then experimentally obtained 

(offline) performance models that are functions of the image metrics and the ATD 

system parameters are used to find the optimal ATD parameters for better system 

performance. 

In other words, given the experimentally obtained ATD performance measure (PM) 

model, 

PM = F (M1, M2, ... MN; P1, P2, ... PK)                               (1.1) 

where MI is an image metric and PJ is a system parameter, and assuming that the 

image metrics (MI) of the current frame to be processed are known, this approach 

attempts to find the optimal ATD parameter (PJ) values based on the model for 

better system performance [3]. 

The success of this approach is highly dependent on the prediction capabilities of 

the performance models. An ATD performance prediction model, for a performance 

measure PM (such as Probability of Detection), is a function of one or more image 

metrics M (such as Global Uniformity), and one or more ATD system parameters 

(such as Seed Grow Threshold). With this approach the number and properties of 

performance measures, image metrics and system parameters are all specifically 

determined by considering the ATD system configuration. 

Once the performance measures, image metrics and parameters are determined, 

performance models are generated as a result of a number of experiments. 

Experiments are done to obtain performance measure values for different 

combinations of the image metric and system parameter values. Performance 

measure values together with image metric and parameter values are used to fit 

performance models.  
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Because the performance models are expressed in mathematical equations, given 

image metric values, finding the optimum parameters in order to achieve the 

optimum performance becomes a mathematical optimization problem. 

To describe and test the approach given above, a simple ATD system with static 

parameters is also proposed within this thesis. 

1.3 Outline of the Thesis 

Chapter 2 gives an overview of ATD systems together with the proposed system. 

Image metrics that are used for implementing the approach on proposed ATD 

system are given in Chapter 3. Experimental design of performance models and 

optimization approach together with test results are explained in Chapter 4 and 

Chapter 5. Finally, summary, conclusion and future work are given in Chapter 6. 
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CHAPTER 2  
 
 
 

ATD ALGORITHMS 
 
 

2.1. Introduction 

One of the key components of present and future defense weapon systems to be 

used on autonomous defense vehicle missions is the ATD system. The ATD system 

effectively removes man from the process of target acquisition. This is desirable 

since the system with a man in the loop is generally slow, unreliable, vulnerable, 

and may limit the performance of the overall system or mission in real situations 

[4]. 

In the military, ATD is used in a number of applications but the most sophisticated 

example is the fire-and-forget, lock-on-after launch missile. Here, an ATD would 

recognize the candidate targets in the scene after it has been launched, select the 

target of choice, track the target during the flight, make final aim point selection, 

and conduct guidance to the target. In autonomous applications, an image may 

never be displayed, as in the case of a fire-and-forget missile. Acceptable 

autonomous operation is still an unattainable goal of ATD in the military. The less 

ambitious current objective is aided target detection, i.e., the subset of ATD in 

which a human interacts with the system and makes critical decisions. Research 

work in this area has been going for the last 35 years and will continue to go based 

on the shortcomings of the current implementations [1]. 

The main purpose of this chapter is to give basic information about ATD systems 

and to propose a simple parameterized ATD system that is going to be used for 
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describing and testing the adaptation method, which is the objective of this thesis. 

Basic ATD implementation and historical development of ATD systems are 

explained in section 2.2 and section 2.3. Proposed ATD system that is used 

throughout this work is described in section 2.4 of this chapter. 

2.2 Basic ATD Implementation 

It is convenient, although not always accurate, to think of an ATD implementation 

as shown in Figure 2.1 [1].  

 

Figure 2.1 Typical processing steps for an ATD from the sensor to target 

discrimination. 

The scene is imaged by some sensor(s) and converted into a signal to be processed. 

Preprocessing step is designed to reduce clutter present in the image. Then the 

processor performs operations that permit detection of a region of interest and 

segmentation of that region. The processor may also receive information from other 
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sources, such as range from a laser rangefinder, position coordinates from GPS, and 

weather data. The other sources of data might provide contextual information that 

can be used to reject some possible objects of interest. Features are extracted from 

the segmented target to reduce the processing load for the decision-making step. 

Various levels of discrimination are then performed:  detection, recognition, and 

classification. The location and description of one or more targets of interest are 

annotated on the final image to the operator. 

2.3 Historical Development of ATD Systems 

Algorithms of the early 1980s were heuristic. Typically, region of interest detection 

was based on some sort of threshold, determined by the contrast of an object 

compared to the local background in an arbitrary box drawn around the object. For 

the segmentation, threshold techniques, boundary-based methods, region-based 

methods, and hybrid techniques, which combine boundary and region criteria were 

used [7]. Features were calculated on the segmented area to transformation the 

problem from the image space to a feature space. The target was then represented in 

feature space as a vector whose components were the values of the defined 

quantities that have been measured on the segmented object. The selection of 

features was highly dependent on the sensor used for imaging [8]. The location of 

the vector in feature space determined the identification of that object as a target or 

not based upon an identification of the region of feature space as “target space” 

through the use of algorithm training via a set of “typical” data. 

Classification was usually the highest level of discrimination and was based upon 

some sort of statistical classifier, e.g., Bayesian, k-nearest neighbor, nearest mean 

classifier. Performance of these early ATD systems was found to be marginal. 

Detection in low clutter did not exceed 70 percent, and recognition was little better 

than that obtained by random guessing. False-alarm rates in all but the most benign 

clutter were unacceptable [1]. 
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The performance shortcomings of the early systems can be attributed to choice of 

target features. The statistical distribution of these features was measured or 

assumed, and thresholds were chosen for statistical classifiers. Guesses based upon 

intuition were made by the algorithm designer as to what features needed to be 

calculated that would permit separation of targets from background and each other 

with high probability. No understanding or analysis of the scene content or the 

physics behind the image formation was used or available. ATD performance 

degraded significantly when new targets or different environmental conditions were 

encountered beyond the set used to train the algorithms. These first, threshold based 

statistical ATD algorithms were not robust [1]. 

In the late 1980s and into the 1990s, a new generation of algorithms was developed 

that did not necessarily follow the traditional sequential processing paradigm 

outlined in Figure 2.1. These algorithms used knowledge-based systems or 

template-matching approaches. The operation of this class of algorithms can be 

divided into two stages: a region-of-interest (ROI) generation stage and a target 

identification stage. The task of the ROI stage is to locate all target-sized objects 

above some minimum contrast in the image. Typically, the ROIs produced by this 

stage are then subjected to a template matcher in which the contents of the inner 

window are compared to stored templates of the target set, after adjustment for pose 

and scale. The best match, usually in a mean-squared-error sense, is identified as the 

object in the ROI. Each match between an ROI and a template results in a score that 

can be subjected to a thresholding procedure for false-alarm reduction.  

Performance of the advanced ATD systems has shown a significant increase. 

Detection has increased to the 80 percent level in low to medium clutter conditions. 

However, the false alarm rate is still high. The major improvement made in 

performance has been in classification and recognition.  

The newest approach for increasing performance of algorithms is through the use of 

independent information, such as that available from multisensors, as well as 

integration of spatial and temporal information. The use of a model-based approach 
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[19] integrated with more human-like, perceptual processing neural networks is 

now under evaluation as a possible approach for information integration [20]. 

2.4 Proposed ATD System 

In order to describe and test the methodology used in the thesis, a simple ATD 

system is given in this section. Details of the system are described for the blocks 

given in Figure 2.2 and the algorithms used in each block are chosen based on 

simplicity. 

Figure 2.2 Processing steps for proposed ATD system. 

2.4.1 Preprocessing 

Median filter with 3x3 window size is used as prefilter because of its edge 

preservation property [4]. Figure 2.3 and Figure 2.4 shows an example of median 

filtering on a sample frame. 
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Figure 2.3 Image before median filtering. 

 

Figure 2.4 Image after median filtering. 

2.4.2 Segmentation 

Used algorithm for segmentation stage of the ATD system is “seeded region 

growing” which is based on the conventional region-growing postulate of similarity 

of the pixels within regions [7]. 
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Seeded region growing (SRG) performs a segmentation of an image with respect to 

a number of seeds which have been grouped into N sets, A1, A2, A3,…AN. It is in 

the choice of seeds that the decision of what is a feature of interest and what is 

irrelevant or noise is embedded. Given the seeds, SRG then finds a tessellation of 

the image with the property that each connected component of a region meets 

exactly one of the AI and subject to this constraint the regions are chosen to be as 

homogeneous as possible. It is the application, which determines the seed sets and 

the homogeneity criteria. Taking into consideration that image sequences used in 

this work are obtained by a thermal camera, which works on “black hot” mode, 

(hotter objects are seen darker) one set of seed points is used. Then segmentation 

algorithm works as below: 

• Take pixels, whose intensity value is between “upper seed threshold” -135- 

and “lower seed threshold” -75- as the seed set.  

• Label seed points as target. 

• Put seed points in a buffer. 

While the buffer is not empty: 

• Remove first point “y” from the buffer, 

• Test the neighbors of the point y: 

If the neighbor satisfies intensity homogeneity criteria:  

abs(Neighbor-y)<15(“Grow Threshold”) and (Neighbor<170 

“Target Upper Bound Intensity”)   

• Label the pixel as target 

• Add the neighbor point to the buffer 

With seeded region growing, if the regions are relatively noiseless, all that is 

necessary, for a good segmentation is that each seed pixel has a gray value, which is 

typical of its region. Upper, lower seed thresholds, target upper bound intensity and 

grow threshold are determined intuitively. Figure 2.5, Figure 2.6 and Figure 2.7 

show the results of this segmenter on a sample frame. 
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Figure 2.5 Image before segmentation. 

 

Figure 2.6 Seed points labeled with white color. 
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Figure 2.7 Segmented image. 
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2.4.3 Feature Extraction 

2.4.3.1 Connected Component Labeling 

Before extracting features, target pixels must be clustered into connected regions, 

which are the shapes in the image. Connected components labeling algorithm scans 

an image and groups its pixels into components based on pixel connectivity, i.e. all 

pixels in a connected component share similar pixel intensity values and are in 

some way connected with each other. 

2.4.3.2 Feature Selection 

Size, intensity and shape-based features of segmented objects are used for 

classification purpose in thermal camera sequences [18]. Three image sequences are 

used as training database for classification. These sequences were obtained by a 

thermal camera and selected to cover image and target signature variability as much 

as possible. 25Hz sampled frames of these sequences are downsampled by 1/40 in 

order to reduce workload. Groundtruth to obtain feature values are drawn by hand 

and frames of these sequences contain at most one target. 

Table 2.1 Thermal Image Sequences 

Sequence Name Frame Number Frame Size 
(pixel x pixel) 

Thermal09 85 frames 288x360 

Thermal08 31 frames 288x360 

Thermal07 84 frames 288x360 
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2.4.3.2.1 Size Features 

Target area, target minimum bounding rectangle (MBR) area and target perimeter 

are the size features that are used. 

Target Area is the count of pixels belonging to target, obtained from hand drawn 

groundtruth image. Target area values and some statistical values about this feature 

for the image sequences are given in Figure 2.8 and Table 2.2.  
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Figure 2.8 Target area values of thermal camera sequences 09-08-07. 
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Table 2.2 Target Area Statistics 

Sequence 
Name 

Mean of 
Target Area 

Std of Target 
Area 

Minimum 
Target Area

Maximum Target 
Area 

Termal07 57.8 55.6 1 291 

Termal08 148.3 368.5 4 1848 

Termal09 55.0 143.6 3 1019 

Target MBR Area is the count of pixels belonging minimum rectangle that bounds 

target obtained from hand drawn groundtruth image. MBR area values and some 

statistical values about this feature for the image sequences are given in Figure 2.9 

and Table 2.3. 
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Figure 2.9 Target MBR area values of thermal camera sequences 09-08-07. 
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Table 2.3 Target MBR Area Statistics 

Sequence 
Name 

Mean of MBR 
Area 

Std of MBR 
Area 

Minimum 
MBR Area 

Maximum 
MBR Area 

Termal07 110.2 125.4 1 600 

Termal08 580.0 1882.9 4 10089 

Termal09 149.7 445.2 3 3159 

Perimeter is the count of pixels belonging boundary of the target obtained from 

hand drawn groundtruth image. Perimeter values and some statistical values about 

this feature for the image sequences are given in Figure 2.10 and Table 2.4.  
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Figure 2.10 Target perimeter values of thermal camera sequences 09-08-07. 
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Table 2.4 Target Perimeter Statistics 

Sequence 
Name 

Mean of 
Target 

Perimeter 

Std of Target 
Perimeter 

Minimum 
Target 

Perimeter 

Maximum 
Target Perimeter 

Termal09 33,9 70,7 3 444 

Termal08 60,4 121,6 4 583 

Termal07 38,1 29,5 1 146 

2.4.3.2.2 Shape Features 

Aspect ratio and Area/MBR Area ratio are the shape features that are used. Aspect 

ratio is the ratio of the width of the target MBR to the height. Aspect ratio values 

and some statistical values about this feature for the image sequences are given in 

Figure 2.11 and Table 2.5. 
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Figure 2.11 Target aspect ratio values of thermal camera sequences 09-08-07. 
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Table 2.5 Target Aspect Ratio Statistics 

Sequence 
Name 

Mean of 
Target 

Aspect Ratio 

Std of Target 
Aspect Ratio

Minimum 
Target Aspect 

Ratio 

Maximum 
Aspect Ratio 

Termal09 1,54 0,53 0,5 3 

Termal08 1,30 0,49 0,66 2,9 

Termal07 1,92 0,81 0,66 4 

Area/MBR Area ratio is the ratio of the target area to the target MBR area. 

Area/MBR Area ratio values and some statistical values about this feature for the 

image sequences are given in Figure 2.12 and Table 2.6. 
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Figure 2.12 Target Area/MBR Area ratio values of thermal camera sequences     

09-08-07. 
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Table 2.6 Target Area/MBR Area Ratio Statistics 

Sequence 
Name 

Mean of Target 
Area/MBR 

Area 

Std of Target 
Area/MBR 

Area 

Minimum 
Target 

Area/MBR Area 

Maximum 
Target 

Area/MBR Area

Termal09 0,68 0,19 0,29 1 

Termal08 0,75 0,26 0,18 1 

Termal07 0,64 0,22 0,34 1 

2.4.3.2.3 Intensity Features 

Target intensity mean and target intensity standard deviation are the intensity 

features that are used. 

Target intensity mean is the statistical mean of the target intensity. Target intensity 

mean values and some statistical values about this feature for the image sequences 

are given in Figure 2.13 and Table 2.7. 
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Figure 2.13 Target intensity mean values of thermal camera sequences 09-08-07. 

 

Table 2.7 Target Intensity Mean Statistics 

Sequence 
Name 

Mean of 
Target Mean 

Intensity 

Std of Target 
Mean 

Intensity 

Minimum 
Target Mean 

Intensity 

Maximum 
Target Mean 

Intensity 

Termal09 118,6 11,4 89,3 141 

Termal08 169,8 22,7 83 191,7 

Termal07 81,7 23,3 57,6 146,5 

Target intensity standard deviation (std) is the statistical standard deviation of the 

target intensity. Target intensity std values and some statistical values about this 

feature for the image sequences are given in Figure 2.14 and Table 2.8. 
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Figure 2.14 Target intensity std values of thermal camera sequences 09-08-07. 

 

Table 2.8 Target Intensity Standard Deviation Statistics 

Sequence 
Name 

Mean of 
Target 

Intensity Std 

Std of 
Target 

Intensity Std 

Minimum 
Target 

Intensity Std 

Maximum 
Target 

Intensity Std 

Termal09 33,0 17,7 0,81 73,4 

Termal08 15,8 16,0 2,5 73,0 

Termal07 31,4 12,6 7,5 63,3 

 
 



 23

2.4.4 Classification 

The classification stage of the proposed system identifies the segmented objects as 

“target” and “non-target”. Although a number of classification methods exist [21] a 

simple one, nearest-mean classifier, is used for classification. Nearest mean 

classifier calculates the centers of in-class and out-of-class training samples and 

then assigns the upcoming samples to the closest center. It can model compact 

distributions effectively. This classifier gives distance values at its output. Seven 

features and mean values of these features obtained from training database are used 

to constitute in-class vector mean of the “target” objects (Table 2.9).  

    Table 2.9 Training Database Statistics 

  Mean Std Min Max 

Area 87,0 189,2 2 1846 

MBR Area 297,9 821,2 2 1089 
Size 

Features 

Perimeter 44,2 73,9 2 583 

Aspect Ratio 1,59 0,61 0,6 4 
Shape 

Features Area/MBR Area 

Ratio 
0,69 0,23 0,30 1 

Mean Intensity 123,3 19,1 57,6 191,7 Intensity 

Features Std Intensity 26,7 15,4 0,81 73,4 
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Distance of the objects under consideration (target candidates) from training 

“target” mean is obtained according to the equation 2.1. Coefficients are used to 

give weights to the features and can be determined regarding the application. In this 

work they are determined with some kind of reliability criteria -inverse proportional 

to standard deviation values of the features obtained from training database (Table 

2.10)-. 

               ( ) ( )







 −
×++
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_...
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where TFN is Nth target feature value of candidate object and FN_Mean is the mean 

value obtained with training database.  

Table 2.10 Distance Coefficients 

  
Std/Mean 

Ratio 

(Std/Mean 

Ratio)-1 

Feature 

Coefficient 

Area 2,17 0,46 0,0297 

MBR Area 2,75 0,36 0,0232 
Size 

Features 

Perimeter 1,67 0,60 0,0387  

Aspect 

Ratio 
0,38 2,63 0,1698 

Shape 

Features Area/MBR 

Area Ratio 
0,33 3,03 0,1956 

Mean 

Intensity 
0,15 6,66 0,4300 

T
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s 

Intensity 

Features Std 

Intensity 
0,57 1,75 0,1130 
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2.4.5 Decision 

Objects under consideration (target candidates) are declared as valid targets 

regarding two criteria: 

 Min/Max values: If one of the object features is out of the range of training 

database values (i.e higher than the Target Intensity Mean maximum value 

or lower than the Target Intensity Mean minimum value) the object is 

defined as non-target object.  

 Distance Value: If the object is not defined as non-target according to the 

Min/Max values, its distance value (equation 2.1) is compared with a 

threshold (“classification threshold”). The object is declared as valid-target 

if its distance value is lower than threshold value. The threshold is 

determined regarding required probability of detection and tolerable false 

alarm rate. 

2.4.6 Performance Evaluation 

Three performance metrics are generally used for performance evaluation of ATD 

systems [18]. 

 Probability of Detection: If valid-target object centroid is inside the valid 

region of the groundtruth object it is declared as “detected target”. Valid 

region of groundtruth is the circle whose radius is determined by square root 

of the area of the groundtruth target and whose centre is determined by the 

grountruth centroid. The ratio of the detected targets to total targets in the 

image gives us the probability of detection. In this approach there may be 

more than one valid-target objects inside the valid region of groundtruth. In 

this case valid-target with largest area is declared as detected target. 

Different valid area specifications can be made regarding the application but 

this is not in the scope of this work.  
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 False Alarm Rate: Number of valid-targets that are not declared as detected 

target is used as false alarm rate. 

 Segmentation Accuracy: Ratio of the number of the common pixels between 

groundtruth and detected-target to the area of the groundtruth is used as 

segmentation accuracy performance metric. 
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CHAPTER 3 
 
 
 

IMAGE METRICS FOR ATD SYSTEMS 
 
 

3.1 Introduction 

Image metrics are used to characterize the image for the proposed ATD system. 

They are the independent variables of performance prediction models and selected 

specifically to the performance measure that is modeled. Many ATD metrics have 

been proposed in the literature. These metrics can be classified in terms of their 

functional dependencies (Table 3.1). ATD metrics depend on either global image 

statistics -those derived from the set of all pixels in the image- or regional statistics 

-those derived from the individual regions of a segmented image [9][10][13][14]. 

Table 3.1: Taxonomy of ATD Metrics. 

 Target Independent Metrics Target Dependent Metrics 

Grey-Level Global Regional Regional 

Edge Global Regional Regional 

Size/Shape   Regional 

The statistics are gathered either from the gray-level (light intensity) image directly 

or from an edge-map of the image. Some ATD metrics depend on a priori 

information about actual targets in an image to be characterized. Most of these must 

know the exact pixel sets containing targets. Target dependent ATD metrics are 

necessarily regional. Some depend on the size or shape of regions as well as gray-
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level or edge information. Target independent ATD metrics may be either global or 

regional but depend only on gray-level or edge statistics. 

In the next three sections, image metrics that will be used for building performance 

models are reviewed. Sections 3.2 and 3.3 concern target independent metrics and 

section 3.4 concerns target dependent metrics. 

3.2 Global Image Metrics 

Global image metrics are functions of all the pixels in an image. Some are 

dependent on all pixel values and others are dependent on edge pixels alone. Since 

segmentation algorithm that is used in the proposed ATD system is region based, 

grey-level dependent global image metrics are used heavily.  Table 3.2 lists these 

metrics. 

Table 3.2: Global Image Metrics. 

Grey-level dependent 

3.2.1.1 Image gray-level standard deviation 

3.2.1.2 Image gray-level entropy 

3.2.1.3 Image gray-level uniformity 

3.2.1.5 The spread of the main diagonal of the co-occurrence matrix 

Edge dependent 

3.2.1.6 Information content of an image 

3.2.1 Gray-Level Dependent 

Most of the global gray-level metrics in the literature depend on contrast and 

uniformity. The two simplest of these, the standard deviation of an image and the 

entropy of its histogram are shown in Figure 3.1 and Figure 3.2. Standard deviation 

(std) of the image is calculated according to Equation 3.1. 
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where 

∑
=

=
n

i
ix

n
x

1

1                                                    (3.2) 

and n is the number of the pixels in the image and xi is the intensity value of the 

individual pixel. 
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Figure 3.1 Grey-Level standard deviation of thermal camera sequences 09-08-07. 

Entropy is a measure of information content. One way to apply the concept of 

entropy to databases in general and histogram specifically is to consider the 

information being “transmitted” as the data distribution of the attribute value in 

question within one bucket. The more important a certain data value is, the higher 

will be its frequency. Assuming N is the sum of frequencies of all data values 
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within one bucket, the probability of a data value is ni/N where ni is the frequency 

associated with that data value. Then entropy for an image is defined as: 

∑
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−=
255

1
log

i

ii

N
n

N
nEntropy                                               (3.3)  

where ni is the total number of pixels whose intensity value is equal to i and N is the 

total number of pixels in the image. 

10 20 30 40 50 60 70 80
4.7

4.8

4.9

5

5.1

5.2

Frame Number

En
tro

py

Global Entropy of Termal Camera Sequence 09-08-07

Termal09
Termal08
Termal07

Figure 3.2 Gray-Level entropy of thermal camera sequences 09-08-07. 
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Bhanu [10] defines the gray-level uniformity, U, to be a metric that is a global 

average of local gray-level homogeneity, 

∑∑ 







−=

x y
yxfyxfU

2
' ),(),(                                (3.4) 

where f(x, y) is the gray-level at pixel (x, y) and f’(x, y) is the average gray-level in a 

NxN window centered at (x, y). Figure 3.3 and 3.4 gives global uniformity values of 

training database for window sizes of 3x3 and 5x5.  
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Figure 3.3 Gray-Level uniformity (window size=3x3) of thermal camera sequences 

09-08-07. 
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Figure 3.4 Gray-Level uniformity (window size=5x5) of thermal camera sequences 

09-08-07.

Another global gray-level metric uses the co-occurrence matrix, M. M is an nxn 

matrix where n is the number of gray-levels in the image. For any pixel, p, with 

gray-level i, element mij of M represents the probability that one of p’s 4-neighbors 

has gray-level j. The main diagonal of M contains the probabilities that a pixel of 

gray-level i has an 8-neighbor of gray-level i. Therefore, the pixels on and near the 

main diagonal with some distance of the co-occurrence matrix contain information 

about the gray-level uniformity of the image (Figure 3.5 and Figure 3.6). Then 

occurrence matrix based global uniformity is, 
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Figure 3.5 Co-Occurrence matrix based uniformity (distance=3) of thermal camera 

sequences 09-08-07.
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Figure 3.6 Co-Occurrence matrix based uniformity (distance=5) of thermal camera 

sequences 09-08-07. 

Global edge-dependent metrics measure the amount or intensity of edge activity in 

an image. Bhanu [10] states that since targets are usually present in the vicinity of 

large magnitude edge points, an image can be characterized in terms of the number 

of edge points whose magnitudes exceed a threshold. Given this, he claims that the 

number of edges exceeding a threshold per unit area in an image is a reasonable 

estimator of target like features. This assumes that, in general, highly textured 

images will present more of a challenge to an ATD than less textured images. There 

are finite numbers of images of a particular size that contain a given fixed number 

of edge points. Let P represent this number. In terms of edge pixels, 

PI 2log−=                                                 (3.2) 
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is the information content of the image; this is a measure of the amount of variation. 

Robert’s edge detection operator is used for constructing edge map and edge based 

information content values of training database (Figure 3.7 and Figure 3.8). 
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Figure 3.7 Edge-Based information content (threshold=100) of thermal camera 

sequences 09-08-07. 
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 Figure 3.8 Edge-Based information content (threshold=130) of thermal camera 

sequences 09-08-07. 

3.3 Region Dependent Image Metrics 

Segmentation stage of an ATD algorithm partitions the input image into regions. 

There have been a number of metrics devised to measure the accuracy of 

segmentation. Two of them are declared (Table 3.3) and values of these metrics are 

given for the proposed segmentation method in Figures 3.9 and Figures 3.10. 

Besides these metrics features defined in Section 2.4.3 can be used as region 

dependent metrics to give information about accuracy of segmentation to obtain 

targets.  
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Table 3.3: Region Dependent Image Metrics. 

Grey-level dependent 

3.3.1 Regional Std 

3.3.2 Local contrast 

 

Levine and Nazif [11] have introduced a general-purpose performance 

measurement scheme for image segmentation algorithms. Among the gray-level 

characteristics the scheme measures are regional std and regional contrast.  

Assume region Rj has area Aj and gray-level variance σ j
2 and is a subset of a larger 

region, G, that has area AG. Let σ max
2  be one half of the squared difference between 

the maximum and minimum gray-levels in region G. Then, 

2
max

2 / σσ GjjjG AAu =                                           (3.3) 

is a regional uniformity measure. It is Rj's fraction of the maximum possible 

variance in G weighted by Rj 's proportion of the area of G. To use this metric it is 

modified as, 
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=                               (3.4) 

where Aj is the jth object region (only valid objects are taken into consideration) on 

segmented image and AG is the area of total image.  
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 Figure 3.9 Regional standard deviation of thermal camera sequences 09-08-07. 

Levine and Nazif use the relation (3.5) to measure the local contrast between 

adjacent regions Rj and Ri. 

jijiijC µµµµ +−= /                                          (3.5) 

where µi and µj are the mean gray-levels in regions i and j. To use this metric it is 

modified as, 

∑
= +

−
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i Gi
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1 µµ
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                                     (3.6) 

where µi is the ith valid object and µG is the intensity mean of the background of the 

image.  
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Figure 3.10 Regional contrast of thermal camera sequence 09-08-07. 

3.4 Target Dependent Image Metrics 

The majority of ATD image metrics are target dependent. That is, they require 

explicit information about the location of the true targets in the image. Like the 

global metrics and region dependent metrics, most target dependent metrics use 

either gray-level or edge information. In addition to these, however, there are 

metrics based on target size and shape. Table 3.4 is a list of target dependent 

metrics that are used. Since proposed segmentation algorithm is region based, grey-

level dependent metrics are preferred. 
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Table 3.4: Target Dependent Image Metrics. 

Grey-level dependent 

3.4.1.1 Target Intensity Mean 

3.4.1.2 Target Intensity Standard Deviation 

3.4.1.3 Target to Background Contrast 

3.4.1.4 Target Interference Ratio 

Target intensity mean is the statistical mean of the intensity of the pixels belonging 

target. Target intensity standard deviation is the statistical standard deviation of the 

target intensity value. These target dependent metrics are also used as target 

features and values of them are given in Figure 2.13 and Figure 2.14. 

A very simple target dependent metric is the contrast between a target and its 

immediate background. 

BTcontrast µµ −=                                            (3.9) 
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Figure 3.11 Target to background contrast of thermal camera sequence 09-08-07. 

where µT is the average gray-level of the pixels in the target and µB is the average 

gray-level of the pixels adjacent the target.  

Another target dependent metric is target interference ratio. Let µT and σ T be the 

mean and standard deviation of the gray-levels inside the minimum-covering 

rectangle of the target. Let µB and σ B be the mean and standard deviation of the 

gray-levels inside a rectangular annulus whose inner border coincides with the 

target rectangle and whose outside dimensions are twice those of the target 

rectangle. Then the target interference ratio, 

( ) BBTTIR σµµ /−=                                     (3.10) 



 42

indicates the separability of a target from its background. Since the metric varies 

inversely with the background standard deviation, it has smaller values for textured 

backgrounds. 

0 10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

2.5

3

3.5

4
Interference Ratio of Termal Camera Sequences 09-08-07

Frame Number

In
te

rfe
re

nc
e 

R
at

io

Termal09
Termal08
Termal07

Figure 3.12 Target interference ratio of thermal camera sequence 09-08-07. 



 43

 
 
 
 
 

CHAPTER 4  
 
 
 

EXPERIMENTAL DESIGN and PERFORMANCE MODELING 
 
 

4.1 Introduction 

Experimental design is a very critical task in building performance prediction 

models. If carefully done, it can result in good and reliable models, which can 

ultimately result in good adaptation [3]. 

Performance models are formed for each performance measure (Probability of 

Detection -PD-, False Alarm Rate -FAR- and Segmentation Accuracy -SA-) defined 

in section 2.4.6. These are functions of image metrics (such as Global Uniformity) 

and ATD system parameters (such as Seed Grow Threshold). Given the ATD 

performance metric (PM), a typical model is, 

PM = F (M1, M2, ... MN; P1, P2, ... PK)                               (4.1) 

where Mi (i=1…N) are image metrics and Pj (1…K) are ATD system parameters. 

Performance models are generated as a result of a number of experiments. In one 

experiment, a set of images is selected from training sequences that corresponds to 

the designed experiment’s image metric values. Image metrics are chosen in order 

to reflect those qualities that affect the ATD performance measures.  
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Selected images are processed by the ATD system with changing parameters, again 

according to the designed experiment’s ATD parameter values. Used ATD system 

parameters are also chosen mainly due to their effects on performance measures. 

Once all the images are processed through the ATD system, the parameters have 

been varied, and performance measure values have been collected, performance 

models are generated using multivariate linear regression models and the method of 

least squares. In other words, the performance measures, the metrics and the 

parameters are grouped, and a curve fit is attempted.  

Second section of this chapter explains design of experiments and third section 

describes the process of curve fitting with these experimental designs to obtain 

performance models for each performance metric defined. Also obtained models are 

discussed in this section.  

4.2 Design of Experiments 

The problem of experimental design or design of experiments (DOE) is encountered 

in many fields, where, in general, the response variables of interest –PMs in this 

work- are y1, y2, ym   (m is the total number of response variables) and there is a set 

of predictor variables –Mi and Pi in this work- x1, x2, xn (n –is the total number of 

predictor variables). Response variables of interest are referred as responses and 

predictor variables as design variables or factors. A common situation for using 

DOE is when the designer does not know the exact underlying relationship between 

responses and design variables but wants to know how the responses are influenced 

by the design variables. In this case it is often helpful to approximate the underlying 

relationship with an empirical model:  

y = f(x1, x2, … xn)                                            (4.2) 

Usually, the function f is a first- or second-order polynomial. This empirical model 

is called a “response surface model” (RS Model) or curve fit. To create the RS 
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model we need to know the value of the responses for some combinations of design 

variables. Each combination of design variables could be viewed as a point in the n-

dimensional design space, where n is the total number of design variables. The 

particular arrangement of points in the design space is known as an experimental 

design or design of experiments [17]. The proper selection of points could 

drastically improve the quality of a RS model. Experimental design is dependent on 

the RS model and in this work “quadratic” models (equation 4.3) are preliminary 

proposed for performance models for design of experiments [3]. The selection of 

quadratic linear regression models is necessary to simplify the processes of 

designing experiments, curve fitting and optimization for performance measures. 

MATLAB software provides powerful tools for these problems.     
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One experimental design method for fitting quadratic types of models is the full 

factorial design having three values for each input. Although the Statistics Toolbox 

of MATLAB is capable of generating this design, it is not really a satisfactory 

design in most cases because it has many more runs than are necessary to fit the 

model after the experiments are conducted when factors of the design are relatively 

high (i.e. for 10 factors: 310=59049 experiment points). 

The two most common designs generally used in response surface modeling are 

central composite designs and Box-Behnken designs [16]. In these designs the 

inputs take on three or five distinct values (levels), but not all combinations of these 

values appear in the design. But these designs pre-date the computer age, and some 

were in use by early in the 20th century. In the 1970s statisticians started to use the 

computer in experimental design by recasting the design of experiments (DOE) in 

terms of optimization. A D-optimal design is one that maximizes the determinant of 

Fisher’s information matrix, XTX. This matrix is proportional to the inverse of the 

covariance matrix of the estimated parameters ( )β̂  with method of least squares 

according to the quadratic model defined in equation 4.3 [17].  
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( ) yXXX TT 1ˆ −
=β                                                 (4.4) 

In this equation y is the n-by-1 vector of observations (from n experiments) and X is 

the n-by-p matrix whose columns are formed by p model terms for n experiments. 

(See Section 4.3) 

So maximizing det(XTX) is equivalent to minimizing the determinant of the 

covariance of the parameters. A D-optimal design minimizes the volume of the 

confidence ellipsoid of the regression estimates of the linear model parameters. 

Regarding the experimental design alternatives D-optimal design method is selected 

for designing experiments, initially. Function of MATLAB software “cordexch” 

supplies D-Optimal designs with the number of design factors, maximum number of 

experiment points and the model that is the experiment is being done for (i.e. 

Quadratic). The “cordexch” function searches for a D-optimal design using a 

coordinate exchange algorithm.  It creates a starting design, and then iterates by    

changing each coordinate of each design point in an attempt to reduce the variance 

of the coefficients that would be estimated using this design [16]. Maximum 

number of experiment points is selected by comparing the same design with Central 

Composite Design alternative (i.e. maximum than this value). One deviation from 

D-Optimal design is because of unobtainable experiment points (unobtainable 

image metric combinations) in training database. In these cases nearest points are 

selected instead.  

Fitted models with D-Optimal designs showed that the specific characteristics of the 

proposed ATD algorithm make it not appropriate for D-Optimal experiment 

designs. Even full factorial designs with three factor levels may not be adequate 

because the response of ATD system (i.e. Probability of Detection) is varying 

between discrete values of one and zero in de facto training database (frames with 

one target). Unconsidered characteristics of the image (limited number of image 

metrics is used), errors in obtaining image metrics and experimental errors (i.e 

extracting groundtruth image) may easily change the performance value and it 
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seriously affects the experiment results when low number of experiment points is 

used.  

Regarding these problems experimental design method is changed to increase 

experiment points. Range of factors (image metrics and parameters) is quantized 

and for these quantized values (factor levels) full factorial experimental design is 

conducted. This produced a large number of experiment points but also reduce all 

noise and unconsidered factor effects on obtained response surfaces. 

Either D-Optimal experimental design points or full factorial design points are used 

based on the selected frames from training database that corresponds to the 

experimental points. Together with necessary parameters, ATD algorithm is run on 

selected frames and performance measures for each experimental point is obtained.  

4.3 Performance Model Fitting 

Multivariate quadratic linear regression models (equation 4.3) are used with method 

of least squares to estimate the regression coefficients of the models. The model 

given in equation 4.3 takes the common matrix form when results of the 

experiments (n points) are taken into consideration 

εβ += Xy                                                 (4.5) 

where, 

• y is an n-by-1 vector of observations of response. 

• X is an n-by-p matrix of factors (model terms). 

• β is a p-by-1 vector of model parameters. 

• ε is an n-by-1 vector of errors. 

The solution to the problem is a vector, b, which estimates the unknown vector of 

parameters, β. 

The least squares solution is: 
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( ) yXXXb TT 1ˆ −
== β                                            (4.6) 

Predicted response values by the model at the experiment points are, 

( ) yXXXXHyXby TT 1ˆ −
===                                        (4.7) 

The residuals are the difference between the observed and predicted y values.  

yyr ˆ−=                                                     (4.8) 

The residuals are useful for detecting failures in the model assumptions, since they 

correspond to the errors, ε , in the model equation. By assumption, these errors each 

have independent normal distributions with mean zero and a constant variance. The 

residuals, however, are correlated and have variances that depend on the locations 

of the data points. It is a common practice to scale ("Studentize") the residuals so 

they all have the same variance. In the equation below, the scaled residual, ti, has a 

Student's t distribution with (n-p-1) degrees of freedom 
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and 

• ti is the scaled residual for the ith data point. 

• ri is the raw residual for the ith data point. 

• n is the sample size. 
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• p is the number of parameters in the model. 

• hi is the ith diagonal element of H. 

A hypothesis test for outliers involves comparing ti with the critical values of the t 

distribution. If ti is large, this casts doubt on the assumption that this residual has the 

same variance as the others. A confidence interval for the mean of each error is 

ii
v

ii htrc −±=
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1ˆ
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2
1

σα                                       (4.11) 

Confidence intervals that do not include zero are equivalent to rejecting the 

hypothesis (at a significance probability ofα ) that the residual mean is zero. Such 

confidence intervals are good evidence that the observation is an outlier for the 

given model [17]. 

The coefficient of multiple determination R2 is a measure of the variability of y 

obtained by using the repressor variables in the model and is used throughout this 

work. 
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yXyySSE ′′−′= β̂                                                                                          (4.14) 



 50

n

y
yySS

n

i
i

T

2

1









−′=
∑
=                                                                                     (4.15) 

To fit the model with experiment results and get the discussed information above 

about the fitted model “rstool” and “regress” functions of MATLAB software are 

used. These functions use Q-R decomposition to construct model information. 

In following sub-sections performance models for three performance measures of 

ATD systems are fitted and examined individually. 

4.3.1 Probability of Detection 

Evaluation of PD for the proposed ATD algorithm is explained in Section 2.4.6. 

Regarding the algorithm, three target dependent image metrics and three ATD 

system parameters are selected as factors of the PD response surface. (Table 4.1)  

Table 4.1 Factors for RS of Probability of Detection (D-Optimal Design) 

Target Intensity 
Mean See Section 3.4 

Target Intensity 
Standard Deviation See Section 3.4 
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background contrast See Section 3.4 

Seed Center 
2

hresholdLowerSeedThresholdUpperSeedT +
=

Seed Range 
2

hresholdLowerSeedThresholdUpperSeedT −
=A
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Grow Threshold See Section 2.4.2 

Parameters are selected from segmentation phase of the algorithm because of their 

expected effect on probability of detection. Target dependent metrics are selected 

although they require groundtruth knowledge because their quantities give the most 

important knowledge to segmentation phase of the proposed algorithm. Maximum 
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and minimum values for the factors are selected with regarding training database 

values. 

Then for PD, obtained D-Optimal experiment points and responses (Appendix A) 

are fitted on the model with “rstool” function of MATLAB software (Figure 4.1). 

“Rstool” provides interactive fit and plot of a multidimensional response surface. 

Graph for each of the factor shows the change of response variable (PD) when 

remaining factors are held constant. Constant values are shown in the boxes named 

with the factor name. Detection probability value on the left-hand side gives the 

response variable (PD) value for the factor values inside the boxes. 

Dotted lines around the solid line of each graph show the global confidence interval 

for predictions. Also confidence interval for the constant values of factors (inside 

the boxes) is given on the left-hand side below detection probability value. 

 

Figure 4.1 Response surface for PD with D-optimal experiments. 
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RMSE and R2 values for this model are given below: 

RMSE (Root Mean Square Error) = 0.2529 (Model Dependent Standard Deviation 

or standard error of the regression model)  

Coefficient of multiple determination (R2) = 0.7990. 

Each residual together with its confidence interval for the mean are plotted on 

Figure 4.2. Residuals that do not include zero (outliers) in their confidence interval 

are shown in this figure. 
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Figure 4.2 Residual values for RS of PD with D-optimal experiments. 

Regarding information above, this model can be considered as a “good” model. But 

expected effects of some factors (from knowledge of the system) are not observed 

on this model. For this model probability of detection has negligible dependency on 
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ATD parameters. This is mainly because of unconsidered characteristics of the 

image (three target dependent metrics are used only), errors in obtaining image 

characteristics and experimental errors (i.e extracting groundtruth image) that effect 

low number of experimental results. Then experimental design is changed as 

explained in Section 4.2. Factors for the new RS of PD are given in Table 4.2.  

Factor ranges are quantized as given in Table 4.3.  

Table 4.2 Factors for RS of Probability of Detection (Full Factorial Design) 

Target Intensity Mean See Section 3.4 

Target Intensity 
Standard Deviation See Section 3.4 
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Grow Threshold See Section 2.4.2 

 

Table 4.3 Factor Levels for Full Factorial Design 

 Target 
Mean 

Target 
Std 

Target 
Contrast 

Seed 
Center 

Target Upper 
Bound 

Grow 
Contrast

Min 40 0 0 25 Seed Center + 
15 

5 

R
an

ge
 

Max 200 80 140 165 Seed Center + 
45 

17 

Step Size 20 20 20 10 10 4 

Considering these levels for full factorial design; Number of Experimental Points is 

equal to 76800 (=8x5x8x15x4x4) but since not the entire image metric 

combinations can be obtained from training database 14400 (=60x15x4x4) are used 

for experiments.  
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Then for PD, obtained experiment points and responses are fitted on the model with 

“rstool” function of MATLAB software. (Figure 4.3) 

 

Figure 4.3 Response surface for PD with full factorial experiments. 

RMSE and R2 values for this model are given below: 

RMSE of this model is: 0.3113  

Coefficient of multiple determination (R2) = 0.3563  

Residual values from (1 to 200) and (2001 to 2201) together with their confidence 

intervals for the mean are plotted on Figure 4.4 and Figure 4.5. Residuals that do 

not include zero (outliers) in their confidence interval are show in these figures. 
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Figure 4.4 Residual values (1 to 200) for RS of PD with full factorial experiments. 
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Figure 4.5 Residual values (2001 to 2200) for RS of PD with full factorial 

experiments. 
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Although the model obtained with full factorial design gives worse error values than 

D-optimal model, expected factor dependencies can be observed with this model. 

Expected correlation of target mean and seed center is clearly detected from Figure 

4.3. Maximum probability of detection is obtained when the seed center parameter 

is tuned around target mean and remaining parameters are held constant. 

Also it is observed that increasing target upper bound intensity value and grow 

threshold decreases probability of detection when remaining parameters are held 

constant. This is because of the increasing probability of overflowing the target 

region. Small values of these parameters guarantees staying inside the target region 

although this produces worse segmentation accuracy.  

Increasing target contrast increases detection probability as observed from Figure 

4.3 and as expected. 

One interesting result of the model is that increasing standard deviation of the target 

increases probability of detection effectively. This is because of an unconsidered 

factor of probability of detection. This factor is the target area. Probability of 

detection increases as standard deviation because standard deviation increases with 

increasing target area. Standard deviation is nearly directly proportional with target 

area in used training database. (See Figure 2.8 and Figure 2.14) 

Both of the models obtained for PD used target dependent metrics. These metrics 

needs groundtruth of the target. The approach is to estimate the groundtruth from 

the archived frames starting by tracking order of an operator (operator is pointing 

out the groundtruth target). The estimated groundtruth can then be used to extract 

target dependent image metrics. In cases where this information cannot be obtained 

regional image metrics (Section 3.3) can be used to increase the probability of 

detection. Although various general-purpose regional metrics can be found the best 

choice for regional metrics must rely on the target definition of the ATD system. 

For our system the best choice of regional metrics is classification features. Then 
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false alarm rate can be used (i.e increasing false alarm rate) to increase the PD 

because false alarms are objects that cannot be distinguished from targets.      

4.3.2 Segmentation Accuracy (SA) 

Evaluation of SA for the proposed ATD algorithm is explained in Section 2.4.6. 

Regarding the algorithm, three target dependent image metrics and three ATD 

algorithm parameters are selected as factors of the SA response surface. Selected 

parameters, image metrics and experimental design (full factorial) are same with the 

ones used for full factorial design of PD. Only response variable is changed as 

segmentation accuracy. 

Then, for SA obtained experiment points and responses are fitted on the model with 

“rstool” function of MATLAB software. (Figure 4.6) 

 

Figure 4.6 Response surface for SA with full factorial experiments. 
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RMSE and R2 values for this model are given below: 

RMSE of this model is: 0.1173 

Coefficient of multiple determination (R2) = 0.1519 

Residual values from (1 to 200) and (2001 to 2201) together with their confidence 

intervals for the mean are plotted on Figure 4.7 and Figure 4.8. Residuals that do 

not include zero (outliers) in their confidence interval are shown in these figures. 
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Figure 4.7 Residual values (1 to 200) for RS of SA with full factorial experiments. 
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Figure 4.8 Residual values (2001 to 2200) for RS of SA with full factorial 

experiments. 

Although the error values are high, it is seen that the model makes sense when 

factor effects are considered. Obtained model for SA is correlated with the model 

for PD because SA value is zero when probability of detection is zero. Then, factors 

that effect to SA and PD on the same way is observed similarly on SA model (SA 

increases with Target Contrast as PD increases with Target Contrast).   

But contradicting factor effects are suppressed or even reversed in SA model. It was 

seen that increasing Target Std increases PD. But increasing Target Std is expected 

to decrease segmentation accuracy (knowledge from segmentation algorithm). 

Because of this contradiction it is observed in SA model that, effect of Target Std is 

suppressed with respect to the effect in PD. 

This effect is also seen on Grow Contrast. It is observed that increasing Grow 

Threshold decreases PD (Figure 4.3) but it is expected that increasing Grow 
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Threshold increases SA. This contradiction suppresses and reverses the effect of 

Grow Threshold observed in model of PD. 

4.3.3 False Alarm Rate (FAR) 

Evaluation of FAR for the proposed ATD algorithm is explained in Section 2.4.6. 

Four global image metrics and three ATD algorithm parameters are selected as 

factors of the FAR response surface. Selected parameters are same with the used 

ones for probability of detection and segmentation accuracy. Global image metrics 

(Global Entropy, Global Standard Deviation, Global Uniformity, and Occurrence 

Based Uniformity) are used because the false alarm is mainly dependent on whole 

image. 

Instead of designing a new full factorial design for experiment points, design for PD 

is taken and experiment points are updated with new global image metrics. Then, 

obtained experiment points and responses are fitted on the model with “rstool” 

function of MATLAB software. (Figure 4.9) 
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Figure 4.9 Response surface for FAR with full factorial experiments. 

RMSE and R2 values for this model are given below: 

RMSE of this model is: 6.7762  

Coefficient of multiple determination (R2) = 0.3750 

Residual values together with their confidence intervals for the mean are plotted on 

Figure 4.10. Residuals that do not include zero (outliers) in their confidence interval 

are shown in these figures. 
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Figure 4.10 Residual values (1 to 14.000) for RS of FAR with full factorial 

experiments. 

The residuals show contradiction with the assumption of random error. This may be 

because of the experimental method used or unconsidered unrandomized factors 

that effect false alarm rate or both. But the model still gives information about the 

false alarm rate as expected. It is observed that global image metrics that uses local 

uniformity to characterize the global uniformity are highly correlated with false 

alarm rate. Also it is observed that false alarm increases with decreasing target 

upper bound intensity and grow threshold as expected. 
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CHAPTER 5  
 
 
 

OPTIMIZATION and TEST RESULTS 
 
 

5.1 Introduction 

Optimization techniques are used to find a set of design parameters 

{ }nxxxx ,...,, 21=  that can in some way be defined as optimal. In a simple case this 

might be the minimization or maximization of some system characteristic that is 

dependent on x. In a more advanced formulation the objective function, f(x), to be 

minimized or maximized, might be subject to constraints in the form of equality 

constraints, inequality constraints and parameter bounds. 

A General Problem (GP) description is stated as, 

          Minimize F(x)                                                                                              (5.1) 
 nx ℜ∈  

subject to 

 ,0)( =xGi      emi ,...,1=                                                                              (5.2) 

 ,0)( ≤xGi  mmi e ,...1+=                                                                        (5.3) 

 ul xxx ≤≤                                                                                                   (5.4) 
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where x is the vector of design parameters ( nx ℜ∈ ) with upper and lower bounds 

(xu,  xl), F(x) is the objective function that returns a scalar value ( ℜ→ℜnxF :)( ), 

and the vector function G(x) returns the values of the equality and inequality 

constraints evaluated at x ( mnxG ℜ→ℜ:)( ). 

An efficient and accurate solution to this problem depends not only on the size of 

the problem in terms of the number of constraints and design variables but also on 

characteristics of the objective function and constraints. Objective functions that 

will be used in this work are performance models obtained in Chapter 4. A wide 

range spectrum of methods exists for optimizing these models individually 

subjected to several constraints (i.e. maximizing probability of detection given 

image metrics of the model by ATD system parameters) [22]. But the general 

problem definition for ATD systems is different because more then one objective 

function (performance measures) exists that must be traded off in some way. This 

problem is known as multiobjective optimization. 

In second section of this chapter multiobjective optimization is explained generally 

and in the third section, applications of multiobjective optimization for the proposed 

ATD algorithm using performance models are described. Tests and results obtained 

using these optimization methods on two image sequences are given in the last 

section of this chapter. 

5.2 Multiobjective Optimization 

Multiobjective optimization is concerned with the minimization of a vector of 

objectives F(x) that can be the subject of a number of constraints or bounds. 

Because F(x) is a vector, if any of the components of F(x) are competing, there is no 

unique solution to this problem. Instead, the concept of noninferiority must be used 

to characterize the objectives [22]. A noninferior solution is one in which an 

improvement in one objective requires a degradation of another. To define this 
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concept more precisely, consider a feasible region, Ω, in the parameter space 
nx ℜ∈  that satisfies all the constraints. 

This allows us to define the corresponding feasible region for the objective function 

spaceΛ . 

{ }my ℜ∈=Λ  where )(xFy =  subject to Ω∈x  

The performance vector, F(x) maps parameter space into objective function as is 

represented for a two-dimensional case in Figure 5.1. 

 
Figure 5.1 Mapping from parameter space into objective function space. 

 

A noninferior solution point can now be defined as a point Ω∈*x  that for some 

neighborhood of *x  there does not exist a x∆ such that ( ) Ω∈∆+ xx*  and 

( ) ( )** xFxxF ii ≤∆+  i=1,…,m                                                                       (5.5) 

( ) ( )** xFxxF jj ≤∆+  for some j                                                                    (5.6) 

In the two-dimensional representation of Figure 5.2, the set of noninferior solutions 

lies on the curve between C and D. Points A and B represent specific noninferior 

points.  
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Figure 5.2 Set of Noninferior Solutions 

A and B are clearly noninferior solution points because an improvement in one 

objective, F1, requires a degradation in the other objective, F2. Since any point in Ω  

that is not a noninferior point represents a point in which improvement can be 

attained in all the objectives, it is clear that such a point is of no value. 

Multiobjective optimization is, therefore, concerned with the generation and 

selection of noninferior solution points. Two simple problem formulation for 

handling noninferior solution points is given below. 

Weighted Sum Strategy 

The weighted sum strategy converts the multiobjective problem of minimizing the 

vector F(x) into a scalar problem by constructing a weighted sum of all the 

objectives. 

minimize ( )∑
=

=
m

i
ii xFwxf

1

2.)(                                                                       (5.7) 

           Ω∈x  

The problem can then be optimized using a standard unconstrained optimization 

algorithm. The problem here is in attaching weighting coefficients to each of the 

objectives. The weighting coefficients do not necessarily correspond directly to the 

relative importance of the objectives or allow tradeoffs between the objectives to be 
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expressed. Further, the noninferior solution boundary can be nonconcurrent, so that 

certain solutions are not accessible. 

ε -Constraint Method 

A procedure that overcomes some of the convexity problems of the weighted sum 

technique is the ε -constraint method. This involves minimizing a primary 

objective, Fp(x), and expressing the other objectives in the form of inequality 

constraints, 

Minimize ( )xFp                                                                                          (5.8) 
   Ω∈x  

subject to 

ii xF ε≤)(     i=1…m i≠ p                                                                           (5.9) 

This approach is able to identify a number of noninferior solutions on a nonconvex 

boundary that are not obtainable using the weighted sum technique. A problem with 

this method is, however, a suitable selection of ε  to ensure a feasible solution. A 

further disadvantage of this approach is that the use of hard constraints is rarely 

adequate for expressing true design objectives.  

5.3 ATD Optimization 

The common objective of all ATD systems is to increase probability of detection 

and segmentation accuracy while decreasing false alarm rate. A generally 

experienced problem is that these performance measures contradict with each other 

(i.e High probability of detection requires high false alarm rate). In this case there 

must be a trade of for these performance measures. Generally these trade offs are 

determined specifically for the system (i.e system capacity determines maximum 
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false alarm rate or weapon specifications determine the segmentation accuracy) and 

may appear in the form of constraints such as 

maximize ( )xPD                                                                                        (5.10) 
   Ω∈x  

subject to 

FARxFAR ε≤)(  or SAxSA ε≥)(                                                                  (5.11) 

Then the problem of optimization turns into the ε -constraint method for 

multiobjective optimization. The Optimization Toolbox of MATLAB software 

provides the function “fmincon” that can be used for this purpose. This function 

finds a minimum of a constrained nonlinear multivariable function using sequential 

quadratic programming:  

minimize ( )xF                                                                                          (5.12) 
      x  

subject to 

0)( ≤xC                                                                                                    (5.13) 

0)( =xCeq                                                                                                (5.14) 

bxA ≤.                                                                                                      (5.15) 

eqeq bxA =.                                                                                                 (5.16) 

ubxlb ≤≤                                                                                                (5.17) 

where x, b, beq, lb and ub are vectors, A and Aeq are matrices, C(x) and Ceq(x) are 

functions that return vectors, and F(x) is a function that returns a scalar. F(x), C(x), 

and Ceq(x) can be nonlinear functions. 

Then two optimization problems for the proposed ATD algorithm are defined and 

solved using this MATLAB function. 
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1. maximize ( )xPD                                                                                       (5.18) 
  Ω∈x  

subject to 

FARxFAR ε≤)(                                                                                          (5.19) 

2. maximize ( )xPD                                                                                       (5.20) 
  Ω∈x  

subject to 

- SAxSA ε≤)(                                                                                              (5.21) 

A typical function call to this function is follows: 

X=fmin(@objectfun,[init],[],[],[],[],[lb],[ub],@confun,options,[metrics])         (5.22) 

With this call the function minimizes the “objectfun” regarding the constraints 

written in “confun” starting with “init” vector position and upper and lower bound 

of “lb” and “ub”. Vector of “metrics” passes the image metrics for the constraint 

evaluation. 

5.4 Test Results 

Both of the solutions are tested on two image sequences (Test Sequence_1, Test 

Sequence_2) including 60 and 50 frames respectively. Two sample images from 

these test sequences are shown in Figure 5.3 and Figure 5.4. Also target dependent 

metrics for these image sequences are given in Figure 5.5 and Figure 5.6. Images 

are obtained by a thermal camera and test sequences are formed by 1/20 

downsampling from 25 frame/sec. camera output. 
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Figure 5.3 Sample frame from Test Sequence_1. 

 
Figure 5.4 Sample frame from Test Sequence_2. 
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Figure 5.5 Target dependent metrics of Test Sequence_1. 
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Figure 5.6 Target dependent metrics of Test Sequence_2. 
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The pseudo code for the conducted tests is as follows: 

Read Target Dependent Image Metrics from file for Frame Number 1, 

For Frame Number:2 to 60/50 (For Test Sequence 1/2) 

     Begin 
  Compute Global Image Metrics from frame (For problem 1), 

  Find optimum parameters, given image metrics, 

  Run ATD algorithm, 

  If PD=1 

   Compute Target Dependent Image Metrics, 

  Else 
   Read Target Dependent Image Metrics from file, 

     End 

Results are given under two problem definitions made in Section 5.3. 

1. Maximizing PD with Constraint on FAR 

Performance models for PD and FAR are used for this purpose. Model for PD is 

taken as objective function and model for FAR is used to limit FAR value to a 

maximum of 10. Probability of detection and false alarm rates are given in Figure 

5.7, Figure 5.8 and Figure 5.9. 
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Figure 5.7 Probability of Detection (Constraint on FAR) for Test Sequence_1 
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Figure 5.8 Probability of Detection (Constraint on FAR) for Test Sequence_2 
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Figure 5.9 FAR for Test Sequence_1/2 

2. Maximizing PD with Constraint on SA 

Performance models for PD and SA are used for this purpose. Model for PD is taken 

as objective function and model for SA is used to limit FAR value to a minimum 

value of 0.1. Probability of detection and false alarm rates are given in Figure 5.10, 

Figure 5.11 and Figure 5.12. 
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Figure 5.10 Probability of Detection (Constraint on SA) for Test Sequence_1 
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Figure 5.11 Probability of Detection (Constraint on SA) for Test Sequence_2 
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Figure 5.12 Segmentation Accuracy for Test Sequence_1 
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Figure 5.13 Segmentation Accuracy for Test Sequence_2 
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The most important observation for both optimization problems and for both test 

sequences about probability of detection is that detection fails when target standard 

deviation and target to background contrast are both low (Figure 5.5 and Figure 

5.6). These results show that the model for PD is not adequate for this combination 

of target standard deviation and target to background contrast values. 

Results about false alarm rate and segmentation accuracy show that maximum FAR 

and minimum SA can not be achieved for some frames on test sequences although 

the optimization process achieves this for the model. This result is not unexpected 

because of the inaccuracy of the used models for FAR and SA. 

Figures 5.14 and 5.15 show PD obtained for optimization problem 1 with non-

optimal -0.1 below optimal system parameters- system parameters. Decrease in 

performance is easily observed with respect to figures 5.7 and 5.8. 
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Figure 5.14 Non-Optimal Probability of Detection (Constraint on FAR) for Test 

Sequence_1 
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Figure 5.15 Non-Optimal Probability of Detection (Constraint on FAR) for Test 
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CHAPTER 6  
 
 

CONCLUSION and FUTURE WORK 
 
 

6.1 Summary and Conclusion  

In this thesis we have attempted to model performance metrics of an ATD system 

with image metrics and ATD system parameters. The main purpose to form these 

models is to optimize the performance of the system by changing system parameters 

using measured image metrics based on these models. 

A simple ATD system is proposed. Three performance measures namely, 

probability of detection, segmentation accuracy and false alarm rate are used as 

system evaluation methods. In order to characterize image, global, regional and 

target dependent metrics are used. Image metrics and ATD system parameters are 

selected for each of the performance measure and experiments are designed to 

determine experimental points (image metric and parameter value combinations). 

Then experiments are conducted for these experimental points and results are fitted 

on quadratic multivariate linear regression models using MATLAB. Consequently 

models are obtained for each of the performance measures. 

Obtained models are used to solve an optimization problem of ATD systems. The 

problem was to maximize probability of detection with limits on false alarm rate or 

segmentation accuracy. Functions of MATLAB software is used to apply the 

solution to these problems and solutions are tested on two sequences. It is observed 

that the model regions where there exist experimentational insufficiencies do not 

predict optimum (or better) system parameters. Due to this, optimization with 
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respect to these models improves the ATD system performance when the incoming 

image metrics are on the “reliable” region of the models.  

One experimentational insufficiency is due to the restricted training database which 

does not provide all experimental points. This reduces the prediction capability of 

the model around these points. Another insufficiency is selection of ATD system 

parameters. Adaptable parameter about seed points is only the center of the seeds. 

This selection can not deal with targets with low standard deviation and low target 

to background contrast because it uses seeds within fixed range of ten for all seed 

center values (pixels take intensity values from 0 to 255). In other words there is no 

“good” parameter value to this case in the model. Nevertheless optimization based 

on these models improved the system performance for reliable regions of the 

models.   

6.2 Future Work 

This methodology to develop performance models can also be used to analyze the 

effects of image characteristics and parameters to the performance of an ATD 

system. This seems a simple task for this work but a typical ATD system has 10s of 

parameters (most of them are constant) and effects of these parameters are not 

easily determined by simply considering system knowledge especially when there is 

interaction between parameters. Not for making these parameters adaptive, but for 

finding optimum values this method can be used. 

The critical part of this methodology is the performance models. Models with better 

prediction capability will result in better adaptation of system parameters to 

improve system performance. Prediction capability is highly related with 

characterizing image with metrics. Finding or developing metrics that better 

characterize image for the ATD system may be a future work that improves the 

usefulness of the methodology.    
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In this thesis only ATD system parameters are used to model and optimize 

performance measures. In most of the commercial ATD systems more than one 

algorithm is provided that each works better in some scenario. The decision for 

changing these alternative algorithms with respect to the scenario is taken by the 

operator of the ATD system. An application of this methodology can be to take this 

decision automatically and reliably with image metrics.  
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APPENDIX A 
 
 
 

MODEL INFORMATION 
 
 

Table A.1 Factor Maximum and Minimum Values for D-Optimal Experimental 
Design of PD 

 Target 
Mean 

Target 
Std 

Target 
Contrast 

Seed 
Center 

Seed 
Range 

Grow 
Threshold 

Min. 70 (-1) 10 (-1) 10 (-1) 70 (-1) 3 (-1) 3 (-1) 

Center 120 (0) 30 (0) 40 (0) 120 (0) 9 (0) 9 (0) 

Max. 170 (1) 50 (1) 70 (1) 170 (1) 15 (1) 15 (1) 

Tablo A.2 Ideal D-Optimal Experimental Design for PD 

Target 
Mean 

Target 
Std 

Target 
Contrast 

Seed 
Center 

Seed 
Range 

Grow 
Threshold

-1 0 1 0 1 -1 
1 1 1 1 -1 1 
-1 1 1 1 1 1 
1 1 -1 1 1 1 
0 -1 1 1 -1 -1 
1 -1 1 -1 1 -1 
-1 -1 1 1 -1 1 
-1 -1 1 -1 -1 1 
-1 -1 -1 -1 1 1 
-1 -1 -1 1 1 1 
1 1 1 1 1 -1 
1 -1 1 -1 -1 1 
-1 1 1 -1 -1 -1 
-1 1 -1 -1 -1 1 
-1 -1 1 -1 1 1 
1 1 1 -1 1 1 
-1 -1 1 1 1 -1 
1 1 -1 -1 -1 -1 
1 -1 -1 -1 -1 1 
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1 -1 1 1 1 1 
1 1 0 -1 -1 0 
-1 1 -1 -1 1 -1 
1 0 -1 -1 1 1 
1 -1 -1 1 1 -1 
-1 -1 -1 -1 -1 -1 
1 1 1 1 -1 -1 
-1 1 1 -1 1 -1 
1 -1 -1 0 -1 -1 
-1 0 0 1 -1 0 
-1 1 1 1 0 -1 
-1 -1 0 0 -1 -1 
1 -1 -1 -1 1 0 
1 1 -1 1 -1 1 
1 -1 1 1 0 0 
1 1 1 0 1 0 
1 1 0 1 1 -1 
-1 1 0 1 0 1 
1 -1 0 1 -1 1 
0 1 -1 1 -1 -1 
1 1 1 -1 0 1 
-1 1 0 -1 1 1 
-1 1 -1 1 1 0 
-1 1 -1 1 -1 -1 
1 -1 -1 1 -1 0 
1 1 -1 -1 1 -1 
1 0 -1 1 0 -1 
-1 0 -1 -1 0 -1 
1 -1 1 -1 -1 -1 
-1 -1 -1 1 -1 1 
-1 -1 1 -1 0 0 
1 0 1 0 -1 -1 
-1 1 -1 -1 -1 1 
-1 1 1 0 -1 1 
-1 -1 -1 1 1 -1 
0 1 -1 0 1 0 
0 0 1 1 1 1 
0 -1 -1 0 0 1 
1 -1 0 0 1 1 
0 0 1 -1 -1 0 
0 -1 0 -1 1 -1 
-1 0 1 0 1 -1 
1 1 1 1 -1 1 
-1 1 1 1 1 1 
1 1 -1 1 1 1 
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0 -1 1 1 -1 -1 
1 -1 1 -1 1 -1 
-1 -1 1 1 -1 1 
-1 -1 1 -1 -1 1 
-1 -1 -1 -1 1 1 
-1 -1 -1 1 1 1 

Table A.3 Modified D-Optimal Experimental Design and Response Values for PD 

Target 
Mean 

Target 
Std 

Target 
Contrast 

Seed 
Center 

Seed 
Range 

Grow 
Threshold PD 

-0.9169 0.3731 1.3053      0      1    -1      1
0.3124 0.9230 0.7083      1     -1     1      1
-0.9249 0.7622 1.4500      1      1     1      0
0.5305 -0.3581 -0.8129      1      1     1      0
-0.0133 0.1437 0.3306      1     -1    -1      0
1.0820 -0.8834 -0.6359     -1      1    -1      0
-1.0100 -1.1087 -0.1302      1     -1     1      0
-1.0100 -1.1087 -0.1302     -1     -1     1      0
-0.9400 -0.8945 -0.7563     -1      1     1      0
-0.9400 -0.8945 -0.7563      1      1     1      0
0.2614 2.0314 1.7657      1      1    -1      1
1.0820 -0.8834 -0.6359     -1     -1     1      0
-0.9249 0.7622 1.4500     -1     -1    -1      1
-1.0350 0.2259 -0.9712     -1     -1     1      0
-1.0100 -1.1087 -0.1302     -1      1     1      0
0.2614 2.0314 1.7657     -1      1     1      1
-1.0100 -1.1087 -0.1302      1      1    -1      0
0.5305 -0.3581 -0.8129     -1     -1    -1      0
1.3233 -1.2665 -0.7952     -1     -1     1      0
1.0820 -0.8834 -0.6359      1      1     1      0
0.8544 -0.0389 0.0467     -1     -1     0      0
-1.0350 0.2259 -0.9712     -1      1    -1      0
1.2022 -0.9124 -0.9987     -1      1     1      0
1.3233 -1.2665 -0.7952      1      1    -1      0
-0.9400 -0.8945 -0.7563     -1     -1    -1      0
0.2614 2.0314 1.7657      1     -1    -1      1
-0.9249 0.7622 1.4500     -1      1    -1      1
1.3233 -1.2665 -0.7952      0     -1    -1      0
-0.9460 0.0716 0.1351      1     -1     0      0
-0.9249 0.7622 1.4500      1      0    -1      0
-0.9067 -0.5814 0.0143      0     -1    -1      0
1.3233 -1.2665 -0.7952     -1      1     0      0
0.5305 -0.3581 -0.8129      1     -1     1      0
1.0820 -0.8834 -0.6359      1      0     0      0
0.2614 2.0314 1.7657      0      1     0      1
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0.8544 -0.0389 0.0467      1      1    -1      1
-1.0919 0.0582 -0.4935      1      0     1      0
1.0501 -0.5001 -0.3622      1     -1     1      1
-0.0133 0.1437 0.3306      1     -1    -1      0
0.2614 2.0314 1.7657     -1      0     1      1
-1.0919 0.0582 -0.4935     -1      1     1      0
-1.0350 0.2259 -0.9712      1      1     0      0
-1.0350 0.2259 -0.9712      1     -1    -1      0
1.3233 -1.2665 -0.7952      1     -1     0      0
0.5305 -0.3581 -0.8129     -1      1    -1      0
1.1500 -0.9898 -1.0227      1      0    -1      0
-1.0645 -0.0536 -1.1285     -1      0    -1      1
1.0820 -0.8834 -0.6359     -1     -1    -1      0
-0.9400 -0.8945 -0.7563      1     -1     1      0
-1.0100 -1.1087 -0.1302     -1      0     0      0
1.1080 -0.8714 -0.6925      0     -1    -1      0
-1.0350 0.2259 -0.9712     -1     -1     1      0
-0.9249 0.7622 1.4500      0     -1     1      1
-0.9400 -0.8945 -0.7563      1      1    -1      0
-0.1057 -0.2922 -0.5579      0      1     0      0
-0.0675 0.9054 1.0326      1      1     1      0
-0.0680 -1.1750 -0.8748      0      0     1      0
1.0501 -0.5001 -0.3622      0      1     1      0
0.0097 0.7872 0.9025     -1     -1     0      0
-0.0133 -0.7890 -0.2502     -1      1    -1      0
-0.9169 0.3731 1.3053      0      1    -1      1
0.3124 0.9230 0.7083      1     -1     1      1
-0.9249 0.7622 1.4500      1      1     1      0
0.5305 -0.3581 -0.8129      1      1     1      0
-0.0133 0.1437 0.3306      1     -1    -1      0
1.0820 -0.8834 -0.6359     -1      1    -1      0
-1.0100 -1.1087 -0.1302      1     -1     1      0
-1.0100 -1.1087 -0.1302     -1     -1     1      0
-0.9400 -0.8945 -0.7563     -1      1     1      0
-0.9400 -0.8945 -0.7563      1      1     1      0

 


