

A NEW TECHNIQUE: REPLACE ALGORITHM TO RETRIEVE A

VERSION FROM A REPOSITORY INSTEAD OF DELTA APPLICATION

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

SÜLEYMAN ONUR OTLU

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

IN
THE DEPARTMENT OF COMPUTER ENGINEERING

APRIL 2004

Approval of the Graduate School of Natural and Applied Sciences.

 Prof. Dr. Canan Özgen
 Director

I certified that this thesis satisfies all the requirements as a thesis for the degree
of Master of Science.

 Prof. Dr. Ayse Kiper
 Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science.

 Prof. Dr. Adnan Yazici Assoc. Prof. Dr. Ahmet Cosar
 Co-Supervisor Supervisor

Examining Committee Members

Prof. Dr. Adnan Yazici (Ceng)

Assoc. Prof. Dr. Ahmet Cosar (Ceng)

Assoc. Prof. Dr. Ismail Hakki Toroslu (Ceng)

Assoc. Prof. Dr. Nihan Kesim Çiçekli (Ceng)

M. Sc. Abdullah Fisne (Hacettepe Univ.)

I hereby declare that all information in this document has been
obtained and presented in accordance with academic rules and ethical
conduct. I also declare that, as required by these rules and conduct, I have
fully cited and referenced all material and results that are not original to
this work.

 Name, Last name :Süleyman Onur, OTLU

Signature :

 iv

ABSTRACT

A NEW TECHNIQUE: REPLACE ALGORITHM TO
RETRIEVE A VERSION FROM A REPOSITORY

INSTEAD OF DELTA APPLICATION

Otlu, Süleyman Onur

M. S., Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. Ahmet Cosar

Co-Supervisor: Prof. Dr. Adnan Yazici

April 2004, 51 Pages

The thesis introduces a new technique to retrieve a version from a repository as

an alternative method to applying deltas to literal file sequentially. To my best

knowledge; this is the first investigation about delta combination for copy/insert

instruction type with many experimental results and conclusions. The thesis proves

that the delta combination eliminates unnecessary I/O process for intermediate

versions when delta application is considered, therefore reduces I/O time. Deltas are

applied to literal sequentially to generate the required version in the classical way.

Replace algorithm combines delta files which would be applied in delta application as

combined delta, and applies it to literal to generate the required one. Apply runs in O

(size (D)) time where D is the destination file and size (D) is its size. To retrieve nth

version in a chain where 1st version is literal, it requires n-1 time apply. Replace

algorithm runs in O (i + c * log2 n) time where i is the total length of all inserts, c is

the total length of all copies in destination delta, and n is the number of instructions in

source delta. To retrieve the same nth version, it requires n-2 time replace and one

apply.

 v

Keywords: delta algorithm, delta application, delta combination, replace algorithm.

 vi

ÖZ

YENI BIR TEKNIK: VERI HAVUZUNDAN BIR
VERSIYONU ÜRETMEK IÇIN FARK

UYGULAMASI YERINE DEGISTIRME
ALGORITMASI

Otlu, Süleyman Onur

Yüksek Lisans, Bilgisayar Mühendisligi Bölümü

Tez Danismani: Doç. Dr. Ahmet Cosar

Ortak Tez Danismani: Prof. Dr. Adnan Yazici

Nisan 2004, 51 sayfa

Bu tez veri havuzundan bir versiyonu üretmek için fark dosyalarini sabit

dosyaya sirayla uygulamak yerine alternatif yöntem olarak yeni bir teknigi

tanitmaktadir. Bilgim dahilinde, bu tez bir çok deneysel sonuç veren ve yargilara

varan kopya/ekle komut tipi kullanan fark birlestirme konusunda yapilmis ilk

arastirmadir. Bu tez, fark uygulama metodunu düsündügümüzde fark birle stirmenin

ara versiyonlar için yapilan girdi çikti islemlerini ortadan kaldirdigini ve girdi çikti

islem süresinin azaldigini göstermektedir. Klasik mantikta gerekli versiyonu üretmek

için fark dosyalari sirasiyla sabit dosyaya uygulanir. Degistirme algoritmasi fark

uygulamasinda kullanilan fark dosyalarini birlesik fark dosyayi olarak birlestirir ve bu

birlesik fark dosyasini sabit dosyaya uygulayarak gerekli versiyonu üretir. Uygulama

O (uzunluk(D)) süresinde çalismaktadir, D hedef dosyasidir ve uzunluk(D) hedef

dosyasinin uzunlugudur. Birinci versiyonu sabit dosya olan bir versiyon zincirinden n.

versiyonu üretmek n – 1 defa uygulamayi gerektirir. Degistirme algoritmasi O (i + c *

log2 n) süresinde çalismaktadir , i hedef fark dosyasindaki ekle komut tiple rinin

uzunluklari toplamidir, c hedef fark dosyasindaki kopya komut tiplerinin uzunluklari

 vii

toplamidir ve n kaynak fark dosyasindaki komutlarin sayisidir. Bu yöntemle ayni n.

versiyonu üretmek için n – 2 defa degistirme ve bir defa uygulama gerekmektedir.

Anahtar Kelimeler: fark algoritmasi, fark uygulamasi, fark birlestirmesi, degistirme

algoritmasi.

 viii

To My Family

 ix

ACKNOWLEDGEMENTS

I express sincere appreciation to Prof. Dr. Adnan Yazici and Assoc. Prof. Dr.

Ahmet Cosar, for their guidance and encouragement throughout the research. I offer

sincere thanks to my family for their emotional support.

 x

TABLE OF CONTENTS

ABSTRACT... iv

ÖZ... vi

ACKNOWLEDGEMENTS... ix

TABLE OF CONTENTS..x

LIST OF TABLES..xiii

LIST OF FIGURES... xiv

CHAPTERS

1. INTRODUCTION...1

1.1. Motivation ...1

1.2. Thesis Goals...3

1.3. Organization of the Thesis...4

2. BACKGROUND...5

2.1. Delta Encoding...6

2.2. Encoding Metrics ...6

2.3. Delta Algorithm Concept ..7

2.4. General Greedy Algorithm and Linear Time Delta Algorithms8

2.5. Delta Storage Techniques.. 11

2.6. Delta Application ... 14

2.7. Related Work... 16

2.8. Implementation Notes... 18

2.8.1. Implementation Notes for the Delta Algorithm........................... 18

2.8.2. Implementation Notes for Apply Algorithm............................... 19

2.8.3. Implementation Notes for Replace Algorithm 19

 xi

3. REPLACE ALGORITHM... 20

3.1. Replace Algorithm.. 20

3.2. An Example to Make Clear How Replace Algorithm works 24

4. COMPLEXITY ANALYSIS.. 29

4.1. Retrieve Operation.. 29

4.1.1. Delta Application... 29

4.1.2. Replace Algorithm ... 29

4.2. Delete Operation .. 31

4.2.1. Delta Application... 31

4.2.2. Replace Algorithm ... 31

5. EXPERIMENTAL RESULTS.. 33

5.1. Retrieve Operation.. 34

5.1.1. How Delta Application works for Retrieve Operation 34

5.1.2. How Delta Combination works for Retrieve Operation 34

5.2. Run Results for Retrieve Operation.. 35

5.2.1. The performance of Apply algorithm when insert stream is on disk
or in memory.. 35

5.2.2. The performance of Apply algorithm when destination file is
constructed on disk completely or with a fixed-size buffer in memory.... 40

5.2.3. The performance of Replace algorithm using binary search
algorithm or hash data structure... 41

5.2.4. The performance of Apply and Replace algorithms with a fair
comparison... 43

5.3. Delete Operation .. 47

5.3.1. How Delta Application works for Delete Operation.................... 47

5.3.2. How Delta Combination works for Delete Operation 47

5.4. Run Results for Delete Operation... 48

6. CONCLUSIONS... 49

6.1. Future Work... 50

 xii

REFERENCES.. 52

APPENDICES

A: THE VERSIONS AND THEIR FILE SIZE OF GNU PACKAGES USED IN
EXPERIMENTAL RESULTS.. 54

B: THE INSTRUCTION STATISTICS OF THE GENERATED VERSION
CHAINS AND GNU PACKAGES USED IN EXPERIMENTAL RESULTS..... 56

 xiii

LIST OF TABLES

Table 1: The statistics of instructions that are applied by apply and replace algorithms for

package gawk .. 40
Table 2: The statistics of instructions that are applied by apply and replace algorithms for

package chicken.. 40

 xiv

LIST OF FIGURES

Figure 1: Storing four versions of a file with forward delta technique, version F1 is stored as

literal and other versions are stored as delta files in the chain. ..2
Figure 2: An example of encoding a delta file using copy/insert delta encoding..........................5
Figure 3: The storage mechanism of forward delta technique.. 11
Figure 4: Clustered forward delta technique.. 11
Figure 5: The storage mechanism of jumping delta technique... 12
Figure 6: The storage mechanism of reverse delta technique... 13
Figure 7: The storage mechanism of branch in RCS.. 13
Figure 8: Pseudo code of the apply algorithm for copy/insert delta encoding............................. 15
Figure 9: An example of encoding delta files in replace algorithm... 21
Figure 10: Pseudo-code for replace algorithm.. 22
Figure 11: Pseudo-code for construction of hash table .. 23
Figure 12: Pseudo-code of getFromHashTable method for hash table ... 24
Figure 13: The state of hash table for given example ... 26
Figure 14: The figure of our generated version chain for experimental results 33
Figure 15: The performance of apply algorithm when insert stream is on disk or in memory,

and intermediate versions are constructed on disk for package gawk 36
Figure 16: The performance of apply algorithm when insert stream is on disk or in memory,

and intermediate versions are constructed with a buffer in memory for package gawk 37
Figure 17: The performance of apply algorithm when insert stream is on disk or in memory,

and intermediate versions are constructed on disk for package chicken............................... 38
Figure 18: The performance of apply algorithm when insert stream is on disk or in memory,

and intermediate versions are constructed with a buffer in memory for package chicken 39
Figure 19: The comparison of apply algorithm when intermediate versions are constructed on

disk fully and apply when they are constructed with a buffer in memory while insert

stream is on disk for package mailman... 41
Figure 20: The comparison of apply algorithm when intermediate versions are constructed on

disk fully and apply when they are constructed with a buffer in memory while insert

stream is in memory for package mailman .. 41
Figure 21: User Time of replace algorithm when binary search or hash data structure is used,

and intermediate versions are constructed with a buffer in memory for 5 MB Chains...... 42

 xv

Figure 22: User Time of replace algorithm when binary search or hash data structure is used,

and intermediate versions are constructed with a buffer in memory for package nano..... 42
Figure 23: The system time comparison of apply and replace algorithm when intermediate

versions are constructed with a buffer in memory for 10 MB Chains 43
Figure 24: The system time comparison of apply and replace algorithm when intermediate

versions are constructed with a buffer in memory for package metahtml 44
Figure 25: The system time comparison of apply and replace algorithm when intermediate

versions are constructed with a buffer in memory for package marst................................... 44
Figure 26: The total time comparison of apply and replace algorithm when intermediate

versions are constructed with a buffer in memory for 10 MB Chains 44
Figure 27: The total time comparison of apply and replace algorithm when intermediate

versions are constructed with a buffer in memory for package mailman 45
Figure 28: The total time comparison of apply and replace algorithm when intermediate

versions are constructed with a buffer in memory for package gawk 45
Figure 29: The comparison of apply when intermediate versions are constructed in memory

completely and replace algorithm using hash data structure for 1 MB Chains and

execution times are calculated by the program itself ... 46
Figure 30: The comparison of apply when intermediate versions are constructed in memory

completely and replace algorithm using hash data structure to delete version 2 from 3 MB

Chains and execution times are calculated by the program itself .. 48

 1

CHAPTER 1

INTRODUCTION

1.1. Motivation

Today, many computer systems store and present users all over the world many

files. Such files could be frequently changed and as changes occur, people subscribing

to those changes will need to transfer the new file over network so that they have the

most recent version. This process can be done more quickly by transferring only the

changes (called a delta) that were performed on the previous version and subscribers

locally applying updates on their local copy to create the most recent version of the

file.

Another possible use of delta files is saving them so that an earlier version of a

file can be recovered if it is needed. This would be the case when software is being

developed, and earlier version is found to be better than the current file (such as a bug

is discovered). Another reason for maintaining several versions of the same program

could have to support multiple customers possibly using different earlier versions. By

storing only delta files, we also conserve disk space since otherwise we would have to

store multiple versions of the same file, as a whole, thus taking up much more space.

Storing versions of a file like a directory seems to be a good solution at first

glance however the disk space occupied by versions is not used efficiently in this way.

Another problem occurs when a version is accessed over network, because

transmission of a version from one location to another is dependent on the file size and

network capacity.

A delta algorithm encodes the difference between two versions of a file, source

and destination (or target), and it stores the encoding in a delta file . A delta file

includes only the changes between two files and its size is expected to be quite small

 2

when the similarity between versions is assumed to be high. It is sufficient to store

source and delta file instead of storing two versions as intact files, which provides an

efficient storage, especially when number of stored versions increases. When

destination file is requested, applying delta file encoding to source file constructs the

destination one. In a repository, storing one file fully and other versions as deltas is the

simplest way to save space on disk (Figure 1). Delta file is also suitable for network

transmission. If the client has source file and needs the destination one, it request the

delta file instead of destination itself, which reduces the network traffic. Also, a

program at client may include bugs and they should be fixed. Patch of the program

fixes the bugs and it requires the erroneous version to construct the correct one,

therefore deploying delta file instead of version file eliminates unauthorized use of

software as well.

Figure 1: Storing four versions of a file with forward delta technique, version

F1 is stored as literal and other versions are stored as delta files in the chain.

The storage of version files with deltas should be handled by more complicated

solutions like a manager -version control system- (RCS, SCCS, etc). For example;

many versions of a file will be produced when a program is under development. A

developer may want to be able to access and modify previous versions (such as after

discovering a buggy modification, or having to maintain old versions for customers

still using them), possibly over a network connection, and to view their contents.

There have been many investigations and version control systems produced to

minimize the storage size, speed up the retrieve and insert time of a version, provide

 3

concurrent access to the same version, merge the versions, handle the branch problem,

store the binary files as well as text files, and so on.

1.2. Thesis Goals

This thesis offers a new technique to generate a version from a repository

instead of applying deltas to a literal file in sequential order, one delta at a time.

Replace algorithm first combines deltas between a literal file and its required version

to produce a combined delta which can be applied to the literal file to generate the

required version. The most important goal of the replace algorithm is to reduce I/O

operations by eliminating the construction of intermediate versions (which is to be

stored on disk temporarily thus causing extra I/O overhead) when generating a

required version of a literal file. The algorithm is to read the insert stream of both

adjacent delta files before starting delta combination. This operation may be

recognized as a disadvantage, however it is proven by experimental studies that taking

insert stream into memory has no effect on the total execution time of the algorithm.

Delta application is implemented with different memory usages and destination file

construction. Apply algorithm can construct required version of a literal file using

three different ways of creating intermediate ones. The algorithm can construct the

intermediate versions and the final required version on disk completely or use a fixed-

size buffer in memory to reduce I/O operations or use the memory completely. The

benefit of using a buffer is shown explicitly in experimental studies. Another optional

add-on is to take insert stream into memory before delta application.

Replace algorithm searches the beginning offset of each instruction in

destination delta file over instructions in the source delta file. There are two ways that

replace algorithm handles the search operation; hash data structure and binary search

algorithm. Replace algorithm constructs a hash table to find the instruction set in

source delta defining the range of the instruction in destination delta or it uses binary

search algorithm to find the instruction in already sorted instruction list. The replace

algorithm using binary search, puts a better execution time than the one using hash

data structure. Because, hash table construction causes extra CPU time although the

 4

algorithm searches over narrowed range. Each algorithm is compared with its versions

and also a fair comparison is made between both algorithms in Experimental Results.

1.3. Organization of the Thesis

Chapter 2 gives introductory information about delta encoding, delta storage

techniques, delta algorithms, delta application, version control systems, and related

work. Chapter 3 presents the design and implementation of Replace Algorithm, and a

reader can find the benefits, properties, pseudo code, and an example of the algorithm.

Chapter 4 demonstrates complexity of delta application and delta combination.

Chapter 5 presents experimental results for our generated versions and some packages

at Gnu Web Site. Chapter 6 concludes the subject and presents future work

discussions. Appendix A includes names of versions and their sizes of some real-life

packages used in Experimental Results. Appendix B gives instruction statistics of the

generated version chains and packages occurred in Appendix A.

 5

CHAPTER 2

BACKGROUND

A delta algorithm computes the differences between two versions of a file. It

takes two files - source (S) and destination (D) files - as input, generates a set of

instructions and produces a delta file.

Delta Algorithm (S, D) à ?s, d (2.1)

Applying instruction set to S produces D, and there is an example in the chapter

for copy/insert encoding how a delta file is applied to S.

Apply (S, ?s, d) à D (2.2)

 (a)

copy block 1
insert block 2
copy block 3

 (b)

Figure 2: An example of encoding a delta file using copy/insert delta encoding

 6

In Figure 2 (a) an example is given showing source and destination versions, with

identical regions of versions marked as “1” and “2”, while newly inserted segment is

marked with “3”. A corresponding encoding is given in Figure 2 (b).

2.1. Delta Encoding

There are two different delta encoding types used commonly; copy/insert and

insert/delete. Copy/insert delta encoding has two different instructions; copy(s, d, l)

and insert(d, l, B). A copy instruction copies a block with length l from offset s in S to

offset d in D, and an insert instruction adds the block B with length l in delta to offset

d in D. Delta application of copy/insert delta encoding constructs D from an empty file

and preserves S. It is essential to preserve S for version control systems. Insert/delete

delta encoding has two different instructions; delete(s, l) and insert(s, l, B). A delete

instruction deletes l bytes from offset s in S and an insert instruction adds a block B

with length l to offset s in S. Delta application of this kind of delta encoding operates

each instruction on S and S -not preserved- is transformed to D, which is called in-

place reconstruction. Insert/delete delta encoding is suitable for patch implementation.

Burn, Stockmeyer, and Long [13] address the limited storage capacity and low-

bandwidth networks and present algorithms that transform a delta file including

copy/insert delta encoding to a delta file that can construct the target version in-place.

Literal file in version control system should be preserved and implementation of

delta application of copy/insert delta encoding is straightforward therefore replace

algorithm is designed to combine deltas consisting copy/insert encoding.

2.2. Encoding Metrics

Each delta algorithm produces an encoding to represent D with respect to S and

the encoding is stored in a delta file. The encoding includes instructions and they can

be stored in the delta file with different ways. MacDonald [8; 9] separates copy and

insert instructions, and Burns [11] stores them in an order with add, copy and end

codewords in the delta file . Therefore, delta size is not a suitable metric to compare

delta algorithms. Hunt, Vo and Tichy [7] defines a metric in terms of LCS -Longest

Common Subsequence-. LCS is the longest common block which appears between

two files. However, repeated copy regions are not considered in the metric.

 7

 (2.3)

MacDonald [9] presents a metric m for upper bound on the optimal sequence of

copy/insert delta encoding. Total delta size in bits is calculated by summation of

metric values for each copy and insert evaluated. XDelta [8; 9] uses insert data of

deltas as additional source as well as actual source file itself therefore kd means a

source position in source file or in one of insert data. The copy metric can be

integrated for one source file and kd is replaced with s. It is also assumed that a byte

includes 8 bits.

m(copy s d l) = 1 + | log l | + | log kd | + | log d | (2.4)

 m(insert l) = 1 + | log l | + 8l (2.5)

2.3. Delta Algorithm Concept

The aim of a delta algorithm is to compute a delta encoding for D with respect

to S. The delta algorithms vary by finding matches. A dynamic delta algorithm [6]

encodes the difference based on LCS and greedy delta algorithm [10; 12] finds the

common fragments between two versions.

UNIX “diff” command is a well known line-oriented delta algorithm. However,

line-oriented algorithms encode whole line as insert if a line is changed, and this

solution is not the optimum. Besides, line-oriented algorithms are applicable only for

text files [15]. Myers [2] introduces a dynamic algorithm which requires O(nm/w)

time and computes the edit distance for particularly practical cases. Baker, Manber,

and Muth [1] implement a delta algorithm with knowledge of the architecture in

binary files, however, the delta algorithm is not suitable for generic solutions. Hunt,

Vo, and Tichy [7] introduce a greedy delta algorithm vdelta that combines data

compression and differencing. vdelta uses hash table instead of a suffix tree in Tichy’s

block-move algorithm [16]. The general greedy algorithm [12] runs in quadratic time,

 8

and it accepts the longest found match for searched position as best match, and

optimum. Burns [12] proves that the general greedy algorithm produces an optimum

encoding. Correcting one-pass algorithm runs in linear time and it produces a delta

encoding which is quite comparable to the greedy algorithm’s encoding. Therefore, in

this thesis the general greedy algorithm and correcting one-pass delta algorithm are

implemented and used.

2.4. General Greedy Algorithm and Linear Time Delta
Algorithms

Burns [12] proves that general greedy algorithm generates an optimum

difference for two versions of a file, however its execution time is quadratic and

memory usage is proportional to size of source(S) file. He also introduces one-pass,

correcting one-pass and correcting 1.5-pass algorithms that change data structure and

search policies with some modifications in the general greedy algorithm. These

algorithms run in linear time, improve memory usage utilization and produce good

compression in terms of greedy one. MacDonald [9] also defines and uses a delta

algorithm (XDelta) which is a fast, linear-time and linear-space approximation to the

greedy algorithm.

The general greedy algorithm constructs a hash table on S, and searches a match

for each offset of Destination (D) by using the hash table. The aim of hash table is to

find candidate match offset from S. Burns [10] selects a footprint (Karp-Rabin)

function for fixed-length byte streams to construct a hash table on S. The algorithm

chooses a value p, calculates a footprint value for length p of byte streams in file S at

all offsets until size(S) + 1 – p. Karp-Rabin method calculates footprint value of

stream at 0th offset with length p. The next footprint values for other offset are

calculated with incremental calculation instead of the same manner. If footprint value

for an offset is calculated, then footprint value for the next offset can be calculated

using previous value with a constant number of operations, and this reduces the

creation time of the hash table. The greedy algorithm stores all offsets falling to the

same entry with a linked list, and it requires a hash table of 4 times the size of S to be

built in memory, assuming footprint value type is integer.

 9

After hash table construction, general greedy algorithm scans the longest match

for current search offset I of D. It calculates footprint value for D [I, I + p), and

lookups hash table whether exists an entry for the value, or not. If exists, it generates a

match for each offset in entries. Then, it chooses the longest match among the

matches. Match search policy proceeds forward only. If the length of longest match is

greater than the cost of optimum copy instruction, the instruction is concluded as copy

and next search offset is set to i + l (length of the longest match), otherwise as insert.

It is obvious that if no match exists, current search index i is incremented by 1.

The complexity of the general greedy algorithm is O (size(S)*size(D)), and size

of hash table depends on size(S). The algorithm for large version files is not applicable

because of quadratic time and memory usage. One-pass, correcting one-pass and

correcting 1.5-pass algorithms are modification of general greedy in usage data

structure, memory usage and search policy, they run in linear time. Hash table which

each algorithm constructs do not has chain and also algorithms differ in usage of hash

table. Correcting implies backward match besides forward one. The algorithm corrects

the previous encoding with better matches if exists. Correcting can be tail correction,

or general correction, or both of them.

The details of the algorithms except correcting one-pass algorithm will not be

mentioned. Correcting one-pass algorithm creates two empty hash tables for S and D,

HTS and HTD. It defines sc, and dc offsets for S and D respectively, and sets them to 0

initially. The algorithm calculates the footprint values of strings from sc and dc with

length p. It puts the footprint values in HTS and HTD respectively. HTs do not have

chains, therefore whether there exists an entry for a footprint value, new offset is

added to HT. The algorithm does not remember the previous offsets for the

corresponding entry. At this point, the algorithm tries to find candidate match. If

footprint value calculated for S occurs in HTD, there exists a candidate match at sc and

an offset at entry for that footprint value in HTD. If the seeds are identical at offsets,

match process starts and the rest of searching candidate match is skipped. If the seeds

are not identical, the algorithm looks an entry footprint value calculated for D in HTS

in the same manner. If there does not exist a candidate match, the algorithm continues

the process with incrementing both sc and dc by 1. Match occurs in both forward and

backward directions. If the match overlaps only the non-encoded portion, the range

 10

between the end of encoded bytes and the start position of the match is concluded as

insert and then match is encoded as a copy instruction. If the match overlaps the

encoded and non-encoded portion, it requires tail correction on encoded substring. If

the match overlaps only the encoded portion, it requires general correction on encoded

substring. Tail or general correction means that previous instruction(s) falling

completely into match range will be deleted. The algorithm stops when sc + p > size

(S) and dc + p > size (D) and the rest of D is concluded as insert if there exists non-

encoded bytes at the end.

As seen, the algorithm stores one offset for each footprint in hash table. This

limitation reduces the performance of delta algorithm, however it improves the

execution time drastically and corrections eliminate the bad encoding. As a result,

linear algorithms still yield comparable solution according to general greedy algorithm

especially for large version files.

XDelta selects a fingerprint (adler32) function for fixed-length byte streams as a

hashing function. The algorithm selects a value s – a small power of 2 –, calculates a

fingerprint value for length s of byte streams in file S at all offsets divisible by s. The

algorithm includes one hash table keeping offsets. It also constructs an array

corresponding fingerprint value for each offset to detect collision easily. 4 bytes are

enough for each offset and fingerprint value, therefore the cost of data structure is 2 *

4 * size (S) / s. If s is 24, then the algorithm requires half of size of file S as memory

space. It increments current search offset by 1 whether a match exists for current

offset, or not. It takes a set of S instead of a single source file.

It is obvious that collision occurs in the hash table. Each byte stream with fixed-

length is represented with an integer value, and hash method – footprint or fingerprint

- can yield the same hash value for two different byte streams. Hash table has a mod

value to insert an offset, and also this yields collision. XDelta solves the last collision

problem by storing one offset for each entry and constructing an array to keep

fingerprint value itself, however storing one offset for one entry affects the

performance of the algorithm. In both hash table solutions, found offset in S for an

offset in D is a candidate match, and it requires byte comparison between streams.

 11

2.5. Delta Storage Techniques

Forward delta (FD) is the basic delta technique for storage (Figure 3). FD

stores the first version as literal and subsequent versions as delta files in order. Deltas

are calculated between adjacent versions; such as between first and second versions,

second and third one, and so on. There are two main disadvantages of the storage

technique. The first one is that retrieving ith version in a chain requires (i-1) times delta

application and each delta is applied to literal file until reaching ith one. When F3 is

required, ?1,2 is applied to F1, and F2 is generated, then ?2,3 is applied to generated

F2, and F3 is generated. The second one is that the storage is not suitable to insert a

new version easily in a chain. The new delta is calculated between the most recent

version and the new one, and each insert operation requires the generation of the most

recent one. The triangle in Figure 3 implies the forward delta and square stands for the

literal file.

Figure 3: The storage mechanism of forward delta technique

Repository including many versions can be divided into clusters, and each

cluster includes one literal file and deltas. It satisfies an upper bound to access a

version in repository. Figure 4 shows a repository that has 2 clusters.

Figure 4: Clustered forward delta technique

 12

Jumping delta (JD) -a different storage technique- improves insert and retrieve

operations of a version in a chain considering FD. It stores the first version as a literal

like FD. However when a new version is inserted, delta file is calculated between

literal and newly introduced one instead of computing adjacent versions; such as

between first and second versions, first and third ones, and so on. Figure 5 shows the

storage mechanism of JD. The main benefit of the jump storage technique is to

retrieve a version at most one delta application by using literal and the related delta.

However, the similarity between literal and newly introduced versions decreases while

the chain grows, therefore the storage consumes much disk space.

Figure 5: The storage mechanism of jumping delta technique

Burns and Long [11] improves storage and retrieve time of AdStar Distributed

Storage Manager (ADSM) using jumping delta technique. They define a

compressibility parameter between consecutive versions, and establish a worst-case

formula choosing a low and high value for the parameter. They give an experimental

result to compare the storage lost between the jumping and forward delta techniques

and to determine the optimum number of versions which a cluster should include. The

system includes server/client architecture where server stores the repository and client

stores a copy of literal file in repository at the server side. When a version is requested

 13

from client, server sends the delta to client over network. Insertion is also easy

because the client produces the delta between the new version and the literal one, and

the server stores it in repository. When the cluster reaches the optimum number of

versions in the repository, the client sends the new version itself.

Reverse delta (RD) is the most popular storage technique that is introduced by

Tichy [15]. It stores the last version as literal and previous versions as deltas in reverse

order. The most recent versions are accessed more frequently than older ones, and

they can be constructed by applying several delta files to literal file. The same

problem of accessing the recent versions in FD also occurs in accessing the older

versions in RD. The triangle in Figure 6 specifies the reverse delta.

Figure 6: The storage mechanism of reverse delta technique

Eventually changes occur on previous versions because of some reasons; such

as a request to fix a bug in an intermediate version used by a customer [15]. New form

of the previous version is also to be stored and it cannot be introduced like a new

version in result of changing some parts of the latest version. Branch handles the

development of previous version by creating a new chain connected to it. Figure 7

shows how RCS stores branch versions.

Figure 7: The storage mechanism of branch in RCS

 14

SCCS (Source Code Control System) [14], one of the oldest tools, uses FD

technique. RCS (Revision Control System) [15] stores the most recent version on the

trunk as literal and uses RD technique to store the previous versions on the trunk. It

handles branch using FD technique. XDFS [8] - The XDelta File System - offers two

storage techniques; XDFS-f and XDFS-r. Although suffix of XDFS-f implies forward

delta, it uses JD technique and XDFS-r uses RD.

RCS uses an ancestral tree to stores versions preserving the hierarchy in a

repository. RCS expects a revision number for a new version. If it is not specified,

then RCS tries to determine the number. XDFS stores versions of a repository in a

single trunk, and gives a number sequentially to each inserted version to identify them.

XDFS has a different approach to add a new version in a repository to handle the

branch problem and reduce the disk size consumed by the repository. When a new

version is introduced, XDFS concatenates the new one and inserts data of current

deltas in the cluster, and computes the delta between the concatenated file and the

literal one. Therefore, when two or more branches become dissimilar, delta

computation can conclude a copy instruction from taking the source a delta file instead

of storing the duplicate change in the new delta.

SCCS and RCS use UNIX diff command to compute the delta between adjacent

versions, therefore they are applicable for text-oriented revisions. XDFS is applicable

for binary files as well as text ones and it uses XDelta as delta algorithm.

2.6. Delta Application

Apply Algorithm is a simple implementation of delta application, and applies the

delta files to literal version files consecutively until the required version is generated.

Apply algorithm (Figure 8) applies each instruction in a delta to the source file and

generates the destination one.

If 4th version is required in a forward chain , firstly apply algorithm applies ?1, 2

to literal F1, and it generates 2nd version. Secondly, it applies ?2, 3 to 2nd one, and it

generates 3rd one. Finally, it applies ?3, 4 to 3rd one, and it generates required 4th

version. There is an example to make clear how the algorithm runs.

 15

Apply (src, dst, ?)
1. for i ß 0 to size[?] – 1 do
2. if ?[i].type == “COPY”
3. then copy (src, ?[i].frompos, dst, ?[i].topos, ?[i].length)
4. else copy(?[i].buffer, 0, dst, ?[i].topos, ?[i].buffer.length)

Figure 8: Pseudo code of the apply algorithm for copy/insert delta encoding

Version Files

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
 1st: a b c d e f g h i j k l m n 1 2 3 4 5 6 7 8 9 4 3

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
 2nd: a b c d e f g h i j k l m b 0 1 2 3 4 5 6 7 8 9 1 4 3 5

 Delta Files

? 1, 2

Index type frompos topos length buffer
------ ------- ---------- ------- ------- -------
 1. copy 0 0 13 null
 2. insert 0 13 2 “b0”
 3. copy 14 15 9 null
 4. insert 0 24 4 “1435”

The algorithm applies each instruction in ? 1, 2 sequentially. 1st instruction is a

copy instruction, and the algorithm copies 13 bytes from 0th byte position of 1st version

to 0th position of generated 2nd version. Now, new file looks like below.

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
 2nd: a b c d e f g h i j k l m

 16

Then, it applies 2nd instruction which is insert one. It inserts “b0” byte sequence

to 13th position of the file, and it becomes

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
 2nd: a b c d e f g h i j k l m b 0

After instructions are applied, new 2nd version is generated.

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
 2nd: a b c d e f g h i j k l m b 0 1 2 3 4 5 6 7 8 9 1 4 3 5

The complexity of the delta application is O (size (D)), because size (D) bytes

are copied from one location to another.

2.7. Related Work

SCCS [14] stores versions of a repository in a single file and it uses interleaved

deltas. The file is divided into fragments and each fragment includes a set of line(s)

and a header. The header consists of versions where the fragment exists or not. SCCS

traverses the fragments sequentially and combines the fragments together which

belong to the required version. The interleaved storage provides an efficient

reconstruction because reconstruction needs to traverse whole file to retrieve any

versions in a repository. However, the performance of reconstruction reduces while

the repository tends to grow and number of lines increases.

Tichy [15] introduces an algorithm to eliminate unnecessary copies for

unchanged lines while delta application in RCS. It constructs a piece table - one-

dimensional array -, which includes the address of each line in literal instead of line

itself. It applies the delta to the piece table by deleting unnecessary entries from the

piece table and inserting new entries required in next version. Adding a new entry into

the piece table requires shifting the entries below further down however it would be

wise to select a more sophisticated data structure instead of a one-dimensional array.

The resultant piece table includes the addresses of lines in next version, and version is

constructed by gathering the lines. He states that RCS reconstructs a version faster

 17

than SCCS if the number of deltas applied is not greater than or equal to 10. Deltas are

line-oriented in RCS; therefore the solution is not applicable for binary-files. Hunt,

Yo, and Tichy [7] states “A simple technique is to map the binary code into text and

then applying diff. While this works reliably and is widely used in practice, the deltas

produced are typically larger than the originals! ”.

MacDonald [8; 9] mentions a new technique reconstruct operation to retrieve a

version instead of using delta application. The reconstruct creates a balance interval

tree to map byte ranges in required version to literal and insert data of deltas. It

processes the each delta, and inserts the ranges in a delta to interval tree. MacDonald

states that reconstruction algorithm runs in O (n*z log z) time, where n is the number

of delta applied and z is the maximum number of ranges in a delta. To construct the

version, ranges in the resultant tree are copied from literal or insert data of deltas and

it requires O (size (D)) steps. He states “Reconstruct can be considerably more

efficient than simply applying each delta in sequence“.

Subversion [4] project is a replacement of CVS, and it completes the lack of

CVS besides offering the most of its features. Subversion uses vdelta delta algorithm

to compute the delta between two versions therefore deltas also include target copies

as well as source copies and new data -inserts-. Branko [5] designed an algorithm -

delta composition - combines the deltas including target copies for retrieval function

of Subversion. He establishes a relation T = AB(S) = B (A(S)); where A and B are

deltas, S is source file, and T is target file. The algorithm uses a splay tree to map the

ranges like MacDonald’s balanced interval tree. The algorithm has to change each

target copy of A with corresponding source copies and new data, because A should

not depend on intermediate version between S and T before delta composition. The

target copies and new data in B are not related to intermediate version; therefore the

algorithm adds them to the resultant delta directly. However, it adds the equivalent

instruction(s) in A defining the range of source copies in B. Meanwhile, the algorithm

does opposite transformation in resultant delta to reduce cache trashing by increasing

locality of reference. It puts the equivalent target copy when encouraged a source copy

in B previously defined in T. This process keeps the history of source and target of

each copy from A to do opposite transformation, and reduces the number of

instructions in resultant delta.

 18

Zeller [3] introduces a new technique for fast reconstruction problem for block -

copy/insert delta encoding- algorithms in his thesis. The algorithm converts each copy

block in target delta with blocks in source delta and it uses binary search algorithm to

find start offset of first block in source delta covering the copy one. Replace algorithm

is similar to Zeller’s, however replace is designed and implemented without

knowledge of Zeller’s thesis. The thesis compares the algorithm against delta

application. He uses versions of his thesis text as test data, and he constructs a reverse

and a forward chain -70 deltas- generated from CVS. The experimental result shows

that the delta combiner for reverse deltas yields a better execution time than delta

application but it is not valid for forward deltas. He states, by further investigation, the

resultant forward delta mainly includes very small fragments -instructions- because of

truncation. The resultant combined delta of reverse chain because of being less

fragmented, shows better performance in terms of execution time. He finally offers to

divide the deltas into groups and combine each delta group separately due to the worst

performance of small fragmentations. However, intermediate versions at intersection

of adjacent groups are generated.

2.8. Implementation Notes

Apply and replace algorithms are implemented with different memory usage

and data structure type. Two different delta algorithms are implemented, one of which

runs like the general greedy algorithm, constructs one hash table and the other

correcting one-pass constructs two hash tables.

2.8.1. Implementation Notes for the Delta Algorithm

The delta files, used by apply algorithm when destination and intermediate

versions are constructed in memory completely and replace algorithm using that apply

algorithm and constructing hash table, are produced by a delta algorithm that is the

combination of the general greedy algorithm and XDelta. The algorithm constructs a

hash table like XDelta does, however it does not store the fingerprint value itself in an

array. All offsets corresponding to the same entry are stored with a chain. Match

occurs in both directions, and each match is added to delta file with the rules of tail

 19

correction. If a match is found, next search offset is set to current search offset plus the

length of the match. Although it almost produces optimum result, its execution time

becomes worst like the general greedy algorithm for large version files. Then,

correcting one-pass delta algorithm is implemented and it generates the delta files

which are used by apply algorithm when destination and intermediate versions are

constructed on disk or with a buffer in memory and replace algorithm that is optional

to use binary search or hash data structure.

2.8.2. Implementation Notes for Apply Algorithm

The pseudo code in Figure 8 is used as underlying code in the apply algorithm

for the thesis, however it is implemented with some improvements in view of memory

usage and construction of destination file. The code is designed to calculate IO and

CPU times separately. Apply algorithm constructs the (intermediate) versions with

three different options; on disk completely, with a fixed-size buffer in memory, or in

memory completely. If versions are constructed in memory completely, S and insert

stream in ?s, d are read into memory fully, and a memory block with length D is

reserved for the construction of D before delta application. Then, construction of D

occurs in memory. If more than one delta application is necessary, literal file is firstly

read into memory and then each D becomes S of next delta application. While delta

application, intermediate versions (Ds) are not stored except the last one because it is

the required version. If versions are constructed on disk completely or in memory with

a fixed-size memory buffer, S is not taken into memory. The size of buffer is not

enough to construct the versions wholly in memory and buffer is flushed to disk when

it becomes full. These two versions of apply are optional to take the insert stream into

memory or not.

2.8.3. Implementation Notes for Replace Algorithm

Replace algorithm search the instructions in the source delta file using binary

search algorithm and constructing a hash table, and the performance of the algorithm

for each search option can be seen in the experimental results.

 20

CHAPTER 3

REPLACE ALGORITHM

3.1. Replace Algorithm

When a version is requested in a chain and its generation necessitates applying

more than one delta file to literal file , replace algorithm can combine the intermediate

delta files between literal and required version as a single delta in the run time. This

solution prevents unnecessary IO operations which delta application does, because

intermediate versions are not generated and are not stored on disk temporarily in

replace algorithm. The algorithm is applicable for copy/insert delta encoding therefore

it is applicable for binary files.

Figure 9 shows a simple case among three versions to make clear how replace

algorithm works. The two different blocks -block 1 and 2- occur in versions Vk, Vk+1

and Vk+2. The delta algorithm concludes two copy instructions for these blocks and

one insert instruction for block 3 in ? k, k+1. These three blocks occur in continuous

sequence between Vk+1 and Vk+2 and it is concluded as a single copy instruction in

? k+1, k+2. If delta application generates Vk+2, then these three blocks are copied from

one location to another location for two times. Replace algorithm converts the each

instruction in ? k+1, k+2 with the corresponding instruction set in ?k, k+1. The copy

instruction defining the continuous sequence between Vk+1 and Vk+2 can be converted

using copy, insert, and copy instructions set in ? k, k+1. Because these three blocks

defines a byte range in Vk+1 where the single copy instruction in ? k+1, k+2 uses the same

byte range as source to define a different byte range in Vk+2. However, the byte range

defined by a copy instruction in ? k+1, k+2 can be a subset of the byte range defined by

instruction(s) in ? k, k+1. This problem can be handled with re-calculation of edge

instruction(s), whose length shortened or source position changed. Insert instructions

 21

in ? k+1, k+2 do not require any calculations, and become stable except changing their

destination position. The result ing delta is ? k, k+2 and it is constructed from a new

delta. Now, Vk+2 can be constructed with applying ? k, k+2 to Vk. The algorithm

generates the combined delta in run time and does not store it on disk.

Vk

Vk+1 ? k, k+1

Vk+2 ? k+1,k+2

Figure 9: An example of encoding delta files in replace algorithm

Figure 10 includes the pseudo-code of replace algorithm in detail. The

algorithm takes two consecutive delta files - ? k, k+1 and ? k+1, k+2 - as input and produces

the combined delta - ? k, k+2 - as output. It yields the same result using binary search

algorithm on source delta file which is already sorted in destination position or

creating a hash table on source delta file and using binary search on narrow range to

find the index of instruction in ? k, k+1 which defines for current copy instruction in

? k+1, k+2.

1

1

1

 2

 2

 2

3

3

 22

Replace (? k, k+1 , ? k+1, k+2 , , mode)
1.Create an empty ? k, k+2 list
2.if mode == HASH_TABLE_MODE
3. then hashTable ß createHashTable(? k, k+1)

4.for i ß 0 to size[? k+1, k+2] – 1 do
5. if ? k+1, k+2 [i].type == “INSERT”
6. then add(? k, k+2 , CInstruction(? k+1, k+2 [i], topos))
7. continue
8. if mode == BINARY_SEARCH_MODE
9. then index ß binarySearch(? k, k+1 , 0, size[? k, k+1], ? k+1, k+2 [i].frompos)
10. else index ß getFromHashTable(hashTable, ? k+1, k+2 [i].frompos)

11. found ß ? k, k+1 [index]
12. diff ß ? k+1, k+2 [i].frompos – found.topos
13. toPos ß ? k+1, k+2 [i].topos
14. clone ß CInstruction(found, topos, diff)
15. index ß index + 1
16. length ß ? k+1, k+2 [i].length

17. while length > 0 do
18. add(? k, k+2 , clone)
19. length ß length – clone.length
20. if length < 0
21. then shortened(clone, -1*length)
22. break
23. if length == 0 OR index >= size[? k, k+1]
24. then break
25. toPos ß toPos + clone.length
26. clone ß CInstruction(? k, k+1 [index] , topos)
27. index ß index + 1
28. return ? k, k+2

Figure 10: Pseudo-code for replace algorithm

The algorithm produces a hash table to address the instructions in ? k, k+1 (line 3)

if HASH_TABLE_MODE is selected. for loop processes each instruction of ? k+1, k+2

(line 4). If the type of current instruction is insert one, instruction is inserted into ? k, k+2

without any calculations (line 6). Otherwise, it is copy, and the function

getFromHashTable or binarySearch finds which instruction in the hash table defines

the from position of the current instruction. Then, it returns the index of the instruction

in ? k, k+1 (line 9 or 10). The statement (line 14) clones the found instruction and

 23

truncates unnecessary byte(s) from beginning of it. The difference between the source

position of the searched instruction and destination position of found instruction is the

length of unnecessary bytes. The current copy instruction can be defined a subset of an

instruction, an instruction, or a group of consecutive instructions in ? k, k+1. In the

similar way, the last instruction may have unnecessary byte(s) and are eliminated with

cutting byte(s) from the end of instruction by using method shortened (line 21). While

loop replaces the current copy instruction with above three possib le ways in the

statements until length is equal to zero (line 17-27).

HashTable createHashTable(List ?)
1. Create an empty hashList
2. increment ß filesize / size[?]

/* filesize is the size of D for current ? , and it can be calculated with
sum of topos and length of last instruction in the list */

3. for i ß 0 to size [?] – 1 do
4. length ß ? [i].length
5. pos ß ? [i].topos + ? [i].length
6. idx ß ? [i].topos / increment

 7. last ß idx * increment

8. while pos > last do
9. innerList ß hashList [idx]
10. if innerList == null
11. then innerList ß new List
12. hashList [idx] ß innerList

13. idx ß idx + 1
14. add(innerList, i)
15. last ß last + increment
16. return hashList

Figure 11: Pseudo-code for construction of hash table

Before the example to make clear how the algorithm works, how the hash table

to be constructed (Figure 11) , how getFromHashTable (Figure 12) and shortened

method work are described with pseudo code. createHashTable constructs a two

dimensional array as a hash table suitable for replace procedure. The first dimension

of the hash table defines ranges from 0 to increment – 1 as first index, from increment

to 2* increment – 1 as second index, from 2* increment to 3* increment – 1 as third

 24

index, and go on. Each index of the hash table keeps an array to store instructions

falling into the range. getFromHashTable method takes a from position as an input,

and finds which instruction defines from position in ? k, k+1. First of all, the method

finds inner array, calculates begin and end index of it and then calls binarySearch.

getFromHashTable(int frompos)
1. innerList ß hashList [frompos / increment]
2. beginIndex ß innerList [0]
3. endIndex ß innerList [0] + size[innerList] - 1

4. return binarySearch(? k, k+1 , beginIndex, endIndex, frompos)

Figure 12: Pseudo-code of getFromHashTable method for hash table

3.2. An Example to Make Clear How Replace Algorithm works

 Version Files

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
 1st: a b c d e f g h i j k l m n 1 2 3 4 5 6 7 8 9 4 3

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
 2nd: a b c d e f g h i j k l m b 0 1 2 3 4 5 6 7 8 9 1 4 3 5

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
 3rd: z a b c d e f g h i j k l m b 0 0 2 3 4 5 6 7 8 9 1 4 c 3 5

 Delta Files

? 1, 2

Index type frompos topos length buffer
------ ------- ---------- ------- ------- -------
 1. copy 0 0 13 null
 2. insert 0 13 2 “b0”
 3. copy 14 15 9 null
 4. insert 0 24 4 “1435”

 25

? 2, 3

Index type frompos topos length buffer
------ ------- ---------- ------- ------- -------
 1. insert 0 0 1 “z”
 2. copy 0 1 15 null
 3. insert 0 16 1 “0”
 4. copy 16 17 10 null
 5. insert 0 27 3 “c35”

There are three version files and their delta files are generated with general

greedy delta algorithm. If ? 1, 2 and ? 2, 3 delta files are passed to replace algorithm

respectively and search mode is HASH_TABLE_MODE, then hash table are

constructed on ? 1, 2. If BINARY_SEARCH_MODE, there is no need to construct any

data structures. Finally, delta ? 1,3 is produced as an output. The example below is

prepared for replace algorithm using hash data structure because binary search

solution is obvious.

When createHashTable runs for delta ? 1, 2, it yields the hash table in Figure 13.

The file size of 2nd version is calculated by adding to position and length of the last

instruction of ? 1, 2, and it is 28. The number of instruction in ? 1, 2 is 4. According the

4th line, increment value is set to 7. The first dimension of hash table addresses the

each byte of 2nd version. 0th index addresses the bytes between 0 and 6, 1st index

addresses the bytes between 7 and 13, and so on. 2nd instruction defines 13th and 14th

byte positions in 2nd version. 13th position is defined by 1st index and 14th position is

defined by 2nd index, therefore two inner lists keep the index of that instruction.

 26

0

1

2

3

Figure 13: The state of hash table for given example

The algorithm processes the each instruction in ? 2, 3 sequentially.

1st instruction in ? 2, 3 is “insert 0, 0, 1, z”, and it is added into ? 1, 3 without any

calculations.

? 1, 3 (by replace algorithm)

1. insert 0, 0, 1, “z”

2nd instruction in ? 2, 3 is “copy 0, 1, 15”, and it copies 15 bytes from 0th position

of 2nd version to 1st position of 3rd version. from position of the instruction is 0. Get

method called at line 8 of replace method finds the index of instruction where from

position occurs. 0th position falls into 0th index in hash table. The method finds the

index of instruction in inner list with sequantial search. The found instruction in ? 1, 2 is

“copy 0, 0, 13”. From position of searched instruction and to position of found

instruction are equal, and the length of search instruction is greater than the length of

found instruction. Therefore, there is no need any cut at beginning or end of found

instruction. The algorithm clones the found instruction, and changes the to position

with the to position of searched instruction. New cloned instruction is added to ? 1, 3.

1

1 2

2 3

3 4

 27

? 1, 3 (by replace algorithm)

1. insert 0, 0, 1, “z”
2. copy 0, 1, 13, null

The length of 2nd instruction in ? 2, 3 is 15, and first 13 bytes is replaced with new

copy instruction. 15-13=2 bytes are left. The next (3rd) instruction in ? 1, 2 is an insert,

and length of it is 2. It is added into ? 1, 3.

? 1, 3 (by replace algorithm)

1. insert 0, 0, 1, “z”
2. copy 0, 1, 13, null
3. insert 0, 14, 2, “b0”

The searched instruction is replaced with founded instructions completely. The

next instruction (3rd) instruction in ? 2, 3 is an insert, and it is added into ? 1, 3 without

any calculations.

? 1, 3 (by replace algorithm)

1. insert 0, 0, 1, “z”
3. copy 0, 1, 13, null
4. insert 0, 14, 2, “b0”
5. insert 0, 16, 1, “0”

4th instruction in ? 2, 3 is “copy 16, 17, 10”, and from position 16 is defined by 3rd

instruction “copy 14, 15, 9” in ? 1, 2. However, 3rd instruction defines the bytes block

between 15 th and 23 th. The clone of the found instruction becomes “copy 15, 17, 8”.

Because the first byte is unnecessary. From Position and length of clone instruction is

incremented by one, to position is set to searched one. It is added into ? 1, 3.

? 1, 3 (by replace algorithm)

1. insert 0, 0, 1, “z”
2. copy 0, 1, 13, null
3. insert 0, 14, 2, “b0”
4. insert 0, 16, 1, “0”
5. copy 15, 17, 8, null

 28

Then, there are two bytes left to replace with instruction(s). The first two bytes

of 4th instruction in ? 1, 2 is cloned as a new instruction, and it is added into ? 1, 3.

? 1, 3 (by replace algorithm)

1. insert 0, 0, 1, “z”
2. copy 0, 1, 13, null
3. insert 0, 14, 2, “b0”
4. insert 0, 16, 1, “0”
5. copy 15, 17, 8, null
6. insert 0, 25, 2, “14”

The type of the last instruction ? 2, 3 in is insert, it is added into ? 1 , 3 and

combined delta file ? 1, 3 is generated.

? 1, 3 (by replace algorithm)

1. insert 0, 0, 1, “z”
2. copy 0, 1, 13, null
3. insert 0, 14, 2, “b0”
4. insert 0, 16, 1, “0”
5. copy 15, 17, 8, null
6. insert 0, 25, 2, “14”
7. insert 0, 27, 3, “c35”

The delta file below is generated by greedy delta algorithm.

? 1, 3 (by greedy delta algorithm)

Index type frompos topos length buffer
------ ------- ---------- ------- ------- -------
 1. insert 0 0 1 “z”
 2. copy 0 1 13 null
 3. insert 0 14 3 “b00”
 4. copy 15 17 8 null
 5. insert 0 25 5 “14c35”

 29

CHAPTER 4

COMPLEXITY ANALYSIS

Let V1, V2, V3, V4 be four versions of a file and ? 1,2, ? 2,3, ? 3,4 be delta files

respectively. The chain stores V1 as literal, and other versions as delta files. i is the

sum of lengths of each insert, and c is the sum of lengths of each copy in ? 2,3.

4.1. Retrieve Operation

Delta application and delta combination can be compared when more than one

delta application is required. Generation of V1 and V2 are simple. V1 is literal version

and a copy of it is created. If V2 is required, it requires ? 1,2 to be applied to V1.

4.1.1. Delta Application

It applies ? 1,2 to V1, and generates V2. Then, it applies ? 2,3 to V2, and generates

the desired V3. The complexity of the algorithm is size (V2) + size (V3) bytes are read

from one location and written to another.

O (size (V2)) + O (size (V3)) (4.1)

4.1.2. Replace Algorithm

Replace Algorithm replaces instructions in ? 2,3 by using instructions in ? 1,2.

Insert instructions are added into ? 1,3 without any calculations, and each insert

instruction takes O(1) time. Copy instructions are replaced with a subset of a single or

 30

a group of instructions defining its source range in ? 1, 2. Then, the cost of replacing

each copy instruction becomes vital in the algorithm.

Instructions in ? 1,2 are in ascending order releative to To Position. Therefore,

instructions are already sorted, and then complexity of finding an instruction is O (log2

n) over sorted instruction list using binary search algorithm, and n stands for the

number of instructions in ? 1,2. The complexity of the algorithm thus becomes

O (i + c * log2 n) (4.2)

Lemma The algorithm is bounded by:

O (size (? 2, 3)) <= O (i + c * log2 n) <= O (size (? 2, 3) * log2 n) (4.3)

Proof If all instructions are insert in ? 2,3, then lower bound becomes O (size

(? 2,3)) because instructions are added into ? 1,3 without any calculations. If all

instructions are copy, then upper bound becomes O (size (? 2, 3) * log2 n). If the cost of

delta application is added, the complexity finally becomes

 O (i + c * log2 n) + O (size (V3)) (4.4)

By the way, hash table data structure can also be used besides binary search

algorithm to find the From Position of each copy instruction in ? 2,3. Entries in the HT

define a consecutive fixed-size range and keep the index of instructions defining the

corresponding byte range. The range is calculated by r = size (V2) / size (? 1,2). r is the

average length of an instruction. If each instruction had the same and equal size, then r

would be 1. Therefore on average, it can be concluded that a few instructions fall into

the range, assuming that the number of instructions in a range is x. O (size (V2))

stands for construction of HT.

O (i + c * log2 x) + O (size (V2)) (4.5)

If the cost of delta application of generated delta is added, the complexity

becomes

O (i + c * log2 x) + O (size (V2)) + O (size (V3)) (4.6)

 31

If more than 2 delta files are combined, HT construction except the first one can

be done while creating combined delta. Transformed instructions can be put into hash

table, while they are inserted in combined delta list. However, binary search algorithm

always shows better performance than HT data structure in experimental results. The

reader can see the performance results in Chapter Experimental Results.

When there is a memory usage limitation or working on large version files; such

as S cannot be read into memory at once, D file cannot be constructed completely in

memory without disk I/O, replace algorithm can be considerably efficient than delta

application. Delta application has to write generated intermediate versions to disk, and

read them as S from disk for the next delta application.

4.2. Delete Operation

When a version at the edges of a chain is deleted, the solution is clear. The

version can be a literal one or the last delta in the chain. If it is the last delta, it is

deleted from disk. If it is literal, then the consecutive delta file is applied to literal one

and old literal is deleted from disk. Deletion of intermediate version in the chain

requires more operations.

4.2.1. Delta Application

The deletion of V3 requires generation of V2 and V4, and computation of ?2,4

by using them. This application necessitates 3 time delta applications, and 1 time delta

computation.

O (size (V2)) + O (size (V3)) + O (size (V4)) + DA (size (V2), size (V4)) (4.7)

DA is the delta application. If the delta algorithm runs in quadratic time, it

becomes dominant in the complexity. Generated intermediate versions besides ?2,3

and ?3,4 are deleted from the disk.

4.2.2. Replace Algorithm

The replace algorithm takes delta files ?2,3, ?3,4 as input, and produces the ?2,4,

then ?2,3 and ?3,4 are deleted from the disk. The deletion of delta files is the same with

 32

delta application except intermediate versions. The produced delta file is not optimum,

however size of combined delta file can be quite efficient when considering the

execution time of the algorithm or working with large version files.

 33

CHAPTER 5

EXPERIMENTAL RESULTS

A real database table is used to produce version chains with variable size and

percentage in terms of file size for experimental results. Each version chain (Figure

14) has 5 version files, and there is a difference ratio between two adjacent versions in

terms of size. Chain in the figure is used as a standard in our experimental work. The

file size of first version (literal) in a cha in approximately can be 50 KB, 100 KB, 300

KB, 500 KB, 1 MB, 3 MB, 5 MB or 10 MB. The file size difference ratio for each

chain can be 1, 3, 5, 10, 20, 30, or 50 %. For example; the file size of first version for

a chain is 1 MB, and the difference ratio is 10. Then, file sizes in chain are 1 MB, 1.1

MB, 1.21 MB, 1.331 MB, and 1.4641 MB respectively. There are 8 different file sizes

and 7 difference ratio options; therefore 56 version chains are created and used in the

experimental results. Also some real-life packages at http://www.gnu.org/directory/all/

are used to observe the characteristics of replace algorithm.

Figure 14: The figure of our generated version chain for experimental results

Each operation (retrieve and delete) is executed twenty times, and their average

value is taken in consideration. The UNIX “diff” command is used to calculate the

execution time of apply algorithm when intermediate versions are constructed on disk

completely or with a fixed-size buffer in memory and replace algorithm which uses

one of the above versions of apply. The execution time is split into user and system

 34

time. User time indicates the time spent for the CPU process in a program, and system

time gives the execution time in kernel and it mainly includes I/O process time. Total

time is the sum of both user and system times. The execution time of apply algorithm

generating intermediate versions in memory completely and replace algorithm us ing

this version of apply is calculated by the program itself. The computer used for

experimental results has Intel Pentium 4 CPU 2.4 GHz, and 512 MB RAM. The

operating system is Mandrake 9.1.

5.1. Retrieve Operation

Delta application and delta combination can be compared when more than one

delta application is necessary. All versions except literal file and previous version of it

in a chain can be generated by both algorithms and their execution results can be

compared meaningfully. For example; each generated chain for the thesis has 5

version files and version 5 is literal file in Figure 14, therefore delta application and

delta combination can be compared for version 1, 2 and 3.

5.1.1. How Delta Application works for Retrieve Operation

It simply applies intermediate deltas to literal F5 to produce the required one. If

version 2 is required, apply is called three times and the path of execution can be

described as

 Apply(F5, ? 5,4) + Apply(F4, ? 4,3) + Apply(F3, ? 3,2)

The algorithm requires (n – i) times of delta application to generate version i

from the chain, and version n is the literal one.

5.1.2. How Delta Combination works for Retrieve Operation

It combines intermediate delta files between literal and the required one as a

single combined delta, and it applies the combined delta to literal F5. If version 2 is

required, then the path of execution can be described as

Replace(? 5,4, ? 4,3) + Replace(? 5,3, ? 3,2) + Apply(F5, ? 5,2).

 35

The algorithm calls replace (n – i - 1) times to generate combined delta file ? n, i

and applies it to version n.

5.2. Run Results for Retrieve Operation

The below cases are studied to observe the retrieve operation of apply and

replace algorithms individually and to compare both algorithms in the thesis.

• The performance of apply algorithm when insert stream is on disk or in

memory.

• The performance of apply algorithm when destination file is

constructed on disk completely, with a fixed-size buffer in memory, or

in memory completely. Buffer size is not enough to construct the

destination file in memory completely.

• The performance of replace algorithm when it uses binary search

algorithm or when it constructs a hash table to find an instruction in an

already sorted array.

• The performance considering I/O and CPU time of apply and replace

algorithms with a fair comparison

5.2.1. The performance of Apply algorithm when insert stream
is on disk or in memory

The Figures (15, 16, 17 and 18) observe the performance of apply algorithm

when insert stream is on disk or in memory during delta application. Although insert

stream length is sufficiently large for both packages (Table 1 and 2), taking the insert

stream in memory does not change the total execution time of apply at all. A small

improvement is achieved in system time at some figures when insert stream is taken

into memory. However, this improvement brings an overhead to user time. The figures

imply that insert stream being on disk or in memory has no effect on the total

execution time of apply. Therefore, it can be stated that taking the insert stream into

memory does not cause any loss on the performance of the replace algorithm in terms

of total execution time.

 36

0

200

400

600

800

1000

1 2 3 4

Version No

E
xe

cu
ti

o
n

 T
im

e
(m

s)

System Time(Apply, Insert
Stream on disk)

System Time(Apply, Insert
Stream in memory)

 (A)

0

200

400

600

800

1 2 3 4

Version No

E
xe

cu
ti

o
n

 T
im

e
(m

s)

User Time(Apply, Insert
Stream on disk)

User Time(Apply, Insert
Stream in memory)

 (B)

0

500

1000

1500

2000

1 2 3 4

Version No

E
xe

cu
ti

o
n

 T
im

e
(m

s)

Total Time(Apply, Insert
Stream on disk)

Total Time(Apply, Insert
Stream in memory)

 (C)

Figure 15: The performance of apply algorithm when insert stream is on disk or

in memory, and intermediate versions are constructed on disk for package gawk

 37

0

100

200

300

400

1 2 3 4

Version No

E
xe

cu
tio

n
 T

im
e

(m
s)

System Time(Apply, Insert
Stream on disk)

System Time(Apply, Insert
Stream in memory)

 (A)

0
100
200
300
400
500
600
700

1 2 3 4

Version No

E
xe

cu
ti

o
n

 T
im

e
(m

s)

User Time(Apply, Insert
Stream on disk)

User Time(Apply, Insert
Stream in memory)

 (B)

0

200

400

600

800

1000

1200

1 2 3 4

Version No

E
xe

cu
ti

o
n

 T
im

e
(m

s)

Total Time(Apply, Insert
Stream on disk)

Total Time(Apply, Insert
Stream in memory)

 (C)

Figure 16: The performance of apply algorithm when insert stream is on disk or

in memory, and intermediate versions are constructed with a buffer in memory for

package gawk

 38

0

1000

2000

3000

4000

5000

6000

1 2

Version No

E
xe

cu
ti

o
n

 T
im

e
(m

s)

System Time(Apply, Insert
Stream on disk)

System Time(Apply, Insert
Stream in memory)

 (A)

0

1000

2000

3000

4000

1 2

Version No

E
xe

cu
ti

o
n

 T
im

e
(m

s)

User Time(Apply, Insert
Stream on disk)

User Time(Apply, Insert
Stream in memory)

 (B)

0

2000

4000

6000

8000

10000

1 2

Version No

E
xe

cu
ti

o
n

 T
im

e
(m

s)

Total Time(Apply, Insert
Stream on disk)

Total Time(Apply, Insert
Stream in memory)

 (C)

Figure 17: The performance of apply algorithm when insert stream is on disk or

in memory, and intermediate versions are constructed on disk for package chicken

 39

0

500

1000

1500

2000

1 2

Version No

E
xe

cu
tio

n
 T

im
e

(m
s)

System Time(Apply, Insert
Stream on disk)

System Time(Apply, Insert
Stream in memory)

 (A)

0

500
1000

1500

2000

2500

3000

1 2

Version No

E
xe

cu
ti

o
n

 T
im

e
(m

s)

User Time(Apply, Insert
Stream on disk)

User Time(Apply, Insert
Stream in memory)

 (B)

0

1000

2000

3000

4000

5000

1 2

Version No

E
xe

cu
ti

o
n

 T
im

e
(m

s)

Total Time(Apply, Insert
Stream on disk)

Total Time(Apply, Insert
Stream in memory)

 (C)

Figure 18: The performance of apply algorithm when insert stream is on disk or

in memory, and intermediate versions are constructed with a buffer in memory for

package chicken

 40

Table 1: The statistics of instructions that are applied by apply and replace

algorithms for package gawk

Algorithm Version
No

Apply
Copy #

Apply
Copy

Length

Average
Copy

Length

Apply
Insert

Apply
Insert
Length

Average
Insert
Length

Apply 1 109,812 24,373,007 222 75,652 5,353,713 71
Apply 2 108,118 20,485,349 189 74,485 5,319,451 71
Apply 3 77,129 18,770,449 243 48,065 3,091,951 64
Apply 4 56,288 14,229,416 253 33,300 1,591,384 48
Replace 1 26,480 966,994 37 46,284 2,954,926 64
Replace 2 26,459 974,364 37 44,566 2,968,036 67
Replace 3 32,196 4,013,366 125 29,363 2,028,234 69
Replace 4 46,375 6,145,114 133 29,105 1,412,006 49

Table 2: The statistics of instructions that are applied by apply and replace

algorithms for package chicken

Algorithm Version
No

Apply
Copy #

Apply
Copy

Length

Average
Copy

Length

Apply
Insert #

Apply
Insert
Length

Average
Insert
Length

Apply 1 853,081 57,716,083 68 397,974 9,611,917 24
Apply 2 649,933 38,286,711 59 304,471 7,506,569 25
Replace 1 500,928 15,785,214 32 335,905 5,749,506 17
Replace 2 465,800 16,295,555 35 271,701 5,597,565 21

5.2.2. The performance of Apply algorithm when destination
file is constructed on disk completely or with a fixed-size
buffer in memory

Figures 19 and 20 show that using memory buffer to construct intermediate

versions in apply algorithm improves the system time. When intermediate versions are

constructed on disk completely; each instruction, even if negligible in length, copies a

byte block from one location to another on disk. However, a buffer in memory

eliminates disk seek as long as it is not full.

 41

0
10
20
30
40
50
60
70
80
90

1 2 3

Version No

E
xe

cu
ti

o
n

 T
im

e
(m

s)

System Time(Apply,
versions on disk)

System Time(Apply,
versions in buffer)

Figure 19: The comparison of apply algorithm when intermediate versions are

constructed on disk fully and apply when they are constructed with a buffer in

memory while insert stream is on disk for package mailman

0
10
20
30
40

50
60

70
80

1 2 3

Version No

E
xe

cu
ti

o
n

 T
im

e
(m

s)

System Time(Apply,
versions on disk)

System Time(Apply,
versions in buffer)

Figure 20: The comparison of apply algorithm when intermediate versions are

constructed on disk fully and apply when they are constructed with a buffer in

memory while insert stream is in memory for package mailman

5.2.3. The performance of Replace algorithm using binary
search algorithm or hash data structure

Figures 21 and 22 show that binary search algorithm reduces the user execution

time of replace algorithm when compared with hash data structure, because hash data

structure consumes an extra time to construct a hash table although it searches over a

narrow range. While the difference ratio of the two adjacent versions with respect to

file size increases, the difference between the user times also increases in Figure 21. It

 42

is also concluded that replace algorithm using binary search produces the required

version in less time between 500 KB and 10 MB chains from experimental results. It

means that when the number of instructions increases, binary search becomes

applicable instead of hash data structure. Figure 22 shows that the number of delta

files that are combined and the difference between the user times increases.

0
200
400
600
800

1000
1200
1400
1600
1800

1 3 5 10 20 30 50

Difference Ratio Between Two
Adjacent Files wrt file size

E
xe

cu
ti

o
n

 T
im

e
(m

s)

User Time(Replace,
binary search algorithm)

User Time(Replace, hash
data structure)

Figure 21: User Time of replace algorithm when binary search or hash data

structure is used, and intermediate versions are constructed with a buffer in

memory for 5 MB Chains

0
100
200
300
400
500
600
700
800
900

1 2 3 4 5 6 7 8 9 10 11

Version No

E
xe

cu
ti

o
n

 T
im

e
(m

s)

User Time(Replace,
binary search algorithm)

User Time(Replace, hash
data structure)

Figure 22: User Time of replace algorithm when binary search or hash data

structure is used, and intermediate versions are constructed with a buffer in

memory for package nano

 43

5.2.4. The performance of Apply and Replace algorithms with
a fair comparison

Section 5.2.2 and 5.2.3 show that best total execution time is achieved in apply

algorithm generating intermediate versions with a fixed-size buffer in memory and

replace algorithm using binary search compared to their alternatives. Section 5.2.1

proves that when insert stream is on disk or in memory has no effect on the total

execution time of apply algorithm during delta application. Therefore, a fair

comparison can be made between replace algorithm using binary search, and apply

algorithm taking insert stream into memory while intermediate versions are

constructed with a buffer in memory.

Figures (23, 24 and 25) show that replace algorithm provides great reduction in

system time when compared to delta application and the conclusion is valid for all our

experiments. As previously mentioned, delta combination does not generate

intermediate versions and the difference between system times is a waste consumed by

delta application. Replace algorithm generates the version in less time than apply

algorithm in Figures (26, 27 and 28).

The improvement in system time brings an overhead to user time of replace

algorithm. The reduction in the system time is greater than increment in the user time

for our generated chains. As a result, it is concluded that replace algorithm yields a

better execution time when considering our generated chains especially while

difference ratio increases for the series between 300 KB and 10 MB.

0

500

1000

1500

1 3 5 10 20 30 50

Difference Ratio Between Two
Adjacent Files wrt file size

E
xe

cu
ti

o
n

 T
im

e
(m

s)

System Time(Replace,
binary search algorithm)

System Time(Apply, Insert
Stream in memory)

Figure 23: The system time comparison of apply and replace algorithm when

intermediate versions are constructed with a buffer in memory for 10 MB Chains

 44

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9

Version No

E
xe

cu
ti

o
n

 T
im

e
(m

s)

System Time(Replace,
binary search algorithm)

System Time(Apply, Insert
Stream in memory)

Figure 24: The system time comparison of apply and replace algorithm when

intermediate versions are constructed with a buffer in memory for package

metahtml

0

20

40

60

80

1 2 3

Version No

E
xe

cu
ti

o
n

 T
im

e
(m

s)

System Time(Replace,
binary search algorithm)

System Time(Apply, Insert
Stream in memory)

Figure 25: The system time comparison of apply and replace algorithm when

intermediate versions are constructed with a buffer in memory for package marst

0

1000

2000

3000

4000

1 3 5 10 20 30 50

Difference Ratio Between Two
Adjacent Files wrt file size

E
xe

cu
ti

o
n

 T
im

e
(m

s)

Total Time(Replace,
binary search algorithm)

Total time(Apply, Insert
Stream in memory)

Figure 26: The total time comparison of apply and replace algorithm when

intermediate versions are constructed with a buffer in memory for 10 MB Chains

 45

0

50

100

150

200

250

1 2 3

Version No

E
xe

cu
ti

o
n

 T
im

e
(m

s)

Total Time(Replace,
binary search algorithm)

Total Time(Apply, Insert
Stream in memory)

Figure 27: The total time comparison of apply and replace algorithm when

intermediate versions are constructed with a buffer in memory for package

mailman

0

200

400

600

800

1000

1200

1 2 3 4

Version No

E
xe

cu
ti

o
n

 T
im

e
(m

s)

Total Time(Replace,
binary search algorithm)

Total Time(Apply, Insert
Stream in memory)

Figure 28: The total time comparison of apply and replace algorithm when

intermediate versions are constructed with a buffer in memory for package gawk

The delta application almost beats delta combination for each of our generated

version chains when apply algorithm generates the intermediate versions in memory

completely. CPU performance of replace algorithm is dominant in execution time.

While delta application generates the required version, it also produces intermediate

versions temporarily. These intermediate files are not stored on disk while execution,

because memory size is enough to keep an intermediate version. That becomes the

main advantage of delta algorithm; because it does not require any IO operations for

intermediate files.

 46

0

100

200

300

400

1 3 5 10 20 30 50

Difference Ratio Between Two
Adjacent Files wrt file size

E
xe

cu
ti

o
n

 T
im

e
(m

s)

IO Time(Apply, versions
are constructed in
memory completely)

IO Time(Replace, hash
data structure)

 (A)

0
200
400
600
800

1000

1 3 5 10 20 30 50

Difference Ratio Between Two
Adjacent Files wrt file size

E
xe

cu
ti

o
n

 T
im

e
(m

s)

CPU Time(Apply, versions
are constructed in
memory completely

CPU Time(Replace, hash
data structure)

 (B)

0

500

1000

1500

1 3 5 10 20 30 50

Difference Ratio Between Two
Adjacent Files wrt file size

E
xe

cu
ti

o
n

 T
im

e
(m

s)

Total Time(Apply,
versions are constructed
in memory completely)

Total Time(Replace, hash
data structure)

 (C)

Figure 29: The comparison of apply when intermediate versions are

constructed in memory completely and replace algorithm using hash data structure

for 1 MB Chains and execution times are calculated by the program itself

 47

5.3. Delete Operation

The performance of apply and replace algorithms are compared also for delete

operation of a version in a chain. Deleting edge versions of a chain , literal or first one,

is straightforward, in which replace algorithm is not applicable. Deletion of version 1

requires only deleting ? 2,1 from disk, deletion of literal requires applying ? 5,4 to F5

and deleting F5 from disk.

5.3.1. How Delta Application works for Delete Operation

Deletion of version 2 from our chain requires generating version 1 and version 3

internally, then calculating delta file ?3,1 of them, and deleting ?2,1 and ?3,2 from

disk. Generation of versions in deletion operation requires apply algorithm 4 times for

the case. If version n is literal and version i which is not at any edge of the chain will

be deleted, the algorithm requires delta application (n + 1 – i) times. The execution

path can be described as

Apply(F5, ? 5, 4) + Apply(F4 , ? 4, 3) + Apply(F3 , ? 3,2) + Apply(F2, ? 2,1) +

DeltaAlgorithm(F3, F1)

Apply algorithm has a linear execution time therefore the execution time of the

delta algorithm becomes vital in delete operation. If the general greedy algorithm is

preferred, it runs in O (n2) time and it becomes dominant on the total execution time

(Figure 29). If a linear delta algorithm is selected, it runs in O (n) time.

5.3.2. How Delta Combination works for Delete Operation

It is straightforward to delete version 2 with replace algorithm, it combines ? 3,2

and ? 2,1 only, and the path of execution can be described as

Replace(? 3,2, ? 2,1)

 48

5.4. Run Results for Delete Operation

Figure 30 compares apply algorithm when intermediate versions are constructed

in memory completely and replace algorithm using hash data structure. The execution

time of apply algorithm is divided into two bars to show the overhead of the general

greedy delta algorithm. The second bar indicates the execution time of apply

algorithm which does not include the time consumed by the delta algorithm and the

longest bar indicates the total execution time of apply algorithm. As seen in the figure,

replace algorithm runs in less time than apply algorithm even if the time consumed by

delta algorithm is not included in the second bar. Its performance is better than delta

application not including the performance of delta algorithm for larger than 500 KB

chains. However, replace algorithm does not produce an optimum delta file as a delta

algorithm does. It can be preferable when working on large version files and/or when

the performance of delta algorithm is considered.

0

500

1000

1500

2000

2500

3000

3500

4000

1 3 5 10 20 30 50

Difference Ratio Between Two
Adjacent Files wrt file size

E
xe

cu
tio

n
Ti

m
e

(m
s)

Total Time(Replace, hash
data structure)

Total Time(Apply, delta
algorithm execution time is
NOT added)

Total Time(Apply,
intermediate versions are
constructed in memory
completely and delta
algorithm execution time is
added)

Figure 30: The comparison of apply when intermediate versions are

constructed in memory completely and replace algorithm using hash data structure

to delete version 2 from 3 MB Chains and execution times are calculated by the

program itself

 49

CHAPTER 6

CONCLUSIONS

The strategy of replace algorithm is to eliminate the I/O operations that are done

for intermediate versions to retrieve a version in a chain while delta application.

Replace algorithm combines the intermediate delta files and generates a single

combined delta in the run time. It finally generates the required version with one delta

application using the single combined delta.

Delta application is better than delta combination when apply algorithm

generates the intermediate versions in memory completely instead of storing them on

disk temporarily. However, memory capacity and server load may not allow

intermediate versions to be constructed in memory completely especially while

working on large version files. If an intermediate version of a chain cannot be stored

in memory wholly during delta application, then replace algorithm can be applicable

and yield a better solution.

Many cases are studied and experiments are performed to observe the

performance of delta application and delta combination for retrieve operation, and

below results are concluded.

• There is no significant improvement in total execution time of apply

algorithm when insert stream is on disk or in memory. Therefore, it can

be stated that although loading insert stream into memory during delta

combination is possible, it does not affect the performance of replace

algorithm.

• Generating intermediate versions with a buffer in memory improves the

I/O time of apply algorithm.

 50

• Using binary search in the replace algorithm reduces the CPU time

when compared with hash table search, because hash table construction

causes a significant overhead. Our experiments show that binary search

becomes preferable when the number of instructions in a delta file

increases.

• Replace algorithm reduces the I/O operations when it is compared with

delta application because it does not generate intermediate versions,

temporarily, on disk. Thus, it would be useful for reducing I/O load on

a file server, while shifting the CPU load to the clients.

Delete operation for replace algorithm is simple; it combines two adjacent delta

files of version which will be deleted. However, delta application produces adjacent

versions, and computes difference of them. Replace algorithm for deleting

intermediate versions in a chain is can be a solution when working on large files. Its

performance is better than delta application without considering performance of delta

algorithm for larger than 500 KB Chains.

6.1. Future Work

Our experimental results show that replace algorithm causes a reduction in the

I/O time while it also causes CPU time to be increased. Thus, considering total

execution time, the CPU overhead eliminates some of the reduction in I/O time. Our

results also show that delta combination generates the same version in less time than

delta application for our generated chains and some gnu software packages delivered

over Internet. If the characteristics of replace algorithm can be defined for different

data types, then it can be decided that replace algorithm or apply algorithm is

preferable by checking the characteristics of the delta file.

A version chain generator will be implemented, and it will produce the versions

in terms of the count, length and ratio of instructions and file size. The combined delta

produced by replace algorithm will be compared with the one produced by delta

application in terms of delta file size, number of instruction – insert and copy -, and

sum of length of each instruction. Therefore, the characteristic of the algorithm can be

 51

defined with these data sets. Then, a version control system can decide to use apply or

replace algorithm to generate a version from a chain.

 52

REFERENCES

 [1] Brenda S. Baker, Udi Manber, and Robert Muth, “Compressing Differences

of Executable Code”, April 1999.

[2] G. Myers. A fast bit-vector algorithm for approximate pattern matching

based on dynamic programming. In Proc. CPM'98, LNCS v. 1448, pp. 1-13, Springer-

Verlag, 1998.

[3] Henner Zeller, "Design and Implementation of a Distributed Application

Independent Versioning Object Repository and Investigation of its Usability as a

Component of the System CAMPUS for Case-Based Training in Medicine". MS

Thesis. Medizinische Informatik, Universität Heidelberg Fachhochschule Heilbronn,

July 2001.

[4] http://subversion.tigris.org , Apr 26, 2004

[5] http://svn.collab.net/repos/svn-xml/trunk/notes/fs-improvements.txt , Apr

26, 2004

[6] J.W. HUNT , T.G. SZYMANSKI A fast algorithm for computing longest

common subsequences. Communications of the ACM, 20(5):350–353, May 1977.

[7] J. J. Hunt, Kiem-Phong Vo, and W. F. Tichy. Delta algorithms: An

empirical analysis. ACM Transactions on Software Engineering and Methodology, v.

7(2): pp. 192–214, 1998.

[8] Josh MacDonald. File System Support for Delta Compression. MS Thesis.

Department of Electrical Engineering and Computer Science, University of California

at Berkeley EECS, May 2000

 53

[9] Josh MacDonald, "Versioned File Archiving, Compression and

Distribution" UC Berkeley.

[10] Miklos Ajtai, Randal Burns, Ronald Fagin, Darrell D. E. Long, Larry

Stockmeyer, "Compactly Encoding Unstructured Inputs with Differential

Compression" v. 49(3): pp. 318–367, 2002.

[11] Randal C. Burns, Darrell D. E. Long, "Efficient Distributed Backup with

Delta Compression," Proceedings of the Fifth Workshop on I/O in Parallel and

Distributed Systems, ACM: San Jose, pp. 26-36, Nov 1997

[12] Randal C. Burns, "Differential Compression: A Generalized Solution for

Binary Files". MS Thesis. Department of Computer Science, University of California

at Santa Cruz, December 1996.

[13] Randal C. Burns , Larry Stockmeyer and Darrell Long. "Experimentally

Evaluating In-Place Delta Reconstruction," Proceedings of the NASA and IEEE Mass

Storage Conference, College Park: IEEE, pp. 137–151, April 2002.

[14] Rochkind, Marc J., "The Source Code Control System" IEEE Transactions

on Software Engineering, vol. SE-1, no. 4, pp. 364-370, Dec. 1975.

[15] W.F. Tichy, "RCS- A System for Version Control", Software-Practice and

Experience, vol. 15, no. 7, pp. 637-654, July 1985

[16] W. F. Tichy. "The string-to-string correction problem with block move"

ACM Transactions on Computer Systems, 2(4), November 1984.

 54

APPENDIX A

THE VERSIONS AND THEIR FILE SIZE OF GNU
PACKAGES USED IN EXPERIMENTAL RESULTS

 Table A.1: The versions of package mailman

Name Size (byte)
1 Mailman-2.0.1.tar 1,710,080
2 Mailman-2.0.2.tar 1,710,080
3 Mailman-2.0.3.tar 1,710,080
4 Mailman-2.0.4.tar 1,710,080
5 Mailman-2.0.5.tar 1,720,320

 Table A.2: The versions of package metahtm

Name Size (byte)
1 metahtml-5.00.tar 5,509,120
2 metahtml-5.01.tar 8,007,680
3 metahtml-5.02.tar 8,816,640
4 metahtml-5.03.tar 9,656,320
5 metahtml-5.04.tar 9,666,560
6 metahtml-5.05.tar 9,963,520
7 metahtml-5.06.tar 10,137,600
8 metahtml-5.07.tar 9,420,800
9 metahtml-5.08.tar 12,072,960

10 metahtml-5.09.tar 9,123,840
11 metahtml-5.091.tar 10,362,880

 55

 Table A.3: The versions of package nano

Name Size (byte)
1 nano-1.0.0.tar 1,433,600
2 nano-1.0.1.tar 1,433,600
3 nano-1.0.2.tar 1,546,240
4 nano-1.0.3.tar 1,648,640
5 nano-1.0.4.tar 1,740,800
6 nano-1.0.5.tar 1,812,480
7 nano-1.0.6.tar 1,832,960
8 nano-1.0.7.tar 1,863,680
9 nano-1.0.8.tar 1,904,640

10 nano-1.0.9.tar 1,955,840
11 nano-1.2.0.tar 3,256,320
12 nano-1.2.1.tar 3,266,560
13 nano-1.2.3.tar 3,491,840

 Table A.4: The versions of package marst

Name Size (byte)
1 Marst-2.0.tar 716,800
2 Marst-2.1.tar 1,556,480
3 Marst-2.2.tar 1,566,720
4 Marst-2.3.tar 1,464,320
5 Marst-2.4.tar 1,423,360

 56

APPENDIX B

THE INSTRUCTION STATISTICS OF THE
GENERATED VERSION CHAINS AND GNU

PACKAGES USED IN EXPERIMENTAL RESULTS

Package Marst

Table B.1: The statistics of instructions that are applied by Apply and Replace

algorithms for package marst

Algorithm Version
No

Apply
Copy #

Apply
Copy

Length

Average
Copy

Length

Apply
Insert

Apply
Insert
Length

Average
Insert
Length

Apply 1 12,457 4,101,344 329 9,994 1,202,976 120
Apply 2 7,281 3,871,092 532 5,472 716,428 131
Apply 3 6,663 2,320,810 348 5,118 710,230 139
Replace 1 7,444 142,278 19 7,556 574,522 76
Replace 2 6,682 847,609 127 5,618 708,871 126
Replace 3 6,473 859,055 133 5,157 707,665 137

Table B.2: The statistics of instructions that are replaced by Replace algorithm

for package marst

Algorithm Version
No

Replace
Copy #

Replace
Copy

Length

Average
Copy

Length

Replace
Insert #

Replace
Insert
Length

Average
Insert
Length

Replace 1 11,926 2,643,300 222 9,727 1,196,700 123
Replace 2 6,750 2,413,048 357 5,205 710,152 136
Replace 3 6,132 862,766 141 4,851 703,954 145

 57

Package Mailman

Table B.3: The statistics of instructions that are applied by Apply and Replace

algorithms for package mailman

Algorithm Version
No

Apply
Copy #

Apply
Copy

Length

Average
Copy

Length

Apply
Insert #

Apply
Insert
Length

Average
Insert
Length

Apply 1 3,241 6,827,578 2,107 2,784 12,742 5
Apply 2 2,564 5,119,388 1,997 2,236 10,852 5
Apply 3 1,908 3,410,599 1,788 1,699 9,561 6
Replace 1 1,551 1,700,262 1,096 1,552 9,818 6
Replace 2 1,491 1,701,004 1,141 1,514 9,076 6
Replace 3 1,431 1,701,347 1,189 1,359 8,733 6

Table B.4: The statistics of instructions that are replaced by Replace algorithm

for package mailman

Algorithm Version
No

Replace
Copy #

Replace
Copy

Length

Average
Copy

Length

Replace
Insert #

Replace
Insert
Length

Average
Insert
Length

Replace 1 2,524 5,121,020 2,029 2,218 9,220 4
Replace 2 1,847 3,412,830 1,848 1,670 7,330 4
Replace 3 1,191 1,704,041 1,431 1,133 6,039 5

 58

Package MetaHtml

Table B.5: The statistics of instructions that are applied by Apply and Replace

algorithms for package metahtml

Algorithm Version
No

Apply
Copy #

Apply
Copy

Length

Average
Copy

Length

Apply
Insert #

Apply
Insert
Length

Average
Insert
Length

Apply 1 279,506 72,272,273 259 218,609 21,341,807 98
Apply 2 261,387 68,282,516 261 206,046 19,822,444 96
Apply 3 221,641 61,971,804 280 174,647 18,125,476 104
Apply 4 175,875 57,266,082 326 137,597 14,014,558 102
Apply 5 168,716 47,639,425 282 132,262 13,984,895 106
Apply 6 126,177 40,464,550 321 99,653 11,493,210 115
Apply 7 100,311 32,925,487 328 79,952 9,068,753 113
Apply 8 81,936 24,740,365 302 65,792 7,116,275 108
Apply 9 28,043 9,040,691 322 23,944 3,032,269 127
Replace 1 37,450 1,094,001 29 89,280 4,415,119 49
Replace 2 46,026 1,446,868 31 144,880 6,560,812 45
Replace 3 48,428 1,752,288 36 120,361 7,064,352 59
Replace 4 56,528 4,203,944 74 109,108 5,452,376 50
Replace 5 55,752 4,212,220 76 106,587 5,454,340 51
Replace 6 48,702 4,912,543 101 76,565 5,050,977 66
Replace 7 46,680 5,382,940 115 61,907 4,754,660 77
Replace 8 43,248 6,066,925 140 44,478 3,353,875 75
Replace 9 28,043 9,040,691 322 23,944 3,032,269 127

Table B.6: The statistics of instructions that are replaced by Replace algorithm

for package metahtml

Algorithm Version
No

Replace
Copy #

Replace
Copy

Length

Average
Copy

Length

Replace
Insert #

Replace
Insert
Length

Average
Insert
Length

Replace 1 265,084 63,051,373 238 207,491 20,199,827 97
Replace 2 246,965 59,061,616 239 194,928 18,680,464 96
Replace 3 207,219 52,750,904 255 163,529 16,983,496 104
Replace 4 161,453 48,045,182 298 126,479 12,872,578 102
Replace 5 154,294 38,418,525 249 121,144 12,842,915 106
Replace 6 111,755 31,243,650 280 88,535 10,351,230 117
Replace 7 85,889 23,704,587 276 68,834 7,926,773 115
Replace 8 67,514 15,519,465 230 54,674 5,974,295 109
Replace 9 26,102 9,113,641 349 19,677 2,959,319 150

 59

Package Nano

Table B.7: The statistics of instructions that are applied by Apply and Replace

algorithms for package nano

Algorithm Version
No

Apply
Copy #

Apply
Copy

Length

Average
Copy

Length

Apply
Insert

Apply
Insert
Length

Average
Insert
Length

Apply 1 53,482 19,403,421 363 42,859 4,291,939 100
Apply 2 52,243 17,974,635 344 41,853 4,287,125 102
Apply 3 48,644 16,636,063 342 38,857 4,192,097 108
Apply 4 47,269 15,142,186 320 37,749 4,139,734 110
Apply 5 45,525 13,537,888 297 36,215 4,095,392 113
Apply 6 44,276 11,863,024 268 35,229 4,029,456 114
Apply 7 42,315 10,064,339 238 33,703 4,015,661 119
Apply 8 40,901 8,273,680 202 32,624 3,973,360 122
Apply 9 38,294 6,460,897 169 30,605 3,922,463 128
Apply 10 32,807 5,471,995 167 27,720 3,006,725 108
Apply 11 17,565 4,854,489 276 14,240 1,668,391 117
Replace 1 2,223 93,563 42 23,074 1,340,037 58
Replace 2 2,128 89,907 42 22,826 1,343,693 59
Replace 3 2,421 102,120 42 22,686 1,444,120 64
Replace 4 2,709 111,156 41 26,322 1,537,484 58
Replace 5 2,968 119,852 40 29,080 1,620,948 56
Replace 6 3,133 120,581 38 31,537 1,691,899 54
Replace 7 3,247 126,927 39 30,662 1,706,033 56
Replace 8 3,205 128,288 40 30,667 1,735,392 57
Replace 9 3,351 139,736 42 30,117 1,764,904 59
Replace 10 4,842 266,306 55 28,257 1,689,534 60
Replace 11 10,896 1,642,947 151 20,975 1,613,373 77

 60

Table B.8: The statistics of instructions that are replaced by Replace algorithm

for package nano

Algorithm Version
No

Replace
Copy #

Replace
Copy

Length

Average
Copy

Length

Replace
Insert #

Replace
Insert
Length

Average
Insert
Length

Replace 1 43,193 17,726,567 410 34,753 2,702,233 78
Replace 2 41,954 16,297,781 388 33,747 2,697,419 80
Replace 3 38,355 14,959,209 390 30,751 2,602,391 85
Replace 4 36,980 13,465,332 364 29,643 2,550,028 86
Replace 5 35,236 11,861,034 337 28,109 2,505,686 89
Replace 6 33,987 10,186,170 300 27,123 2,439,750 90
Replace 7 32,026 8,387,485 262 25,597 2,425,955 95
Replace 8 30,612 6,596,826 215 24,518 2,383,654 97
Replace 9 28,005 4,784,043 171 22,499 2,332,757 104
Replace 10 22,518 3,795,141 169 19,614 1,417,019 72
Replace 11 7,276 3,177,635 437 6,134 78,685 13

 61

50 KB Series

Table B.9: The statistics of instructions that are applied by apply and replace

algorithms for 50 KB Chain

Algorithm Ratio Apply
Copy #

Apply
Copy

Length

Average
Copy

Length

Apply
Insert #

Apply
Insert
Length

Average
Insert
Length

Apply 1 26 201,880 7,765 0 0 0
Apply 3 47 213,248 4,537 0 0 0
Apply 5 119 212,920 1,789 3 34 11
Apply 10 231 230,463 998 32 327 10
Apply 20 562 267,005 475 128 1,907 15
Apply 30 1,087 303,657 279 449 5,631 13
Apply 50 2,861 360,183 126 1,790 27,799 16
Replace 1 21 49,784 2,371 0 0 0
Replace 3 44 51,744 1,176 0 0 0
Replace 5 106 48,868 461 3 34 11
Replace 10 190 50,515 266 26 249 10
Replace 20 389 49,070 126 98 1,400 14
Replace 30 560 43,921 78 290 3,707 13
Replace 50 890 36,674 41 759 11,052 15

Table B.10: The statistics of instructions that are replaced by replace algorithm

for 50 KB Chain

Algorithm Ratio Replace
Copy #

Replace
Copy

Length

Average
Copy

Length

Replace
Insert #

Replace
Insert
Length

Average
Insert
Length

Replace 1 18 150,626 8,368 0 0 0
Replace 3 35 158,074 4,516 0 0 0
Replace 5 85 155,688 1,832 3 34 11
Replace 10 145 165,637 1,142 19 179 9
Replace 20 369 182,089 493 77 1,171 15
Replace 30 743 193,172 260 339 4,396 13
Replace 50 1,472 210,211 143 892 14,699 16

 62

100 KB Series

Table B.11: The statistics of instructions that are applied by apply and replace

algorithms for 100 KB Chain

Algorithm Ratio Apply
Copy #

Apply
Copy

Length

Average
Copy

Length

Apply
Insert #

Apply
Insert
Length

Average
Insert
Length

Apply 1 50 404,446 8,089 0 0 0
Apply 3 119 418,950 3,521 0 0 0
Apply 5 219 426,292 1,947 9 106 12
Apply 10 501 450,569 899 43 623 14
Apply 20 1,200 423,896 437 326 4,814 15
Apply 30 2,071 594,409 287 816 10,643 13
Apply 50 5,584 783,079 140 3,206 41,493 13

Replace 1 47 99,176 2,110 0 0 0
Replace 3 107 100,548 940 0 0 0
Replace 5 195 99,103 508 5 73 15
Replace 10 395 93,912 238 40 560 14
Replace 20 788 92,138 117 247 3,510 14
Replace 30 1,034 92,852 90 464 5,834 13
Replace 50 1,950 88,532 45 1,473 17,700 12

Table B.12: The statistics of instructions that are replaced by replace algorithm

for 100 KB Chain

Algorithm Ratio Replace
Copy #

Replace
Copy

Length

Average
Copy

Length

Replace
Insert #

Replace
Insert
Length

Average
Insert
Length

Replace 1 42 301,350 7,175 0 0 0
Replace 3 81 310,170 3,829 0 0 0
Replace 5 157 311,557 1,984 7 83 12
Replace 10 358 318,476 890 30 154 17
Replace 20 825 352,722 428 228 3,410 15
Replace 30 1,279 384,071 300 491 6,165 13
Replace 50 3,172 459,240 145 1,864 24,880 13

 63

300 KB Series

Table B.13: The statistics of instructions that are applied by apply and replace

algorithms for 300 KB Chain

Algorithm Ratio Apply
Copy #

Apply
Copy

Length

Average
Copy

Length

Apply
Insert #

Apply
Insert
Length

Average
Insert
Length

Apply 1 133 1,215,494 9,139 0 0 0
Apply 3 343 1,262,991 3,682 6 33 5
Apply 5 683 1,282,326 1,877 52 690 13
Apply 10 1,567 1,351,727 863 196 2,339 12
Apply 20 3,589 1,590,164 443 976 11,058 11
Apply 30 7,200 1,787,257 248 3,051 32,015 10
Apply 50 18,787 2,301,810 123 10,833 122,612 11
Replace 1 129 299,194 2,319 0 0 0
Replace 3 318 303,685 955 3 17 6
Replace 5 617 296,976 481 48 650 14
Replace 10 1,230 285,731 232 158 1,899 12
Replace 20 2,372 290,738 123 715 7,672 11
Replace 30 3,699 269,644 73 1,856 18,280 10
Replace 50 6,066 243,300 40 4,830 50,798 11

Table B.14: The statistics of instructions that are replaced by replace algorithm

for 300 KB Chain

Algorithm Ratio Replace
Copy #

Replace
Copy

Length

Average
Copy

Length

Replace
Insert #

Replace
Insert
Length

Average
Insert
Length

Replace 1 100 906,500 9,065 0 0 0
Replace 3 250 934,707 3,739 3 17 6
Replace 5 485 936,659 1,931 31 417 13
Replace 10 1,087 959,494 883 127 1,494 12
Replace 20 2,374 1,079,077 455 610 7,155 12
Replace 30 4,760 1,137,922 239 2,074 21,418 10
Replace 50 10,828 1,333,746 123 6,331 76,278 12

 64

500 KB Series

Table B.15: The statistics of instructions that are applied by apply and replace

algorithms for 500 KB Chain

Algorithm Ratio Apply
Copy #

Apply
Copy

Length

Average
Copy

Length

Apply
Insert #

Apply
Insert
Length

Average
Insert
Length

Apply 1 224 2,027,218 9,050 2 10 5
Apply 3 606 2,100,576 3,466 9 152 17
Apply 5 1,135 2,146,691 1,891 69 783 11
Apply 10 2,480 2,284,094 921 271 2,736 10
Apply 20 6,291 2,629,566 418 1,910 20,452 11
Apply 30 12,090 2,956,261 245 5,047 52,731 10
Apply 50 31,499 3,786,727 120 17,745 179,725 10
Replace 1 213 498,810 2,342 2 10 5
Replace 3 567 502,295 886 9 151 17
Replace 5 1,015 496,750 489 59 698 12
Replace 10 1,972 484,591 246 228 2,175 10
Replace 20 4,032 476,731 118 1,372 14,249 10
Replace 30 6,225 442,308 71 3,106 30,738 10
Replace 50 10,258 399,170 39 8,056 74,268 9

Table B.16: The statistics of instructions that are replaced by replace algorithm

for 500 KB Chain

Algorithm Ratio Replace
Copy #

Replace
Copy

Length

Average
Copy

Length

Replace
Insert #

Replace
Insert
Length

Average
Insert
Length

Replace 1 172 1,511,934 8,790 2 10 5
Replace 3 450 1,553,357 3,452 7 139 20
Replace 5 840 1,567,660 1,866 44 536 12
Replace 10 1,768 1,623,939 919 200 2,077 10
Replace 20 4,150 1,782,786 430 1,223 12,966 11
Replace 30 7,615 1,888, 728 248 3,150 34,228 11
Replace 50 18,547 2,180,567 118 10,735 113,123 11

 65

1 MB Series

Table B.17: The statistics of instructions that are applied by apply and rplace

algorithms for 1 MB Chain

Algorithm Ratio Apply
Copy #

Apply
Copy

Length

Average
Copy

Length

Apply
Insert #

Apply
Insert
Length

Average
Insert
Length

Apply 1 417 4,064,447 9,747 10 103 10
Apply 3 1,311 4,165,784 3,178 29 294 10
Apply 5 2,330 4,280,128 1,837 158 1,590 10
Apply 10 5,303 4,525,952 853 783 7,234 9
Apply 20 12,445 5,242,229 421 3,417 32,229 9
Apply 30 23,122 6,021,415 260 8,684 77,811 9
Apply 50 62,833 7,696,062 122 33,673 273,690 8
Replace 1 406 1,000,477 2,464 10 103 10
Replace 3 1,211 994,829 821 23 263 11
Replace 5 2,081 988,234 475 145 1,468 10
Replace 10 4,234 955,196 226 692 6,282 9
Replace 20 8,159 949,993 116 2,576 23,637 9
Replace 30 12,342 925,083 75 5,549 46,979 8
Replace 50 21,237 847,970 40 15,634 114,194 7

Table B.18: The statistics of instructions that are replaced by rplace algorithm

for 1 MB Chain

Algorithm Ratio Replace
Copy #

Replace
Copy

Length

Average
Copy

Length

Replace
Insert #

Replace
Insert
Length

Average
Insert
Length

Replace 1 319 3,032,891 9,507 2 13 6
Replace 3 953 3,076,021 3,228 20 199 10
Replace 5 1,716 3,125,879 1,822 127 1,301 10
Replace 10 3,731 3,211,327 861 512 4,935 10
Replace 20 8,398 3,538,947 421 2,330 21,295 9
Replace 30 15,073 3,859,030 256 5,804 53,032 9
Replace 50 36,681 4,456,603 121 20,068 169,487 8

 66

3 MB Series

Table B.19: The statistics of instructions that are applied by apply and replace

algorithms for 3 MB Chain

Algorithm Ratio Apply
Copy #

Apply
Copy

Length

Average
Copy

Length

Apply
Insert #

Apply
Insert
Length

Average
Insert
Length

Apply 1 1,244 12,184,408 9,795 21 226 11
Apply 3 3,856 12,541,860 3,253 144 1,356 9
Apply 5 6,801 12,861,244 1,891 383 3,510 9
Apply 10 15,553 13,642,415 877 2,082 15,943 8
Apply 20 36,093 15,966,948 442 8,624 60,658 7
Apply 30 69,135 17,945,520 260 24,346 171,936 7
Apply 50 183,585 23,284,724 127 91,861 666,476 7
Replace 1 1,206 3,000,190 2,488 19 178 9
Replace 3 3,622 2,998,228 828 144 1,356 9
Replace 5 6,111 2,973,823 487 356 3,221 9
Replace 10 12,540 2,893,090 231 1,802 13,688 8
Replace 20 24,421 2,930,947 120 6,582 44,823 7
Replace 30 37,372 2,771,735 74 15,751 105,055 7
Replace 50 63,953 2,587,013 40 43,437 287,229 7

Table B.20: The statistics of instructions that are replaced by replace algorithm

for 3 MB Chain

Algorithm Ratio Replace
Copy #

Replace
Copy

Length

Average
Copy

Length

Replace
Insert #

Replace
Insert
Length

Average
Insert
Length

Replace 1 923 9,094,150 9,853 13 152 12
Replace 3 2,841 9,264,733 3,261 100 971 10
Replace 5 4,910 9,401,448 1,915 272 2,436 9
Replace 10 11,104 9,681,580 872 1,498 11,600 8
Replace 20 24,365 10,823,816 444 5,841 41,934 7
Replace 30 44,572 11,487,396 258 15,998 116,294 7
Replace 50 108,950 13,473,689 124 55,854 421,633 8

 67

5 MB Series

Table B.21: The statistics of instructions that are applied by apply and replace

algorithms for 5 MB Chain

Algorithm Ratio Apply
Copy #

Apply
Copy

Length

Average
Copy

Length

Apply
Insert #

Apply
Insert
Length

Average
Insert
Length

Apply 1 2,056 20,301,307 9,874 21 177 8
Apply 3 6,517 20,872,192 3,203 194 1,416 7
Apply 5 11,705 21,349,276 1,824 668 5,022 8
Apply 10 26,230 22,636,825 863 3,348 23,715 7
Apply 20 60,021 26,494,425 441 13,524 90,427 7
Apply 30 115,813 29,857,622 258 39,513 272,772 7
Apply 50 299,928 38,779,139 129 145,214 988,379 7
Replace 1 2,020 5,001,843 2,476 20 175 9
Replace 3 6,129 4,984,469 813 189 1,379 7
Replace 5 10,529 4,928,296 468 621 4,534 7
Replace 10 21,116 4,781,796 226 2,909 20,106 7
Replace 20 40,218 4,841,923 120 10,217 66,309 6
Replace 30 62,251 4,595,777 74 25,408 166,827 7
Replace 50 104,753 4,378,282 42 68,431 417,348 6

Table B.22: The statistics of instructions that are replaced by replace algorithm

for 5 MB Chain

Algorithm Ratio Replace
Copy #

Replace
Copy

Length

Average
Copy

Length

Replace
Insert #

Replace
Insert
Length

Average
Insert
Length

Replace 1 1,530 15,150,427 9,902 21 177 8
Replace 3 4,760 15,418,413 3,239 134 907 7
Replace 5 8,447 15,590,497 1,846 466 3,459 7
Replace 10 18,625 16,058,945 862 2,437 16,975 7
Replace 20 40,562 17,911,101 442 9,116 62,001 7
Replace 30 74,232 19,096,048 257 25,688 182,414 7
Replace 50 174,830 22,488,110 129 86,075 604,806 7

 68

10 MB Series

Table B.23: The statistics of instructions that are applied by apply and replace

algorithms for 10 MB Chain

Algorithm Ratio Apply
Copy #

Apply
Copy

Length

Average
Copy

Length

Apply
Insert #

Apply
Insert
Length

Average
Insert
Length

Apply 1 4,218 40,585,107 9,622 47 319 7
Apply 3 13,288 41,729,101 3,140 452 3,317 7
Apply 5 22,758 42,875,049 1,884 1,116 7,007 6
Apply 10 52,288 45,261,238 866 6,032 40,536 7
Apply 20 118,763 53,002,031 446 25,290 163,557 6
Apply 30 225,914 59,784,426 265 72,290 455,292 6
Apply 50 589,458 77,711,428 132 276,926 1,758,046 6
Replace 1 4,139 9,992,251 2,414 47 319 7
Replace 3 12,502 9,952,752 796 436 3,166 7
Replace 5 20,498 9,907,516 483 1,052 6,556 6
Replace 10 42,248 9,567,454 226 5,258 34,586 7
Replace 20 80,156 9,698,180 121 19,356 120,832 6
Replace 30 122,021 9,245,949 76 46,811 277,397 6
Replace 50 208,567 8,857,226 42 131,600 741,580 6

Table B.24: The statistics of instructions that are replaced by replace algorithm

for 10 MB Chain

Algorithm Ratio Replace
Copy #

Replace
Copy

Length

Average
Copy

Length

Replace
Insert #

Replace
Insert
Length

Average
Insert
Length

Replace 1 3,139 30,285,046 9,648 30 188 6
Replace 3 9,784 30,815,120 3,150 311 2,254 7
Replace 5 16,669 31,322,793 1,879 821 5,063 6
Replace 10 37,255 32,096,014 862 4,478 30,640 7
Replace 20 80,654 35,840,087 444 17,417 113,369 7
Replace 30 144,576 38,230,227 264 46,748 301,707 6
Replace 50 342,605 45,043,997 131 161,206 1,041,189 6

