A NEW TECHNIQUE: REPLACE ALGORITHM TO RETRIEVE A
VERSION FROM A REPOSITORY INSTEAD OF DELTA APPLICATION

A THESISSUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

SULEYMAN ONUR OTLU

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE
IN
THE DEPARTMENT OF COMPUTER ENGINEERING

APRIL 2004

Approva of the Graduate School of Natural and Applied Sciences.

Prof. Dr. Canan Ozgen
Director

| certified that this thesis satisfies all the requirements as a thesis for the degree
of Master of Science.

Prof. Dr. Ayse Kiper
Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope ard quality, as athesis for the degree of Master of Science.

Prof. Dr. Adnan Yazici Assoc. Prof. Dr. Ahmet Cosar
Co-Supervisor Supervisor

Examining Committee Members

Prof. Dr. Adnan Yazici (Ceng)

Assoc. Prof. Dr. Ahmet Cosar (Ceng)

Assoc. Prof. Dr. Ismail Hakki Torodu (Ceng)

Assoc. Prof. Dr. Nihan Kesim Cicekli (Ceng)

M. Sc. Abdullah Fisne (Hacettepe Univ.)

| hereby declare that all information in this document has been
obtained and presented in accordance with academic rules and ethical
conduct. | also declarethat, asrequired by these rules and conduct, | have
fully cited and referenced all material and results that are not original to
thiswork.

Name, Last name :Sileyman Onur, OTLU

Signature

ABSTRACT

A NEW TECHNIQUE: REPLACE ALGORITHM TO
RETRIEVE A VERSION FROM A REPOSITORY
INSTEAD OF DELTA APPLICATION

Otlu, Sileyman Onur
M. S., Department of Computer Engineering
Supervisor: Assoc. Prof. Dr. Ahmet Cosar
Co-Supervisor: Prof. Dr. Adnan Y azici
April 2004, 51 Pages

The thesis introduces a new technique to retrieve a version from a repository as
an dternative method to applying ddtas to literal file sequentially. To my best
knowledge; this is the first investigation about delta combination for copy/insert
instruction type with many experimental results and conclusions. The thesis proves
that the delta combination eliminates unnecessary /O process for intermediate
versions when delta application is considered, therefore reduces I/O time. Deltas are
applied to literal sequentially to generate the required version in the classica way.
Replace algorithm combines delta files which would be applied in delta application as
combined delta, and applies it to literal to generate the required one. Apply runsin O
(size (D)) time where D is the destination file and size (D) is its size. To retrieve n"
version in a chain where version is literal, it requires n-1 time apply. Replace
algorithmrunsin O (i + ¢ * log, n) time where i is the total length of al inserts, c is
the total length of all copies in destination delta, and n is the number of instructions in

source delta. To retrieve the same f" version, it requires n-2 time replace and one

apply.

Keywords. delta agorithm, delta application, delta combination, replace algorithm.

Oz

YENI BIR TEKNIK: VERI HAVUZUNDAN BIR
VERSIYONU URETMEK ICIN FARK
UYGULAMASI YERINE DEGISTIRME
ALGORITMASI

Otlu, Stleyman Onur
Y tksek Lisans, Bilgisayar Muhendidigi BOlUmu
Tez Danismani: Dog. Dr. Ahmet Cosar
Ortak Tez Danismani: Prof. Dr. Adnan Yazici

Nisan 2004, 51 sayfa

Bu tez veri havuzundan bir versyonu Uretmek icin fark dosyalarini sabit
dosyaya sSrayla uygulamak vyerine aternatif yontem olarak yeni bir teknigi
tanitmaktadir. Bilgim dahilinde, bu tez bir ¢cok deneysel sonug veren ve yargilara
varan kopyalekle komut tipi kullanan fark birlestirme konusunda yapilmis ilk
arastirmadir. Bu tez, fark uygulama metodunu distindiigiimiizde fark birlestirmenin
ara versiyonlar icin yapilan girdi cikti idemlerini ortadan kaldirdigini ve girdi cikti
idem slresinin azaldigini gostermektedir. Klasik mantikta gerekli versiyonu Uretmek
icin fark dosyalari sirasiyla sabit dosyaya uygulanir. Degistirme algoritmasi fark
uygulamasinda kullanilan fark dosyalarini birlesik fark dosyayi olarak birlestirir ve bu
birlesik fark dosyasini sabit dosyaya uygulayarak gerekli versiyonu Uretir. Uygulama
O (uzunluk@)) siresinde calismaktadir, D hedef dosyasidir ve uzunluk(D) hedef
dosyasinin uzunlugudur. Birinci versiyonu sabit dosya olan bir versiyon zincirinden n.
versiyonu Uretmek n — 1 defa uygulamayi gerektirir. Degistirmealgoritmasi O (i + ¢ *
log, n) siresinde calismaktadir, i hedef fark dosyasindaki ekle komut tiplerinin

uzunluklari toplamidir, ¢ hedef fark dosyasindaki kopya komut tiplerinin uzunluklari

Vi

toplamidir ve n kaynak fark dosyasindaki komutlarin sayisidir. Bu yontemle ayni n.
versiyonu Uretmek icin n — 2 defadegistirme ve bir defauygulama gerekmektedir.

Anahtar Kelimeler: fark algoritmasi, fark uygulamasi, fark birlestirmesi, degistirme
algoritmas.

vii

To My Family

viii

ACKNOWLEDGEMENTS

| express sincere appreciation to Prof. Dr. Adnan Yazici and Assoc. Prof. Dr.
Ahmet Cosar, for their guidance and encouragement throughout the research. | offer

sincere thanks to my family for their emotional support.

TABLE OF CONTENTS

FAN =S 1 27 A 1 TSRS iV

O Z ettt ettt bens Vi

ACKNOWLEDGEMENTS......coiiiiitieie ettt iX

TABLE OF CONTENTS ...ttt sttt sttt st be e nneas X

LIST OF TABLES..... oottt Xiii

LIST OF FIGURES........cooiiiieitieie ettt Xiv
CHAPTERS

L INTRODUCTION. ...ttt 1

I |V o 1) V7- (o o [PPSR 1

1.2, TRESIS GOEIS. ...cciuveieiieieiiie ettt 3

1.3. Organization Of the ThESIS........coiiiiiiiiiiee e 4

2. BACKGROUND......cciiii ittt e e e e e e e e s e e e e e e e e s e nnnenees 5

2.1, DEtaBENCOING. ... cceiieieiieieiiie e 6

2.2. ENCOAING MELTCS ...cceiiiiiie ettt a e e 6

2.3. Delta Algorithm CONCEPLeveviiieiee e 7

2.4. Generad Greedy Algorithm and Linear Time Delta Algorithms................. 8

2.5. Delta Storage TECNNIQUES.........cooviiiiieeiiiiiie e 11

2.6. DEtaAPPHCALION . .vveeiiee i 14

2.7. REGEI WOTK......oiiieeiiieieee et 16

2.8. Implementation NOLES.........c.cc.vviiiiei e 18

28.1 Implementation Notes for the Delta Algorithm........................... 18

282 Implementation Notes for Apply Algorithm............ccccoeeennee. 19

2.8.3. Implementation Notes for Replace Algorithmccccceeennne. 19

3. REPLACE ALGORITHM ..ot 20

3.1 Replace AlQOrithm........ceeeiiiiiii e 20
3.2. An Exampleto Make Clear How Replace Algorithm works 24
4, COMPLEXITY ANALYSIS.. .ot 29
4.1, RErIEVE OPErEiON.cccoiirieeeciieie e ettt eee e e e e e e e e enneeas 29
411 Delta APPlICAIION.eeeiieieciie s 29
41.2. Replace AIGOrthmc.oooiiiiii e 29
4.2, Dl OPEIELIONeeeeiiiieiiie ettt 31
421 Delta APPlICALION.eeeiiiieiie s 31
422 Replace AIQOrithmc.oooiiiii e 31
5. EXPERIMENTAL RESULTS.....cc ot 33
5.1, RENEVE OPEIaliON......ccoieeieeeiiiieeeeeiieeeeeeieee e eseeeeesenneee e e s ssaeeeesnnneeeas A
511 How Delta Application works for Retrieve Operdtion................. A
512 How Delta Combination works for Retrieve Operation 34
5.2. Run Resultsfor Retrieve Operation............ccceeeiieeeeeeiiieenessiieee e 35
521 The performance of Apply algorithm when insert stream is on disk
(o g T a1 07 070 /RSP RR 35

522 The performance of Apply algorithm when destination file is
constructed on disk completely or with a fixed-size buffer in memory.... 40

523 The performance of Replace algorithm using binary search
algorithm or hash data StTUCLUre............cooviiieeeeeciiee e 11
5.24. The performance of Apply and Replace algorithms with afair
(0001072 1 o o 1P S 43
SNSRI DIC [= (@ o7 = 1] SR 47
53.1. How Delta Application works for Delete Operation.................... 47
53.2. How Delta Combination works for Delete Operation.................. 47
5.4. Run Resultsfor Delete Operation............ooocveeeeinieeeessiieeeessiieeee e 48
6. CONCLUSIONS......otiiiieieeiie ettt sttt e e e sne e e 49
6.1, FULUNE WOTK. ... 50

Xi

REFERENCES.........oooi 52

APPENDICES

A: THE VERSIONS AND THEIR FILE SIZE OF GNU PACKAGES USED IN
EXPERIMENTAL RESULTS ... 4

B: THE INSTRUCTION STATISTICS OF THE GENERATED VERSION
CHAINS AND GNU PACKAGES USED IN EXPERIMENTAL RESULTS....56

Xii

LIST OF TABLES

Table 1: The statistics of instructions that are applied by apply and replace algorithms for
7210 = 0 L= 0 = 1P

Table 2: The statistics of instructions that are applied by apply and replace algorithms for
PACKAGE CHICKEN.......cutectct e

Xiii

LI1ST OF FIGURES

Figure 1: Storing four versions of afile with forward delta technique, version F1 is stored as

literal and other versions are stored as deltafilesinthe chain. ... 2
Figure 2: An example of encoding adeltafile using copy/insert deltaencoding...........oocccoveeeenee 5
Figure 3: The storage mechanism of forward delta technique..........ccoccvenrncncnecnecneens 1
Figure 4: Clustered forward delta teChNIQUE........c..ccuieeiireiineeee s 1
Figure 5: The storage mechanism of jumping delta teChnique..........ccoccoevevvecccreeccceerecee e 12
Figure 6: The storage mechanism of reverse delta technique...........ccococoeeivevccnseccccscecccenenns 13
Figure 7: The storage mechanism of branch in RCS..........cccoorevveccessece s 13
Figure 8: Pseudo code of the apply algorithmfor copy/insert deltaencoding..........cccoceeeverrirenee 15
Figure 9: An example of encoding deltafilesinreplace algorithm...........cccooeeevveccccnveiccnnenns 21
Figure 10: Pseudo-code for replace algorithm..........coeeireeineeneeeres s 2
Figure 11: Pseudo-code for construction of hash table ... 23
Figure 12: Pseudo-code of getFromHashTable method for hash table..........cccocovevenicnicnnee. 24

Figure 13: The state of hash table for given example..........oocrncccceirsecee e

Figure 14: The figure of our generated version chain for experimental results
Figure 15: The performance of apply algorithm when insert stream is on disk or in memory,
and intermediate versions are constructed on disk for package gawk..........cccccoeeverrerennnn. 36
Figure 16: The performance of apply algorithm when insert stream is on disk or in memory,
and intermediate versions are constructed with a buffer in memory for package gawk 37
Figure 17: The performance of apply algorithm when insert stream is on disk or in memory,
and intermediate versions are constructed on disk for package chicken..........c.cccoocvvernenee. 33
Figure 18: The performance of apply algorithm when insert stream is on disk or in memory,
and intermediate versions are constructed with a buffer in memory for package chicken 39
Figure 19: The comparison of apply algorithm when intermediate versions are constructed on
disk fully and apply when they are constructed with a buffer in memory while insert
stream ison disk for package MailMman..........ccccvvrervenirnninesr s sessseseesens 41
Figure 20: The comparison of apply algorithm when intermediate versions are constructed on
disk fully and apply when they are constructed with a buffer in memory while insert
stream isin memory for package MailMan ... 17
Figure21: User Time of replace algorithm when binary search or hash data structureis used,

and intermediate versions are constructed with a buffer in memory for 5 MB Chains...... 42

Xiv

Figure 22: User Time of replace algorithm when binary search or hash data structureis used,
and intermediate versions are constructed with a buffer in memory for package nano..... 42
Figure 23: The system time comparison of apply and replace algorithm when intermediate
versions are constructed with a buffer in memory for 10 MB Chains.........ccouvnenncenencenee 43
Figur e 24: The system time comparison of apply and replace algorithm when intermediate
versions are constructed with a buffer in memory for package metahtmlccccooueneeee. 4
Figure25: The system time comparison of apply and replace algorithm when intermediate
versions are constructed with a buffer in memory for package marst..........cccoeevveevcrreneee. 44
Figure 26: Thetotal time comparison of apply and replace algorithm when intermediate
versions are constructed with a buffer in memory for 10 MB Chains.........cccocvnenenenecenee 4
Figure27: Thetotal time comparison of apply and replace algorithm when intermediate
versions are constructed with a buffer in memory for package mailman..........c.c.oovereeenee 45
Figure28: Thetotal time comparison of apply and replace algorithm when intermediate
versions are constructed with a buffer in memory for package gawkcccccvveecerrirennen. 45
Figure29: The comparison of apply when intermediate versions are constructed in memory
completely and replace algorithm using hash data structure for 1 MB Chains and
execution times are calculated by the program itSelf ... 46
Figure 30: The comparison of apply when intermediate versions are constructed in memory
completely and replace algorithm using hash data structure to delete version 2 from 3 MB

Chains and execution times are calculated by the program itself ..., 48

CHAPTER 1

INTRODUCTION

1.1. Motivation

Today, many computer systems store and present users all over the world many
files. Such files could be frequently changed and as changes occur, people subscribing
to those changes will need to transfer the new file over network so that they have the
most recent version. This process can be done more quickly by transferring only the
changes (called a ddlta) that were performed on the previous version and subscribers
locally applying updates on their local copy to create the most recent version of the
file.

Another possible use of delta files is saving them so that an earlier version of a
file can be recovered if it is needed. This would be the case when software is being
developed, and earlier version is found to be better than the current file (such as a bug
is discovered). Another reason for maintaining severa versions of the same program
could have to support multiple customers possibly using different earlier versions. By
storing only delta files, we aso conserve disk space since otherwise we would have to
store multiple versions of the same file, as awhole, thus taking up much more space.

Storing versions of a file like a directory seems to be a good solution at first
glance however the disk space occupied by versionsis not used efficiently in this way.
Another problem occurs when a version is accessed over network, because
transmission of a version from one location to another is dependent on the file size and
network capacity.

A delta algorithmencodes the difference between two versions of afile, source
and destination (or target), and it stores the encoding in a delta file. A ddta file

includes only the changes between two files and its size is expected to be quite small

when the similarity between versions is assumed to be high. It is sufficient to store
source and delta file instead of storing two versions as intact files, which providesan
efficient storage, especially when number of stored versions increases. When
destination file is requested, applying delta file encoding to source file constructs the
destination one. In arepository, storing one file fully and other versions as deltasisthe
simplest way to save space on disk (Figure 1). Déelta file is also suitable for network
transmission. If the client has source file and needs the destination one, it request the
delta file instead of destination itself, which reduces the network traffic. Also, a
program at client may include bugs and they should be fixed. Patch of the program
fixes the bugs and it requires the erroneous version to construct the correct one,
therefore deploying delta file instead of version file eiminates unauthorized use of
software as well.

Fy } } b
Literal File |> Delta File

Figure 1: Storing four versions of a file with forward delta technique, version

F1 is stored as literal and other versions are stored as delta files in the chain.

The storage of version files with deltas should be handled by more complicated
solutions like a manager -version control system (RCS, SCCS, etc). For example;
many versions of a file will be produced when a program is under development. A
developer may want to be able to access and modify previous versions (such as after
discovering a buggy modification, or having to maintain old versions for customers
still using them), possibly over a network connection, and to view their contents.
There have been many investigations and version control systems produced to
minimize the storage size, speed up the retrieve and insert time of a version, provide

concurrent access to the same version, merge the versions, handle the branch problem,

store the binary files as well astext files, and so on.

1.2. ThesisGoals

This thesis offers a new technique to generate a version from a repository
instead of applying deltas to a litera file in sequential order, one delta at a time.
Replace algorithm first combines deltas between a literal file and its required version
to produce a combined delta which can be applied to the litera file to generate the
required version. The most important goa of the replace algorithmis to reduce I/O
operations by eliminating the construction of intermediate versions (which is to be
stored on disk temporarily thus causing extra 1/O overhead) when generating a
required version of a literal file. The agorithm is to read the insert stream of both
adjacent delta files before sarting delta combination. This operation may be
recognized as a disadvantage, however it is proven by experimental studies that taking
insert stream into memory has no effect on the total execution time of the agorithm.
Ddta application is implemented with different memory usages and destination file
construction. Apply agorithm can construct required version of a literal file using
three different ways of creating intermediate ones. The agorithm can construct the
intermediate versions and the final required version on disk completely or use a fixed-
size buffer n memory to reduce 1/0O operations or use the memory completely. The
benefit of using a buffer is shown explicitly in experimental studies. Another optional
add-on isto take insert stream into memory before delta application.

Replace agorithm searches the beginning offset of each instruction in
destination delta file over instructions in the source delta file. There are two ways that
replace agorithm handles the search operation; hash data structure and binary search
algorithm. Replace algorithm constructs a hash table to find the instruction set in
source delta defining the range of the instruction in destination delta or it uses binary
search algorithm to find the instruction in already sorted instruction list. The replace
algorithm using binary search, puts a better execution time than the one using hash
data structure. Because, hash table construction causes extra CPU time athough the

agorithm searches over narrowed range. Each agorithm is compared with its versions
and also afair comparison is made between both algorithms in Experimental Results.

1.3. Organization of the Thesis

Chapter 2 gives introductory information about delta encoding, delta storage
techniques, delta algorithms, delta application, version control systems, and related
work. Chapter 3 presents the design and implementation of Replace Algorithm and a
reader can find the benefits, properties, pseudo code, and an example of the algorithm.
Chapter 4 demonstrates complexity of delta application and delta combination.
Chapter 5 presents experimental results for our generated versions and some packages
a Gnu Web Site. Chapter 6 concludes the subject and presents future work
discussions. Appendix A includes names of versions and their sizes of some rea-life
packages used in Experimental Results. Appendix B gives instruction statistics of the
generated version chains and packages occurred in Appendix A.

CHAPTER 2

BACKGROUND

A ddta agorithm computes the differences between two versions of a file. It
takes two files - source (S) and degtination (D) files - as input, generates a set of
instructions and produces a deltafile.

DdtaAlgorithm (S, D) 2 75, ¢ (2.1

Applying instruction set to S produces D, and there is an example in the chapter
for copy/insert encoding how a ddtafile is gpplied to S.

Apply (S, ?s,q) > D (22)
1 2
Source ()
Destination (D)
1 3 2

(@

copy block 1

insert block 2

copy block 3

(b)

Figure 2. An example of encoding a ddltafile using copy/insert delta encoding

In Figure 2(a) an example is given showing source and destination versions, with

identical regions of versions marked as “1” and “2”, while newly inserted segment is
marked with “3”. A corresponding encoding is given in Figure 2 (b).

2.1. Delta Encoding

There are two different delta encoding types used commonly; copy/insert and
insert/delete. Copy/insert delta encoding has two different instructions; copy(s, d, I)
and insert(d, I, B). A copy ingtruction copies a block with length | from offset sin Sto
offset d in D, and an insert instruction adds the block B with length | in delta to offset
d in D. Delta application of copy/insert delta encoding constructs D from an empty file
and preserves S. It is essentia to preserve Sfor version control systems. Insert/delete
delta encoding has two different instructions; delete(s, 1) and insert(s, |, B). A ddete
instruction deletes | bytes from offset sin S and an insert instruction adds a block B
with length | to offset sin S. Delta gpplication of this kind of delta encoding operates
each instruction on S and S -not preserved- is transformed to D, which is called in-
place reconstruction. Insert/delete delta encoding is suitable for patch implementation.
Burn, Stockmeyer, and Long [13] address the limited storage capacity and low-
bandwidth networks and present algorithms that transform a delta file including
copy/insert delta encoding to a deltafile that can construct the target version in-place.

Literal file in version control system should be preserved and implementation of

delta application of copy/insert delta encoding is straightforward therefore replace
algorithmis designed to combine deltas consisting copy/insert encoding.

2.2. Encoding Metrics

Each delta algorithm produces an encoding to represent D with respect to S and
the encoding is stored in a delta file. The encoding includes instructions and they can
be stored in the delta file with different ways. MacDonald [8; 9] separates copy and
insert ingtructions, and Burns [11] stores them in an order with add, copy and end
codewords in the delta file. Therefore, delta size is not a suitable metric to compare
delta algorithms. Hunt, Vo and Tichy [7] defines a metric in terms of LCS -Longest
Common Subsequence-. LCS is the longest common block which appears between
two files. However, repeated copy regions are not considered in the metric.

size{zource) + size{destination)
difference — — size(LCE) (2.3
2

MacDonald [9] presents a metric mfor upper bound on the optimal sequence of
copy/insert ddlta encoding. Total delta size in bits is calculated by summation of
metric values for each copy and insert evaluated. XDelta [8; 9] uses insert data of
deltas as additional source as well as actual source file itself therefore k means a
source position in source file or in one of insert data The copy metric can be
integrated for one source file and k* is replaced with s. It is also assumed that a byte
includes 8 bits.

m(copy sd1)=1+log | |+|log k®|+]|logd | (249

m(nsert)=1+]log| |+ 8 25)

2.3. Delta Algorithm Concept

The aim of a delta dgorithm is to compute a delta encoding for D with respect
to S. The ddta agorithms vary by finding matches. A dynamic delta agorithm [6]

encodes the difference based on LCS and greedy delta algorithm [10; 12] finds the
common fragments between two versions.

UNIX “diff” command is awell known line-oriented delta algorithm. However,
line-oriented agorithms encode whole line as insert if a line is changed, and this
solution is not the optimum. Besides, line-oriented agorithms are applicable only for
text files [15]. Myers [2] introduces a dynamic algorithm which requires O(nm/w)
time and computes the edit distance for particularly practical cases. Baker, Manber,
and Muth [1] implement a delta algorithm with knowledge of the architecture in
binary files, however, the delta algorithm is not suitable for generic solutions. Hunt,
Vo, and Tichy [7] introduce a greedy delta agorithm vdelta that combines data
compression and differencing. vdelta uses hash table instead of a suffix treein Tichy's
block-move dgorithm [16]. The genera greedy algorithm [12] runs in quadratic time,

and it accepts the longest found match for searched position as best match, and
optimum. Burns [12] proves that the genera greedy algorithm produces an optimum
encoding. Correcting one-pass agorithm runs in linear time and it produces a delta
encoding which is quite comparable to the greedy algorithm’s encoding. Therefore, in

this thesis the general greedy agorithm and correcting one-pass delta agorithm are
implemented and used.

2.4. General Greedy Algorithm and Linear Time Delta
Algorithms

Burns [12] proves that general greedy agorithm generates an optimum
difference for two versions of a file, however its execution time is quadratic and
memory usage is proportiona to size of source(S) file. He aso introduces one-pass,
correcting one-pass and correcting 1.5-pass agorithms that change data structure and
search policies with some modifications in the general greedy algorithm. These
algorithms run in linear time, improve memory usage utilization and produce good
compression in terms of greedy one. MacDonald [9] aso defines and uses a delta
agorithm (XDelta) which is a fast, linear-time and linear-space approximation to the

greedy algorithm.

The general greedy agorithm constructs a hash table on S, and searches a match
for each offset of Destination (D) by using the hash table. The am of hash tableisto
find candidate match offset from S. Burns [10] selects a footprint (Karp-Rabin)
function for fixed-length byte streams to construct a hesh table on S. The agorithm
chooses avalue p, calculates afootprint value for length p of byte streamsin file S at
al offsets until sze(S) + 1 — p. Karp-Rabin method calculates footprint value of
stream at ¢ offset with length p. The next footprint values for other offset are
calculated with incrementa calculation instead of the same manner. If footprint value
for an offset is calculated, then footprint value for the next offset can be calculated
using previous value with a constant number of operations, and this reduces the
creation time of the hash table. The greedy algorithm stores all offsets faling to the
same entry with alinked list, and it requires a hash table of 4 times the size of Sto be
built in memory, assuming footprint value type is integer.

After hash table construction, general greedy algorithm scans the longest match
for current search offset |1 of D. It calculates footprint value for D [I, | + p), and
lookups hash table whether exists an entry for the value, or not. If exidts, it generatesa
match for each offset in entries. Then, it chooses the longest match among the
matches. Match search policy proceeds forward only. If the length of longest match is
greater than the cost of optimum copy instruction, the instruction is concluded as copy
and next search offsetisset toi + 1 (length of the longest match), otherwise as insert.
It is obvious that if no match exists, current search index i isincremented by 1.

The complexity of the genera greedy algorithm is O (Sz&(S)*size(D)), and size
of hash table depends on size(S). The agorithm for large version filesis not applicable
because of quadratic time and memory usage. One-pass, correcting one-pass and
correcting 1.5-pass agorithms are modification of genera greedy in usage data
structure, memory usage and search policy, they run in linear time. Hash table which
each algorithm constructs do not has chain and also algorithms differ in usage of hash
table. Correcting implies backward match besides forward one. The algorithm corrects

the previous encoding with better matches if exists. Correcting can be tail correction,
or general correction, or both of them.

The details of the algorithms except correcting one-pass agorithm will not be
mentioned. Correcting one-pass algorithm creates two empty hash tables for S and D,
HTsand HTp. It defines s, and d: offsets for S and D respectively, and setsthem to O
initially. The algorithm calculates the footprint values of strings from s and d; with
length p. It puts the footprint values in HTs and HTp respectively. HTs do not have
chains, therefore whether there exists an entry for a footprint value, new offset is
added to HT. The agorithm does not remember the previous offsets for the
corresponding entry. At this point, the agorithm tries to find candidate match. If
footprint value caculated for S occursin HTp, there exists a candidate match at s and
an offset at entry for that footprint value in HTp. If the seeds are identical at offsets,
match process starts and the rest of searching candidate match is skipped. If the seeds
are not identical, the algorithm looks an entry footprint value calculated for D in HTs
in the same manner. If there does not exist a candidate match, the algorithm continues
the process with incrementing both s and d; by 1. Match occurs in both forward and

backward directions. If the match overlaps only the non-encoded portion, the range

between the end of encoded bytes and the start position of the match is concluded as
insert and then match is encoded as a copy nstruction. If the match overlaps the
encoded and non-encoded portion, it requires tail correction on encoded substring. If
the match overlaps only the encoded portion, it requires general correction on encoded
substring. Taill or general correction means that previous ingtruction(s) falling
completely into match range will be deleted. The algorithm stops when s + p > Sze
(S) and d: + p > size (D) and the rest of D is concluded as insert if there exists non-
encoded bytes at the end.

As seen, the agorithm stores one offset for each footprint in hash table. This
limitation reduces the performance of delta agorithm, however it improves the
execution time drastically and corrections eliminate the bad encoding. As a result,
linear algorithms still yield comparable solution according to general greedy agorithm
especiadly for large version files.

XDelta selects afingerprint (adler32) function for fixed-length byte streamsasa
hashing function. The agorithm selects a value s —a small power of 2 —, calculatesa
fingerprint value for length s of byte streamsin file S at al offsets divisible by s. The
agorithm includes one hash table keeping offsets. It also constructs an array
corresponding fingerprint value for each offset to detect collision easily. 4 bytes are
enough for each offset and fingerprint value, therefore the cost of data structureis 2 *
4* size (S)/ s. If sis 2, then the agorithm requires half of size of file S as memory
space. It increments current search offset by 1 whether a match exists for current
offset, or not. It takes a set of Sinstead of a single source file.

It is obvious that collision occurs in the hash table. Each byte stream with fixed-
length is represented with an integer value, and hash method — footprint or fingerprint
- can yidd the same hash value for two different byte streams. Hash table has a mod
value to insert an offset, and aso thisyields collision. XDelta solves the last collision
problem by storing one offset for each entry and constructing an array to keep
fingerprint value itself, however storing one offset for one entry affects the
performance of the algorithm. In both hash table solutions, found offset in S for an
offset in D is a candidate match, and it requires byte comparison between streams.

10

2.5. Delta Storage Techniques

Forward delta (FD) is the basic delta technique for storage (Figure 3). FD
stores the first version as literal and subsequent versions as delta files in order. Deltas
are calculated between adjacent versions; such as between first and second versions,
second and third one, and so on. There are two main disadvantages of the storage
technique. The first oneis that retrieving i" version in a chain requires (i-1) times delta
application and each delta is applied to litera file until reaching i™ one. When R is
required, ?,,, is applied to R, and F, is generated, then ?,,; is applied to generated
F,, and F; is generated. The second one is that the storage is not suitable to insert a
new version easily in a chain. The new delta is caculated between the most recent
verson and the new one, and each insert operation requires the generation of the most
recent one. The triangle in Figure 3 implies the forward delta and square stands for the
literd file.

; »”'Hb

Figure 3. The storage mechanism of forward delta technique

Repository including many versions can be divided into clusters, and each
cluster includes one literal file and deltas. It satisfies an upper bound to access a
version in repository. Figure 4 shows a repository that has 2 clusters.

Figure 4: Clustered forward delta technique

11

Jumping delta (JD) -a different storage technique- improves insert and retrieve
operations of aversion in achain considering FD. It stores the first verson asa litera
like FD. However when a new version is inserted, delta file is calculated between
litera and newly introduced one instead of computing adjacent versions, such as
between first and second versions, first and third ones, and so on. Figure 5 shows the
storage mechanism of JD. The main benefit of the jump storage technique is to
retrieve a version at most one delta application by using literal and the related delta
However, the similarity between literal and newly introduced versions decreases while

the chain grows, therefore the storage consumes much disk space.

Fi

Figure 5. The storage mechanism of jumping delta technique

Burns and Long [11] improves storage and retrieve time of AdStar Distributed
Sorage Manager (ADSM) using jumping deta technique. They define a
compressibility parameter between consecutive versions, and establish a worst-case
formula choosing a low and high value for the parameter. They give an experimental
result to compare the storage lost between the jumping and forward delta techniques
and to determine the optimum number of versions which a cluster should include. The
system includes server/client architecture where server stores the repository and client
stores a copy of literal file in repository at the server side. When aversion is requested

from client, server sends the delta to client over network. Insertion is also easy
because the client produces the delta between the new version and the literal one, and
the server stores it in repository. When the cluster reaches the optimum number of
versions in the repository, the client sends the new version itself.

Reversedelta (RD) is the most popular storage technique that is introduced by
Tichy [15]. It Storesthe last version as literal and previous versions as deltas in reverse
order. The most recent versions are accessed more frequently than older ones, and
they can be constructed by applying several delta files to litera file. The same
problem of accessing the recent versions in FD also occurs in accessing the older

versons in RD. Thetriangle in Figure 6 specifies the reverse delta.

coe o h i

Figure 6: The storage mechanism of reversedelta technique

Eventualy changes occur on previous versions because of some reasons; such
as arequest to fix abug in an intermediate version used by a customer [15]. New form
of the previous version is aso to be stored and it cannot be introduced like a new
version in result of changing some parts of the latest version. Branch handles the
development of previous version by creating a new chain connected to it. Figure 7
shows how RCS stores branch versions.

Figure 7: The storage mechanism of branch in RCS

13

SCCS (Source Code Control System) [14], one of the oldest tools, uses FD
technique. RCS (Revision Control System) [15] stores the most recent version on the
trunk as literal and uses RD technique to store the previous versions on the trunk. It
handles branch using FD technique. XDFS [8] - The XDelta File System - offerstwo
storage techniques; XDFS-f and XDFS-r. Although suffix of XDFS-f implies forward
ddta, it uses JD technique and XDFS-r uses RD.

RCS uses an ancestra tree to stores versions preserving the hierarchy in a
repository. RCS expects a revision number for a new version. If t is rot specified,
then RCS tries to determine the number. XDFS stores versions of a repository in a
single trunk, and gives a number sequentidly to each inserted version to identify them.
XDFS has a different approach to add a new version in a repository to fandle the
branch problem and reduce the disk size consumed by the repository. When a new
version is introduced, XDFS concatenates the new one and inserts data of current
deltas in the cluster, and computes the delta between the concatenated file and the
literal one. Therefore, when two or more branches become dissmilar, deta
computation can conclude a copy instruction from taking the source a delta file instead
of storing the duplicate change in the new delta.

SCCS and RCS use UNIX diff command to compute the delta between adjacent
versions, therefore they are applicable for text-oriented revisions. XDFS is applicable
for binary files aswell as text ones and it uses X Delta as delta algorithm.

2.6. Delta Application

Apply Algorithm is a simple implementation of delta application, and applies the
ddtafiles to litera version files consecutively until the required version is generated.
Apply agorithm (Figure 8) applies each instruction in a delta to the source file and
generates the destination one.

If 4" version is required in a forward chain, firstly apply algorithm applies 24,
to literal /, and it generates 2 version. Secondly, it applies ?,, s to 2 one, and it
generates 3 one. Findly, it applies 23, 4 to 3° one, and it generates required 4"
version. There is an example to make clear how the agorithm runs.

14

Apply (src, dst, ?)
1. for i< Otosize[?] —1do

2. if 7[i].type == " COPY"
3. then copy (src, ?[i].frompos, dst, ?[i].topos, ?[i].length)
4, else copy(?[i].buffer, O, dst, ?[i].topos, ?[i].buffer.length)

Figure 8: Pseudo code of the apply algorithmfor copy/insert delta encoding

Version Files

0123456789101112131415161718192021 2223242526 27 28 29
1% abcdefghijk Imn 123456788943

01234567891011121314 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
2" abcdefghij k| mb01234567891435

Delta Files

Index type frompos topos length buffer

1. copy 0 0 13 null
2. insert 0 13 2 "bo
3. copy 14 15 9 null
4. insert 0 24 4 1435

The algorithm applies each instruction in ?; , sequentially. I¥ instruction is a
copy instruction, and the agorithm copies 13 bytes from 0" byte position of 1% version
to 0" position of generated 2 version. Now, new file looks like below.

0123456789101112131415161718192021 222324252627 28 29
2" abcdefghij k I m

15

Then, it applies 2™ instruction which isinsert one. It inserts “b0” byte sequence
to 13" position of the file, and it becomes

01234567891011121314151617 18192021 222324 25 26 27 28 29
2" abcdefghij k1 mb 0

After instructions are applied, new 2™ version is generated.

0123456789101112131415161718192021 2223 24 2526 27 28 29
2": abcdefghij k|l mb01234567891435

The complexity of the delta application is O (size (D)), because size (D) bytes
are copied from one location to another.

2.7. Related Work

SCCS [14] stores versions of arepository in asingle file and it uses interleaved
deltas. The file is divided into fragments and each fragment includes a set of ling(s)
and a header. The header consists of versions where the fragment exists or not. SCCS
traverses the fragments sequentialy and combines the fragments together which
belong to the required verson. The interleaved storage provides an efficient
reconstruction because reconstruction needs to traverse whole file to retrieve any
versions in a repository. However, the performance of reconstruction reduces while
the repository tends to grow and number of lines increases.

Tichy [15] introduces an agorithm to eliminate unnecessary copies for
unchanged lines while delta application in RCS. It constructs a piece table - one-
dimensiond array -, which includes the address of each line n literal instead of line
itself. It applies the delta to the piece table by deleting unnecessary entries from the
piece table and inserting new entries required in next version. Adding a new entry into
the piece table requires shifting the entries below further down however it would be
wiseto select a more sophisticated data structure instead of a one-dimensional array.
The resultant piece table includes the addresses of linesin next version, and version is
constructed by gathering the lines. He states that RCS reconstructs a version faster

16

than SCCS if the number of ddtas applied is not greater than or equal to 10. Deltas are
line-oriented in RCS; therefore the solution is not applicable for binary-files. Hunt,
Yo, and Tichy [7] states “A simple technique is to map the binary code into text and
then applying diff. While this works reliably and is widely used in practice, the deltas
produced are typicaly larger than the originals! .

MacDonald [8; 9] mentions a new technique reconstruct operation to retrieve a
version instead of using delta application. The reconstruct creates a balance interval
tree to map byte ranges in required version to literal and insert data of deltas. It
processes the each delta, and inserts the ranges in a delta to interval tree. MacDonald
states that reconstruction algorithm runsin O (n*zlog 2) time, where n is the number
of delta applied and z is the maximum number of ranges in a delta. To construct the
version, ranges in the resultant tree are copied from literal or insert data of deltas and
it requires O (size (D)) steps. He states “Reconstruct can be considerably more
efficient than ssimply applying each deltain sequence”.

Subversion [4] project is a replacement of CVS, and it completes the lack of
CVS besides offering the most of its features. Subversion uses vddta delta agorithm
to compute the delta between two versions therefore deltas also include target copies
as well as source copies and new data -inserts-. Branko [5] designed an agorithm -
delta composition - combines the deltas including target copies for retrieval function
of Subversion. He establishes arelation T = AB(S) = B (A(S)); where A and B are
deltas, Sis sourcefile, and T is target file. The algorithm uses a splay tree to map the
ranges like MacDonald’'s balanced interval tree. The agorithm has to change each
target copy of A with corresponding source copies and new data, because A should
not depend on intermediate version between S and T before delta composition. The
target copies and new data in B are not related to intermediate version; therefore the
algorithm adds them to the resultant delta directly. However, it adds the equivalent
instruction(s) in A defining the range of source copiesin B. Meanwhile, the algorithm
does opposite transformation in resultant delta to reduce cache trashing by increasing
locality of reference. It puts the equivalent target copy when encouraged a source copy
in B previoudly defined in T. This process keeps the history of source and target of
each copy from A to do opposite transformation, and reduces the number of

instructions in resultant delta.

17

Zéller [3] introduces a new technique for fast reconstruction problem for block -
copy/insert delta encoding- algorithms in his thesis. The algorithm converts each copy
block in target delta with blocks in source delta and it uses binary search algorithm to
find start offset of first block in source delta covering the copy one. Replace algorithm
is smilar to Zeller's, however replace is designed and implemented without
knowledge of Zeller's thesis. The thesis compares the agorithm against delta
application. He uses versions of histhesistext as test data, and he constructs a reverse
and a forward chain -70 deltas- generated from CVS. The experimental result shows
that the defta combiner for reverse deltas yields a better execution time than delta
application but it is not valid for forward deltas. He states, by further investigation, the
resultant forward delta mainly includes very small fragments -instructions- because of
truncation. The resultant combined delta of reverse chain because of being less
fragmented, shows better performance in terms of execution time. He finally offers to
divide the deltas into groups and combine each delta group separately due to the worst
performance of small fragmentations. However, intermediate versions at intersection
of adjacent groups are generated.

2.8. Implementation Notes

Apply and replace algorithms are implemented with different memory usage
and data structure type. Two different delta algorithms are implemented, one of which

runs like the general greedy algorithm, constructs one hash table and the other
correcting one-pass constructs two hash tables.

2.8.1. Implementation Notesfor the Delta Algorithm

The delta files, used by apply agorithm when destination and intermediate
versions are constructed in memory completely and replace algorithm using that apply
algorithm and constructing hash table, are produced by a delta algorithm that is the
combination of the genera greedy algorithm and XDelta. The agorithm constructs a
hash table like XDelta does, however it does not store the fingerprint value itself inan
array. All offsets corresponding to the same entry are stored with a chain. Match
occurs in both directions, and each match is added to delta file with the rules of tail

18

correction. If amatch is found, next search offset is set to current search offset plus the
length of the match. Although it amost produces optimum result, its execution time
becomes worst like the general greedy agorithm for large version files. Then,
correcting one-pass delta algorithm is implemented and it generates the delta files
which are used by apply algorithm when destination and intermediate versions are
constructed on disk or with a buffer in memory and replace agorithm that is optional
to use binary search or hash data structure.

2.8.2. Implementation Notesfor Apply Algorithm

The pseudo code in Figure 8 is used as underlying code in the apply agorithm
for the thesis, however it isimplemented with some improvements in view of memory
usage and construction of destination file. The code is designed to calculate 10 and
CPU times separately. Apply algorithm constructs the (intermediate) versions with
three different options; on disk completely, with a fixed-size buffer in memory, or in
memory completely. If versions are constructed in memory completely, S and insert

stream in ?g, 4 are read into memory fully, and a memory block with length D is

reserved for the construction of D before delta application. Then, construction of D
occurs in memory. If more than one delta application is necessary, literal fileisfirstly
read into memory and then each D becomes S of next delta application. While delta
application, intermediate versions (Ds) are not stored except the last one kecause it is
the required version. If versions are constructed on disk completely or in memory with
a fixed-size memory buffer, S is not taken into memory. The size of buffer is not
enough to construct the versions wholly in memory and buffer is flushed to disk when
it becomes full. These two versions of apply are optional to take the insert stream into
memory or not.

2.8.3. Implementation Notesfor Replace Algorithm

Replace agorithm search the instructions in the source delta file using binary

search algorithm and constructing a hash table, and the performance of the agorithm
for each search option can be seen in the experimental results.

19

CHAPTER 3

REPLACE ALGORITHM

3.1. Replace Algorithm

When a version is requested in a chain and its generation necessitates applying
more than one ddltafile to literd file, replace algorithm can combine the intermediate
delta files between literal and required version as a single delta in the run time. This
solution prevents unnecessary 1O operations which delta application does, because
intermediate versions are not generated and are not stored on disk temporarily in
replace algorithm. The agorithm is applicable for copy/insert delta encoding therefore
it is applicable for binary files.

Figure 9 shows a simple case among three versions to make clear how replace
agorithm works. The two different blocks -block 1 and 2 occur in versions Vi, Vi
and Vi.,. The delta agorithm concludes two copy instructions for these blocks and
one insert instruction for block 3 in ?,, «1. These three blocks occur in continuous
sequence between W.; and V., and it is concluded as a single copy instruction in
?w1, k2. T delta application generates Vi.,, then these three blocks are copied from
one location to another location for two times. Replace algorithm converts the each
instruction in ? .1, 2 With the corresponding instruction set in ?, 1. The copy
instruction defining the continuous sequence between V., and V.., can be converted
using copy, insert, and copy instructions set in ? , 1. Because these three blocks
defines a byte range in V., where the single copy instruction in ? .1, > Usesthe same
byte range as source to define a different byte rangein V... However, the byte range
defined by a copy instruction in ?.1, «+» Can be a subset of the byte range defined by
instruction(s) in ?y, 1. This problem can be handled with re-calculation of edge
instruction(s), whose length shortened or source position changed. Insert instructions

20

in ?y.1, k+2 dO NOt require any calculations, and become stable except changing their
destination position. The resulting delta is ? , «» and it is constructed from a new
dedta. Now, V.., can be constructed with applying ?y, 2 to V. The agorithm
generates the combined deltain run time and does not store it on disk.

1114111/ LANNNNNENNNNNN
w NN\ N\ S
£/ 3 NN
w AV

EA/IERINNNNE NN\

Figure 9: An example of encoding delta filesin replace algorithm

Figure 10 includes the pseudo-code of replace algorithm in detail. The
algorithm takes two consecutive delta files - ?y .1 and 2.1 2 - @ input and produces
the combined delta - ? > - as output. It yields the same result using binary search
agorithm on source delta file which is dready sorted in destination position or
creating a hash table on source delta file and using binary search on narrow range to
find the index of instruction in ?, ., which defines for current copy instruction in

?k+1, k+2-

21

Replace (?k k+1, 2k+1k+2, » Mode)

1.Create an empty ? k+2 list

2.if mode==HASH_TABLE_MODE

3. then hashTable < createHashTable(?y k+1)

4for i € 0tosize] ?ys1 k2] —1do
5 if Pker ka2 [1]type=="INSERT"

6 then add(?« k+2, CInstruction(? s, ke2 [i], topos))

7. continue

8 if mode == BINARY_SEARCH_MODE

9 then index < binarySearch(?y k+1, 0, Siz€[?x k+1], Pk+1 k2 [1].frompos)
10. elseindex €< getFromHashTable(hashTable, ?y+1 ks2 [i].frompos)

11.found € ?y k1 [index]

12.diff € 241 ke2 [1].frompos— found.topos
13.toP0s & ?ys1 k2 [1].topos

14.clone < Clnstruction(found, topos, diff)
15.index < index +1

16.length € 2y k42 [1].1Ength

17.whilelength >0 do

18. add(?k k+2, clone)

19. length € length— clone.length
20. if length<O0

21. then shortened(clone, -1* length)

22. break

23. if length==0OR index >= size[? y+1]
24, then break

25. toPos < toPos + clone.length

26. clone € Clnstruction(?y k+1[index] , topos)
27. index < index + 1

28.return ?y ks2

Figure 10: Pseudo-code for replace algorithm

The agorithm produces a hash table to address the instructionsin ? .1 (line 3)
if HASH_TABLE _MODE is selected. for loop processes each instruction of 2?1 w2

(line 4). If the type of current instruction isinsert one, instruction isinserted into ? .»

without any calculations (line 6). Otherwise, it is copy, and the function
getFromHashTable or binarySearch finds which ingtruction in the hash table defines
the from position of the current instruction. Then, it returns the index of the ingtruction

in ?x w1 (line 9 or 10). The statement (line X¥) clones the found instruction and

22

truncates unnecessary byte(s) from beginning of it. The difference between the source
position of the searched instruction and destination position of found instruction is the
length of unnecessary bytes The current copy instruction can be defined a subset of an
instruction, an instruction, or a group of consecutive instructions in ?y 1. In the
similar way, the last instruction may have unnecessary byte(s) and are eliminated with
cutting byte(s) from the end of instruction by using method shortened (line 21). While
loop replaces the current copy instruction with above three possible ways in the
statements until length is equal to zero (line 17-27).

HashTable createHashTable(List ?)

1. Create an empty hashList

2. increment < filesize/ size[?]
/* filesize isthe size of D for current ?, and it can be calculated with
sum of topos and length of last instructionin thelist */

3. fori< Otosize[?]-1do

4, length < ? [i].length

5. pos € ? [i].topos+ ? [i].length

6. idx €< ? [i].topos/ increment

7. last € idx * increment

8. while pos > last do

9. innerList € hashList [idx]

10. if innerList == null

11. then innerList < new List

12. hashList [idx] €< innerList

13. idx < idx + 1

14. add(innerList, i)

15. last €< last + increment

16. return hashList

Figure 11: Pseudo-code for construction of hash table

Before the example to make clear how the agorithm works, how the hash table
to be constructed (Figure 11), how getFromHashTable (Figure 12) and shortened
method work are described with pseudo code. createHashTable constructs a two
dimensional array as a hash table suitable for replace procedure. The first dimension
of the hash table defines ranges from 0 to increment— 1 asfirst index, from increment
to 2* increment — 1 as second index, from 2* increment to 3* increment — 1 as third

23

index, and go on. Each index of the hash table keeps an array to store instructions
faling into the range. getFromHashTable method takes a from position as an input,
and finds which instruction defines from position in ?y .. First of al, the method
finds inner array, calculates begin and end index of it and then calls binarySearch.

getFromHashTable(int frompos)

1. innerList € hashList [frompos/increment]
2. beginindex € innerList [0]

3. endindex € innerList [O] + size[innerList] - 1

4. return binarySearch(? k+1, beginindex, endlndex, frompos)

Figure 12: Pseudo-code of getFromHashTable method for hash table

3.2. An Exampleto Make Clear How Replace Algorithm works

Version Files

0123456789101112131415161718192021 2223242526 27 28 29
1% abcdefghij k Imn 12345678943

01234567891011 121314 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
2" abcdefghij k| mb01234567891435

01234567891011121314 1516 17 1819 20 21 22 23 24 25 26 27 28 29
3% zabcdefghi j k| mb002345678914c35

Delta Files

1,2

Index type frompos topos length buffer

1. copy 0 0 13 null
2. insert 0 13 2 “bor
3. copy 14 15 9 nul
4. insert 0 24 4 1435

24

?2,3

Index type frompos topos length buffer

1. insert 0 0 1
2. copy 0 1 15 nul
3. insert 0 16 1 o
4. copy 16 17 10 null
5. insert 0 27 3 ey

There are three version files and their delta files are generated with genera
greedy delta algorithm. If ?, , and ?,, ; delta files are passed to replace algorithm
respectively and search mode is HASH_TABLE_MODE, then hash table are
constructed on ?; . If BINARY_SEARCH_MODE, there is no need to construct any
data structures. Finally, delta ?,5 is produced as an output. The example below is

prepared for replace agorithm using hash data structure because binary search
solution is obvious.

When createHashTable runsfor delta ?; ,, it yields the hash table in Figure 13.
The file size of 2" version is calculated by adding to position and length of the last
instruction of ?; ,, and it is 28. The number of instruction in ?, , is4. According the
4" ling, increment value is set to 7. The first dimension of hash table addresses the
each byte of 2% version. 0" index addresses the bytes between 0 and 6, ' index
addresses the bytes between 7 and 13, and so on. 2" instruction defines 13" and 14"
byte positions in 2¢ version. 13" position is defined by I index and 14™ position is
defined by 2 index, therefore two inner lists keep the index of that instruction.

25

(1
o
0 _|
1 —— [T7?
2 -—

F2 13
3 ~

3 [4

Figure 13: The state of hash table for given example

The agorithm processes the each instruction in ?, ssequentialy.

1% ingtruction in 2, sis“insert 0, 0, 1, Z’, and it is added into ?, 5 without any
caculations.

?1.3 (by replace algorithm)

1 inset O, 0 1, “Z

2" instructionin 2, sis“copy 0, 1, 15", and it copies 15 bytes from 0" position
of 2" version to I position of 3“ version. from position of the instruction is 0. Get
method called at line 8 of replace method finds the index of instruction where from
position occurs. 0" position fals into 0" index in hash table. The method finds the
index of instruction in inner list with sequantial search. The found instruction in ?; , is
“copy O, 0, 13". From position of searched instruction and to position of found
instruction are equal, and the length of search instruction is greater than the length of
found instruction. Therefore, there is no need any cut at beginning or end of found
instruction. The agorithm clones the found instruction, and changes the to position
with the to position of searched instruction. New cloned instruction is added to ? s.

26

?1 3 (by replace algorithm)

1 insert O, 0 1, “7
2. copy 0O, 1,13 null

The length of 2 instruction in ?,, 5is 15, and first 13 bytes is replaced with new
copy instruction. 15-13=2 bytes are left. The next (3°) ingtruction in ?, , is an insert,
and length of it is2. It isadded into ?; 5.

?1.3 (by replace algorithm)

1 insert 0, O, 1, “7”
2. copy O, 1,13, null
3. insart 0, 14, 2, “b0’

The searched instruction is replaced with founded instructions completely. The
next instruction (3%) instruction in ?,, 5 is an insert, and it is added into ? 3 without

any calculations.

?1.3 (by replace algorithm)

1 inset O, 0O 1, “Z
3. copy O, 1,13 null
4. insat 0, 14, 2, “b0”
5 inset 0,16, 1,“0"

4" ingtruction in ?,, 5 is“copy 16, 17, 10", and fromposition 16 is defined by 3¢
instruction “copy 14, 15, 9’ in ?, ,. However, 3% instruction defines the bytes block
between 15™ and 23"™. The clone of the found instruction becomes “copy 15, 17, 8".
Because the first byte is unnecessary. From Position and length of clone instruction is
incremented by one, to position is set to searched one. It isadded into ?; .

?1.3 (by replace algorithm)

inst 0, O, 1, “7
copy O, 1, 13, null
insert O, 14, 2, “b0’
insert O, 16, 1, “0O”
copy 15,17, 8, null

SUESN RN o

27

Then, there are two bytes |eft to replace with instruction(s). The first two bytes

of 4" ingtruction in ?,.» iscloned as anew instruction, and it is added into ? 5.
?1.3 (by replace algorithm)

, 'z
3, null
b0
Y
, null
, ‘14

insart 0, O, 1
copy O 1,1
insat 0, 14, 2
insat 0, 16, 1
copy 15, 17, 8
insert 0, 25, 2

Ok wNE

The type of the lagt instruction ?, 3 in is insert, it is added into ?; sand
combined deltafile ?, 3 is generated.

?1 3 (by replace algorithm)

1 inset 0, O 1 “7
2. copy 0, 1,13, null
3 inset 0, 14, 2, “b0"
4, inset 0, 16, 1, “O"
5. copy 15,17, 8, null
6. insat O, 25, 2, “14"
7. inset O, 27, 3, “c35"

The deltafile below is generated by greedy delta algorithm
?.1 3 (by greedy delta algorithm)

Index type frompos topos length buffer

1. insert 0 0 1 Z

2. copy 0 1 13 null

3. insert 0 14 3 “bo0”
4. copy 15 17 8 null

5. insert 0 25 5 “14c35”

28

CHAPTER 4

COMPLEXITY ANALYSIS

Let V1, V2, V3, V4 be four versions of afile and ?1 2, ?2.3, ?34 be deltafiles
respectively. The chain stores V1 as literal, and other versions as delta files. i is the

sum of lengths of each insert, and cisthe sum of lengths of each copy in ?2 3.

4.1. Retrieve Operation

Delta application and delta combination can be compared when more than one
delta application is required. Generation of V1 and V, are simple. V1 is literd version

and acopy of it is created. If V; isrequired, it requires ?1 > to be applied to V1.

4.1.1. Delta Application

It applies ?1 2 to V1, and generates V. Then, it applies ?, 3 to Vo, and generates
the desired V3. The complexity of the agorithm is size (V2) + size (V3) bytesareread
from one location and written to another.

O (size (Vo)) + O (size (V3)) (4.1)

4.1.2. Replace Algorithm

Replace Algorithm replaces instructions in ?2 3 by using ingtructions in ?1 2.
Insert instructions are added into ?13 without any calculations, and each insert

instruction takes O(1) time. Copy instructions are replaced with a subset of a single or

29

agroup of instructions defining its source range in ?1, 2. Then, the cost of replacing

each copy instruction becomes vita in the agorithm.

Instructions in ?1,2 are in ascending order relegtive to To Position. Therefore,
instructions are already sorted, and then complexity of finding an ingruction is O (log
n) over sorted ingruction list usng binary search algorithm, and n stands for the

number of instructions in ?1 2. The complexity of the algorithm thus becomes
O (i +c*log, n) 4.2
L emma The algorithm is bounded by:
O(sze(?2,3) <=0 (i +c*log n) <=0 (sze(?2,3) * logp n) (4.3

Proof If al ingtructions are insert in ?» 3, then lower bound becomes O (size
(?23)) because ingtructions are added into ?13 without any calculations. If all

instructions are copy, then upper bound becomes O (size (?2,3) * log, n). If the cost of
delta application is added, the complexity finally becomes

O(i+c*log, n) + O (size(V3)) 4.9

By the way, hash table data structure can aso be used besides binary search
algorithm to find the From Position of each copy instruction in ?; 3. Entriesin the HT
define a consecutive fixed-size range and keep the index of instructions defining the
corresponding byte range. The range is calculated by r = size (V) / Sze (?12). risthe
average length of an instruction. If each instruction had the same and equal size, thenr
would be 1. Therefore on average, it can be concluded that a few instructions fall into
the range, assuming that the number of instructions in a range is x. O (size (V2))

stands for construction of HT.
O(i+c*log x)+ O (size(V2)) 4.5)

If the cost of delta application of generated delta is added, the complexity
becomes

O (i + c* log X) + O (5ze (V2)) + O (5ze (V23)) (4.6)

If more than 2 delta files are combined, HT construction except the first one can
be done while creating combined delta. Transformed instructions can be put into hash
table, while they are inserted in combined delta list. However, binary search algorithm
always shows better performance than HT data structure in experimental results. The
reader can see the performance results in Chapter Experimental Resullts.

When there is a memory usage limitation or working on large version files; such
as S cannot be read into memory at once, D file cannot be constructed completely in
memory without disk 1/0O, replace agorithm can be considerably efficient than delta
application. Delta application has to write generated intermediate versions to disk, and
read them as S from disk for the next delta application.

4.2. Delete Operation

When a version at the edges of a chain is deleted, the solution is clear. The
version can be a literal one or the last delta in the chain. If it is the last delta, it &
deleted from disk. If it isliteral, then the consecutive ddlta file is applied to literal one
and old literal is deleted from disk. Deletion of intermediate version in the chain
requires more operations.

4.2.1. Delta Application

The deletion of V3 requires generation of V> and V4, and computation of ?2,4
by using them. This application necessitates 3 time delta applications, and 1 time delta
computation.

O (sze (V2)) +O (size (V3)) +O (size (V4)) + DA (size (V2), Sze (Va)) 4.7

DA is the delta application. If the delta algorithm runs in quadratic time, it
becomes dominant in the complexity. Generated intermediate versions besides 72,3
and ?3,4 are deleted from the disk.

4.2.2. Replace Algorithm

The replace agorithm takes delta files ?2,3, ?3,4 asinput, and produces the ?5,4,
then ?,,3 and ?3,4 are deleted from the disk. The deletion of deltafiles is the same with

31

delta application except intermediate versions. The produced delta file is not optimum,

however size of combined delta file can be quite efficient when considering the
execution time of the algorithm or working with large version files.

32

CHAPTER 5

EXPERIMENTAL RESULTS

A real database table is used to produce version chains with variable size and
percentage in terms of file size for experimental results. Each version chain (Figure
14) has 5 version files, and there is a difference ratio between two adjacent versonsin
terms of size. Chain in the figure is used as a standard in our experimental work The
file size of first version (literal) in achain approximately can be 50 KB, 100 KB, 300
KB, 500 KB, 1 MB, 3 MB, 5 MB or 10 MB. The file size difference ratio for each
chain can be 1, 3, 5, 10, 20, 30, or 50 %. For example; the file size of first version for
achainis1 MB, and the difference ratio is 10. Then, file sizesin chainare 1 MB, 1.1
MB, 1.21 MB, 1.331 MB, and 1.4641 MB respectively. There are 8 different file sizes
and 7 difference ratio options; therefore 56 version chains are created and used in the
experimental results. Also some real-life packages at http://www.gnu.org/directory/all/

are used to observe the characteristics of replace agorithm.

Aadadadal

Figure 14: The figure of our generated version chain for experimenta results

Each operation (retrieve and delete) is executed twenty times, and their average
value is taken in consideration. The UNIX “diff” command is used to calculate the
execution time of apply agorithm when intermediate versions are constructed on disk
completely or with a fixed-size buffer in memory and replace agorithm which uses
one of the above versions of apply. The execution time is split into user and system

time. User time indicates the time spent for the CPU process in a program, and system
time gives the execution time in kernel and it mainly includes 1/0O process time. Total
time is the sum of both user and system times. The execution time of apply agorithm
generating intermediate versions in memory completely and replace agorithm using
this version of apply is calculated by the program itself. The computer used for
experimenta results has Intel Pentium 4 CPU 2.4 GHz, and 512 MB RAM. The
operating system is Mandrake 9.1.

5.1. Retrieve Operation

Delta application and defta combination can be compared when more than one
delta application is necessary. All versions except literal file and previous version of it
in a chain can be generated by both algorithms and their execution results can be
compared meaningfully. For example;, each generated chain for the thesis has 5
version files and version 5 is litera file in Figure 14, therefore delta application and
delta combination can be compared for version 1, 2 and 3.

5.1.1. How Delta Application worksfor Retrieve Operation

It simply applies intermediate deltas to literal Fs to produce the required one. If
version 2 is required, apply is called three times and the path of execution can be
described as

Apply(Fs, ?54) + Apply(Fa, ?4,3) + Apply(Fs, ?3,2)
The agorithm requires (n — i) times of delta application to generate version i
from the chain, and version nis the literal one.
5.1.2. How Delta Combination worksfor Retrieve Operation

It combines intermediate delta files between literal and the required one as a

single combined delta, and it applies the combined delta to litera K. If version 2 is
required, then the path of execution can be described as

Replace(?5,4, ?4,3) + Replace(?s,s, ?3,2) + AWY(FS! ?5,2)'

The agorithm calsreplace (n—i - 1) times to generate combined deltafile ?p

and appliesit to verson n.

5.2. Run Resultsfor Retrieve Operation

The below cases are studied to observe the retrieve operation of apply and
replace algorithms individually and to compare both algorithms in the thesis.

The performance of apply algorithm when insert streamison disk or in
memory.

The performance of apply agorithm when dedtination file is
constructed on disk completely, with a fixed-size buffer in memory, or
in memory completely. Buffer size is not enough to construct the
destination file in memory completely.

The performance of replace algorithm when it uses binary search
algorithm or when it constructs a hash table to find an instruction in an
already sorted array.

The performance considering 1/0 and CPU time of apply and replace
agorithms with a fair comparison

5.2.1. Theperformance of Apply algorithm when insert stream
Ison disk or in memory

The Figures (15, 16, 17 and 18) observe the performance of apply algorithm
when insert stream is on disk or in memory during delta application. Although insert
stream length is sufficiently large for both packages (Table 1 and 2), taking the insert
stream in memory does not change the total execution time of apply at all. A smal
improvement is achieved in system time at some figures when insert stream is taken
into memory. However, this improvement brings an overhead to user time. The figures
imply that insert stream being on disk or in memory has no effect on the total
execution time of apply. Therefore, it can be stated that taking the insert stream into
memory does not cause any |oss on the performance of the replace algorithm in terms
of total execution time.

~ 1000
(%]
£ goo :
o @ System Time(Apply, Insert
.E 600 Stream on disk)
S 400 i @ System Time(Apply, Insert
3 200 i Stream in memory)
%
i o+ — T

1 2 3 4

Version No

(A)
~ 800
]
E
o 600 1 @ User Time(Apply, Insert
E Stream on disk)
= 400 4 .
_S User Time(Apply, Insert
S 200 - Stream in memory)
w0+ —

1 2 3 4

Version No

(B)
~ 2000
]
E
o 1500 1 E Total Time(Apply, Insert
-E Stream on disk)

1000

il)
S Total Time(Apply, Insert
5 500 - Stream in memory)
i 0 —

1 2 3 4

Version No
©

Figure 15: The performance of apply algorithm when insert stream is on disk or
in memory, and intermediate versions are constructed on disk for package gawk

~ 400
£
‘o 300 1 @ System Time(Apply, Insert
-E Stream on disk)
200 1

5 System Time(Apply, Insert
‘é 100 4 Stream in memory)
%
N 0 —

1 2 3 4

Version No

(A)
~ 700
g 600
o 500 A E User Time(Apply, Insert
1S)
i= 400 1 Stream on disk)
5 3001 User Time(Apply, Insert
5 200 Stream in memory)
3 100 A
o o- ————

1 2 3 4

Version No

(B)
~ 1200
£
£ 1000 -
g 800 4 D'Sl'?tal Tlme(chp'E)Iy, Insert
= 600 - ream on disk)
5 400 - [Total Time(Apply, Insert
5 Stream in memory)
g 200 1
ﬁ O = T T T T T T T

1 2 3 4

Version No
©

Figure 16: The performance of apply algorithm when insert stream is on disk or
in memory, and intermediate versions are constructed with a buffer in memory for
package gawk

37

~ 6000
g
£ 5000
2 4000 4 @ System Time(Apply, Insert
-E Stream on disk)
c 3000 @ System Time(Apply, Insert
2 2000 4 Y (Apply,
5 Stream in memory)
$ 1000
g o ——————————

1 2

Version No

(A)
~ 4000
g
\GE-: 3000 1 @ User Time(Apply, Insert
= Stream on disk)
— 2000 T)
15 User Time(Apply, Insert
3 1000 Stream in memory)
%
L 0+ — — — T T

1 2

Version No

(B)
~ 10000
g
= 8000
g E Total Time(Apply, Insert
= 6000 Stream on disk)
S 4000 @ Total Time(Apply, Insert
§ 2000 Stream in memory)
] oH —————

1 2
Version No
©

Figure 17: The performance of apply algorithm when insert stream is on disk or
in memory, and intermediate versions are constructed on disk for package chicken

~ 2000
g
o 1500 1 @ System Time(Apply, Insert
E Stream on disk)
1000 1

5 System Time(Apply, Insert
g 500 - Stream in memory)
%
w 0 - — T — T T T T

1 2

Version No

(A)
—~ 3000
g 2500
© B User Time(Apply, Insert
2 2000 { o (d_PEY
F 1500 L ream on disk)
c .
o User Time(Apply, Insert
= 1000 .
5 Stream in memory)
g 500
x
Ll 0 e T T T T T T T T T

1 2

Version No

(B)
~ 5000
£
<= 4000 -
o @ Total Time(Apply, Insert
-E 3000 Stream on disk)
_E 2000 A [Total Time(Apply, Insert
3 1000 - Stream in memory)
%
[0 A T T T T T T — T

1 2

Version No
©

Figure 18: The performance of apply agorithm when insert stream is on disk or
in memory, and intermediate versions are constructed with a buffer in memory for
package chicken

39

Table 1. The statistics of instructions that are applied by gply and replace

algorithms for package gawk
Algorithm | Version Apply Apply Average | Apply Apply Average
No Copy # Copy Copy Insert Insert Insert
Length Length # Length Length
Apply 1] 109,812 | 24,373,007 222 | 75,652 | 5,353,713 71
Apply 21 108,118 | 20,485,349 189 | 74,485]| 5,319,451 71
Apply 3| 77,129 18,770,449 243 | 48,065 | 3,091,951 64
Apply 4| 56,288 | 14,229,416 253 | 33,300 1,591,384 48
Replace 1| 26,480 966,994 37 | 46,284 | 2,954,926 64
Replace 2| 26,459 974,364 37 | 44,566 | 2,968,036 67
Replace 3| 32,196| 4,013,366 125 | 29,363 | 2,028,234 69
Replace 41 46,375 6,145,114 133 | 29,105 1,412,006 49
Table 2. The statistics of instructions that are applied by gply and replace
agorithms for package chicken
Algorithm | Version | Apply Apply Average | Apply Apply Average
No Copy # Copy Copy Insert # Insert Insert
Length Length Length Length
Apply 1] 853,081 | 57,716,083 68 | 397,974 | 9,611,917 24
Apply 2| 649,933 | 38,286,711 59 | 304,471 | 7,506,569 25
Replace 1] 500,928 | 15,785,214 32 | 335,905 | 5,749,506 17
Replace 2| 465,800 | 16,295,555 35| 271,701 | 5,597,565 21

5.2.2. The performance of Apply algorithm when destination
fileisconstructed on disk completely or with a fixed-size
buffer in memory

Figures 19 and 20 show that using memory buffer to construct intermediate

versions in apply agorithm improves the system time. When intermediate versions are

constructed on disk completely; each instruction, even if negligible in length, copies a

byte block from one location to another on disk. However, a buffer in memory

eliminates disk seek aslong asit is not full.

90
’(é 80 —
E 70 7
@ 60 T @ System Time(Apply,
'E 50 T 1 versions on disk)
5 401 System Time(Apply,
5 30 17 versions in buffer)
® 20—
o 10 +

0
1 2 3
Version No

Figure 19: The comparison of goply agorithm when intermediate versions are
constructed on disk fully and gply when they are constructed with a buffer in
memory while insert stream is on disk for package mailman

80
o 70
£ 601+ -
e 3 System Time(Apply,
£ versions on disk)
F a0 _
S 30 1| System Time(Apply,
5 1 | versions in buffer)
g 20
o 10 +—

0

1 2 3

Version No

Figure 20: The comparison of goply agorithm when intermediate versions are
constructed on disk fully and gply when they are constructed with a buffer in
memory while insert stream isin memory for package mailman

5.2.3. The performance of Replace algorithm using binary
sear ch algorithm or hash data structure

Figures 21 and 22 show that binary search algorithm reduces the user execution
time of replace algorithm when compared with hash data structure, because hash data
structure consumes an extra time to construct a hash table although it searches over a
narrow range. While the difference ratio of the two adjacent versions with respect to
file size increases, the difference between the user times also increasesin Figure 21. It

41

is also concluded that replace algorithm using binary search produces the required
verson in less time between 500 KB and 10 MB chains from experimenta results. It
means that when the number of instructions increases, binary search becomes
applicable instead of hash data structure. Figure 22 shows that the number of delta
files that are combined and the difference between the user times increases.

1800
1600
1400
1200 E User Time(Replace,

1000 binary search algorithm)

800 User Time(Replace, hash

600 data structure)
400

200 1

Execution Time (ms)

1 3 5 10 20 30 50

Difference Ratio Between Two
Adjacent Files wrt file size

Figure 21. User Time of replace agorithm when binary search or hash data
structure is used, and intermediate versions are congtructed with a buffer in
memory for 5 MB Chains

@ User Time(Replace,
binary search algorithm)

User Time(Replace, hash
data structure)

Execution Time (ms)

Version No

Figure 22: User Time of replace agorithm when binary search or hash data

structure is used, and intermediate versions are constructed with a buffer in
memory for package nano

42

5.2.4. The performance of Apply and Replace algorithms with
a fair comparison

Section 5.2.2 and 5.2.3 show that best total execution time is achieved in apply
agorithm generating intermediate versions with a fixed-size buffer in memory and
replace algorithm using binary search compared to their alternatives. Section 5.2.1
proves that when insert stream is on disk or in memory has no dfect on the total
execution time of apply agorithm during delta application. Therefore, a fair
comparison can be made between replace agorithm using binary search, and apply
agorithm taking insert stream into memory while intermediate versions are
constructed with a buffer in memory.

Figures (23, 24 and 25) show that replace algorithm provides great reduction in
system time when compared to delta application and the conclusion is valid for all our
experiments. As previoudy mentioned, delta combination does not generate
intermediate versions and the difference between system times is a waste consumed by
delta application. Replace agorithm generates the version in less time than gply
algorithm in Figures (26, 27 and 28).

The improvement in system time brings an overhead to user time of replace
agorithm. The reduction in the system time is greater than increment in the user time
for our generated chains. As a result, it is concluded that replace algorithm yields a
better execution time when considering our generated chains especialy while

difference ratio increases for the series between 300 KB and 10 MB.

=
[
o
o

@ System Time(Replace,

1000 binary search algorithm)

500 System Time(Apply, Insert
Stream in memory)

Execution Time (ms)

o
!

1 3 5 10 20 30 50

Difference Ratio Between Two
Adjacent Files wrt file size

Figure 23: The system time comparison of goply and replace agorithm when
intermediate versions are constructed with a buffer in memory for 10 MB Chains

1200

w

E 1000 -

g 800 1] S_ystem Tlme(RepIa_ce,

= 600 4 binary search algorithm)
_E 200 - System Time(Apply, Insert
5 Stream in memory)

S 200 -

g3 oA

1 2 3 45 6 7 89

Version No

Figure 24: The system time comparison of goply and replace agorithm when

intermediate versions are constructed with a buffer in memory for package
metahtml

~ 80
1)
E
o 60 @ System Time(Replace,
-E 20 binary search algorithm)
_g System Time(Apply, Insert
§ 20 - Stream in memory)
%
L 0 - T T T T T T T T

1 2 3

Version No

Figure 25: The system time comparison of goply and replace agorithm when
intermediate versions are constructed with a buffer in memory for package marst

4000

3000 [Total Time(Replace,
binary search algorithm)

2000

Execution Time (ms)

Total time(Apply, Insert
1000 I:I:I I: Stream in memory)
O 4
1 3 5 10 20 30 50

Difference Ratio Between Two
Adjacent Files wrt file size

Figure 26: Thetota time comparison of gply and replace agorithm when
intermediate versions are constructed with a buffer in memory for 10 MB Chains

250

w

£ 2001 :

© [Total Time(Replace,

.E 150 A binary search algorithm)
_S 100 A @ Total Time(Apply, Insert
3 504 Stream in memory)

%

wl 0 -

Version No

Figure 27: The total time comparison of gply and replace agorithm when

intermediate versions are constructed with a buffer in memory for package

mailman
~ 1200
1)
E 1000 {
o E Total Time(Replace,
£ 800 1 bi h algorith
= 600 4 inary search algorithm)
_g 400 - @ Total Time(Apply, Insert
5 Stream in memory)
g 200 -
ﬁ O -1 T T T T T T T
1 2 3 4
Version No

Figure 28: The tota time comparison of gply and replace agorithm when
intermediate versions are constructed with a buffer in memory for package gawk

The delta application dmost beats delta combination for each of our generated
version chains when apply agorithm generates the intermediate versions in memory
completely. CPU performance of replace algorithm is dominant in execution time.
While delta application generates the required version, it aso produces intermediate
versions temporarily. These intermediate files are not stored on disk while execution,
because memory size is enough to keep an intermediate version. That becomes the

main advantage of delta agorithm; because it does not require any 10 operations for
intermediate files.

w
£ 400
g 300 , ;
= =10 Time(Apply, versions
— 200 are constructed in
£ 100 A memory completely)
]
S 0 10 Time(Replace, hash
o 1 3 5 10 20 30 50 data structure)
Difference Ratio Between Two
Adjacent Files wrt file size
(A)
w
£ 1000
o 800
.E 600 O CPU Time(Apply, versions
< 400 are constructed in
S 200 memory completely
b 0 CPU Time(Replace, hash
i 1 3 5 10 20 30 50 data structure)
Difference Ratio Between Two
Adjacent Files wrt file size
(B)
w
£ 1500
()
_E 1000 O Total Time(Apply,
- versions are constructed
g 500 in memory completely)
>
3 0 Total Time(Replace, hash
) 1 3 5 10 20 30 50 data structure)
Difference Ratio Between Two
Adjacent Files wrt file size

©

Figure 29: The comparison of apply when intermediate versions are
constructed in memory completely and replace agorithm using hash data structure
for 1 MB Chains and execution times are calculated by the program itself

5.3. Delete Operation

The performance of apply and replace algorithms are compared also for delete
operation of aversion in a chain. Deleting edge versions of achain, literal or first one,
is straightforward, in which replace algorithm is not applicable. Deletion of version 1
requires only deleting ?,,1 from disk, deletion of literal requires applying ?s5,4 to Fs
and deleting 5 from disk.

5.3.1. How Delta Application worksfor Delete Operation

Deletion of version 2 from our chain requires generating version 1 and version 3
internally, then calculating deka file ?3,1 of them, and deleting ?2,1 and ?3,2 from
disk. Generation of versions in deletion operation requires apply algorithm 4 times for
the case. If version nisliteral and version i which is not at any edge of the chain will

be deleted, the agorithm requires delta application (n + 1 — i) times. The execution
path can be described as

Apply(Fs, ?5, 4) + Apply(Fa, 24, 3) + Apply(Fs, ?32) + Apply(F, ?2.1) +
DetaAlgorithm(Fs, Fy)

Apply agorithm has a linear execution time therefore the execution time of the
delta agorithm becomes vital in delete operation. If the genera greedy algorithm is
preferred, it runsin O (n2) time and it becomes dominant on the total execution time
(Figure 29). If alinear delta dgorithm is selected, it runsin O (n) time.

5.3.2. How Delta Combination worksfor Delete Operation

It is straightforward to delete version 2 with replace algorithm, it combines ? 3,2

and ? 2,1 only, and the path of execution can be described as

Replace(?3,2, 72,1)

47

5.4. Run Resultsfor Delete Operation

Figure 30 compares apply algorithm when intermediate versions are constructed
in memory completely and replace algorithm using hash data structure. The execution
time of apply agorithm is divided into two bars to show the overhead of the genera
greedy delta agorithm. The second bar indicates the execution time of apply
algorithm which does not include the time consumed by the delta algorithm and the
longest bar indicates the total execution time of apply algorithm. As seen in the figure,
replace algorithm runs in less time than apply algorithm even if the time consumed by
delta algorithm is not included in the second bar. Its performance is better than delta
application not including the performance of delta agorithm for larger than 500 KB
chains. However, replace agorithm does not produce an optimum delta file as a delta
algorithm does. It can be preferable when working on large version files and/or when
the performance of delta algorithm is considered.

4000
(1| |=Total Time(Replace, hash

3500]| data structure)
o 3000 N
E
o 2500 u
E
[2000 — | | | ®Total Time(Apply, delta
S algorithm execution time is
=] NOT added
o 1500 u)
O
= N _

1000] u

500 || |OTotal Time(Apply,
intermediate versions are
0 1= o | ol | I‘I : |_I : V_I : L constructed in memory
completely and delta
1 3 > 10 20 30 50 algorithm execution time is
Difference Ratio Between Two added)
Adjacent Files wrt file size

Figure 30: The comparison of apply when intermediate versions are
constructed in memory completely and replace algorithm using hash data structure
to delete version 2 from 3 MB Chains and execution times are calculated by the

program itself

CHAPTER 6

CONCLUSIONS

The strategy of replace algorithm is to eiminate the 1/0 operations that are done
for intermediate versions to retrieve a version in a chain while delta application.
Replace agorithm combines the intermediate delta files and generates a single
combined deltain the run time. It finally generates the required version with one delta
application using the single combined delta.

Delta application is better than delta combination when apply agorithm
generates the intermediate versions in memory completely instead of storing them on
disk temporarily. However, memory capacity and server load may not alow
intermediate versions to be constructed in memory completely especially while
working on large version files. If an intermediate version of a chain cannot be stored
in memory wholly during delta application, then replace agorithm can be applicable
and yield a better solution.

Many cases are studied and experiments are performed to observe the
performance of delta application and delta combination for retrieve operation, and
below results are concluded.

There is no significant improvement in total execution time of apply
algorithm when insert stream is on disk or in memory. Therefore, it can
be stated that although loading insert stream into memory during delta
combination is possible, it does not affect the performance of replace
agorithm.

Generating intermediate versions with a buffer in memory improves the
I/O time of apply agorithm.

49

Using binary search in the replace agorithm reduces the CPU time
when compared with hash table search, because hash table construction
causes a significant overhead. Our experiments show that binary search
becomes preferable when the number of instructions in a ddta file
increases.

Replace algorithm reduces the I/O operations when it is compared with
delta application because it does not generate intermediate versions,
temporarily, on disk. Thus, it would be useful for reducing 1/0 load on
afile server, while shifting the CPU load to the clients.

Delete operation for replace agorithm is smple; it combines two adjacent delta
files of version which will be deleted. However, delta application produces adjacent
versions, and computes difference of them. Replace agorithm for deleting
intermediate versions in a chain is can be a solution when working on large files. Its
performance is better than delta application without considering performance of delta
algorithm for larger than 500 KB Chains.

6.1. FutureWork

Our experimental results show that replace agorithm causes a reduction in the
I/0O time while it aso causes CPU time to be increased. Thus, considering tota
execution time, the CPU overhead €iminates some of the reduction in 1/O time. Our
results also show that delta combination generates the same version in less time than
delta application for our generated chains and some gnu software packages delivered
over Internet. If the characteristics of replace algorithm can be defined for different
data types, then it can be decided that replace algorithm or apply agorithm is
preferable by checking the characteristics of the deltafile.

A version chain generator will be implemented, and it will produce the versions
in terms of the count, length and ratio of instructions and file size. The combined delta
produced by replace algorithm will be compared with the one produced by delta
application in terms of delta file size, number of instruction — insert and copy -, and
sum of length of each instruction. Therefore, the characteristic of the algorithm can be

defined with these data sets. Then, a version control system can decide to use apply or

replace agorithm to generate a version from a chain.

Y|

REFERENCES

[1] Brenda S. Baker, Udi Manber, and Robert Muth, “Compressing Differences
of Executable Code’, April 1999.

[2] G. Myers. A fast hit-vector algorithm for approximate pattern matching
based on dynamic programming. In Proc. CPM'98, LNCS v. 1448, m. 1-13, Springer-
Verlag, 1998.

[3] Henner Zeller, "Design and Implementation of a Distributed Application
Independent Versioning Object Repository and Investigation of its Usability as a
Component of the System CAMPUS for Case-Based Training in Medicine". MS
Thesis. Medizinische Informatik, Universitdt Heidelberg Fachhochschule Heilbronn,
July 2001.

[4] http://subversion.tigris.org, Apr 26, 2004

[5] http://svn.collab.net/repos/svn-xmi/trunk/notes/fs-improvements.txt , Apr
26, 2004

[6] JW. Hunt, T.G. Szymanski A fast agorithm for computing longest
common subsequences. Communications of the ACM, 20(5):350-353, May 1977.

[7] J J Hunt, KiemPhong Vo, and W. F. Tichy. Ddta algorithms. An
empirical analysis. ACM Transactions on Software Engineering and Methodol ogy, v.
7(2): pp. 192214, 1998.

[8] Josh MacDondd. File System Support for Delta Compression. MS Thesis.
Department of Electrical Engineering and Computer Science, University of California
at Berkeley EECS, May 2000

52

[99 Josh MacDonald, "Versioned File Archiving, Compression and
Distribution” UC Berkeley.

[10] Miklos Ajtai, Randa Burns, Ronald Fagin, Darrell D. E. Long, Larry
Stockmeyer, "Compactly Encoding Unstructured Inputs with Differential
Compression” v. 49(3): pp. 318-367, 2002.

[11] Randal C. Burns, Darrell D. E. Long, "Efficient Distributed Backup with
Delta Compression," Proceedings of the Fifth Workshop on 1/0 in Paralld and
Distributed Systems, ACM: San Jose, pp. 26-36, Nov 1997

[12] Randal C. Burns, "Differential Compression: A Generalized Solution for
Binary Files'. MS Thesis. Department of Computer Science, University of Cdifornia
at Santa Cruz, December 1996.

[13] Randal C. Burns, Larry Stockmeyer and Darrell Long. "Experimentally

Evaluating In-Place Delta Reconstruction,” Proceedings of the NASA and |EEE Mass
Storage Conference, College Park: IEEE, pp. 137-151, April 2002.

[24] Rochkind, Marc J., "The Source Code Control System" |EEE Transactions
on Software Engineering, vol. SE-1, no. 4, pp. 364-370, Dec. 1975.

[15] W.F. Tichy, "RCS- A System for Version Control", Software-Practiceand
Experience, val. 15, no. 7, pp. 637-654, July 1985

[16] W. F. Tichy. "The string-to-string correction problem with block move"
ACM Transactions on Computer Systems, 2(4), November 1984.

APPENDIX A

THE VERSIONSAND THEIR FILE SIZE OF GNU
PACKAGESUSED IN EXPERIMENTAL RESULTS

Table A.1: The versions of package mailman

| Name Size (byte)

1 | Mailman-2.0.1.tar 1,710,080
2 | Mailman-2.0.2.tar 1,710,080
3 | Mailman-2.0.3.tar 1,710,080
4 | Mailman-2.0.4.tar 1,710,080
5 | Mailman-2.0.5.tar 1,720,320

TableA.2: The versions of package metahtm

#| Name Size (byte)
1 | metahtml-5.00.tar 5,509,120
2 | metahtml-5.01.tar 8,007,680
3 | metahtml-5.02.tar 8,816,640
4 | metahtml-5.03.tar 9,656,320
5| metahtml|-5.04.tar 9,666,560
6 | metahtml|-5.05.tar 9,963,520
7 | metahtml|-5.06.tar 10,137,600
8 | metahtml|-5.07.tar 9,420,800
9 | metahtml|-5.08.tar 12,072,960
10 | metahtml-5.09.tar 9,123,840
11 | metahtml-5.091.tar 10,362,880

Table A.3: The versions of package nano

| Name Size (byte)

1| nano-1.0.0.tar 1,433,600
2 | nano-1.0.1.tar 1,433,600
3 [nano-1.0.2.tar 1,546,240
4 | nano-1.0.3.tar 1,648,640
5| nano-1.0.4.tar 1,740,800
6 [nano-1.0.5.tar 1,812,480
7 | nano-1.0.6.tar 1,832,960
8 [nano-1.0.7.tar 1,863,680
9 [nano-1.0.8.tar 1,904,640
10 | nano-1.0.9.tar 1,955,840
11 | nano-1.2.0.tar 3,256,320
12 | nano-1.2.1.tar 3,266,560
13 | nano-1.2.3.tar 3,491,840

Table A.4: The versions of package marst

| Name Size (byte)

1 | Marst-2.0.tar 716,800
2 | Marst-2.1.tar 1,556,480
3 | Marst-2.2.tar 1,566,720
4 | Marst-2.3.tar 1,464,320
5 | Marst-2.4.tar 1,423,360

APPENDIX B

THE INSTRUCTION STATISTICSOF THE
GENERATED VERSION CHAINS AND GNU
PACKAGESUSED IN EXPERIMENTAL RESULTS

Package M ar st

Table B.1: The statistics of instructions that are applied by Apply and Replace
algorithms for package marst

Algorithm | Version | Apply Apply Average | Apply Apply Average
No Copy # Copy Copy Insert Insert Insert
Length Length # Length Length
Apply 1] 12,457| 4,101,344 329 | 9,994 | 1,202,976 120
Apply 2 7,281 3,871,092 532 | 5,472 716,428 131
Apply 3 6,663 [2,320,810 348 | 5,118 710,230 139
Replace 1 7,444 142,278 19| 7,556 574,522 76
Replace 2 6,682 847,609 127 | 5,618 708,871 126
Replace 3 6,473 859,055 133 | 5,157 707,665 137

TableB.2: The statistics of instructions that are replaced by Replace algorithm

for package marst
Algorithm | Version | Replace | Replace | Average | Replace | Replace | Average
No Copy # Copy Copy Insert # Insert Insert
Length Length Length Length
Replace 1] 11,926 2,643,300 222 9,727 | 1,196,700 123
Replace 2 6,750 | 2,413,048 357 5,205 710,152 136
Replace 3 6,132 862,766 141 4,851 703,954 145

Package Mailman

Table B.3: The datistics of instructions that are applied by Apply and Replace

algorithms for package mailman

Algorithm | Version | Apply Apply Average | Apply Apply Average
No Copy # Copy Copy Insert # Insert Insert

Length Length Length Length
Apply 1 3,241 | 6,827,578 2,107 2,784 12,742 5
Apply 2 2,564 | 5,119,388 1,997 2,236 10,852 5
Apply 3 1,908 | 3,410,599 1,788 1,699 9,561 6
Replace 1 1551 | 1,700,262 1,096 1,552 9,818 6
Replace 2 1,491 | 1,701,004 1,141 1,514 9,076 6
Replace 3 1,431 | 1,701,347 1,189 1,359 8,733 6

TableB .4: The statistics of instructions that are replaced by Replace algorithm

for package mailman

Algorithm | Version | Replace Replace | Average | Replace | Replace | Average
No Copy # Copy Copy Insert # Insert Insert

Length Length Length Length

Replace 1 2,524 | 5,121,020 2,029 2,218 9,220 4

Replace 2 1,847 | 3,412,830 1,848 1,670 7,330 4

Replace 3 1,191 | 1,704,041 1,431 1,133 6,039 5

S/

Package MetaHtml

Table B.5: The gatistics of instructions that are applied by Apply and Replace

algorithms for package metahtml
Algorithm | Version | Apply Apply Average | Apply Apply Average
No Copy # Copy Copy Insert # Insert Insert
Length Length Length Length

Apply 1] 279,506 | 72,272,273 259 | 218,609 | 21,341,807 98
Apply 2| 261,387 | 68,282,516 261 | 206,046 | 19,822,444 96
Apply 3| 221,641 | 61,971,804 280 | 174,647 | 18,125,476 104
Apply 4| 175,875 | 57,266,082 326 | 137,597 | 14,014,558 102
Apply 5] 168,716 | 47,639,425 282 | 132,262 | 13,984,895 106
Apply 6| 126,177 | 40,464,550 321 | 99,653 11,493,210 115
Apply 7] 100,311 | 32,925,487 328 | 79,952 | 9,068,753 113
Apply 8| 81,936 | 24,740,365 302 | 65,792 | 7,116,275 108
Apply 9| 28,043| 9,040,691 322 | 23,944 3,032,269 127
Replace 1] 37,450| 1,094,001 29 | 89,280| 4,415,119 49
Replace 2| 46,026 | 1,446,868 31| 144,880 | 6,560,812 45
Replace 3| 48,428 | 1,752,288 36 | 120,361 | 7,064,352 59
Replace 4| 56,528 | 4,203,944 74 | 109,108 | 5,452,376 50
Replace 5| 55,752 | 4,212,220 76 | 106,587 | 5,454,340 51
Replace 6| 48,702 | 4,912,543 101 | 76,565| 5,050,977 66
Replace 7| 46,680 5,382,940 115 | 61,907 | 4,754,660 77
Replace 8| 43,248 | 6,066,925 140 | 44,478 | 3,353,875 75
Replace 9| 28,043| 9,040,691 322 | 23,944| 3,032,269 127

TableB.6: The statigtics of instructions that are replaced by Replace algorithm

for package metahtml

Algorithm | Version | Replace Replace | Average | Replace Replace | Average
No Copy # Copy Copy Insert # Insert Insert

Length Length Length Length
Replace 1] 265,084 | 63,051,373 238 | 207,491 | 20,199,827 97
Replace 2| 246,965 | 59,061,616 239 | 194,928 | 18,680,464 96
Replace 3| 207,219 | 52,750,904 255 | 163,529 | 16,983,496 104
Replace 4| 161,453 | 48,045,182 298 | 126,479 | 12,872,578 102
Replace 5| 154,294 | 38,418,525 249 | 121,144 | 12,842,915 106
Replace 6| 111,755 | 31,243,650 280 | 88,535]| 10,351,230 117
Replace 7| 85,889 | 23,704,587 276 | 68,834| 7,926,773 115
Replace 8| 67,514 | 15,519,465 230 | 54,674| 5,974,295 109
Replace 9| 26,102| 9,113,641 349 | 19,677| 2,959,319 150

Package Nano

Table B.7: The statistics of ingtructions that are applied by Apply and Replace
algorithms for package nano

Algorithm | Version | Apply Apply Average | Apply Apply Average
No Copy # Copy Copy Insert Insert Insert

Length Length # Length Length
Apply 1] 53,482 19,403,421 363 | 42,859 4,291,939 100
Apply 2| 52,243 17,974,635 344 | 41,853| 4,287,125 102
Apply 3| 48,644 | 16,636,063 342 | 38,857 | 4,192,097 108
Apply 4| 47,269 | 15,142,186 320 | 37,749| 4,139,734 110
Apply 5| 45,525| 13,537,888 297 | 36,215| 4,095,392 113
Apply 6| 44,276 | 11,863,024 268 | 35,229 4,029,456 114
Apply 7| 42,315] 10,064,339 238 | 33,703 | 4,015,661 119
Apply 8| 40,901 | 8,273,680 202 | 32,624 | 3,973,360 122
Apply 9 38,294 | 6,460,897 169 | 30,605| 3,922,463 128
Apply 10| 32,807 | 5,471,995 167 | 27,720| 3,006,725 108
Apply 11| 17,565 4,854,489 276 | 14,240| 1,668,391 117
Replace 1] 2,223 93,563 42 | 23,074] 1,340,037 58
Replace 2| 2,128 89,907 42 | 22,826| 1,343,693 59
Replace 3] 2421 102,120 42 | 22,686 | 1,444,120 64
Replace 41 2,709 111,156 41| 26,322 | 1,537,484 58
Replace 5[2,968 119,852 40 | 29,080| 1,620,948 56
Replace 6| 3,133 120,581 38| 31,537| 1,691,899 54
Replace 7| 3,247 126,927 39| 30,662| 1,706,033 56
Replace 8| 3,205 128,288 40 | 30,667 | 1,735,392 57
Replace 9 3,351 139,736 42| 30,117 | 1,764,904 59
Replace 10| 4,842 266,306 55| 28,257 | 1,689,534 60
Replace 11 | 10,896 [1,642,947 151 | 20,975] 1,613,373 77

59

TableB.8: The statigtics of instructions that are replaced by Replace algorithm

for package nano
Algorithm | Version | Replace Replace | Average | Replace | Replace | Average
No Copy # Copy Copy Insert # Insert Insert
Length Length Length Length
Replace 1] 43,193 | 17,726,567 410 | 34,753 2,702,233 78
Replace 2| 41,954 | 16,297,781 388 | 33,747 | 2,697,419 80
Replace 3| 38,355 | 14,959,209 390 | 30,751 | 2,602,391 85
Replace 4| 36,980 | 13,465,332 364 | 29,643 | 2,550,028 86
Replace 5] 35,236 | 11,861,034 337 | 28,109 | 2,505,686 89
Replace 6| 33,987 10,186,170 300 | 27,123 | 2,439,750 90
Replace 7| 32,026 | 8,387,485 262 | 25,597 | 2,425,955 95
Replace 8| 30,612 | 6,596,826 215 | 24,518 | 2,383,654 97
Replace 9| 28,005| 4,784,043 171 | 22,499 2,332,757 104
Replace 10 | 22,518 | 3,795,141 169 | 19,614 | 1,417,019 72
Replace 11 7,276 | 3,177,635 437 6,134 78,685 13

50KB Series

Table B.9: The statistics of instructions that are applied by apply and replace

dgorithms for 50 KB Chain
Algorithm | Ratio Apply Apply Average | Apply Apply Average
Copy # Copy Copy Insert # Insert Insert
Length Length Length Length
Apply 1 26 | 201,880 7,765 0 0 0
Apply 3 47| 213,248 4,537 0 0 0
Apply 5 119 | 212,920 1,789 3 34 11
Apply 10 231 | 230,463 998 32 327 10
Apply 20 562 | 267,005 475 128 1,907 15
Apply 30 1,087 | 303,657 279 449 5,631 13
Apply 50 2,861 | 360,183 126 1,790 27,799 16
Replace 1 21 49,784 2,371 0 0 0
Replace 3 44 51,744 1,176 0 0 0
Replace 5 106 48,868 461 3 34 11
Replace 10 190 50,515 266 26 249 10
Replace 20 389 49,070 126 98 1,400 14
Replace 30 560 43,921 78 290 3,707 13
Replace 50 890 36,674 41 759 11,052 15

TableB.10: The statistics of instructions that are replaced by replace agorithm

for 50 KB Chain
Algarithm | Ratio | Replace | Replace | Average | Replace | Replace | Average
Copy # Copy Copy Insert # Insert Insert
Length Length Length Length
Replace 1 18| 150,626 8,368 0 0 0
Replace 3 35| 158,074 4516 0 0 0
Replace 5 85| 155,688 1,832 3 34 11
Replace 10 145 | 165,637 1,142 19 179 9
Replace 20 369 | 182,089 493 77 1,171 15
Replace 30 743 | 193,172 260 339 4,396 13
Replace 50 1,472 | 210,211 143 892 14,699 16

61

100 KB Series

Table B.11: The statistics of instructions that are applied by apply and replace
algorithms for 100 KB Chain

Algorithm | Ratio Apply Apply Average | Apply Apply Average

Copy # Copy Copy Insert # Insert Insert

Length Length Length Length
Apply 1 50 | 404,446 8,089 0 0 0
Apply 3 119 | 418,950 3,521 0 0 0
Apply 5 219 | 426,292 1,947 9 106 12
Apply 10 501 | 450,569 899 43 623 14
Apply 20 1,200 | 423,896 437 326 4,814 15
Apply 30 2,071 | 594,409 287 816 | 10,643 13
Apply 50 5,584 | 783,079 140 3,206 | 41,493 13
Replace 1 47| 99,176 2,110 0 0 0
Replace 3 107 | 100,548 940 0 0 0
Replace 5 195 | 99,103 508 5 73 15
Replace 10 395 | 93,912 238 40 560 14
Replace 20 788 | 92,138 117 247 3,510 14
Replace 30| 1,034 | 92,852 90 464 5,834 13
Replace 50 1,950 | 88,532 45 1,473 | 17,700 12

TableB.12: The dtatistics of instructions that are replaced by replace algorithm

for 100 KB Chain
Algorithm | Ratio | Replace | Replace | Average | Replace | Replace | Average
Copy # Copy Copy Insert # Insert Insert
Length Length Length Length
Replace 1 42 | 301,350 7,175 0 0 0
Replace 3 81| 310,170 3,829 0 0 0
Replace 5 157 | 311,557 1,984 7 83 12
Replace 10 358 | 318,476 890 30 154 17
Replace 20 825 | 352,722 428 228 3,410 15
Replace 30 1,279 | 384,071 300 491 6,165 13
Replace 50 3,172 | 459,240 145 1,864 | 24,880 13

62

300 KB Series

Table B.13: The datistics of instructions that are applied by apply and replace

agorithms for 300 KB Chain
Algorithm | Ratio Apply Apply Average | Apply Apply Average
Copy # Copy Copy Insert # Insert Insert
Length Length Length Length
Apply 1 133 | 1,215,494 9,139 0 0 0
Apply 3 343 | 1,262,991 3,682 6 33 5
Apply 5 683 | 1,282,326 1,877 52 690 13
Apply 10 1,567 | 1,351,727 863 196 2,339 12
Apply 20 3,589 | 1,590,164 443 976 11,058 11
Apply 30 7,200 | 1,787,257 248 3,051 32,015 10
Apply 50| 18,787 | 2,301,810 123 | 10,833 | 122,612 11
Replace 1 129 299,194 2,319 0 0 0
Replace 3 318 303,685 955 3 17 6
Replace 5 617 296,976 4381 48 650 14
Replace 10 1,230 285,731 232 158 1,899 12
Replace 20 2,372 290,738 123 715 7,672 11
Replace 30 3,699 269,644 73 1,856 18,280 10
Replace 50 6,066 243,300 40 4,830 [50,798 11

TableB.14: The datistics of ingtructions that are replaced by replace algorithm

for 300 KB Chain
Algorithm | Ratio | Replace | Replace | Average | Replace | Replace | Average
Copy # Copy Copy Insert # Insert Insert
Length Length Length Length
Replace 1 100 906,500 9,065 0 0 0
Replace 3 250 934,707 3,739 3 17 6
Replace 5 485 936,659 1,931 31 417 13
Replace 10 1,087 959,494 883 127 1,494 12
Replace 20 2,374 | 1,079,077 455 610 7,155 12
Replace 30 4,760 | 1,137,922 239 2,074 | 21,418 10
Replace 50 10,828 | 1,333,746 123 6,331 76,278 12

500 KB Series

Table B.15: The dtatistics of instructions that are applied by apply and replace
agorithms for 500 KB Chain

Algorithm | Ratio Apply Apply Average | Apply Apply Average

Copy # Copy Copy Insert # Insert Insert

Length Length Length Length
Apply 1 224 | 2,027,218 9,050 2 10 5
Apply 3 606 | 2,100,576 3,466 9 152 17
Apply 5 1,135 | 2,146,691 1,891 69 783 11
Apply 10 2,480 | 2,284,094 921 271 2,736 10
Apply 20 6,291 [2,629,566 418 1,910 20,452 11
Apply 30| 12,090| 2,956,261 245 5,047 | 52,731 10
Apply 50| 31,499 | 3,786,727 120 | 17,745| 179,725 10
Replace 1 213 498,810 2,342 2 10 5
Replace 3 567 502,295 886 9 151 17
Replace 5 1,015 496,750 489 59 698 12
Replace 10 1,972 484,591 246 228 2,175 10
Replace 20 4,032 476,731 118 1,372 14,249 10
Replace 30 6,225 442,308 71 3,106 | 30,738 10
Replace 50 | 10,258 399,170 39 8,056 74,268 9

TableB.16: The dtatistics of instructions that are replaced by replace algorithm
for 500 KB Chain

Algorithm | Ratio | Replace | Replace | Average | Replace | Replace | Average
Copy # Copy Copy Insert # Insert Insert
Length Length Length Length
Replace 1 172 | 1,511,934 8,790 2 10 5
Replace 3 450 | 1,553,357 3,452 7 139 20
Replace 5 840 [1,567,660 1,866 44 536 12
Replace 10 1,768 | 1,623,939 919 200 2,077 10
Replace 20 4,150 | 1,782,786 430 1,223 12,966 11
Replace 30 7,615 | 1,888,728 248 3,150 [34,228 11
Replace 50| 18,547 | 2,180,567 118 10,735 113,123 11

1MB Series

Table B17: The statistics of instructions that are applied by apply and rplace
agorithmsfor 1 MB Chain

Algorithm | Ratio Apply Apply Average | Apply Apply Average

Copy # Copy Copy Insert # Insert Insert

Length Length Length Length
Apply 1 417 | 4,064,447 9,747 10 103 10
Apply 3 1,311 | 4,165,784 3,178 29 294 10
Apply 5 2,330 | 4,280,128 1,837 158 1,590 10
Apply 10 5,303 | 4,525,952 853 783 7,234 9
Apply 20| 12,445 | 5,242,229 421 3,417 32,229 9
Apply 30| 23,122 | 6,021,415 260 8,684 77,811 9
Apply 50| 62,833 | 7,696,062 122 | 33,673 | 273,690 8
Replace 1 406 | 1,000,477 2,464 10 103 10
Replace 3 1,211 994,829 821 23 263 11
Replace 5 2,081 088,234 475 145 1,468 10
Replace 10 4,234 955,196 226 692 6,282 9
Replace 20 8,159 949,993 116 2,576 23,637 9
Replace 30| 12,342 925,083 75 5,549 46,979 8
Replace 50 | 21,237 847,970 40 | 15,634 | 114,194 7

Table B.18: The datistics of instructions that are replaced by rplace algorithm
for 1 MB Chan

Algorithm | Ratio | Replace | Replace | Average | Replace | Replace | Average
Copy # Copy Copy Insert # Insert Insert
Length Length Length Length
Replace 1 319 [3,032,891 9,507 2 13 6
Replace 3 953 | 3,076,021 3,228 20 199 10
Replace 5 1,716 | 3,125,879 1,822 127 1,301 10
Replace 10 3,731 | 3,211,327 861 512 4,935 10
Replace 20 8,398 | 3,538,947 421 2,330 21,295 9
Replace 30| 15,073 3,859,030 256 5,804 53,032 9
Replace 50| 36,681 | 4,456,603 121 | 20,068 | 169,487 8

3MB Series

Table B.19: The statistics of instructions that are applied by apply and replace

agorithmsfor 3 MB Chain
Algorithm | Ratio Apply Apply Average | Apply Apply | Average
Copy # Copy Copy Insert # Insert Insert
Length Length Length Length
Apply 1 1,244 | 12,184,408 9,795 21 226 11
Apply 3 3,856 | 12,541,860 3,253 144 1,356 9
Apply 5 6,801 | 12,861,244 1,891 383 3,510 9
Apply 10| 15,553 | 13,642,415 877 2,082 15,943 8
Apply 20| 36,093 | 15,966,948 442 8,624 | 60,658 7
Apply 30| 69,135 | 17,945,520 260 [24,346 | 171,936 7
Apply 50 | 183,585 | 23,284,724 127 | 91,861 | 666,476 7
Replace 1 1,206 | 3,000,190 2,488 19 178 9
Replace 3 3,622 | 2,998,228 828 144 1,356 9
Replace 5 6,111 | 2,973,823 487 356 3,221 9
Replace 10| 12,540 | 2,893,090 231 1,802 13,688 8
Replace 20| 24,421 | 2,930,947 120 6,582 | 44,823 7
Replace 30| 37,372 | 2,771,735 74| 15,751] 105,055 7
Replace 50| 63,953 | 2,587,013 40 | 43,437 | 287,229 7

TableB.20: The dtatistics of instructions that are replaced by replace algorithm

for 3MB Chain
Algorithm | Ratio | Replace Replace Average | Replace | Replace | Average
Copy # Copy Copy Insert # Insert Insert
Length Length Length Length
Replace 1 923 | 9,094,150 9,853 13 152 12
Replace 3 2,841 | 9,264,733 3,261 100 971 10
Replace 5 4910 [9,401,448 1,915 272 2,436 9
Replace 10 11,104 [9,681,580 872 1,498 11,600 8
Replace 20| 24,365 10,823,816 444 5841 | 41,934 7
Replace 30| 44,572 11,487,396 258 | 15,998 | 116,294 7
Replace 50 | 108,950 | 13,473,689 124 | 55,854 | 421,633 8

5MB Series

Table B.21: The dtatistics of instructions that are applied by apply and replace

agorithmsfor 5 MB Chain
Algorithm | Ratio | Apply Apply Average | Apply Apply | Average
Copy # Copy Copy Insert # Insert Insert
Length Length Length Length
Apply 1 2,056 | 20,301,307 9,874 21 177 8
Apply 3 6,517 | 20,872,192 3,203 194 1,416 7
Apply 5| 11,705 | 21,349,276 1,824 668 5,022 8
Apply 10| 26,230 | 22,636,825 863 3,348 | 23,715 7
Apply 20| 60,021 | 26,494,425 441 | 13,524 | 90,427 7
Apply 30 | 115,813 | 29,857,622 258 | 39,513 272,772 7
Apply 50 | 299,928 | 38,779,139 129 | 145,214 | 988,379 7
Replace 1 2,020 | 5,001,843 2,476 20 175 9
Replace 3 6,129 | 4,984,469 813 189 1,379 7
Replace 5| 10,529 | 4,928,296 468 621 4,534 7
Replace 10| 21,116 | 4,781,796 226 2,909 | 20,106 7
Replace 20| 40,218 | 4,841,923 120 | 10,217 | 66,309 6
Replace 30| 62,251 | 4,595,777 74| 25,408 | 166,827 7
Replace 50 | 104,753 | 4,378,282 42| 68,431 | 417,348 6
TableB.22: The dtatistics of instructions that are replaced by replace algorithm
for 5 MB Chain
Algorithm | Ratio | Replace Replace Average | Replace | Replace | Average
Copy # Copy Copy Insert # Insert Insert
Length Length Length Length
Replace 1 1,530 | 15,150,427 9,902 21 177 8
Replace 3 4,760 | 15,418,413 3,239 134 907 7
Replace 5 8,447 | 15,590,497 1,846 466 3,459 7
Replace 10| 18,625 16,058,945 862 2,437 16,975 7
Replace 20| 40,562] 17,911,101 442 9,116 | 62,001 7
Replace 30| 74,232 19,096,048 257 | 25,688 | 182,414 7
Replace 50| 174,830 | 22,488,110 129 | 86,075 | 604,806 7

67

10 MB Series

Table B.23: The datistics of instructions that are applied by apply and replace
agorithms for 10 MB Chain

Algorithm | Ratio | Apply Apply Average | Apply Apply Average
Copy # Copy Copy Insert # Insert Insert

Length Length Length Length
Apply 1 4,218 | 40,585,107 9,622 47 319 7
Apply 3| 13,288 41,729,101 3,140 452 3,317 7
Apply 5| 22,758 | 42,875,049 1,884 1,116 7,007 6
Apply 10| 52,288 | 45,261,238 866 6,032 40,536 7
Apply 20 [118,763 | 53,002,031 446 | 25,290 163,557 6
Apply 30 | 225,914 | 59,784,426 265 | 72,290 455,292 6
Apply 50 | 589,458 | 77,711,428 132 | 276,926 | 1,758,046 6
Replace 1 4,139 | 9,992,251 2,414 47 319 7
Replace 3| 12,502 9,952,752 796 436 3,166 7
Replace 5[20,498 | 9,907,516 483 1,052 6,556 6
Replace 10| 42,248| 9,567,454 226 5,258 34,586 7
Replace 20| 80,156 9,698,180 121 19,356 120,832 6
Replace 30 | 122,021 9,245,949 76 | 46,811 277,397 6
Replace 50 | 208,567 8,857,226 42] 131,600 741,580 6

TableB.24: The gtatigtics of instructions that are replaced by replace agorithm
for 10 MB Chain

Algorithm | Ratio | Replace Replace Average | Replace | Replace | Average
Copy # Copy Copy Insert # Insert Insert

Length Length Length Length
Replace 1 3,139 | 30,285,046 9,648 30 188 6
Replace 3 9,784 | 30,815,120 3,150 311 2,254 7
Replace 5[16,669 | 31,322,793 1,879 821 5,063 6
Replace 10| 37,255] 32,096,014 862 4,478 30,640 7
Replace 20| 80,654 | 35,840,087 444 | 17,417 113,369 7
Replace 30 | 144,576 | 38,230,227 264 | 46,748 301,707 6
Replace 50 | 342,605 | 45,043,997 131) 161,206 | 1,041,189 6

