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CONCRETE BUILDINGS 
 

 
TÜKEN, Ahmet 

Ph.D., Department of Civil Engineering 

Supervisor: Prof. Dr. Ergin ATIMTAY 

 

May 2004, 242 pages 

 

The amount of total and relative sway of a framed or a composite (frame-shear 

wall) building is of utmost importance in assessing the seismic resistance of the 

building. Therefore, the design engineer must calculate the sway profile of the 

building several times during the design process.   

However, it is not a simple task to calculate the sway of a three-dimensional 

structure. Of course, computer programs can do the job, but developing the three-

dimensional model becomes necessary, which is obviously tedious and time 

consuming. 

An easy to apply analytical method is developed, which enables the 

determination of sway profiles of framed and composite buildings subject to seismic 

loading. Various framed and composite three-dimensional buildings subject to lateral 

seismic loads are solved by SAP2000 and the proposed analytical method. The sway 

profiles are compared and found to be in very good agreement. In most cases, the 

amount of error involved is less than 5 %.   
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The analytical method is applied to determine sway magnitudes at any desired 

elevation of the building, the relative sway between two consecutive floors, the slope 

at any desired point along the height and the curvature distribution of the building 

from foundation to roof level. 

After sway and sway-related properties are known, the requirements of the 

Turkish Earthquake Code can be evaluated and / or checked. 

By using the analytical method, the amount of shear walls necessary to satisfy 

Turkish Earthquake Code requirements are determined. Thus, a vital design question 

has been answered, which up till present time, could only be met by rough empirical 

guidelines. 

A mathematical derivation is presented to satisfy the strength requirement of a 

three-dimensional composite building subject to seismic loading. Thus, the 

occurrence of shear failure before moment failure in the building is securely avoided. 

A design procedure is developed to satisfy the stiffness requirement of 

composite buildings subject to lateral seismic loading. Some useful tools, such as 

executable user-friendly programs written by using “Borland Delphi”, have been 

developed to make the analysis and design easy for the engineer.  

A method is also developed to satisfy the ductility requirement of composite 

buildings subject to lateral seismic loading based on a plastic analysis. The 

commonly accepted sway ductility of µ∆=5 has been used and successful seismic 

energy dissipation is thus obtained.     

 

 

   

Keywords: Earthquake, reinforced concrete structures, sway, relative story drift, 

shear wall, strength, stiffness, ductility, seismic energy, framed 

structures, composite structures, curvature  
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BETONARME BİNALARIN DEPREM TASARIMI İÇİN 

SAYISAL KRİTERLERİN BELİRLENMESİ 
 

 
TÜKEN, Ahmet 

Doktora, İnşaat Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Ergin ATIMTAY 

 

Mayıs 2004, 242 sayfa 

 

Çerçeveli veya kompozit (çerçeveli-perdeli) bir binanın toplam ve göreceli 

ötelenmesi, o binanın sismik direncinde en önemli göstergedir. O yüzden, tasarımı 

yapan mühendis, tasarım işlemi boyunca, binanın yatay ötelenme profilini birkaç 

kere hesaplamak zorundadır. 

Ancak, üç boyutlu bir yapının ötelenmesini hesaplamak çok basit bir işlem 

değildir. Aslında bunu bilgisayar programları yapabilir fakat bunun için üç boyutlu 

model geliştirilmesi gerekir ki, bu hem zahmetli hem de zaman alıcıdır. 

Sadece sismik yüklemeye maruz çerçeveli ve kompozit binalar için ötelenme 

profillerinin belirlenmesini sağlayan, uygulanması kolay, analitik bir metot 

geliştirilmiştir. Yanal sismik yüklere maruz çeşitli çerçeveli ve kompozit üç boyutlu 

binalar SAP2000 ve önerilen analitik metotla çözülmüştür. Ötelenme profilleri 

birbiriyle karşılaştırılmış ve bunların çok iyi uyum içinde olduğu bulunmuştur. Bir 

çok durumda, hata payı % 5’ten az olmuştur. 

Analitik metot, istenen herhangi bir yükseklikteki ötelenme miktarını, iki katın 

birbirine göre göreceli olarak ötelenmesini, yükseklik boyunca herhangi bir 
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noktadaki eğimi ve temelden çatı seviyesine kadar binanın eğrilik dağılımını 

belirlemek için kullanılır. 

Ötelenme ve ötelenmeye bağlı özellikler bilindikten sonra, Türk Deprem 

Yönetmeliğinde belirtilen koşullar değerlendirilebilir ve/veya kontrol edilebilir. 

Analitik metodu kullanarak, Türk Deprem Yönetmeliğine göre gerekli perde 

duvar miktarı belirlenebilir. Şimdiye kadar sadece yaklaşık ampirik yöntemlerle 

çözümlenen hayati bir tasarım problemi de böylece çözülebilir. 

Üç boyutlu kompozit bir binanın sahip olması gereken dayanımı karşılamak 

için bir matematiksel ifade sunulmuştur. Böylece, binadaki kesme kırılması ve 

moment kırılması güvenli bir şekilde önlenmiştir. 

Yanal sismik yüklemeye tabi tutulan kompozit binalar için gerekli rijitliği 

sağlamak için bir tasarım metodu geliştirilmiştir. Tasarımcının analiz ve tasarım 

işlemlerini kolaylaştırmak için “Borland Delphi” ile yazılan kullanımı kolay 

programlar hazırlanmıştır. 

Yanal sismik yüklere maruz kompozit binaların sahip olması gereken sünekliği 

sağlamak için plastik analize dayanan bir metot da geliştirilmiştir. Genel olarak kabul 

gören µ∆ = 5 ötelenme sünekliği kullanılmış ve başarılı bir enerji sönümü elde 

edilmiştir. 
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CHAPTER 1  
 

INTRODUCTION, LITERATURE SURVEY & OBJECTIVE AND 

SCOPE OF THE STUDY 
 

1.1 INTRODUCTION 

 

During the last five decades, shear wall-structures have been widely accepted 

as a rational and economical feature for buildings in highly-populated countries. In 

the design of shear wall-structures, resistance against both vertical and lateral loads 

has been assigned to shear walls situated in proper positions. In these structures, 

shear walls are connected with deep beams and flat slabs to satisfy the requirements 

of adequate interaction. 

The great boom in the construction of shear wall-structures was caused by the 

high migration of population into cities where there is a necessity to meet the social 

requirements for quality housing. Shear wall-structures are now widely accepted as a 

rational and economical part of multi storey constructions. For buildings taller than 

10 or 15 stories, the use of shear walls in one form or another becomes necessary for 

economic reasons. Shear wall-buildings usually employ typical designs so that the 

construction material can be economically used. 

Shear walls situated in proper positions in a building form an efficient and 

economic resisting system to lateral forces resulting from mainly wind or seismic 

loading. If the walls are properly designed, they absorb the energy of the earthquake 

so that little structural damage occurs.  

 Researches on the subject of buildings that are built by using shear walls are 

still limited. Therefore, computations done by 1997 Turkish Earthquake Code [1] and 

the earthquake safety of shear wall-buildings become questionable. 
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Earthquake engineering has accomplished significant progress during the last 

half century. At present, there is good understanding of earthquake ground motions 

and earthquake response of structures. As a result, building codes have undergone a 

big development. Numerous design methods have been formulated and adopted by 

building codes to guide the seismic design of buildings. 

The primary function of current seismic regulations for building structures is to 

provide minimum standards for use in design and to maintain public safety during 

the event of extreme earthquakes likely to occur at the site of the building. These 

regulations are intended primarily to safeguard against major failures and loss of life, 

not to limit damage, maintain functions, or provide for easy repair. 

Current state of practice for earthquake-resistant design of regular structures 

considers the effect of an earthquake by means of equivalent static lateral loads 

acting at floor levels. The proportioning of structural members is based on their 

strength demand obtained from linear analysis for the combined actions of the 

equivalent static lateral loads with all other loading conditions. 

Lateral displacement (drift), in a reinforced concrete structure, is typically 

computed under the equivalent static lateral loads and for stiffness based on 

uncracked member properties. The lateral loads correspond putatively to the demand 

that the design earthquake imposes on the structure assuming that it responds 

nonlinearly. The design forces are likely to be less than what the structure will 

sustain during the design seismic event if nonlinear response occurs, so the use of 

uncracked stiffness is not realistic. Thus, design drifts are not comparable with actual 

drifts. 

In general, building codes have used strength as the main parameter and have 

placed the computation of forces as the centerpiece of earthquake-resistant design, 

relegating drift calculations to the background in the design process. There is no 

realistic quantification of the magnitude of nonlinear displacement that the structure 

may experience during the design earthquake, or of the structural or nonstructural 

damage likely to occur. 
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The importance of drift control is revealed when it is accepted that the inter-

story drift ratio (difference in drift response between two consecutive levels divided 

by the story height) constitutes an acceptable measure of distortion and damage. 

The performance criterion most often referred to in earthquake-resistant design 

is based on the ductility ratio, defined as the ratio of maximum deformation to that 

corresponding to yield. But ductility ratio is very difficult to relate to observation. 

Estimating the displacement ductility of a reinforced concrete member is very 

difficult because of the uncertainties associated with estimating the yield 

displacement. 

Observations have confirmed that there is a good correlation between damage 

and the drift ratio: a low drift ratio means tolerable damage. On the other hand, the 

correlation between damage and structural ductility ratio is not always informative. 

In a flexible frame, a low ductility ratio may be associated with high damage to the 

nonstructural elements. 

A drift-control procedure is based on imposing a limit to the maximum drift 

ratio. This limit demands a deformation capacity for the structural elements. If this 

deformation capacity can be attained by following a set of provisions that prescribe 

minimum details, then drift estimates alone would be sufficient to anticipate 

performance of buildings during earthquakes, without the need of information on 

ductility or on acceleration levels. 

The advantages of structural walls in the resistance of lateral forces, 

particularly in terms of deflection control, are well established. The term “shear 

wall”, although a misnomer, is still widely used. Apart from shear, walls must also 

resist overturning moments and gravity loads, just like frames, and shear resistance is 

not necessarily a critical aspect of design. In seismic design special precautions must 

be taken to suppress shear failures under any circumstances. 

The elastic response of reinforced concrete wall systems under earthquake and 

wind forces has been studied, particularly in United Kingdom [75, 76, 77]. As 

expected, in seismic regions more emphasis was placed on the elasto-plastic response 

of wall systems and on aspects of hysteretic response, ductility and energy 

dissipation [24, 78]. Subsequently, specific seismic design requirements have been 
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formulated in New Zealand and some of these recommendations have also been 

adopted in other codes [79, 80, 81]. Therefore, only fundamental issues are briefly 

referred to here. Emphasis is placed on those features of the inelastic seismic 

response of wall systems that have emerged from more recent research [24]. 

Critical aspects of the design depend on the number and the length of walls 

available in a given building to resist earthquake actions. In apartment buildings 

numerous walls may be utilized and hence demands on individual walls may be 

small. Often code-specified minimum amounts of reinforcement will suffice strength 

requirements with modest ductility demands. Even elastic response may be assured. 

In office buildings, however, the entire lateral force resistance generally may be 

assigned to a few walls and these then will require special attention. 

In studying various features of inelastic response of structural walls and 

subsequently in developing a rational procedure for their design, a number of 

fundamental assumptions are made [24]: 

1. In all cases studied, structural walls are assumed to possess adequate 

foundations that can transmit actions from the superstructure into the ground without 

allowing the walls to rock. Elastic and inelastic deformations that may occur in the 

foundation structure or the supporting ground are not considered. 

2. The foundation of one of several interacting structural walls does not affect 

its own stiffness relative to the other walls. 

3. Inertia forces at each floor are introduced to structural walls by diaphragm 

action of the floor system and by adequate connections to the diaphragm. In terms of 

in-plane forces, floor systems (diaphragms) are assumed to remain elastic at all 

times. 

4. Walls considered are generally deemed to offer resistance independently 

with respect to the two major axes of the section only. It is to be recognized, 

however, that under skew earthquake attack, wall sections with flanges are subjected 

to biaxial bending. Suitable analysis programs to evaluate the strength of articulated 

wall sections subjected to biaxial bending and axial force, are available. They should 

be employed whenever parts of articulated wall sections under biaxial seismic attack 
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may be subjected to significantly larger compression strains than during independent 

orthogonal actions. 

It is established that structures can be designed and constructed so as to satisfy 

various seismic performance criteria, most importantly that of preventing collapse 

during an exceptionally large earthquake. For most engineers seismic design is 

synonymous with the complex analysis of elastic or inelastic dynamic response to 

random ground excitations. This study, reflecting the views of structural designer, 

attempts to contrast analysis with design strategies that are suited to overcome 

difficulties that stem from inevitable uncertainties in the prediction of ground 

motions. Using reinforced concrete buildings as an example, it postulates the precept 

that the development of energy dissipating mechanisms in structural systems must 

not be left to the randomness of ground motions. Rather a deterministic design 

philosophy is advocated whereby the designer can, within certain limits, choose the 

seismic response of a structure that is safe, rational, predictable and achievable in 

construction. The designer may thus enhance desirable and suppress undesirable 

features of structural behavior. In this the vital role of the quality of the design and 

detailing of the critical regions of structural systems is emphasized because this alone 

can assure the very desirable characteristic of seismic response; tolerance with 

respect to the inevitable crudeness of predicting earthquake imposed displacements 

[74]. 
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1.2 LITERATURE SURVEY 

 

If one tries to get information about shear-wall structures and the analysis 

principles or design considerations of structures built by using shear walls, very 

limited knowledge will be obtained since this type of construction is not used widely 

in the world except in some countries. Another reason for the lack of available 

information about this subject is the fact that the countries, which use the shear-wall 

structures, are not in the critical or dangerous earthquake zones. 

In our country, this type of structures is the primary construction technique for 

mass housing or high-rise building construction. But, project offices use their 

experiences and their previous knowledge to design structures having shear walls. 

Then they try to adapt and apply Turkish Code’s requirements to their structural 

designs in a most suitable way since Turkish Codes do not provide enough 

information and applicable design rules about shear-wall systems. 

Z.Hasgür and N.Gündüz [18] explain the behavior of coupled shear walls and 

coupling beams in the tall shear wall-systems in detail. The results of the tests done 

by Paulay [25] and Subedi [28, 29] are also presented. 

Moment curvature relationship is given with examples by Park, R. and Paulay, 

T [40]. The photographs of damaged structures because of earthquake actions present 

the behavior of individual shear wall and interaction between the walls. The 

diaphragm effect of slabs between the shear walls is also described. 

The books by David J.Dowrick [11], P.Fajfar and H.Krawinkler [15], 

P.M.Ferguson, J.E.Breen and J.O.Jirsa [16], T.Paulay and M.J.N.Priestley [24] are 

viewed in order to obtain information about the behavior of shear walls, shear wall-

buildings, coupled shear walls, coupling beams and also analysis & design principles 

for earthquake resistance. 

Ersoy [13] is explaining the design principles for seismic resistant reinforced 

concrete structures in his paper. Basic principles, such as strength, ductility and 

stiffness are summarized for seismic design. In the second part of the paper, the 

author summarizes his opinion about the damage observed in the past earthquakes. 
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Thomas Paulay [23] explains the strategy in the positioning of walls, the 

establishment of a hierarchy in the development of strength to ensure that brittle 

failure will not occur and preferred mode of energy dissipation in a predictable 

region. His paper is based on the design of ductile reinforced structural walls of 

earthquake resistance. He is also mentioning about capacity design principles that 

can be an applicable design method for ductile structures, which may be subjected to 

large earthquakes. He shows that the capacity design procedure ensures that the 

chosen means of energy dissipation can be maintained. This approach is given in a 

rational, deterministic and relatively simple manner. 

Tassios, T.P., Moretti, M. and Bezas, A. [33] have an experimental research on 

the subject of the behavior and ductility of reinforced concrete coupling beams of 

shear walls. In this research the result of an experimental program on coupling beams 

subjected to cyclic loading is presented. Ten specimens with five different 

reinforcement layouts and two different shear ratios had been tested. An attempt is 

made to classify the performance of the specimens according to the ductility they 

exhibit. 

Subedi, N.K. [28, 29] has two papers published in the Journal of Structural 

Engineering. The papers are based on the subject of reinforced concrete coupled 

shear wall structure. First, some analyses are carried on coupling beams. Here, the 

behavior of coupling beams in the shear mode of failure, known as diagonal splitting, 

is represented by a mathematical model, and a method for the ultimate strength 

analysis is presented. The proposed method of analysis for RC coupling beams is 

used to verify the results of nine beams tested by Thomas Paulay. Second, ultimate 

strength calculations of reinforced concrete coupled shear walls are presented. Three 

modes of failure of reinforced concrete coupled shear wall structures, observed in 

micro-concrete models of 15 story-structures, are described. A method is proposed to 

predict the mode of failure and the ultimate strength of coupled shear wall structures. 

The method is based on the evaluation of the strengths of coupling beams and the 

walls at failure. Two lateral load cases have been considered; a point load at the top 

and a four-point equivalent triangular distribution. Finally, the proposed analysis and 

the test results are compared.  
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In order to get detailed information about coupling beams, the deep beam 

subject should also be investigated. In this context, the study of Mau and Hsu [21] 

about the shear strengths of deep beams has been examined. The authors of the paper 

drive an explicit formula for the shear strength of deep beams using three equilibrium 

equations from the truss model theory. 

Tegos, L.A. and Penelis G.Gr. [34] have an experimental investigation to study 

the behavior of short columns and coupling beams reinforced with inclined bars 

under seismic conditions. A simple technique to prevent these elements from falling 

in premature splitting shear is tested for the first time. According to this technique, 

the main reinforcements are arranged at an inclination such as to form a rhombic 

truss. Test results show that inclined arrangement of main reinforcements is one of 

the most effective ways to improve the seismic resistance of reinforced concrete low 

slenderness structural elements. 

The study of Siao, W.B. [27] includes prediction of the shear capacity of the 

reinforced concrete wall specimens using formulas established for top-loaded deep 

beams and corbels and also the comparison of results against experimental values. 

Based on his conscientious observations on a multitude of reinforced concrete 

buildings in the past earthquakes, Fintel concludes one of his articles [52] by saying 

that “…Safety against collapse has been the major preoccupation of earthquake 

engineering. In addition to safety, damage control should be our major goal. Judging 

from the behavior of multistory concrete buildings in earthquakes, it seems that to 

achieve damage control the ductile shear wall may be the most logical solution. 

Actually, from observations in earthquakes, it seems that we can no longer afford to 

build our multistory buildings without shear walls.”  

Bilyap, S. [10, 62] explains in detail the analytical methods to analyze high-rise 

reinforced concrete buildings of mixed type (shear wall-frame) subjected to lateral 

forces. 

The book [70] by Murashev, V., Sigalov, E., and Baikov, V. N. provides the 

fundamental differential equations for flexural beams, shear beams and response of 

mixed type multistory reinforced concrete structures (shear wall-frame) to lateral 

forces. 
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1.2.1 Shear Wall Structures [45]  

 

Shear wall structures comprise a large proportion of commercially constructed 

buildings.  These structures serve as residential and office space occupancy, and 

range up to thirty stories and beyond.  Shear wall buildings may be classified into 

two broad categories: 

1. Shear / Flexural Wall Lateral Resisting Buildings 

2. Bearing Wall Buildings 

The major difference between the two categories is their lateral resisting 

design. The first category, a shear/flexural wall building, relies on a primary vertical 

load carrying system, such as columns & beams while the shear walls function 

primarily for lateral resistance.  The specific intent of the shear and flexural walls is 

to provide lateral stiffness.  Vertical loads are carried by the beam-column system. 

The shear walls brace the concrete moment frame against lateral deflections while 

the frame handles the vertical loads.  This structural system is commonly utilized in 

multistory office structures. 

The second category comprises a shear wall system that functions both as a 

vertical load carrying system and also a lateral resisting system.  Vertical loads are 

transferred to walls and eventually to the foundation.  Therefore, the axial 

force/stress increases on the wall toward the base of the building.  In addition to this 

axial force, the wall is also expected to resist large dynamic loads (due to earthquake 

or wind) that strike "in-plane" and "out-of-plane" to the wall. 

From experience, shear wall buildings have demonstrated an excellent 

performance during earthquakes.  They are stiff structures with high ductility.  

Generally, shear wall buildings survive earthquakes with minimal damage. This is 

due to a particular characteristic of shear wall structures, which is their stiff in-plane 

resistance.  The in-plane shear resistance provides bracing against dynamic loads and 

shortens the period of the structure. In-plane load resistance is the principal strength 

of shear walls. Providing lateral bracing (against out-of-plane buckling) 

allows shear walls to accept very high in-plane loads. Shear walls require bracing 

against out-of-plane loads by either additional shear walls or ductile moment frames.  
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If the out-of-plane bracing is not provided, the shear wall will fail prematurely.  

From a practical standpoint, shear walls are usually braced in their perpendicular 

direction by additional walls to alleviate potential failure. With exception of retaining 

walls, in a building with a shear wall design, the out-of-plane forces are counteracted 

by means of either another wall or dual bracing system. 

"Shear wall" is the industry-accepted term. However, not all shear walls behave 

in a shear capacity. Tall slender walls are required to resist flexural stresses at the 

base.  Flexural walls are referred to as "Structural Walls" by some researchers and 

practitioners, as opposed to "Shear Walls" that are shorter and thicker. The difference 

is the in-plane capacity being linked to a flexural or shear deformation failure. For 

simplicity, in this thesis the term "shear walls" will be used throughout. 

Since a structural wall absorbs significant bending stresses, its deflected shape 

may be calculated with flexural bending theory (in the elastic range) and ignoring 

shear deformation contributions. For a pure shear wall, it is necessary to account for 

shear deformation contributions. Therefore, the failure modes of these two types of 

walls are quite different. To analyze linear and nonlinear behavior requires a model 

that can allow for contribution of shear deformation displacement along with flexural 

displacement.  Both are necessary to properly describe the wall behavior. 

In order to develop flexural and shear strength, two significant components of 

a shear wall are necessary: 

1. Web reinforcing:  Web steel consists of horizontal and vertical reinforcing at 

uniform spacing. 

2. Boundary reinforcing: Vertical steel with ties located at both ends of the 

shear wall. 

Boundary reinforcing develops large axial tension/compression forces that 

create an in-plane force-couple system to resist external moments. Boundary steel 

with horizontal ties (similar to column ties) contributes to confinement of the 

concrete. Concrete confinement increases the material stress-strain curve to an 

enhanced capacity (i.e., the concrete is stronger and has greater ductility). 

External moments also result in web shear that cause diagonal tension cracks.  

Web steel is responsible to resist in-plane shear stresses.  Diagonal tension stress is a 
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concept familiar from basic concrete courses. The "compression strut theory" 

identifies concrete as the principle vector to resist compression stresses, while steel 

provides tension resistance. Nevertheless, shear walls seldom fail due to high 

compression stress, but rather will crack in tension areas due to insufficient web 

steel. 

In a typical uniform thickness shear wall, confinement at the boundary 

elements is provided and thus increases flexural capacity.  Web steel provides in-

plane shear resistance.  Cross-sections of this type are commonly used in shear wall 

buildings of shorter height (i.e., less than five stories) because they provide good 

shear resistance and ductility, but do not have high flexural capacity under axial 

loads as in the framed shear wall and T-shape shear wall. Additionally, web buckling 

is a consideration in slender sections. Framed shear walls are particularly strong in 

developing moment-capacity because of the high axial forces in the boundary 

elements.  These types of shear walls are used for tall multistory applications where 

vertical load capacity and lateral resistance are both necessary. In a T-shaped shear 

wall, the perpendicular (flange) wall increases the web's in-plane moment of inertia.  

Although the flange is out-of-plane to the web, structural engineers have observed 

the performance of T-shaped shear walls to demonstrate strong bending resistance. 

Flanged shear walls do not enhance shear capacity as much as the moment, because 

the flange does not increase the gross area as it does the moment of inertia.  

Therefore, T-shaped shear walls have their best application in tall multistory 

buildings, which require both vertical and lateral load capacity. 

 

1.2.2 Analysis of Shear Wall Structures [47] 

 

Buildings that incorporate concrete shear walls as structural elements to resist 

both vertical and lateral loads are commonplace. The calculation of stresses and 

deflections in a simple shear wall requires only rudimentary bending theory. There 

are several methods of analysis used for numerical analysis. From a designer point of 

view the most important methods of analysis are; 
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* The Lamina Method (Continuous Connection Method or Rosman Method) 

* The Finite Element Method 

* The Equivalent Frame Method (Wide Column Analogy) 

 

The Lamina Method 

 

In the analysis with Lamina Method, the individual coupling beams between 

the structural walls are replaced with a continuous, uniform, homogeneous medium 

referred to as a lamina. It assumes that the point of counter-flexure occurs in the mid-

span of the coupling beams if the walls deflect equally when subjected to horizontal 

loads in proportion to their stiffness. The method takes into consideration the 

contributions made to the shear walls by the bending and shear in connecting the 

beams. However, it is limited to relatively high walls, with constant floor heights and 

uniform openings. 

On the other hand Finite Element Method and Equivalent Frame Method are 

the main methods used by design offices due to resource, time and cost restrictions. 

 

Finite Element Method 

 

This method partitions a complex element into smaller components of finite 

size and number. Theoretically the finite element method can be utilized in any kind 

of engineering problem regardless of its complexity and heterogeneity. The geometry 

of these finite elements is simpler than the boundaries of the overall element. 

Choosing appropriate elements for the specific problem concerned should develop 

the model of the structure. It is gaining wider use and may be the most appropriate 

method of analysis for some complex problems. 

In the application of finite element method, the coupled shear wall structures 

can be modeled by using shell elements. Finite elements used to model walls and 

coupling beams must be compatible with each other. In general, two-dimensional 

four-node finite elements can be utilized in the modeling of shear walls. 
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In addition coupling beams can be modeled by using conventional or modified 

one-dimensional frame elements. However for the compatibility, two-dimensional 

plane element formulation must include the rotational degrees of freedom at the 

modal points. In addition to that the rotation at beam/wall joints must be defined as 

the rotations of the vertical fibers. The mesh of the model should be finer in the wall 

joints where the stress concentrations and discontinues are present. To avoid parasitic 

shear problem, elements that are able to curve themselves to take the deformed shape 

of structure under bending, must be used in the analysis of shear walls [6, 11]. 

Because of the amount of calculations required, even for simple elements, this 

method is limited to computer applications. Even so, with large complex elements 

idealized into small numerous finite elements, computation time can be significant. 

 

Equivalent Frame Method 

 

Also referred as the wide column analogy, it replaces the coupled shear wall 

components with an idealized frame structure that behaves as identically shear walls. 

This idealized structure is resolved using matrix techniques. 

Theoretically, shear walls are replaced with idealized wide columns that behave 

as shear wall. Connecting beams and slabs are defined to provide adequate 

interaction between structural walls. The additional horizontal sections between the 

frame columns and the connecting beams are stiff-ended rigid arms that rotate but 

don’t bend. Centerlines of walls coincide with wide columns and those of beams 

coincide with connecting beams. Centerline of idealized wide columns, connecting 

beams, and rigid arms form the equivalent frame. 

The sectional properties of the columns in the equivalent frame are generally 

those for the corresponding wall sections, since the structure behaves in a linear 

fashion. For squat walls (length is greater than two times the height), shear deflection 

governs whereas for slender walls (height is greater than two times the length), 

bending deflection governs. Designers must consider shear deformation for walls 

with small (height / depth) ratio, where reduced moments of inertia may be in order 

[5, 12]. Shear deflection must also be considered to model the behavior of the beams 
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connecting to shear walls properly, since the connecting beams can undergo 

relatively large deformations especially for those in the upper portion of the frame 

[14, 15]. 

Theoretically, rigid arms should have infinite areas and moments of inertia. 

Extremely large moments of inertia and very large cross-sectional areas lead to ill-

conditioned matrices in many frame programs. However, there is no need to assume 

end sections that are perfectly rigid if very small inaccuracies in the analysis are 

acceptable. 

Adaptability and flexibility of wide column analogy has made it popular in 

engineering offices. The equivalent frame method provides a good balance of 

effectiveness, efficiency and the ease of use. Equivalent frame method is applicable 

to almost any shear wall configuration. Such limitations as constant floor-to-floor 

height and constant size of openings are not imposed by this method. The method is 

capable of handling any type of loading such as uniform loading, triangular loading 

or joint loading of arbitrary magnitude and locations. 

 

1.2.3 Behavior of Shear Walls [48] 

 

 In the design of reinforced concrete multistory buildings, in which lateral load 

resistance has been assigned to structural walls, the emphasis should be on a rational 

strategy in the positioning of walls and the establishment of a hierarchy in the 

development of  strength to ensure that in the event of a very large earthquake brittle 

failure will not occur [23]. The preferred mode of energy dissipation should be 

flexure in a predictable region. Therefore failures due to diagonal tension or 

compression, crushing of concrete in compression, sliding along the construction 

joints, instability of wall elements or reinforcing bars and breakdown of the 

anchorages should be suppressed. These aims may be achieved with the application 

of a deterministic design philosophy and they necessitate special detailing and 

dimensioning of potentially plastic regions of walls. 

The usefulness of structural walls in the framing of buildings has long been 

recognized. When walls are situated in advantageous position in a building, they can 
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form an efficient lateral load-resisting system, while also simultaneously fulfilling 

other functional requirements. An attempt should be made to inhibit shear failures in 

reinforced concrete structures subjected to seismic loading. To avoid this undesirable 

effect of shear, structural walls are used. 

 

1.2.4 Basic Design Philosophy and Requirements [48] 

 

Design principals can not be laid down unless there is a well-defined design 

philosophy. The generally accepted design philosophy is summarized below [13]: 

*Building should suffer no structural damage in minor frequent earthquakes. 

Normally there should not be non-structural damage either. 

*Buildings should suffer none of minor structural damage (i.e. repairable) in 

occasional moderate earthquakes. 

*Buildings should not collapse in rarely occurring major earthquakes. During 

such earthquakes structures are not expected to remain in the elastic range. Yielding 

of reinforcing steel will lead to plastic hinges at critical sections. 

The general design philosophy will not have much practical use unless design 

requirements are developed in parallel with this philosophy. The design requirements 

can be summarized in three groups; 

1-Strength requirements 

2-Stiffness requirements (or drift control) 

3-Ductility requirements  

These three requirements will be briefly discussed below. 

 

Strength Requirements 

 

Members in the structure should have adequate strength to carry the design 

loads safely. Since the designers are well acquainted with this requirement, it will not 

be discussed in detail. However, it should be pointed out that the designers avoid 

brittle type of failure, by making a capacity design. If the design shear is computed 
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by placing the ultimate moment capacities at each end of the beam, the designer can 

make sure that ductile flexural failure will take place prior to shear failure. 

 

Stiffness Requirements  

 

In designing a building for gravity loads, the designer should consider 

serviceability in addition to ultimate strength. In seismic design, drift limitations 

imposed might be considered to be some kind of serviceability requirement. 

However, the drift limitation in seismic design is more important than the 

serviceability requirement. The limiting drift is usually expressed as the ratio of the 

relative storey displacement to the storey height (inter-storey drift). Excessive inter-

storey drift leads to considerable damage in non-structural elements. In many cases 

the cost of replacing or repairing of such elements is very high. Excessive inter-

storey drift can also lead to very large second order moments (P-∆ effect) that can 

endanger the safety and stability of the structure. Therefore inter-storey drift control 

is considered to be one of the most important requirements in seismic design. In the 

Turkish Earthquake Code [1], the maximum inter-storey drift is limited to the 

unfavorable one of 0.0035 or 0.02 / R where R is the seismic force reduction factor. 

 

Ductility Requirements 

 

In general it is not economical to design reinforced concrete structures to 

remain elastic during a major earthquake. It has been demonstrated that structures 

designed for horizontal loads recommended in the codes can only survive strong 

earthquakes if they can have the ability to dissipate considerable amount of energy. 

The energy dissipation is provided mainly by large rotations at plastic hinges. The 

energy dissipation by inelastic deformations requires the members of the structure 

and their connections to possess adequate ductility. Ductility is the ability to dissipate 

a significant amount of energy through inelastic action under large amplitude 

deformations, without substantial reduction of strength. Adequate ductility can be 

accomplished by specifying minimum requirements and by proper detailing. 
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1.2.5 Shear Wall Building Design Considerations [45] 

 

There are many examples of shear wail buildings. From an engineering 

standpoint, there are many reasons for specifying shear wall resisting systems. From 

an architectural point of view, a problem arises with placing the shear walls in a 

strategic location to avoid impacting the view and/or floor plan arrangement of the 

design. Economical design of shear wall buildings so that the maximum structural 

efficiency is achieved is of tremendous value to all parties involved.  Architectural 

considerations for the placement of shear walls revolve around efficient use of 

floor space to satisfy client requirements. A shear wall building requires permanent 

walls that cannot be moved for future tenant preferences. This is because the wall 

provides structural resistance and is tied to the floor and ceiling diaphragms. 

Consequently, for office buildings and retail space, ductile moment frame structures 

are selected because of the added flexibility provided to the architect designer. Floor 

plans may be readjusted to accommodate tenant requirements without compromising 

structural resistance. 

 

1.2.6 Deciding the Location of Shear Walls [48] 

 

Individual walls, generally acting as cantilevers, in a group of structural walls 

within one building may be subjected to axial, translational and torsional 

displacements. Depending on its geometric configuration, orientation and location 

within the plan of the building, a wall will contribute to the resistance of overturning 

moments, storey shear forces and storey torsion. The position of the structural walls 

within a building is usually dictated by functional requirements. These may or may 

not suit the structural planning. 

Paulay proposes three aspects in choosing suitable locations for the structural 

walls [23]: 

a. For the best torsional resistance, as many of the walls as possible should be 

located at the periphery of the building. The walls on each side may be individual 

cantilevers or they may be coupled to each other. 
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 b. The more gravity load can be routed to the foundations via a structural wall, 

the less will be the demand for flexural reinforcement in that wall and the more 

readily can foundations be provided to absorb the overturning moments generated in 

that wall. 

c. In multistory buildings situated in high-seismic-risk areas, a concentration of 

the total lateral force resistance in only one or two structural walls may introduce 

very large forces to the foundation of the structure, so that conventional foundations 

may not be adequate and special enlarged foundations may be required. 

 

1.2.7 Cross-Sectional Shape of the Shear Walls [48] 

 

Individual structural walls of a group may have different sections as shown in 

Figure1.1 below. 

 

 

 

 

 

  

 

 

 

 

Figure1.1 Some Typical Shapes of Shear Walls 

 

The thickness of such walls is often determined by code requirements for 

minimum to ensure workability of fresh concrete or to satisfy fire ratings. When the 

earthquake loading is significant, shear strength and stability requirements, to be 

examined subsequently in detail, may necessitate an increase in the thickness. 
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1.2.8 Effect of Shear Wall Geometry [48] 

 

Often walls have openings either in the web or in the flange part of the section. 

Some judgment is required to assess whether such openings are small, so that they 

can be neglected in design computations, or large enough to affect either shear or 

flexural strength. In that case, adequate allowances need to be made in both strength 

evaluation and the detailing of the reinforcement. It is convenient to examine 

separately the solid cantilever structural walls and those pierced with openings in 

some pattern. 

 

i. Shear Walls without Openings 

 

Most cantilever walls, such as shown in Figure1.2, can be treated as ordinary 

reinforced concrete beam-columns. The lateral load is introduced by means of a 

series of point loads through the floors acting as diaphragms. Because the floor slab 

stabilizes the wall against lateral buckling, relatively thin wall sections, may be used. 

In such walls it is relatively easy to ensure that, when required, a plastic hinge at the 

base will develop with adequate plastic capacity. 

 

 

 

 

 

 

 

Figure1.2 A Shear Wall System without Openings 

 

ii. Shear Walls with Openings (Coupled Shear Walls) 

 

Frequently, vertical rows of doors or windows may be required within the shear 

wall for architectural purposes. These shear walls may be considered as full shear 
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walls coupled by connecting beams at each floor level. Coupled shear walls behave 

as lateral load bearing elements since they are more ductile then solid shear walls 

while they have favourable characteristics of solid shear walls because of their high 

strength and rigidity. Plastic deformations on the connecting beams increase the 

ductility of these structural elements.  

When two or more shear walls are interconnected by a system of beams or 

slabs, it is well known that the total stiffness of the system exceeds the summation of 

the individual wall stiffness. This is because the connecting beam or slab restrains 

the individual cantilever action of each wall by forcing the system to work as a 

composite section. 

Planar-coupled shear walls are widely used in apartment buildings and prove to 

be economical because they divide one apartment unit from another, carry gravity 

loading and provide stiffness and strength against lateral loading [73]. 

When arranging openings, it is essential to ensure that a rational structure 

results, the behavior of which can be predicted by bare inspection. The designer must 

ensure that the integrity of the structure, in terms of flexural strength, is not in danger 

by gross reduction of wall area near the extreme fibers of the section. Similarly the 

shear strength of the wall, in both the horizontal and vertical directions, should 

remain viable and adequate to ensure that its flexural strength can fully developed. 

Extremely efficient structural systems, particularly suited for ductile response 

with very good energy dissipation characteristics, can be conceived when openings 

are arranged in a regular pattern. An example is shown in Figure1.3. 
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The coupling beams may be identical at all floors or they may have different depths 

or widths. In service cores coupled walls may extend above the roof level where 

elevator machine rooms or space for other services are to be provided. In such cases, 

walls may be considered to be interconnected by an infinitely rigid diaphragm at the 

top. 

 

1.2.9 Coupled Shear Wall Buildings [45] 

 

The connecting beams are sized to be lower stiffness (i.e., weaker) than the 

shear walls. During wind/earthquake loads, the coupling beams will form plastic 

hinges at their joints with the shear walls. This allows for a ductile response to lateral 

loads by not allowing the shear walls to deform plastically. Rather, the inelastic 

damage is confined to the joints of the coupling beams. A specific class of shear wall 

buildings consists of a combination of shear wall and frame / beam connects as 

shown in Figure1.3 above. This is called a coupled-wall structure. 

Additionally, the coupling effect of the two structural walls results in moment 

resistance Mt = Total Resisting Moment: 

Mt = M1+ M2 + T.L   

where, 

M1 = Moment resistance of shear wall #1. 

M2 = Moment resistance of shear wall #2. 

T    = Tension force in shear wall #1. 

C    = Compression force in shear wall #2. 

L    = Coupling distance/moment arm. 

By increasing L, the Mt of the coupled-wall is increased proportionally. 

A principle issue is to calculate the necessary strength and detailing of the 

coupling beams so as to assure proper yield strength. Oversized coupled beams will 

cause plastic behavior in the structural walls resulting in premature failure. 

Conversely, under sizing will lead to premature yielding of the joints and also low 

ductility prior to failure. Therefore, the correct stiffness and detailing of the coupling 

beam and its joint connection to the shear wall should result in plastic hinging for 
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maximum ductility before failure. This is critical in the overall response of the 

coupled wall structure.  

Coupled walls form plastic hinges at the joint connections with the structural 

walls. This plastic hinge provides greater wall ductility by allowing energy 

dissipation in the beam-wall connection. It also creates damage control because the 

plastic hinge takes the majority of the rotational strain energy. 

Ductility plays a vital role in. earthquake response due to the unpredictable 

nature of seismic excitation. The better design usually should offer maximum 

ductility and energy dissipation. 

Because of their greater stiffness and the dispersal of energy dissipation, 

coupled structural walls, when suitably detailed, possess optimal seismic properties. 

The modeling and analysis of these structures has been extensively covered in the 

relevant literature [24, 75, 77, 78, 82, 83, 84]. 

 

1.2.10 Seismic Displacement Compatibility [72]  

 

Recent studies and reviews of established practices in structural seismic design 

revealed unintentional misuse of fundamental principles (Priestley, 1995 and Paulay, 

1997). In certain cases this may seriously affect the expected performance of 

structures designed for fully or limited ductile response. Mixed structural systems are 

particularly affected. Typical structures of this type are, for example, those where 

lateral force resistance is assigned to a set of reinforced concrete cantilever walls 

with markedly different dimensions and cross sections. Dual systems, in which 

ductile interacting cantilever structural walls and frames resist lateral forces, belong 

also to this group. Ductile frames, in which primary elements providing the major 

fraction of the lateral force resistance and secondary gravity load dominated elements 

are subjected to similar lateral displacements, are also examples of a mixed structural 

system.  

An important aim in the design for ductile seismic response is to ensure that the 

probable ductility demand imposed by the design earthquake does not exceed the 

potential ductility capacity of the structural system. The ductility capacity of the 
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system depends, however on the lateral force resisting element with the minimum 

displacement ductility capacity. In shear wall dominant structures, significant 

variations in the element ductility capacities may exist due to the amount of 

reinforcement and confined regions. 
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1.3 OBJECTIVE AND SCOPE OF THE STUDY 
 

In the design of reinforced concrete structures, the calculation of lateral sway is 

very important. However, it is a task that is rather tedious and time consuming. To be 

able to calculate the sway, a three-dimensional mathematical model becomes 

necessary. Of course, a computer can do the job. However, every time dimensions 

and/or placement of structural members change, a new computer model and solution 

become necessary. 

The design engineer needs an analytical tool that can calculate the sway of the 

structure with ease, particularly at the preliminary design stage. This becomes of 

utmost importance in deciding on the amount and location of shear walls for seismic 

design efforts. 

In seismic design, employment of shear walls is inevitable. Therefore, an 

analytical method to accurately access the sway of a composite structure will 

facilitate the design engineer’s efforts to reach an acceptable solution of the 

earthquake resistant structure. 

The analytical method developed will be used to calculate the stability index 

(Ф), as required by TS-500 in the design of slender columns. The stability index 

requires the calculation of storey drift (∆i) which is tedious work, each time a column 

is to be designed. The proposed analytical method can do this calculation easily and 

accurately. 

The state-of-the art of seismic design of reinforced concrete structures widely 

requires and accepts that the employment of shear walls is necessary, but the quantity 

of the shear walls to be used is still a gray area. The amount of shear walls to be used 

must fulfill the following three requirements of seismic design. 

a.  The structure must have adequate strength against the seismic forces  

b. The structure must have adequate stiffness against the seismic forces 

c. The structure must have adequate ductility to be able to dissipate the seismic 

energy securely  

The analytical tool developed will be used to answer (a) and (b) requirements. 

In these efforts, it will be assumed that the shear walls, which contain the minimum 

reinforcement as required by Turkish Earthquake Code, will solely take the total 
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earthquake force. Thus, the amount of shear walls required to meet the strength 

demand will be determined as a ratio of the floor plan area. 

The analytical method developed will be used to determine the amount of shear 

walls to be used in the structure, such that the structure will possess enough stiffness 

against sway as required by the Turkish Earthquake Code. 

The ratios of shear walls to be used that satisfy strength and stiffness demand 

will be coordinated to propose a method for the design of shear walls. 

An important task expected of the shear walls during the seismic attack is to be 

able to dissipate the seismic energy. In order to perform this vital task, the total 

structure must possess enough ductility. The accepted measure in the state-of-the art 

of seismic design is that when the structure performs the displacement ductility ratio 

of µ∆ = ∆u / ∆y = 4-5, the structure is accepted as capable of dissipating the seismic 

energy successfully. But how can it be decided when a structure consisting of many 

shear walls begins to yield (i.e. the yield sway of the structure, ∆y)? 

The analytical method proposed will be used to assess the yield sway of the 

structure. In order to do this, the moment distributions along the height of shear walls 

have to be known. The analytical method proposed, will successfully determine the 

sway, moment, shear force and distributed load patterns along the height of the shear 

walls. 

In determining the sway ductility ratio, the ultimate sway of the structure has to 

be known. A plastic analysis will be applied to determine the ultimate sway of the 

structure.  

However, the question has not yet been answered where the shear walls are 

ductile enough to permit the realization of the sway ductility ratio. Ductility is an 

elusive concept. The best way the design engineer knows is to quantify ductility on 

the Thrust-Moment-Curvature relationship. Therefore, relating the sway ductility of 

the structure to curvature ductility of the shear wall becomes necessary. Sway 

ductility of the structure will be related to the curvature ductility of the shear wall by 

using a plastic analysis. 
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The analytical method proposed will be implemented in detail on a design 

example. Capacity Design procedures will also be applied in order to make sure that 

shear failure will never occur before a ductile flexural failure. 
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CHAPTER 2  
 

PROCEDURE FOR ANALYTICAL METHOD OF SEISMIC 

ANALYSIS OF FRAMED STRUCTURES  

 
 

2.1 ANALYTICAL MODEL OF FRAMED STRUCTURE AS SHEAR BEAM 

 

Consider a multi-bay multi-storey framed structure subject to a lateral load of 

F=1 as shown in Figure2.1. 

 

 

δ

 

Figure 2.1 Framed Structure Subject to Lateral Lo
 

 
The relative sway (δ) that occurs between 

calculated as follows (Baikov, 1974) [53]. 
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ad of F=1 and Relative Sway [2] 

two consecutive stories can be 
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where  

n = Number of columns in the storey  

Ib1 = Moment of inertia of beam to the left of the column considered 

Ib2 = Moment of inertia of beam to the right of the column considered  

E = Modulus of elasticity of concrete 

Ic = Moment of inertia of column 

lc = Length of column 

In the case that F=1.0 acts at all floor levels, the total relative storey sway 

becomes 

)).(( ii Vδ=∆                                                                                                   (2.2) 

where  

Vi = total shear force at storey level (i) considered. 

The total sway of (k) th storey is obtained by summing up all relative storey 

sways up to the storey (k). 
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Considering the framed structure as a continuous shear beam subject to a 

continuous lateral force along its height, Eqn.2.2 can be expressed as a differential 

equation (Baikov, 1974) [53]. 
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where  
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GA = equivalent shear stiffness of the continuous shear beam model. 

Figure 2.2 represents the continuous shear beam model of a framed structure, 

subject to continuous lateral load. 

 

 
 

Figure 2.2 Continuous Shear Beam Model of Framed Structure [2] 
 
 

The solution of the differential equation is as follows: 
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where  

M(x) = moment due to the external lateral load at any level (x) of the shear beam. 

For a distributed triangular load, which simulates lateral seismic forces, lateral 

sway at any height of the building can be expressed as below (Atimtay, 2001) [2]. 

)
3

k(k
2GA
pHy
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where  

p = intensity of distributed triangular lateral load at the top of structure   

H
xk =  

Slope along height of the building can be expressed as in Eqn.2.8. 

)
H
x

H
1(

2GA
pHy 3

22
ı −=                                                                                       (2.8) 
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Lateral sway at any height of the building and slope along height of the 

building can be easily calculated by using the executable “Borland Delphi” program 

developed, which is shown in Figure 2.3. 

 

 
 

Figure 2.3 Executable “Borland Delphi” Program to Calculate Lateral Sway, Slope 

and Relative Story Drift for Framed Structures 

 

2.2 EQUIVALENT SHEAR STIFFNESS (GA) OF A 3-D FRAME 

 

The equivalent shear stiffness, GA, for a single column is given as expressed in 

Equation 2.9 (Baikov, 1974) [53]. 
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To find the equivalent shear stiffness of a 3-D framed building, Equation 2.9 

must be applied to all columns within the story and ∑GA  must be evaluated. 
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For simplicity, a program was written by using “Borland Delphi” to find GA 

for each column. Then  can be calculated easily. The executable “Borland 

Delphi” program, written for α=1.25, α=1.6 and α=2.6 separately, is shown in 

Figure2.4.   

∑GA

 

 
 

Figure 2.4 Executable “Borland Delphi” Program to Calculate GA 

 

An ambiguity exists in the evaluation of Ib1 and Ib2 of the flanged beam. What 

should the effective flange width be taken? 

To determine the effective flange width, a systematic study was done to 

correlate sways obtained by computer and the developed analytical equation. 

The moment of inertia of the flanged beam was expressed as 

⎥⎦
⎤

⎢⎣
⎡= 3

12
1. bhIb α                                                                                             (2.10) 

where  

b = width of the rectangular beam  

h = height of the rectangle that can be fit in the flanged beam cross-section   
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α = coefficient expressing the stiffness of flanged beam as a multiple of the 

rectangular beam. 

The correlation of computer sways with those found analytically, yielded the 

values of α as shown in Figure 2.5. It is interesting to note that α varies along the 

building height, which is expressed as a parameter of the number of stories, in lateral               

displacement calculations. It should be noted that α is taken as 2.6 for the first story 

only and 1.25 for all the other stories in relative storey drift calculations while α is 

taken as 1.25 for all stories in slope calculations. 

 

VARIATION OF  α TO FIND THE LATERAL DISPLACEMENTS 

        α 
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Figure 2.5 Expressing the Stiffness of Flanged Beam as a Multiple (α) of the 

Stiffness of Rectangular Beam 
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2.3 ASSESSING THE VALIDITY OF THE ANALYTICAL MODEL 

 

The validity of the analytical model developed was tested on a 3D-framed 

structure (with different number of stories) shown in Figure 2.6 by comparing the 

results, which are determined by using SAP2000 and analytical method. 

The column axial deformations were neglected in the derivation of the 

analytical equation. On the other hand, SAP2000 program takes this effect into 

consideration. 

 

                   

   5m 

y    5m 

x    3m 
   3m 

   5m 

   5m 

    10x5=50m

All columns          : 400x400 mm
All beams             : 250x450 mm
Slab thickness      : 120 mm 
All storey heights : 3 m 
g (additional)        : 2.0 kN/m2

q (additional)        : 3.5 kN/m2 

(a) 
 

 
(b) 

 
Figure 2.6 Framed Structure Used to Test the Validity of the Analytical Method:  

(a) Typical floor plan, (b) 3-D view of a sample 4-storey framed structure 
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The total lateral force (i.e. base shear) was determined by SAP 2000 using the 

Response Spectrum Method of dynamic analysis. The seismic force thus obtained is 

converted to an equivalent distributed static force having an inverted triangular 

shape. This equivalent lateral static force, tabulated in Table 2.1, was applied to the 

structure and solved by the computer using SAP 2000 and the analytical equation.  

 

Table 2.1 Base Shear and Top Intensity of Triangular Lateral Static Load 

 for the Framed Structures Studied 

 

Number of 

Story 

Base Shear in x-direction 

Vtx(kN) 

Top intensity of triangular 

lateral static load 

p (kN/m) 

2 2301 767.2 

4 2555 425.8 

6 2823 313.7 

8 3092 257.7 

10 3279 218.6 

15 3339 148.4 

20 3443 114.8 

 

GA along x-direction can be calculated for the 3-D framed structure shown in 

Figure 2.6 as follows. 

Ec = 28 500 000 kN/m2  

43
column m 0.00213(0.4)(0.4)

12
1I ==  

43
beam m  7α0.001898435)(0.25)(0.4

12
1αI =⎥⎦

⎤
⎢⎣
⎡=  

kN
3.74078α

80940αGAext.column +
=  
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kN
1.87039α

80940αGAint.column +
=  

[ ] kN2.GA9.GA7.GA ext.columnint.columnstructure +=  

For α = 1.25, GAext.column = 20 284 kN and GAint.column= 32 449 kN can be 

calculated easily by using the executable “Borland Delphi” program written for α = 

1.25. Therefore GAstructure= 2 328 240 kN is obtained. 

For α = 1.6, GAext.column = 24 263 kN and GAint.column= 37 348 kN can be 

calculated easily by using the executable “Borland Delphi” program written for α = 

1.6. Therefore GAstructure= 2 692 640 kN is obtained. 

For α = 2.6, GAext.column = 33 215 kN and GAint.column= 47 123 kN can be 

calculated easily by using the executable “Borland Delphi” program written for α = 

2.6. Therefore GAstructure= 3 433 720 kN is obtained. 

As a result, GA (1) = 3 433 720 kN is used for first story, GA (2) = 2 692 640 

kN is used for second & third stories and GA (3) = 2 328 240 kN is used for the other 

stories in displacement calculations. On the other hand, GA (1) =343 372 ton is used 

for first story only and GA (3) = 2 328 240 kN is used for all the other stories in 

relative story drift calculations. It should be mentioned that GA (3) = 2 328 240 kN 

is used for all stories in slope calculations.  

All these conclusions for GA calculations in framed structures are tabulated in 

Table 2.2. 

 

Table 2.2 Variation of α for GA Calculations in Framed Structures 

 
 Displacement       

Calculations 

Relative Story 

Drift Calculations 

Slope   

Calculations 

1st Story GA (with α=2.6) GA (with α=2.6) GA (with α=1.25) 

2nd & 3rd Stories GA (with α=1.6) GA (with α=1.25) GA (with α=1.25) 

Other Stories GA (with α=1.25) GA (with α=1.25) GA (with α=1.25) 
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In this study, relative story drift is calculated by the equation defined in Turkish 

Earthquake Code (1997) [1] as expressed in Eqn.2.11. 

∆i = di – di-1 (Story Drift) 

i

1ii

i

i

h
dd

h
∆ −−

=  (Relative Story Drift)                                                          (2.11) 

The maximum value of storey drifts within a story, (∆i) max, calculated for 

columns and structural walls of the i’th storey of a building for each earthquake 

direction shall satisfy the unfavorable one of the following conditions given by 

Eqns.2.12a & b. 

(∆i)max / hi ≤ 0.0035                                                                                     (2.12a) 

(∆i)max / hi ≤ 0.02 / R                                                                                   (2.12b) 

In the cases where the conditions specified by Eqns.2.12a & b are not satisfied 

at any storey, the earthquake analysis shall be repeated by increasing the stiffness of 

the structural system. 

On the other hand, slope along height at story levels is calculated by dividing 

the story drift between the mid heights of two consecutive stories to the story height. 

In other words, relative story drift between the mid heights of two consecutive stories 

is considered as the slope along height at story levels in this study. 

 

2.4 COMPARISON OF RESULTS 

 

The comparison of lateral displacements together with story drifts and the 

comparison of slope along height at story levels are shown in tabular forms in Table 

2.3 and Table 2.4, respectively. On the other hand, comparison of lateral 

displacements is also shown graphically from Figure 2.7 to Figure 2.13 while the 

comparison of slope along height at story levels is shown from Figure 2.14 to Figure 

2.20. Finally, the comparison of relative story drifts is shown graphically from Figure 

2.21 to Figure 2.27. 
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Table 2.3 Comparison of Lateral Displacements and Relative Story Drifts as 

Determined by SAP2000 and Analytical Model for Framed Structure 

 

# of Displacement Displacement Difference Relative Story 
Drift 

Relative Story 
Drift Difference

story Sap2000(mm) Analytic(mm) (%) (Sap2000) (Analytic) (%) 
2 2.88 3.42 18.75 0.0004100 0.0004119 0 
1 1.65 1.84 11.51 0.0005500 0.0006144 11.51 
    max=0.0005500 max=0.0006144 11.51 
4 7.81 8.78 12.42 0.0002967 0.0002515 14.6 
3 6.92 6.94 0.28 0.0006767 0.0006630 1.97 
2 4.89 5.22 6.75 0.0009167 0.0009373 2.18 
1 2.14 2.18 1.87 0.0007133 0.0007285 1.87 
    max=0.0009167 max=0.0009373 2.18 
6 13.81 14.55 5.36 0.0002333 0.0001909 18.57 
5 13.11 13.97 6.56 0.0005533 0.0005277 4.21 
4 11.45 12.39 8.21 0.0008333 0.0007972 4.4 
3 8.95 8.65 3.35 0.0010367 0.0009993 3.85 
2 5.84 6.06 3.77 0.0011333 0.0011340 0.3 
1 2.44 2.44 0 0.0008133 0.0008146 0 
    max=0.0011333 max=0.0011340 0.3 
8 20.86 21.25 1.87 0.0002033 0.0001591 21.31 
7 20.25 20.77 2.57 0.0004800 0.0004497 6.25 
6 18.81 19.42 3.24 0.0007400 0.0006987 5.85 
5 16.59 17.33 4.46 0.0009600 0.0009062 5.55 
4 13.71 14.61 6.56 0.0011267 0.0010723 4.73 
3 10.33 9.85 4.65 0.0012533 0.0011968 4.52 
2 6.57 6.75 2.74 0.0012900 0.0012798 0.77 
1 2.7 2.69 0.37 0.0009000 0.0008959 0.37 
    max=0.0012900 max=0.0012798 0.77 

10 28.28 28.17 0.39 0.0001867 0.0001362 26.78 
9 27.72 27.76 0.14 0.0004267 0.0003897 8.59 
8 26.44 26.59 0.57 0.0006633 0.0006151 7.03 
7 24.45 24.74 1.19 0.0008667 0.0008123 6.53 
6 21.85 22.31 2.1 0.0010467 0.0009813 6.05 
5 18.71 19.36 3.47 0.0011933 0.0011221 5.86 
4 15.13 15.99 5.68 0.0013067 0.0012348 5.61 
3 11.21 10.63 5.17 0.0013867 0.0013193 5.04 
2 7.05 7.21 2.27 0.0013900 0.0013757 0.95 
1 2.88 2.86 0.69 0.0009600 0.0009519 0.69 
      max=0.0013867 max=0.0013757 0.72 
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Table 2.3 Comparison of Lateral Displacements and Relative Story Drifts as 

Determined by SAP2000 and Analytical Model for Framed Structure (Continued) 

 

# of Displacement Displacement Difference Relative Story 
Drift 

Relative Story 
Drift Difference

story Sap2000(mm) Analytic(mm) (%) (Sap2000) (Analytic) (%) 
15 44.86 43.02 4.1 0.0001567 0.0000935 40.43 
14 44.39 42.74 3.72 0.0003267 0.0002720 17.35 
13 43.41 41.93 3.41 0.0005000 0.0004377 12.0 
12 41.91 40.61 3.1 0.0006600 0.0005906 10.61 
11 39.93 38.84 2.73 0.0008100 0.0007309 9.87 
10 37.5 36.65 2.27 0.0009400 0.0008584 8.51 
9 34.68 34.07 1.76 0.0010600 0.0009731 8.17 
8 31.5 31.15 1.11 0.0011667 0.0010751 8.0 
7 28 27.93 0.25 0.0012567 0.0011643 7.43 
6 24.23 24.44 0.87 0.0013333 0.0012408 6.75 
5 20.23 20.71 2.37 0.0013967 0.0013045 6.68 
4 16.04 16.8 4.74 0.0014467 0.0013555 6.22 
3 11.7 11.01 5.89 0.0014767 0.0013938 5.64 
2 7.27 7.39 1.65 0.0014400 0.0014193 1.62 
1 2.95 2.91 1.35 0.0009833 0.0009710 1.35 
    max=0.0014767 max=0.0014193 4.1 

20 63.51 59.17 6.83 0.0001567 0.0000727 53.19 
19 63.04 58.95 6.49 0.0002933 0.0002133 27.27 
18 62.16 58.31 6.19 0.0004333 0.0003464 20.0 
17 60.86 57.27 5.89 0.0005633 0.0004721 15.97 
16 59.17 55.85 5.61 0.0006867 0.0005905 14.07 
15 57.11 54.08 5.31 0.0008067 0.0007014 13.22 
14 54.69 51.98 4.95 0.0009133 0.0008049 11.67 
13 51.95 49.56 4.6 0.0010100 0.0009011 10.89 
12 48.92 46.86 4.21 0.0011067 0.0009899 10.54 
11 45.6 43.89 3.75 0.0011867 0.0010712 9.83 
10 42.04 40.68 3.24 0.0012667 0.0011452 9.47 
9 38.24 37.24 2.61 0.0013300 0.0012117 9.02 
8 34.25 33.61 1.87 0.0013867 0.0012709 8.17 
7 30.09 29.79 0.99 0.0014400 0.0013227 8.33 
6 25.77 25.83 0.23 0.0014800 0.0013671 7.65 
5 21.33 21.73 1.87 0.0015133 0.0014040 7.04 
4 16.79 17.51 4.28 0.0015367 0.0014336 6.72 
3 12.18 11.43 6.16 0.0015467 0.0014558 5.81 
2 7.54 7.65 1.46 0.0014967 0.0014706 1.78 
1 3.05 3.01 1.31 0.0010166 0.0010022 1.31 
      max=0.0015467 max=0.0014706 4.96 
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Table 2.4 Comparison of Slope along Height at Story Levels as Determined by  

SAP2000 and Analytical Model for Framed Structure 

 

# of 
story 

Slope along 
height at 

story levels 
Sap2000(rad)

Slope along 
height at 

story levels 
Analytic(rad)

Difference 
(%) 

2 0.0003333 0.0000000 - 
1 0.0005323 0.0007414 31.1 
    
4 0.0002133 0.0000000 - 
3 0.0004967 0.0004801 3.3 
2 0.0008167 0.0008230 0.8 
1 0.0009057 0.0010287 13.6 
    
6 0.0001600 0.0000000 - 
5 0.0004033 0.0003705 8.1 
4 0.0006967 0.0006737 3.3 
3 0.0009433 0.0009095 3.6 
2 0.0011000 0.0010779 2.0 
1 0.0010680 0.0011789 10.4 
    
8 0.0001333 0.0000000 - 
7 0.0003533 0.0003113 11.9 
6 0.0006100 0.0005811 4.7 
5 0.0008533 0.0008094 5.1 
4 0.0010500 0.0009962 5.1 
3 0.0011967 0.0011414 4.6 
2 0.0012833 0.0012452 2.9 
1 0.0011967 0.0013075 9.2 
    

10 0.0001200 0.0000000 - 
9 0.0003200 0.0002676 16.4 
8 0.0005433 0.0005071 6.7 
7 0.0007700 0.0007184 6.7 
6 0.0009567 0.0009015 5.8 
5 0.0011233 0.0010564 5.9 
4 0.0012533 0.0011832 5.6 
3 0.0013500 0.0012818 5.1 
2 0.0014033 0.0013522 3.6 
1 0.0012833 0.0013945 8.7 
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Table 2.4 Comparison of Slope along Height at Story Levels as Determined by  

SAP2000 and Analytical Model for Framed Structure (Continued) 

 

# of 
story 

Slope along 
height at 

story levels 
Sap2000(rad)

Slope along 
height at 

story levels 
Analytic(rad)

Difference 
(%) 

15 0.0000933 0.0000000 - 
14 0.0002600 0.0001848 28.9 
13 0.0004100 0.0003569 12.9 
12 0.0005833 0.0005163 11.5 
11 0.0007333 0.0006629 9.6 
10 0.0008767 0.0007967 9.1 
9 0.0010033 0.0009178 8.5 
8 0.0011133 0.0010262 7.8 
7 0.0012133 0.0011218 7.5 
6 0.0012967 0.0012047 7.1 
5 0.0013667 0.0012748 6.7 
4 0.0014233 0.0013321 6.4 
3 0.0014633 0.0013768 5.9 
2 0.0014700 0.0014086 4.2 
1 0.0013200 0.0014278 8.2 
    

20 0.0000933 0.0000000 - 
19 0.0002467 0.0001442 41.5 
18 0.0003600 0.0002811 21.9 
17 0.0005000 0.0004105 17.9 
16 0.0006267 0.0005325 15.0 
15 0.0007467 0.0006472 13.4 
14 0.0008600 0.0007544 12.3 
13 0.0009633 0.0008543 11.3 
12 0.0010567 0.0009467 10.4 
11 0.0011500 0.0010318 10.3 
10 0.0012267 0.0011094 9.6 
9 0.0012967 0.0011797 9.0 
8 0.0013600 0.0012426 8.7 
7 0.0014167 0.0012980 8.4 
6 0.0014600 0.0013461 7.8 
5 0.0014967 0.0013868 7.4 
4 0.0015267 0.0014201 7.0 
3 0.0015433 0.0014459 6.3 
2 0.0015333 0.0014644 4.5 
1 0.0013700 0.0014755 7.7 
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Figure 2.7 Comparisons of Lateral Displacements as Determined by SAP2000 and 

Analytical Model (for 2 Story-Framed Structure) 
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Figure 2.8 Comparisons of Lateral Displacements as Determined by SAP2000 and 

Analytical Model (for 4 Story-Framed Structure) 
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6 STORY-BUILDING
COMPARISON OF LATERAL DISPLACEMENTS 

0

1

2

3

4

5

6

0 4 8 12 16 20

DISPLACEMENT(mm)

# 
O

F 
ST

O
R

Y

SAP2000

ANALYTIC

 
 

Figure 2.9 Comparisons of Lateral Displacements as Determined by SAP2000 and 

Analytical Model (for 6 Story-Framed Structure) 
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Figure 2.10 Comparisons of Lateral Displacements as Determined by SAP2000 and 

Analytical Model (for 8 Story-Framed Structure) 
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10 STORY-BUILDING
COMPARISON OF LATERAL DISPLACEMENTS 
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Figure 2.11 Comparisons of Lateral Displacements as Determined by SAP2000 and 

Analytical Model (for 10 Story-Framed Structure) 
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Figure 2.12 Comparisons of Lateral Displacements as Determined by SAP2000 and 

Analytical Model (for 15 Story-Framed Structure) 
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20 STORY-BUILDING
COMPARISON OF LATERAL DISPLACEMENTS 
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Figure 2.13 Comparisons of Lateral Displacements as Determined by SAP2000 and 

Analytical Model (for 20 Story-Framed Structure) 

 

 

 

 

 

 

 

 

 

 

 

 

 45



2 STORY-BUILDING
COMPARISON OF SLOPE ALONG HEIGHT
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Figure 2.14 Comparisons of Slope along Height at Story Levels as Determined by 

SAP2000 and Analytical Model (for 2 Story-Framed Structure) 
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Figure 2.15 Comparisons of Slope along Height at Story Levels as Determined by 

SAP2000 and Analytical Model (for 4 Story-Framed Structure) 
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Figure 2.16 Comparisons of Slope along Height at Story Levels as Determined by 

SAP2000 and Analytical Model (for 6 Story-Framed Structure) 
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Figure 2.17 Comparisons of Slope along Height at Story Levels as Determined by 

SAP2000 and Analytical Model (for 8 Story-Framed Structure) 
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10 STORY-BUILDING
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Figure 2.18 Comparisons of Slope along Height at Story Levels as Determined by 

SAP2000 and Analytical Model (for 10 Story-Framed Structure) 
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Figure 2.19 Comparisons of Slope along Height at Story Levels as Determined by 

SAP2000 and Analytical Model (for 15 Story-Framed Structure) 
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20 STORY-BUILDING
COMPARISON OF SLOPE ALONG HEIGHT
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Figure 2.20 Comparisons of Slope along Height at Story Levels as Determined by 

SAP2000 and Analytical Model (for 20 Story-Framed Structure) 
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2 STORY-BUILDING
COMPARISON OF RELATIVE STORY DRIFTS
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Figure 2.21 Comparisons of Relative Story Drifts as Determined by SAP2000 and 

Analytical Model (for 2 Story-Framed Structure) 
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Figure 2.22 Comparisons of Relative Story Drifts as Determined by SAP2000 and 

Analytical Model (for 4 Story-Framed Structure) 
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Figure 2.23 Comparisons of Relative Story Drifts as Determined by SAP2000 and 

Analytical Model (for 6 Story-Framed Structure) 
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Figure 2.24 Comparisons of Relative Story Drifts as Determined by SAP2000 and 

Analytical Model (for 8 Story-Framed Structure) 
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Figure 2.25 Comparisons of Relative Story Drifts as Determined by SAP2000 and 

Analytical Model (for 10 Story-Framed Structure) 
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Figure 2.26 Comparisons of Relative Story Drifts as Determined by SAP2000 and 

Analytical Model (for 15 Story-Framed Structure) 
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Figure 2.27 Comparisons of Relative Story Drifts as Determined by SAP2000 and 

Analytical Model (for 20 Story-Framed Structure) 
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CHAPTER 3 
 

PROCEDURE FOR ANALYTICAL METHOD OF SEISMIC 

ANALYSIS OF MIXED STRUCTURES  

 
 

3.1 ANALYTICAL MODEL OF MIXED STRUCTURE                              

(FRAME + SHEAR WALL) 

 

A shear wall subjected to a lateral load of f(x)p is shown in Figure3.1 (a). The 

lateral displacement of the shear wall under this f(x)p loading will be y(x)p. As 

noticed that the shear wall displays as a flexural beam. The flexural rigidity of the 

shear wall can be defined as EI, where E is the modulus of elasticity and I is the 

moment of inertia. 

A frame subjected to a lateral load of f(x)ç is shown in Figure3.1 (b). The 

lateral displacement of the frame under this f(x)ç loading will be y(x)ç. As noticed 

that the frame displays as a shear beam. The shear rigidity of the frame per unit 

height can be defined as GA, where G is the shear modulus and A is the area. 

A shear wall-frame interaction subjected to a lateral load of f(x) = f(x)p + f(x)ç 

is shown in Figure3.1 (c). The lateral displacement of the shear wall-frame 

interaction under this f(x) loading will be y(x). 

The relationships between moment, shear wall and loading function are given 

in Figure3.1 (d) according to the defined axis. 
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line modely(x)p

y(x)ç

 

Figure 3.1 Mathematical Model of Shear Wall-Frame Interaction [2] 

 

3.2 GENERAL SOLUTION OF MIXED STRUCTURES 

 

The general differential equation of the flexural beam shown in Figure3.1 (a) 

can be written as in Eqn.3.1 [68, 70]. 

K. (y)ıv= f(x)                                                                                                   (3.1) 

where 

K= Σ EI = Total stiffness of all shear walls within the story 

f(x)= distributed lateral force 

The general differential equation of the shear beam shown in Figure3.1 (b) can 

also be written as in Eqn.3.2. 

f(x)
K

M(x)K.yyGA
0

ıı
ıı −=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
+                                                                     (3.2) 

where 

K.y’’- M(x) = Moment taken by the frame 

M(x) = Moment caused by the external loads at height x 

K. y’’= Moment taken by the shear walls 
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[K.y’’- M(x)] / K0= Unit rotation due to axial deformations of frame columns (This 

rotation forces the frame to display more) 

The differential equation of flexural-shear beam (i.e. shear wall – frame) shown 

in Figure3.1 (c) can be easily written as in Eqn.3.3 & Eqn.3.4. 

f(x)
K

M(x)K.yyGAK.y
0

ıı
ıııv =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
+−                                                           (3.3) 

0f(x)
K

GA.M(x).yGA.vK.y
0

ıı2ıv =−+−                                                        (3.4) 

where  

v2= 1 + K / K0

The following assumptions were made while writing Eqn.3.3 & Eqn.3.4. 

i. Floor slabs were assumed rigid in their own plane. In other words, all vertical 

elements (shear walls and columns) within the story have the same lateral 

displacement (i.e. property of diaphragm effect) 

ii. The shear rigidity of the frames was assumed to be calculated by considering 

only slabs, columns and beams on the floor levels and then this calculated shear 

rigidity for any story was distributed equally within that story height, therefore a 

continuous medium was obtained. As the number of story increases this process 

becomes more reliable.  

iii. The effects of axial forces at floor beams and vertical structural elements 

were neglected since this effect is small enough to be neglected in reality. 

iv. The unit deformations caused by the shear strength of shear walls were 

neglected. 

Letting w= K.y in Eqn.4.4, the differential equation of lateral displacement, 

factored by K multiplier, can be obtained as expressed in Eqn.3.5. 

0.f(x)s.M(x)
v

1vw.ws 2
2

2
ıııv2 =−

−
+−                                                         (3.5) 

where 

s2= K / (v2.GA) 

K= K (shear walls) + Σ K (columns) 
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In shear wall-frame structures, since the stiffness of columns is negligibly small 

when compared to that of shear walls, Σ K (columns) term can be neglected. 

Bending moment expression can be easily found by differentiating the equation 

of w= K.y twice. Therefore, the degree of general differential equation of bending is 

reduced to two as expressed in Eqn.3.6. 

0.f(x)s.M(x)
v

1vM(x)(x).Ms 2
2

2
ıı2 =−

−
+−                                                  (3.6) 

The solution of this differential equation can be expressed as the summation of 

two separate solutions, one is particular solution and the other one is complementary 

solution.  

For the complementary solution; 

s2.M’’(x) – M(x) = 0                                                                                       (3.7) 

M(x)complementary = A1.coshФ + A2.sinhФ                                                        (3.8) 

where 

Ф = x / s  

For the particular solution; 

.M(x)
v

1v.f(x)s1).M(x).D(s 2

2
2

particular
22 −

−=−                                              (3.9) 

where 

D2 = d2 / dx2  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−

−
= .M(x)

v
1v.f(x)s.

1.Ds
1M(x) 2

2
2

22particular                                          (3.10) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−+−= .M(x)

v
1v.f(x)s)..Ds(1M(x) 2

2
222

particular                                      (3.11) 

Now, the solution of the differential equation given in Eqn.4.6 can be expressed 

as in Eqn.3.12 & Eqn.3.13. 

M(x) = M(x)complementary + M(x)particular                                                          (3.12) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−+−+= .M(x)

v
1v.f(x)s)..Ds(1.sinhφA.coshφAM(x) 2

2
222

21            (3.13) 

To find A1 and A2, two boundary conditions must be applied as follows; 
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i. The shear force at the base level must be equal to the total lateral load as 

expressed in Eqn.3.14. 

∫−=
H

0

ı f(x)dx(0)M                                                                                         (3.14) 

ii. Moment at the top of the structure must be zero as expressed in Eqn.3.15. 

M (H) = 0                                                                                                     (3.15) 

Recalling w= K.y, Eqn.3.13 must be integrated twice and two more boundary 

conditions must be applied in order to find the equation of lateral displacement , w, 

as expressed in Eqn.3.16 

43

x

0

2 A.xAM(x)dxw ++= ∫ ∫                                                                       (3.16) 

To find A3 and A4, two additional boundary conditions can be as follows; 

i. Displacement must be zero at the base level of the structure, i.e. w (0) = 0 

ii. Slope must be zero at the base level of the structure due to the fixed base 

assumption, i.e. w’ (0) = 0 

The shear force distribution along the height of the shear wall can be found by 

differentiating the moment equation with respect to x, as expressed in Eqn.3.17 

dx
dM(x)Vp −=                                                                                               (3.17) 

The shear force carried by the frame, V(x)ç, can be found by subtracting the 

shear force taken by the shear wall, V(x)p, from the total shear force, V(x) as 

expressed in Eqn.3.18 

V(x)ç=V(x) – V(x)p                                                                                      (3.18) 

In the design of columns of the frame, the maximum shear force carried by the 

columns must be known. In order to find where the maximum shear force is along 

the height of the structure, the derivative of V(x)ç with respect to x must be taken and 

solved for x as expressed in Eqn.3.19. 

0
dx

dV(x)ç =                                                                                                    (3.19) 
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In the most exterior columns of the frame, the axial column forces caused by 

the lateral forces can be found by dividing the moment taken by the frame, M(x)ç, to 

the spacing between columns, b, as expressed in Eqn.3.20. 

b
M(x)

b
M(x)M(x)

N(x) çp =
−

=                                                                    (3.20) 

where 

M(x) = Total moment at height x due to external loads 

N(x) = Axial force at height x due to overturning moment of the frame 

b = Spacing between the most exterior columns 

 

3.3 SOLUTION OF MIXED STRUCTURES FOR TRIANGULAR LATERAL 

LOAD 

 

 
 

Figure 3.2 Moment at Height x of the Structure for Triangular Distributed Lateral 

Load [2] 

 

For triangular distributed lateral load of f (x) = p. (x / H) = p. (k), Eqn.3.13 will 

take the following form. 

.p.(k)
v
s.M(x)

v
1v.sinhφA.coshφAM(x) 2

2

2

2

21 −
−

++=                               (3.21) 
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The calculation of M(x) in Eqn.3.21 is shown in Figure 3.2 and can be written 

as in Eqn.3.22 & Eqn.3.23. 

3
x)(H).

H
xp.(1

2
x)(H).

H
xp.(M(x)

22 −
−+

−
=                                              (3.22) 

⎟
⎠
⎞

⎜
⎝
⎛ −

+
−

=
3

x)(H
2
x.

H
x)(Hp.M(x)

2

                                                               (3.23) 

In order to find A1 and A2 in Eqn.3.21, we apply the following two boundary 

conditions; 

i. M (H) = 0 

ii. .p.H
2
1(0)M ı −=  

Applying the above two boundary conditions in order, we obtain A1 and A2 as 

expressed in Eqn.3.24 and Eqn.3.25, respectively. 

⎟
⎠
⎞

⎜
⎝
⎛ −+= ).sinhλ

λ
1

2
λ(1.

.coshλv
p.sA 2

2

1                                                              (3.24) 

)
λ
1

2
λ.(

v
p.sA 2

2

2 −−=                                                                                     (3.25) 

The lateral displacement expression can be obtained by integrating Eqn.4.19 

twice as expressed in Eqn.3.26 and Eqn.3.27. 

∫ ∫=
x

0

2M(x).dxw(x)                                                                                      (3.26) 

∫∫ ++−
−

++=

43

3

2

2
2

2

2

2
2

2
1

A.xA
6
x.

.Hv

.psM(x).dx
v

1v

.sinhφ.sA.coshφ.sAw(x)
                                     (3.27) 

To obtain A3 and A4, the following two boundary conditions must be applied. 

i. w (0) = 0 

ii. w’(0) = 0 

Applying the above two boundary conditions in order, we obtain A3 and A4 as 

expressed in Eqn.3.28 and Eqn.3.29, respectively. 

.sAA 23 −=                                                                                                   (3.28) 

2
14 .sAA −=                                                                                                  (3.29) 
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Finally the equation of lateral displacement factored by K multiplier, w(x), can 

be written as expressed in Eqn.3.30 or equivalently in Eqn.3.31. 

43

3

2

2322543

4
2

2
2

2
2

1

A.xA
6
x.

.Hv

.ps)
20
k

4
k

2
k

2
1.(

3
k)

40
k

12
k

12
k(

..p.H
v

1v.sinhφ.sA.coshφ.sAK.y(x)

++−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+−++−

−
++=

            (3.30) 

43
2

2

2

532
4

2
2

2
2

1

A.xA.x
6.v

.p.ks

)
120
k

12
k

6
k()pH

v
1(1sinhφsAcoshφsAK.y(x)

++−

+−−++=
           (3.31) 

Equation of slope along height of the building, factored by K multiplier, can be 

written as expressed in Eqn.3.32 too. 

3
2

2

2

5

4

3

2

2

4
221

ı

A.x
.H2.v

.ps)
24.H

x
4.H
x

3.H
x(

.)pH
v
1(1.s.coshφA.s.sinhφA(x)K.y

+−+−

−++=
                              (3.32) 

Equation of curvature along height of the building, factored by K multiplier, 

can also be written as expressed in Eqn.3.33. 

.x
.Hv
.ps)

6.H
x

2.H
x

3.H
1(

.)pH
v
1(1.sinhφA.coshφA(x)K.y

2

2

5

3

32

4
221

ıı

−+−

−++=
                                       (3.33) 

Moment equation can easily be obtained by multiplying the curvature with EI 

as given in Eqn.3.34 and Eqn.3.35. 

M(x) = -EI . y ıı (x)                                                                                       (3.34) 

.x]
.Hv
.ps)

6.H
x

2.H
x

3.H
1(

.)pH
v
1(1.sinhφA.coshφ[AM(x)

2

2

5

3

32

4
221

−+−

−++−=
K
EI

                                  (3.35) 

Shear equation can then be readily obtained by differentiating the moment 

equation with respect to x as expressed in Eqn.3.36 and so Eqn.3.37 is attained.  

V(x) = -M’(x) = EI . y ııı (x)                                                                          (3.36) 
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s
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K
EIV(x) 2

2

2

2

2
21         (3.37) 

Force equation (i.e. equation of load coming to shear wall) can then be readily 

obtained by differentiating the shear equation with respect to x as expressed in 

Eqn.3.38 and so Eqn.3.39 is attained. 

P(x) = -V’(x) = -EI . y ıv (x)                                                                          (3.38) 

⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ −++−= .x

H
p.

v
11.sinhφ

s
A

.coshφ
s
A

.P(x) 22
2

2
1

K
EI                                (3.39) 

Lateral sway at any height of the building and relative story drifts as well as 

slope & curvature along height of the building can be easily calculated by using the 

executable “Borland Delphi” program developed, which is shown in Figure 3.3. The 

graphs showing the number of story versus displacements & relative story drifts and 

the number of story versus slope & curvature along height at story levels can also be 

drawn easily by using the developed “Borland Delphi” program. 

 

 
 

Figure 3.3 Executable “Borland Delphi” Program to Calculate Lateral Sway, Slope, 

Curvature and Relative Story Drift for Mixed Structures 
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3.4 ASSESSING THE VALIDITY OF THE ANALYTICAL MODEL 

(EXAMPLE 1) 

 

Firstly the validity of the analytical model developed was tested on a 3D-mixed 

structure having only 2 shear walls with lw=6m and bw=0.25m (with different number 

of stories) as shown in Figure3.4. The results that are determined by using SAP2000 

and analytical equation were then compared both in tabular and graphical forms. 

The parameters used in the analytical expression were calculated as below. 

K= K (shear walls) + Σ K (columns) 

Since Σ K (columns) term can be neglected, then along y-direction 

232 kN.m 000 500 256x2(0.25)(6)
12
1.kN/m 000 500 28K =⎥⎦

⎤
⎢⎣
⎡=  

( )[ ] 222
0 kN.m 000 000 954 16x2x11(13)(0.4)(0.4).kN/m 000 500 28K ==  

GA = 22 x 41 793 + 18 x 47 542 + 9 x 5 182 + 22 x 28 169 = 2 441 558 kN 

The seismic force (i.e. base shear) is converted to an equivalent distributed 

lateral static force having an inverted triangular shape. This equivalent lateral static 

force having an assumed top intensity of p=1 000 kN/m was applied to the structure 

and analyzed by the computer using SAP2000 and the analytical equation, Eqn.3.31.  

 

   5m 

y    5m 

x    3m 
   3m 

   5m 

   5m 

    10x5=50m

All columns          : 400x400 mm
All beams             : 250x450 mm
Slab thickness      : 120 mm 
All storey heights : 3 m 
g (additional)        : 2.0 kN/m2

                   q (additional)        : 3.5 kN/m2 

(a) 
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(b) 

 
(EXAMPLE 1) 

 
Figure 3.4 Mixed Structure Used to Test the Validity of the Analytical Method:  

(a) Typical floor plan, (b) 3-D view of a sample 4-storey mixed structure 

 

3.5 COMPARISON OF RESULTS (EXAMPLE1) 

 

The comparison of lateral displacements together with story drifts and the 

comparison of slope along height at story levels are shown in tabular forms in Table 

3.1 and Table 3.2, respectively. On the other hand, comparison of lateral 

displacements is also shown graphically from Figure 3.5 to Figure 3.11 while the 

comparison of slope along height at story levels is shown from Figure 3.12 to Figure 

3.18. Finally, the comparison of relative story drifts is shown graphically from Figure 

3.19 to Figure 3.25.  

It should be emphasized here that the shear walls was modeled in SAP2000 as 

shell elements in this study. If one models the shear walls as wide columns, then the 

results may change a little bit (but not drastic). Therefore, the results may be little 

different than the ones given in this study. That is to say, the modeling details may 

yield slightly different results, which are within the acceptable limits. 
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Table 3.1 Comparisons of Lateral Displacements and Relative Story Drifts as 

Determined by SAP2000 and Analytical Model for Mixed Structure (Example1) 

 

# of Displacement Displacement Difference Relative 
Story Drift 

Relative Story 
Drift Difference

story Sap2000(mm) Analytic(mm) (%) (Sap2000) (Analytic) (%) 
2 0.616 0.40 34.90 0.000104 0.000087 16.67 
1 0.304 0.14 53.61 0.000101 0.000047 53.62 
     max=0.000104 max=0.000087 16.67 

4 5.16 4.60 10.93 0.000460 0.000486 5.65 
3 3.78 3.14 16.98 0.000513 0.000480 6.56 
2 2.24 1.70 24.15 0.000469 0.000395 15.76 
1 0.832 0.51 38.34 0.000277 0.000171 38.34 
     max=0.000513 max=0.000486 5.32 

6 17.2 16.06 6.63 0.000987 0.001043 5.67 
5 14.24 12.93 9.19 0.001100 0.001088 1.12 
4 10.94 9.67 11.62 0.001157 0.001104 4.58 
3 7.47 6.36 14.89 0.001107 0.001021 7.71 
2 4.15 3.29 20.65 0.000903 0.000779 13.76 
1 1.44 0.96 33.61 0.000480 0.000319 33.61 
     max=0.001157 max=0.001104 4.58 

8 38.45 36.05 6.23 0.001540 0.001586 2.96 
7 33.83 31.30 7.48 0.001710 0.001680 1.77 
6 28.7 26.26 8.50 0.001863 0.001794 3.74 
5 23.11 20.88 9.66 0.001953 0.001860 4.79 
4 17.25 15.30 11.31 0.001937 0.001819 6.06 
3 11.44 9.84 13.98 0.001757 0.001616 8.04 
2 6.17 4.99 19.05 0.001367 0.001190 12.9 
1 2.07 1.42 31.25 0.000690 0.000474 31.26 
     max=0.001953 max=0.001860 4.79 

10 69.8 65.31 6.43 0.002053 0.002066 0.6 
9 63.64 59.11 7.11 0.002270 0.002199 3.13 
8 56.83 52.51 7.59 0.002507 0.002392 4.57 
7 49.31 45.34 8.05 0.002717 0.002580 5.03 
6 41.16 37.60 8.65 0.002867 0.002709 5.49 
5 32.56 29.47 9.49 0.002893 0.002730 5.64 
4 23.88 21.28 10.88 0.002770 0.002593 6.38 
3 15.57 13.50 13.29 0.002437 0.002245 7.89 
2 8.26 6.77 18.07 0.001847 0.001619 12.29 
1 2.72 1.91 29.85 0.000907 0.000636 29.85 
     max=0.002893 max=0.002730 5.64 
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Table 3.1 Comparisons of Lateral Displacements and Relative Story Drifts as 

Determined by SAP2000 and Analytical Model for Mixed Structure (Example1) 

(Continued) 

 

# of Displacement Displacement Difference Relative Story 
Drift 

Relative Story 
Drift Difference

story Sap2000(mm) Analytic(mm) (%) (Sap2000) (Analytic) (%) 
15 197.48 184.82 6.40 0.003163 0.003104 1.89 
14 187.99 175.51 6.63 0.003463 0.003295 4.87 
13 177.6 165.63 6.74 0.003827 0.003606 5.77 
12 166.12 154.81 6.80 0.004237 0.003978 6.11 
11 153.41 142.88 6.86 0.004650 0.004364 6.14 
10 139.46 129.79 6.93 0.005030 0.004728 5.99 
9 124.37 115.60 7.05 0.005353 0.005039 5.88 
8 108.31 100.49 7.22 0.005583 0.005266 5.69 
7 91.56 84.69 7.50 0.005693 0.005380 5.49 
6 74.48 68.55 7.96 0.005657 0.005348 5.46 
5 57.51 52.50 8.70 0.005430 0.005128 5.55 
4 41.22 37.12 9.94 0.004967 0.004670 5.97 
3 26.32 23.11 12.19 0.004217 0.003905 7.39 
2 13.67 11.39 16.64 0.003090 0.002742 11.27 
1 4.4 3.17 27.97 0.001467 0.001056 27.98 
     max=0.005693 max=0.005380 5.49 

20 406.4 384.99 5.26 0.004257 0.004265 0.2 
19 393.63 372.19 5.44 0.004597 0.004482 2.5 
18 379.84 358.75 5.55 0.005020 0.004845 3.48 
17 364.78 344.21 5.63 0.005527 0.005298 4.14 
16 348.2 328.32 5.70 0.006073 0.005796 4.56 
15 329.98 310.93 5.77 0.006627 0.006308 4.8 
14 310.1 292.01 5.83 0.007163 0.006809 4.94 
13 288.61 271.58 5.90 0.007660 0.007278 4.98 
12 265.63 249.74 5.98 0.008110 0.007698 5.08 
11 241.3 226.65 6.07 0.008483 0.008053 5.07 
10 215.85 202.49 6.18 0.008767 0.008326 5.02 
9 189.55 177.51 6.34 0.008950 0.008500 5.03 
8 162.7 152.01 6.56 0.009000 0.008552 4.98 
7 135.7 126.36 6.88 0.008893 0.008454 4.94 
6 109.02 101.00 7.36 0.008597 0.008171 4.95 
5 83.23 76.48 8.10 0.008067 0.007653 5.13 
4 59.03 53.53 9.32 0.007237 0.006834 5.57 
3 37.32 33.02 11.50 0.006040 0.005623 6.89 
2 19.2 16.16 15.85 0.004367 0.003898 10.75 
1 6.1 4.46 26.83 0.002033 0.001488 26.84 
     max=0.009000 max=0.008552 4.98 
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Table 3.2 Comparisons of Slope along Height at Story Levels as Determined by  

SAP2000 and Analytical Model for Mixed Structure (Example1) 

 

# of 
story 

Slope along 
height at 

story levels 
Sap2000(rad)

Slope along 
height at 

story levels 
Analytic(rad)

Difference 
(%) 

2 0.0000953 0.000089 6.4 
1 0.0001187 0.000078 34.1 
      
4 0.0004333 0.000482 11.3 
3 0.0005000 0.000490 2.0 
2 0.0005000 0.000456 8.8 
1 0.0004040 0.000311 23.1 
      
6 0.0009333 0.001030 10.4 
5 0.0010667 0.001064 0.3 
4 0.0011300 0.001107 2.1 
3 0.0011467 0.001084 5.5 
2 0.0010200 0.000932 8.7 
1 0.0007353 0.000590 19.7 
      
8 0.0014533 0.001565 7.7 
7 0.0016567 0.001623 2.0 
6 0.0017867 0.001739 2.6 
5 0.0019167 0.001840 4.0 
4 0.0019600 0.001862 5.0 
3 0.0018633 0.001749 6.1 
2 0.0015800 0.001445 8.5 
1 0.0010867 0.000887 18.4 
      

10 0.0019466 0.002039 4.7 
9 0.0022000 0.002116 3.8 
8 0.0023800 0.002291 3.7 
7 0.0026167 0.002492 4.8 
6 0.0028033 0.002659 5.2 
5 0.0028900 0.002742 5.1 
4 0.0028500 0.002692 5.5 
3 0.0026267 0.002459 6.4 
2 0.0021633 0.001984 8.3 
1 0.0014500 0.001195 17.6 
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Table 3.2 Comparisons of Slope along Height at Story Levels as Determined by 

SAP2000 and Analytical Model for Mixed Structure (Example1) (Continued) 

 

# of 
story 

Slope along 
height at 

story levels 
Sap2000(rad)

Slope along 
height at 

story levels 
Analytic(rad)

Difference 
(%) 

15 0.0030133 0.003067 1.8 
14 0.0033667 0.003173 5.7 
13 0.0036300 0.003436 5.4 
12 0.0040300 0.003786 6.1 
11 0.0044433 0.004172 6.1 
10 0.0048433 0.004553 6.0 
9 0.0052000 0.004895 5.9 
8 0.0054767 0.005169 5.6 
7 0.0056533 0.005344 5.5 
6 0.0056900 0.005391 5.2 
5 0.0055633 0.005273 5.2 
4 0.0052267 0.004944 5.4 
3 0.0046233 0.004345 6.0 
2 0.0036833 0.003399 7.7 
1 0.0023900 0.001998 16.4 
      

20 0.0040866 0.004224 3.4 
19 0.0044833 0.004343 3.1 
18 0.0047900 0.004644 3.0 
17 0.0052700 0.005061 4.0 
16 0.0058000 0.005542 4.4 
15 0.0063500 0.006052 4.7 
14 0.0068967 0.006563 4.8 
13 0.0074167 0.007050 4.9 
12 0.0078900 0.007498 5.0 
11 0.0083033 0.007888 5.0 
10 0.0086367 0.008204 5.0 
9 0.0088700 0.008431 4.9 
8 0.0089867 0.008548 4.9 
7 0.0089633 0.008531 4.8 
6 0.0087667 0.008347 4.8 
5 0.0083567 0.007956 4.8 
4 0.0076833 0.007300 5.0 
3 0.0066800 0.006302 5.7 
2 0.0052433 0.004858 7.3 
1 0.0033467 0.002824 15.6 

 

 68



2 STORY-BUILDING
COMPARISON OF LATERAL DISPLACEMENT

0

1

2

0 0.2 0.4 0.6 0.8 1

LATERAL DISPLACEMENT(mm)

NU
M

B
ER

 O
F 

ST
O

R
Y

SAP2000
ANALYTIC

 
 

Figure 3.5 Comparisons of Lateral Displacements as Determined by SAP2000              

and Analytical Model (for 2 Story-Mixed Structure Example1) 
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Figure 3.6 Comparisons of Lateral Displacements as Determined by SAP2000              

and Analytical Model (for 4 Story-Mixed Structure Example1) 
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Figure 3.7 Comparisons of Lateral Displacements as Determined by SAP2000              

and Analytical Model (for 6 Story-Mixed Structure Example1) 
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Figure 3.8 Comparisons of Lateral Displacements as Determined by SAP2000              

and Analytical Model (for 8 Story-Mixed Structure Example1) 
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Figure 3.9 Comparisons of Lateral Displacements as Determined by SAP2000              

and Analytical Model (for 10 Story-Mixed Structure Example1) 
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Figure 3.10 Comparisons of Lateral Displacements as Determined by SAP2000              

and Analytical Model (for 15 Story-Mixed Structure Example1) 
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Figure 3.11 Comparisons of Lateral Displacements as Determined by SAP2000              

and Analytical Model (for 20 Story-Mixed Structure Example1) 
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Figure 3.12 Comparisons of Slope along Height at Story Levels as Determined by    

SAP2000 and Analytical Model (2 Story-Mixed Structure Example1) 
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Figure 3.13 Comparisons of Slope along Height at Story Levels as Determined by    

SAP2000 and Analytical Model (4 Story-Mixed Structure Example1) 
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Figure 3.14 Comparisons of Slope along Height at Story Levels as Determined by    

SAP2000 and Analytical Model (6 Story-Mixed Structure Example1) 
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Figure 3.15 Comparisons of Slope along Height at Story Levels as Determined by    

SAP2000 and Analytical Model (8 Story-Mixed Structure Example1) 
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Figure 3.16 Comparisons of Slope along Height at Story Levels as Determined by    

SAP2000 and Analytical Model (10 Story-Mixed Structure Example1) 
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Figure 3.17 Comparisons of Slope along Height at Story Levels as Determined by    

SAP2000 and Analytical Model (15 Story-Mixed Structure Example1) 
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20 STORY-BUILDING
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Figure 3.18 Comparisons of Slope along Height at Story Levels as Determined by    

SAP2000 and Analytical Model (20 Story-Mixed Structure Example1) 
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Figure 3.19 Comparisons of Relative Story Drifts as Determined by SAP2000 and 

Analytical Model (for 2 Story-Mixed Structure Example1) 
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Figure 3.20 Comparisons of Relative Story Drifts as Determined by SAP2000 and 

Analytical Model (for 4 Story-Mixed Structure Example1) 
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Figure 3.21 Comparisons of Relative Story Drifts as Determined by SAP2000 and 

Analytical Model (for 6 Story-Mixed Structure Example1) 
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Figure 3.22 Comparisons of Relative Story Drifts as Determined by SAP2000 and 

Analytical Model (for 8 Story-Mixed Structure Example1) 
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Figure 3.23 Comparisons of Relative Story Drifts as Determined by SAP2000 and 

Analytical Model (for 10 Story-Mixed Structure Example1) 
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Figure 3.24 Comparisons of Relative Story Drifts as Determined by SAP2000 and 

Analytical Model (for 15 Story-Mixed Structure Example1) 
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Figure 3.25 Comparisons of Relative Story Drifts as Determined by SAP2000 and 

Analytical Model (for 20 Story-Mixed Structure Example1) 

 

3.6 ASSESSING THE VALIDITY OF THE ANALYTICAL MODEL 

(EXAMPLE 2) 

 

Secondly the same structure having 4 shear walls, two of which have lw=6m 

and bw=0.25m and the other two have lw=10m and bw=0.25m (with different number 

of stories) as shown in Figure 3.26 was also tested as example 2 to show the validity 

of analytical model developed. 

The parameters used in the analytical expression were calculated as below: 

K= K (shear walls) + Σ K (columns) 

Since Σ K (columns) term can be neglected, then along y-direction 

2332 kN.m 190 242 257x2(10)(0.25)
12
1(0.25)(6)

12
1.kN/m 000 500 8 2K =⎥⎦

⎤
⎢⎣
⎡ +=

 

( )[ ] 222
columns0 kN.m 000 240 330 12x2x8(13)(0.4)(0.4).kN/m 000 0 50 8 2)(K ==

 

[ ] 222
walls0 kN.m 000 500 082 24x2(13)(0.25)(10).kN/m 000 500 28)(K ==  
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2
0 kN.m 000 740 412 36K =∑  

GA = 22 x 41 793 + 18 x 47 542 + 9 x 5 182 + 16 x 28 169 = 2 272 544 kN 

 

       
(a) 

 

 
(b) 

 
(EXAMPLE 2) 

 
Figure 3.26 Mixed Structure Used to Test the Validity of the Analytical Method:  

(a) Typical floor plan, (b) 3-D view of a sample 4-storey mixed structure 

 

    10x5=50m

      5m 

      5m 

      5m 

      5m 

      3m 
      3m 

 x

y 

All columns          : 400x400 mm 
All beams             : 250x450 mm 
Slab thickness      : 120 mm 
All storey heights : 3 m 
g (additional)        : 2.0 kN/m2

q (additional)        : 3.5 kN/m2 
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The seismic force (i.e. base shear) is converted to an equivalent distributed 

lateral static force having an inverted triangular shape. This equivalent lateral static 

force having an assumed top intensity of p=1 000 kN/m was applied to the structure 

and solved by the computer using SAP2000 and the analytical equation, Eqn.3.31.  

 

3.7 COMPARISON OF RESULTS (EXAMPLE2) 

 

The comparison of lateral displacements together with story drifts and the 

comparison of slope along height at story levels are shown in tabular forms in Table 

3.3 and Table 3.4, respectively. On the other hand, comparison of lateral 

displacements is also shown graphically from Figure 3.27 to Figure 3.33 while the 

comparison of slope along height at story levels is shown from Figure 3.34 to Figure 

3.40. Finally, the comparison of relative story drifts is shown graphically from Figure 

3.41 to Figure3.47. 

It should be emphasized here that the shear walls was modeled in SAP2000 as 

shell elements in this study. If one models the shear walls as wide columns, then the 

results may change a little bit (but not drastic). Therefore, the results may be little 

different than the ones given in this study. That is to say, the modeling details may 

yield slightly different results, which are within the acceptable limits. 
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Table 3.3 Comparisons of Lateral Displacements and Relative Story Drifts as 

Determined by SAP2000 and Analytical Model for Mixed Structure (Example2) 

 

# of Displacement Displacement Difference Relative 
Story Drift 

Relative Story 
Drift Difference

story Sap2000(mm) Analytic(mm) (%) (Sap2000) (Analytic) (%) 
2 0.618 0.40 34.78 0.000106 0.000087 17.86 
1 0.299 0.14 52.84 0.000100 0.000047 52.84 
     max=0.000106 max=0.000087 17.86 

4 5.14 4.68 8.94 0.000460 0.000497 7.97 
3 3.76 3.19 15.15 0.000510 0.000489 3.92 
2 2.23 1.72 22.86 0.000468 0.000401 14.46 
1 0.827 0.52 37.12 0.000276 0.000173 37.12 
     max=0.000510 max=0.000497 2.61 

6 17.12 16.47 3.79 0.000987 0.001076 9.12 
5 14.16 13.24 6.49 0.001093 0.001120 2.43 
4 10.88 9.88 9.19 0.001150 0.001132 1.73 
3 7.43 6.49 12.65 0.001103 0.001044 5.13 
2 4.12 3.35 18.68 0.000897 0.000794 11.52 
1 1.43 0.97 32.16 0.000477 0.000324 32.16 
     max=0.001150 max=0.001132 1.74 

8 38.17 36.98 3.11 0.001527 0.001638 7.20 
7 33.59 32.07 4.52 0.001693 0.001732 2.36 
6 28.51 26.87 5.75 0.001850 0.001845 0.36 
5 22.96 21.34 7.05 0.001940 0.001908 1.71 
4 17.14 15.62 8.86 0.001923 0.001862 3.11 
3 11.37 10.03 11.78 0.001747 0.001650 5.53 
2 6.13 5.08 17.12 0.001357 0.001212 10.81 
1 2.06 1.45 29.61 0.000687 0.000482 29.61 
     max=0.001940 max=0.001908 1.72 

10 69.11 66.66 3.54 0.002023 0.002116 4.61 
9 63.04 60.31 4.33 0.002243 0.002250 0.29 
8 56.31 53.56 4.88 0.002473 0.002446 1.07 
7 48.89 46.22 5.46 0.002690 0.002636 1.98 
6 40.82 38.31 6.14 0.002837 0.002766 2.46 
5 32.31 30.02 7.11 0.002867 0.002786 2.90 
4 23.71 21.66 8.64 0.002747 0.002643 3.76 
3 15.47 13.73 11.24 0.002420 0.002285 5.50 
2 8.21 6.87 16.32 0.001833 0.001646 10.36 
1 2.71 1.94 28.41 0.000903 0.000645 28.41 
     max=0.002867 max=0.002786 2.91 
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Table 3.3 Comparisons of Lateral Displacements and Relative Story Drifts as 

Determined by SAP2000 and Analytical Model for Mixed Structure (Example2) 

(Continued) 

 
# of Displacement Displacement Difference Story drift Story drift Difference

story Sap2000(mm) Analytic(mm) (%) (Sap2000) (Analytic) (%) 
15 193.69 184.05 4.97 0.003053 0.002996 1.85 
14 184.53 175.06 5.13 0.003343 0.003192 4.48 
13 174.5 165.48 5.16 0.003710 0.003515 5.30 
12 163.37 154.94 5.16 0.004123 0.003903 5.33 
11 151 143.23 5.14 0.004537 0.004308 5.06 
10 137.39 130.31 5.15 0.004923 0.004693 4.67 
9 122.62 116.23 5.21 0.005247 0.005024 4.25 
8 106.88 101.16 5.35 0.005487 0.005271 3.94 
7 90.42 85.35 5.60 0.005603 0.005402 3.56 
6 73.61 69.14 6.07 0.005577 0.005383 3.46 
5 56.88 52.99 6.83 0.005360 0.005171 3.54 
4 40.8 37.48 8.13 0.004910 0.004714 3.93 
3 26.07 23.33 10.51 0.004173 0.003944 5.51 
2 13.55 11.50 15.12 0.003063 0.002768 9.68 
1 4.36 3.20 26.60 0.001453 0.001066 26.60 
     max=0.005603 max=0.005402 3.57 

20 393.27 370.36 5.82 0.003950 0.003723 5.73 
19 381.42 359.19 5.82 0.004287 0.003948 7.93 
18 368.56 347.35 5.75 0.004713 0.004328 8.13 
17 354.42 334.36 5.65 0.005227 0.004805 8.03 
16 338.74 319.95 5.54 0.005770 0.005334 7.56 
15 321.43 303.94 5.44 0.006330 0.005882 7.10 
14 302.44 286.30 5.33 0.006873 0.006422 6.54 
13 281.82 267.03 5.24 0.007383 0.006934 6.09 
12 259.67 246.23 5.17 0.007837 0.007399 5.57 
11 236.16 224.03 5.13 0.008223 0.007800 5.18 
10 211.49 200.64 5.13 0.008527 0.008119 4.76 
9 185.91 176.28 5.17 0.008720 0.008338 4.35 
8 159.75 151.26 5.31 0.008790 0.008432 4.09 
7 133.38 125.97 5.55 0.008703 0.008374 3.79 
6 107.27 100.85 5.98 0.008430 0.008124 3.63 
5 81.98 76.48 6.70 0.007923 0.007632 3.66 
4 58.21 53.58 7.95 0.007123 0.006832 4.07 
3 36.84 33.09 10.20 0.005957 0.005631 5.48 
2 18.97 16.19 14.65 0.004310 0.003907 9.35 
1 6.04 4.47 25.99 0.002013 0.001491 25.99 
     max=0.008790 max=0.008432 4.09 
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Table 3.4 Comparisons of Slope along Height at Story Levels as Determined by  

SAP2000 and Analytical Model for Mixed Structure (Example2) 

 

# of 
story 

Slope along 
height at 

story levels 
Sap2000(rad)

Slope along 
height at 

story levels 
Analytic(rad)

Difference 
(%) 

2 0.0000740 0.000090 21.2 
1 0.0001310 0.000079 40.0 
      
4 0.0004000 0.000493 23.4 
3 0.0005200 0.000500 3.8 
2 0.0004900 0.000464 5.3 
1 0.0003930 0.000315 19.8 
      
6 0.0008800 0.001064 20.9 
5 0.0010933 0.001097 0.3 
4 0.0011200 0.001138 1.6 
3 0.0011367 0.001110 2.3 
2 0.0010100 0.000951 5.8 
1 0.0007177 0.000601 16.3 
      
8 0.0013733 0.001617 17.8 
7 0.0016867 0.001675 0.7 
6 0.0017600 0.001791 1.8 
5 0.0019033 0.001890 0.7 
4 0.0019400 0.001908 1.7 
3 0.0018467 0.001788 3.2 
2 0.0015667 0.001474 5.9 
1 0.0010620 0.000902 15.1 
      

10 0.0018200 0.002088 14.7 
9 0.0022333 0.002167 3.0 
8 0.0023433 0.002344 0.1 
7 0.0025867 0.002547 1.5 
6 0.0027667 0.002716 1.8 
5 0.0028600 0.002799 2.2 
4 0.0028200 0.002746 2.6 
3 0.0026000 0.002505 3.6 
2 0.0021433 0.002018 5.8 
1 0.0014167 0.001214 14.3 

 

 

 85



Table 3.4 Comparisons of Slope along Height at Story Levels as Determined by  

SAP2000 and Analytical Model for Mixed Structure (Example2) (Continued) 

 

# of 
story 

Slope along 
height at 

story levels 
Sap2000(rad)

Slope along 
height at 

story levels 
Analytic(rad)

Difference 
(%) 

15 0,0027466 0.002958 7,7 
14 0,0033500 0.003067 8,4 
13 0,0035000 0.003338 4,6 
12 0,0039167 0.003702 5,5 
11 0,0043300 0.004106 5,2 
10 0,0047333 0.004507 4,8 
9 0,0050900 0.004870 4,3 
8 0,0053733 0.005164 3,9 
7 0,0055533 0.005358 3,5 
6 0,0056000 0.005421 3,2 
5 0,0054833 0.005313 3,1 
4 0,0051533 0.004989 3,2 
3 0,0045600 0.004388 3,8 
2 0,0036467 0.003433 5,9 
1 0,0023267 0.002017 13,3 
      

20 0,0035660 0.003680 3,2 
19 0,0043100 0.003804 11,7 
18 0,0044667 0.004118 7,8 
17 0,0049700 0.004555 8,4 
16 0,0054967 0.005064 7,9 
15 0,0060500 0.005607 7,3 
14 0,0066033 0.006155 6,8 
13 0,0071300 0.006684 6,2 
12 0,0076133 0.007176 5,7 
11 0,0080367 0.007611 5,3 
10 0,0083800 0.007974 4,8 
9 0,0086300 0.008247 4,4 
8 0,0087633 0.008408 4,1 
7 0,0087567 0.008431 3,7 
6 0,0085800 0.008284 3,4 
5 0,0081933 0.007923 3,3 
4 0,0075467 0.007290 3,4 
3 0,0065667 0.006307 4,0 
2 0,0051667 0.004868 5,8 
1 0,0032567 0.002831 13,1 
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Figure 3.27 Comparisons of Lateral Displacements as Determined by SAP2000              

and Analytical Model (for 2 Story-Mixed Structure Example2) 
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Figure 3.28 Comparisons of Lateral Displacements as Determined by SAP2000              

and Analytical Model (for 4 Story-Mixed Structure Example2) 
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Figure 3.29 Comparisons of Lateral Displacements as Determined by SAP2000              

and Analytical Model (for 6 Story-Mixed Structure Example2) 
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Figure 3.30 Comparisons of Lateral Displacements as Determined by SAP2000              

and Analytical Model (for 8 Story-Mixed Structure Example2) 
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10 STORY-BUILDING
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Figure 3.31 Comparisons of Lateral Displacements as Determined by SAP2000              

and Analytical Model (for 10 Story-Mixed Structure Example2) 

 

 

15 STORY-BUILDING
COMPARISON OF LATERAL DISPLACEMENT 

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0 50 100 150 200 250 300 350 400

LATERAL DISPLACEMENT(mm)

N
U

M
B

ER
 O

F 
ST

O
R

Y

SAP2000
ANALYTIC

 
 

Figure 3.32 Comparisons of Lateral Displacements as Determined by SAP2000              

and Analytical Model (for 15 Story-Mixed Structure Example2) 
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Figure 3.33 Comparisons of Lateral Displacements as Determined by SAP2000              

and Analytical Model (for 20 Story-Mixed Structure Example1) 
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Figure 3.34 Comparisons of Slope along Height at Story Levels as Determined by    

SAP2000 and Analytical Model (2 Story-Mixed Structure Example2) 
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Figure 3.35 Comparisons of Slope along Height at Story Levels as Determined by    

SAP2000 and Analytical Model (4 Story-Mixed Structure Example2) 
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Figure 3.36 Comparisons of Slope along Height at Story Levels as Determined by    

SAP2000 and Analytical Model (6 Story-Mixed Structure Example2) 
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Figure 3.37 Comparisons of Slope along Height at Story Levels as Determined by    

SAP2000 and Analytical Model (8 Story-Mixed Structure Example2) 
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Figure 3.38 Comparisons of Slope along Height at Story Levels as Determined by    

SAP2000 and Analytical Model (10 Story-Mixed Structure Example2) 
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Figure 3.39 Comparisons of Slope along Height at Story Levels as Determined by    

SAP2000 and Analytical Model (15 Story-Mixed Structure Example2) 
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20 STORY-BUILDING
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Figure 3.40 Comparisons of Slope along Height at Story Levels as Determined by    

SAP2000 and Analytical Model (20 Story-Mixed Structure Example2) 
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Figure 3.41 Comparisons of Relative Story Drifts as Determined by SAP2000 and 

Analytical Model (for 2 Story-Mixed Structure Example2) 
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Figure 3.42 Comparisons of Relative Story Drifts as Determined by SAP2000 and 

Analytical Model (for 4 Story-Mixed Structure Example2) 
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Figure 3.43 Comparisons of Relative Story Drifts as Determined by SAP2000 and 

Analytical Model (for 6 Story-Mixed Structure Example2) 
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Figure 3.44 Comparisons of Relative Story Drifts as Determined by SAP2000 and 

Analytical Model (for 8 Story-Mixed Structure Example2) 
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10 STORY-BUILDING
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Figure 3.45 Comparisons of Relative Story Drifts as Determined by SAP2000 and 

Analytical Model (for 10 Story-Mixed Structure Example2) 
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Figure 3.46 Comparisons of Relative Story Drifts as Determined by SAP2000 and 

Analytical Model (for 15 Story-Mixed Structure Example2) 
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20 STORY-BUILDING
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Figure 3.47 Comparisons of Relative Story Drifts as Determined by SAP2000 and 

Analytical Model (for 20 Story-Mixed Structure Example2) 
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CHAPTER 4 
 

PROCEDURE FOR ANALYTICAL METHOD OF ANALYSIS OF 

FRAMED STRUCTURES  

(FOR CONCENTRATED LATERAL LOAD AT THE TOP) 
 

 

4.1 ANALYTICAL MODEL OF FRAMED STRUCTURE AS SHEAR BEAM 

FOR CONCENTRATED LATERAL LOAD AT THE TOP 

 

Figure 4.1 represents the continuous shear beam model of a framed structure, 

subject to continuous lateral load of f(x). 

 

 
 

Figure 4.1 Continuous Shear Beam Model of a Framed Structure [2] 
 

Figure 4.2 illustrates the continuous shear beam model of the same framed 

structure, shown in Figure 4.1, subject to a concentrated lateral load of F at the top of 

structure. 
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Figure 4.2 Continuous Shear Beam Model Subject to Lateral Load of F at the top [2] 
 

The differential equation of the continuous shear beam model shown in Figure 

4.1 can be obtained by differentiating the lateral sway equation, given in Eqn.4.1. 

∫=
x

0

V(x).dx
GA
1y                                                                                           (4.1) 

.V(x)
GA
1y ı =                                                                                                 (4.2) 

f(x))GA.(yıı −=                                                                                              (4.3) 

The solution of this differential equation is given in Eqn.4.4 & Eqn.4.5. 

[ ]
∫

−−
==

x

GA
MxMdxxV

GA
y

0

)0()().(1                                                             (4.4) 

GA
xMMy )()0( −

=                                                                                           (4.5) 

where 

M (x) = Moment at any height of the shear beam model due to external load 

M (0) = Moment at the bottom of the shear beam model (i.e. at x=0) 

GA = Shear Rigidity of the framed structure, assumed constant over the height 
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The solution of the continuous shear beam model of the framed structure 

subject to a concentrated lateral load of F at the top, shown in Figure 4.2, can be 

obtained as below. 

M (0) = F.(H) 

M (x) = F.(H-x) = F.H.(1-k) 

where 

k= x / H 

[ ]
GA

F.H.kk)F.H.(1F.H
GA
1y =−−=                                                               (4.6) 

Therefore, the lateral displacement profile of the shear beam model subject to a 

concentrated lateral load of F at the top of the structure is expressed as in Eqn.4.7 by 

neglecting the axial deformations in columns.  

x
GA
Fk

GA
HFy ...

==                                                                                         (4.7) 

where 

GA = equivalent shear stiffness of the continuous shear beam model  

k = x / H 

Finally, the slope along height of the structure can be expressed as in Eqn.4.8. 

GA
Fyı =                                                                                                          (4.8) 

 

 
 

Figure 4.3 Executable “Borland Delphi” Program to Calculate Displacements, 

Slopes and Relative Story Drifts for Framed Structures 
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4.2 ASSESSING THE VALIDITY OF THE ANALYTICAL MODEL 

 

 

      5m 

y       5m 

      3m 
 x

      3m 

      5m 

      5m 

    10x5=50m

All columns          : 400x400 mm 
All beams             : 250x450 mm 
Slab thickness      : 120 mm 
All storey heights : 3 m 
g (additional)        : 2.0 kN/m2

q (additional)        : 3.5 kN/m2 

(a) 
 

 
(b) 

 

Figure 4.4 Framed Structure Used to Test the Validity of the Analytical Method:  

(a) Typical floor plan, (b) 3-D view of a sample 4-storey framed structure 

 

The validity of the analytical model developed was tested on the same 3D-

framed structure (with different number of stories) shown in Figure 4.4 by comparing 

 102



the results, which are determined by using SAP2000 and analytical method. For 

simplicity, the concentrated load F at the top of structure was assumed as 1 000 kN. 

All analytical results can be obtained easily by using the executable Borland 

Delphi program developed, which is shown in Figure 4.3. 

GA along x-direction can be calculated for the 3-D framed structure shown in 

Figure 4.3 as follows; 

Ec = 28 500 000 kN/m2  

43
column m0.00213(0.4)(0.4)

12
1I ==  

43
beam m7α0.001898435)(0.25)(0.4

12
1αI =⎥⎦

⎤
⎢⎣
⎡=  

kN
3.74078α

80940αGAext.column +
=  

kN
1.87039α

80940αGAint.column +
=  

[ ] kN2.GA9.GA7.GA ext.columnint.columnstructure +=  

For α = 1.25, GAext.column = 20 284 kN and GAint.column= 32 449 kN can be 

calculated easily by using the executable “Borland Delphi” program written for α = 

1.25. Therefore GAstructure= 2 328 240 kN is obtained. 

For α = 1.6, GAext.column = 24 263 kN and GAint.column= 37 348 kN can be 

calculated easily by using the executable “Borland Delphi” program written for α = 

1.6. Therefore GAstructure= 2 692 640 kN is obtained. 

For α = 2.6, GAext.column = 33 215 kN and GAint.column= 47 123 kN can be 

calculated easily by using the executable “Borland Delphi” program written for α = 

2.6. Therefore GAstructure= 3 433 720 kN is obtained. 

As a result, GA (1) = 3 433 720 kN is used for first story, GA (2) = 2 692 640 

kN is used for second & third stories and GA (3) = 2 328 240 kN is used for the other 

stories in displacement calculations. On the other hand, GA (1) =343 372 ton is used 

for first story only and GA (3) = 2 328 240 kN is used for all the other stories in 
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relative story drift calculations. It should be mentioned that GA (3) = 2 328 240 kN 

is used for all stories in slope calculations.  

Relative story drift is calculated by the equation defined in Turkish Earthquake 

Code (1997) [1] as expressed in Eqn.4.9. 

∆i = di – di-1 (Story Drift) 

i

1ii

i

i

h
dd

h
∆ −−

=  (Relative Story Drift)                                                            (4.9) 

The maximum value of storey drifts within a story, (∆i) max, calculated for 

columns and structural walls of the i’th storey of a building for each earthquake 

direction shall satisfy the unfavorable one of the following conditions given by 

Eqns.4.10 a & b. 

(∆i)max / hi ≤ 0.0035                                                                                    (4.10 a) 

(∆i)max / hi ≤ 0.02 / R                                                                                  (4.10 b) 

In the cases where the conditions specified by Eqns.4.10 a & b are not satisfied 

at any storey, the earthquake analysis shall be repeated by increasing the stiffness of 

the structural system. 

On the other hand, slope along height at story levels is calculated by dividing 

the story drift between the mid heights of two consecutive stories to the story height. 

In other words, relative story drift between the mid heights of two consecutive stories 

is considered as the slope along height at story levels in this study. 

 

4.3 COMPARISON OF RESULTS 

 

The comparison of lateral displacements together with story drifts and the 

comparison of slope along height at story levels are shown in tabular forms in Table 

4.1 and Table 4.2, respectively. On the other hand, comparison of lateral 

displacements is also shown graphically from Figure 4.4 to Figure 4.10 while the 

comparison of slope along height at story levels is shown from Figure 4.11 to Figure 

4.17. Finally, the comparison of relative story drifts is shown graphically from Figure 

4.18 to Figure 4.24. 
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Table 4.1 Comparisons of Lateral Displacements and Relative Story Drifts as 

Determined by SAP2000 and Analytical Model for Framed Structure 

 

# of Displacement Displacement Difference Relative 
Story Drift 

Relative 
Story Drift Difference

story Sap2000(mm) Analytic(mm) (%) (Sap2000) (Analytic) (%) 
2 1.96 2.23 13.78 0.00037 0.00043 16.2 
1 0.86 0.87 1.16 0.00029 0.00029 0 
      max=0.00037 max=0.00043 16.2  
4 4.67 5.15 10.28 0.00038 0.00043 13.2 
3 3.52 3.34 5.11 0.00044 0.00043 0.1 
2 2.19 2.23 1.83 0.00044 0.00043 0.1 
1 0.88 0.87 1.14 0.00029 0.00029 0 
      max=0.00044 max=0.00043 0.1 
6 7.43 7.73 4.04 0.00039 0.00043 10.3 
5 6.26 6.44 2.88 0.00045 0.00043 4.4 
4 4.92 5.15 4.67 0.00046 0.00043 6.5 
3 3.55 3.34 5.92 0.00045 0.00043 4.4 
2 2.19 2.23 1.83 0.00044 0.00043 0.1 
1 0.88 0.87 1.14 0.00029 0.00029 0 
      max=0.00046 max=0.00043 6.5 
8 10.21 10.31 0.98 0.00039 0.00043 10.3 
7 9.04 9.02 0.22 0.00045 0.00043 4.4 
6 7.68 7.73 0.65 0.00046 0.00043 6.5 
5 6.31 6.44 2.06 0.00046 0.00043 6.5 
4 4.93 5.15 4.46 0.00046 0.00043 6.5 
3 3.56 3.34 6.18 0.00045 0.00043 4.4 
2 2.20 2.23 1.36 0.00044 0.00043 0.1 
1 0.88 0.87 1.14 0.00029 0.00029 0 
      max=0.00046 max=0.00043 6.5  

10 13.04 12.88 1.23 0.00040 0.00043 7.5 
9 11.85 11.59 2.19 0.00045 0.00043 4.4 
8 10.49 10.31 1.72 0.00046 0.00043 6.5 
7 9.10 9.02 0.88 0.00046 0.00043 6.5 
6 7.71 7.73 0.26 0.00046 0.00043 6.5 
5 6.32 6.44 1.90 0.00046 0.00043 6.5 
4 4.94 5.15 4.25 0.00046 0.00043 6.5 
3 3.56 3.34 6.18 0.00045 0.00043 4.4 
2 2.20 2.23 1.36 0.00044 0.00043 0.1 
1 0.88 0.87 1.14 0.00029 0.00029 0 
      max=0.00046 max=0.00043 6.5 

 

 

 105



Table 4.1 Comparisons of Lateral Displacements and Relative Story Drifts as   

Determined by SAP2000 and Analytical Model for Framed Structure (Continued) 

 

# of Displacement Displacement Difference Relative 
Story Drift 

Relative 
Story Drift Difference

story Sap2000(mm) Analytic(mm) (%) (Sap2000) (Analytic) (%) 
15 20.34 19.33 4.97 0.00041 0.00043 4.8 
14 19.11 18.04 5.60 0.00047 0.00043 8.5 
13 17.70 16.75 5.37 0.00047 0.00043 8.5 
12 16.28 15.46 5.04 0.00048 0.00043 10.4 
11 14.85 14.17 4.58 0.00048 0.00043 10.4 
10 13.42 12.88 4.02 0.00047 0.00043 8.5 
9 12.00 11.59 3.42 0.00047 0.00043 8.5 
8 10.58 10.31 2.55 0.00047 0.00043 8.5 
7 9.17 9.02 1.64 0.00047 0.00043 8.5 
6 7.76 7.73 0.39 0.00047 0.00043 8.5 
5 6.36 6.44 1.26 0.00047 0.00043 8.5 
4 4.96 5.15 3.83 0.00046 0.00043 6.5 
3 3.58 3.34 6.70 0.00046 0.00043 6.5 
2 2.20 2.23 1.36 0.00044 0.00043 0.1 
1 0.88 0.87 1.14 0.00029 0.00029 0 
     max=0.00048 max=0.00043  10.4 

20 28.00 25.77 7.96 0.00042 0.00043 0.1 
19 26.73 24.48 8.42 0.00048 0.00043 10.4 
18 25.28 23.19 8.27 0.00049 0.00043 12.2 
17 23.80 21.90 7.98 0.00049 0.00043 12.2 
16 22.33 20.62 7.66 0.00049 0.00043 12.2 
15 20.86 19.33 7.33 0.00049 0.00043 12.2 
14 19.39 18.04 6.96 0.00049 0.00043 12.2 
13 17.92 16.75 6.53 0.00049 0.00043 12.2 
12 16.46 15.46 6.08 0.00049 0.00043 12.2 
11 15.00 14.17 5.53 0.00048 0.00043 10.4 
10 13.55 12.88 4.94 0.00048 0.00043 10.4 
9 12.10 11.59 4.21 0.00048 0.00043 10.4 
8 10.66 10.31 3.28 0.00048 0.00043 8.5 
7 9.23 9.02 2.28 0.00047 0.00043 8.5 
6 7.81 7.73 1.02 0.00047 0.00043 8.5 
5 6.39 6.44 0.78 0.00047 0.00043 8.5 
4 4.98 5.15 3.41 0.00046 0.00043 6.5 
3 3.59 3.34 6.96 0.00046 0.00043 6.5 
2 2.21 2.23 0.90 0.00044 0.00043 0.1 
1 0.88 0.87 1.14 0.00029 0.00029 0 
     max=0.00049 max=0.00043 12.2 
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Table 4.2 Comparisons of Slope along Height at Story Levels as Determined by 

SAP2000 and Analytical Model for Framed Structure 

 

# of 
story 

Slope along 
height at 

story levels 
Sap2000(rad)

Slope along 
height at 

story levels 
Analytic(rad)

Difference 
(%) 

2 0.0003466 0.00043 24.1 
1 0.0003733 0.00043 15.2 
      
4 0.0003533 0.00043 21.7 
3 0.0004267 0.00043 0.8 
2 0.0004433 0.00043 3.0 
1 0.0004033 0.00043 6.6 
      
6 0.0003666 0.00043 17.3 
5 0.0004300 0.00043 0 
4 0.0004533 0.00043 5.1 
3 0.0004533 0.00043 5.1 
2 0.0004467 0.00043 3.7 
1 0.0004033 0.00043 6.6 
      
8 0.0003666 0.00043 17.3 
7 0.0004300 0.00043 0 
6 0.0004600 0.00043 6.5 
5 0.0004567 0.00043 5.8 
4 0.0004600 0.00043 6.5 
3 0.0004567 0.00043 5.8 
2 0.0004467 0.00043 3.7 
1 0.0004033 0.00043 6.6 
      

10 0.0003733 0.00043 15.2 
9 0.0004333 0.00043 0.8 
8 0.0004633 0.00043 7.2 
7 0.0004633 0.00043 7.2 
6 0.0004600 0.00043 6.5 
5 0.0004633 0.00043 7.2 
4 0.0004600 0.00043 6.5 
3 0.0004567 0.00043 5.8 
2 0.0004500 0.00043 4.4 
1 0.0004033 0.00043 6.6 
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Table 4.2 Comparisons of Slope along Height at Story Levels as Determined by 

SAP2000 and Analytical Model for Framed Structure (Continued) 

 

# of 
story 

Slope along 
height at 

story levels 
Sap2000(rad)

Slope along 
height at 

story levels 
Analytic(rad)

Difference 
(%) 

15 0.0003866 0.00043 11.2 
14 0.0004500 0.00043 4.4 
13 0.0004733 0.00043 9.1 
12 0.0004767 0.00043 9.8 
11 0.0004733 0.00043 9.1 
10 0.0004767 0.00043 9.8 
9 0.0004733 0.00043 9.1 
8 0.0004700 0.00043 8.5 
7 0.0004700 0.00043 8.5 
6 0.0004700 0.00043 8.5 
5 0.0004667 0.00043 7.8 
4 0.0004633 0.00043 7.2 
3 0.0004600 0.00043 6.5 
2 0.0004533 0.00043 5.1 
1 0.0004033 0.00043 6.6 
      

20 0.0004000 0.00043 7.5 
19 0.0004633 0.00043 7.2 
18 0.0004900 0.00043 12.2 
17 0.0004933 0.00043 12.8 
16 0.0004900 0.00043 12.2 
15 0.0004900 0.00043 12.2 
14 0.0004900 0.00043 12.2 
13 0.0004867 0.00043 11.6 
12 0.0004867 0.00043 11.6 
11 0.0004867 0.00043 11.6 
10 0.0004800 0.00043 10.4 
9 0.0004833 0.00043 11.0 
8 0.0004767 0.00043 9.8 
7 0.0004767 0.00043 9.8 
6 0.0004733 0.00043 9.1 
5 0.0004700 0.00043 8.5 
4 0.0004700 0.00043 8.5 
3 0.0004600 0.00043 6.5 
2 0.0004533 0.00043 5.1 
1 0.0004067 0.00043 5.7 
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Figure 4.5 Comparisons of Lateral Displacements as Determined by SAP2000              

and Analytical Model (for 2 Story-Framed Structure) 
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Figure 4.6 Comparisons of Lateral Displacements as Determined by SAP2000              

and Analytical Model (for 4 Story-Framed Structure) 
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6 STORY-BUILDING
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Figure 4.7 Comparisons of Lateral Displacements as Determined by SAP2000              

and Analytical Model (for 6 Story-Framed Structure) 
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Figure 4.8 Comparisons of Lateral Displacements as Determined by SAP2000              

and Analytical Model (for 8 Story-Framed Structure) 
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10 STORY-BUILDING
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Figure 4.9 Comparisons of Lateral Displacements as Determined by SAP2000              

and Analytical Model (for 10 Story-Framed Structure) 
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Figure 4.10 Comparisons of Lateral Displacements as Determined by SAP2000              

and Analytical Model (for 15 Story-Framed Structure) 
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20 STORY-BUILDING
COMPARISON OF LATERAL DISPLACEMENTS
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Figure 4.11 Comparisons of Lateral Displacements as Determined by SAP2000              

and Analytical Model (for 20 Story-Framed Structure) 
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Figure 4.12 Comparisons of Slope along Height at Story Levels as Determined by    

SAP2000 and Analytical Model (for 2 Story-Framed Structure) 
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Figure 4.13 Comparisons of Slope along Height at Story Levels as Determined by    

SAP2000 and Analytical Model (for 4 Story-Framed Structure) 
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Figure 4.14 Comparisons of Slope along Height at Story Levels as Determined by    

SAP2000 and Analytical Model (for 6 Story-Framed Structure) 
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Figure 4.15 Comparisons of Slope along Height at Story Levels as Determined by    

SAP2000 and Analytical Model (for 8 Story-Framed Structure) 
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Figure 4.16 Comparisons of Slope along Height at Story Levels as Determined by    

SAP2000 and Analytical Model (for 10 Story-Framed Structure) 
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Figure 4.17 Comparisons of Slope along Height at Story Levels as Determined by    

SAP2000 and Analytical Model (for 15 Story-Framed Structure) 
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20 STORY-BUILDING
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Figure 4.18 Comparisons of Slope along Height at Story Levels as Determined by    

SAP2000 and Analytical Model (for 20 Story-Framed Structure) 
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Figure 4.19 Comparisons of Story Drifts as Determined by SAP2000 and Analytical 

Model (for 2 Story-Framed Structure) 
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Figure 4.20 Comparisons of Story Drifts as Determined by SAP2000 and Analytical 

Model (for 4 Story-Framed Structure) 
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Figure 4.21 Comparisons of Story Drifts as Determined by SAP2000 and Analytical 

Model (for 6 Story-Framed Structure) 
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Figure 4.22 Comparisons of Story Drifts as Determined by SAP2000 and Analytical 

Model (for 8 Story-Framed Structure) 
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COMPARISON OF STORY DRIFTS
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Figure 4.23 Comparisons of Story Drifts as Determined by SAP2000 and Analytical 

Model (for 10 Story-Framed Structure) 
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Figure 4.24 Comparisons of Story Drifts as Determined by SAP2000 and Analytical 

Model (for 15 Story-Framed Structure) 
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Figure 4.25 Comparisons of Story Drifts as Determined by SAP2000 and Analytical 

Model (for 20 Story-Framed Structure) 
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CHAPTER 5 
 

PROCEDURE FOR ANALYTICAL METHOD OF ANALYSIS OF 

MIXED STRUCTURES  

(FOR CONCENTRATED LATERAL LOAD AT THE TOP) 
 

 

5.1 SOLUTION OF MIXED STRUCTURES FOR CONCENTRATED 

LATERAL LOAD AT THE TOP 

 

In case of concentrated lateral load of F at the top of structure, f(x) will be 

equal to zero and the general differential equation will take the following form. 

0.M(x)
v

1vw.ws 2

2
ıııv2 =

−
+−                                                                       (5.1) 

Letting EI.y’’= w’’ = M(x), Eqn5.1 becomes 

0.M(x)
v

1vM(x)(x).Ms 2

2
ıı2 =

−
+−                                                                (5.2) 

The solution of Eqn5.2 is given below. 

.M(x)
v

1v.sinhφA.coshφAM(x) 2

2

21
−

++=                                                  (5.3) 

If we take the first derivative of M(x), 

(x).M
v

1vcoshφ
s
1.Asinhφ

s
1.A(x)M ı

2

2

21
ı −

++=                                         (5.4) 

Moment at any height x of the structure can be written as in Eqn5.5. 

M(x) = F.(H-x) = F.H.(1-k)                                                                            (5.5) 

where 

k = x / H 

F = Lateral point load at the top of structure 
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H = Height of building 

Taking the derivative of this moment expression yields, 

F
dx

dM(x)
−=                                                                                                    (5.6) 

In order to find A1 and A2 in Eqn.6.3, following two boundary conditions can 

be applied. 

i. M(H) = 0 

ii. M’(H) = -F 

Then A1 and A2 can be expressed as in Eqn5.7 and Eqn5.8, respectively. 

.tanhλ
v

F(s)A 21 =                                                                                              (5.7) 

22 v
F(s)A −=                                                                                                     (5.8) 

Recalling w= K.y, Eqn.5.3 must be integrated twice as expressed in Eqn.5.9 

and two more boundary conditions must be applied in order to find the equation of 

lateral displacement factored by K multiplier, w(x), given in Eqn.5.10. 

∫ ∫=
x

0

2M(x).dxw(x)                                                                                        (5.9) 

43

32

2

2
2

2
2

1

A.xA

)
6
x

2
x.F.(H.

v
1v.sinhφ.sA.coshφ.sAK.y(x)

+

+−
−

++=                   (5.10) 

where 

A3= -A2.(s)   

A4= -A1.(s2) 

Then the slope equation can be written as in Eqn.5.11. 

3

2

2

2

21
ı A)

2
x.F.(H.x

v
1v.s.coshφA.s.sinhφA(x)K.y +−

−
++=                   (5.11) 

Finally the curvature equation can be expressed as in Eqn.5.12. 

x).F.(H
v

1v.sinhφA.coshφA(x)K.y 2

2

21
ıı −

−
++=                                     (5.12) 

Lateral sway at any height of the building and relative story drifts as well as 

slope & curvature along height of the building can be easily calculated by using the 
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executable “Borland Delphi” program developed, which is shown in Figure 5.1. The 

graphs showing the number of story versus displacements & relative story drifts and 

the number of story versus slope & curvature along height at story levels can also be 

drawn easily by using the developed “Borland Delphi” program. 

 

 
 

Figure 5.1 Executable “Borland Delphi” Program to Calculate Lateral Sway, Slope, 

Curvature and Relative Story Drift for Mixed Structures 

 

Moment equation can easily be obtained by multiplying the curvature with EI 

as given in Eqn.5.13 and Eqn.5.14. 

 

M(x) = -EI . y ıı (x)                                                                                       (5.13) 

 

x)].F.(H
v

1v.sinhφA.coshφ[A
K
EIM(x) 2

2

21 −
−

++−=                                (5.14) 

 

Shear equation can then be readily obtained by differentiating the moment 

equation with respect to x as expressed in Eqn.5.15 and so Eqn.5.16 is attained.  

 

V(x) = -M’(x) = EI . y ııı (x)                                                                          (5.15) 
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.F]
v

1v.coshφ
s

A
.sinhφ

s
A

[
K
EIV(x) 2

2
21 −

−+=                                             (5.16) 

 

Force equation (i.e. equation of load coming to shear wall) can then be readily 

obtained by differentiating the shear equation with respect to x as expressed in 

Eqn.5.17 and so Eqn.5.18 is attained. 

 

P(x) = -V’(x) = -EI . y ıv (x)                                                                          (5.17) 

 

⎟
⎠
⎞

⎜
⎝
⎛ +−= .sinhφ

s
A.coshφ

s
A

K
EIP(x) 2

2
2
1                                                           (5.18) 

 

5.2 ASSESSING THE VALIDITY OF THE ANALYTICAL MODEL 

(EXAMPLE 1) 

 

Firstly the validity of the analytical model developed was tested on a 3D-mixed 

structure having only 2 shear walls with lw=6m and bw=0.25m (with different number 

of stories) as shown in Figure 5.2. The results that are determined by using SAP2000 

and analytical equation were then compared both in tabular and graphical forms. For 

simplicity, the concentrated load F at the top of structure was assumes as 1 000 kN. 

The parameters used in the analytical expression were calculated as below. 
 
K= K (shear walls) + Σ K (columns) 
 
Since Σ K (columns) term can be neglected, then along y-direction 
 

232 kN.m 000 500 256x2(0.25)(6)
12
1.kN/m 000 500 28K =⎥⎦

⎤
⎢⎣
⎡=  

( )[ ] 222
0 kN.m 000 000 954 16x2x11(13)(0.4)(0.4).kN/m 000 500 28K ==  

GA = 22 x 41 793 + 18 x 47 542 + 9 x 5 182 + 22 x 28 169 = 2 441 558 kN 
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      5m 

y       5m 

       
(a) 

 

 
(b) 

 
(EXAMPLE 1) 

 
Figure 5.2 Mixed Structure Used to Test the Validity of the Analytical Method:  

(a) Typical floor plan, (b) 3-D view of a sample 4-storey mixed structure 

 

 

 

 

 

    10x5=50m

      5m 

      5m 

      3m 
      3m 

 x

All columns          : 400x400 mm 
All beams             : 250x450 mm 
Slab thickness      : 120 mm 
All storey heights : 3 m 
g (additional)        : 2.0 kN/m2

q (additional)        : 3.5 kN/m2 
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5.3 COMPARISON OF RESULTS (EXAMPLE1) 

Table 5.1 Comparisons of Lateral Displacements and Relative Story Drifts as   

D

 

# of Displacement Displacement Difference Relative Story Relative Story Difference

 

etermined by SAP2000 and Analytical Model for Mixed Structure (Example1) 

Drift Drift 
story Sap2000(mm) Analytic(mm) (%) (Sap2000) (Analytic) (%) 

2 0.338 0.242 28.4 0.000069 0.000055 20.3 
1 0.13 0.076 41.3 0.000043 0.000025 41.3 
    ma 9 ma  x=0.00006 x=0.000055 20.2 
4 1.48 1.376 7  .0 0.000167 0.000165 1.2 
3 0.98 0.882 10.0 0.000151 0.000146 3.6 
2 0.526 0.444 15.5 0.000117 0.000106 9.2 
1 0.175 0.126 28.2 0.000058 0.000042 28.2 
    ma max=0.000167 x=0.000165 1.2 
6 3.3 3.166 4  .1 0.000247 0.000249 1.0 
5 2.56 2.419 5.5 0.000240 0.000238 0.7 
4 1.84 1.704 7.4 0.000223 0.000216 3.4 
3 1.17 1.057 9.7 0.000187 0.000179 4.0 
2 0.61 0.519 14.9 0.000138 0.000125 9.6 
1 0.195 0.144 26.2 0.000065 0.000048 26.2 
    ma max=0.000247 x=0.000249 0.8 
8 5.5 5.259 4  .4 0.000303 0.000302 0.3 
7 4.59 4.351 5.2 0.000303 0.000296 2.3 
6 3.68 3.462 5.9 0.000290 0.000284 2.1 
5 2.81 2.610 7.1 0.000273 0.000264 3.6 
4 1.99 1.819 8.6 0.000247 0.000234 5.3 
3 1.25 1.119 10.5 0.000203 0.000191 6.1 
2 0.64 0.546 14.7 0.000145 0.000132 9.3 
1 0.204 0.150 26.2 0.000068 0.000050 26.2 
    ma max=0.000303 x=0.000302 0.3 

10 7.92 7.521 5  .0 0.000340 0.000337 0.9 
9 6.9 6.510 5.6 0.000343 0.000333 2.9 
8 5.87 5.510 6.1 0.000340 0.000326 4.0 
7 4.85 4.531 6.6 0.000330 0.000315 4.6 
6 3.86 3.586 7.1 0.000310 0.000298 3,9 
5 2.93 2.693 8.1 0.000290 0.000274 5.5 
4 2.06 1.870 9.2 0.000257 0.000241 6.0 
3 1.29 1.147 11.1 0.000210 0.000196 6.6 
2 0.66 0.558 15.5 0.000151 0.000135 10.5 
1 0.208 0.153 26.2 0.000069 0.000051 26.2 
    ma max=0.000343 x=0.000337 1.7 
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Tab omparisons of Latera lacem elati rifts a

D

# of Displacement Displacement Differen e Relative Story 
Drift 

Relative Story 
Drift Difference

le 5.1 C l Disp ents and R ve Story D s   

etermined by SAP2000 and Analytical Model for Mixed Structure (Example1) 

(Continued) 

 

c

story Sap2000(mm) Analytic(mm) (%) (%) (Sap2000) (Analytic) 
15 14.65 13.840 5.5 0. 0 0. 2 00040 00039 2.0 
14 13.45 12.664 5.8 0.000403 0.000391 3.0 
13 12.24 11.491 6.1 0.000407 0.000389 4.4 
12 11.02 10.324 6.3 0.000407 0.000385 5.3 
11 9.8 9.169 6.4 0.000400 0.000380 5.0 
10 8.6 8.029 6.6 0.000397 0.000373 5.9 
9 7.41 6.909 6.8 0.000387 0.000364 5.9 
8 6.25 5.817 6.9 0.000373 0.000352 5.7 
7 5.13 4.761 7.2 0.000353 0.000336 4.9 
6 4.07 3.753 7.8 0.000337 0.000315 6.3 
5 3.06 2.807 8.3 0.000303 0.000288 5.0 
4 2.15 1.943 9.6 0.000270 0.000252 6.7 
3 1.34 1.187 11.4 0.000220 0.000204 7.4 
2 0.68 0.576 15.3 0.000155 0.000139 10.3 
1 0.214 0.158 26.2 0.000071 0.000053 26.2 
    ma max=0.000407 x=0.000392 3.7 

20 22.34 21.346 4.5 0.000443 0.000442 0.2 
19 21.01 20.018 4  .7 0.000450 0.000442 1.8 
18 19.66 18.693 4.9 0.000453 0.000441 2.8 
17 18.3 17.371 5.1 0.000453 0.000439 3.3 
16 16.94 16.055 5.2 0.000453 0.000436 3.9 
15 15.58 14.748 5.3 0.000453 0.000432 4.6 
14 14.22 13.450 5.4 0.000447 0.000428 4.2 
13 12.88 12.166 5.5 0.000443 0.000423 4.7 
12 11.55 10.898 5.6 0.000437 0.000416 4.7 
11 10.24 9.650 5.8 0.000430 0.000408 5.1 
10 8.95 8.426 5.9 0.000420 0.000398 5.1 
9 7.69 7.230 6.0 0.000407 0.000387 4.9 
8 6.47 6.071 6.2 0.000390 0.000372 4.7 
7 5.3 4.955 6.5 0.000370 0.000353 4.5 
6 4.19 3.895 7.0 0.000347 0.000330 4.8 
5 3.15 2.906 7.8 0.000317 0.000300 5.3 
4 2.2 2.006 8.8 0.000277 0.000261 5.6 
3 1.37 1.222 10.8 0.000227 0.000210 7.2 
2 0.69 0.592 14.3 0.000158 0.000143 9.2 
1 0.217 0.162 25.4 0.000072 0.000054 25.4 
    ma max=0.000453 x=0.000442 2.4 
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Table mparisons of Slope al eigh evels ined

# of 
story 

Slope along 
height at 

Slope along 
t Difference 

(%) 

 5.2 Co ong H t at Story L  as Determ  by 

SAP2000 and Analytical Model for Mixed Structure (Example1) 

 

height a
story levels 

Sap2000(rad)
story levels 

Analytic(rad)
2 0.0000673 0.0000601 10.7 
1 28.6 0.0000637 0.0000454 
     
4 0.0001600 0.0001678 4.9 
3 0.0001650 0.0001585 3.9 
2 0.0001353 0.0001298 4.1 
1 0.0000927 0.0000786 15.2 
     
6 0.0002400 0.0002508 4.5 
5 0.0002500 0.0002455 1.8 
4 0.0002300 0.0002291 0.4 
3 0.0002073 0.0002001 3.5 
2 0.0001640 0.0001554 5.2 
1 0.0001063 0.0000909 14.5 
     
8 0.0002933 0.0003034 3.5 
7 0.0003100 0.0003005 3.1 
6 0.0002967 0.0002913 1.8 
5 0.0002833 0.0002752 2.9 
4 0.0002600 0.0002504 3.7 
3 0.0002253 0.0002147 4.7 
2 0.0001760 0.0001646 6.5 
1 0.0001123 0.0000953 15.2 
     

10 0.0003266 0.0003375 3.3 
9 0.0003500 0.0003358 4.1 
8 0.0003400 0.0003306 2.8 
7 0.0003367 0.0003214 4.5 
6 0.0003200 0.0003074 3.9 
5 0.0003033 0.0002873 5.3 
4 0.0002700 0.0002594 3.9 
3 0.0002360 0.0002211 6.3 
2 0.0001820 0.0001687 7.3 
1 0.0001150 0.0000973 15.4 
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Table 5.2 Comparisons of Slope along Height at Story Levels as Determined by 

# of 
stor  

Slope along 

S

Slope along 

A

Difference 

SAP2000 and Analytical Model for Mixed Structure (Example1) (Continued) 

 

y
height at 

story levels 
ap2000(rad)

height at 
story levels 
nalytic(rad)

(%) 

15 0.0003800 0.0003923 3.2 
14 0.0004133 0.0003918 5.2 
13 0.0004033 0.0003901 3.3 
12 0.0004067 0.0003872 4.8 
11 0.0004033 0.0003829 5.1 
10 0.0004000 0.0003769 5.8 
9 0.0003900 0.0003690 5.4 
8 0.0003800 0.0003585 5.7 
7 0.0003667 0.0003447 6.0 
6 0.0003433 0.0003267 4.8 
5 0.0003233 0.0003030 6.3 
4 0.0002867 0.0002717 5.2 
3 0.0002450 0.0002301 6.1 
2 0.0001893 0.0001747 7.8 
1 0.0001183 0.0001003 15.3 
     

20 0.0004266 0.0004426 3.7 
19 0.0004567 0.0004423 3.2 
18 0.0004500 0.0004413 1.9 
17 0.0004533 0.0004397 3.0 
16 0.0004533 0.0004373 3.5 
15 0.0004533 0.0004343 4.2 
14 0.0004500 0.0004304 4.4 
13 0.0004467 0.0004255 4.7 
12 0.0004400 0.0004196 4.6 
11 0.0004333 0.0004124 4.8 
10 0.0004233 0.0004036 4.7 
9 0.0004133 0.0003929 4.9 
8 0.0004000 0.0003797 5.1 
7 0.0003800 0.0003632 4.4 
6 0.0003600 0.0003425 4.9 
5 0.0003333 0.0003162 5.1 
4 0.0002967 0.0002822 4.9 
3 0.0002500 0.0002380 4.8 
2 0.0001950 0.0001799 7.7 
1 0.0001207 0.0001029 14.7 
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Figure 5.3 Comparisons of Lateral Displacements as Determined by SAP2000              

and Analytical Model (for 2 Story-Mixed Structure Example1) 
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Figure 5.4 Comparisons of Lateral Displacements as Determined by SAP2000              

and Analytical Model (for 4 Story-Mixed Structure Example1) 
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Figure 5.5 Comparisons of Lateral Displacements as Determined by SAP2000              

and Analytical Model (for 6 Story-Mixed Structure Example1) 
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Figure 5.6 Comparisons of Lateral Displacements as Determined by SAP2000              

and Analytical Model (for 8 Story-Mixed Structure Example1) 
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10 STORY-BUILDING
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Figure 5.7 Comparisons of Lateral Displacements as Determined by SAP2000              

and Analytical Model (for 10 Story-Mixed Structure Example1) 
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Figure 5.8 Comparisons of Lateral Displacements as Determined by SAP2000              

and Analytical Model (for 15 Story-Mixed Structure Example1) 
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20 STORY-BUILDING
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Figure 5.9 Comparisons of Lateral Displacements as Determined by SAP2000              

and Analytical Model (for 20 Story-Mixed Structure Example1) 
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Figure 5.10 Comparisons of Slope along Height at Story Levels as Determined by    

SAP2000 and Analytical Model (2 Story-Mixed Structure Example1) 
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Figure 5.11 Comparisons of Slope along Height at Story Levels as Determined by    

SAP2000 and Analytical Model (4 Story-Mixed Structure Example1) 
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Figure 5.12 Comparisons of Slope along Height at Story Levels as Determined by    

SAP2000 and Analytical Model (6 Story-Mixed Structure Example1) 
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Figure 5.13 Comparisons of Slope along Height at Story Levels as Determined by    

SAP2000 and Analytical Model (8 Story-Mixed Structure Example1) 
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Figure 5.14 Comparisons of Slope along Height at Story Levels as Determined by    

SAP2000 and Analytical Model (10 Story-Mixed Structure Example1) 
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Figure 5.15 Comparisons of Slope along Height at Story Levels as Determined by    

SAP2000 and Analytical Model (15 Story-Mixed Structure Example1) 
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Figure 5.16 Comparisons of Slope along Height at Story Levels as Determined by    

SAP2000 and Analytical Model (20 Story-Mixed Structure Example1) 
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 Figure 5.17 Comparisons of Story Drifts as Determined by SAP2000 and Analytical 

Model (for 2 Story-Mixed Structure Example1) 
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Figure 5.18 Comparisons of Story Drifts as Determined by SAP2000 and Analytical 

Model (for 4 Story-Mixed Structure Example1) 
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Figure 5.19 Comparisons of Story Drifts as Determined by SAP2000 and Analytical 

Model (for 6 Story-Mixed Structure Example1) 
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Figure 5.20 Comparisons of Story Drifts as Determined by SAP2000 and Analytical 

Model (for 8 Story-Mixed Structure Example1) 
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Figure 5.21 Comparisons of Story Drifts as Determined by SAP2000 and Analytical 

Model (for 10 Story-Mixed Structure Example1) 
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Figure 5.22 Comparisons of Story Drifts as Determined by SAP2000 and Analytical 

Model (for 15 Story-Mixed Structure Example1) 
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Figure 5.23 Comparisons of Story Drifts as Determined by SAP2000 and Analytical 

Model (for 20 Story-Mixed Structure Example1) 

 
 
5.4 ASSESSING THE VALIDITY OF THE ANALYTICAL MODEL 

(EXAMPLE2) 

 

Secondly the same structure having 4 shear walls, two of which have lw=6m 

and bw=0.25m and the other two have lw=10m and bw=0.25m (with different number 

of stories) as shown in Figure 5.24 was also tested to show the validity of analytical 

model. The concentrated load F at the top of structure was assumes as 1 000 kN. 

The parameters used in the analytical expression were calculated as below: 

K= K (shear walls) + Σ K (columns) 

Since Σ K (columns) term can be neglected, then along y-direction 

2332 kN.m 190 242 257x2(10)(0.25)
12
1(0.25)(6)

12
1.kN/m 000 500 8 2K =⎥⎦

⎤
⎢⎣
⎡ +=
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( )[ ] 222
columns0 kN.m 000 240 330 12x2x8(13)(0.4)(0.4).kN/m 000 0 50 8 2)(K ==

         [ ] 222
walls0 kN.m 000 500 082 24x2(13)(0.25)(10).kN/m 000 500 28)(K ==  

2
0 kN.m 000 740 412 36K =∑  

GA = 22 x 41 793 + 18 x 47 542 + 9 x 5 182 + 16 x 28 169 = 2 272 544 kN 
 

       
(a) 

 

 
(b) 

 
(EXAMPLE 2) 

 
Figure 5.24 Mixed Structure Used to Test the Validity of the Analytical Method:  

(a) Typical floor plan, (b) 3-D view of a sample 4-storey mixed structure 

    10x5=50m

      5m 

      5m 

      5m 

      5m 

      3m 
      3m 

 x

y 

All columns          : 400x400 mm 
All beams             : 250x450 mm 
Slab thickness      : 120 mm 
All storey heights : 3 m 
g (additional)        : 2.0 kN/m2

q (additional)        : 3.5 kN/m2 
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5.5 COMPARISON OF RESULTS (EXAMPLE 2) 

 

Table 5.3 Comparisons of Lateral Displacements and Relative Story Drifts as   

Determined by SAP2000 and Analytical Model for Mixed Structure (Example2) 

 

# of Displacement Displacement Difference Relative Story 
Drift 

Relative Story 
Drift Difference

story Sap2000(mm) Analytic(mm) (%) (Sap2000) (Analytic) (%) 
2 0.336 0.243 27.6 0.000069 0.000056 18.8 
1 0.129 0.077 40.6 0.000043 0.000026 39.5 
    max=0.000069 max=0.000056 18.8 
4 1.47 1.403 4.6 0.000164 0.000168 2.5 
3 0.978 0.898 8.1 0.000151 0.000149 1.7 
2 0.524 0.452 13.7 0.000116 0.000108 7.0 
1 0.175 0.128 27.0 0.000058 0.000043 25.8 
    max=0.000164 max=0.000168 2.4 
6 3.28 3.251 0.9 0.000243 0.000256 5.3 
5 2.55 2.482 2.7 0.000240 0.000245 2.1 
4 1.83 1.747 4.5 0.000220 0.000222 0.7 
3 1.17 1.082 7.5 0.000188 0.000184 2.4 
2 0.605 0.531 12.3 0.000137 0.000128 6.6 
1 0.194 0.147 24.3 0.000065 0.000049 24.6 
    max=0.000243 max=0.000256 5.3 
8 5.45 5.399 0.9 0.000297 0.000311 4.7 
7 4.56 4.466 2.1 0.000300 0.000305 1.6 
6 3.66 3.551 3.0 0.000290 0.000292 0.6 
5 2.79 2.675 4.1 0.000273 0.000271 1.0 
4 1.97 1.863 5.4 0.000240 0.000240 0.2 
3 1.25 1.145 8.4 0.000203 0.000196 3.8 
2 0.64 0.558 12.9 0.000146 0.000135 7.5 
1 0.203 0.153 24.4 0.000068 0.000051 25 
    max=0.000300 max=0.000311 3.7 

10 7.83 7.680 1.9 0.000333 0.000344 3.3 
9 6.83 6.647 2.7 0.000340 0.000341 0.2 
8 5.81 5.625 3.2 0.000337 0.000334 0.9 
7 4.8 4.624 3.7 0.000323 0.000322 0.5 
6 3.83 3.659 4.5 0.000310 0.000304 1.8 
5 2.9 2.746 5.3 0.000287 0.000280 2.3 
4 2.04 1.906 6.6 0.000253 0.000246 2.8 
3 1.28 1.168 8.8 0.000208 0.000200 3.8 
2 0.656 0.568 13.5 0.000150 0.000137 8.3 
1 0.207 0.156 24.7 0.000069 0.000052 24.6 
    max=0.000340 max=0.000344 1.2 
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Table 5.3 Comparisons of Lateral Displacements and Relative Story Drifts as   

Determined by SAP2000 and Analytical Model for Mixed Structure (Example2) 

(Continued) 

 

# of Displacement Displacement Difference Relative Story 
Drift 

Relative Story 
Drift Difference

story Sap2000(mm) Analytic(mm) (%) (Sap2000) (Analytic) (%) 
15 14.34 13.742 4.2 0.000387 0.000386 0.0 
14 13.18 12.583 4.5 0.000397 0.000386 2.8 
13 11.99 11.426 4.7 0.000397 0.000384 3.3 
12 10.8 10.276 4.9 0.000393 0.000380 3.3 
11 9.62 9.134 5.0 0.000393 0.000376 4.4 
10 8.44 8.006 5.1 0.000387 0.000370 4.4 
9 7.28 6.897 5.3 0.000377 0.000361 4.1 
8 6.15 5.813 5.5 0.000367 0.000350 4.5 
7 5.05 4.763 5.7 0.000350 0.000335 4.3 
6 4.00 3.758 6.1 0.000327 0.000315 3.6 
5 3.02 2.813 6.9 0.000300 0.000288 3.9 
4 2.12 1.948 8.1 0.000267 0.000252 5.4 
3 1.32 1.191 9.8 0.000215 0.000204 5.1 
2 0.674 0.578 14.3 0.000154 0.000140 9.4 
1 0.211 0.158 24.9 0.000070 0.000053 24.3 
    max=0.000397 max=0.000386 2.8 

20 21.54 20.371 5.4 0.000420 0.000414 1.5 
19 20.28 19.129 5.7 0.000433 0.000413 4.6 
18 18.98 17.889 5.7 0.000433 0.000413 4.8 
17 17.68 16.652 5.8 0.000433 0.000411 5.1 
16 16.38 15.418 5.9 0.000437 0.000410 6.2 
15 15.07 14.190 5.8 0.000430 0.000407 5.3 
14 13.78 12.968 5.9 0.000430 0.000404 6.0 
13 12.49 11.755 5.9 0.000427 0.000401 6.1 
12 11.21 10.553 5.9 0.000420 0.000396 5.8 
11 9.95 9.366 5.9 0.000413 0.000390 5.7 
10 8.71 8.197 5.9 0.000407 0.000382 6.1 
9 7.49 7.051 5.9 0.000393 0.000372 5.4 
8 6.31 5.934 6.0 0.000380 0.000360 5.4 
7 5.17 4.855 6.1 0.000360 0.000343 4.6 
6 4.09 3.826 6.5 0.000337 0.000322 4.4 
5 3.08 2.860 7.2 0.000307 0.000294 4.2 
4 2.16 1.978 8.4 0.000270 0.000257 4.9 
3 1.35 1.208 10.5 0.000222 0.000207 6.5 
2 0.684 0.585 14.4 0.000157 0.000142 9.6 
1 0.214 0.160 25.1 0.000071 0.000053 25.4 
    max=0.000437 max=0.000414 5.3 
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Table 5.4 Comparisons of Slope along Height at Story Levels as Determined by 

SAP2000 and Analytical Model for Mixed Structure (Example2) 

 

# of 
story 

Slope along 
height at 

story levels 
Sap2000(rad)

Slope along 
height at 

story levels 
Analytic(rad)

Difference 
(%) 

2 0.0000667 0.0000605 9.3 
1 0.0000610 0.0000457 25.1 
     
4 0.0001600 0.0001713 7.1 
3 0.0001617 0.0001617 0.0 
2 0.0001350 0.0001322 2.0 
1 0.0000903 0.0000800 11.5 
     
6 0.0002333 0.0002580 10.6 
5 0.0002500 0.0002525 1.0 
4 0.0002300 0.0002355 2.4 
3 0.0002047 0.0002053 0.3 
2 0.0001630 0.0001593 2.3 
1 0.0001040 0.0000929 10.7 
     
8 0.0002866 0.0003122 8.9 
7 0.0003067 0.0003091 0.8 
6 0.0002933 0.0002996 2.1 
5 0.0002833 0.0002828 0.2 
4 0.0002567 0.0002570 0.1 
3 0.0002230 0.0002201 1.3 
2 0.0001750 0.0001684 3.8 
1 0.0001097 0.0000973 11.3 
     

10 0.0003266 0.0003449 5.6 
9 0.0003400 0.0003432 0.9 
8 0.0003400 0.0003378 0.6 
7 0.0003300 0.0003284 0.5 
6 0.0003167 0.0003141 0.8 
5 0.0003000 0.0002935 2.2 
4 0.0002700 0.0002648 1.9 
3 0.0002313 0.0002255 2.5 
2 0.0001803 0.0001718 4.7 
1 0.0001123 0.0000989 11.9 
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Table 5.4 Comparisons of Slope along Height at Story Levels as Determined by 

SAP2000 and Analytical Model for Mixed Structure (Example2) (Continued) 

 

# of 
story 

Slope along 
height at 

story levels 
Sap2000(rad)

Slope along 
height at 

story levels 
Analytic(rad)

Difference 
(%) 

15 0.0003800 0.0003866 1.7 
14 0.0003933 0.0003862 1.8 
13 0.0003967 0.0003847 3.0 
12 0.0003967 0.0003822 3.6 
11 0.0003967 0.0003785 4.6 
10 0.0003867 0.0003732 3.5 
9 0.0003833 0.0003660 4.5 
8 0.0003733 0.0003563 4.6 
7 0.0003567 0.0003433 3.8 
6 0.0003400 0.0003260 4.1 
5 0.0003133 0.0003029 3.3 
4 0.0002833 0.0002721 4.0 
3 0.0002420 0.0002307 4.7 
2 0.0001863 0.0001753 5.9 
1 0.0001153 0.0001006 12.8 
     

20 0.0004133 0.0004138 0.1 
19 0.0004300 0.0004136 3.8 
18 0.0004333 0.0004130 4.7 
17 0.0004333 0.0004120 4.9 
16 0.0004333 0.0004105 5.3 
15 0.0004367 0.0004085 6.5 
14 0.0004300 0.0004059 5.6 
13 0.0004300 0.0004025 6.4 
12 0.0004233 0.0003983 5.9 
11 0.0004167 0.0003930 5.7 
10 0.0004100 0.0003862 5.8 
9 0.0003967 0.0003775 4.8 
8 0.0003867 0.0003665 5.2 
7 0.0003700 0.0003522 4.8 
6 0.0003500 0.0003336 4.7 
5 0.0003233 0.0003092 4.4 
4 0.0002900 0.0002771 4.5 
3 0.0002470 0.0002345 5.1 
2 0.0001897 0.0001778 6.3 
1 0.0001170 0.0001019 12.9 
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Figure 5.25 Comparisons of Lateral Displacements as Determined by SAP2000              

and Analytical Model (for 2 Story-Mixed Structure Example2) 
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Figure 5.26 Comparisons of Lateral Displacements as Determined by SAP2000              

and Analytical Model (for 4 Story-Mixed Structure Example2) 
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Figure 5.27 Comparisons of Lateral Displacements as Determined by SAP2000              

and Analytical Model (for 6 Story-Mixed Structure Example2) 
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Figure 5.28 Comparisons of Lateral Displacements as Determined by SAP2000              

and Analytical Model (for 8 Story-Mixed Structure Example2) 

 148



10 STORY-BUILDING
COMPARISON OF LATERAL DISPLACEMENTS

0
1
2
3
4
5
6
7
8
9

10

0 2 4 6 8 10 12 14

DISPLACEMENT(mm)

# 
O

F 
ST

O
R

Y

SAP2000
ANALYTIC

 
 

Figure 5.29 Comparisons of Lateral Displacements as Determined by SAP2000              

and Analytical Model (for 10 Story-Mixed Structure Example2) 
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Figure 5.30 Comparisons of Lateral Displacements as Determined by SAP2000              

and Analytical Model (for 15 Story-Mixed Structure Example2) 
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20 STORY-BUILDING
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Figure 5.31 Comparisons of Lateral Displacements as Determined by SAP2000              

and Analytical Model (for 20 Story-Mixed Structure Example2) 
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Figure 5.32 Comparisons of Slope along Height at Story Levels as Determined by    

SAP2000 and Analytical Model (2 Story-Mixed Structure Example2) 

 

4 STORY-BUILDING
COMPARISON OF SLOPE ALONG HEIGHT

AT STORY LEVELS

0

1

2

3

4

0.00000 0.00005 0.00010 0.00015 0.00020 0.00025 0.00030

SLOPE(RAD)

# 
O

F 
ST

O
R

Y

SAP2000
ANALYTIC

 
Figure 5.33 Comparisons of Slope along Height at Story Levels as Determined by    

SAP2000 and Analytical Model (4 Story-Mixed Structure Example2) 
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Figure 5.34 Comparisons of Slope along Height at Story Levels as Determined by    

SAP2000 and Analytical Model (6 Story-Mixed Structure Example2) 
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Figure 5.35 Comparisons of Slope along Height at Story Levels as Determined by    

SAP2000 and Analytical Model (8 Story-Mixed Structure Example2) 
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Figure 5.36 Comparisons of Slope along Height at Story Levels as Determined by    

SAP2000 and Analytical Model (10 Story-Mixed Structure Example2) 
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Figure 5.37 Comparisons of Slope along Height at Story Levels as Determined by    

SAP2000 and Analytical Model (15 Story-Mixed Structure Example2) 
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Figure 5.38 Comparisons of Slope along Height at Story Levels as Determined by    

SAP2000 and Analytical Model (20 Story-Mixed Structure Example2) 
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 Figure 5.39 Comparisons of Story Drifts as Determined by SAP2000 and Analytical 

Model (for 2 Story-Mixed Structure Example2) 

 

COMPARISON OF STORY DRIFTS
4-STORY BUILDING

0

1

2

3

4

0 0.2 0.4 0.6 0.8 1

STORY DRIFT(mm)

# 
O

F 
ST

O
R

Y

SAP2000
ANALYTIC

  
Figure 5.40 Comparisons of Story Drifts as Determined by SAP2000 and Analytical 

Model (for 4 Story-Mixed Structure Example2) 
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Figure 5.41 Comparisons of Story Drifts as Determined by SAP2000 and Analytical 

Model (for 6 Story-Mixed Structure Example2) 
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 Figure 5.42 Comparisons of Story Drifts as Determined by SAP2000 and Analytical 

Model (for 8 Story-Mixed Structure Example2) 
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Figure 5.43 Comparisons of Story Drifts as Determined by SAP2000 and Analytical 

Model (for 10 Story-Mixed Structure Example2) 
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Figure 5.44 Comparisons of Story Drifts as Determined by SAP2000 and Analytical 

Model (for 15 Story-Mixed Structure Example2) 
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Figure 5.45 Comparisons of Story Drifts as Determined by SAP2000 and Analytical 

Model (for 20 Story-Mixed Structure Example2) 
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CHAPTER 6 
 

DEVELOPING SEISMIC DESIGN CRITERIA FOR STRENGTH, 

STIFFNESS AND DUCTILITY DEMAND OF TALL BUILDINGS 
 

 

6.1 SATISFYING THE DESIGN CRITERIA FOR STRENGTH DEMAND 

 

6.1.1 General 

 

For ground shaking of large intensity, some repairable damage to contents and 

the structure may be accepted. Therefore a damage control limit state may be 

defined, which marks the boundary between economically repairable minor damage 

and damage that is perhaps not worth repairing. The intensity of ground shaking 

associated with this limit state should have a low probability of occurrence during the 

expected life of the building. Here, the most important relevant property is strength 

developed when the elastic limit is attained or slightly exceeded [74]. 

     

6.1.2 Design Strategy for Determining the Necessary Amount of Shear Walls 

to Meet the Strength Demand (“Dual System” Concept) 

 

What is the correct amount of shear walls to be used, necessary to make a 

building earthquake resistant? In order to answer this question, the following design 

strategy will be adopted. 

i. The total design base shear must be resisted by shear walls. 

ii. Because seismic action occurs in all directions, equal amounts of shear walls 

must be placed in both orthogonal directions of the structure. 
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iii. The moment resisting frame elements, which are beams and columns, must 

independently be able to resist 25 % of the total design base shear. 

The Uniform Building Code (UBC, 1999) [61] defines the structure that 

possesses the above mentioned properties as the “dual system”.  

 

6.1.3 Determination of the Total Design Base Shear 

 

The total design base shear, Vt, can be determined by using the acceleration 

response spectrum as defined the same as in both UBC (1999) [61] & Turkish 

Earthquake Code (1997) [1] and shown in Fig.2.1 & Fig.2.2, respectively. 

 

 
 

Figure 6.1 Acceleration Response Spectrum (UBC, 1999) 

 
 

 

 

S (T) 

2.5 

S (T) = 2.5 (TB / T )0.8
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T TBTA  

Figure 6.2 Acceleration Response Spectrum (Turkish Earthquake Code, 1997) 
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A study of the acceleration response spectrum reveals that the effective ground 

acceleration is magnified by a factor of 2.5, for natural periods of 0.2 – 1.0 seconds 

that are most typical of building structures commonly employed in practice. Based 

on this observation, the total design base shear, Vt , can be determined by Eqn.6.1. 

 

Vt = S(T). (A0). (I). (W) / R           UBC-99 and Turkish Code-97                (6.1) 

 

where 

S(T) = spectrum coefficient, which is the ratio of spectral acceleration to effective 

peak ground acceleration, its maximum value being 2.5 

A0 = effective ground acceleration coefficient 

I = building importance factor 

W = total weight of the building, as expressed by Eqn.6.2, where Ap is the area of the 

floor plan 

R = seismic force reduction factor (structural behavior factor) 

n = number of stories 

 

pi

n

1i
iAwW ∑

=

=                                                                                                 (6.2) 

 

Assuming an average value of wi (kN/m2), which is accepted as the same for 

each story and considering n-stories high, the total design base shear of Eqn.6.1 

becomes as expressed in Eqn.6.3. 

 

Vt = (2.5)(A0)(I)(wi.n.Ap) / R    (kN)   UBC-99 and Turkish Code-97          (6.3) 

 

6.1.4 Determination of  Shear Strength of Total Shear Walls 

 

A lower-bound assessment of the shear strength of the total number of shear 

walls in one orthogonal direction of the building floor plan can be done according to 
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Uniform Building Code (1999) & Turkish Earthquake Code (1997) as expressed in 

Eqn.6.4 a & Eqn.6.4 b, respectively. 

 

3
ysh

ı
cchr )x10fρf(0.166AφV += ∑             UBC-99                               (6.4 a) 

3
ydshctdchr )x10fρ(0.65fAV += ∑                  Turkish Code-97                 (6.4 b) 

 

Considering for C20 / S420 materials, fc’=20 MPa, fctd=1 MPa, fy=420 MPa, 

fyd=365 MPa and ρsh=0.0025, Ф=0.7, Eqn.6.5 a & Eqn.6.5 b are obtained, 

respectively. 

 

∑= ch
3

r A1.25x10V                  (kN)        UBC-99                                    (6.5 a) 

∑= ch
3

r A1.56x10V                  (kN)        Turkish Code-97                      (6.5 b) 

 

6.1.5 Determining the Ratio of Total Shear Wall Area to Floor Plan Area 

 

Equating the total design base shear (Vt) to the total shear resistance (Vr) 

provided by all shear walls in one direction, the ratio of the total area of shear walls 

to the area of the floor plan can be obtained as expressed in Eqn.6.6 a & Eqn.6.6 b, 

respectively. 

 

)/R)(I)(n.w0.002.(A
A
A

i0
p

ch =∑                     UBC-99                               (6.6 a) 

)/R)(I)(n.w0.0016.(A
A
A

i0
p

ch =∑                   Proposed Method                (6.6 b) 

 

Assuming typical values of A0=0.4, I=1.0, wi=7 kN/m2 and R=7, the ratio in 

Eqn.6.6 a & Eqn.6.6 b can be expressed in a tabular form as a function of the number 

of stories, as shown in Table 6.1. 
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It can be easily seen from Table 6.1 that about 1 % of shear wall area will resist 

the total design base shear for a building that is 15-stories high according to both 

UBC-99 and proposed method based on the above assumed typical values of A0, I, wi 

and R.  

 

Table 6.1 Ratio of Total Shear Wall Area to Floor Plan Area 

 

Number of  

Stories (n) 
99)(UBC)

A
A

(
p

ch −∑ Method) (Proposed     )
A
A

(
p

ch∑

2 0.0016 0.00128 

4 0.0032 0.00256 

6 0.0048 0.00384 

8 0.0064 0.00512 

10 0.008 0.0064 

15 0.012 0.0096 

20 0.016 0.0128 

 

Note that Table 6.1 was obtained assuming the typical values of A0=0.4, I=1.0, 

wi=7 kN/m2 and R=7 in Eqn.6.6 a & Eqn.6.6 b. These ratios of total shear wall area 

to floor plan area change depending on the values of A0, I, wi and R used in design. 

On the other hand, the amount of total wall area is used as the unfavorable of 

the following expressions in current practical applications in Turkey.  

Σ Ach = 0.02 x Ap              

Σ Ach = 0.0025 x Σ Ap    

where 

Ap = Area of the floor plan                                                                                      

It should be noted that the proposed ratio of total shear wall area to floor plan 

area is too low to attract attention when compared to the ratio that is currently used in 

practice in Turkey. While the proposed ratio is almost one tenth of the ratio used in 

practice for a 4-story building, it is nearly the half of the currently used ratio for a 15-

story building. So it is worth to use the proposed ratios in design practices. 
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6.2 SATISFYING THE DESIGN CRITERIA FOR STIFFNESS DEMAND  

 

6.2.1 General 

 

Relatively frequent earthquakes inducing comparatively minor intensity of 

ground shaking should not interfere with functionality. This means that no damage to 

the building and its content needing repair should occur. To achieve this aim, 

displacements must be limited and resistance provided while the structure remains 

essentially elastic. The controlling property for this serviceability limit state is 

stiffness. Because the principles of the analysis of elastic systems are well 

established, no further attention is given here to this feature [74]. 

 

6.2.2 Determination of  Stiffness of Total Shear Walls 

 

Using Eqn.6.6 a & Eqn.6.6 b and assuming lw=3.0m and bw=0.25m of shear 

walls, the minimum value of total stiffness of all shear walls (Kmin) that is calculated 

by considering the most unfavourable placement of shear walls on the floor plan  

may be expressed as in Eqn.6.7 a & Eqn.6.7 b, respectively.  

 

Kmin= 45 000. (A0). (I). (Ap). (n.wi) / R     (kN.m2)    UBC-99                   (6.7 a) 

Kmin= 37 500. (A0). (I). (Ap). (n.wi) / R     (kN.m2)    Proposed Method     (6.7 b) 

 

6.2.3 Satisfying the Maximum Relative Story Drift Requirement 

 

Using the minimum amount of shear walls obtained from strength requirement 

of Vr = Vt and  the minimum value of total stiffness of all shear walls (Kmin) 

expressed as in Eqn.6.7 a & Eqn.6.7 b, stiffness requirement was found to be 

automatically satisfied up to 9 story-building. After that the minimum stiffness of 

total shear walls (Kmin) given in Eqn.6.7 a & Eqn.6.7 b must be increased by a factor 

of α (the multiplier of Kmin, which is calculated by assuming lw=3.0m and 

bw=0.25m), which is shown graphically in Figure 6.6.  
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The value of α was determined by comparing the graph of slope versus number 

of stories and Code [1] requirement as shown Figure 6.3, Figure 6.4 & Figure 6.5. 

Slope along height at story levels was calculated by dividing the story drift between 

the mid heights of two consecutive stories to the story height. In other words, relative 

story drift between the mid heights of two consecutive stories was considered as the 

slope along height at story levels in this study. According to Turkish Earthquake 

Code [1], the maximum value of storey drifts within a story, (∆i) max, calculated for 

columns and structural walls of the i’th storey of a building for each earthquake 

direction shall satisfy the unfavorable one of the following conditions. 

(∆i)max / hi ≤ 0.0035                                                                                      

(∆i)max / hi ≤ 0.02 / R                                                                                    

Since R=7 is used for buildings in which seismic loads are jointly resisted by 

frames & solid and/or coupled structural walls, the unfavorable condition becomes 

0.02 / R = 0.02 / 7 = 0.00286 

The orientation of shear walls to be used in the structure is not important in 

satisfying that their total stiffness must be greater than α.Kmin. Under all 

circumferences, total stiffness of all shear walls becomes greater than the required 

minimum stiffness (Kmin) and hence the maximum relative story drift requirement is 

automatically satisfied. For the 3-D buildings tested, it was observed that the 

maximum relative story drift requirement was always satisfied as long as the 

minimum amount of shear walls obtained from strength requirement was provided 

regardless of the orientation of shear walls. In other words, total stiffness of shear 

walls placed on typical floor plan become always greater than the Kmin value given in 

Eqn.6.7 a & Eqn.6.7 b that must be increased by a factor of α defined as in Figure 6.6 

for the buildings having more than 9 stories with wi=7 kN/m2. 

As a summary, Kmin value given in Eqn.6.7 a & Eqn.6.7 b will be enough to 

satisfy the stiffness requirement (i.e. drift control) for the buildings having up to 9 

stories with wi=7 kN/m2. On the other hand, Kmin value must be increased by a factor 

of α defined as in Figure 6.6 to satisfy the stiffness requirement (i.e. drift control) for 

the buildings having more than 9 stories with wi=7 kN/m2. 
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SLOPE EVALUATION FOR 10 STORY-BUILDING
IN ORDER TO FIND (α) MULTIPLIER
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Figure 6.3 Determination of α to Satisfy the Stiffness Requirement for wi=7 kN/m2 

(for 10 Story-Building) 

 

SLOPE EVALUATION FOR 15 STORY-BUILDING
IN ORDER TO FIND (α) MULTIPLIER
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Figure 6.4 Determination of α to Satisfy the Stiffness Requirement for wi=7 kN/m2

(for 15 Story-Building) 
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SLOPE EVALUATION FOR 20 STORY-BUILDING
IN ORDER TO FIND (α) MULTIPLIER
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Figure 6.5 Determination of α to Satisfy the Stiffness Requirement for wi=7 kN/m2

(for 20 Story-Building) 

 

Variation of alpha (α) to satisfy 
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Figure 6.6 Variation of α to Satisfy the Stiffness Requirement for wi=7 kN/m2
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If wi was taken as 10 kN/m2 in the studied example, then the variation of α 

would be as in Figure 6.7. 
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cular case, α can easily be figured out by using the executable 

rogram developed, which is shown in Figure 6.8. 

he amount of total shear wall (ΣAch) is determined by using the 

.  

)/R)(I)(n.w016.(A i0      

ming bw=0.25m of shear walls, total length of shear walls to be 

 y directions (Σ lw) is calculated. For the worst situation that may 

=3.0m of rectangular shear walls are assumed to be placed mostly 
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on the symmetry axis of building so that (A.d2) term will not make any contribution 

to both K and K0 values. Then total number of shear walls to be used in both 

directions can easily be calculated by (Σ lw) / 3. Hence the total stiffness of all shear 

walls (K) and the flexural rigidity (K0), which is due to the most exterior columns 

only & the shear walls that is not placed on the symmetry axis of building, can be 

calculated easily as well as the shear rigidity (GA) of all columns.   

Finally, all known values of H (height of the building), p (top intensity of 

uniformly distributed lateral triangular load), K (total stiffness of all shear walls), K0 

(flexural rigidity of building in horizontal plane) and GA (shear rigidity of all 

columns) are entered into blank spaces provided in the executable “Borland Delphi” 

program developed, which is shown in Figure 6.8. By looking at the maximum 

relative story drift value, the value of α that is the multiplier of K can be obtained 

easily by increasing only the K value until any valid Earthquake Code requirement of 

relative story drift is satisfied.  

 

 
 

Figure 6.8 Executable “Borland Delphi” Program to Determine α in General 
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6.2.5 Determination of the Sway Criterion Mentioned in TS 500 (Stability 

Index Evaluation) [5]                 

 

If shear walls or similar members exist in a structural system providing 

adequate stiffness against horizontal forces, sway can be assumed to be prevented. If 

the column end moments obtained from a second-order analysis, which is based on 

linear material behavior assumption, differ at the most by 5 percent from column end 

moments obtained from a first order analysis, sway can also be assumed to be 

prevented. 

If a second order analysis is not carried out, for cases where the stability index 

of any story, calculated by considering the whole structural system, does not exceed 

the limit given below, it can be assumed that adequate stiffness exists in that story 

and sway is prevented. The stability index is expressed as in Eqn.6.8 in TS 500. 

0.05
V

l
N

1.5∆φ
fi

i

di

i ≤=
∑

                                                                                (6.8) 

where 

Ф= Stability index 

∆i= Drift at ith story 

Ndi= Axial design load 

li= ith story column length, measured from axis to axis 

Vfi= Total shear force at ith story 

The value to be used in En.6.8 should be calculated using uncracked sections 

and the most critical of the following load combinations: 

Fd= 1.0G + 1.0Q + 1.0E  or  Fd= 1.0G + 1.3Q + 1.3W 

where 

G= Permanent load effect (dead load effect) 

Q= Live load effect 

E= Seismic load effect 

W= Wind effect 

 170



The required drift (∆i) to be used in Eqn.6.8 can be calculated easily by the 

analytical method presented. Therefore, it becomes very easy to check whether a 

structure is sway prevented or not without three-dimensional computer modeling. 

 

6.2.6 Limitation of Second Order Effects According to Turkish Earthquake 

Code [1]    

             

Unless a more refined analysis considering the nonlinear behavior of structural 

system is performed, second order effects may be taken into account according to the 

following equation given in Turkish Earthquake Code [1]. 

 

      0.12
.hV

w.)(∆
θ

ii

N

1j
jorti

i ≤=
∑
=   

 

In the cases where second order effect indicator, θ i, satisfies the condition       

given by the above equation for the earthquake direction considered at each storey, 

second order effects shall be evaluated in accordance with currently enforced 

specifications of reinforced concrete design. Here (∆i)ort shall be determined as the 

average value of story drifts calculated for i’th storey columns and structural walls.  

In the case where the condition given by the above equation is not satisfied, 

seismic analysis shall be repeated by sufficiently increasing the stiffness of the 

structural system. 

The required average drift (∆i)ort to be used in the above equation of second 

order effect indicator can be calculated easily by using the analytical method 

presented. Therefore, it becomes very easy to check whether the second order effects 

shall be taken into account or not without three-dimensional computer modeling.  
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6.3 SATISFYING THE DESIGN CRITERIA FOR DUCTILITY DEMAND  

 

6.3.1 General 

 

Significant damage during very large earthquakes, perhaps beyond repair, must 

be expected. However, design and construction must ensure that collapse resulting in 

loss of life will not occur. Therefore the designer must concentrate on structural 

qualities which will ensure that for the expected duration of an earthquake, relatively 

large displacements can be accommodated without significant loss of lateral force 

resistance, and that the integrity of the structure to support gravity loads is 

maintained. The most important property associated with this survival limit state is 

ductility, that is, tolerance for large inelastic deformations without significant loss of 

resistance. The exploitation of this property is a relatively recent feature in the 

evolution of structural engineering [74].     

 

6.3.2 Satisfying the Ductility Demand 

 

Under the total acting design base shear, it is expected that plastic hinges form 

at the base of shear walls. During the formation of plastic hinges it is further required 

that the structure behave ductile. 

Ductility is a qualitative term, and it needs to be quantified. To quantify 

ductility, the commonly accepted measure is the displacement ductility ratio, µ∆, as 

given in Eqn.6.9. 

y

u
∆ ∆

∆
µ =                                                                                                         (6.9) 

where 

∆u = displacement at the top of the structure at ultimate stage 

∆y = displacement at the top of the structure at initiation of yielding at the base of 

shear wall 
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In practice, µ∆ = 4-5 is considered to provide enough ductility. At ultimate 

stage, plastic hinges form at beam ends, in addition to hinges at the base of shear 

walls. 

However, the above criterion necessitates the calculation of top sway of a 

reinforced concrete structure, which is rather tedious and uncertain. It is mush easier 

to calculate the cross-sectional curvature, as commonly expressed by the axial load-

moment-curvature relationship (N-M-Ф). Therefore, it will be most convenient if an 

expression could be developed to relate displacement ductility ratio, µ∆, to the 

curvature ductility ratio, µФ, as shown in Figure6.9. 

 

 

p 

 

Figure 6.9 Relating the Top Sway of Building to the Cross-Sectional Curvature of   

Shear Wall [2] 
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Consider a shear wall - frame structure where a plastic hinge of height           

lp= 0.2lw+0.044Hw has formed at the base of the shear wall, as shown in Figure 6.9. 

The sway at the top of the structure can be calculated at the time of initiation of 

yielding and concrete crushing as ∆y and ∆u, respectively, as expressed in Eqn.6.10 

and Eqn.6.11. Consequently, displacement ductility can be readily calculated, as 

given in Eqn.6.12. 
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From Eqn.6.12, the curvature ductility ratio, µФ, can be readily solved for, as 

expressed in Eqn.6.13. 
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The displacement ductility ratio, µ∆, is thus expressed in terms of the more 

familiar curvature ductility ratio, µФ, which only depends on cross-sectional 

properties of the shear wall and the axial load on it.  

 

6.3.3 Designing the Ductile Reinforced Concrete Structures 

 

A design strategy and its application were outlined for reinforced concrete 

buildings in which earthquake resistance was provided by ductile frames, by ductile 

shear walls or by the interactive combined actions of these two systems. The design 

strategy described in this study evolved from the following fundamental principles 

[74]:  

1) In the content of the state of the art in structural engineering, current 

predictions of the probable characteristics of large earthquake-generated ground 

motions are crude. Under these circumstances an aim to achieve a degree of 

precision in analytical techniques, comparable to those developed for structures to 

satisfy serviceability and “hypothetical” ultimate limit states, to predict both 

earthquake-induced actions and deformations within the structure, is not justified. 

2) Provided that a reasonable level of resistance to lateral forces, such as 

prescribed for various seismic regions by relevant national building codes, is chosen, 

errors arising from crude estimations of the characteristics of ground motions will 

manifest themselves only in erroneous predictions of earthquake-imposed 

displacements, that is ductility demands. Thus deformation capacity is the most 

important structural property in areas of high seismic risk. 

3) Types and locations of energy dissipation mechanisms need to be chosen as 

part of the capacity design procedure, in which a unique hierarchy of strength is 
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established. All weak and necessarily ductile links must satisfy requirements of the 

stipulated level of lateral force resistance. The distribution of minimum strengths 

throughout a ductile structure, both horizontally and vertically, may be based on a 

simple analysis of elastic systems with subsequent redistribution of design actions, 

sometimes quite significant, from less to more desirable locations. In such an 

inelastic system the maximum resistance that may be developed during a major 

earthquake can be predicted with a relatively high degree of precision. However, 

ductility demands during an earthquake, being dependent on ground motions, may 

differ from those anticipated or assumed in building codes. 

4) As a general rule, rationally-detailed structures can be made very ductile 

with relative ease and little if any additional cost. Thereby a considerable reserve in 

inelastic deformations, that is ductility capacity, can be imparted to structural 

systems. Detailing of reinforced concrete structures, very often considered a 

subordinate, depreciated drafting activity with apparent lack in intellectual appeal, 

deserves at least as much attention as the analytical work used to estimate design 

actions. Faults in detailing are the first that will be revealed during earthquakes. They 

are predominant causes of structural distress. The detailing of potential plastic 

regions is partly an art. It relies on feel for and understanding of the natural 

disposition of internal forces and often invites innovations. Judiciously-detailed 

ductile systems will be tolerant with respect to imposed seismic displacements, a 

valuable feature of structural response, which will compensate for the crudeness in 

predicting magnitudes of such displacements. 

5) Various steps in the description in previous sections of the design procedure 

were intended to emphasize the designer’s determination to simply “tell the structure 

what to do”. It is in this respect that the design strategy is deterministic. It inhibits the 

activation of mechanisms other than those chosen. The numerous detailed 

recommendations presented were intended to manifest unambiguously the goodness 

of detailing. Thereby reinforced concrete buildings can be made very tolerant to a 

wide range of ductility demands. Hence they can be expected with confidence to 

perform “as they were told to do”.      
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6.3.4 Designing the Ductile Shear Walls  

  

Under the light of above mentioned fundamental principles, the following steps 

should be followed for the design of the ductile shear walls. 

i. The seismic demand on each shear wall should be determined by a proper 

structural analysis. 

ii. The minimum amount of reinforcement (ρsh=0.0025) should be uniformly 

distributed in the cross section. The end zone details should also be carefully applied, 

as dictated by the valid seismic code. 

iii. The (N-M-Ф) relationship should be developed, as commonly done by an 

available computer program. The developed (N-M-Ф) relationship will give the yield 

curvature, Фy and the ultimate curvature, Фu. Thus the curvature ductility ratio, µФ, 

can be readily calculated as µФ= Фu / Фy. 

iv. The curvature ductility demand, µФ, corresponding to the displacement 

ductility demand of µ∆ = 4 – 5 can be easily calculated. 

v. The supplied µФ as obtained from the (N-M-Ф) relationship must be greater 

than demanded; otherwise the cross-section must be revised. 

 

6.3.5 Relationship between Curvature Ductility (µΦ) and Displacement 

Ductility (µ∆) for Structural Systems Comprised of Walls and Fames 

 

The equation of curvature along the height of mixed structures (i.e. along the 

height of shear wall) was developed as given in Eqn.6.14. 
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Figure 6.10 Relating the Top Sway of Building to the Cross-Sectional Curvature of   

Shear Wall for Mixed Systems 

 

The sway at the top of the structure can be calculated at the time of initiation of 

yielding, ∆y, and concrete crushing, ∆u, as expressed in Eqn.6.15 and Eqn.6.16, 

respectively.  

60
4b)k(5ah)h)(3H)(H5(φ

∆
2

wwy
y

+−+−
=                                               (6.15) 

 

)0.5l)(H)(lφ(φ∆∆ pwpyuyu −−+=                                                           (6.16) 

 

Consequently, displacement ductility can be readily calculated, as given in 

Eqn.6.17. 
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From Eqn.6.17, the curvature ductility ratio, µФ, can be readily solved for, as 

expressed in Eqn.6.18. 
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In case of a = b = h / 2, displacement ductility (µ∆) and curvature ductility (µΦ) 

can be expressed as in Eqn.6.19 & Eqn.6.20, respectively. 
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The curvature distribution along the height of mixed structures may sometimes 

be as in Figure 6.11. This generally happens in high rise buildings. 

 

                 
 

Figure 6.11 Relating the Top Sway of Building to the Cross-Sectional Curvature of 

Shear Wall (The Most General Case) 

 

In the case given in Figure 6.11, the sway at the top of the structure can be 

calculated at the time of initiation of yielding, ∆y, and concrete crushing, ∆u, as 

expressed in Eqn.6.21 and Eqn.6.22, respectively.  
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Consequently, displacement ductility can be readily calculated, as given in 

Eqn.6.23. 
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From Eqn.6.23, the curvature ductility ratio, µФ, can be readily solved for, as 

expressed in Eqn.6.24. 
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6.4 DETERMINING THE MOMENT, SHEAR AND LOADING EQUATIONS 

 

The equation of curvature along the height of mixed structures (i.e. along the 

height of shear wall), multiplied by K multiplier, was developed as given in 

Eqn.6.25. 
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Moment equation can easily be obtained by multiplying the curvature with EI 

as given in Eqn.6.26 and so Eqn.6.27 is attained. 

 
M(x) = -EI . y ıı (x)                                                                                       (6.26) 

 179



.x]
.Hv
.ps)

6.H
x

2.H
x

3.H
1(

.)pH
v
1(1.sinhφA.coshφ[A

K
EIM(x)

2

2

5

3

32

4
221

−+−

−++−=
                                   (6.27) 

 
Moment distribution profile along the height of shear wall, which is the same as 

curvature distribution, is shown in Figure 6.12. 
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Figure 6.12 Moment Distribution Profile along Height of Shear Wall  

 

Shear equation can then be readily obtained by differentiating the moment 

equation with respect to x as expressed in Eqn.6.28 and so Eqn.6.29 is attained.  

 
V(x) = -M’(x) = EI . y ııı (x)                                                                          (6.28) 
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Shear distribution profile along the height of shear wall is shown in Figure6.13. 
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Figure 6.13 Shear Distribution Profile along Height of Shear Wall  

 

Force equation (i.e. equation of load coming to shear wall) can then be readily 

obtained by differentiating the shear equation with respect to x as expressed in 

Eqn.6.30 and so Eqn.6.31 is attained. 

 
P(x) = -V’(x) = -EI . y ıv (x)                                                                          (6.30) 
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If the equation of load coming to shear wall obtained in Eqn.6.31 is plotted 

graphically, the load distribution profile on the shear wall is found to be varying as 

shown in Figure 6.14 and Figure 6.15. 
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Figure 6.15 Load Distribution Profile (Type 2) along Height of Shear Wall  

 

Letting the bottom intensity of the distributed load of P(x) as “a”, the top 

intensity as “b”, the intensity at the vertex of parabola as “c” and the height of vertex 

from the bottom of the shear wall as “d”, the exact value of moment arm ( x ) of the 

distributed load measured from the bottom of the shear wall shown for the case in 

Figure 6.15 can be expressed as in Eqn.6.33. 
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Moment, shear and loading profiles of shear walls can be obtained easily by 

using the executable Borland Delphi programs, shown in Figure 6.16 and Figure 

6.17, written for both lateral distributed triangular load and lateral concentrated load 

at the top of structure. After entering the known parameters into blank boxes, the 

program automatically plots the distribution profiles by clicking the “Graphs” button. 
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Figure 6.16 Borland Delphi Program Written for Lateral Distributed Triangular 

Load to Obtain Moment, Shear and Loading Profiles 

 

 
 

Figure 6.17 Borland Delphi Program Written for Lateral Concentrated Load at the 

Top of Structure to Obtain Moment, Shear and Loading Profiles  
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CHAPTER 7 

 

IMPLEMENTATION OF THE PROPOSED METHOD 
 

 

7.1 DESCRIPTION OF THE IMPLEMENTATION EXAMPLE  

 
  

The implementation was performed on a 10 story 3-D building having a typical 

floor plan as shown in Figure 7.1. 

  

      5m 

y       5m 

      3m 
x 

      3m 

      5m 

      5m 

    10x5=50m

All columns          : 600x600 mm 
All beams             : 250x450 mm 
Slab thickness      : 120 mm 
All storey heights : 3 m 
g (additional)        : 2.0 kN/m2

                          q (additional)        : 3.5 kN/m2 

 

Figure 7.1 Typical Floor Plan of the 3-D Building Studied 
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7.2 SATISFYING THE DESIGN CRITERIA FOR STRENGTH DEMAND 
 

Total design base shear can be calculated by using Eqn.7.1 given in Turkish 

Earthquake Code (1997). 

Vt = S(T). (A0). (I). (W) / R                                                                            (7.1)    

where 

S(T) = spectrum coefficient, which is the ratio of spectral acceleration to effective 

peak ground acceleration, its maximum value being 2.5 

A0 = effective ground acceleration coefficient 

I = building importance factor 

W = total weight of the building, as expressed by Eqn.7.2, where Ap is the area of the 

floor plan 

R = seismic force reduction factor (structural behavior factor) 

n = number of stories 

pi

n

1i
iAwW ∑

=

=                                                                                                 (7.2) 

Assuming an average value of wi (kN/m2), which is accepted as the same for 

each story and considering n-stories high, the total design base shear of Eqn.7.1 

becomes as expressed in Eqn.7.3. 

Vt = (2.5)(A0)(I)(wi.n.Ap) / R         (kN)                                                         (7.3) 

A lower-bound assessment of the shear strength of the total number of shear 

walls in one orthogonal direction of the building floor plan can be done according to 

Turkish Earthquake Code (1997) as expressed in Eqn.7.4. 
3

ydshctdchr )x10fρ(0.65fAV += ∑                                                                 (7.4) 

Considering for C20 / S420 materials, fc’=20 MPa, fctd=1 MPa, fy=420 MPa, 

fyd=365 MPa and ρsh=0.0025, Eqn.7.5 is obtained. 

∑= ch
3

r A1.56x10V               (kN)                                                               (7.5) 

Equating the total design base shear (Vt) to the total shear resistance (Vr) 

provided by all shear walls in one direction, the ratio of the total area of shear walls 

to the area of the floor plan can be obtained as expressed in Eqn.7.6. 
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Assuming typical values of A0=0.4, I=1.0, wi=7 kN/m2 and R=7, the ratio in 

Eqn.7.6 can be calculated easily for the 10 story 3-D building studied as expressed in 

Eqn.7.7. 

0.0064 7 / x7)4)(1.0)(100.0016.(0.
A
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7.3 SATISFYING THE DESIGN CRITERIA FOR STIFFNESS DEMAND 
 

The necessary amount of stiffness of all shear walls (Kmin) that can be treated as 

the stiffness of the building to satisfy stiffness criteria can be calculated easily by 

using Eqn.7.8. This K value was calculated by assuming lw=3.0m and bw=0.25m. 

Kmin= 37 500. (A0). (I). (Ap). (n.wi) / R      (kN.m2)                                       (7.8) 

Substituting the known values of A0=0.4, I=1.0, Ap= 50x26 =1 300 m2, n=10, 

wi=7 kN/m2 and R=7, the total stiffness of shear walls can be found as below. 

Kmin= 37 500.(0.4).(1.0).(1 300).(10x7) / 7 = 195 000 000 kN.m2  

We have to provide the necessary amount of shear walls obtained from strength 

requirement so that total stiffness of shear walls must be greater than α.Kmin where α 

is 1.2 for 10 story building obtained from Figure 7.2. 

Therefore necessary amount of shear walls, whose total stiffness is greater than 

1.2K = 1.2(195 000 000 kN.m2) = 234 000 000 kN.m2, must be provided so that drift 

control (i.e. stiffness criteria) is satisfied. 
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ariation of α to Satisfy the Stiffness Requirement for wi=7 kN/m2

 

 the ratio of the total area of shear walls to the area of the floor plan 

n.7.7 as expressed below. 

0.0064  

00 m2

otal area of shear walls to be used can be calculated easily as below. 

064(1 300)= 8.32 m2

 0.25m of shear walls, minimum length of shear walls to be used in 

will be  

2 / 0.25= 33.28 m 

-D building studied, shear walls can be placed on the floor plan as 

re 7.3. As it can be seen that the total length of shear walls in x-

 while the total length of shear walls in y-direction is 38m. 
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Figure 7.3 Arrangements of Shear Walls for the 3-D Building Studied 

 

The total stiffness of all shear walls along x-direction can be calculated as 

below. 
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The total stiffness of all shear walls along y-direction can be calculated as 

below. 
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 As it is seen that both Kx and Ky are greater than 1.2K= 234 000 000 kN.m2, 

which is the minimum required value of stiffness in order to satisfy the stiffness 

criteria (i.e. drift control).  

 

i. Analysis along y-direction 
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K0= 28 500 000.[9(0.6)(0.6)(13)2]x2 = 31 210 920 000 kN.m2 (due to the most 

exterior columns only)  

K0= 28 500 000.[4(0.25)(5)(8)2 + 4(0.25)(5)(10.5)2] = 24 830 625 000 kN.m2 

(due to the shear walls) 

Therefore the total K0 will be the summation of both K0 values. 

Σ K0= 56 041 545 000 kN.m2 

The equivalent Shear Stiffness (GA) of the building along y-direction can 

easily be calculated by using the executable “Borland Delphi” program written. Then 

GA= 10x71 490 + 16x90 090 + 2x106 750 + 18x39 150= 3 074 540 kN  

Now, it is time to check whether the maximum relative story drift is less than 

the allowable limit mentioned in Turkish Earthquake Code (1997). 

Relative story drift is calculated by the equation defined in Turkish Earthquake 

Code (1997) as expressed in Eqn.7.9. 

∆i = di – di-1 (Story Drift) 

i

1ii

i

i

h
dd

h
∆ −−

=  (Relative Story Drift)                                                            (7.9) 

The maximum value of storey drifts within a story, (∆i)max, calculated for 

columns and structural walls of the i’th storey of a building for each earthquake 

direction shall satisfy the unfavorable one of the following conditions given by 

Eqns.7.10 a & b. 

(∆i)max / hi ≤ 0.0035                                                                                    (7.10 a) 

(∆i)max / hi ≤ 0.02 / R                                                                                  (7.10 b) 

In the cases where the conditions specified by Eqns.7.10 a & b are not satisfied 

at any storey, the earthquake analysis shall be repeated by increasing the stiffness of 

the structural system. 

Since R was taken as 7 in the example studied, the unfavorable one of the 

above mentioned conditions is 0.02 / R= 0.02 / 7= 0.00286 

Hence the maximum story drift should not exceed 0.00286 in order to satisfy 

the stiffness requirement.  
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Analytical method can be used to find the maximum relative story drift. No 

need to use a computer program for this purpose. This is an advantageous feature of 

the analytical method proposed. 

The equation of lateral displacement factored by K multiplier can be written as 

expressed in Eqn.7.11. 
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K=681 625 000 kN.m2, K0=56 041 545 000 kN.m2, H=30m, p=866.7 kN/m,      

GA=3 074 540 kN 

v2= 1 + K / K0 = 1 + 68 162 500 / 5 604 154 500 = 1.012163 

s2= K / (v2.GA) = 68 162 500 / (1.012163 x 307 454) = 219.0357 

Φ= x / s = x / 14.7998 

k= x / H = x / 30 

λ= H / s = 30 / 14.7998 = 2.027 

Substituting the known values, we get A1, A2, A3 and A4 as follows. 

A1= 14 281, A2= - 9 757, A3= 144 397 and A4= - 3 127 983 

Since everything in Eqn.7.11 is known, we can easily calculate the lateral 

displacements at each story level as well as relative story drifts. Therefore we can 

check whether the maximum relative story drift is less than the allowable limit 

mentioned in Turkish Earthquake Code (1997) [1], which is 0.00286 in the studied 

example. 
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The lateral displacements and the relative story drifts can be calculated easily 

by using the executable “Borland Delphi” program developed, which is shown in 

Figure 7.4. The analytical results along y-direction, calculated by using the 

executable “Borland Delphi” program, are tabulated in Table 7.1. 

 

 
 

Figure 7.4 Executable “Borland Delphi” Program to Calculate Lateral Sway, Slope, 

Curvature and Relative Story Drift for Mixed Structures 

 

As it is seen from Table 7.1, maximum relative story drift is 0.001560, which is 

less than the allowable value of 0.00286 mentioned in Turkish Earthquake Code [1]. 

So stiffness requirement is satisfied. 
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Table 7.1 Lateral Displacements and Relative Story Drifts along y-direction 

(Analytic Results)  

 

# of Displacement Story Drift Relative Story 
Drift 

story Analytic(mm) Analytic(mm) (Analytic) 
10 37,79 4,30 0,001433 
9 33,49 4,42 0,001473 
8 29,07 4,57 0,001523 
7 24,50 4,68 0,001560 
6 19,82 4,66 0,001553 
5 15,16 4,49 0,001497 
4 10,67 4,07 0,001357 
3 6,60 3,38 0,001127 
2 3,22 2,34 0,000780 
1 0,88 0,88 0,000293 
  max=4,68 max=0,001560 

 

If the analysis was done by using SAP2000, the lateral displacements and the 

relative story drifts would become as tabulated in Table 7.2. 

 

Table 7.2 Lateral Displacements and Relative Story Drifts along y-direction 

(SAP2000 Results)  

 

# of Displacement Story Drift Relative Story 
Drift 

story SAP2000(mm) SAP2000(mm) (SAP2000) 
10 36,10 3,76 0,001253 
9 32,34 3,99 0,001330 
8 28,35 4,22 0,001407 
7 24,13 4,38 0,001460 
6 19,75 4,44 0,001480 
5 15,31 4,33 0,001443 
4 10,98 4,00 0,001333 
3 6,98 3,39 0,001130 
2 3,59 2,47 0,000823 
1 1,12 1,12 0,000373 
  max=4,44 max=0,001480 
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If the analytical results are compared with SAP2000 results along y-direction, 

there is only around 5 % difference in top displacements and in the maximum 

relative story drifts, which are reasonably small and within acceptable limits. 

 

ii. Analysis along x-direction 

 

)direction -in x (kN.m 000 5 37 4 48 1

2(0.25)(10)
12
1x4(0.25)(5)

12
1000 850 2K

 2

33
x

=

⎥⎦
⎤

⎢⎣
⎡ += x

 

K0 = 28 500 000.[3(0.6)(0.6)(25)2]x2 = 38 475 000 000 kN.m2 (due to the most 

exterior columns only)  

K0 = 28 500 000.[4(0.25)(5)(25)2 + 2(0.25)(6)(20)2 + 4(0.25)(5)(12.5)2 +    

2(0.25)(10)(10)2] = 159 778 125 000 kN.m2 (due to the shear walls) 

Therefore the total K0 will be the summation of both K0 values. 

Σ K0 = 198 253 125 000 kN.m2 

The equivalent Shear Stiffness (GA) of the building along x-direction can 

easily be calculated by using the executable “Borland Delphi” program written. Then 

GA= 40x71 490 + 6x39 150= 3 094 500 kN  

Analytical method can be used to find the maximum relative story drift. No 

need to use a computer program for analysis. This is an advantageous feature of the 

analytical method proposed. 

Recalling the equation of lateral displacement factored by K multiplier, as 

expressed in Eqn.7.12. 

         

43
2

2

2

532
4

2
2

2
2

1

..
.6

..

)
120126

()11(sinhcosh)(.

AxAx
v

kps

kkkpH
v

sAsAxyK

++−

+−−++= φφ
        (7.12) 

where 

⎟
⎠
⎞

⎜
⎝
⎛ −+= λ

λ
λ

λ
sinh).1

2
(1.

cosh.
.

2

2

1 v
spA  

 194



)1
2

.(.
2

2

2 λ
λ
−−=

v
spA  

sAA .23 −=  

2
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K=1 484 375 000 kN.m2, K0=198 253 125 000 kN.m2, H=30m, p=866.7 kN/m, 

GA=3 094 500 kN 

v2= 1 + K / K0 = 1 + 148 437 500 / 19 825 312 500 = 1.007487 

s2= K / (v2.GA) = 148 437 500 / (1.007487 x 309 450) = 476.1169 

Φ= x / s = x / 21.8201 

k= x / H = x / 30 

λ= H / s = 30 / 21.8201= 1.375 

Substituting the known values, we get A1, A2, A3 and A4 as follows. 

A1= 18 032, A2= 1 634, A3= - 35 657 and A4= - 8 585 181 

Since everything in Eqn.6.34 is known, the lateral displacements at each story 

level as well as relative story drifts can be calculated. Therefore we can check 

whether the maximum relative story drift is less than the allowable limit mentioned 

in Turkish Earthquake Code (1997), which is 0.00286 in the studied example. 

The lateral displacements and the relative story drifts can be calculated easily 

by using the executable “Borland Delphi” program developed, which is shown in 

Figure 7.5. The analytical results along x-direction calculated by using the executable 

“Borland Delphi” program are tabulated in Table 7.3. 
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Figure 7.5 Executable “Borland Delphi” Program to Calculate Lateral Sway, Slope, 

Curvature and Relative Story Drift for Mixed Structures 

 

As it is seen from Table 7.3, maximum relative story drift is 0.001070 that is 

less than the allowable value of 0.00286 mentioned in Turkish Earthquake Code [1]. 

So stiffness requirement is satisfied. 

 

Table 7.3 Lateral Displacements and Relative Story Drifts along x-direction 

(Analytic Results)  

 

# of Displacement Story Drift Relative Story 
Drift 

story Analytic(mm) Analytic(mm) (Analytic) 
10 25,26 3,14 0,001047 
9 22,12 3,18 0,001060 
8 18,94 3,21 0,001070 
7 15,73 3,19 0,001063 
6 12,54 3,10 0,001033 
5 9,44 2,90 0,000967 
4 6,54 2,56 0,000853 
3 3,98 2,07 0,000690 
2 1,91 1,40 0,000467 
1 0,51 0,51 0,000170 
  max=3,21 max=0,001070 
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If the analysis was done by using SAP2000, the lateral displacements and the 

relative story drifts would become as tabulated in Table 7.4. 

 

Table 7.4 Lateral Displacements and Relative Story Drifts along x-direction 

(SAP2000 Results) 

 

# of Displacement Story Drift Relative Story 
Drift 

story SAP2000(mm) SAP2000(mm) (SAP2000) 
10 21,32 2,18 0,000727 
9 19,14 2,34 0,000780 
8 16,80 2,47 0,000823 
7 14,33 2,57 0,000857 
6 11,76 2,59 0,000863 
5 9,17 2,53 0,000843 
4 6,64 2,35 0,000783 
3 4,29 2,01 0,000670 
2 2,28 1,52 0,000507 
1 0,76 0,76 0,000253 
  max=2,59 max=0,000863 

 

If the analytical results are compared with SAP2000 results along x-direction, 

there is 18 % difference in top displacements and 24 % difference in maximum 

relative story drifts, which are within the acceptable limits. 

 

7.4 SATISFYING THE DESIGN CRITERIA FOR DUCTILITY DEMAND 
 

Total overturning moment (Mot) coming to the building in both x and y 

directions can be calculated easily as expressed in Eqn7.13. 

Mot= Vt.(2H / 3)                                                                                            (7.13) 

where 

Vt= total design base shear 

H= height of the building  

Total design base shear can be calculated by using the following equation given 

in Turkish Earthquake Code (1997). 

Vt = S(T). (A0). (I). (wi.n.Ap) / R                                                                           
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Vt = (2.5)(0.4)(1.0)(7x10x1300) / 7 = 13 000 kN  

Substituting Vt = 13 000 kN and H = 30m into Eqn.7.13, total overturning 

moment coming to the building in both x and y directions will be  

Mot= Vt.(2H / 3)= 13 000.(2x30 / 3)= 260 000 kN.m 

Each shear wall will take some portion of this moment with respect to its 

moment of inertia multiplied by the curvature value at the bottom of structure.  

The curvature diagram can be obtained easily by using the executable “Borland 

Delphi” program shown in Figure 7.6.  

The curvature distribution along the height of the structure, obtained from the 

analytical expression given in Eqn.7.14, for x direction is shown in Figure 7.7. 

The curvature distribution along the height of the structure, obtained from the 

analytical expression given in Eqn.7.14, for y direction is shown in Figure 7.8. 
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If the curvature value at the bottom of structure (i.e. at x = 0) is multiplied by 

EI of any shear wall, the moment coming to that particular shear wall can be found 

easily. Here, E is the modulus of elasticity of concrete and I is the moment of inertia 

of that particular shear wall. 
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Figure 7.6 Executable “Borland Delphi” Program to Plot the Graph of Curvature 

Distribution along Height of Structure  
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Figure 7.7 Curvature Distributions along Height of Structure in x-direction 
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Figure 7.8 Curvature Distributions along Height of Structure in y-direction 
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Figure 7.9 Arrangements of Shear Walls for the 3-D Building Studied 
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i. Analysis along y-direction 

 

The moment of inertia of lw=5m of shear walls in y-direction is  

43 m 2.6(0.25)(5)
12
1I ==  

The moment of inertia of lw=6m of shear walls in y-direction is  

43 m 4.5(0.25)(6)
12
1I ==  

Since the curvature value at the bottom of structure (i.e. at x = 0) in y direction 

is 0.000214 that is obtained from Figure 7.8, then the maximum moment taken by 

each shear wall in y-direction will be as follows. 

M (lw=5m of shear wall) = EI.y’’(x) 

                                        = (28 500 000 kN/m2).(2.6 m4).(0.000214 rad/m) 

                                        = 15 860 kN.m  (Analytic Result) 

ETABS gives 15 810 kN.m moment for the same shear wall (lw=5m of shear 

wall), which is almost the same as obtained by analytical method.  

M (lw=6m of shear wall) = EI.y’’(x) 

                                        = (28 500 000 kN/m2).(4.5 m4).(0.000214 rad/m) 

                                        = 27 450 kN.m  (Analytic Result) 

ETABS gives 25 680 kN.m moment for the same shear wall (lw=6m of shear 

wall), which is very close to the analytical result.  

The total moment taken by all shear walls in y-direction will then be  

Σ M = 4 x 15 860 + 3 x 27 450 = 145 790 kN.m  (Analytic Result) 

ETABS gives 140 280 kN.m moment taken by all shear walls in y-direction, 

which is almost the same as obtained by analytical method.    

Therefore the unbalanced moment that will be taken by the coupled axial forces 

of shear walls and columns can be calculated easily as below. 

Munbalanced = Mot – Σ M = 260 000 kN.m –145 790 kN.m  

                                     = 114 210 kN.m  (Analytic Result) 
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ETABS gives 119 720 kN.m unbalanced moment that will be taken by the 

coupled axial forces of shear walls and columns in y-direction, which is almost the 

same as obtained by analytic method. 

The axial force due to this unbalanced moment for each shear wall can be 

calculated by the following equation. 

∆N= ± M.c / I 

where 

M = Unbalanced Moment 

c = Distance from the center of gravity of shear wall to that of the structure 

I = Total A.d2 terms due to shear walls and columns 

First of all, I is calculated in y-direction by assuming A=1 for lw=5m of shear 

wall, hence A=0.288 for columns. 

I = 4 x (1)(10.5)2 + 4 x (1)(8)2 + 18 x (0.288)(13)2 + 10 x (0.288)(8)2  

     + 16 x (0.288)(3)2 = 1 799 m4

Then the axial force of lw=5m of shear wall in y-direction due to unbalanced 

moment can be calculated easily as below. 

∆N= ± M.c / I = ± 114 210.(10.5) / 1 799 = ± 670 kN  (Analytic Result) 

The axial force of lw=6m of shear wall in y-direction due to unbalanced 

moment will be zero since c = 0 for that shear wall in y-direction. 

 

ii. Analysis along x-direction 

 

The moment of inertia of lw=5m of shear walls in x-direction is  

43 m 2.6(0.25)(5)
12
1I ==  

The moment of inertia of lw=10m of shear walls in x-direction is  

43 m 20.8(0.25)(10)
12
1I ==  

Since the curvature value at the bottom of structure (i.e. at x = 0) in x direction 

is 0.0001228 that is obtained from Figure 7.7, then the maximum moment taken by 

each shear wall in x-direction will be as follows. 
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M (lw=5m of shear wall) = EI.y’’(x) 

                                        = (28 500 000 kN/m2).(2.6 m4).(0.0001228 rad/m) 

                                        = 9 100 kN.m  (Analytic Result) 

ETABS gives 10 330 kN.m moment for the same shear wall (lw=5m of shear 

wall), which is very close to the analytical result.  

M (lw=10m of shear wall) = EI.y’’(x) 

                                          = (28 500 000 kN/m2).(20.8 m4).(0.0001228 rad/m) 

                                          = 72 790 kN.m  (Analytic Result) 

ETABS gives 59 030 kN.m moment for the same shear wall (lw=10m of shear 

wall), which is reasonably close to the analytical result.  

The total moment taken by all shear walls in x-direction will then be  

Σ M = 4 x 9 100 + 2 x 72 190 = 180 780 kN.m  (Analytic Result) 

ETABS gives 159 380 kN.m moment taken by all shear walls in x-direction, 

which is reasonably close to the analytical result.   

Therefore the unbalanced moment that will be taken by the coupled axial forces 

of shear walls and columns can be calculated easily as below. 

Munbalanced = Mot - Σ M = 260 000 kN.m – 180 780 kN.m  

                                    = 79 220 kN.m  (Analytic Result) 

ETABS gives 100 620 kN.m unbalanced moment that will be taken by the 

coupled axial forces of shear walls and columns in x-direction, which is reasonably 

close to the analytical result. 

The axial force due to this unbalanced moment for each shear wall can be 

calculated by the following equation. 

∆N= ± M.c / I 

where 

M = Unbalanced Moment 

c = Distance from the center of gravity of shear wall to that of the structure 

I = Total A.d2 terms due to shear walls and columns 

First of all, I is calculated in x-direction by assuming A=1 for lw=5m of shear 

wall, hence A=0.288 for columns. 

I = 4x(1)(25)2 + 2x(1.2)(20)2 + 4x(1)(12.5)2 + 2x(2)(10)2 + 6x(0.288)(25)2                    
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     + 8x(0.288)(20)2 + 8x(0.288)(15)2 + 8x(0.288)(10)2 = 7 322 m4

Then the axial force of lw=5m of shear wall in x-direction due to unbalanced 

moment can be calculated easily as below. 

∆N= ± M.c / I = ± 79 220.(12.5) / 7 322 = ± 140 kN  (Analytic Result) 

The axial force of lw=10m of shear wall in x-direction due to unbalanced 

moment will be 

∆N= ± M.c / I = ± 79 220.(10) / 7 322 = ± 110 kN  (Analytic Result) 

 

i. Designing ductile shear wall in y-direction 

 

In this implementation example, the lw=6m of shear wall in y-direction will be 

designed in order to show that how shear walls can de designed for ductility demand. 

The design moment coming to this shear wall, Md, was found as 27 450 kN.m 

by using the analytic method.  

The design axial load coming to this shear wall will be due to only the vertical 

loads (i.e. dead loads, live loads and additional dead loads) since the axial load due to 

unbalanced earthquake moment coming to this shear wall is zero because of the 

distance from the center of gravity of shear wall to that of the structure being zero. 

The design axial load coming to this shear wall due to the vertical loads can be 

easily calculated by considering the tributary area of shear wall as below. 

Due to slab: (11x5 m2)(8.5 kN/m2)(10 stories) = 4 680 kN 

Due to beams: (22 m)(25 kN/m3)(0.25x0.45 m2)(10 stories) = 620 kN 

Due to own weight of shear wall: (0.25x6 m2)(25 kN/m3)(30 m) = 1 130 kN 

Then the total design axial force, Nd, is found as 6 430 kN by simple hand 

calculation considering the tributary area of shear wall. ETABS gives 6 270 kN of 

axial force for this shear wall, which is very close to the value found by hand 

calculation. 

Knowing the design axial load, the moment curvature diagram shown in Figure 

7.11 can be easily obtained by using RESPONSE 2000 program. The reinforcement 

provided is twice the minimum values given in Turkish Earthquake Code, being 
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0.005 for web reinforcement and 0.004 for additional end zone reinforcement. The 

RESPONSE 2000 input values are also shown in Figure 7.10. 

The axial load ratio can also be calculated as below. 

 

0.33
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=
+

=  

 
The maximum resisting moment, Mr, of the shear wall is obtained as 29 150 

kN.m, which is greater than the design moment, Md, 27 450 kN.m. Hence the 

strength requirement of design is also satisfied. 

On the other hand, the yield curvature (Φy) and the ultimate curvature (Φu) 

values are obtained as 0.6 rad/km and 6.783 rad/km, respectively. Hence the 

available curvature ductility, µΦ, can be calculated easily as below. 

µΦ= Φu / Φy = 6.783 / 0.6 = 11.3 (available) 

 

shear wall of lw=6.0m

Ahmet Tüken 2004/4/9

All dimensions in millimetres
Clear cover to reinforcement =    25 mm

Inertia (mm4) x 106

Area (mm2) x 103

yt (mm)

yb (mm)

St (mm3) x 103

Sb (mm3) x 103

1512.5

4613440.1

 3025

 3025

1525104.2

1525104.2

1718.3

5715024.5

 3025

 3025

1889396.1

1889132.5

Gross Conc. Trans (n=11.11)

Geometric Properties

Crack Spacing

Loading (N,M,V + dN,dM,dV)

2 x dist + 0.1 db /ρ

-6430 , 0.0 , 0.0  +  0.0 , 1.0 , 0.0

250

60
50

As =   312 mm2

2 layers of 
As =  1256 mm2

As =   312 mm2

As =  1256 mm2

As =   312 mm2

As =  1256 mm2

As =   312 mm2

As =  1256 mm2

As =   312 mm2

16 layers of 
As =   312 mm2

As =  1256 mm2

As =   312 mm2

As =  1256 mm2

As =   312 mm2

As =  1256 mm2

As =   312 mm2

2 layers of 
As =  1256 mm2

As =   312 mm2

Concrete

εc' = 2.00 mm/m

fc' =  13.0 MPa

a =   19 mm
ft = 1.26 MPa (auto)

Rebar

εs = 100.0 mm/m

fu =  548 MPa

fy= 365

 
 

Figure 7.10 RESPONSE 2000 Input Values for the lw=6m of Shear Wall Designed 

in y-direction  
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Figure 7.11 Moment-Curvature Diagram for the lw=6m of Shear Wall Designed      

in y-direction 

 

The equation relating the curvature ductility to displacement ductility derived 

for the case shown in Figure 7.12 is given in Eqn.7.15. 
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Figure 7.12 Relating Top Sway of Building to Cross-Sectional Curvature of Wall 
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In case of a = b = h / 2, displacement ductility (µ∆) and curvature ductility (µΦ) 

can be related as in Eqn.7.16. 
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Substituting the known values of Φy=0.0006 rad/m, µ∆=5, Hw=30m, h=12m, 

k=0.0000171 rad/m and lp= 0.2lw+0.044Hw=0.2(6m)+0.044(30m)=2.52m, required 

curvature ductility can be calculated easily as below. 

[ ]
0.0006)0.5x2.52)(012(2.52)(3

1x124x0.00001712)12)(3x300(0.0006)(31)(51µ
2

φ −
−+−−

+=  

(Required)  9.4µ φ =  

Since (µΦ)available = 11.3 > (µΦ)required = 9.4, the ductility requirement of design is 

also satisfied. 

Finally, it should be noted that the yield curvature to be used in Eqn.7.15 and 

Eqn.7.16 can also be found easily by the following expression given in the paper by 

Pauley, T [72] for rectangular shear walls. 

Φy = (λ.εy) / lw

where 

λ= Constant quantifying the influence of Φy / Φy
’ and the depth of neutral axis, k.lw, 

at the onset of yielding, which can be taken as 2 for design purposes 

εy= Yield strain of reinforcing steel, which is 0.00183 for S420 

lw= Length of shear wall 

Φy= Reference yield curvature, relevant to the idealized bilinear section response 

Φy
’= Yield curvature at the stage where nonlinearity begins at the onset of yielding of 

the bars at the extreme tension fiber 

 Φy = (2 x 0.00183) / 6 = 0.00061 rad/m = 0.61 rad/km 

It is seen that the value of 0.61 rad/km found by the expression proposed by 

Pauley is almost the same as the value of 0.6 rad/km read from Moment-Curvature 

diagram obtained by RESPONSE 2000.  
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ii. Designing ductile shear wall in x-direction 

 

In this implementation example, the lw=10m of shear wall in x-direction will be 

designed in order to show that how shear walls can de designed for ductility demand. 

The design moment coming to this shear wall, Md, was found as 72 790 kN.m 

by using the analytic method.  

The design axial load coming to this shear wall will be due to both vertical 

loads (i.e. dead loads, live loads and additional dead loads) and unbalanced 

earthquake moment coming to this shear wall. 

The design axial load coming to this shear wall due to vertical loads can be 

easily calculated by considering the tributary area of shear wall as below. 

Due to slab: (15x3 m2)(8.5 kN/m2)(10 stories) = 3 830 kN 

Due to beams: (14 m)(25 kN/m3)(0.25x0.45 m2)(10 stories) = 390 kN 

Due to own weight of shear wall: (0.25x10 m2)(25 kN/m3)(30 m) = 1 880 kN 

Then the design axial force, Nd, due to vertical loads is found as 6 100 kN by 

simple hand calculation considering the tributary area of shear wall. ETABS gives    

7 130 kN of axial force for this shear wall, which is reasonably close to the value 

found by hand calculation. 

Total design axial force is calculated by subtracting the axial force due to 

unbalanced earthquake moment (110 kN) from the axial force due to vertical loads 

(610 tons). Hence, 

(Nd)total = 6 100 – 110 = 5 990 kN (Analytic Result) 

Knowing the design axial load, the moment curvature diagram shown in Figure 

7.14 can be easily obtained by using RESPONSE 2000 program. The reinforcement 

provided is twice the minimum values given in Turkish Earthquake Code, being 

0.005 for web reinforcement and 0.004 for additional end zone reinforcement. The 

RESPONSE 2000 input values are also shown in Figure 7.13. 

The axial load ratio can also be calculated as below. 

0.19
)0.005x3.6585x0.1325x1000(0.

599
N
N

0

=
+

=  
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The maximum resisting moment, Mr, of the shear wall is obtained as 72 890 

kN.m, which is greater than the design moment, Md, 72 790 kN.m. Hence the 

strength requirement of design is also satisfied. 

On the other hand, the yield curvature (Φy) and the ultimate curvature (Φu) 

values are obtained as 0.4 rad/km and 5.588 rad/km, respectively. Hence the 

available curvature ductility, µΦ, can be calculated easily as below. 

µΦ= Φu / Φy = 5.588 / 0.4 = 13.97 (available) 

 

shear wall of lw=10m

Ahmet Tüken 2004/4/11

All dimensions in millimetres
Clear cover to reinforcement =    25 mm

Inertia (mm4) x 106

Area (mm2) x 103

yt (mm)

yb (mm)

St (mm3) x 103

Sb (mm3) x 103

2512.5

21147398.4

 5025

 5025

4208437.5

4208437.5

2848.9

26057687.1

 5025

 5025

5185837.9

5185380.9

Gross Conc. Trans (n=11.11)

Geometric Properties

Crack Spacing

Loading (N,M,V + dN,dM,dV)

2 x dist + 0.1 db /ρ

-5990 , 0.0 , 0.0  +  0.0 , 1.0 , 0.0

250

10
05

0

As =   320 mm2

2 layers of 
As =  1260 mm2

As =   320 mm2

As =  1260 mm2

As =   320 mm2

As =  1260 mm2

As =   320 mm2

As =  1260 mm2

As =   320 mm2

2 layers of 
As =  1260 mm2

As =   320 mm2

As =  1260 mm2

2 layers of 
As =   320 mm2

27 layers of 
As =   320 mm2

As =  1260 mm2

As =   320 mm2

2 layers of 
As =  1260 mm2

As =   320 mm2

As =  1260 mm2

As =   320 mm2

As =  1260 mm2

As =   320 mm2

As =  1260 mm2

As =   320 mm2

2 layers of 
As =  1260 mm2

As =   320 mm2

Concrete

εc' = 2.00 mm/m

fc' =  13.0 MPa

a =   19 mm
ft = 1.26 MPa (auto)

Rebar

εs = 100.0 mm/m

fu =  548 MPa

fy= 365

 
 

Figure 7.13 RESPONSE 2000 Input Values for the lw=10m of Shear Wall Designed 

in x-direction  

 

The equation relating the curvature ductility to displacement ductility derived 

for the case shown in Figure 7.15 is given in Eqn.7.17. 

 

[ ]
))(φ0.5l)(H60(l

4b)k(5ah)h)(3H)(H5(φ1)(µ
1

φ
φ

µ
ypwp

2
wwy∆

y

u
φ −

+−+−−
+==                  (7.17) 
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Figure 7.14 Moment-Curvature Diagram for the lw=10m of Shear Wall Designed    

in x-direction 

 

In case of a = b = h / 2, displacement ductility (µ∆) and curvature ductility (µΦ) 

can be related as in Eqn.7.18. 

 

[ ]
))(φ0.5l)(H12(l

4khh)h)(3H)(H(φ1)(µ
1µ

ypwp

2
wwy∆

φ −

−+−−
+=                                        (7.18) 

 

 
 

Figure 7.15 Relating Top Sway of Building to Cross-Sectional Curvature of Wall 

b kh

Hw

  lp

Φu Φy 
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Substituting the known values of Φy=0.0004 rad/m, µ∆=5, Hw=30m, h=9m, 

k=0.000004 rad/m and lp= 0.2lw+0.044Hw=0.2(10m)+0.044(30m)=3.32m, required 

curvature ductility can be calculated easily as below. 

 

[ ] 4.8
0.0004)0.5x3.32)(012(3.32)(3

x94x0.0000049)9)(3x300(0.0004)(31)(51µ
2

φ =
−

−+−−
+=  

 

(Required)  8.4µφ =  

 

Since (µΦ)available = 13.97 > (µΦ)required = 8.4, the ductility requirement of design 

is also satisfied. 

Finally, it should be noted that the yield curvature to be used in Eqn.7.17 and 

Eqn.7.18 can also be found easily by the following expression given in the paper by 

Pauley, T [72] for rectangular shear walls. 

Φy = (λ.εy) / lw

where 

λ= Constant quantifying the influence of Φy / Φy
’ and the depth of neutral axis, k.lw, 

at the onset of yielding, which can be taken as 2 for design purposes 

εy= Yield strain of reinforcing steel, which is 0.00183 for S420 

lw= Length of shear wall 

Φy= Reference yield curvature, relevant to the idealized bilinear section response 

Φy
’= Yield curvature at the stage where nonlinearity begins at the onset of yielding of 

the bars at the extreme tension fiber 

 Φy = (2 x 0.00183) / 10 = 0.00037 rad/m = 0.37 rad/km 

It is seen that the value of 0.37 rad/km found by the expression proposed by 

Pauley is very close to the value of 0.4 rad/km read from Moment-Curvature diagram 

obtained by RESPONSE 2000. 
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7.5 PREVENTING THE OCCURRENCE OF SHEAR FAILURE BY USING 

THE OVER STRENGTH VALUES OF MATERIALS (CAPACITY 

DESIGN METHOD) 

 

By using the over strength values for C20 and S420 materials used in the 

studied example (being 1.25fck= 25 MPa for C20 and 1.25fyk= 525 MPa for S420 

respectively), the new moment-curvature diagrams can be obtained easily by using 

RESPONSE 2000 program as shown in Figure 7.16 & Figure 7.17 for lw= 6m of 

shear wall designed in y-direction and Figure 7.18 & Figure 7.19 for lw= 10m of 

shear wall designed in x-direction. 

Yield moment (i.e. plastic moment) for lw= 6m of shear wall designed in y-

direction and for lw= 10m of shear wall designed in x-direction can be read from 

Figure 7.17 as 40 370 kN.m & from Figure 7.19 as 97 320 kN.m, respectively. 

 

shear wall of lw=6.0m

Ahmet Tüken 2004/4/9

All dimensions in millimetres
Clear cover to reinforcement =    25 mm

Inertia (mm4) x 106

Area (mm2) x 103

yt (mm)

yb (mm)

St (mm3) x 103

Sb (mm3) x 103

1512.5

4613440.1

 3025

 3025

1525104.2

1525104.2

1674.4

5480075.3

 3025

 3025

1811697.2

1811493.1

Gross Conc. Trans (n=8.95)

Geometric Properties

Crack Spacing

Loading (N,M,V + dN,dM,dV)

2 x dist + 0.1 db /ρ

-6430 , 0.0 , 0.0  +  0.0 , 1.0 , 0.0
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50
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2 layers of 
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As =  1256 mm2

As =   312 mm2

As =  1256 mm2

As =   312 mm2

As =  1256 mm2

As =   312 mm2

16 layers of 
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As =  1256 mm2

As =   312 mm2
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As =   312 mm2

Concrete

εc' = 2.00 mm/m

fc' =  25.0 MPa

a =   19 mm
ft = 1.63 MPa (auto)

Rebar

εs = 100.0 mm/m

fu =  548 MPa

fy= 525

 
 

Figure 7.16 RESPONSE 2000 Input Values for the lw=6m of Shear Wall Designed 

in y-direction (Over Strength Values of Materials were Used) 

 

 212



M
om

en
t (

kN
m

)

Curvature (rad/km)

Moment-Curvature

0.0

4000.0

8000.0

12000.0

16000.0

20000.0

24000.0

28000.0

32000.0

36000.0

40000.0

0.0 0.6 1.2 1.8 2.4 3.0 3.6 4.2 4.8 5.4 6.0

 
 

Figure 7.17 Moment-Curvature Diagram for the lw=6m of Shear Wall Designed      

in y-direction (Over Strength Values of Materials were Used) 

 

shear wall of lw=10m

Ahmet Tüken 2004/4/11

All dimensions in millimetres
Clear cover to reinforcement =    25 mm

Inertia (mm4) x 106

Area (mm2) x 103

yt (mm)

yb (mm)

St (mm3) x 103

Sb (mm3) x 103

2512.5

21147398.4
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Geometric Properties
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Figure 7.18 RESPONSE 2000 Input Values for the lw=10m of Shear Wall Designed 

in x-direction (Over Strength Values of Materials were Used) 
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Figure 7.19 Moment-Curvature Diagram for the lw=10m of Shear Wall Designed    

in x-direction (Over Strength Values of Materials were Used) 

 

i. Preventing the Occurrence of Shear Failure of  lw= 6m of Shear Wall 

in y-direction by Using the Over Strength Values of Materials 

 

Moment of inertia of lw= 6m of shear wall designed in y-direction is 

43
w m 5.4)6)(25.0(

12
1)shear wall of 6m(l I ===  

Total moment of inertia of all shear walls in y-direction is 

43 m 23.9x4(0.25)(5)
12
1(4.5)x3I =+=∑  

Recalling the total design base shear, Vt,  

Vt = S(T). (A0). (I). (wi.n.Ap) / R                                                                           

Vt = (2.5)(0.4)(1.0)(7x10x1300) / 7 = 13 000 kN  

The design shear force taken by lw= 6m of shear wall in y-direction is 

Vtd = 13 000 x (4.5 / 23.9) = 2 450 kN 
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The value of shear force at the bottom of shear wall obtained from the graph of 

the analytical expression derived is the same as the design shear force calculated 

above as shown in Figure 7.20. 
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Figure 7.20 Shear Distribution along Height of Shear Wall of lw=6m 

 

The shear strength of shear wall, Vr, is 

Vr = Ach (0.65 fctd + ρsh fyd) = 6x0.25 m2 (0.65x1 000 + 0.005x365 000)   

Vr = 3 710 kN 

It should be noted that Vtd < Vr requirement of design is satisfied. 

On the other hand, the shear force due to yield moment (i.e. plastic moment) 

obtained by using the over strength values for materials used in design can be 

calculated as below. 

Vp = Mp / x  = 40 370 kN.m / 15.924 m = 2 540 kN 

where 

x = Moment arm of the distributed load measured from the bottom of the shear wall 

shown in Figure 7.21 and given by Eqn.7.19 & Eqn.7.20. 
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Since Vr = 3 710 kN are greater than Vp = 2 540 kN, shear failure will not take 

place. This means that brittle failure is prevented by designing ductile shear wall.  

In other words, flexural failure will occur before shear failure as reflected by 

the ratio below. 

1.46
2540
3710

V
Vr

p

r ===  

It should be noted that reinforcement in the wall is used to satisfy the moment 

requirement. Therefore, a reduction in the amount of wall reinforcement is not 

possible. 

Letting the bottom intensity of the distributed load of P(x) as “a” and the top 

intensity as “b”, the intensity at the vertex of parabola as “c” and the height of vertex 

from the bottom of the shear wall as “d”, the exact value of moment arm ( x ) of the 

distributed load measured from the bottom of the shear wall shown in Figure 7.21 

can be expressed as in Eqn.7.19. 

 

d)c)(H(bc)d(a3cH
d)d)(3Hc)(H(bc)d(a6cH

.
4
1x

ww

ww
22

w

−−+−+
+−−+−+

=                                   (7.19) 

Substituting the known values of Hw = 30 m, a = 12.27 t/m, b = 16.31 t/m,        

c = 9.04 t/m and d = 12 m, the exact value of moment arm x  can be calculated easily 

as in Eqn.7.20 for lw=6 m of shear wall in y-direction. 

 

12)9.04)(30(16.319.04)(12)(12.27)3(9.04)(30
12)12)(3x309.04)(30(16.319.04)(12)(12.27)6(9.04)(30.

4
1x

22

−−+−+
+−−+−+

=    

 

m 15.924x =                                                                                                 (7.20) 
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12
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. (I). (wi.n.Ap) / R                                                                           

(1.0)(7x10x1300) / 7 = 13 000 kN  

ar force taken by lw= 10m of shear wall in x-direction is 

 (20.83 / 52.07) = 5 200 kN 
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The value of shear force at the bottom of shear wall obtained from the graph of 

the analytical expression derived is the same as the design shear force calculated 

above as shown in Figure 7.22. 
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Figure 7.22 Shear Distribution along Height of Shear Wall of lw=10m 

 

The shear strength of shear wall, Vr, is 

Vr = Ach (0.65 fctd + ρsh fyd) = 10x0.25 m2 (0.65x1 000 + 0.005x365 000)   

Vr = 6 180 kN 

It should be noted that Vtd < Vr requirement of design is satisfied. 

On the other hand, the shear force due to yield moment (i.e. plastic moment) 

obtained by using the over strength values for materials used in design can be 

calculated as below. 

Vp = Mp / x  = 97 320 kN.m / 17.25 m = 5 640 kN 

where 

x = Moment arm of the distributed load measured from the bottom of the shear wall 

shown in Figure 7.23 and given by Eqn.7.21 & Eqn.7.22. 
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Since Vr = 6 180 kN are greater than Vp = 5 640 kN, shear failure will not take 

place. This means that brittle failure is prevented by designing ductile shear wall.  

In other words, flexural failure will occur before shear failure as reflected by 

the ratio below. 

1.096
5640
6180

V
Vr

p

r ===  
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Eqn.7.21. 
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 Load Distribution Profile along Height of Shear Wall of lw=10m 

e bottom intensity of the distributed load of P(x) as “a” and the top 

 the exact value of moment arm ( x ) of the distributed load measured 

 of the shear wall shown in Figure 7.23 can be expressed as in 
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Substituting the known values of Hw = 30 m, a = 15.14 t/m and b = 34.66 t/m, 

the exact value of moment arm x  can be calculated easily as in Eqn.7.22 for lw=10 m 

of shear wall in x-direction. 

 

m 17.25
34.662(15.14)

34.6615.14.30.
4
3x =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

+
=                                                       (7.22) 
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CHAPTER 8 

 

  CONCLUSIONS & RECOMMENDATIONS 
 

 

8.1 GENERAL 

 
The reinforced concrete building must be designed to resist earthquake action. 

This design must incorporate mainly three criteria as adequate lateral stiffness, 

strength and ductility. 

The main tool for satisfying the above mentioned seismic design requirements 

is the use of shear walls. However, what is the adequate and economical amount of 

shear walls that will satisfy stiffness, strength and ductility? The design problem of 

what makes adequate, proper, well placed and well-detailed shear walls was 

investigated. 

The drift of the concrete building was also be investigated by using non-linear 

computer programs. Developing drift criteria that can be easily used by the design 

engineer was targeted. The minimum amount of longitudinal steel was established 

for shear walls having different cross-sectional geometry. The ultimate moment 

capacity of shear walls of various geometry and reinforcement was investigated too. 

Simple design equations that can be used by the office design engineer were 

developed. 

Ductility is an indispensable yet an ambiguous concept. The reinforced 

concrete building must have enough ductility. How can ductility be measured? 

Curvature ductility is a cross-sectional property and can be readily calculated. On the 

other hand, the commonly measure of ductility is sway ductility. Design procedures 

were developed for shear walls, columns and beams in order to relate curvature 

ductility to sway ductility of the building and also in order to quantify ductility.  

 221



Assessment of building failures in recent earthquakes have shown that shear 

walls are mandatory to make a structure earthquake resistant. Also, the hybrid “shear 

wall – moment resisting frame” should satisfy the criteria of strength, ductility and 

stiffness. 

The total and relative sway of a “framed” structure or a hybrid “shear wall-

moment resisting frame” structure is a very important factor in assessing the seismic 

performance of a concrete structure. Observations of four major earthquakes in 

Turkey from 1992 to 1999 have indicated that uncontrolled sway is a significant 

contributor to collapse due to the occurrence of uncontrolled second order moments.   

Being in full appreciation of the importance of P-∆ effects, particularly during a 

seismic attack, building codes (Turkish Earthquake Code, UBC, ACI and others) 

require the calculation of seismic drift and impose restrictions on its maximum or 

relative values. 

Calculation of sway of a concrete structure is an effort “easier said than done”. 

Of course, computer programs can do the job. However, to be able to calculate the 

sway of a three dimensional structure under acting seismic loads, all the geometric 

properties must be known. However, in the process of design, cross-sectional 

properties are generally what the design engineer is after. Additionally, the 

volumetric and time-consuming effort involved in the computer modeling and 

analysis of a three dimensional structure, considering the floor diaphragm, cannot be 

overlooked. 

An analytical method is presented to calculate the sway of a three dimensional 

structure subject to any type of lateral load. This will enable the design engineer to 

evaluate the sway at any vertical level of the building, thus enabling the calculation 

of relative sway as well as the maximum. 

The validity of the proposed analytical method is shown by comparing results 

with those obtained by computer. The proposed analytical method can be applied to 

satisfy drift requirements of Turkish Earthquake Code [1], UBC [61] and ACI [19], 

and illustrate how it can facilitate and improve the seismic design process. 

The structure should be designed as a dual system as defined by the Uniform 

Building Code (UBC). In the dual system, the shear walls are to resist the total 
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design base shear as dictated by a proper structural analysis. Additionally, the 

moment resisting frame is to resist 25 % of the total base shear independently. 

The amount of shear wall is derived by an upper-bound calculation of the total 

design base shear and a lower-bound calculation of shear strength of shear walls 

containing minimum steel percentage. 

The ductility capacity of a reinforced concrete building system is conveniently 

quantified by the ratio of the lateral displacement at a suitable level, such as the roof, 

to the yield displacement at the same level; that is, the displacement ductility factor. 

Because the transition from elastic to inelastic response is non-linear, acceptable 

simplifications need to be made particularly with respect to the definition of the 

displacement at first yield. While such global ductility is indicative of inelastic 

response of the entire system, the designer must pay even more attention to ductility 

demands that arise in critical potential plastic regions of the structure. To quantify 

such demands, ductilities may be expressed in terms of rotations or curvatures or 

strains and be related to the global ductility. 

The dual structure should also possess enough ductility, as expressed by the 

displacement ductility ratio, µ∆ = 4 – 5. Considering the difficulties and 

ambiguousness of displacement calculations in reinforced concrete structures, a more 

reliable measure of ductility is employed, as the curvature ductility ratio, µФ. A 

plastic analysis is performed to relate the displacement ductility ratio to the more 

readily obtainable curvature ductility ratio. 

The shear walls can be designed for a displacement ductility ratio of µ∆ = 4 – 5, 

which in turn necessitates a curvature ductility that can be easily calculated. The 

cross-sections of the shear walls are to be consecutively designed to provide the 

curvature ductility demands that are calculated. 

This study is directed to the analysis of multi-story buildings with structural 

frames, walls or their combinations. The stiffness and mass distribution is assumed to 

be regular over the height of the building. The displacement response of all structural 

elements, including structural walls, is assumed to be dominated by flexural 

deformations and influenced by seismic motions in their own plane. Effects of 

torsional behavior and vertical ground motions are not addressed. 
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8.2 CONCLUSIONS 
 

An analytical method to calculate the sway of a three-dimensional framed and 

composite building is developed. Sway profiles of various buildings of different floor 

plans and different total number of floors are determined. The sway profiles are 

compared with results of computer solutions done by SAP2000.  

 
 

 Sway profiles calculated by the proposed analytical method and SAP2000 

are in very good agreement, the amount of error being less than 5% in most 

cases. 

 By using the analytical method, the total sway magnitude of framed and 

composite building can easily and quickly be determined. 

 By using the sway magnitudes determined, relative sway values of the 

building at any floor level along the height of the structure can be 

calculated. Thus, the requirement of the Turkish Earthquake Code can be 

met. If relative sway requirements can not be met, changes in the structure 

as necessary can be made and the design process can be repeated with ease. 

Without the analytical method proposed, tedious and time-consuming 

computer modeling efforts should be necessary. 

 What is the amount of shear walls necessary in a building subject to the 

Earthquake Code defined seismic forces? Of course, building of any floor 

geometry and different number of floors should be considered in answering 

this vital question. 

 A well designed building must possess three fundamental design 

requirements to be earthquake resistant. 

i. Strength requirement must be met: The earthquake force acting on the 

structure must be successfully put to equilibrium by the resisting 

elements of the structure. 

ii. Stiffness requirement must be met: The earthquake resistant structures 

must not undergo excessive sway. The relative sway restrictions, as 

required by the Earthquake Code, must be met. 
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iii. Ductility requirements must be met: In order to dissipate the seismic 

energy active in the structure, the sway magnitude corresponding to 

initial yielding must be grown to five times. This is known as the sway 

ductility ratio, µ∆ = ∆u / ∆y = 5.  

 The amount of shear walls satisfying all the three seismic design 

requirements is determined. The required amount of shear walls depend on 

the floor mass (wi), the number of floors (n), the Earthquake Zone (A0), the 

seismic force reduction factor (R) and the importance factor of the building 

(I). 

 The required amount of shear walls, as expressed by the ratio of total shear 

wall area to total floor plan area, r, vary between 0.00256 for 4-story 

buildings to 0.0128 for 20-story buildings. 

      
f

w

A
A

r =  

      where 

      Aw = total area of shear walls 

      Af = total floor plan area 

 It has been shown that the amount of shear walls to satisfy strength 

requirement can easily met stiffness requirements. Therefore, the total 

length of shear walls necessary to balance the seismic force can be placed 

anywhere and in any combination in the floor plan. Any application of 

shear walls will satisfy stiffness requirement without any difficulty. 

 The building must possess ductility to be earthquake resistant. However, 

ductility is an elusive concept. In order to design for ductility, it must be 

quantified. 

 In the State-of-the-Art of earthquake engineering, a building is considered 

to be ductile if the sway ductility ratio of µ∆ = ∆u / ∆y =  4 – 5 is used in the 

design process. 

where 

      ∆u = ultimate sway of the structure 

      ∆y = sway corresponding to initial yielding of the structure 
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 A method is developed to measure the ductility of the structure to satisfy 

the sway ductility ratio of µ∆ = 5. 

 The method developed to measure ductility depends on a plastic analysis 

and it depends on the tact that the plastic hinge forms at the base of the 

shear wall. 

 It is very difficult to know the sway of the structure corresponding to initial 

yielding and the sway corresponding to limit state of the building. The 

developed method relates the sway ductility ratio of the structure to 

curvature ductility ratio of the shear wall. Thus, an ambiguous concept like 

the sway ductility of the structure is expressed as the well known curvature 

ductility of the cross-section. Of course, the curvature ductility is readily 

measurable. 

 The required drift (∆i) to be used in the equation of stability index 

evaluation mentioned in TS 500 [5] can be calculated easily by using the 

analytical method presented. Therefore, it becomes very easy to check 

whether a structure is sway prevented or not without three-dimensional 

computer modeling. The stability index is expressed as below in TS 500. 
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i ≤=
∑

    

 
               where 

               Ф= Stability index 

               ∆i= Drift at ith story 

               Ndi= Axial design load 

               li= ith story column length, measured from axis to axis 

               Vfi= Total shear force at ith story 

 The effect of gravity loads acting on shear walls should also be considered 

in design. Neglecting these loads does not necessarily lead to conservative 

designs. 
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 The strength of most rectangular reinforced concrete shear walls in high-

rise buildings is governed by flexure rather than shear. 

 The amount and distribution of vertical reinforcement in high-rise 

rectangular shear walls has a definite influence on energy absorption 

characteristics. 

 Sufficient stiffness in the structure after the formation of a plastic hinge in 

the ductile shear wall is required in order to prevent the instability of 

structure as a whole. 

 Since the area under the moment-curvature diagram is a measure of the 

energy absorbing capacity of reinforced concrete members, the variables 

affecting the energy absorption of walls are the same as those affecting their 

moment-curvature characteristics. 

 An important aim in the design for ductile seismic response is to ensure that 

the probable ductility demand imposed by the design earthquake does not 

exceed the potential ductility capacity of the structural system. The ductility 

capacity of the system depends, however on the lateral force resisting 

element with the minimum displacement ductility capacity. In shear wall 

dominant structures, significant variations in the element ductility 

capacities may exist due to the amount of reinforcement and confined 

regions. 

 Unless a more refined analysis considering the nonlinear behavior of 

structural system is performed, second order effects may be taken into 

account according to the following equation given in Turkish Earthquake 

Code [1]. 
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      In the cases where second order effect indicator, θ i, satisfies the condition       

given by the above equation for the earthquake direction considered at each 

storey, second order effects shall be evaluated in accordance with currently 
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enforced specifications of reinforced concrete design. Here (∆i)ort shall be 

determined as the average value of story drifts calculated for i’th storey 

columns and structural walls.  

      The required average drift (∆i)ort to be used in the above equation of second 

order effect indicator can be calculated easily by using the analytical 

method presented. Therefore, it becomes very easy to check whether the 

second order effects shall be taken into account or not without three-

dimensional computer modeling. 

 There are several factors that must be taken into account in the design of 

ductile shear walls in order to ensure that the ductility, which has been 

calculated, can be fully realized. These factors are as follows: 

i. Sufficient tension steel to ensure a “well-behaved” moment-curvature 

relationship should be provided 

ii. Stability of structure as a whole during formation of plastic hinges in 

the shear walls should be established 

iii. A premature anchorage failure of the tension steel before bending 

failure should be prevented 

iv. A premature shear failure before bending failure should be prevented 

v. A premature failure of other structural framing elements should be 

prevented 

vi. Allowance for decrease in concrete strength must be taken into account 

vii. Development of full moment capacity of wall at foundation should be 

established 

viii. Construction joint details should be considered carefully 

ix. To develop flexural and shear strength, two significant components of a 

shear wall are necessary; web reinforcing (consisting of horizontal and 

vertical reinforcing at uniform spacing) and boundary reinforcing 

(vertical steel with ties located at both ends of the shear wall) 
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8.3 RECOMMENDATIONS FOR FURTHER RESEARCH 
 

The following topics are recommended for future studies: 

 The seismic behavior of structures designed by the proposed method must 

be validated by experimental studies. 

 The application of the proposed method to rehabilitation and strengthening 

of existing structures must be investigated. How does the proposed amount 

of shear walls improve the seismic behavior of existing structures that are 

seismically defective? 

 The behavior of structures as designed by the proposed method should be 

investigated by non-linear computer programs. 

 In this thesis, only symmetrical structures have been considered. The 

possibilities of application of the proposed method to unsymmetrical 

structures should further be investigated.  
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