

A CAPACITY ALLOCATION PROBLEM IN FLEXIBLE MANUFATURING

 SYSTEMS

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

SELİN BİLGİN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

THE DEPARTMENT OF INDUSTRIAL ENGINEERING

APRIL 2004

Approval of the Graduate School of Natural and Applied Sciences.

Prof. Dr. Canan Özgen

Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of

Master of Science.

Prof. Dr. Çağlar Güven

Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully

adequate, in scope and quality, as a thesis for the degree of Master of Science.

 Prof. Dr. Meral Azizoğlu

Supervisor

Examining Committee Members

Prof. Dr. Meral Azizoğlu

Asst. Prof. Dr. Ferda Can Çetinkaya

Prof. Dr. Ömer Kırca

Assoc. Prof. Dr. Nur Evin Özdemirel

Assoc. Prof. Dr. Canan Sepil

 iii

ABSTRACT

A CAPACITY ALLOCATION PROBLEM IN FLEXIBLE

MANUFACTURING SYSTEMS

BİLGİN, Selin

M. Sc. Thesis, Department of Industrial Engineering

Supervisor: Prof. Dr. Meral Azizoğlu

April 2004, 67 pages

In this study, we consider a capacity allocation problem in flexible

manufacturing systems. We assume time and tool magazine capacities on the

Numerical Controlled (NC) machines and limited number of available tools. Our

problem is to allocate the available capacity of the NC machines to the required

demand of the operations, so as to maximize the total weight of operation

assignments. We formulate the problem as a Mixed Integer Linear Program and show

that it is NP-hard in the strong sense. We solve the moderate-sized problems

optimally by the available Integer Programming software. We also develop

Lagrangean relaxation based upper bounds and several heuristic procedures. Our

computational results have revealed that the Lagrangean upper bounds are very close

to optimal solutions and the heuristic procedures produce near optimal solutions in

very small solution times even when the problem sizes are large.

Keywords: Flexible Manufacturing Systems, Capacity Allocation, Lagrangean

Relaxation

 iv

ÖZ

ESNEK İMALAT SİSTEMLERİNDE KAPASİTE PAYLAŞTIRMA

PROBLEMİ

BİLGİN, Selin

Yüksek Lisans Tezi, Endüstri Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Meral Azizoğlu

Nisan 2004, 67 sayfa

Bu çalışmada, Esnek İmalat Sistemlerinde kapasite yerleştirme problemini ele

aldık. Sayısal Denetimli (SD) makinelerde zaman ve makine ucu haznesi

kapasitelerinde kısıtlamalar olduğunu ve sınırlı sayıda makine ucu bulunduğunu

varsaydık. Problemimiz SD makinelerinin kapasitelerine operasyonları gereken

talebi karşılayacak şekilde paylaştırarak toplam ağırlığı maximize etmektir.

Problemimizi Karmaşık Tamsayılı Doğrusal Model olarak formüle ettik ve NP-Zor

olduğunu gösterdik. Orta-boyutlu problemlerimizi mevcut tam sayılı programlama

yazılım programıyla optimal olarak çözdük. Ayrıca Lagrange gevşetim tekniğiyle

üst sınırlar ve sezgisel yöntemler geliştirdik. Deney sonuçlarımız Lagrange üst

sınırlarının optimal sonuçlara çok yakın olduğunu ve sezgisel yöntemlerimizin büyük

problemlerde bile kısa zamanda optimale yakın sonuçlar ürettiğini göstermiştir.

Anahtar Kelimeler: Esnek İmalat Sistemleri, Kapasite Yerleştirme, Lagrange

Gevşetim

 v

To my mom, my dad and my love…

 vi

ACKNOWLEDGEMENTS

 I would like to express my gratitude to Prof. Dr. Meral Azizoğlu for her

wonderful supervision. I really appreciate her untiring support and kindness.

Studying with her was a great experience for me.

 I would also present my special thanks to two magnificent people, my parents

Meral Bilgin and Hasan Şener Bilgin. I am so lucky that I have their unlimited belief

and love.

 And a special thanks is due my fiancée N. Özgür Özpeynirci for everything

he added to my life. With his both technical and moral support, I could perform such

a good work.

 I also express my thanks to all my friends for their kind encouragements.

 vii

 TABLE OF CONTENTS

ABSTRACT.. iii
ÖZ.. iv
DEDICATION...… v
ACKNOWLEDGEMENTS... vi
TABLE OF CONTENTS... vii
LIST OF TABLES................…... ix
LIST OF FIGURES.….. x
CHAPTER
 1. INTRODUCTION... 1
 2. PROBLEM DEFINITION….. 4
 2.1 Problem Statement...…... 4
 2.2 Mathematical Formulation.. 5
 2.3 Complexity......…... 7
 3. LITERATURE SURVEY….. 9
 3.1 Capacity Allocation Problem without Tooling Constraints.......... 9
 3.2 Capacity Allocation Problem with Tooling Constraints............... 11
 4. SOLUTION APPROACH.......….. 14
 4.1 Upper Bounding Procedure (Lagrangean Relaxation)................... 14
 4.1.1 Lagrangean Relaxation Method
 and Subgradient Optimization... 14
 4.1.2 Lagrangean Relaxation of Our Problem........................... 17
 4.1.3 Strengthening the Lagrangean Solution............................ 22
 4.2 Lower Bounding Procedures... 22
 4.2.1 Lower Bound 1 (Greedy Heuristic)................................. 23
 4.2.2 Lower Bound 2 (One-at-a-time Assignment).................. 23
 4.2.3 Lower Bound 3 (Matching-Based Heuristic).................. 25
 4.2.4 Lower Bound 4 (m-at-a-time Assignment)...................... 27
 4.2.5 Lower Bound 5 (Lagrangean Heuristic).......................... 29
 4.2.6 A Numerical Example... 30
 5. COMPUTATIONAL RESULTS.................….. 40
 5.1 Design of the Experiment...…... 40
 5.2 Performance Measures....…... 42
 5.3 Discussion of the Results.. 43
 5.3.1 Effects of Number of Operations and Machines……….. 46
 5.3.2 Effect of the Number of Tools Required for
 Processing an Operation……………………………….. 51
 5.3.3 Effect of Number of Tool Types……………………….. 52
 5.3.4 Effect of the Number of Tools Available
 in the System……...…………………………………… 53

 viii

 5.3.5 Effect of Tool Magazine Capacity…………………….. 54
 5.3.6 Effect of Inventory Amounts…………………………… 55
 5.3.7 Effect of Machine Capacities………………………….. 56
 5.3.8 Individual Performances of the Lower Bounding
 Procedures…………………………………………….. 57
6. CONCLUSION AND DIRECTIONS FOR FUTURE RESEARCH.…..... 63
REFERENCES.........….. 65

 ix

 LIST OF TABLES

TABLE

5.1 m, t and n values of our experiments…………….……………………… 40
5.2 The computational results for upper bound for n=50 and 75…….………. 44
5.3 The computational results for lower bound when n=50 and 75…….……. 47
5.4 The computational results for lower bound when n=100 and 150….……. 49
5.5 Computational results for different values of t for upper bound…………. 52
5.6 Computational results for different values of t for lower bounds……..…. 53
5.7 The computational results for upper bound for different values of rk….… 53
5.8 The computational results for different values of rk for lower bounds….… 54
5.9 The computational results for different cases of sj for upper bound ….… 54
5.10 The computational results for different values of sj for lower bounds....… 55
5.11 The computational results for upper bound for different values
 of inventories…………………………………………………………….. 55
5.12 The computational results for different values of inventories
 for lower bound ……………………………………………………………..56
5.13 The computational results for upper bound for different values
 of machine capacities...……………………….………………………….. 56
5.14 The computational results for different values of machine capacities
 for lower bound ……………………………………………………………..57
5.15 Performance measures of lower bounds…………………………………. 59
5.16 The number of problems LBs find the best and optimum solutions………. 61

 x

 LIST OF FIGURES

FIGURE

2.1 Network Representation of Maximum Flow Problem…………………. 8
4.1 Network Representation of the Maximum Weighted Matching
 Problem………………………………………………………………. 26

 1

CHAPTER 1

INTRODUCTION

 Flexible Manufacturing Systems (FMS) are defined as integrated systems of

computer numerically controlled (CNC) machines connected with automated

material handling. They combine the efficiency of a high-production transfer line and

the flexibility of a job shop to best suit the batch production of mid-volume and mid-

variety of products. Due to these properties and highly intensive capital investment

required for their implementation, flexible manufacturing has gained worldwide

attention in recent years both in manufacturing industry and academic research.

Several problems are addressed in flexible manufacturing system environments,

some of which are part selection, system loading and operation assignment, machine

loading and tool allocation.

 The main purpose of flexible manufacturing systems is to maintain flexibility

and effective utilization of machine capacities through operation assignments and

tool changeovers. Operation assignment decisions in flexible manufacturing systems

may be stated as assigning the operations to the NC machines subject to system

specific operational and technological constraints so as to achieve a goal and/or

optimize some performance criteria.

 In flexible manufacturing systems, tool management is another vital issue

since large number of tools are required for processing the operations and the NC

machines have limited number of tool slots. The operations can only be processed if

their required tools are loaded on the machines. There are common restrictions,

associated with operation assignment and tool loading decisions, such as operation-

 2

tool-machine compatibility, tool magazine capacity, available machining time, etc.

Selecting the operations to be processed by considering the tooling constraints at the

same time makes the problem much more complicated.

 In the literature, there are a large number of studies on flexible manufacturing

systems; various methodologies and systematic approaches have been proposed to

solve the problems addressed. The general problem is stated as follows: given a fixed

number of part types whose operations are to be processed on the machines carrying

tool magazines of limited capacity, determine the assignment of operations and

allocation of tools. In the literature, integer programming has been the primary

modeling approach for these problems. In majority of the previous studies, capacity

allocation problem is analyzed for operations and tools separately. However, little

effort has been made to handle simultaneous assignment of operations and tools.

These two tactical level allocation problems are interrelated in the sense that

operations are selected according to the tools assigned and tools are placed according

to the operations assigned. Our study is concerned with tool allocation to machines

and machine capacity allocations to operations in flexible manufacturing systems. It

differs from the previous research in the sense that we solve operation assignment

and tool allocation problems simultaneously.

In this thesis, we consider the tactical level problem of assigning operations

together with their required tools to machines in a flexible manufacturing system

where the aim is to maximize the total weight of operation assignments. A set of

operations with corresponding weights, indicating their relative importance, is given.

We assume the weights are not only associated to the operation characteristics but

also to the machines. The amount of inventory for each operation in terms of time

units is known. This can be interpreted as the demand or maximum production

quantity. There are limitations on the number of tools of each type available in the

system due to economic restrictions. Also the number of tool slots on the tool

magazine of the machines, and the capacity of machines in terms of time units are

other constraining factors. The primary decisions are the operation selection and their

assignment to the machines. Moreover, the tools required for processing the

operations should be loaded on the machines. In such an environment, we have to

allocate the capacity of the machines to the inventory of operations and the required

tools for processing those operations, so that the total weight is maximized.

 3

 We formulate the problem as a Mixed Integer Programming model and prove

that it is NP-hard in the strong sense. We make use of upper and lower bounding

procedures in order to obtain near optimal solutions. Lagrangean relaxation technique

is used for finding upper bounds. Several heuristics are developed that give good

lower bounds in a very short time.

 This thesis consists of six chapters, which are organized as follows:

 In Chapter 2, the problem is defined and its mathematical formulation is

discussed. The parameters, the decision variables and the constraints are explained in

detail. Main assumptions considered throughout the study and the complexity of the

problem are presented in this chapter.

 The literature on flexible manufacturing systems and the capacity allocation

problem is reported in Chapter 3. The related work is classified according to the

tooling considerations.

 In Chapter 4, we define our solution approaches. We present Lagrangean

relaxation technique as the upper bounding procedure and discuss the application of

this technique to our problem. Also heuristics developed to find near-optimal

solutions are presented.

 In Chapter 5, we discuss our experimental design, the parameters used to

generate problem instances and the performance measures used to evaluate quality of

the solution approaches. Later on, the results of our experiments are discussed.

 We conclude the study and give suggestions for future research in Chapter 6.

 4

CHAPTER 2

PROBLEM DEFINITION

 In this chapter, we first define our problem with its underlying assumptions

and then give the mathematical model of the problem. We finally discuss the

complexity status of the problem.

2.1 Problem Statement

 In our problem environment, there are n operations to be processed by a set of

m machines. Each operation can be processed on more than one machine, i.e.

operation splitting is allowed. We let wij be the weight of each unit of operation i

(i=1,…,n) processed on machine j (j=1,…,m). wij can be interpreted as the unit profit

brought by operation i if processed by machine j. Alternatively, wij can represent the

assignment cost when it receives a negative value. Wi is the amount of inventory of

operation i on hand. Cj is the time capacity of machine j. Wi and Cj are measured in

same units, say in the minutes.

 All machines are flexible in the sense that they function according to the

loaded tools. Machine j has a tool magazine capacity of sj tool slots. There are t tool

types in the system. Due to the technological restrictions and/or budget limitations, a

maximum of rk tools of type k (k=1,…,t) are available in the system. To process

operation i, a set of tools l(i) should be available on the tool magazine(s) of the

associated machine(s).

 The problem is to allocate the time capacity of the machines to operations and

their tool capacities to tools so as to maximize the total weight.

 5

 Throughout this study, we make the following additional assumptions:

• Each machine can process each operation. In case of assignment restrictions,

wij can be set a negative value; to guarantee that operation i is not assigned to

machine j.

• The tool magazines of the machines are initially empty.

• All parameters i.e. Wi, Cj, rk, sj, l(i) are known with certainty, i.e. the system

is deterministic.

• The set of operations, machines and tools are not subject to change, i.e. the

system is static.

• Each tool requires one tool slot.

2.2 Mathematical Formulation

 In this section, we first redefine our indices, parameters and decision

variables. Then, we give the mathematical representation of the problem.

Indices:

i: operation index

j: machine index

k: tool index

Parameters:

n: number of operations

m: number of machines

t: number of tool types

Wi: inventory of operation i

Cj: capacity of machine j

l(i): set of tools required to process operation i

sj: number of tool slots of machine j

 6

rk: number of tool type k available

Decision variables:

Xij: the amount of operation i assigned to machine j

1
0kjZ 

=


Constraints:

• The total amount of operation i assigned to all machines does not exceed its

on hand inventory.

1

m

ij i
j

X W
=

≤∑ i∀

• The total amount of operations assigned to machine j does not exceed its

capacity.

1

n

ij j
i

X C
=

≤∑ j∀

• The total number of tools loaded on machine j does not exceed its tool slot

capacity.

1

t

kj j
k

Z s
=

≤∑ j∀

• The total number of tool type k loaded cannot exceed its available number.

1

m

kj k
j

Z r
=

≤∑ k∀

• An operation can be assigned to a machine only if its set of required tools are

already loaded on that machine.

(| ()) (| ())

Min ,ij j i kj
i k l i i k l i

X C W Z
∈ ∈

 
≤  

 
∑ ∑ ,k j∀

• Xij’s are nonnegative continuous variables and Zkj’s are binary variables.

0ijX ≥ ,i j∀

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

if tool k is loaded on machine j
otherwise

 7

{ }0,1kjZ ∈ ,k j∀

The objective function of our problem requires the maximization of the total

weight, which can be expressed as:

Maximize
1 1

n m

ij ij
i j

w X
= =
∑∑

2.3 Complexity

 When all wij=w, the problem reduces to the maximum total capacity

utilization problem. Moreover when tooling constraints, i.e. tool magazine capacity

(2.3) and tool availability (2.4) are not binding, the problem reduces to the well-

known maximum flow problem with the following analogy:

 Let S and T denote the source and sink nodes, respectively. Let nodes O1,

O2,…, On represent the set of operations and nodes M1, M2,…, Mm the set of

machines. The arcs can be defined as follows:

• Arcs from source node S to operation nodes Oi. The capacity of each arc (S,

Oi) is the inventory of operation i on hand (Wi).

• Arcs from operation nodes Oi to machine nodes Mj. The capacity of each arc

(Oi, Mj) can be assumed as infinite. Also every arc from operation nodes to

machine nodes has a weight w.

• Arcs from machine nodes Mj to sink node T. The capacity of each arc (Mj,T)

is the capacity of machine j (Cj).

This representation results in the network shown in Figure 2.1.

(2.8)

 8

Figure 2.1. Network Representation of Maximum Flow Problem

 The maximum flow problem is polynomially solvable (Papadimitriou and

Steiglitz, 1982) so is our problem with identical weights and no tooling constraints.

For arbitrary wij values, the problem remains polynomially solvable in the absence of

tooling constraints as it can be represented as a Linear Program. However when

tooling constraints are introduced, the complexity changes drastically. When all wijs

are unity, rk=r for each tool k, and sj=s for each machine j, the problem reduces to the

maximization of the total capacity usages. This special case of our problem is

referred to as Maximum Flow Problem with degree constraints by Toktay and Uzsoy

(1998). They show that this problem is NP-hard in the strong sense, so is our problem

with arbitrary wij, rk and sj values.

Cm

C3

C2 C1

Wn

W3

W2
W1

.

.

.

T

.

.

.

O1

S

O2

O3

On

M1

M2

M3

Mm

+∞

+∞

 9

CHAPTER 3

LITERATURE SURVEY

 In this chapter, we summarize the previous studies on operation assignment

and tool allocation problem. In the related studies there are a number of operations to

be processed on the CNC machines in a work center. The capacities of the machines

should be allocated to these operations according to some criterion (criteria). We

classified the literature on capacity allocation problem according to whether tooling

constraints are considered or not.

 The capacity restrictions are due to tool magazines, machine hours and the

number of tools. We may refer to our problem as capacity allocation with tooling

constraints. When each operation requires a single tool and the tool requirements of

the operations are distinct, the problem is referred to as capacity allocation problem

with side constraints (Toktay and Uzsoy, 1998).

3.1 Capacity Allocation Problem without Tooling Constraints

Toktay and Uzsoy (1998) address a capacity allocation problem in a

semiconductor wafer fabrication facility. They study allocating available machine

capacity at a work center among the different operations to be processed there. They

set an upper limit on the number of setups allowed for each machine over a shift, that

is a machine cannot process more than a given number of different steps during a

shift. Also they put a restriction on the number of different machines that can process

the same step simultaneously because of the technological limitations. They

 10

formulate the problem as a maximum flow problem on a bipartite network with

integer side constraints. They consider two objective functions: 1) maximizing

throughput, i.e. the total amount of work-in-progress (WIP) processed at the work

center during the shift and 2) minimizing the total deviation from predetermined

production goals. They show that the problems are equivalent and conclude that they

are NP-hard in the strong sense. They develop two heuristic procedures and report

that their heuristics perform very well under different problem settings.

Akçalı et al. (2003) consider a work center with parallel machines so as to

maximize the total throughput. They assume an operation can be processed by only a

subset of the machines, the number of tools available for an operation and the

number of setups that can be performed on a machine are limited. They interpreted

the problem as a maximum flow problem with degree constraints which is shown to

be strongly NP-hard by Toktay and Uzsoy (1998). They develop several constructive

heuristics and improve the heuristics by local search approach. They implement their

heuristics on several problem sets and observe their satisfactory performance.

 Çatay et. al (2002) study the capacity allocation problem with machine

duplications in semiconductor manufacturing. They model the problem of assigning

individual operations to predetermined machine groups where machine duplication is

allowed as a variation of a generalized assignment problem. Their objective is to find

the assignment that minimizes the total monthly operating cost of the machines and

the monthly procurement cost of additional machines capitalized. They use

Lagrangean relaxation and Lagrangean decomposition techniques for obtaining lower

bounds on the optimal solution and propose a heuristic procedure. Their experiments

with different problem settings reveal the tightness of the lower and upper bounds.

Shanker and Srinivasulu (1989) study the loading problem in a flexible

manufacturing environment. Their problem is to select a subset of jobs and assign

them to machines so as to maximize the workload. They formulate the problem as a

mixed integer program and develop a two-stage branch and bound procedure. They

also develop three heuristic procedures for the bicriteria problem of balancing the

workload and maximizing the throughput. They apply their heuristics to the data

generated by Shanker and Tzen (1985) and observe that their results are better

compared to that of Shanker and Tzen (1985). Shanker and Tzen (1985) consider a

bicriteria problem of balancing the workloads among the machines and meeting the

 11

job due dates for a random flexible manufacturing system with random job arrivals

and stochastic operation times.

3.2 Capacity Allocation Problem with Tooling Constraints

 D’Alfonso and Ventura (1995) study the tool assignment problem where the

machines have limited tool slots in their tool magazine and tools require multiple

slots. The objective is to minimize the number of daily production travels between

the machines. They examine two algorithms for this problem: one is a Lagrangean

relaxation approach with subgradient optimization technique, the other is a graph

theoretic heuristic. Their computational results reveal that the subgradient algorithm

is superior to their heuristic algorithm in most cases.

Liang and Dutta (1993) propose an integrated approach for simultaneous

solution of the part selection and machine loading problems in flexible

manufacturing systems. They consider two objectives in a hierarchy. Their primary

objective is to select and load a subset of parts such that the system output or the

utilization of FMS productivity is maximized and their secondary objective is

obtaining the maximum system output with less input by either reducing processing

cost or reducing makespan. They develop models for both objectives and show that

as the size of the mixed integer program increases, the problem becomes very

difficult to solve. They propose a solution method based on Lagrangean relaxation

and develop a Lagrangean heuristic. Their computational results show that all

problems reach an acceptable percentage error within reasonable time.

Ventura et. al (1988) present the tool loading problem in a flexible

manufacturing system, as an assignment model. The objective is to minimize the

timespan required to process all parts in a batch. They consider tool magazine

capacity constraints, multiple slots for some tools and machine dependent tool

processing times. They modeled two problems: first one assumes that any machine

can accommodate any tool and the tool processing times are independent of the

machines, whereas the second model assumes machine dependent tool processing

times. They develop several greedy heuristics for the first model, and six heuristic

 12

algorithms for the second model. They test the performance of their heuristics on two

hypothetical cases, and choose the best performing algorithms for each model.

Another study on machine loading and tool allocation problem in flexible

manufacturing systems is the one held by Sarin and Chen (1987). They aim to assign

all operations of the parts and the associated tools to machines. Once these decisions

are made, the tools stay on their assigned machines and the parts route through the

machines where necessary tools and programs are already loaded. They model the

problem so as to minimize the total machining costs corresponding to cutting tools

and machine usages. They discuss the changes in decisions influenced by the changes

in problem parameters. They impose a constraint on the lower utilization of each

machine so as to minimize the difference in machine utilizations and see that

machining costs increase. They also discuss the application of the Lagrangean

relaxation to their problem.

Chen et. al (1995) define the part selection problem in flexible manufacturing

systems as the selection of the most cost effective set of parts to be processed

simultaneously. Their objective is to maximize the total profit generated from FMS

to produce only a set of selected parts during the next production horizon. They

develop a zero-one integer program and two heuristic algorithms. Their heuristic

algorithms divide the part selection procedure into two stages where one stage deals

strictly with the limitations on the machining time, the storage capacity and the

automated guided vehicle (AGV) time and the other stage uses three different

strategies to choose a set of parts with respect to tooling and fixture constraints. Their

computational experiment with the heuristics reveal that satisfactory solutions can be

found in reasonably short time.

Ram et. al (1990) use network representation with simple side constraints for

modeling the machine loading and tool allocation problem in a flexible

manufacturing system, where the objective is to minimize the total cost operation

assignments. They solve a sample problem using the branch-and-bound procedure

and obtain the optimal solution in a short time.

Berrada and Stecke (1986) study the problem of assigning the tools,

operations and the associated cutting tools required for the part types selected for

simultaneous production to the machines. This assignment is constrained by each

machine’s tool magazine capacity as well as by the production capacities expressed

for the overall system and for each individual machine type. Their objective is to

 13

balance the machine workloads. They apply branch and bound algorithm and discuss

its performance under different problem cases and mention that the solutions can be

found in a short time.

Sodhi et. al (1994) study the part selection problem to determine tool

allocations and production schedule for meeting the production plan. Their objective

is to minimize the total cost. They assume constraints on the tool magazine capacity

and the tool magazine changeover frequency. They propose a heuristic algorithm and

observe its performance under different cases.

Our study differs from the ones in the literature in the sense that we consider

operation and tool assignments to the machines simultaneously with the objective of

maximizing the total weight. The most closely related study to ours is Toktay and

Uzsoy’s (1998) study. Toktay and Uzsoy (1998) considered operation assignment

with constraints on the number of machines that an operation can be assigned and the

number of operations that a machine can process. However they ignore tooling

constraints.

 14

CHAPTER 4

SOLUTION APPROACH

 As discussed, our problem is strongly NP-hard, as it reduces to a maximum

flow problem with side constraints which is shown to be strongly NP-hard. In this

study, our aim is to approach to this hard problem through bounding mechanisms.

We propose some lower and upper bounding procedures and test their efficiencies by

their relative closeness.

4.1 Upper Bounding Procedure (Lagrangean Relaxation)

 In this section, first we discuss Lagrangean relaxation method and

subgradient optimization, i.e. the method we use for solving Lagrangean problem in

this study. Later, we describe the application of Lagrangean relaxation procedure to

our problem.

4.1.1 Lagrangean Relaxation Method and Subgradient Optimization

Fisher (1981 and 1985) gives a review of Lagrangean relaxation technique

and discusses some application areas. In the literature there are several successful

applications of the technique, such as facility location, scheduling and generalized

assignment problems.

 15

Suppose we have the following integer programming problem:

(P) Z= Max cx

 Ax≤b

 Dx≤e

 x≥0 and integer

Assume that when the constraint set Ax≤b is removed, the problem will be

easy-to-solve one relative to the original problem. Therefore, we place this constraint

set into the objective function with the vector of Lagrangean multipliers

u=(u1,u2,…,un) and solve the remaining problem.

ZD(u)=Max cx+u(b-Ax)

 Dx≤e

 x≥0 and integer

Note that u(b-Ax) ≥0, provided that u≥0. Hence ZD(u) ≥cx*+u(b-Ax*) and

ZD(u) is an upper bound for any positive u vector.

One of the important issues that should be addressed is the determination of

vector u. The value of u is an important factor on the efficiency of the solution. In

most cases, finding u that makes Lagrangean solution close to the original solution is

very hard. Additionally, the following issues need to be considered:

1. Selection of the constraint set to be relaxed so that the resulting problem will

be an easy-to-solve one, relative to the original problem.

2. Selection of a solution approach for the Lagrangean problem.

We now discuss the above issues in relation to our problem.

1. Selection of the constraint set.

As we discussed, the constraint set to be relaxed should be the one that

complicates the problem. So one should expect that the relaxed constraint set makes

the problem either a polynomially solvable one or gives a decomposable structure to

the problem. In the latter case, the decomposed problems could be solved

independently and relatively easier. Later we will discuss that once the constraint set

(2.5) that links the operation assignments to tool assignments is removed, we have

two independent decomposed problems: one for operation assignments, one for

tooling assignments.

2. Selection of a solution approach for the Lagrangean problem.

 16

There are several methods for solving Lagrangean dual, and the following

three methods are the most commonly used ones:

1. Subgradient optimization

2. Column generation

3. Multiplier adjustment

In this study, we use subgradient optimization method to update Lagrangean

multipliers and solve the Lagrangean dual problem. The subgradient method starts

with initial Lagrangean multiplier u0 and then at each iteration the sequence of

Lagrangean multipliers {uk} is generated by the rule:

uk+1 = Max{0, uk-tk(b-Axk)}

where

xk = an optimal solution to LRu
k, i.e. the Lagrangean problem with dual variables set

to uk

tk = a positive scalar step size

 Held, Wolfe and Crowder (1974) developed the following result about the

convergence of the subgradient method:

 If k→∞, tk→0 and
1

k

i
i

t
=
∑ →∞ then ZD(uk) converges to its optimal value ZD. A

formula for tk that has been proven to be effective in practice is:

*

2

1 1

(())

()

k
k D

k m n
k

i ij j
i j

Z u Zt
b a x

λ

= =

−
=

−∑ ∑

where

Z*: The objective value of the best known feasible solution to (P). It is generally

obtained through a heuristic.

ZD(uk): The objective function value of the Lagrangean problem with multipliers set

to uk.

λk: A scalar between 0 and 2. Frequently, λk is initially taken as 2 and reduced by a

factor of 2 whenever ZD(uk) has failed to decrease in a specified number of iterations.

There are several stopping rules for the subgradient method (Beasley, 1995),

when

1. ZD(uk) = Z*. In this case, the method returns the optimal solution.

2. The procedure iterates a specified number of iterations.

 17

3. λk becomes too small.

4. uk+1-uk≤ε, where ε is a prespecified number.

 We next discuss the application of Lagrangean relaxation technique to our

NP-hard problem.

4.1.2 Lagrangean Relaxation of Our Problem

 Consider the relaxation of the constraint set (2.5) and the following

Lagrangean Relaxation model (LR).

(LR) Maximize
1 1 1 1 (| ()) (| ())

(Min{ , })
n m t m

ij ij kj k i kj ij
i j k j i k l i i k l i

w X u C W Z X
= = = = ∈ ∈

+ −∑∑ ∑∑ ∑ ∑

subject to (2.1), (2.2), (2.3), (2.4), (2.6) and (2.7)

where ukj≥0 ∀k,j.

 Note that (2.1) and (2.2) are only related with Xijs and (2.3) and (2.4) are only

related with Zkjs. The objective function of (LR) can be rewritten as in (4.3).

 Maximize
1 1 (| ()) 1 1 (| ())

() (Min{ , })
n m t m

ij kj ij k i kj kj
i j i k l i k j i k l i

w u X C W u Z
= = ∈ = = ∈

− +∑∑ ∑ ∑∑ ∑

Note that the objective function can be separated in two parts: one as a

function of Xij’s and one as a function of Zkj’s. These nice separations lead to two

independent subproblems SLR1 and SLR2 each of which is stated below.

(SLR1)

Maximize
1 1 (| ())

()
n m

ij kj ij
i j i k l i

w u X
= = ∈

−∑∑ ∑

subject to

1

m

ij i
j

X W
=

≤∑ i∀

1

n

ij j
i

X C
=

≤∑ j∀

0ijX ≥ ,i j∀

(SLR2)

(4.3)

(4.2)

(4.4)

(4.5)

(4.6)

(4.7)

 18

 Maximize
1 1 (| ())

(Min{ , })
t m

k i kj kj
k j i k l i

C W u Z
= = ∈

∑∑ ∑

 subject to

1

t

kj j
k

Z s
=

≤∑ j∀

1

m

kj k
j

Z r
=

≤∑ k∀

 { }0,1kjZ ∈ and integer ,k j∀

 SLR1 is a transportation problem that can be solved in a polynomial time.

 SLR2 is a pure integer problem. However, it has very nice property that its

optimal solution and the optimal solution to its LP relaxation are identical. In other

words, its constraint matrix A is totally unimodular. For the sake of completeness we

first define total unimodularity property, give some theorems and then show that our

problem has this property.

Definition (Wolsey, 1998) An integer matrix A is called totally unimodular (TUM) if

every square, nonsingular submatrix of A has determinant equal to 0, 1 or –1.

Theorem 4.1 (Nemhauser and Wolsey, 1988) The following conditions are sufficient

to detect the unimodularity of a matrix A:

1. Each element of A is 0, 1, –1.

2. No more than 2 nonzero elements exist in each column.

3. Rows can be partitioned into 2 subsets S1 and S2 such that

a) if a column contains 2 nonzero elements of the same sign, one element

is in each of the subsets.

b) if a column contains 2 nonzero elements of the opposite sign, both

elements are in the same set.

Theorem 4.2 (Nemhauser and Wolsey, 1988) A matrix A is totally unimodular if any

one of the matrices AT, -A, (A,A), (A,I) is totally unimodular.

(4.8)

(4.9)

(4.10)

(4.11)

 19

1

2

3 ()

S e t

S e t

S e t I

















Theorem 4.3 (Nemhauser and Wolsey, 1988) If A is totally unimodular, then all the

vertices of the convex polytope defined by the constraints Ax=b, x≥0, are integral for

any integer vector b.

Theorem 4.4 Constraint matrix A of SLR2 has total unimodularity property.

Proof The proof can be done in two ways.

1st way. Note that constraint matrix A can be written as follows:

1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0

A
0 0 1 0 0 1 0 0 1
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
.

 
 
 
 
 
 
 

=  
 
 
 
 
 
 
  

 The proof will be done by induction.

 Note that determinant Ak=0 or 1 for k=1 as all entries are 0 or 1. Now we will

assume that all (k-1)*(k-1) submatrices are unimodular and show that all k*k

submatrices are unimodular as well.

 Two cases arise:

Case 1: There is a row from Constraint Set 3. Two subcases should be considered:

Case1.1 There is a row with single 1.

This implies det(Ak)=±det(Ak-1)

Case 1.2 There is a row with all entries zero.

This implies det(Ak)=0

Case 2: There is no row from Constraint Set 3. Three subcases should be considered:

Case 2.1 There is a column with all entries zeros.

This implies det(Ak)=0

Case 2.2 There is a column with a single 1.

This implies det(Ak)=±det(Ak-1)

Case 2.3 All columns have two 1’s, one at the origin and the other at the

destination. This implies the rows are linearly dependent and therefore

 20

det(Ak)=0

Note that in all cases, det(Ak)= ±1 or 0. Therefore, we can conclude

that constraint matrix A of SLR2 is totally unimodular.

2nd way. We can decompose matrix A into (A′,I) as follows:

1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0

A
0 0 1 0 0 1 0 0 1
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
.

 
 
 
 
 
 
 

=  
 
 
 
 
 
 
  

A'

I















 Rows of A′ can be partitioned into two subsets S1 and S2.

1 1 1 0 0 0 0 0 0 . .
0 0 0 1 1 1 0 0 0 . .
0 0 0 0 0 0 1 1 1 . .
.

A '
1 0 0 1 0 0 1 0 0 . .
0 1 0 0 1 0 0 1 0 . .
0 0 1 0 0 1 0 0 1 . .
.

 
 
 
 
 
 =
 
 
 
 
 
 

1

2

S

S











It can easily be seen that A′ satisfies the sufficient conditions, so it is totally

unimodular. Therefore, according to Theorem 4.1, A′T and (A′T,I) are totally

unimodular. So is (A′T,I)T which gives A. We can conclude that A is totally

unimodular. �

Combining the results of Theorems 4.3 and 4.4, we can conclude that an LP

relaxation of SP2 produces a solution in which all Zkjs are either 0 or 1. Hence SLR2

can be solved by LP technique in polynomial time.

 21

 We show that when ukjs are given, the decomposed problems can be solved in

polynomial time. Next, we discuss the way we generate the ukj values.

 The Lagrangean relaxation procedure applied to our problem is as follows:

Step 0. Set ukj
0=0, Z*=0,λ0=2.

Step 1. Solve SLR1 and SLR2, compute ZLR=ZSLR1+ZSLR2

Step 2. Obtain a feasible solution by applying a Lagrangean heuristic.

Step 3. Update Z* if the heuristic in Step 2 produces a better solution.

Step 4. Calculate step size tp

*

D

2

1 1 (| ()) (| ())

(Z ())

(Min{ , })

p
p

p t m

j i kj ij
k j i k l i i k l i

u Z
t

C W Z X

λ

= = ∈ ∈

−
=

−∑∑ ∑ ∑

Step 5. Update Lagrangean multipliers

 ukj
p+1=Max {0,ukj

p-tp(Min {Cj,
(| ())

i
i k l i

W
∈
∑ }Zkj-

(| ())
ij

i k l i
X

∈
∑)}

 Return to Step 2.

 If Lagrangean solution does not decrease in a specified number of iterations,

halve the scalar λp.

 In initial setting and updating the values of tp and λp, we refer to the results

that are proven to be effective in the literature.

 We now discuss our Lagrangean heuristic to be used in Step 2 of the above

procedure. We develop a myopic heuristic procedure that only considers the

operations assigned by the Lagrangean solution. The heuristic selects the operation

and machine pair having the maximum weight among the ones that can be assigned

without violating tooling constraints. Below is the stepwise description of our

Lagrangean heuristic.

Step 1. Let NL be the set of operations assigned according to the Lagrangean upper

bound solution.

Step 2. Find the operation-machine pair with maximum weight from set NL. Call the

pair as operation i′ and the machine j′. Check whether

• the tool magazine of machine j’ has enough number of tool slots for

required tools of operation i′,

 22

• the tools required to process operation i′ are available on hand.

Step 3. If both of the above conditions are satisfied, assign the tools required to

process operation i’ to machine j’. Zkj’=1 k∈l(i′). Update Wi′, Cj′, sj′, rk and

set NL.

Step 4. Return to Step 2 until all operation-machine assignments are considered.

4.1.3 Strengthening the Lagrangean Solution

 In this subsection, we discuss some approaches we incorporated into the

Lagrangean relaxation formulation to increase its strength. In doing so, we add some

constraints to SLR1 that will reduce the value of the upper bound without violating

its validity. The added two constraints are given below:

1.
1 1

n m

ij ij
i j

w X UB
= =

≤∑∑

 This constraint is added in order to set an upper bound on the optimal solution

value of the Lagrangean problem. Note that, in a maximization problem, obtaining

smaller upper bounds is always desirable. One such upper bound is available through

LP relaxation. Note that the LP relaxation solution is a valid upper bound and can be

obtained in polynomial time. When we use LP relaxation solution, i.e. ZLP, as the

UB, we guarantee that the resulting Lagrangean relaxation solution dominates the

optimal LP relaxation solution.

2.
1 1

n m

ij ij
i j

w X LB
= =

≥∑∑

 Note that we assume wij>0, however
(| ())

n

ij kj
i k l i

w u
∈

− ∑ can be negative, and the

operations with negative coefficients never appear in the Lagrangean solution. When

we add the above constraint, some negatively weighted operations appear in the

Lagrangean solution and the upper bound becomes tighter. Initially we use the best

solution of our heuristic procedures (that will be discussed in the next section) as LB.

We update LB whenever our Lagrangean heuristic provides a better solution.

4.2 Lower Bounding Procedures

 23

 Several heuristic procedures are developed in order to obtain near optimal

solutions to our problem in polynomial time. These heuristics are explained below:

4.2.1 Lower Bound 1 (Greedy Heuristic)

 Lower Bound 1 operates myopically each time selecting an operation and

machine pair whose contribution to the objective function is the maximum.

We sort the operation-machine assignments in non-increasing order of the wij

values. For the next operation-machine pair in the list, we check the feasibility of the

assignment with respect to the tool magazine capacity of the machine and the

availability of the required tools for processing the operation. If the feasibility

conditions are satisfied, we assign the operation to the machine and update Wi, Cj, sj

and rk values. If not, we consider the next operation-machine pair in the list. Below is

the stepwise description of the greedy heuristic:

Step 0. Sort the operation-machine pairs in non-increasing order of the wij values.

Step 1. If the list is empty, stop.

Let (i′, j′) be the next operation-machine pair in the list.

Let l(i′) be the additional tools required when operation i′ is put on machine

j′.

Check whether sj′>|l(i′)| and rk>0 for k∈l(i′).

Step 2. If any one of the conditions stated in Step 1 is not satisfied, return to Step 1.

Assign operation i′ to machine j′, i.e. let Xi’j’=Min{Wi′,Cj′}.

Set Wi′=Wi′-Xi′j′

 Cj′=Cj′-Xi′j′

 sj’=sj′-|l(i′)|

 rk=rk-1 for k∈l(i′)

 24

Go to Step 1.

4.2.2 Lower Bound 2 (One-at-a-time Assignment)

Lower Bound 2 first ignores the tooling constraints and makes the optimal

assignment and then try to resolve the infeasibilities brought due to the tooling

constraints. In doing so, it calculates the relative importance of the tools on machines

where the importance is defined as the amount of processing to be lost when the tool

is removed from the machine’s tool magazine. The tools that result with the

maximum total improvement are kept. The heuristic then fixes the tools on the

machines, makes reallocation and afterwards reassigns the not-yet-allocated

operations to the machines, according to the rules of Lower Bound 1 (greedy

heuristic).

Below is the stepwise description of the one-at-a-time assignment heuristic:

Step 1. Optimal operation assignment: First, assign the operations to machines by

relaxing the tooling constraints through the following LP model

(OPT1) Maximize
1 1

n m

ij ij
i j

w X
= =
∑∑

subject to
1

m

ij i
j

X W
=

≤∑ i∀

1

n

ij j
i

X C
=

≤∑ j∀

 0ijX ≥ ,i j∀

Step 2. Calculate tool contributions (twkj) on each machine, i.e. the sum of the

weights of the operations that are assigned to machine j and require tool k.

twkj=
(| ())

ij ij
i k l i

w X
∈
∑ ∀k,j

Note that twkj can be interpreted as an amount of reduction in objective

function when tool k is removed from machine j.

Assign the tools to machines to maximize total tool contribution by the

following model:

 25

(OPT2) Maximize
1 1

t m

kj kj
k j

tw Z
= =

∑∑

subject to
1

t

kj j
k

Z s
=

≤∑ j∀

1

m

kj k
j

Z r
=

≤∑ k∀

{ }0,1kjZ ∈ ∀k,j

Step 3. Optimal operation assignment with the tools assigned in Step 3 is found as

follows: Set wij to a negative value if any tool from l(i) is not assigned to

machine j. As we are maximizing, Xij will be zero if wij is negative. Solve

(OPT1), i.e. the optimal operation assignment model with updated weights.

Step 4. Greedy assignment: Fixing the already assigned operations and tools, the

remaining ones are allocated according to the greedy heuristic defined in

Section 4.2.1. We consider the tools that are already on the tool magazines

of the machines, while deciding on the operation assignments.

 We now show that the constraint set of OPT2 is totally unimodular, therefore

it can be solved in polynomial time. This result implies that Lower Bound 2 can be

found in polynomial time, as well.

Theorem 4.5 The constraint matrix of OPT2 is totally unimodular.

Proof Constraint matrix of OPT2 is same as the constraint matrix of SLR2, which is

proved to be totally unimodular in Theorem 4.4. Therefore, we can conclude that

OPT2’s constraint matrix is also totally unimodular. �

Hence, we can use LP relaxation of the model and still obtain all binary Zkj

values.

4.2.3 Lower Bound 3 (Matching-Based Heuristic)

In place of selecting one operation, machine pair at-a-time, Lower Bound 3

selects m ‘operation-machine’ pairs at-a-time. In doing so, it applies the matching

algorithm and makes one-to-one assignment of operations to machines in each

 26

iteration. We assign the operations and necessary tools based on a maximum

weighted matching algorithm. The aim of a matching algorithm is to find an

assignment of operations to machines that results in the maximum total weight. The

network representation of our matching algorithm is given in Figure 4.1

Figure 4.1 Network Representation of the Maximum Weighted Matching Problem

 In the above network, the operations are represented by nodes O1, O2, …, On

and the machines are represented by nodes M1, M2, …, Mm. The weight of each arc

from node i to node j is wtij, where wtij is the contribution of assigning operation i to

machine j, into objective function. The maximum allowable assignment is Min{Wi,

Cj} and the total weight of this assignment is wij*Min{Wi, Cj}. We try to send flow

from operation nodes to machine nodes simultaneously in each iteration.

The steps of matching-based heuristic is as follows:

Step 1. Construct a bipartite graph containing operation and machine nodes.

Calculate the weight of an arc from operation i to machine j, wtij as

wij*Min{Wi, Cj}. Set wij a negative value, if operation i cannot be assigned

to machine j due to either the lack of any required tool or the violation of

wtnm

.

.

.

.

.

.

wt11

O1

O2

O3

On

M1

M2

M3

Mm

 27

the tool magazine capacity. In such a case, Xij* will take on value 0 at

optimality. Stop when all wijs are negative.

Step 2. In order to obtain a maximum weighted matching of operations and machines,

solve the following linear program:

(MA) Maximize
1 1= =

∑∑
n m

ij ij
i j

wt y

subject to
1

1
n

ij
i

y
=

≤∑ j∀

1

1
m

ij
j

y
=

≤∑ i∀

 0 1ijy≤ ≤ and integer ,i j∀

 where

1
0ijy 

= 


Objective function (4.12) maximizes the total weight of assignments.

Constraint set 4.13 ensures that at most one operation is assigned to a

machine. By constraint set 4.14, an operation is assigned to at most one

machine. yijs are set to 0 or 1 by the constraint set 4.15.

Note that MA is an assignment problem, whose constraint set is shown to be

totally unimodular. This implies that the integrality constraints are redundant.

Step 3. Assign all the required tools by the operations to the corresponding machines.

Check the feasibility of the matching. If any of the tools are used more than

its available number, find all operations using that tool. Remove the least

weighted operation among those. Continue until a feasible assignment is

reached. Stop when no further feasible assignment can be done.

Step 4. Update Wi=Wi-Xij

Cj=Cj-Xij

sj=sj-|l(i)|

rk=rk-1 for k∈l(i)

(4.12)

(4.13)

(4.14)

(4.15)

if operation i is assigned to machine j

otherwise

 28

Go to Step 1.

4.2.4 Lower Bound 4 (m-at-a-time Assignment)

 In this heuristic approach, we combine the ideas underlying lower bounding

procedures 2 and 3. As in the first 4 steps of one-at-a-time heuristic, we first assign

operations to machines without considering tooling constraints. Then, according to

this assignment, we calculate the tool contributions and assign the tools to the

machines such that the total tool contribution is maximized. After updating the

weights, the maximum weighted matching algorithm is used to assign the remaining

operations and tools to the machines. The steps of this heuristic are as follows:

Step 1. Optimal operation assignment: First, assign the operations to machines

without considering the tooling constraints. Solve the following LP model

(OPT1) Maximize
1 1

n m

ij ij
i j

w X
= =
∑∑

subject to
1

m

ij i
j

X W
=

≤∑ i∀

1

n

ij j
i

X C
=

≤∑ j∀

 0ijX ≥ ,i j∀

Step 2. Calculate tool contributions (twkj) on each machine.

twkj=
(| ())

ij ij
i k l i

w X
∈
∑ ∀k,j

Assign the tools to the machines in order to maximize the total tool

contribution by the following model:

(OPT2) Maximize
1 1

t m

kj kj
k j

tw Z
= =

∑∑

subject to
1

t

kj j
k

Z s
=

≤∑ j∀

1

m

kj k
j

Z r
=

≤∑ k∀

0 1kjZ≤ ≤ ∀k,j

 29

Step 3. Set wij to a negative value if any required tool of operation i is not assigned to

machine j. Stop, when all wijs are negative. Solve the optimal operation

assignment model (OPT1) in Step 1 with the new weights.

Step 4. Construct a bipartite graph containing the operation and the machine nodes.

Calculate the weight of each arc from operation i to machine j, by letting

wtij=wij*Min{Wi, Cj}.

Step 5. Solve the following linear program:

(MA) Maximize
1 1= =

∑∑
n m

ij ij
i j

wt y

subject to
1

1
n

ij
i

y
=

≤∑ j∀

1

1
m

ij
j

y
=

≤∑ i∀

 0 1ijy≤ ≤ ,i j∀

Step 6. Assign all the required tools to the corresponding machines. Check the

feasibility of the matching. If any of the tools is used more than its available

number, find all operations using that tool. Remove the least weighted

operation among those. Continue until a feasible assignment is obtained.

Stop when no more feasible assignment can be done.

Step 7. Update Wi=Wi-Xij

Cj=Cj-Xij

sj=sj-|l(i)|

rk=rk-1 for k∈l(i)

Go to Step 4.

4.2.5 Lower Bound 5 (Lagrangean Heuristic)

 Lagrangean relaxation can be used to obtain lower bounds. Lagrangean

problem rarely gives feasible solution to the original problem. Once the resulting

solution is infeasible, the infeasibilities are resolved by a heuristic, which is often

called Lagrangean heuristic. In our problem, the infeasibilities can be due to

 30

assigning operations without their entire tool sets. Our Lagrangean heuristic is a

greedy procedure whose steps are given below:

Step 1. Let NL be the set of operations assigned according to the Lagrangean solution.

Step 2. Select the maximum weighted operation-machine assignment from set NL.

Let the selected operation be i′ and the selected machine be j′. Check

whether

a. the tool magazine of machine j′ has enough tool slots to accommodate

the required tools of operation i′,

b. the tools required to process operation i’ are available on hand.

Step 3. If both of the above conditions are satisfied, assign the tools required to

process operation i′ to machine j′.

Let Zkj′=1 k∈l(i′).

Update Wi′, Cj′, sj′, rk and set NL.

Go to Step 2 until all operation-machine assignments are considered, i.e.

stop when set NL is empty.

We run the above heuristic at each iteration of Lagrangean relaxation

procedure. The best solution over all iterations defines the solution of the Lagrangean

heuristic.

4.2.6 A Numerical Example

 We illustrate our lower bounding procedures through the following example

with n=10 operations, m=3 machines, and t=10 tool types. We assume the weights

wij, are arbitrary, and set |l(i)|>1, rk=3 and sj=20. The weights, the inventories of the

operations and machine capacities are given in the following table.

 31

1 2 3 Wi

1 133 104 104 60

2 71 123 135 252

3 42 107 66 302

4 83 61 101 79

5 91 135 66 551

6 63 145 59 440

7 63 107 34 445

8 108 143 48 533

9 83 108 73 329

10 125 56 104 151

Cj 711 140 551

The matrix that shows the tools required by each operation is given below

1 2 3 4 5 6 7 8 9 10

1 1 0 0 0 0 0 1 0 0 0

2 0 0 0 0 1 0 0 1 0 0

3 1 0 0 1 0 0 0 0 0 0

4 1 1 0 0 0 1 0 1 0 0

5 0 0 0 0 1 0 0 0 0 1

6 1 1 1 0 1 0 0 0 0 0

7 1 0 0 0 0 0 0 1 0 0

8 0 0 1 1 0 1 0 0 0 0

9 1 0 0 1 1 0 1 0 1 0

10 0 0 0 1 1 1 1 0 0 1

j

k

i

i

 32

Now we apply the heuristic procedures to our example problem.

Lower Bound 1 (Greedy Heuristic)

Step 0. The sorted list of operation-machine pairs in non-increasing order of wijs is as

given below:

(i,j): (6,2), (8,2), (2,3), (5,2), (1,1), (10,1), (2,2), (8,1), (9,2), (3,2), (7,2), (1,2), (1,3),

 (10,3), (4,3), (5,1), (4,1), (9,1), (9,3), (2,1), (3,3), (5,3), (6,1), (7,1), (4,2), (6,3),

 (10,2), (8,3), (3,1), (7,3)

Step 1. Maxij{wij}=w62 hence i′=6, j′=2, l(i′)={1,2,3,5}

 sj’=20>4=|l(i′)| and rk>0 for k=1,2,3,5

Step 2. Since the above conditions are satisfied, assign i′ to j′.

Let X62=Min{W6, C2} =Min{440,140}=140

Update W6=440-140=300

 C2=140-140=0

 s2=20-4=16

 rk=2 for k=1,2,3,5

Ignore machine 2 since its capacity is full.

Step1. Maxij{wij}=w23 hence i′=2, j′=3, l(i′)={5, 8}

 sj’=20>|l(i′)|=2 and rk>0 for k=5, 8

Step 2. Assign i′ to j′, and let

 X23=Min{W2, C3} =Min{252,551}=252

Update W2=252-252=0

 C3=551-252=299

 s2=20-2=18

 r5=1, r8=2

Ignore operation 2 as X23=W2.

Step 1. Maxij{wij}=w11 hence i′=1, j′=1, l(i′)={1, 7}

 sj’=20>|l(i′)|=2 and rk>0 for k=1,7

 33

Step 2. Assign i′ to j′, and let

 X11=Min{W1, C1} =Min{60,711}=60

Update W1=60-60=0

 C1=711-60=651

 s1=20-2=18

 r1=1, r7=2

Ignore operation 1, as X11=W1.

Step 1. Maxij{wij}=w10,1 hence i′=10, j′=1, l(i′)={4, 5, 6, 10}

 sj’=18>|l(i′)|=4 and rk>0 for k=4, 5, 6, 10

Step 2. Assign i′ to j′, and let

 X10,1=Min{W10, C1} =Min{151,651}=151

Update W10=151-151=0

 C1=651-151=500

 s1=18-4=14

 r4=2, r5=0, r6=2, r10=2

Ignore operation 10 as X10,1=W10.

Step 1. Maxij{wij}=w81 hence i′=8, j′=1, l(i′)={3}

 sj’=14>|l(i′)|=1 and rk>0 for k=3

Step 2. Assign i′ to j′, and let

 X81=Min{W8, C1} =Min{533,500}=500

Update W8=533-500=33

 C1=500-500=0

 s1=14-1=13

 r3=1

Ignore machine 1 since its capacity is full.

Step 1. Maxij{wij}=w43 hence i′=4, j′=3, l(i′)={1, 2, 6}

 sj’=18>|l(i′)|=3 and rk>0 for k=1,2,6

Step 2. Assign i′ to j′, and let

 X43=Min{W4, C3} =Min{79, 299}=79

Update W4=79-79=0

 34

 C3=299-79=220

 s3=18-3=15

 r1=0, r2=1, r6=1

Ignore operation 4 as X43=W4.

Step 1. Maxij{wij}=w93 hence i′=9, j′=3, l(i′)={4, 7, 9}

 sj’=15>|l(i′)|=3 and rk>0 for k=4,7,9

Step 2. Assign i′ to j′, and let

 X93=Min{W9, C3} =Min{329, 220}=220

Update W9=329-220=109

 C3=220-220=0

 s3=15-3=12

 r4=1, r7=1, r9=2

Ignore machine 3 since its capacity is full.

All machines’ capacities are full; therefore we terminate the procedure here.

The objective function value is 159214. The resulting assignment is as follows:

 1 2 3

1 60

2 252

3

4 79

5

6 140

7

8 500

9 220

10 151

Lower Bound 2 (One-at-a-time Assignment)

i j

 35

Step 1. The operations are assigned to the machines ignoring the tooling constraints

through OPT1. The resultant assignment found by LP is as follows:

 1 2 3

1 60

2 252

3

4 79

5

6 140

7

8 533

9 187

10 118 33

Step 2. Note that tools 1, 3, 4, 5, 6, 7 and 10 are loaded on machine 1; tools 1, 2, 3,

and 5 are loaded on machine 2; tools 1, 2, 4, 5, 6, 7, 8, 9 and 10 on machine 3

according to the assignments in Step 1. We report the contributions of the

loaded tools in the following table:

 1 2 3

1 7980* 20300 21630

2 20300 7979

3 57564 20300

4 72314 17083

5 14750 20300 51103

6 72314 11411

7 22730 17083

8 41999

9 13651

10 14750 3432

i j

k j

 36

 * twkj=
(| ())

ij ij
i k l i

w X
∈
∑

Solving OPT2 by LP, we assign the tools to machines so that the total tool

contribution is maximized, and hence we obtain the following assignment:

 1 2 3

1 1 1 1

2 1 1

3 1 1

4 1 1

5 1 1 1

6 1 1

7 1 1

8 1

9 1

10 1 1

We set wij to a negative value (say –1) if any of the tools in l(i) is not assigned to

machine j. Therefore, w12, w21, w22, w32, w41, w42, w52, w61, w63, w71, w72, w82, w83,

w91, w92, w10,2 are all set to –1. Solving OPT1 with the new weights gives the

following assignment scheme:

 1 2 3

1 60

2 252

3

4 79

5

6 140

7

8 533

9 187

k j

i j

 37

10 118 33

As the capacities of all machines are full, no further assignments can be done. The

objective function value is 159676.

Lower Bound 3 (Matching Based Heuristic)

Step1. Construct a bipartite graph containing the operation and the machine nodes.

Arcs between nodes have the following weights, and the graph below

represents the network.

 1 2 3

1 7980* 6240 6240

2 17892 17220 34020

3 12684 14980 19932

4 6557 4819 7979

5 50141 18900 36366

6 27720 20300 25960

7 28035 14980 15130

8 57564 20020 25584

9 27307 15120 24017

10 18875 7840 15704

*wtij= wij*Min{Wi, Cj}

i j

.

.

.

7980
6240

6240

17892

17220
34020

12684

14980
19932

18875 7840

O1

O2

O3

M1

M2

M3

 38

Step 2. Solving the linear program for the maximum weight matching gives X81=533,

X62=140, X53=551.

Step 3. Assign all the necessary tools to the corresponding machines and see that the

tooling constraints are satisfied.

Step 4. Update

W8=0, W6=300, W5=0

 C1=178, C2=0, C3=0

 s1=17, s2=16, s3=18

 r3=r5=1, r1=r2=r4=r6=r10=2, r7=r8=r9=3

Steps 1&2. After fixing the assigned operations and tools and solving the matching

problem again, obtain X10,1=151.

Step 3. Assigning the tools required by operation 10 to machine 1 does not violate the

tooling constraints.

Step 4. Update

W10=0

 C1=27

 s1=14

 r5=0, r10=1, r7=2

Steps 1&2. After fixing the assigned operations and tools and solving the matching

problem again, obtain X11=27.

Step 3. Assigning the tools required by operation 7 to machine 1 does not violate the

tooling constraints.

Step 4. Machine 1’s capacity is fulfilled with this assignment. Terminate the

procedure. The objective function value is 136696.

Lower Bound 4 (m-at-a-time Assignment)

Step 1,2&3. First three steps of this heuristic is the same with Lower Bound 2; we

can use the operation and tool assignments of LB 2 found in its Step 2.

15704 O10

 39

 1 2 3
1 60
2 252
3
4 79
5
6 140
7
8 533
9 187
10 118 33

Step 4. As the capacities of the machines are full, no further assignments can be

done. The objective function value is 159676.

i j

 40

CHAPTER 5

COMPUTATIONAL RESULTS

 In this chapter, we discuss the results of experiments designed to evaluate the

performance of our upper and lower bounding procedures. We first introduce the

design of our experiments, i.e. the generation of our data. Next, we define the

performance measures. In the last section, we report and discuss the results of the

computational tests.

5.1 Design of the Experiment

 To test the performance of our upper and lower bounds, we generate several

random problem instances. The parameters used to generate these instances are listed

below:

1. Problem Size: Number of operations (n), number of machines (m) and

number of tool types (t) are the parameters that define the problem size. The number

of operations is set to 50, 75, 100 and 150 in our experiments. The number of

machines is set to 3, 5 and 7. The number of tool types is set to 10 for 3 machines

and 20 for 5 and 7 machines cases. Table 5.1 shows the number of operations,

machines and tool types used in our experiments.

Table 5.1 m, t and n values of our experiments

m t n
3 10 50 75 100 150
5 20 50 75 100 150
7 20 50 75 100 150

 41

2. Weights: Chen et. al (1995) generated the profit per operation uniformly

between integers $25 and $150. We used the same interval for the weights of

operations. We consider two weight classes: in the first class, the weight of job i is

wi, i.e. independent from the machine it is assigned. In the second class the weights

of the operations depend on the machines, i.e. wij is the weight of operation i on

machine j.

3. The number of tools and tool slots: Number of tools of each type available on

hand (rk) is set to 3 for each tool type. The number of slots on the tool magazine of

machines (sj) is taken as 20 for all machines. We also use rk =5 and sj =15 cases to

analyze the effects of rk and sj.

4. The number of tools required by the operations l(i): We consider two cases of

|l(i)|. In the first case each operation is assumed to require only one tool, i.e. |l(i)|=1.

In the second case |l(i)| is a discrete uniform random variable between 2 and 5 when

the number of tool types is set to 10; and when the number of tool types is 20, |l(i)| is

discrete uniform random variable between 5 and 10. The tools in l(i) are selected

randomly.

5. The inventories of the operations and the capacities of the machines: The

inventories of the operations (Wi) and capacities of the machines (Cj) are generated in

terms of minutes by a similar method proposed in Toktay and Uzsoy (1998).

Capacities are continuous uniform random variables between 0 and 720. The

inventory of each operation i, Wi, is generated as 720*U(0,1)*0.8. To see the effect

of the inventory and capacity, we perform test runs with Wi ∼720*U(0,1)*0.2 and

Cj∼U(0,360), as well.

In our main runs, we have 3 different values for n and two different values for

m; also we consider two cases for weights and two cases for |l(i)|. This results in 48

(4*3*2*2) combinations and 10 problem instances are generated for each

combination, which results in a total of 480 problem instances.

The following parameters are used for the Lagrangean relaxation experiments:

1. The initial values for the Lagrangean multipliers are set to 0.

2. The initial value for the scalar λk is taken as 1. In the majority of the previous

studies λk is initialized to 2. However our preliminary runs showed that 1 as

 42

an initial value gives better results than 2. We halve λk whenever Lagrangean

solution cannot be improved in 30 iterations.

3. As a stopping criterion, we set the number of iterations to 1500. Preliminary

runs showed that the objective function value of Lagrangean problem starts to

change in around 200th iteration or never improves. Therefore, we terminate

the execution of the program if the result of Lagrangean problem does not

change in the first 500 iterations.

Lagrangean relaxation and heuristic algorithms are coded in Visual C++ 6.0

version. Original problems, LP relaxation of the problems and the linear programs in

Lagrangean relaxation and the heuristic algorithms are solved using CPLEX 8.1

version. All computational experiments are conducted on an Intel Pentium II 550

MHz under the Windows NT operating system.

5.2 Performance Measures

 In evaluating the performance of our upper bounding procedures, we use the

following performance measures:

1. The solution time: Average and maximum values of solution times in Central

Processing Unit (CPU) seconds

2. The percent deviation from the optimum: Average and maximum values of

(UB-OPT)/OPT for the cases with known optimal solution

3. Frequency of optimality: The number of times upper bound gives the optimal

solution for the cases with known optimum solution

In evaluating the performance of our lower bounding procedures, i.e. heuristics,

we use the following performance measures:

1. The CPU time: Average and maximum values of solution times in CPU

seconds

2. The percent deviation from the optimum: Average and maximum values of

(OPT-LB)/OPT for the cases with known optimal solution

3. The percent deviation from the upper bound: Average and maximum values

of (UB-LB)/UB for the cases with unknown optimal solution. For those cases,

we use UB as an estimator of the optimal solution.

4. Frequency of optimality: The number of times the best lower bound gives the

optimal solution for the cases with known optimal solution.

 43

For the individual performances of the heuristics, we report frequency of the

best solution to indicate the number of times each heuristic gives the best solution.

We use the best of all heuristics as a lower bound.

5.3 Discussion of the Results

 In this section, we discuss the effects of changes in the problem parameters

on the performances of our procedures.

 Table 5.2 shows the CPU times and deviations of the upper bound from the

optimal solution for n=50, 75; m=3, 5, 7; |l(i)|=1, |l(i)|>1 and machine dependent and

independent weights.

 44

Table 5.2 The computational results for upper bound for n=50 and 75

 a) |l(i)|=1

i. machine dependent weights (wij) ii. machine independent weights (wi)

m=3 CPU Time (sec) (UB-OPT)/OPT*100 m=3 CPU Time (sec) (UB-OPT)/OPT*100
n Avg Max Avg Max n Avg Max Avg Max
50 121.897 135.845 0 0 50 123.648 129.516 0 0
75 125.453 129.796 0 0 75 132.02 154.772 0 0

m=5 CPU Time (sec) (UB-OPT)/OPT*100 m=5 CPU Time (sec) (UB-OPT)/OPT*100
n Avg Max Avg Max n Avg Max Avg Max
50 126.943 130.527 0 0 50 130.474 151.597 0 0
75 145.413 158.878 0 0 75 146.357 148.693 0 0

m=7 CPU Time (sec) (UB-OPT)/OPT*100 m=7 CPU Time (sec) (UB-OPT)/OPT*100
n Avg Max Avg Max n Avg Max Avg Max
50 130.686 138.198 0 0 50 130.887 134.873 0 0
75 131.211 134.893 0.005 0.053 75 141.038 150.506 0 0

44

 45

 b) |l(i)|>1

i. machine dependent weights (wij) ii. machine independent weights (wi)

m=3 CPU Time (sec) (UB-OPT)/OPT*100 m=3 CPU Time (sec) (UB-OPT)/OPT*100
n Avg Max Avg Max n Avg Max Avg Max

50 125.879 132.23 0 0 50 121.036 123.337 0 0
75 129.122 146.56 0 0 75 127.557 131.028 0 0

m=5

CPU Time (sec)

(UB-OPT)/OPT*100 m=5

CPU Time (sec)

(UB-OPT)/OPT*100

n Avg Max Avg Max n Avg Max Avg Max
50 403.552 423.949 0.974 2.244 50 142.824 153.04 0.526 1.359
75 157.648 181.831 0.673 2.189 75 155.578 158.738 0.447 1.107

m=7 CPU Time (sec) (UB-OPT)/OPT*100 m=7 CPU Time (sec) (UB-OPT)/OPT*100
n Avg Max Avg Max n Avg Max Avg Max

50 155.882 430.328 5.166 13.213 50 158.496 189.364 5.074 7.689
75 152.101 433.773 1.683 3.937 75 158.085 178.056 1.582 2.359

45

 46

5.3.1 Effects of Number of Operations and Machines

As can be seen from Table 5.2, the CPU time is not significantly affected by

the changes in n. As mentioned before, we terminate the program if no improvement

is observed in the Lagrangean solution in 500 iterations. Otherwise, 1500 iterations

are performed. The CPU time deviations are mainly due to the differences in iteration

limits used in Lagrangean solutions. Also the deviations from the optimal solutions

are not sensitive to n, i.e. increasing the number of operations does not increase the

complexity of the problem. When n is large, the number of alternatives for the

selected operations becomes high.

 When n≤75 and m≤5, CPLEX can solve the original problem in small CPU

times, however the solution times increase considerably with an increase in the

problem size. For example CPLEX can solve the problem instances with n=50, m=3,

|l(i)|>1 and arbitrary weights, in less than 1 second, on average. When m is set to 7

while keeping the other parameters fixed, the average CPU time increases to

1001.968 seconds. When n becomes 100, the Integer Programming solvers failed to

solve the majority of the problem instances. As the upper bounds’ performances are

quite satisfactory, they can be good estimates of the optimal solution. Therefore for

the cases the optimal solutions are not known, we report LB performances relative to

UBs, in place of optimal solutions.

Tables 5.3 and 5.4 show the computational results for the lower bounds using

the same parameters. Table 5.3 reports the maximum and average CPU times and the

maximum and average deviation of the lower bounds from the optimal solution as a

percentage of optimal solution when n=50 and 75. And Table 5.4 gives the CPU

times and deviation from the upper bound when n=100 and 150.

As can be seen from the tables, the CPU times are similar when n=50 and 75.

However, when n becomes 100 and 150, the CPU times increase. As the heuristics

are based on many iterative solutions, increasing n increases the number of

alternatives and thereby increasing its solution time. Similar to the results of the

upper bound, gaps between lower bound and optimum solution are not sensitive to n.

However, the deviation between lower and upper bounds increase as n increases from

100 to 150.

 47

Table 5.3 The computational results for lower bound when n=50 and 75

 a) |l(i)|=1

machine dependent weights (wij) machine independent weights (wi)
m=3 CPU Time (sec) (OPT-LB)/OPT*100 m=3 CPU Time (sec) (OPT-LB)/OPT*100

n Avg Max Avg Max n Avg Max Avg Max
50 0.915 2.463 0 0 50 1.073 2.483 0 0
75 0.788 1.712 0 0 75 0.908 2.353 0 0

m=5 CPU Time (sec) (OPT-LB)/OPT*100 m=5 CPU Time (sec) (OPT-LB)/OPT*100
n Avg Max Avg Max n Avg Max Avg Max
50 0.688 1.422 0 0 50 0.792 1.752 0 0
75 0.732 2.393 0 0 75 0.753 1.502 0.007 0.066

m=7 CPU Time (sec) (OPT-LB)/OPT*100 m=7 CPU Time (sec) (OPT-LB)/OPT*100
n Avg Max Avg Max n Avg Max Avg Max
50 0.802 1.972 0 0 50 0.718 1.872 0.076 0.442
75 0.671 1.522 0 0 75 0.773 1.592 0.08 0.522

47

 48

 b) |l(i)|>1

machine dependent weights (wij) machine independent weights (wi)
m=3 CPU Time (sec) (OPT-LB)/OPT*100 m=3 CPU Time (sec) (OPT-LB)/OPT*100

n Avg Max Avg Max n Avg Max Avg Max
50 0.847 1.702 0 0 50 0.941 2.223 0 0

75 0.793 1.532 0 0 75 0.747 1.742 0 0
m=5 CPU Time (sec) (OPT-LB)/OPT*100 m=5 CPU Time (sec) (OPT-LB)/OPT*100

n Avg Max Avg Max n Avg Max Avg Max
50 2.238 17.445 2.02 8.514 50 2.742 24.755 2.947 9.705
75 1.754 17.024 3.178 7.435 75 3.084 22.492 3.947 9.476

m=7 CPU Time (sec) (OPT-LB)/OPT*100 m=7 CPU Time (sec) (OPT-LB)/OPT*100
n Avg Max Avg Max n Avg Max Avg Max
50 7.823 45.745 11.782 22.628 50 8.013 44.984 9.452 17.819
75 7.954 50.142 6.004 17.909 75 12.14 67.937 4.721 6.216

48

 49

 Table 5.4 The computational results for lower bound when n=100 and 150

a) |l(i)|=1

machine dependent weights (wij) machine independent weights (wi)
m=3 CPU Time (sec) (UB-LB)/UB*100 m=3 CPU Time (sec) (UB-LB)/OPT*100

n Avg Max Avg Max n Avg Max Avg Max
100 0.674 1.732 0 0 100 0.706 1.422 0 0
150 0.573 1.542 0 0 150 0.619 1.351 0 0
m=5 CPU Time (sec) (UB-LB)/UB*100 m=5 CPU Time (sec) (UB-LB)/OPT*100

n Avg Max Avg Max n Avg Max Avg Max
100 0.849 2.363 0 0 100 0.664 1.712 0 0
150 0.59 1.141 0 0 150 0.963 4.005 0 0
m=7 CPU Time (sec) (UB-LB)/UB*100 m=7 CPU Time (sec) (UB-LB)/OPT*100

n Avg Max Avg Max n Avg Max Avg Max
100 0.652 2.523 0 0 100 0.716 1.592 0.044 0.19
150 0.628 1.412 0 0 150 0.651 1.522 0.008 0.079

49

 50

b) |l(i)|>1

machine dependent weights (wij) machine independent weights (wi)
m=3 CPU Time (sec) (UB-LB)/UB*100 m=3 CPU Time (sec) (UB-LB)/OPT*100

n Avg Max Avg Max n Avg Max Avg Max
100 0.641 1.171 0 0 100 0.627 1.371 0 0
150 0.581 1.301 0 0 150 0.709 3.505 0 0
m=5 CPU Time (sec) (UB-LB)/UB*100 m=5 CPU Time (sec) (UB-LB)/OPT*100

n Avg Max Avg Max n Avg Max Avg Max
100 2.763 32.656 3.634 15.683 100 1.349 8.261 2.148 7.275
150 15.302 86.434 17.667 27.648 150 2.721 30.624 3.418 8.814
m=7 CPU Time (sec) (UB-LB)/UB*100 m=7 CPU Time (sec) (UB-LB)/OPT*100

n Avg Max Avg Max n Avg Max Avg Max
100 13.607 69.279 12.788 22.171 100 12.85 82.458 13.325 21.352
150 36.32 192.253 25.928 37.626 150 15.508 81.026 10.205 16.176

50

 51

 52

It is easily seen from Tables 5.2, 5.3 and 5.4 that the solution times increase

as m increases. Since the number of binary variables is an increasing function of m,

an increase in the solution times with an increase in m is an expected result.

 When the number of machines is 3, both upper and lower bounding

procedures can easily find the optimal solutions. The solution times are very short

particularly for the heuristics. As m increases, the CPU times and the deviations from

the optimum solutions increase for both bounds. This difference is clearer for the

lower bounds. For the upper bounds, the average deviation from the optimum

solution is less than 5%, in most cases.

As we discussed, we generate two sets for the weights of the operations. We

aim to observe the performances of our upper and lower bounds when the weights

depend on the machine (wij), i.e. arbitrary and when wij=wi for all j, i.e. the weights

are machine independent. Tables 5.2, 5.3 and 5.4 show the results considering two

different cases for weights.

We can conclude from the tables that the performances of upper bound for

arbitrary wij and machine independent weights wi are very close, but the maximum

deviation is higher in arbitrary wij case. The average deviation also increases but not

as much. Note that the average deviations are satisfactory for both cases. Also upper

bound returns the optimal value in majority of the problem instances. When the

weights are arbitrary, the CPU times are greater. When the weights are identical for

the machines, all machines yield the same cost, thereby reducing the number of

alternatives, which in turn reduces the CPU times.

Note that the performance of the lower bounds do not change significantly

with the changes in weights. The average deviations from the optimal solution are

less than 10% in most cases. The CPU times seem to be greater for machine

independent weights wi.

5.3.2 Effect of the Number of Tools Required for Processing an Operation

We also investigate the effect of the number of tools required for processing

an operation, for |l(i)|=1 and |l(i)|>1 cases by analyzing Tables 5.2, 5.3 and 5.4.

It can be easily seen that the upper bounding procedure performs excellent

and finds the optimal value in almost all problem instances (179 out of 180) when

 53

|l(i)|=1. The deviations from the optimum solution increase for |l(i)|>1 case, but the

average gaps are still at most around 5%. The gap between upper and lower bounds

increase when |l(i)|>1. The CPU times of two cases are almost identical.

The tables also show that the lower bound performs significantly better when

|l(i)|=1. In most of the problems the optimal solution is found very quickly. When

multiple tools are required for processing the operations, the CPU time and deviation

from optimum increases, however the average deviation is still satisfactory. For

n=100 and 150, the CPU times and difference between upper and lower bounds

increase as |l(i)| increases. When |l(i)|=1 the number of tool slots in the tool magazine

of the machines is not a hard constraint as in |l(i)|>1 case, hence the problem

becomes easier.

5.3.3 Effect of Number of Tool Types

 To analyze the effect of t on the solution time and quality, we generate two

cases: t=10 and t=20. Table 5.5 shows the upper bound performances for these cases

where n=75, m=5, arbitrary weights; |l(i)| > 1.

Table 5.5 Computational results for different values of t for upper bound

CPU Time (sec) (UB-OPT)/OPT*100
t Avg Max Avg Max # opt

10 149.855 375.309 0.268 1.183 1
20 157.648 181.831 0.673 2.189 1

 The CPU times again are not affected from t values. The deviation from the

optimum value slightly increases when the number of tool types increases. However

the deviations are still 2%, at most. In both cases, the upper bound returns the

optimal solution in one out of 10 problem instances.

 Table 5.6 shows the results of the lower bounds for the same problem

combinations.

 54

Table 5.6 Computational results for different values of t for lower bounds

CPU Time (sec) (OPT-LB)/OPT*100
t Avg Max Avg Max # opt

10 0.886 6.008 0.482 1.885 4
20 1.754 17.024 3.178 7.435 0

The results show that the procedure performs better when t=10. As the

number of tool types increases from 10 to 20, the average and maximum CPU times

double. The average and maximum percentage gaps between the lower bound and

optimum increase as t increases. Also lower bounds return the optimum solution for

4 instances when t=10, however when t=20, the optimal solution is never hit by the

heuristics. The number of binary variables in the problem increases as a function of

the number of tool types; therefore the difficulty of the problem increases with an

increase in t.

5.3.4 Effect of the Number of Tools Available in the System

To investigate the effect of number of tools available in the system, i.e. rk, we

tried two different values when n=75; m=5; t=20; for arbitrary weights and |l(i)| > 1

case. Table 5.7 shows the performance of the upper bound for different values of rk.

Table 5.7 The computational results for upper bound for different values of rk

CPU Time (sec) (UB-OPT)/OPT*100
rk Avg Max Avg Max # opt
3 157.648 181.831 0.673 2.189 1
5 136.978 149.174 0 0 10

Note that, increasing the number of available tools makes the problem easier

since the number of tools is no longer acts as a constraint. When rk is 3, the algorithm

gives very small deviations, around 2% at most. But when rk is set to 5, the upper

 55

bound finds the optimal solution in all problem instances. The CPU times are slightly

smaller for rk=5 case.

We also investigate the performance of the lower bounds for different values

of rk and report the results in Table 5.8.

Table 5.8 The computational results for different values of rk for lower bounds

CPU Time (sec) (OPT-LB)/OPT*100
rk Avg Max Avg Max # opt
3 1.754 17.024 3.178 7.435 0
5 0.492 1.181 0 0 10

The results of the lower bounding procedures show significant changes as rk

changes. With rk=5, heuristics give excellent results, the optimum solution is found

in all problem instances within 1 second. Also rk=3 case gives very good results, with

average CPU time of 1.75 sec and the average deviation from optimum around 3%.

Since the problem becomes easier when rk=5, the results are consistent with our

expectations.

5.3.5 Effect of Tool Magazine Capacities

To observe the effect of tool magazine capacities on the performances of the

upper and lower bounds, we perform some experiments for sj=15 and 20. The results

for n=75; m=5; arbitrary weights; and |l(i)| > 1 cases are given in Table 5.9.

Table 5.9 The computational results for different cases of sj for upper bound

CPU Time (sec) (UB-OPT)/OPT*100
sj Avg Max Avg Max # opt
15 157.539 165.147 10.569 18.603 0
20 157.648 181.831 0.673 2.189 1

 56

 As can be seen from the table, the problem performs better when sj=20 since

the number of tool slots is not constraining the problem. The CPU times do not

change with sj. However the upper bound and optimum solutions become closer

when the machines have more tool slots.

 Table 5.10 gives the performance measures of the lower bounds for the same

problem combination.

Table 5.10 The computational results for different cases of sj for lower bound

CPU Time (sec) (OPT-LB)/OPT*100
sj Avg Max Avg Max # opt
15 9.004 59.245 2.257 8.781 4
20 1.754 17.024 3.178 7.435 0

 As expected lower bound behaves different than the upper bound. The

average and maximum CPU times are greater when sj=15. The lower bound

deviations are nearly the same for sj=15 and 20. Note that, when sj=15, the lower

bound returns the optimal solution in 4 out of 10 problem instances.

5.3.6 Effect of Inventory Amounts

 To check the performance for different inventory amounts, we compare two

cases: Wi=0.2*U(0.720)*720 and Wi=0.8*U(0,720)*720, i.e. low and high inventory

levels respectively. Table 5.11 gives the results for two cases when n=75, m=5, t=20,

arbitrary weights; |l(i)| > 1.

Table 5.11 The computational results for upper bound for different values of

inventories

CPU Time (sec) (UB-OPT)/OPT*100
Wi Avg Max Avg Max # opt

0.2*U(0.720)*720 138.512 146.49 19.273 30.095 0
0.8*U(0,720)*720 157.648 181.831 0.673 2.189 1

 57

 We can conclude from the table that the upper bounding procedure performs

better when Wi∼0.8*U(0,720)*720. The CPU times do not differ significantly.

 The performance measures of the lower bounds are given in Table 5.12.

Table 5.12 The computational results for different values of inventories for lower

bound

CPU Time (sec) (OPT-LB)/OPT*100
Wi Avg Max Avg Max # opt

0.2*U(0.720)*720 9.235 57.873 5.856 19.447 0
0.8*U(0,720)*720 1.754 17.024 3.178 7.435 0

 For the heuristics, we observe the similar results. In terms of both the

deviations and CPU times, the heuristic procedures perform better when

Wi∼0.8*U(0,720)*720. Also CPU times are shorter in this case. Low level of

inventory is more constraining, that makes the problem more difficult to solve.

5.3.7 Effect of Machine Capacities

To see the effect of different capacities on the performance of upper and

lower bounding procedures, we compare two cases: Cj∼U(0,360) and Cj∼U(0,720)

for n=75, m=5, t=20, arbitrary weights; |l(i)| > 1. Tables 5.13 and 5.14 show the

results for upper and lower bounds, respectively.

Table 5.13 The computational results for upper bound for different values of machine

capacities

CPU Time (sec) (UB-OPT)/OPT*100
Cj Avg Max Avg Max # opt

U(0,360) 137.303 141.273 3.948 11.920 1
U(0,720) 157.648 181.831 0.673 2.189 1

 58

Table 5.14 The computational results for different values of machine capacities for

lower bound

CPU Time (sec) (OPT-LB)/OPT*100
Cj Avg Max Avg Max # opt

U(0,360) 6.504 29.412 6.945 19.503 0
U(0,720) 1.754 17.024 3.178 7.435 0

The above tables show that both upper and lower bounding procedures give

better results when Cj∼U(0,720). This result is in line with our expectations as high

machine capacity case is less constraining.

5.3.8 Individual Performances of the Lower Bounding Procedures

 Finally we investigate the individual performances of the lower bounding

procedures. The performances are reported on Table 5.15 for arbitrary wij, where the

average CPU times and average percent deviations from the optimum solution

((OPT-LB)/OPT*100) for n=50, 75 and the average deviations between lower and

upper bounds ((UB-LB)/UB*100) for n=100,150 are given. We run LB5, i.e.

Lagrangean heuristic, while finding an upper bound with Lagrangean relaxation

procedure, hence no additional time is spent; and therefore the CPU times of LB5 are

not given in table 5.15.

As can be seen from the table, all heuristics perform very well for m=3. LB2

and LB4 find the optimal solution for all problem instances, and LB1 for majority of

the instances. LB3 and LB5 also find near optimal results. When m increases to 5,

LB3 seems to dominate other heuristics in terms of the average deviation. For m=7

case, the performances of LB2, LB3 and LB4 are very close and better than those of

LB1 and LB5. The CPU time of LB3 is longer than other heuristics however it can

find better solutions than others in many cases.

 Table 5.15 also shows that LB1, LB2 and LB4 find the optimal solutions very

quickly, when |l(i)|=1 for most of the problems, for all values of n and m. LB3 and

LB5 yield very small deviations, however relatively larger than the others. LB3

 59

performs better as the number of operations and machines increase. The solution

times are not much affected from the increases in n.

 60

Table 5.15 Performance measures of lower bounds

a) |l(i)|=1

 LB 1 LB 2 LB 3 LB 4 LB 5
 n Avg CPU Avg Dev Avg CPU Avg Dev Avg CPU Avg Dev Avg CPU Avg Dev Avg Dev

50 0.02 0.065 1.302 0 0.879 4.719 1.46 0 0.747
75 0.017 0.05 1.073 0 0.839 2.737 1.223 0 0.303
100 0.019 0 0.939 0 0.682 2.234 1.057 0 0.351

m=3

150 0.054 0.002 0.896 0 0.398 2.642 0.946 0 0.511
50 0.024 0.023 0.903 0 0.746 2.462 1.081 0 0.323
75 0.057 0 1.041 0 0.618 2.729 1.212 0 0.345
100 0.029 0 1.348 0 0.89 2.062 1.127 0 0.308

m=5

150 0.054 0.01 0.856 0 0.566 1.295 0.885 0 0.58
50 0.042 0.064 1.256 0 0.798 3.038 1.111 0 0.264
75 0.058 0.065 0.977 0.001 0.713 2.73 0.938 0.001 0.661
100 0.031 0.01 0.941 0 0.551 1.864 1.085 0 0.522

m=7

150 0.081 0.01 0.852 0 0.647 1.733 0.934 0 0.402

59

 61

 b) |l(i)|>1

 LB 1 LB 2 LB 3 LB 4 LB 5
 n Avg CPU Avg Dev Avg CPU Avg Dev Avg CPU Avg Dev Avg CPU Avg Dev Avg Dev

50 0.02 0.049 1.092 0 0.82 3.037 1.455 0 2.549
75 0.014 0 1.146 0 0.9 1.903 1.113 0 2.123
100 0.017 0.011 0.944 0 0.705 2.15 0.899 0 2.044

m=3

150 0.044 0 0.84 0 0.586 1.949 0.856 0 1.233
50 0.025 10.781 0.837 8.322 6.808 3.661 1.742 10.754 21.374
75 0.038 14.684 1.022 7.313 4.589 4.685 1.368 5.259 25.426
100 0.052 17.309 1.586 5.16 7.889 5.677 1.525 5.178 25.28

m=5

150 0.056 35.039 0.855 22.927 59.409 19.912 0.888 25.555 38.949
50 0.034 30.791 1.25 19.469 28.645 20.127 1.365 16.696 27.993
75 0.041 29.957 0.886 9.413 29.921 10.591 0.97 8.889 26.035
100 0.035 43.412 0.87 16.967 52.365 18.482 1.159 18.182 32.243

m=7

150 0.07 57.217 0.88 33.968 136.261 27.153 0.994 35.02 40.773

60

 62

Table 5.16 gives the number of problems lower bounds give the best result

among all five for arbitrary wij case. The numbers in parentheses show the number of

times the lower bounds find the optimum solution.

Table 5.16 The number of problems LBs find the best and optimum solutions

 a) |l(i)|=1

 n LB1 LB2 LB3 LB4 LB5
50 8(8)* 10(10) 0 10(10) 0
75 8(8) 10(10) 0 10(10) 0
100 10(10) 10(10) 2(2) 10(10) 0

m=3

150 9(9) 10(10) 2(2) 10(10) 0
50 8(8) 10(10) 0 10(10) 0
75 10(10) 10(10) 0 10(10) 0
100 10(10) 10(10) 1(1) 10(10) 0

m=5

150 9(9) 10(10) 1(1) 10(10) 0
50 5(5) 10(10) 0 10(10) 0
75 6(6) 9(9) 0 9(9) 0
100 9(9) 10(10) 0 10(10) 0

m=7

150 8(8) 10(10) 0 10(10) 0
 * The numbers in the parentheses give the number of optimal

 solutions

b) |l(i)|>1

 n LB1 LB2 LB3 LB4 LB5
50 8(8) 10(10) 1(1) 10(10) 0
75 10(10) 10(10) 1(1) 10(10) 0
100 9(9) 10(10) 3(3) 10(10) 0

m=3

150 10(10) 10(10) 1(1) 10(10) 0
50 3(1) 2(1) 4 5(1) 0
75 0 2 6 4 0
100 2 5 3 2 0

m=5

150 1 4 6 2 0
50 1 2 3 4 0
75 1 4 2 3 0
100 0 6 3 1 0

m=7

150 0 5 5 1 0

 63

 As can be observed from the tables, LB1, LB2 and LB4 perform better for

small m and find many optimal solutions especially when |l(i)|=1. LB3 gives better

results as m increases and when |l(i)|>1. LB5 does not give the best solution in any of

the problems.

Hence we can conclude that in order to get a satisfactory approximate

solution to our NP-hard problem, all procedures, except LB5, should be used.

 64

CHAPTER 6

 CONCLUSIONS AND DIRECTIONS FOR FUTURE

RESEARCH

 In this study, we address the tactical level capacity allocation problem in

flexible manufacturing systems. Our problem is to assign the operations and their

associated tools to machines so as to maximize the total weight. We model the

problem as a mixed integer linear program and prove that this problem is NP-hard in

the strong sense.

 We propose upper and lower bounding procedures for solvingthis NP-hard

problem. Lagrangean relaxation approach with subgradient optimization technique is

used to obtain strong upper bounds on the optimal objective function value. Several

heuristic procedures are developed that give near-optimal solutions in small

computational times.

 The results of our computational experience have revealed that our upper and

lower bounding procedures give satisfactorily good solutions in reasonable solution

times. Lagrangean relaxation and heuristic procedures return the optimal solution for

many problems and for some others they produce solutions that are quite close to

optimal ones.

 We observe from our experiment that the number of machines, m, is the most

dominant factor that affects the difficulty of the problem. As m increases, the

complexity of the problem increases significantly. Also the change in number of

tools required to process an operation, i.e. |l(i)|, adds to the difficulty of the problem.

When few machines are in the system or when only one tool is required by each

operation, both the upper and lower bounding algorithms find the optimal solutions

very quickly. Decreasing the number of tools available, the machine capacities, the

inventories of operations, the number of tool slots in the tool magazines of the

machines, the number of tool types, all increase the complexity of the problem.

 65

However, the average deviations from the optimal solution are quite small even for

most difficult problem combination.

 Lower bounding procedures LB1, LB2 and LB3 produce near optimal

solutions for easy problems. Also LB4 gives very good results for small problems but

it dominates others when more difficult problems are considered. LB5 gives near

optimal solutions for small problems, but for all problem combinations, it is

dominated by other procedures. Hence, we can conclude that to arrive a good

approximate solution all lower bounds except LB5 should be considered together.

 To the best of our knowledge, there is no other study in the literature on

capacity allocation problem in flexible manufacturing systems considering operation

assignment and tool allocation decisions simultaneously. Our study can be extended

to a number of research areas, some of which are mentioned below:

• In addition to the allocation problem, the sequencing of the operations on the

machines can be considered. The solution approaches may consider

simultaneous or sequential solutions of allocation and sequencing problems.

• We assume machine dependent weights, however machine independent

capacity usages for the operations. Future research may consider arbitrary

capacity usages as well.

• We assume that the operations can be split between the machines. Assuming

a single machine assignment for each operation can be another consideration.

In such a case implicit enumeration techniques, like branch and bound

procedures, can be of great help.

• We assume that no changeovers can be done after the tool magazines are

loaded. An interesting extension may be to allow tool changeovers and

subsequently to detect the sequence of changeovers.

• We find quite satisfactory upper bounds. The incorporation of those bounds

to an enumeration scheme can be an interesting research extension. In doing

so, the quality of the bounds and the effort spent to find them should be well

established.

• We approach the problem by relaxing the constraint that links operation and

tool assignments. The relaxations of other constraints, in particular the ones

that are relaxed with tooling, can open a new research avenue.

 66

REFERENCES

Akçalı, E., Üngör, A., Uzsoy, R., (2003), “Tool- and Setup-Constrained Short-Term

Capacity Allocation Problem”, Proceedings of International Symposium on

Computer and Information Sciences, Antalya, Turkey, pp. 163-170.

Beasley, J. E., (1995), “Lagrangean Relaxation”, In: Reeves, C. R., (1995), Modern

Heuristic Techniques for Combinatorial Problems, McGraw-Hill, pp. 243-303.

Berrada, M., Stecke, K. E., (1986), “A Branch and Bound Approach for Machine

Load Balancing in Flexible Manufacturing Systems”, Management Science, Vol. 32,

pp. 1316-1335.

Chen, F. F., Ker, J. –I., Kleawpatinon, K., (1995), “An Effective Part-Selection

Model for Production Planning of Flexible Manufacturing Systems”, International

Journal of Production Research, Vol. 33, pp. 2671-2683.

Çatay, B., Erengüç, Ş. S., Vakharia, A.J., (2002), “Capacity Allocation with Machine

Duplication in Semiconductor Manufacturing”, submitted to Naval Research

Logistics

D’Alfonso, T. H., Ventura, J. A., (1995), “Assignment of Tools to Machines in a

Flexible Manufacturing System”, European Journal of Operational Research, Vol.

81, pp. 115-133.

Fisher, M. L., (1981), “The Lagrangean Relaxation Method for Solving Integer

Programming Problems”, Management Science, Vol. 27, pp. 1-18.

 67

Fisher, M. L., (1985), “An Applications Oriented Guide to Lagrangean Relaxation”,

Interfaces, Vol. 15, pp. 10-21.

Held, M. H., Wolfe, P., Crowder, H. D., (1974), “Validation of Subgradient

Optimization”, Mathematical Programming, Vol. 6, pp. 62-88.

Liang, M., Dutta, S. P., (1993), “An Integrated Approach to the Part Selection and

Machine Loading Problem in a Class of Flexible Manufacturing Systems”, European

Journal of Operational Research, Vol. 67, pp. 387-404.

Nemhauser, G. L., Wolsey, L. A., (1988), Integer and Combinatorial Optimization,

John Wiley & Sons Inc.

Papadimitriou, C. H., Steiglitz, K., (1982), Combinatorial Optimization Algorithms

and Complexity, Prentice-Hall Inc.

Ram, B., Sarin, S., Chen, C. S., (1990), “A Model and a Solution Approach for the

Machine Loading and Tool Allocation Problem in a Flexible Manufacturing

System”, International Journal of Production Research, Vol. 28, pp. 637-645.

Sarin, S. C., Chen, C. S., (1987), “The Machine Loading and Tool Allocation

Problem in a Flexible Manufacturing System”, International Journal of Production

Research, Vol. 25, pp. 1081-1094.

Shanker, K., Tzen, Y. –J. J., (1985), “A Loading and Dispatching Problem in a

Random Flexible Manufacturing System”, International Journal of Production

Research, Vol. 23, pp. 575-595.

Shanker, K., Srinivasulu, A., (1989), “Some Solution Methodologies for Loading

Problems in a Flexible Manufacturing System”, International Journal of Production

Research, Vol. 27, pp. 1019-1034.

 68

Sodhi, M. S., Askin, R. G., Sen, S., (1994), “Multiperiod Tool and Production

Assignment in Flexible Manufacturing Systems”, International Journal of

Production Research, Vol. 32, pp. 1281-1294.

Toktay, L. B., Uzsoy, R., (1998), “A Capacity Allocation Problem with Integer Side

Constraints”, European Journal of Operational Research, Vol. 109, pp. 170-182.

Ventura, J. A., Chen, F. F., Leonard, M.S., (1988), “Loading Tools to Machines in

Flexible Manufacturing Systems”, Computers and Industrial Engineering, Vol. 15,

pp. 223-230.

Wolsey, L. A., (1998), Integer Programming, John Wiley & Sons Inc.

