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ABSTRACT 
 

A CAPACITY ALLOCATION PROBLEM IN FLEXIBLE 

MANUFACTURING SYSTEMS 

 

 

BİLGİN, Selin 

 

M. Sc. Thesis, Department of Industrial Engineering 

Supervisor: Prof. Dr. Meral Azizoğlu 

 

April 2004, 67 pages 

 

In this study, we consider a capacity allocation problem in flexible 

manufacturing systems. We assume time and tool magazine capacities on the 

Numerical Controlled (NC) machines and limited number of available tools. Our 

problem is to allocate the available capacity of the NC machines to the required 

demand of the operations, so as to maximize the total weight of operation 

assignments. We formulate the problem as a Mixed Integer Linear Program and show 

that it is NP-hard in the strong sense. We solve the moderate-sized problems 

optimally by the available Integer Programming software. We also develop 

Lagrangean relaxation based upper bounds and several heuristic procedures. Our 

computational results have revealed that the Lagrangean upper bounds are very close 

to optimal solutions and the heuristic procedures produce near optimal solutions in 

very small solution times even when the problem sizes are large.   

 

Keywords: Flexible Manufacturing Systems, Capacity Allocation, Lagrangean 

Relaxation 
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ÖZ 
 

ESNEK İMALAT SİSTEMLERİNDE KAPASİTE PAYLAŞTIRMA 

PROBLEMİ 

 

 

BİLGİN, Selin 

 

Yüksek Lisans Tezi, Endüstri Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Meral Azizoğlu 

 

Nisan 2004, 67 sayfa 

 

Bu çalışmada, Esnek İmalat Sistemlerinde kapasite yerleştirme problemini ele 

aldık. Sayısal Denetimli (SD) makinelerde zaman ve makine ucu haznesi 

kapasitelerinde kısıtlamalar olduğunu ve sınırlı sayıda makine ucu bulunduğunu 

varsaydık.  Problemimiz SD makinelerinin kapasitelerine operasyonları gereken 

talebi karşılayacak şekilde paylaştırarak toplam ağırlığı maximize etmektir. 

Problemimizi Karmaşık Tamsayılı Doğrusal Model olarak formüle ettik ve NP-Zor 

olduğunu gösterdik. Orta-boyutlu problemlerimizi mevcut tam sayılı programlama 

yazılım programıyla optimal olarak çözdük. Ayrıca Lagrange gevşetim  tekniğiyle 

üst sınırlar ve sezgisel yöntemler geliştirdik.  Deney sonuçlarımız Lagrange üst 

sınırlarının optimal sonuçlara çok yakın olduğunu ve sezgisel yöntemlerimizin büyük 

problemlerde bile kısa zamanda optimale yakın sonuçlar ürettiğini göstermiştir.   

 

Anahtar Kelimeler: Esnek İmalat Sistemleri, Kapasite Yerleştirme, Lagrange 

Gevşetim 
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CHAPTER 1 
 

INTRODUCTION 
 

 

 Flexible Manufacturing Systems (FMS) are defined as integrated systems of 

computer numerically controlled (CNC) machines connected with automated 

material handling. They combine the efficiency of a high-production transfer line and 

the flexibility of a job shop to best suit the batch production of mid-volume and mid-

variety of products. Due to these properties and highly intensive capital investment 

required for their implementation, flexible manufacturing has gained worldwide 

attention in recent years both in manufacturing industry and academic research. 

Several problems are addressed in flexible manufacturing system environments, 

some of which are part selection, system loading and operation assignment, machine 

loading and tool allocation. 

 The main purpose of flexible manufacturing systems is to maintain flexibility 

and effective utilization of machine capacities through operation assignments and 

tool changeovers. Operation assignment decisions in flexible manufacturing systems 

may be stated as assigning the operations to the NC machines subject to system 

specific operational and technological constraints so as to achieve a goal and/or 

optimize some performance criteria.  

 In flexible manufacturing systems, tool management is another vital issue 

since large number of tools are required for processing the operations and the NC 

machines have limited number of tool slots. The operations can only be processed if 

their required tools are loaded on the machines. There are common restrictions, 

associated with operation assignment and tool loading decisions, such as operation-
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tool-machine compatibility, tool magazine capacity, available machining time, etc. 

Selecting the operations to be processed by considering the tooling constraints at the 

same time makes the problem much more complicated.  

 In the literature, there are a large number of studies on flexible manufacturing 

systems; various methodologies and systematic approaches have been proposed to 

solve the problems addressed. The general problem is stated as follows: given a fixed 

number of part types whose operations are to be processed on the machines carrying 

tool magazines of limited capacity, determine the assignment of operations and 

allocation of tools. In the literature, integer programming has been the primary 

modeling approach for these problems. In majority of the previous studies, capacity 

allocation problem is analyzed for operations and tools separately. However, little 

effort has been made to handle simultaneous assignment of operations and tools. 

These two tactical level allocation problems are interrelated in the sense that 

operations are selected according to the tools assigned and tools are placed according 

to the operations assigned. Our study is concerned with tool allocation to machines 

and machine capacity allocations to operations in flexible manufacturing systems. It 

differs from the previous research in the sense that we solve operation assignment 

and tool allocation problems simultaneously. 

In this thesis, we consider the tactical level problem of assigning operations 

together with their required tools to machines in a flexible manufacturing system 

where the aim is to maximize the total weight of operation assignments. A set of 

operations with corresponding weights, indicating their relative importance, is given. 

We assume the weights are not only associated to the operation characteristics but 

also to the machines. The amount of inventory for each operation in terms of time 

units is known. This can be interpreted as the demand or maximum production 

quantity. There are limitations on the number of tools of each type available in the 

system due to economic restrictions. Also the number of tool slots on the tool 

magazine of the machines, and the capacity of machines in terms of time units are 

other constraining factors. The primary decisions are the operation selection and their 

assignment to the machines. Moreover, the tools required for processing the 

operations should be loaded on the machines. In such an environment, we have to 

allocate the capacity of the machines to the inventory of operations and the required 

tools for processing those operations, so that the total weight is maximized.  
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 We formulate the problem as a Mixed Integer Programming model and prove 

that it is NP-hard in the strong sense. We make use of upper and lower bounding 

procedures in order to obtain near optimal solutions. Lagrangean relaxation technique 

is used for finding upper bounds. Several heuristics are developed that give good 

lower bounds in a very short time.    

 This thesis consists of six chapters, which are organized as follows: 

 In Chapter 2, the problem is defined and its mathematical formulation is 

discussed. The parameters, the decision variables and the constraints are explained in 

detail. Main assumptions considered throughout the study and the complexity of the 

problem are presented in this chapter.  

 The literature on flexible manufacturing systems and the capacity allocation 

problem is reported in Chapter 3. The related work is classified according to the 

tooling considerations.  

 In Chapter 4, we define our solution approaches. We present Lagrangean 

relaxation technique as the upper bounding procedure and discuss the application of 

this technique to our problem. Also heuristics developed to find near-optimal 

solutions are presented. 

 In Chapter 5, we discuss our experimental design, the parameters used to 

generate problem instances and the performance measures used to evaluate quality of 

the solution approaches. Later on, the results of our experiments are discussed.  

 We conclude the study and give suggestions for future research in Chapter 6. 
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CHAPTER 2 

 

PROBLEM DEFINITION 

 

 

 In this chapter, we first define our problem with its underlying assumptions 

and then give the mathematical model of the problem. We finally discuss the 

complexity status of the problem.  

 

2.1 Problem Statement 

 

 In our problem environment, there are n operations to be processed by a set of 

m machines. Each operation can be processed on more than one machine, i.e. 

operation splitting is allowed. We let wij be the weight of each unit of operation i 

(i=1,…,n) processed on machine j (j=1,…,m). wij can be interpreted as the unit profit 

brought by operation i if processed by machine j. Alternatively, wij can represent the 

assignment cost when it receives a negative value. Wi is the amount of inventory of 

operation i on hand. Cj is the time capacity of machine j.  Wi and Cj are measured in 

same units, say in the minutes.  

 All machines are flexible in the sense that they function according to the 

loaded tools. Machine j has a tool magazine capacity of sj tool slots. There are t tool 

types in the system. Due to the technological restrictions and/or budget limitations, a 

maximum of rk tools of type k (k=1,…,t) are available in the system. To process 

operation i, a set of tools l(i) should be available on the tool magazine(s) of the 

associated machine(s).  

 The problem is to allocate the time capacity of the machines to operations and 

their tool capacities to tools so as to maximize the total weight.   
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 Throughout this study, we make the following additional assumptions: 

• Each machine can process each operation. In case of assignment restrictions, 

wij can be set a negative value; to guarantee that operation i is not assigned to 

machine j. 

• The tool magazines of the machines are initially empty. 

• All parameters i.e. Wi, Cj, rk, sj, l(i) are known with certainty, i.e. the system 

is deterministic. 

• The set of operations, machines and tools are not subject to change, i.e. the 

system is static. 

• Each tool requires one tool slot. 

 

2.2 Mathematical Formulation 

 

 In this section, we first redefine our indices, parameters and decision 

variables. Then, we give the mathematical representation of the problem. 

 

Indices: 

i:  operation index 

j:  machine index 

k:  tool index  

 

Parameters: 

n:  number of operations  

m:  number of machines 

t:  number of tool types  

Wi:  inventory of operation i  

Cj:  capacity of machine j 

l(i):  set of tools required to process operation i 

sj:  number of tool slots of machine j 
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rk:  number of tool type k available  

 

 

Decision variables: 

Xij:  the amount of operation i assigned to machine j  

1
0kjZ 

=


 

 

Constraints: 

• The total amount of operation i assigned to all machines does not exceed its 

on hand inventory. 

1

m

ij i
j

X W
=

≤∑           i∀  

• The total amount of operations assigned to machine j does not exceed its 

capacity. 

1

n

ij j
i

X C
=

≤∑   j∀  

 

• The total number of tools loaded on machine j does not exceed its tool slot 

capacity. 

1

t

kj j
k

Z s
=

≤∑   j∀  

• The total number of tool type k loaded cannot exceed its available number. 

1

m

kj k
j

Z r
=

≤∑   k∀  

• An operation can be assigned to a machine only if its set of required tools are 

already loaded on that machine. 

( | ( )) ( | ( ))

Min ,ij j i kj
i k l i i k l i

X C W Z
∈ ∈

 
≤  

 
∑ ∑   ,k j∀  

• Xij’s are nonnegative continuous variables and Zkj’s are binary variables. 

 

0ijX ≥   ,i j∀  

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

if tool k is loaded on machine j 
otherwise 
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{ }0,1kjZ ∈   ,k j∀  

 

The objective function of our problem requires the maximization of the total 

weight, which can be expressed as: 

Maximize     
1 1

n m

ij ij
i j

w X
= =
∑∑  

  

2.3 Complexity 

 

 When all wij=w, the problem reduces to the maximum total capacity 

utilization problem. Moreover when tooling constraints, i.e. tool magazine capacity 

(2.3) and tool availability (2.4) are not binding, the problem reduces to the well-

known maximum flow problem with the following analogy: 

 Let S and T denote the source and sink nodes, respectively. Let nodes O1, 

O2,…, On represent the set of operations and nodes M1, M2,…, Mm the set of 

machines. The arcs can be defined as follows: 

• Arcs from source node S to operation nodes Oi. The capacity of each arc (S, 

Oi) is the inventory of operation i on hand (Wi). 

• Arcs from operation nodes Oi to machine nodes Mj. The capacity of each arc 

(Oi, Mj) can be assumed as infinite. Also every arc from operation nodes to 

machine nodes has a weight w. 

• Arcs from machine nodes Mj to sink node T. The capacity of each arc (Mj,T) 

is the capacity of machine j (Cj). 

This representation results in the network shown in Figure 2.1. 

 

 

 

 

 

 

 

 

 

(2.8)
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Figure 2.1. Network Representation of Maximum Flow Problem 

 

 The maximum flow problem is polynomially solvable (Papadimitriou and 

Steiglitz, 1982) so is our problem with identical weights and no tooling constraints. 

For arbitrary wij values, the problem remains polynomially solvable in the absence of 

tooling constraints as it can be represented as a Linear Program. However when 

tooling constraints are introduced, the complexity changes drastically. When all wijs 

are unity, rk=r for each tool k, and sj=s for each machine j, the problem reduces to the 

maximization of the total capacity usages. This special case of our problem is 

referred to as Maximum Flow Problem with degree constraints by Toktay and Uzsoy 

(1998). They show that this problem is NP-hard in the strong sense, so is our problem 

with arbitrary wij, rk and sj values.   
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CHAPTER 3 

 

LITERATURE SURVEY 

 

 

 In this chapter, we summarize the previous studies on operation assignment 

and tool allocation problem. In the related studies there are a number of operations to 

be processed on the CNC machines in a work center. The capacities of the machines 

should be allocated to these operations according to some criterion (criteria). We 

classified the literature on capacity allocation problem according to whether tooling 

constraints are considered or not. 

 The capacity restrictions are due to tool magazines, machine hours and the 

number of tools. We may refer to our problem as capacity allocation with tooling 

constraints. When each operation requires a single tool and the tool requirements of 

the operations are distinct, the problem is referred to as capacity allocation problem 

with side constraints (Toktay and Uzsoy, 1998).  

 

3.1 Capacity Allocation Problem without Tooling Constraints 

 

Toktay and Uzsoy (1998) address a capacity allocation problem in a 

semiconductor wafer fabrication facility. They study allocating available machine 

capacity at a work center among the different operations to be processed there. They 

set an upper limit on the number of setups allowed for each machine over a shift, that 

is a machine cannot process more than a given number of different steps during a 

shift. Also they put a restriction on the number of different machines that can process 

the same step simultaneously because of the technological limitations. They 
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formulate the problem as a maximum flow problem on a bipartite network with 

integer side constraints. They consider two objective functions: 1) maximizing 

throughput, i.e. the total amount of work-in-progress (WIP) processed at the work 

center during the shift and 2) minimizing the total deviation from predetermined 

production goals. They show that the problems are equivalent and conclude that they 

are NP-hard in the strong sense. They develop two heuristic procedures and report 

that their heuristics perform very well under different problem settings.  

Akçalı et al. (2003) consider a work center with parallel machines so as to 

maximize the total throughput. They assume an operation can be processed by only a 

subset of the machines, the number of tools available for an operation and the 

number of setups that can be performed on a machine are limited. They interpreted 

the problem as a maximum flow problem with degree constraints which is shown to 

be strongly NP-hard by Toktay and Uzsoy (1998). They develop several constructive 

heuristics and improve the heuristics by local search approach. They implement their 

heuristics on several problem sets and observe their satisfactory performance.  

  Çatay et. al (2002) study the capacity allocation problem with machine 

duplications in semiconductor manufacturing. They model the problem of assigning 

individual operations to predetermined machine groups where machine duplication is 

allowed as a variation of a generalized assignment problem. Their objective is to find 

the assignment that minimizes the total monthly operating cost of the machines and 

the monthly procurement cost of additional machines capitalized. They use 

Lagrangean relaxation and Lagrangean decomposition techniques for obtaining lower 

bounds on the optimal solution and propose a heuristic procedure. Their experiments 

with different problem settings reveal the tightness of the lower and upper bounds. 

Shanker and Srinivasulu (1989) study the loading problem in a flexible 

manufacturing environment. Their problem is to select a subset of jobs and assign 

them to machines so as to maximize the workload. They formulate the problem as a 

mixed integer program and develop a two-stage branch and bound procedure. They 

also develop three heuristic procedures for the bicriteria problem of balancing the 

workload and maximizing the throughput. They apply their heuristics to the data 

generated by Shanker and Tzen (1985) and observe that their results are better 

compared to that of Shanker and Tzen (1985). Shanker and Tzen (1985) consider a 

bicriteria problem of balancing the workloads among the machines and meeting the 
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job due dates for a random flexible manufacturing system with random job arrivals 

and stochastic operation times.  

 

 

 

3.2 Capacity Allocation Problem with Tooling Constraints 

 

 D’Alfonso and Ventura (1995) study the tool assignment problem where the 

machines have limited tool slots in their tool magazine and tools require multiple 

slots. The objective is to minimize the number of daily production travels between 

the machines. They examine two algorithms for this problem: one is a Lagrangean 

relaxation approach with subgradient optimization technique, the other is a graph 

theoretic heuristic. Their computational results reveal that the subgradient algorithm 

is superior to their heuristic algorithm in most cases.  

Liang and Dutta (1993) propose an integrated approach for simultaneous 

solution of the part selection and machine loading problems in flexible 

manufacturing systems. They consider two objectives in a hierarchy. Their primary 

objective is to select and load a subset of parts such that the system output or the 

utilization of FMS productivity is maximized and their secondary objective is 

obtaining the maximum system output with less input by either reducing processing 

cost or reducing makespan. They develop models for both objectives and show that 

as the size of the mixed integer program increases, the problem becomes very 

difficult to solve. They propose a solution method based on Lagrangean relaxation 

and develop a Lagrangean heuristic. Their computational results show that all 

problems reach an acceptable percentage error within reasonable time.  

Ventura et. al (1988) present the tool loading problem in a flexible 

manufacturing system, as an assignment model. The objective is to minimize the 

timespan required to process all parts in a batch. They consider tool magazine 

capacity constraints, multiple slots for some tools and machine dependent tool 

processing times. They modeled two problems: first one assumes that any machine 

can accommodate any tool and the tool processing times are independent of the 

machines, whereas the second model assumes machine dependent tool processing 

times. They develop several greedy heuristics for the first model, and six heuristic 
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algorithms for the second model. They test the performance of their heuristics on two 

hypothetical cases, and choose the best performing algorithms for each model.  

Another study on machine loading and tool allocation problem in flexible 

manufacturing systems is the one held by Sarin and Chen (1987). They aim to assign 

all operations of the parts and the associated tools to machines. Once these decisions 

are made, the tools stay on their assigned machines and the parts route through the 

machines where necessary tools and programs are already loaded. They model the 

problem so as to minimize the total machining costs corresponding to cutting tools 

and machine usages. They discuss the changes in decisions influenced by the changes 

in problem parameters. They impose a constraint on the lower utilization of each 

machine so as to minimize the difference in machine utilizations and see that 

machining costs increase. They also discuss the application of the Lagrangean 

relaxation to their problem.   

Chen et. al (1995) define the part selection problem in flexible manufacturing 

systems as the selection of the most cost effective set of parts to be processed 

simultaneously. Their objective is to maximize the total profit generated from FMS 

to produce only a set of selected parts during the next production horizon. They 

develop a zero-one integer program and two heuristic algorithms. Their heuristic 

algorithms divide the part selection procedure into two stages where one stage deals 

strictly with the limitations on the machining time, the storage capacity and the 

automated guided vehicle (AGV) time and the other stage uses three different 

strategies to choose a set of parts with respect to tooling and fixture constraints. Their 

computational experiment with the heuristics reveal that satisfactory solutions can be 

found in reasonably short time.     

Ram et. al (1990) use network representation with simple side constraints for 

modeling the machine loading and tool allocation problem in a flexible 

manufacturing system, where the objective is to minimize the total cost operation 

assignments. They solve a sample problem using the branch-and-bound procedure 

and obtain the optimal solution in a short time. 

Berrada and Stecke (1986) study the problem of assigning the tools, 

operations and the associated cutting tools required for the part types selected for 

simultaneous production to the machines. This assignment is constrained by each 

machine’s tool magazine capacity as well as by the production capacities expressed 

for the overall system and for each individual machine type. Their objective is to 
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balance the machine workloads. They apply branch and bound algorithm and discuss 

its performance under different problem cases and mention that the solutions can be 

found in a short time. 

Sodhi et. al (1994) study the part selection problem to determine tool 

allocations and production schedule for meeting the production plan. Their objective 

is to minimize the total cost. They assume constraints on the tool magazine capacity 

and the tool magazine changeover frequency. They propose a heuristic algorithm and 

observe its performance under different cases.   

Our study differs from the ones in the literature in the sense that we consider 

operation and tool assignments to the machines simultaneously with the objective of 

maximizing the total weight. The most closely related study to ours is Toktay and 

Uzsoy’s (1998) study. Toktay and Uzsoy (1998) considered operation assignment 

with constraints on the number of machines that an operation can be assigned and the 

number of operations that a machine can process. However they ignore tooling 

constraints. 
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CHAPTER 4 

 

SOLUTION APPROACH 

 

 

 As discussed, our problem is strongly NP-hard, as it reduces to a maximum 

flow problem with side constraints which is shown to be strongly NP-hard. In this 

study, our aim is to approach to this hard problem through bounding mechanisms. 

We propose some lower and upper bounding procedures and test their efficiencies by 

their relative closeness.    

 

4.1 Upper Bounding Procedure (Lagrangean Relaxation) 

 

 In this section, first we discuss Lagrangean relaxation method and 

subgradient optimization, i.e. the method we use for solving Lagrangean problem in 

this study. Later, we describe the application of Lagrangean relaxation procedure to 

our problem.   

 

4.1.1 Lagrangean Relaxation Method and Subgradient Optimization  

  

Fisher (1981 and 1985) gives a review of Lagrangean relaxation technique 

and discusses some application areas. In the literature there are several successful 

applications of the technique, such as facility location, scheduling and generalized 

assignment problems. 
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Suppose we have the following integer programming problem: 

(P)  Z= Max cx 

 Ax≤b 

 Dx≤e 

   x≥0 and integer 

Assume that when the constraint set Ax≤b is removed, the problem will be 

easy-to-solve one relative to the original problem. Therefore, we place this constraint 

set into the objective function with the vector of Lagrangean multipliers 

u=(u1,u2,…,un) and solve the remaining problem. 

ZD(u)=Max cx+u(b-Ax) 

 Dx≤e 

   x≥0 and integer 

Note that u(b-Ax) ≥0, provided that u≥0. Hence  ZD(u) ≥cx*+u(b-Ax*) and 

ZD(u) is an upper bound for any positive u vector.  

One of the important issues that should be addressed is the determination of 

vector u. The value of u is an important factor on the efficiency of the solution. In 

most cases, finding u that makes Lagrangean solution close to the original solution is 

very hard. Additionally, the following issues need to be considered:    

1. Selection of the constraint set to be relaxed so that the resulting problem will 

be an easy-to-solve one, relative to the original problem. 

2. Selection of a solution approach for the Lagrangean problem. 

 

We now discuss the above issues in relation to our problem.  

1. Selection of the constraint set. 

As we discussed, the constraint set to be relaxed should be the one that 

complicates the problem. So one should expect that the relaxed constraint set makes 

the problem either a polynomially solvable one or gives a decomposable structure to 

the problem. In the latter case, the decomposed problems could be solved 

independently and relatively easier. Later we will discuss that once the constraint set 

(2.5) that links the operation assignments to tool assignments is removed, we have 

two independent decomposed problems: one for operation assignments, one for 

tooling assignments. 

2. Selection of a solution approach for the Lagrangean problem. 
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There are several methods for solving Lagrangean dual, and the following 

three methods are the most commonly used ones: 

1. Subgradient optimization 

2. Column generation  

3. Multiplier adjustment 

In this study, we use subgradient optimization method to update Lagrangean 

multipliers and solve the Lagrangean dual problem. The subgradient method starts 

with initial Lagrangean multiplier u0 and then at each iteration the sequence of 

Lagrangean multipliers {uk} is generated by the rule: 

uk+1  = Max{0, uk-tk(b-Axk)} 

where 

xk = an optimal solution to LRu
k, i.e. the Lagrangean problem with dual variables set 

to uk    

tk = a positive scalar step size 

 Held, Wolfe and Crowder (1974) developed the following result about the 

convergence of the subgradient method:  

 If k→∞, tk→0 and 
1

k

i
i

t
=
∑ →∞ then ZD(uk) converges to its optimal value ZD. A 

formula for tk that has been proven to be effective in practice is: 

  
*

2

1 1

( ( ) )

( )

k
k D

k m n
k

i ij j
i j

Z u Zt
b a x

λ

= =

−
=

−∑ ∑
 

where 

Z*: The objective value of the best known feasible solution to (P). It is generally 

obtained through a heuristic.   

ZD(uk): The objective function value of the Lagrangean problem with multipliers set 

to uk.  

λk: A scalar between 0 and 2. Frequently, λk is initially taken as 2 and reduced by a 

factor of 2 whenever ZD(uk) has failed to decrease in a specified number of iterations. 

  

There are several stopping rules for the subgradient method (Beasley, 1995), 

when  

1. ZD(uk) = Z*. In this case, the method returns the optimal solution. 

2. The procedure iterates a specified number of iterations. 
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3. λk becomes too small. 

4. uk+1-uk≤ε, where ε is a prespecified number. 

 

 We next discuss the application of Lagrangean relaxation technique to our 

NP-hard problem. 

  

4.1.2 Lagrangean Relaxation of Our Problem 

 

 Consider the relaxation of the constraint set (2.5) and the following 

Lagrangean Relaxation model (LR). 

(LR)    Maximize 
1 1 1 1 ( | ( )) ( | ( ))

(Min{ , } )
n m t m

ij ij kj k i kj ij
i j k j i k l i i k l i

w X u C W Z X
= = = = ∈ ∈

+ −∑∑ ∑∑ ∑ ∑  

subject to (2.1), (2.2), (2.3), (2.4), (2.6) and (2.7) 

where ukj≥0 ∀k,j. 

 Note that (2.1) and (2.2) are only related with Xijs and (2.3) and (2.4) are only 

related with Zkjs. The objective function of (LR) can be rewritten as in (4.3). 

  Maximize   
1 1 ( | ( )) 1 1 ( | ( ))

( ) (Min{ , } )
n m t m

ij kj ij k i kj kj
i j i k l i k j i k l i

w u X C W u Z
= = ∈ = = ∈

− +∑∑ ∑ ∑∑ ∑  

Note that the objective function can be separated in two parts: one as a 

function of Xij’s and one as a function of Zkj’s. These nice separations lead to two 

independent subproblems SLR1 and SLR2 each of which is stated below.  

(SLR1) 

Maximize 
1 1 ( | ( ))

( )
n m

ij kj ij
i j i k l i

w u X
= = ∈

−∑∑ ∑   

subject to 

1

m

ij i
j

X W
=

≤∑   i∀  

1

n

ij j
i

X C
=

≤∑   j∀  

0ijX ≥    ,i j∀  

 

(SLR2) 

(4.3)

(4.2) 

(4.4)

(4.5)

(4.6)

(4.7)
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  Maximize 
1 1 ( | ( ))

(Min{ , } )
t m

k i kj kj
k j i k l i

C W u Z
= = ∈

∑∑ ∑   

  subject to 

  
1

t

kj j
k

Z s
=

≤∑    j∀  

  
1

m

kj k
j

Z r
=

≤∑    k∀  

  { }0,1kjZ ∈    and integer ,k j∀  

 

 SLR1 is a transportation problem that can be solved in a polynomial time.   

 SLR2 is a pure integer problem. However, it has very nice property that its 

optimal solution and the optimal solution to its LP relaxation are identical. In other 

words, its constraint matrix A is totally unimodular. For the sake of completeness we 

first define total unimodularity property, give some theorems and then show that our 

problem has this property. 

 

Definition (Wolsey, 1998) An integer matrix A is called totally unimodular (TUM) if 

every square, nonsingular submatrix of A has determinant equal to 0, 1 or –1.  

 

Theorem 4.1 (Nemhauser and Wolsey, 1988) The following conditions are sufficient 

to detect the unimodularity of a matrix A: 

1. Each element of A is 0, 1, –1. 

2. No more than 2 nonzero elements exist in each column. 

3. Rows can be partitioned into 2 subsets S1 and S2 such that  

a) if a column contains 2 nonzero elements of the same sign, one element 

is in each of the subsets. 

b) if a column contains 2 nonzero elements of the opposite sign, both 

elements are in the same set.  

 

Theorem 4.2 (Nemhauser and Wolsey, 1988) A matrix A is totally unimodular if any 

one of the matrices AT, -A, (A,A), (A,I) is totally unimodular. 

 

(4.8)

(4.9)

(4.10)

(4.11)
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


Theorem 4.3 (Nemhauser and Wolsey, 1988) If A is totally unimodular, then all the 

vertices of the convex polytope defined by the constraints Ax=b, x≥0, are integral for 

any integer vector b. 

 

Theorem 4.4 Constraint matrix A of SLR2 has total unimodularity property.  

Proof The proof can be done in two ways.     

1st way. Note that constraint matrix A can be written as follows: 

1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0

A
0 0 1 0 0 1 0 0 1
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
. . . . . . . . .

 
 
 
 
 
 
 

=  
 
 
 
 
 
 
  

  

  The proof will be done by induction.  

 Note that determinant Ak=0 or 1 for k=1 as all entries are 0 or 1. Now we will 

assume that all (k-1)*(k-1) submatrices are unimodular and show that all k*k 

submatrices are unimodular as well.  

 Two cases arise: 

Case 1:  There is a row from Constraint Set 3. Two subcases should be considered: 

Case1.1 There is a row with single 1. 

This implies det(Ak)=±det(Ak-1) 

Case 1.2 There is a row with all entries zero. 

This implies det(Ak)=0 

Case 2: There is no row from Constraint Set 3. Three subcases should be considered: 

Case 2.1 There is a column with all entries zeros. 

This implies det(Ak)=0 

Case 2.2 There is a column with a single 1. 

This implies det(Ak)=±det(Ak-1) 

Case 2.3 All columns have two 1’s, one at the origin and the other at the 

destination. This implies the rows are linearly dependent and therefore 
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det(Ak)=0 

Note that in all cases, det(Ak)= ±1 or 0. Therefore, we can conclude 

that constraint matrix A of SLR2 is totally unimodular. 

 

 

 

2nd way. We can decompose matrix A into (A′,I) as follows:     

1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0

A
0 0 1 0 0 1 0 0 1
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
. . . . . . . . .

 
 
 
 
 
 
 

=  
 
 
 
 
 
 
  

A'

I















 

 Rows of A′ can be partitioned into two subsets S1 and S2.  

1 1 1 0 0 0 0 0 0 . .
0 0 0 1 1 1 0 0 0 . .
0 0 0 0 0 0 1 1 1 . .
. . . . . . . . . . .

A '
1 0 0 1 0 0 1 0 0 . .
0 1 0 0 1 0 0 1 0 . .
0 0 1 0 0 1 0 0 1 . .
. . . . . . . . . . .

 
 
 
 
 
 =
 
 
 
 
 
 

1

2

S

S











 

  

It can easily be seen that A′ satisfies the sufficient conditions, so it is totally 

unimodular. Therefore, according to Theorem 4.1, A′T and (A′T,I) are totally 

unimodular. So is (A′T,I)T which gives A. We can conclude that A is totally 

unimodular.                                                                                                                   � 

  

Combining the results of Theorems 4.3 and 4.4, we can conclude that an LP 

relaxation of SP2 produces a solution in which all Zkjs are either 0 or 1. Hence SLR2 

can be solved by LP technique in polynomial time.  
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 We show that when ukjs are given, the decomposed problems can be solved in 

polynomial time. Next, we discuss the way we generate the ukj values. 

 

 The Lagrangean relaxation procedure applied to our problem is as follows: 

Step 0. Set ukj
0=0, Z*=0,λ0=2.  

Step 1. Solve SLR1 and SLR2, compute ZLR=ZSLR1+ZSLR2 

Step 2. Obtain a feasible solution by applying a Lagrangean heuristic.  

Step 3. Update Z* if the heuristic in Step 2 produces a better solution. 

Step 4. Calculate step size tp 

 
*

D

2

1 1 ( | ( )) ( | ( ))

(Z ( ) )

(Min{ , } )

p
p

p t m

j i kj ij
k j i k l i i k l i

u Z
t

C W Z X

λ

= = ∈ ∈

−
=

−∑∑ ∑ ∑
 

Step 5. Update Lagrangean multipliers 

 ukj
p+1=Max {0,ukj

p-tp( Min {Cj,
( | ( ))

i
i k l i

W
∈
∑ }Zkj-

( | ( ))
ij

i k l i
X

∈
∑ )} 

 Return to Step 2.  

 If Lagrangean solution does not decrease in a specified number of iterations, 

halve the scalar λp. 

 In initial setting and updating the values of tp and λp, we refer to the results 

that are proven to be effective in the literature.   

 

 We now discuss our Lagrangean heuristic to be used in Step 2 of the above 

procedure. We develop a myopic heuristic procedure that only considers the 

operations assigned by the Lagrangean solution. The heuristic selects the operation 

and machine pair having the maximum weight among the ones that can be assigned 

without violating tooling constraints. Below is the stepwise description of our 

Lagrangean heuristic. 

Step 1. Let NL be the set of operations assigned according to the Lagrangean upper 

bound solution. 

Step 2. Find the operation-machine pair with maximum weight from set NL. Call the 

pair as operation i′ and the machine j′. Check whether  

• the tool magazine of machine j’ has enough number of tool slots for 

required tools of operation i′,  
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• the tools required to process operation i′ are available on hand. 

Step 3. If both of the above conditions are satisfied, assign the tools required to 

process operation i’ to machine j’. Zkj’=1 k∈l(i′). Update Wi′, Cj′, sj′, rk  and 

set NL.  

Step 4. Return to Step 2 until all operation-machine assignments are considered. 

 

4.1.3 Strengthening the Lagrangean Solution  

 

 In this subsection, we discuss some approaches we incorporated into the 

Lagrangean relaxation formulation to increase its strength. In doing so, we add some 

constraints to SLR1 that will reduce the value of the upper bound without violating 

its validity. The added two constraints are given below: 

1.  
1 1

n m

ij ij
i j

w X UB
= =

≤∑∑  

 This constraint is added in order to set an upper bound on the optimal solution 

value of the Lagrangean problem. Note that, in a maximization problem, obtaining 

smaller upper bounds is always desirable. One such upper bound is available through 

LP relaxation. Note that the LP relaxation solution is a valid upper bound and can be 

obtained in polynomial time. When we use LP relaxation solution, i.e. ZLP, as the 

UB, we guarantee that the resulting Lagrangean relaxation solution dominates the 

optimal LP relaxation solution.  

 

2.  
1 1

n m

ij ij
i j

w X LB
= =

≥∑∑  

 Note that we assume wij>0, however 
( | ( ))

n

ij kj
i k l i

w u
∈

− ∑  can be negative, and the 

operations with negative coefficients never appear in the Lagrangean solution. When 

we add the above constraint, some negatively weighted operations appear in the 

Lagrangean solution and the upper bound becomes tighter. Initially we use the best 

solution of our heuristic procedures (that will be discussed in the next section) as LB. 

We update LB whenever our Lagrangean heuristic provides a better solution.  

 

4.2 Lower Bounding Procedures 
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 Several heuristic procedures are developed in order to obtain near optimal 

solutions to our problem in polynomial time. These heuristics are explained below: 

 

 

 

 

4.2.1 Lower Bound 1 (Greedy Heuristic) 

 

 Lower Bound 1 operates myopically each time selecting an operation and 

machine pair whose contribution to the objective function is the maximum. 

We sort the operation-machine assignments in non-increasing order of the wij 

values. For the next operation-machine pair in the list, we check the feasibility of the 

assignment with respect to the tool magazine capacity of the machine and the 

availability of the required tools for processing the operation. If the feasibility 

conditions are satisfied, we assign the operation to the machine and update Wi, Cj, sj 

and rk values. If not, we consider the next operation-machine pair in the list. Below is 

the stepwise description of the greedy heuristic: 

 

Step 0. Sort the operation-machine pairs in non-increasing order of the wij values. 

 

Step 1. If the list is empty, stop.  

Let (i′, j′) be the next operation-machine pair in the list.  

Let l(i′) be the additional tools required when operation i′ is put on machine 

j′.  

Check whether sj′>|l(i′)| and rk>0 for k∈l(i′).  

 

Step 2. If any one of the conditions stated in Step 1 is not satisfied, return to Step 1.  

Assign operation i′ to machine j′, i.e. let Xi’j’=Min{Wi′,Cj′}.  

Set Wi′=Wi′-Xi′j′ 

      Cj′=Cj′-Xi′j′ 

       sj’=sj′-|l(i′)| 

             rk=rk-1   for k∈l(i′)  
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Go to Step 1.  

 

4.2.2 Lower Bound 2 (One-at-a-time Assignment) 

  

Lower Bound 2 first ignores the tooling constraints and makes the optimal 

assignment and then try to resolve the infeasibilities brought due to the tooling 

constraints. In doing so, it calculates the relative importance of the tools on machines 

where the importance is defined as the amount of processing to be lost when the tool 

is removed from the machine’s tool magazine. The tools that result with the 

maximum total improvement are kept. The heuristic then fixes the tools on the 

machines, makes reallocation and afterwards reassigns the not-yet-allocated 

operations to the machines, according to the rules of Lower Bound 1 (greedy 

heuristic). 

 

Below is the stepwise description of the one-at-a-time assignment heuristic: 

Step 1. Optimal operation assignment: First, assign the operations to machines by 

relaxing the tooling constraints through the following LP model 

(OPT1) Maximize      
1 1

n m

ij ij
i j

w X
= =
∑∑  

subject to         
1

m

ij i
j

X W
=

≤∑   i∀  

    
1

n

ij j
i

X C
=

≤∑   j∀  

   0ijX ≥   ,i j∀  

Step 2. Calculate tool contributions (twkj) on each machine, i.e. the sum of the 

weights of the operations that are assigned to machine j and require tool k. 

twkj=
( | ( ))

ij ij
i k l i

w X
∈
∑      ∀k,j 

Note that twkj can be interpreted as an amount of reduction in objective 

function when tool k is removed from machine j.   

Assign the tools to machines to maximize total tool contribution by the 

following model: 
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(OPT2) Maximize       
1 1

t m

kj kj
k j

tw Z
= =

∑∑  

subject to 
1

t

kj j
k

Z s
=

≤∑   j∀  

     
1

m

kj k
j

Z r
=

≤∑   k∀  

{ }0,1kjZ ∈   ∀k,j 

 
Step 3. Optimal operation assignment with the tools assigned in Step 3 is found as 

follows: Set wij to a negative value if any tool from l(i) is not assigned to 

machine j. As we are maximizing, Xij will be zero if wij is negative. Solve 

(OPT1), i.e. the optimal operation assignment model with updated weights. 

 
Step 4. Greedy assignment: Fixing the already assigned operations and tools, the 

remaining ones are allocated according to the greedy heuristic defined in 

Section 4.2.1. We consider the tools that are already on the tool magazines 

of the machines, while deciding on the operation assignments. 

 

 We now show that the constraint set of OPT2 is totally unimodular, therefore 

it can be solved in polynomial time. This result implies that Lower Bound 2 can be 

found in polynomial time, as well. 

 
Theorem 4.5 The constraint matrix of OPT2 is totally unimodular. 

Proof Constraint matrix of OPT2 is same as the constraint matrix of SLR2, which is 

proved to be totally unimodular in Theorem 4.4. Therefore, we can conclude that 

OPT2’s constraint matrix is also totally unimodular.                                                   �  

Hence, we can use LP relaxation of the model and still obtain all binary Zkj 

values.   

 

4.2.3 Lower Bound 3 (Matching-Based Heuristic) 

  

In place of selecting one operation, machine pair at-a-time, Lower Bound 3 

selects m ‘operation-machine’ pairs at-a-time. In doing so, it applies the matching 

algorithm and makes one-to-one assignment of operations to machines in each 
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iteration. We assign the operations and necessary tools based on a maximum 

weighted matching algorithm. The aim of a matching algorithm is to find an 

assignment of operations to machines that results in the maximum total weight. The 

network representation of our matching algorithm is given in Figure 4.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Network Representation of the Maximum Weighted Matching Problem 

 

 In the above network, the operations are represented by nodes O1, O2, …, On 

and the machines are represented by nodes M1, M2, …, Mm. The weight of each arc 

from node i to node j is wtij, where wtij is the contribution of assigning operation i to 

machine j, into objective function. The maximum allowable assignment is Min{Wi, 

Cj} and the total weight of this assignment is wij*Min{Wi, Cj}. We try to send flow 

from operation nodes to machine nodes simultaneously in each iteration.      

 

The steps of matching-based heuristic is as follows: 

 
Step 1. Construct a bipartite graph containing operation and machine nodes. 

Calculate the weight of an arc from operation i to machine j, wtij as 

wij*Min{Wi, Cj}. Set wij a negative value, if operation i cannot be assigned 

to machine j due to either the lack of any required tool or the violation of 

wtnm 

. 

. 

. 

.

.

.

wt11 

O1

O2

O3

On

M1

M2

M3

Mm 
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the tool magazine capacity. In such a case, Xij* will take on value 0 at 

optimality. Stop when all wijs are negative.  

 
Step 2. In order to obtain a maximum weighted matching of operations and machines, 

solve the following linear program: 

(MA) Maximize     
1 1= =

∑∑
n m

ij ij
i j

wt y  

subject to 
1

1
n

ij
i

y
=

≤∑    j∀    

    
1

1
m

ij
j

y
=

≤∑    i∀  

    0 1ijy≤ ≤  and integer  ,i j∀  

  where 

  
1
0ijy 

= 


 

  

Objective function (4.12) maximizes the total weight of assignments. 

Constraint set 4.13 ensures that at most one operation is assigned to a 

machine. By constraint set 4.14, an operation is assigned to at most one 

machine. yijs are set to 0 or 1 by the constraint set 4.15. 

Note that MA is an assignment problem, whose constraint set is shown to be 

totally unimodular. This implies that the integrality constraints are redundant. 

 

Step 3. Assign all the required tools by the operations to the corresponding machines. 

Check the feasibility of the matching. If any of the tools are used more than 

its available number, find all operations using that tool. Remove the least 

weighted operation among those. Continue until a feasible assignment is 

reached. Stop when no further feasible assignment can be done. 

 

Step 4. Update Wi=Wi-Xij 

Cj=Cj-Xij 

sj=sj-|l(i)| 

rk=rk-1   for k∈l(i) 

(4.12)

(4.13)

(4.14)

(4.15)

if operation i is assigned to machine j 

otherwise 
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Go to Step 1. 

 

4.2.4 Lower Bound 4 (m-at-a-time Assignment) 

 

 In this heuristic approach, we combine the ideas underlying lower bounding 

procedures 2 and 3. As in the first 4 steps of one-at-a-time heuristic, we first assign 

operations to machines without considering tooling constraints. Then, according to 

this assignment, we calculate the tool contributions and assign the tools to the 

machines such that the total tool contribution is maximized. After updating the 

weights, the maximum weighted matching algorithm is used to assign the remaining 

operations and tools to the machines. The steps of this heuristic are as follows: 

 
Step 1. Optimal operation assignment: First, assign the operations to machines 

without considering the tooling constraints. Solve the following LP model 

(OPT1) Maximize       
1 1

n m

ij ij
i j

w X
= =
∑∑  

subject to        
1

m

ij i
j

X W
=

≤∑   i∀  

    
1

n

ij j
i

X C
=

≤∑   j∀  

    0ijX ≥   ,i j∀  

Step 2. Calculate tool contributions (twkj) on each machine. 

twkj=
( | ( ))

ij ij
i k l i

w X
∈
∑      ∀k,j 

Assign the tools to the machines in order to maximize the total tool 

contribution by the following model: 

(OPT2) Maximize       
1 1

t m

kj kj
k j

tw Z
= =

∑∑  

subject to 
1

t

kj j
k

Z s
=

≤∑   j∀  

    
1

m

kj k
j

Z r
=

≤∑   k∀  

0 1kjZ≤ ≤  ∀k,j 
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Step 3. Set wij to a negative value if any required tool of operation i is not assigned to 

machine j. Stop, when all wijs are negative. Solve the optimal operation 

assignment model (OPT1) in Step 1 with the new weights. 

 
Step 4. Construct a bipartite graph containing the operation and the machine nodes. 

Calculate the weight of each arc from operation i to machine j, by letting 

wtij=wij*Min{Wi, Cj}. 

 
Step 5. Solve the following linear program: 

(MA) Maximize       
1 1= =

∑∑
n m

ij ij
i j

wt y  

subject to     
1

1
n

ij
i

y
=

≤∑    j∀    

   
1

1
m

ij
j

y
=

≤∑    i∀  

   0 1ijy≤ ≤     ,i j∀  

Step 6. Assign all the required tools to the corresponding machines. Check the 

feasibility of the matching. If any of the tools is used more than its available 

number, find all operations using that tool. Remove the least weighted 

operation among those. Continue until a feasible assignment is obtained. 

Stop when no more feasible assignment can be done. 

 

Step 7. Update Wi=Wi-Xij 

Cj=Cj-Xij 

sj=sj-|l(i)| 

rk=rk-1   for k∈l(i) 

Go to Step 4. 

 

4.2.5 Lower Bound 5 (Lagrangean Heuristic) 

 

 Lagrangean relaxation can be used to obtain lower bounds. Lagrangean 

problem rarely gives feasible solution to the original problem. Once the resulting 

solution is infeasible, the infeasibilities are resolved by a heuristic, which is often 

called Lagrangean heuristic. In our problem, the infeasibilities can be due to 
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assigning operations without their entire tool sets. Our Lagrangean heuristic is a 

greedy procedure whose steps are given below: 

 

Step 1. Let NL be the set of operations assigned according to the Lagrangean solution. 

 

Step 2. Select the maximum weighted operation-machine assignment from set NL. 

Let the selected operation be i′ and the selected machine be j′. Check 

whether  

a. the tool magazine of machine j′ has enough tool slots to accommodate 

the required tools of operation i′,  

b. the tools required to process operation i’ are available on hand. 

 

Step 3. If both of the above conditions are satisfied, assign the tools required to 

process operation i′ to machine j′.  

Let Zkj′=1 k∈l(i′). 

Update Wi′, Cj′, sj′, rk and set NL.  

Go to Step 2 until all operation-machine assignments are considered, i.e. 

stop when set NL is empty.  

We run the above heuristic at each iteration of Lagrangean relaxation 

procedure. The best solution over all iterations defines the solution of the Lagrangean 

heuristic. 

 

4.2.6 A Numerical Example 

 

 We illustrate our lower bounding procedures through the following example 

with n=10 operations, m=3 machines, and t=10 tool types. We assume the weights 

wij, are arbitrary, and set |l(i)|>1, rk=3 and sj=20. The weights, the inventories of the 

operations and machine capacities are given in the following table. 
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1 2 3 Wi 

1 133 104 104 60 

2 71 123 135 252 

3 42 107 66 302 

4 83 61 101 79 

5 91 135 66 551 

6 63 145 59 440 

7 63 107 34 445 

8 108 143 48 533 

9 83 108 73 329 

10 125 56 104 151 

Cj 711 140 551  

  

The matrix that shows the tools required by each operation is given below 

 

 

  
 

1 2 3 4 5 6 7 8 9 10

1 1 0 0 0 0 0 1 0 0 0 

2 0 0 0 0 1 0 0 1 0 0 

3 1 0 0 1 0 0 0 0 0 0 

4 1 1 0 0 0 1 0 1 0 0 

5 0 0 0 0 1 0 0 0 0 1 

6 1 1 1 0 1 0 0 0 0 0 

7 1 0 0 0 0 0 0 1 0 0 

8 0 0 1 1 0 1 0 0 0 0 

9 1 0 0 1 1 0 1 0 1 0 

10 0 0 0 1 1 1 1 0 0 1 

j 

k 

i 

i 
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Now we apply the heuristic procedures to our example problem. 

 

 

Lower Bound 1 (Greedy Heuristic) 

 

Step 0. The sorted list of operation-machine pairs in non-increasing order of wijs is as 

given below: 

(i,j): (6,2), (8,2), (2,3), (5,2), (1,1), (10,1), (2,2), (8,1), (9,2), (3,2), (7,2), (1,2), (1,3), 

        (10,3), (4,3), (5,1), (4,1), (9,1), (9,3), (2,1), (3,3), (5,3), (6,1), (7,1), (4,2), (6,3),  

        (10,2), (8,3), (3,1), (7,3) 

Step 1. Maxij{wij}=w62 hence i′=6, j′=2, l(i′)={1,2,3,5} 

 sj’=20>4=|l(i′)| and rk>0 for k=1,2,3,5 

Step 2. Since the above conditions are satisfied, assign i′ to j′. 

Let X62=Min{W6, C2} =Min{440,140}=140 

Update W6=440-140=300 

  C2=140-140=0 

  s2=20-4=16 

   rk=2 for k=1,2,3,5 

Ignore machine 2 since its capacity is full.  

 

Step1. Maxij{wij}=w23 hence i′=2, j′=3, l(i′)={5, 8} 

 sj’=20>|l(i′)|=2 and rk>0 for k=5, 8  

Step 2. Assign i′ to j′, and let 

 X23=Min{W2, C3} =Min{252,551}=252 

Update W2=252-252=0 

  C3=551-252=299 

  s2=20-2=18 

   r5=1, r8=2 

Ignore operation 2 as X23=W2. 

 

Step 1. Maxij{wij}=w11 hence i′=1, j′=1, l(i′)={1, 7} 

 sj’=20>|l(i′)|=2 and rk>0 for k=1,7 
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Step 2. Assign i′ to j′,  and let 

 X11=Min{W1, C1} =Min{60,711}=60 

Update W1=60-60=0 

  C1=711-60=651 

  s1=20-2=18 

   r1=1, r7=2 

Ignore operation 1, as X11=W1. 

 

Step 1. Maxij{wij}=w10,1  hence i′=10, j′=1, l(i′)={4, 5, 6, 10} 

 sj’=18>|l(i′)|=4 and rk>0 for k=4, 5, 6, 10 

Step 2. Assign i′ to j′, and let 

 X10,1=Min{W10, C1} =Min{151,651}=151 

Update W10=151-151=0 

  C1=651-151=500 

  s1=18-4=14 

   r4=2, r5=0, r6=2, r10=2  

Ignore operation 10 as X10,1=W10. 

 

Step 1. Maxij{wij}=w81  hence i′=8, j′=1, l(i′)={3} 

 sj’=14>|l(i′)|=1 and rk>0 for k=3 

Step 2. Assign i′ to j′, and let 

 X81=Min{W8, C1} =Min{533,500}=500 

Update W8=533-500=33 

  C1=500-500=0 

  s1=14-1=13 

   r3=1  

Ignore machine 1 since its capacity is full. 

 

Step 1. Maxij{wij}=w43  hence i′=4, j′=3, l(i′)={1, 2, 6} 

 sj’=18>|l(i′)|=3 and rk>0 for k=1,2,6 

Step 2. Assign i′ to j′, and let 

 X43=Min{W4, C3} =Min{79, 299}=79 

Update W4=79-79=0 
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  C3=299-79=220 

  s3=18-3=15 

   r1=0, r2=1, r6=1  

Ignore operation 4 as X43=W4. 

 

Step 1. Maxij{wij}=w93  hence i′=9, j′=3, l(i′)={4, 7, 9} 

 sj’=15>|l(i′)|=3 and rk>0 for k=4,7,9 

Step 2. Assign i′ to j′, and let 

 X93=Min{W9, C3} =Min{329, 220}=220 

Update W9=329-220=109 

  C3=220-220=0 

  s3=15-3=12 

   r4=1, r7=1, r9=2  

Ignore machine 3 since its capacity is full. 

 

All machines’ capacities are full; therefore we terminate the procedure here. 

The objective function value is 159214. The resulting assignment is as follows:  

 

  1 2 3 

1 60   

2   252 

3    

4   79 

5    

6  140  

7    

8 500   

9   220 

10 151   

 

 

Lower Bound 2 (One-at-a-time Assignment) 

 

i j 
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Step 1. The operations are assigned to the machines ignoring the tooling constraints 

through OPT1. The resultant assignment found by LP is as follows:  

 

 

  1 2 3 

1 60   

2   252 

3    

4   79 

5    

6  140  

7    

8 533   

9   187 

10 118  33  

 

Step 2. Note that tools 1, 3, 4, 5, 6, 7 and 10 are loaded on machine 1; tools 1, 2, 3, 

and 5 are loaded on machine 2; tools 1, 2, 4, 5, 6, 7, 8, 9 and 10 on machine 3 

according to the assignments in Step 1. We report the contributions of the 

loaded tools in the following table: 

 

 

  1 2 3 

1 7980* 20300 21630 

2  20300 7979 

3 57564  20300  

4  72314  17083 

5  14750 20300 51103 

6  72314  11411 

7  22730  17083 

8   41999 

9   13651 

10 14750  3432 

i j 

k j 
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 * twkj= 
( | ( ))

ij ij
i k l i

w X
∈
∑  

Solving OPT2 by LP, we assign the tools to machines so that the total tool 

contribution is maximized, and hence we obtain the following assignment: 

 

  1 2 3 

1 1 1 1 

2  1 1 

3 1 1  

4 1  1 

5 1 1 1 

6 1  1 

7 1  1 

8   1 

9   1 

10 1  1 

 

We set wij to a negative value (say –1) if any of the tools in l(i) is not assigned to 

machine j.  Therefore, w12, w21, w22, w32, w41, w42, w52, w61, w63, w71, w72, w82, w83, 

w91, w92, w10,2 are all set to –1. Solving OPT1 with the new weights gives the 

following assignment scheme: 

 

  1 2 3 

1 60   

2   252 

3    

4   79 

5    

6  140  

7    

8 533   

9   187 

k j 

i j 
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10 118  33  

 

As the capacities of all machines are full, no further assignments can be done. The 

objective function value is 159676. 

 

Lower Bound 3 (Matching Based Heuristic) 

 

Step1. Construct a bipartite graph containing the operation and the machine nodes. 

Arcs between nodes have the following weights, and the graph below 

represents the network. 

 

  1 2 3 

1 7980* 6240  6240  

2 17892 17220 34020 

3 12684 14980 19932 

4 6557 4819 7979 

5 50141 18900 36366 

6 27720 20300 25960 

7 28035 14980 15130 

8 57564 20020 25584 

9 27307 15120 24017 

10 18875 7840 15704 

 
*wtij= wij*Min{Wi, Cj} 

  

 

 

 

 

 

 

 

 

 

i j 

. 

. 
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Step 2. Solving the linear program for the maximum weight matching gives X81=533, 

X62=140, X53=551. 

Step 3. Assign all the necessary tools to the corresponding machines and see that the 

tooling constraints are satisfied. 

Step 4. Update  

W8=0, W6=300, W5=0 

 C1=178, C2=0, C3=0        

 s1=17, s2=16, s3=18 

 r3=r5=1, r1=r2=r4=r6=r10=2, r7=r8=r9=3 

Steps 1&2. After fixing the assigned operations and tools and solving the matching 

problem again, obtain X10,1=151. 

Step 3. Assigning the tools required by operation 10 to machine 1 does not violate the 

tooling constraints.  

Step 4. Update  

W10=0 

 C1=27        

 s1=14 

 r5=0, r10=1, r7=2 

Steps 1&2. After fixing the assigned operations and tools and solving the matching 

problem again, obtain X11=27. 

Step 3. Assigning the tools required by operation 7 to machine 1 does not violate the 

tooling constraints.  

Step 4. Machine 1’s capacity is fulfilled with this assignment. Terminate the 

procedure. The objective function value is 136696. 

 

Lower Bound 4 (m-at-a-time Assignment) 
 

Step 1,2&3. First three steps of this heuristic is the same with Lower Bound 2; we 

can use the operation and tool assignments of LB 2 found in its Step 2.  

 

 

 

15704 O10 
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  1 2 3 
1 60   
2   252 
3    
4   79 
5    
6  140  
7    
8 533   
9   187 
10 118  33  

 

Step 4. As the capacities of the machines are full, no further assignments can be 

done. The objective function value is 159676. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i j 
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CHAPTER 5 

 

COMPUTATIONAL RESULTS 

 

 

 In this chapter, we discuss the results of experiments designed to evaluate the 

performance of our upper and lower bounding procedures. We first introduce the 

design of our experiments, i.e. the generation of our data. Next, we define the 

performance measures. In the last section, we report and discuss the results of the 

computational tests. 

 

5.1 Design of the Experiment 

 

 To test the performance of our upper and lower bounds, we generate several 

random problem instances. The parameters used to generate these instances are listed 

below: 

1. Problem Size: Number of operations (n), number of machines (m) and 

number of tool types (t) are the parameters that define the problem size. The number 

of operations is set to 50, 75, 100 and 150 in our experiments. The number of 

machines is set to 3, 5 and 7. The number of tool types is set to 10 for 3 machines 

and 20 for 5 and 7 machines cases. Table 5.1 shows the number of operations, 

machines and tool types used in our experiments. 

 

Table 5.1 m, t and n values of our experiments 

m t n 
3 10 50 75 100 150 
5 20 50 75 100 150 
7 20 50 75 100 150 
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2. Weights: Chen et. al (1995) generated the profit per operation uniformly 

between integers $25 and $150. We used the same interval for the weights of 

operations. We consider two weight classes: in the first class, the weight of job i is 

wi, i.e. independent from the machine it is assigned. In the second class the weights 

of the operations depend on the machines, i.e. wij is the weight of operation i on 

machine j. 

3. The number of tools and tool slots: Number of tools of each type available on 

hand (rk) is set to 3 for each tool type. The number of slots on the tool magazine of 

machines (sj) is taken as 20 for all machines. We also use rk =5 and sj =15 cases to 

analyze the effects of rk and sj. 

4. The number of tools required by the operations l(i): We consider two cases of 

|l(i)|. In the first case each operation is assumed to require only one tool, i.e. |l(i)|=1. 

In the second case |l(i)| is a discrete uniform random variable between 2 and 5 when 

the number of tool types is set to 10; and when the number of tool types is 20, |l(i)| is 

discrete uniform random variable between 5 and 10. The tools in l(i) are selected 

randomly.  

5. The inventories of the operations and the capacities of the machines: The 

inventories of the operations (Wi) and capacities of the machines (Cj) are generated in 

terms of minutes by a similar method proposed in Toktay and Uzsoy (1998). 

Capacities are continuous uniform random variables between 0 and 720. The 

inventory of each operation i, Wi, is generated as 720*U(0,1)*0.8.  To see the effect 

of the inventory and capacity, we perform test runs with Wi ∼720*U(0,1)*0.2 and 

Cj∼U(0,360), as well. 

In our main runs, we have 3 different values for n and two different values for 

m; also we consider two cases for weights and two cases for |l(i)|. This results in 48 

(4*3*2*2) combinations and 10 problem instances are generated for each 

combination, which results in a total of 480 problem instances. 

   

The following parameters are used for the Lagrangean relaxation experiments: 

1. The initial values for the Lagrangean multipliers are set to 0.     

2. The initial value for the scalar λk is taken as 1. In the majority of the previous 

studies λk is initialized to 2. However our preliminary runs showed that 1 as 
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an initial value gives better results than 2. We halve λk whenever Lagrangean 

solution cannot be improved in 30 iterations.   

3. As a stopping criterion, we set the number of iterations to 1500. Preliminary 

runs showed that the objective function value of Lagrangean problem starts to 

change in around 200th iteration or never improves. Therefore, we terminate 

the execution of the program if the result of Lagrangean problem does not 

change in the first 500 iterations. 

Lagrangean relaxation and heuristic algorithms are coded in Visual C++ 6.0 

version. Original problems, LP relaxation of the problems and the linear programs in 

Lagrangean relaxation and the heuristic algorithms are solved using CPLEX 8.1 

version. All computational experiments are conducted on an Intel Pentium II 550 

MHz under the Windows NT operating system. 

 

5.2 Performance Measures 

 In evaluating the performance of our upper bounding procedures, we use the 

following performance measures:  

1. The solution time: Average and maximum values of solution times in Central 

Processing Unit (CPU) seconds 

2. The percent deviation from the optimum: Average and maximum values of 

(UB-OPT)/OPT for the cases with known optimal solution 

3. Frequency of optimality: The number of times upper bound gives the optimal 

solution for the cases with known optimum solution 

In evaluating the performance of our lower bounding procedures, i.e. heuristics, 

we use the following performance measures: 

1. The CPU time: Average and maximum values of solution times in CPU 

seconds 

2. The percent deviation from the optimum: Average and maximum values of 

(OPT-LB)/OPT for the cases with known optimal solution 

3. The percent deviation from the upper bound: Average and maximum values 

of (UB-LB)/UB for the cases with unknown optimal solution. For those cases, 

we use UB as an estimator of the optimal solution. 

4. Frequency of optimality: The number of times the best lower bound gives the 

optimal solution for the cases with known optimal solution. 
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For the individual performances of the heuristics, we report frequency of the 

best solution to indicate the number of times each heuristic gives the best solution. 

We use the best of all heuristics as a lower bound. 

 

5.3 Discussion of the Results 
 

 In this section, we discuss the effects of changes in the problem parameters 

on the performances of our procedures. 

 

 Table 5.2 shows the CPU times and deviations of the upper bound from the 

optimal solution for n=50, 75; m=3, 5, 7; |l(i)|=1, |l(i)|>1 and machine dependent and 

independent weights. 
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Table 5.2 The computational results for upper bound for n=50 and 75 

 

 a) |l(i)|=1 

     

i. machine dependent weights (wij) ii. machine independent weights (wi) 

m=3 CPU Time (sec)   (UB-OPT)/OPT*100 m=3 CPU Time (sec)  (UB-OPT)/OPT*100 
n Avg Max Avg Max n Avg Max Avg Max 
50 121.897 135.845 0 0 50 123.648 129.516 0 0 
75 125.453 129.796 0 0 75 132.02 154.772 0 0 

m=5 CPU Time (sec)  (UB-OPT)/OPT*100 m=5 CPU Time (sec)  (UB-OPT)/OPT*100 
n Avg Max Avg Max n Avg Max Avg Max 
50 126.943 130.527 0 0 50 130.474 151.597 0 0 
75 145.413 158.878 0 0 75 146.357 148.693 0 0 

m=7 CPU Time (sec)  (UB-OPT)/OPT*100 m=7 CPU Time (sec)  (UB-OPT)/OPT*100 
n Avg Max Avg Max n Avg Max Avg Max 
50 130.686 138.198 0 0 50 130.887 134.873 0 0 
75 131.211 134.893 0.005 0.053 75 141.038 150.506 0 0 
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    b) |l(i)|>1 

 

i. machine dependent weights (wij) ii. machine independent weights (wi) 

m=3 CPU Time (sec)  (UB-OPT)/OPT*100 m=3 CPU Time (sec)  (UB-OPT)/OPT*100 
n Avg Max Avg Max n Avg Max Avg Max 

50 125.879 132.23 0 0 50 121.036 123.337 0 0 
75 129.122 146.56 0 0 75 127.557 131.028 0 0 

 
m=5

 
CPU Time (sec) 

 
(UB-OPT)/OPT*100 m=5

 
CPU Time (sec) 

 
(UB-OPT)/OPT*100 

n Avg Max Avg Max n Avg Max Avg Max 
50 403.552 423.949 0.974 2.244 50 142.824 153.04 0.526 1.359 
75 157.648 181.831 0.673 2.189 75 155.578 158.738 0.447 1.107 

m=7 CPU Time (sec)  (UB-OPT)/OPT*100 m=7 CPU Time (sec)  (UB-OPT)/OPT*100 
n Avg Max Avg Max n Avg Max Avg Max 

50 155.882 430.328 5.166 13.213 50 158.496 189.364 5.074 7.689 
75 152.101 433.773 1.683 3.937 75 158.085 178.056 1.582 2.359 
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5.3.1 Effects of Number of Operations and Machines  

 

As can be seen from Table 5.2, the CPU time is not significantly affected by 

the changes in n. As mentioned before, we terminate the program if no improvement 

is observed in the Lagrangean solution in 500 iterations. Otherwise, 1500 iterations 

are performed. The CPU time deviations are mainly due to the differences in iteration 

limits used in Lagrangean solutions. Also the deviations from the optimal solutions 

are not sensitive to n, i.e. increasing the number of operations does not increase the 

complexity of the problem. When n is large, the number of alternatives for the 

selected operations becomes high. 

 When n≤75 and m≤5, CPLEX can solve the original problem in small CPU 

times, however the solution times increase considerably with an increase in the 

problem size. For example CPLEX can solve the problem instances with n=50, m=3, 

|l(i)|>1 and arbitrary weights, in less than 1 second, on average. When m is set to 7 

while keeping the other parameters fixed, the average CPU time increases to 

1001.968 seconds. When n becomes 100, the Integer Programming solvers failed to 

solve the majority of the problem instances. As the upper bounds’ performances are 

quite satisfactory, they can be good estimates of the optimal solution. Therefore for 

the cases the optimal solutions are not known, we report LB performances relative to 

UBs, in place of optimal solutions.   

Tables 5.3 and 5.4 show the computational results for the lower bounds using 

the same parameters. Table 5.3 reports the maximum and average CPU times and the 

maximum and average deviation of the lower bounds from the optimal solution as a 

percentage of optimal solution when n=50 and 75. And Table 5.4 gives the CPU 

times and deviation from the upper bound when n=100 and 150.    

As can be seen from the tables, the CPU times are similar when n=50 and 75. 

However, when n becomes 100 and 150, the CPU times increase. As the heuristics 

are based on many iterative solutions, increasing n increases the number of 

alternatives and thereby increasing its solution time. Similar to the results of the 

upper bound, gaps between lower bound and optimum solution are not sensitive to n. 

However, the deviation between lower and upper bounds increase as n increases from 

100 to 150. 
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Table 5.3 The computational results for lower bound when n=50 and 75 

     a) |l(i)|=1 

machine dependent weights (wij) machine independent weights (wi) 
m=3 CPU Time (sec) (OPT-LB)/OPT*100 m=3 CPU Time (sec) (OPT-LB)/OPT*100

n Avg Max Avg Max n Avg Max Avg Max 
50 0.915 2.463 0 0 50 1.073 2.483 0 0 
75 0.788 1.712 0 0 75 0.908 2.353 0 0 

m=5 CPU Time (sec) (OPT-LB)/OPT*100 m=5 CPU Time (sec) (OPT-LB)/OPT*100
n Avg Max Avg Max n Avg Max Avg Max 
50 0.688 1.422 0 0 50 0.792 1.752 0 0 
75 0.732 2.393 0 0 75 0.753 1.502 0.007 0.066 

m=7 CPU Time (sec) (OPT-LB)/OPT*100 m=7 CPU Time (sec) (OPT-LB)/OPT*100
n Avg Max Avg Max n Avg Max Avg Max 
50 0.802 1.972 0 0 50 0.718 1.872 0.076 0.442 
75 0.671 1.522 0 0 75 0.773 1.592 0.08 0.522 
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 b) |l(i)|>1 

machine dependent weights (wij) machine independent weights (wi) 
m=3 CPU Time (sec) (OPT-LB)/OPT*100 m=3 CPU Time (sec) (OPT-LB)/OPT*100

n Avg Max Avg Max n Avg Max Avg Max 
50 0.847 1.702 0 0 50 0.941 2.223 0 0 

75 0.793 1.532 0 0 75 0.747 1.742 0 0 
m=5 CPU Time (sec) (OPT-LB)/OPT*100 m=5 CPU Time (sec) (OPT-LB)/OPT*100

n Avg Max Avg Max n Avg Max Avg Max 
50 2.238 17.445 2.02 8.514 50 2.742 24.755 2.947 9.705 
75 1.754 17.024 3.178 7.435 75 3.084 22.492 3.947 9.476 

m=7 CPU Time (sec) (OPT-LB)/OPT*100 m=7 CPU Time (sec) (OPT-LB)/OPT*100
n Avg Max Avg Max n Avg Max Avg Max 
50 7.823 45.745 11.782 22.628 50 8.013 44.984 9.452 17.819 
75 7.954 50.142 6.004 17.909 75 12.14 67.937 4.721 6.216 
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 Table 5.4 The computational results for lower bound when n=100 and 150 

a) |l(i)|=1 

machine dependent weights (wij) machine independent weights (wi) 
m=3 CPU Time (sec) (UB-LB)/UB*100 m=3 CPU Time (sec) (UB-LB)/OPT*100

n Avg Max Avg Max n Avg Max Avg Max 
100 0.674 1.732 0 0 100 0.706 1.422 0 0 
150 0.573 1.542 0 0 150  0.619 1.351  0  0  
m=5 CPU Time (sec) (UB-LB)/UB*100 m=5 CPU Time (sec) (UB-LB)/OPT*100

n Avg Max Avg Max n Avg Max Avg Max 
100 0.849 2.363 0 0 100  0.664 1.712   0 0  
150 0.59 1.141 0 0 150 0.963  4.005   0 0  
m=7 CPU Time (sec) (UB-LB)/UB*100 m=7 CPU Time (sec) (UB-LB)/OPT*100

n Avg Max Avg Max n Avg Max Avg Max 
100 0.652 2.523 0 0 100  0.716  1.592  0.044 0.19  
150 0.628 1.412 0 0 150 0.651  1.522   0.008 0.079  
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b) |l(i)|>1 

machine dependent weights (wij) machine independent weights (wi) 
m=3 CPU Time (sec) (UB-LB)/UB*100 m=3 CPU Time (sec) (UB-LB)/OPT*100 

n Avg Max Avg Max n Avg Max Avg Max 
100 0.641 1.171 0 0 100  0.627 1.371   0 0  
150 0.581 1.301 0 0 150 0.709  3.505    0  0  
m=5 CPU Time (sec) (UB-LB)/UB*100 m=5 CPU Time (sec) (UB-LB)/OPT*100 

n Avg Max Avg Max n Avg Max Avg Max 
100 2.763 32.656 3.634 15.683 100 1.349  8.261  2.148  7.275  
150 15.302 86.434 17.667 27.648 150 2.721  30.624  3.418  8.814  
m=7 CPU Time (sec) (UB-LB)/UB*100 m=7 CPU Time (sec) (UB-LB)/OPT*100 

n Avg Max Avg Max n Avg Max Avg Max 
100 13.607 69.279 12.788 22.171 100 12.85  82.458  13.325  21.352  
150 36.32 192.253 25.928 37.626 150  15.508 81.026  10.205  16.176  
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It is easily seen from Tables 5.2, 5.3 and 5.4 that the solution times increase 

as m increases. Since the number of binary variables is an increasing function of m, 

an increase in the solution times with an increase in m is an expected result. 

 When the number of machines is 3, both upper and lower bounding 

procedures can easily find the optimal solutions. The solution times are very short 

particularly for the heuristics. As m increases, the CPU times and the deviations from 

the optimum solutions increase for both bounds. This difference is clearer for the 

lower bounds. For the upper bounds, the average deviation from the optimum 

solution is less than 5%, in most cases.  

 

As we discussed, we generate two sets for the weights of the operations. We 

aim to observe the performances of our upper and lower bounds when the weights 

depend on the machine (wij), i.e. arbitrary and when wij=wi for all j, i.e. the weights 

are machine independent. Tables 5.2, 5.3 and 5.4 show the results considering two 

different cases for weights. 

We can conclude from the tables that the performances of upper bound for 

arbitrary wij and machine independent weights wi are very close, but the maximum 

deviation is higher in arbitrary wij case. The average deviation also increases but not 

as much. Note that the average deviations are satisfactory for both cases. Also upper 

bound returns the optimal value in majority of the problem instances. When the 

weights are arbitrary, the CPU times are greater. When the weights are identical for 

the machines, all machines yield the same cost, thereby reducing the number of 

alternatives, which in turn reduces the CPU times.  

Note that the performance of the lower bounds do not change significantly 

with the changes in weights. The average deviations from the optimal solution are 

less than 10% in most cases. The CPU times seem to be greater for machine 

independent weights wi. 

 

5.3.2 Effect of the Number of Tools Required for Processing an Operation 

 

We also investigate the effect of the number of tools required for processing 

an operation, for |l(i)|=1 and |l(i)|>1 cases by analyzing Tables 5.2, 5.3 and 5.4.  

It can be easily seen that the upper bounding procedure performs excellent 

and finds the optimal value in almost all problem instances (179 out of 180) when 
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|l(i)|=1. The deviations from the optimum solution increase for |l(i)|>1 case, but the 

average gaps are still at most around 5%. The gap between upper and lower bounds 

increase when |l(i)|>1. The CPU times of two cases are almost identical.  

The tables also show that the lower bound performs significantly better when 

|l(i)|=1. In most of the problems the optimal solution is found very quickly. When 

multiple tools are required for processing the operations, the CPU time and deviation 

from optimum increases, however the average deviation is still satisfactory. For 

n=100 and 150, the CPU times and difference between upper and lower bounds 

increase as |l(i)| increases. When |l(i)|=1 the number of tool slots in the tool magazine 

of the machines is not a hard constraint as in |l(i)|>1 case, hence the problem 

becomes easier.   

 

5.3.3 Effect of Number of Tool Types 

 

  To analyze the effect of t on the solution time and quality, we generate two 

cases: t=10 and t=20. Table 5.5 shows the upper bound performances for these cases 

where n=75, m=5, arbitrary weights; |l(i)| > 1.  

 

Table 5.5 Computational results for different values of t for upper bound 

 

CPU Time (sec) (UB-OPT)/OPT*100
t Avg Max Avg Max # opt 

10 149.855 375.309 0.268 1.183 1 
20 157.648 181.831 0.673 2.189 1 

   

 

 The CPU times again are not affected from t values. The deviation from the 

optimum value slightly increases when the number of tool types increases. However 

the deviations are still 2%, at most. In both cases, the upper bound returns the 

optimal solution in one out of 10 problem instances. 

 Table 5.6 shows the results of the lower bounds for the same problem 

combinations.  
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Table 5.6 Computational results for different values of t for lower bounds 

 

CPU Time (sec) (OPT-LB)/OPT*100
t Avg Max Avg Max # opt 

10 0.886 6.008 0.482 1.885 4 
20 1.754 17.024 3.178 7.435 0 

 

 

The results show that the procedure performs better when t=10. As the 

number of tool types increases from 10 to 20, the average and maximum CPU times 

double. The average and maximum percentage gaps between the lower bound and 

optimum increase as t increases. Also lower bounds return the optimum solution for 

4 instances when t=10, however when t=20, the optimal solution is never hit by the 

heuristics. The number of binary variables in the problem increases as a function of 

the number of tool types; therefore the difficulty of the problem increases with an 

increase in t.  

 

5.3.4 Effect of the Number of Tools Available in the System 

 

To investigate the effect of number of tools available in the system, i.e. rk, we 

tried two different values when n=75; m=5; t=20; for arbitrary weights and |l(i)| > 1 

case. Table 5.7 shows the performance of the upper bound for different values of rk. 

  

Table 5.7 The computational results for upper bound for different values of rk  

 

CPU Time (sec) (UB-OPT)/OPT*100
rk Avg Max Avg Max # opt 
3 157.648 181.831 0.673 2.189 1 
5 136.978 149.174 0 0 10 

 

Note that, increasing the number of available tools makes the problem easier 

since the number of tools is no longer acts as a constraint. When rk is 3, the algorithm 

gives very small deviations, around 2% at most. But when rk is set to 5, the upper 
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bound finds the optimal solution in all problem instances. The CPU times are slightly 

smaller for rk=5 case. 

We also investigate the performance of the lower bounds for different values 

of rk and report the results in Table 5.8. 

 

Table 5.8 The computational results for different values of rk for lower bounds 

 

CPU Time (sec) (OPT-LB)/OPT*100
rk Avg Max Avg Max # opt 
3 1.754 17.024 3.178 7.435 0 
5 0.492 1.181 0 0 10 

 

 

The results of the lower bounding procedures show significant changes as rk 

changes. With rk=5, heuristics give excellent results, the optimum solution is found 

in all problem instances within 1 second. Also rk=3 case gives very good results, with 

average CPU time of 1.75 sec and the average deviation from optimum around 3%. 

Since the problem becomes easier when rk=5, the results are consistent with our 

expectations. 

 

5.3.5 Effect of Tool Magazine Capacities 

 

To observe the effect of tool magazine capacities on the performances of the 

upper and lower bounds, we perform some experiments for sj=15 and 20. The results 

for n=75; m=5; arbitrary weights; and |l(i)| > 1 cases are given in Table 5.9.  

 

Table 5.9 The computational results for different cases of sj for upper bound 

 

CPU Time (sec) (UB-OPT)/OPT*100
sj Avg Max Avg Max # opt 
15 157.539 165.147 10.569 18.603 0 
20 157.648 181.831 0.673 2.189 1 
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 As can be seen from the table, the problem performs better when sj=20 since 

the number of tool slots is not constraining the problem. The CPU times do not 

change with sj. However the upper bound and optimum solutions become closer 

when the machines have more tool slots.  

 Table 5.10 gives the performance measures of the lower bounds for the same 

problem combination. 

 

Table 5.10 The computational results for different cases of sj for lower bound 

 

CPU Time (sec) (OPT-LB)/OPT*100 
sj Avg Max Avg Max # opt 
15 9.004 59.245 2.257 8.781 4 
20 1.754 17.024 3.178 7.435 0 

    

 

 As expected lower bound behaves different than the upper bound. The 

average and maximum CPU times are greater when sj=15. The lower bound 

deviations are nearly the same for sj=15 and 20. Note that, when sj=15, the lower 

bound returns the optimal solution in 4 out of 10 problem instances. 

 

5.3.6 Effect of Inventory Amounts 

 

 To check the performance for different inventory amounts, we compare two 

cases: Wi=0.2*U(0.720)*720 and Wi=0.8*U(0,720)*720, i.e. low and high inventory 

levels respectively. Table 5.11 gives the results for two cases when n=75, m=5, t=20, 

arbitrary weights; |l(i)| > 1. 

 

Table 5.11 The computational results for upper bound for different values of 

inventories  

 

CPU Time (sec) (UB-OPT)/OPT*100 
Wi Avg Max Avg Max # opt 

0.2*U(0.720)*720 138.512 146.49 19.273 30.095 0 
0.8*U(0,720)*720 157.648 181.831 0.673 2.189 1 
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 We can conclude from the table that the upper bounding procedure performs 

better when Wi∼0.8*U(0,720)*720. The CPU times do not differ significantly.  

 The performance measures of the lower bounds are given in Table 5.12. 

 

Table 5.12 The computational results for different values of inventories for lower 

bound 

 

CPU Time (sec) (OPT-LB)/OPT*100 
Wi Avg Max Avg Max # opt 

0.2*U(0.720)*720 9.235 57.873 5.856 19.447 0 
0.8*U(0,720)*720 1.754 17.024 3.178 7.435 0 

 

 

 For the heuristics, we observe the similar results. In terms of both the 

deviations and CPU times, the heuristic procedures perform better when 

Wi∼0.8*U(0,720)*720. Also CPU times are shorter in this case. Low level of 

inventory is more constraining, that makes the problem more difficult to solve.  

 

5.3.7 Effect of Machine Capacities 

 

To see the effect of different capacities on the performance of upper and 

lower bounding procedures, we compare two cases: Cj∼U(0,360) and Cj∼U(0,720) 

for n=75, m=5, t=20, arbitrary weights; |l(i)| > 1. Tables 5.13 and 5.14 show the 

results for upper and lower bounds, respectively. 

  

Table 5.13 The computational results for upper bound for different values of machine 

capacities  

 

CPU Time (sec) (UB-OPT)/OPT*100
Cj Avg Max Avg Max # opt 

U(0,360) 137.303 141.273 3.948 11.920 1 
U(0,720) 157.648 181.831 0.673 2.189 1 
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Table 5.14 The computational results for different values of machine capacities for 

lower bound 

 

CPU Time (sec) (OPT-LB)/OPT*100
Cj Avg Max Avg Max # opt 

U(0,360) 6.504 29.412 6.945 19.503 0 
U(0,720) 1.754 17.024 3.178 7.435 0 

 

 

The above tables show that both upper and lower bounding procedures give 

better results when Cj∼U(0,720). This result is in line with our expectations as high 

machine capacity case is less constraining. 

 

5.3.8 Individual Performances of the Lower Bounding Procedures 

 

 Finally we investigate the individual performances of the lower bounding 

procedures. The performances are reported on Table 5.15 for arbitrary wij, where the 

average CPU times and average percent deviations from the optimum solution 

((OPT-LB)/OPT*100) for n=50, 75 and the average deviations between lower and 

upper bounds ((UB-LB)/UB*100) for n=100,150 are given. We run LB5, i.e. 

Lagrangean heuristic, while finding an upper bound with Lagrangean relaxation 

procedure, hence no additional time is spent; and therefore the CPU times of LB5 are 

not given in table 5.15. 

As can be seen from the table, all heuristics perform very well for m=3. LB2 

and LB4 find the optimal solution for all problem instances, and LB1 for majority of 

the instances. LB3 and LB5 also find near optimal results. When m increases to 5, 

LB3 seems to dominate other heuristics in terms of the average deviation. For m=7 

case, the performances of LB2, LB3 and LB4 are very close and better than those of 

LB1 and LB5. The CPU time of LB3 is longer than other heuristics however it can 

find better solutions than others in many cases.  

 Table 5.15 also shows that LB1, LB2 and LB4 find the optimal solutions very 

quickly, when |l(i)|=1 for most of the problems, for all values of n and m. LB3 and 

LB5 yield very small deviations, however relatively larger than the others. LB3 
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performs better as the number of operations and machines increase. The solution 

times are not much affected from the increases in n. 
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Table 5.15 Performance measures of lower bounds 

a) |l(i)|=1 

 LB 1 LB 2 LB 3 LB 4 LB 5 
 n Avg CPU Avg Dev Avg CPU Avg Dev Avg CPU Avg Dev Avg CPU Avg Dev Avg Dev

50 0.02 0.065 1.302 0 0.879 4.719 1.46 0 0.747 
75 0.017 0.05 1.073 0 0.839 2.737 1.223 0 0.303 
100 0.019 0 0.939 0 0.682 2.234 1.057 0 0.351 

m=3 

150 0.054 0.002 0.896 0 0.398 2.642 0.946 0 0.511 
50 0.024 0.023 0.903 0 0.746 2.462 1.081 0 0.323 
75 0.057 0 1.041 0 0.618 2.729 1.212 0 0.345 
100 0.029 0 1.348 0 0.89 2.062 1.127 0 0.308 

 
 

m=5 

150 0.054 0.01 0.856 0 0.566 1.295 0.885 0 0.58 
50 0.042 0.064 1.256 0 0.798 3.038 1.111 0 0.264 
75 0.058 0.065 0.977 0.001 0.713 2.73 0.938 0.001 0.661 
100 0.031 0.01 0.941 0 0.551 1.864 1.085 0 0.522 

m=7 

150 0.081 0.01 0.852 0 0.647 1.733 0.934 0 0.402 
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 b) |l(i)|>1 

 LB 1 LB 2 LB 3 LB 4 LB 5 
 n Avg CPU Avg Dev Avg CPU Avg Dev Avg CPU Avg Dev Avg CPU Avg Dev Avg Dev

50 0.02 0.049 1.092 0 0.82 3.037 1.455 0 2.549 
75 0.014 0 1.146 0 0.9 1.903 1.113 0 2.123 
100 0.017 0.011 0.944 0 0.705 2.15 0.899 0 2.044 

m=3 

150 0.044 0 0.84 0 0.586 1.949 0.856 0 1.233 
50 0.025 10.781 0.837 8.322 6.808 3.661 1.742 10.754 21.374 
75 0.038 14.684 1.022 7.313 4.589 4.685 1.368 5.259 25.426 
100 0.052 17.309 1.586 5.16 7.889 5.677 1.525 5.178 25.28 

 
 

m=5 

150 0.056 35.039 0.855 22.927 59.409 19.912 0.888 25.555 38.949 
50 0.034 30.791 1.25 19.469 28.645 20.127 1.365 16.696 27.993 
75 0.041 29.957 0.886 9.413 29.921 10.591 0.97 8.889 26.035 
100 0.035 43.412 0.87 16.967 52.365 18.482 1.159 18.182 32.243 

m=7 

150 0.07 57.217 0.88 33.968 136.261 27.153 0.994 35.02 40.773 
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Table 5.16 gives the number of problems lower bounds give the best result 

among all five for arbitrary wij case. The numbers in parentheses show the number of 

times the lower bounds find the optimum solution. 

 

Table 5.16 The number of problems LBs find the best and optimum solutions 

     a) |l(i)|=1 

 n LB1 LB2 LB3 LB4 LB5 
50 8(8)* 10(10) 0 10(10) 0 
75 8(8) 10(10) 0 10(10) 0 
100 10(10) 10(10) 2(2) 10(10) 0 

m=3 

150 9(9) 10(10) 2(2) 10(10) 0 
50 8(8) 10(10) 0 10(10) 0 
75 10(10) 10(10) 0 10(10) 0 
100 10(10) 10(10) 1(1) 10(10) 0 

m=5 

150 9(9) 10(10) 1(1) 10(10) 0 
50 5(5) 10(10) 0 10(10) 0 
75 6(6) 9(9) 0 9(9) 0 
100 9(9) 10(10) 0 10(10) 0 

m=7 

150 8(8) 10(10) 0 10(10) 0 
     * The numbers in the parentheses give the number of optimal  

      solutions 

 

b) |l(i)|>1 

 n LB1 LB2 LB3 LB4 LB5 
50 8(8) 10(10) 1(1) 10(10) 0 
75 10(10) 10(10) 1(1) 10(10) 0 
100 9(9) 10(10) 3(3) 10(10) 0 

m=3 

150 10(10) 10(10) 1(1) 10(10) 0 
50 3(1) 2(1) 4 5(1) 0 
75 0 2 6 4 0 
100 2 5 3 2 0 

m=5 

150 1 4 6 2 0 
50 1 2 3 4 0 
75 1 4 2 3 0 
100 0 6 3 1 0 

m=7 

150 0 5 5 1 0 
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 As can be observed from the tables, LB1, LB2 and LB4 perform better for 

small m and find many optimal solutions especially when |l(i)|=1. LB3 gives better 

results as m increases and when |l(i)|>1. LB5 does not give the best solution in any of 

the problems.  

Hence we can conclude that in order to get a satisfactory approximate 

solution to our NP-hard problem, all procedures, except LB5, should be used.   
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CHAPTER 6 

 

 CONCLUSIONS AND DIRECTIONS FOR FUTURE 

RESEARCH 
 

 

 In this study, we address the tactical level capacity allocation problem in 

flexible manufacturing systems. Our problem is to assign the operations and their 

associated tools to machines so as to maximize the total weight. We model the 

problem as a mixed integer linear program and prove that this problem is NP-hard in 

the strong sense.  

 We propose upper and lower bounding procedures for solvingthis NP-hard 

problem. Lagrangean relaxation approach with subgradient optimization technique is 

used to obtain strong upper bounds on the optimal objective function value. Several 

heuristic procedures are developed that give near-optimal solutions in small 

computational times.  

 The results of our computational experience have revealed that our upper and 

lower bounding procedures give satisfactorily good solutions in reasonable solution 

times. Lagrangean relaxation and heuristic procedures return the optimal solution for 

many problems and for some others they produce solutions that are quite close to 

optimal ones.  

 We observe from our experiment that the number of machines, m, is the most 

dominant factor that affects the difficulty of the problem. As m increases, the 

complexity of the problem increases significantly. Also the change in number of 

tools required to process an operation, i.e. |l(i)|, adds to the difficulty of the problem. 

When few machines are in the system or when only one tool is required by each 

operation, both the upper and lower bounding algorithms find the optimal solutions 

very quickly. Decreasing the number of tools available, the machine capacities, the 

inventories of operations, the number of tool slots in the tool magazines of the 

machines, the number of tool types, all increase the complexity of the problem. 
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However, the average deviations from the optimal solution are quite small even for 

most difficult problem combination. 

 Lower bounding procedures LB1, LB2 and LB3 produce near optimal 

solutions for easy problems. Also LB4 gives very good results for small problems but 

it dominates others when more difficult problems are considered. LB5 gives near 

optimal solutions for small problems, but for all problem combinations, it is 

dominated by other procedures. Hence, we can conclude that to arrive a good 

approximate solution all lower bounds except LB5 should be considered together.  

 To the best of our knowledge, there is no other study in the literature on 

capacity allocation problem in flexible manufacturing systems considering operation 

assignment and tool allocation decisions simultaneously. Our study can be extended 

to a number of research areas, some of which are mentioned below: 

• In addition to the allocation problem, the sequencing of the operations on the 

machines can be considered. The solution approaches may consider 

simultaneous or sequential solutions of allocation and sequencing problems. 

• We assume machine dependent weights, however machine independent 

capacity usages for the operations. Future research may consider arbitrary 

capacity usages as well.  

• We assume that the operations can be split between the machines. Assuming 

a single machine assignment for each operation can be another consideration. 

In such a case implicit enumeration techniques, like branch and bound 

procedures, can be of great help. 

• We assume that no changeovers can be done after the tool magazines are 

loaded. An interesting extension may be to allow tool changeovers and 

subsequently to detect the sequence of changeovers.  

• We find quite satisfactory upper bounds. The incorporation of those bounds 

to an enumeration scheme can be an interesting research extension. In doing 

so, the quality of the bounds and the effort spent to find them should be well 

established.  

• We approach the problem by relaxing the constraint that links operation and 

tool assignments. The relaxations of other constraints, in particular the ones 

that are relaxed with tooling, can open a new research avenue. 
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