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ABSTRACT

SPECIFICATION AND VERIFICATION OF
CONFIDENTIALITY IN SOFTWARE ARCHITECTURES

ULU, Cemil
Ph.D., Department of Computer Engineering

Supervisor: Assist. Prof. Dr. Halit OGUZTUZUN

March 2004, 247 pages

This dissertation addresses the confidentiality aspect of the information
security problem from the viewpoint of the software architecture. It presents a new
approach to secure system design in which the desired security properties, in
particular, confidentiality, of the system are proven to hold at the architectural
level. The architecture description language Wright is extended so that
confidentiality authorizations can be specified. An architectural description in
Wright/c, the extended language, assigns clearance to the ports of the components
and treats security labels as a part of data type information. The security labels are
declared along with clearance assignments in an access control lattice model, also
expressed in Wright/c. This enables the static analysis of data flow over the
architecture subject to confidentiality requirements as per Bell-LaPadula
principles. An algorithm takes the Wright/c description and the lattice model as

inputs, and checks if there is a potential violation of the Bell-LaPadula principles.

iii



The algorithm also detects excess privileges. A software tool, which features an
XML-based front-end to the algorithm is constructed. Finally, the algorithm is

analyzed for its soundness, completeness and computational complexity.

Keywords: Lattice-based access control, data flow, confidentiality, software

architecture, architecture description language, privilege.
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YAZILIM MIMARILERINDE GiZLILIK BELIRTIMi VE
DOGRULAMASI

ULU, Cemil
Doktora, Bilgisayar Mithendisligi Bolumii

Tez Yoneticisi : Yrd. Dog. Dr. Halit OGUZTUZUN

Mart 2004, 247 sayfa

Bu c¢alisma bilgi giivenlik probleminin gizlilikle ilgili y&niine yazilim
mimarisi bakis agisindan hitap etmektedir. Giivenli bir sistem tasarimi i¢in istenen
giivenlik niteliklerinin, o6zellikle bilgi gizliligi, mimari seviyede tasindiginin
kanitlandig1 yeni bir yaklagim 6nerilmektedir. Wright Mimari Tanim Diline (ADL-
Architecture Description Language) gizlilik yetkilerinin belirtilebilecegi sekilde
genislemeler yapilmistir. Genisletilmis dil olan Wright/c’deki bir mimari tanim,
bilesenlerin arayiiz yapilarina yetki tahsisi yapmakta ve giivenlik etiketlerini veri
tipi bilgisinin bir pargasi olarak ele almaktadir. Giivenlik etiketleri, yetki tahsisleri
ile birlikte, Wright/c’de ifade edilen erisim denetimi orgii modelinde deklare
edilmektedir. Bu yaklasim, Bell-LaPadula prensiplerinin gizlilik gereksinimlerine
bagh kalarak, veri akiginin bir yazilim mimarisi iizerinde statik olarak analizine
imkan tanimaktadir. Wright/c tanimi ve 6rgii modelini input olarak alan bir

algoritma, Bell-LaPadula prensiplerine karsi potansiyel bir uyumsuzluk olup



olmadigini kontrol etmektedir. Algoritma ayrica yetki fazlaliklarini da ortaya
cikarmaktadir. Ek olarak, algoritma i¢cin XML tabanli 6n islemci kullanan bir
yazilim araci gelistirilmistir. Calismanmn son béliimiinde ise algoritmanin

dogruluk, tamlik ve 6l¢timsel karmasiklik agisindan analizi yapilmistir.

Anahtar Kelimeler: Orgii-temelli erisim denetimi, veri akisi, gizlilik, yazilim

mimarisi, mimari tanimlama dili, yetki.
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CHAPTER 1

INTRODUCTION

As technology advances and information management systems become more
powerful, the problem of enforcing information security also becomes more
critical. Thus, the problem of protecting information has been an important issue
since the increasing development of information technology in the past few years,
which has led to the widespread use of computer systems to store and manipulate
information. A great increase in the availability, processing, and storage power of
information systems has also posed serious security threats and increased the
potential damage that violations may cause. “...One of the biggest problems faced
by business, individuals and organizations is the protection of their information
systems from damage due to malicious attacks launched either remotely via the
internet or locally by insiders ...”[51]. Recent security compromises to widely
distributed software such as various web browsers, operating systems, and the
application software have caused widespread enterprisewide outages and are
closely monitored. The majority of the security compromises can be attributed to
one or more weaknesses within the integral components that make up the software.
Therefore, a computer and network system must be protected in terms of
availability, confidentiality, and integrity [51,48,64,70,40,71,69,28,38,75]. These

three information security objectives are separate but interrelated:
- Confidentiality (or secrecy) is related to disclosure of information.
- Integrity is related to modification of information.

- Availability is related to denial of access to information.



In a payroll system, for example, confidentiality is concerned with
preventing an employee from finding out the boss’s salary, integrity prevents an
employee from changing his or her own salary, and availability ensures that

paychecks are printed on time [51].

Security issues, as mentioned above, have many concerns at different steps in
an information flow and different levels of abstraction in an information system.
Higher level of abstraction for a system leads to powerful expressiveness in
constructing the system. Sofiware architecture is emerging as an important
discipline for engineers of software. It has emerged over time as a natural
evolution of design abstractions, as engineers have searched for better ways to
understand their software and new ways to build larger and more complex

software systems.

In this dissertation, we relate studies in two distinct realms, namely
description of software architectures, and access control models, particularly the
lattice-based access control model, to lay a foundation for secure software
architectures (Figure 1.1). Our concern will be on the confidentiality and the
information flow in a system at architectural level. It is a new approach to a secure
system design in which the various representations of the architecture of a
software system are described formally and the desired security properties, in
particular confidentiality, of the system are proven to hold at the architectural
level. We focus on a static analysis of a system (software) architecture during the
design phase to assure end-to-end secure information flow. The confidentiality
properties defined by Bell and LaPadula, namely the ‘simple security property’

and the “* property’, are incorporated into the analysis.

For the architectural description, we adopt the Wright architecture
description language in which component and connector, port and role, style and
configuration aspects are clearly identified. Other architecture description
languages such as UniCon [78] and particularly Rapide [49, 44] were also good
candidates. Wright is chosen because it supports the formal specification and
analysis of interactions between architectural components, and it has already been

well studied. Wright is based on a process algebra called CSP (Communicating



Sequential Processes) [30,29,58,59] to describe the behaviour of entities such as
port, component, role, and connector. The CSP theory is an attractive base for the
analysis of high level system description because the theory provides an expressive
process-algebraic programming notation, a range of semantic models of varying
degrees of abstraction, powerful notions of refinement and abstraction, and a
useful set of equality and refinement laws (see Appendix B for an overview of the

basics of CSP theory).

Research on
Software Architecture
(ADLs)

Research on

Dataflow based
confidentiality

Construction of
Secure Software
Architectures

Figure 1.1: General view of the study

In order to enhance the architectural description of a software system to
address end-to-end security issues, we extended the Wright ADL by labeling its
constructs with sensitivity levels. The extended Wright, called Wright/c, enables
static analysis of data flow over an architecture subject to confidentiality

requirements as per Bell-LaPadula principles.

For the static analysis, an algorithm that perform data flow analysis and

potential violation detection with respect to Bell LaPadula confidentiality



principles is developed. The algorithm also reports excess authorizations in the

configuration.

This dissertation is structured as follows: Chapter 2 and Chapter 3
summarize the relevant background on security and software architecture,
respectively. Architecture description languages, particularly Wright ADL, is also
described in Chapter 3.

Chapter 4 presents the approach that we propose together with the
specification of confidentiality authorizations at architecture level using Wright/c.
The chapter also presents the structure of the access control lattice model, which is

constructed separately from the architectural description.

In Chapter 5, the verification process that performs the static data flow
analysis, the potential violation detection, and the excess authorization detection
with respect to Bell LaPadula confidentiality principles are introduced. Then, an
illustration of the process on a simple Wright/c example, called Secure Print
Server, is presented. The algorithm that performs the verification process is
analyzed in terms of its completeness, soundness and the computational (running

time and space) complexity.

A front-end of the verification process is described in Chapter 6. The inputs
of the front-end, namely Wright/c description of the software system and access
control lattice model, are represented in XML notation. The front-end maps these
inputs (concrete syntax) to an abstract syntax. The abstract syntax is, then, used in

the verification process.

In Chapter 7, an application of the implementation of the verification process
to a case study, namely ProjectIT, is illustrated. The Wright/c description of the
system and the result of the verification process by elaborating each step are

presented.

Chapter 8, the conclusion chapter, also discusses the approach with its

potential.



Lastly, in the appendices A through H, the complete Extended BNF (EBNF)
description of Wright/c, the CSP fundamentals, the behaviour of Wright
descriptions, the XML schema description of the access control lattice models, the
XML schema description of Wright/c, the description of the ProjectIT (the
example given in Chapter 7) in XML notation, the Wright/c description of the
Extended AEGIS problem, and the source codes of the verification process

implemented in ML are presented, respectively.



CHAPTER 2

LITERATURE ON ACCESS CONTROL AND
CONFIDENTIALITY

Confidentiality (secrecy), as stated before, is related to disclosure of
information. Protecting the confidentiality of information manipulated by
computer systems is an increasingly important problem [62]. There is a little
assurance that current systems protect data confidentiality and integrity. Computer
systems commonly incorporate untrusted, possibly malicious hosts or code,
making assurance of confidentiality difficult. The standard way to protect
confidential data is access control: some privilege is required in order to access
files or objects containing the confidential data. Contemporary computer systems,
on the other hand, consider end-to-end behaviour of the system using the
information flow specifications, that is, dissemination of information among

objects throughout the system [62,18,17,63].
More recently, it has become common to add two more properties [40]:

- authentication : assuring that each participant is who they claim to be;

and

- non-repudiation : assuring that a neutral third party can be convinced

that a particular transaction or event did (or did not) occur.

In order to achieve these aims, a variety of techniques is used, namely

prevention, detection, and reaction [51].



Attack prevention can be enforced through firewalls and guards, boundary
and access controls with security policies, authentication and encryption. By
restricting access to computer systems through known ports, firewalls serve to
eliminate malicious attacks through network services. Additionally, in typical IT
systems, protection against unauthorised user activities is usually provided via
login authentication and access controls. The majority of authentication schemes
are based upon traditional password methods. Although it is simple to use, they
provide an authentication judgement at the beginning of a user session. From that
point, protection against unauthorised user activity is reliant upon access controls
applied to specific data and resources. Attack prevention also includes
vulnerabilities testing that looks for points (a weak password, for example) of a
computer and network system which make the system vulnerable to cyber attacks.
Many security problems are directly or indirectly related to vulnerabilities in
security critical programs (like priviledged programs). Intruders exploit
vulnerabilities in these programs to gain unauthorized access or to exceed their
privileges in a system. Moreover, Information Systems should be survivable and
should continue to perform critical functions even in the presence of vulnerabilities
susceptible to malicious attacks. To enable vulnerable systems to survive attacks, it
is necessary to detect attacks before they damage the system by impacting

functionality, performance or security.

Attack detection identifies cyber attacks passing through the barriers of
prevention on a computer and network system. Despite the best efforts to uncover
and remove security errors, vulnerabilities in computer systems may still exist,
enabling outside attackers to gain entry to systems and inside attackers to exploit
their privileges. That is, completely preventing breaches of security seems
unrealistic. Intrusion detection is an approach to coping with these problems
besides testing and verification. Intrusion detection addresses the attack detection
problem by run time monitoring and comparison against events known to be

unacceptable. It should have a specific reaction procedure.

Attack reaction takes control actions to get an attacker out of a computer and

network system, maintains the system operation even in a degraded condition,



eventually recovers the system back to a normal state. Reactions are programs to

respond to attacks, and they are usually automated.

Attack isolation reveals the source and path (course of actions or core events)
of a cyber attack leading to observed attack symptoms as well as affected entities,
including users, files, programs, hosts, and/or domains. It can be considered as the
reaction’s primary goal to isolate compromised components by localizing and/or

minimizing damage in a secure environment.

As information systems are getting more complex and higher value asset of
organizations, intrusion detection subsystems are becoming one of the main
concerns in developing systems. Therefore, attack assessment, which determines
the degree and nature of damage to affected entities with respect to overall security
risk, gets importance as a part of attack reaction after a successful attack

(penetration).

In general, there are three layers of security risk threads that need to be
considered within the context of the software [92]: operating systems, other legacy
systems, and the high speed networking infrastructure. From a software design
point of view, the software quality factors are threatened by security risks. By
taking security risks and the threats into consideration and their impact on the
quality of the target system, software architects and designers need to select
protection mechanisms via the applications of appropriate security technologies
and approaches to provide necessary safeguards. Software security, therefore,
needs to be considered from the very beginning of the software development cycle.
Contemporary enterprises can no longer afford to consider software security only
after the application has been constructed: irreparable security compromises may
have already been exposed, and fixing such problems requires tremendous effort

and resources.

Access control, together with authentication and audit provides the
foundation for information and system security. It determines what one party will
allow another to do with respect to resources and objects. Access controls usually

apply after authentication has been established.



2.1 Security Related Terminology

The following is the definition of terms related to this work
[51,66,10,41,73,71,69,74]:

- Security policy: 1t defines the high level rules according to which access

control must be regulated.

- Security model: It provides a formal representation of the access control
security policy and its working. The formalization allows the proof of
properties on the security provided by the access control system being

designed.

- Security mechanism: It defines the low level (software and hardware)
functions that implement the controls imposed by the policy and formally

stated in the model.
- user: An individual who initiates the action in a system.
- object: A passive entity storing information.

- inactive object: The first step of the creation of an object which has not

been initialized yet.

- active object: The second step of the creation of an object. It is initialized

and ready to be used.

- subject: A user or program executing on behalf of a user. A user may
sign on to the system as different subjects on different occasions,
depending on the privileges the user wishes to exercise in a given session.
Therefore a user may have many subjects while a subject should only
belong to a specific user. An object can also behave as a subject in a

system.

- Access rights (privileges): Set of allowable operations on objects that can
be requested to be performed by a subject, for example, read, write,

execute etc.



- Information-flow  policies: Confidentiality policies that control
information to prevent it to flow to a location where the policies are

violated.

- Information-flow controls: Mechanisms that enforces information-flow

policies.

- Information flow analysis : Statically determining how a program’s
outputs are related to its inputs, i.e. how the former depend, directly or

indirectly, on the latter.

- Channels : Mechanisms for signalling information through a computing

system.

- Covert channels : Channels that exploits a mechanism whose primary
purpose is not information transfer. For example, Resource exhaustion
channels signal information by the possible exhaustion of a finite, shared

resource, such as memory or disk space.

- Noninterference : Secure information flow, that is, no unauthorized flow

of information is possible.
2.2 Access Control Policies

There are several access control models in use. They include lattice-based
models (Bell-LaPadula Model [41,71,12], the Biba integrity model [13,52,71],
Denning’s information flow model [17,71]), the access matrix model [72], logic-
based models [8.,9], certificate-based models [64] etc. Most of these models

depend on the traditional access control policies given below [74,69,33]:

i. Discretionary Access Control (DAC) [68,64,70,41] is based on the idea
that the owner of data should determine who has access to it. DAC allows data to
be freely copied from an object to another object, so even if access to the original
data is denied, access to a copy can be obtained. The controls are discretionary in
the sense that a subject with certain access permission is capable of passing that

permission (perhaps indirectly) on to any other subject. Individual users are

10



owners of objects and therefore have complete discretion over who should be
authorized to access the object and in which mode (e.g. read or write). Ownership

is usually acquired as a consequence of creating the object.

DAC, which is the most common type of control mechanism implemented in
information systems today, has an inherent weakness that information can be
copied from one object to another, so access to a copy is possible even if the owner
of the original does not provide access to the original. Moreover, such copies can
be propagated by Trojan Horse software without explicit cooperation of users who
are allowed to access to the original. For example, assume that Alice owns an
object and that she decides to grant Bob access to it. Later on she changes her
decision and revoke Bob’s access. Now a question that arises is whether or not
Bob can further grant access to Charlie. In turn this causes the problems of
cascading revoke. Suppose also that Alice grants a permission X to Bob with the
grant option. Bob then grants X to Charlie, followed by a grant X from Alice to
Charlie. Now Alice revokes X from Charlie. Now the question arises: “Should
Alice’s revoke override Bob’s grant or should Bob’s grant override Alice’s
revoke?”. Therefore, discretionary policies do not enforce any control on the flow
of information once this information is acquired by a process. This makes it

possible for processes to leak information to users not allowed to read it.

ii. Mandatory Access Controls (MAC) [71,41,40], confine the transfer of
information to one direction in a lattice of security labels (for example, low to high
but not high to low). MAC emerged from confidentiality requirements of the
military but has broad applications for integrity and separation objectives. MAC
provides a restriction to access to objects based on the sensitivity (represented by a
label) of the information contained in the objects and the formal authorization (i.e.
clearance) of subjects to access information of such sensitivity. For MAC, all the
resources in the computer (OS files, processes, users, tables, etc.) are labeled with
a tag which indicates the sensitivity of that object or row of data. Data is marked
by at least its classification (e.g. unclassified, restricted, secret, top secret) and
possibly by compartments that designate specific subject area and restrict the data

further to certain groups (e.g. a confidential project).
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MAC ensures that a user can only gain access to an object or data if the
relationship between the user’s clearance and the object’s or data’s label should
permit the access. So, a user who has logged into a system at the level ‘secret’ may
be able to read secret and unclassified data, but he cannot read top secret data and
he can update only secret data. This form of access control is called mandatory
because it is always enforced by the operating system and the database server
automatically and cannot, in general, be changed at the discretion of the owners of
the data, unlike discretionary access control provided by ‘ordinary’ operating

system and database servers.

For mandatory access control, data have associated sensitivity labels that also
apply to copies and derivatives of the data, so as to prohibit downward information
flow. For DAC, data are not labeled and copies of the same information can have

independent access control lists.

Throughout the manuscript, sensitivity label and secrecy label are used

interchangeably.

Having given the traditional access control policies, in the next section, a

number of access control models and studies based on these policies are presented.
2.3 Access Control Models

In this section, several access control models are introduced. These models
include formal security models like lattice model (Bell and LaPadula model, Biba
model), access matrix model, logic-based models and alternative access control
policies to traditional discretionary and mandatory access controls, namely role-
based access control (RBAC) and task-based access control (TBAC). Moreover,
language based information flow security that recently appeared as a new approach

for data confidentiality is presented.
2.3.1 Access Matrix Model

The access matrix model provides a framework for describing discretionary
access control. It was first proposed by Lampson [39] for the protection of

resources within the context of operating systems, later refined by Graham and
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Denning [26], the model subsequently formalized by Harrison, Ruzzzo and
Ullman (HRU model) [27]. The model is called access matrix since the
authorization state, meaning the authorizations holding Access Matrix Model for
information security is based more on abstraction of operating system structures
than those on military security concepts [41]. There are three principal components
in the access matrix model: a set of objects, a set of subjects which may
manipulate the objects , and a set of rules governing the manipulation of objects by
subjects. A subject can be regarded as a process, i.e. a program in execution. Each
subject is associated with a single user on behalf of whom the subject executes. In
general, a user may have multiple subjects concurrently running on the user’s
behalf in the system. Different subjects associated with the same user may obtain
different sets of access rights. Objects are typically files, terminals, devices and
other entities managed by the operating system. The access matrix is a two
dimensional array with one row per subject and one column per object. The entry
for a particular row and column reflects the mode of access between the
corresponding subject and object. A subject can also be an object in the system, so
they are viewed as a subset of the objects. The cell for row s and column o is
denoted by [s,0/, and contains a set of access rights specifying the authorization of
subject s to perform operations on object o. For example, read € [s,0] authorizes s
to read o. Only those operations which are authorized by the access matrix can be

executed.

Access matrix is a dynamic entity. The individual cells in the matrix can be
modified by subjects. For example, if subject s is the owner of object o (i.e.
owne[s,o]) then s typically can modify the contents of all the cells in the column
corresponding to o. Therefore, such kind of controls are said to be discretionary.
The access matrix also changes due to addition and deletion of subjects and
objects. Graham and Denning provide an example set of rules for creating and
deleting objects and granting or transferring access permissions that alter the
access matrix. These rules, together with the access matrix, are at the heart of the
protection system, since they define the possible future states of the access matrix.

The basic problem with this, like DAC, is that there is no constraint on copying
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information from one object to another, i.e. cascading granting and revoking. This

may also cause Trojan Horse kind of flaws.

All accesses to objects by subjects are assumed to be mediated by an
enforcement mechanism that refers to data in the access matrix. This mechanism,
called reference monitor [57], rejects any accesses (including improper attempts to
alter the access matrix data) that are not allowed by the current protection state
and rules (protection state is the privileges, such as security level, type, role etc.,

possessed by the individual subjects).

The access control matrix mentioned above called as HRU is first formalized
by Harrison, Ruzzo and Ullman [27]. It has broad expressive power. On the other
hand, HRU has weak safety properties (i.e. the determination of whether or not a
given subject can ever acquire access to a given object). Safety problem is closely
related to the fundamental flaw of DAC which is vulnerable to Trojan Horse
software. Sandhu [72] demonstrated that strong typing is the key concept for
achieving strong safety properties. Strong typing requires that each subject or
object is created to be of a particular type which thereafter does not change. He
defines the Typed Access Matrix (TAM) model by introducing the notion of
strong typing into HRU.

Although the matrix represents a good conceptualization of authorizations, it
is not appropriate for implementation. It is usually enormous in size and sparse
(i.e. most cells are empty). Since storing a matrix in two dimensional array is
waste of memory space, the following approaches are practically followed for

implementation [64]:
i. Authorization Table

Non empty entries of the matrix are reported in a table with three columns,
corresponding to subjects, actions and objects. Each tuple in the table corresponds
to an authorization. The authorization table approach is generally used in DBMS
systems, where authorizations are stored as catalogs (relational tables) of the

database.
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ii. Access Control List (ACL)

The matrix is stored by column. Each object is associated with a list
indicating for each subject, the actions that the subject can exercise on the object.
Hence, identity-based access control policies, including individual-based, group-
based and role-based policies, can be realized in a straightforward way using
access control lists. ACL mechanisms are best suited to situations where there are
relatively few users (individuals, groups, roles, etc.) needing to be distinguished,

and where the population of such users tends to be stable.
iii. Capability

The matrix is stored by row. Each user has an associated list, called
capability list, indicating, for each object, the accesses that the user is allowed to
exercise on the object. A capability is effectively a ticket, possessed by an initiator,
which authorizes the holder to access a specified target in specified ways.
Capabilities can be passed from one user to another, however they cannot be

altered or fabricated by anyone apart from the responsible authority.

Capabilities and ACLs present advantages and disadvantages with respect to
authorization control and management. With ACLs it is immediate to check the
authorizations holding on an object, while retrieving all the authorizations of a
subject requires the examination of the ACLs for all the objects. Analogously, with
capabilities, it is immediate to determine the privileges of a subject, while
retrieving all the accesses executable on an object requires the examination of all
the different capabilities. These aspects affect the efficiency of authorization

revocation upon deletion of either subjects or objects.

It is possible to combine ACLs and capabilities. Possession of a capability is
sufficient for a subject to obtain access authorized by that capability. In a
distributed system, this approach has the advantage that repeated authentication of
the subject is not required. This allows a subject to be authenticated once, obtain
its capabilities and then present these capabilities to obtain services from various
servers in the system. Each server may further use ACLs to provide finer grained

access control.
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2.3.2 Role-based Access Control (RBAC) Models

RBAC requires that access rights be assigned to roles rather than to
individual users (as in DAC) [27,73,67,97]. IN RBAC permissions are associated
with roles, and users are made members of appropriate roles thereby acquiring the
permissions of the roles. This simplifies management of permissions. Roles are
created for the various job functions in an organization and users are assigned roles
based on their responsibilities and qualifications. Users can be easily reassigned
from one role to another. Roles can be granted new permissions as new
applications and systems are incorporated, and permissions can be revoked from

roles as needed.
2.3.3 Task-based Access Control (TBAC) Models

Like RBAC, task based access control is related mainly administrative and
management part of the access control issues. RBAC and other models that are
presented later in this section deal with the fine-grained protection of individual
objects and subjects in the system. Therefore, they lack the concepts and
expressiveness of an information oriented model that captures the organizational

and distributed aspects of information usage.

TBAC, on the other hand, is concerned with modelling and management of
the authorizations of tasks (activities) and workflows in information systems
[85,86,65]. TBAC models access controls from a task-oriented perspective than
the traditional subject-object one (see Access Matrix Models). Access mediation
involves authorizations at various points during the completion of tasks in
accordance with some application logic. In TBAC, there is a notion of protection
states which represent active permissions that are maintained for each
authorization step. The protection state of each authorization step is unique and
disjoint from the protection states of other steps. Each authorization state
corresponds to some activity or task within broader context of a workflow.
Traditional subject-object models have no notion of access control for processes or
tasks. Additionally, TBAC recognizes the notion of a life cycle and associated

processing steps for authorizations. Moreover, it dynamically manages
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permissions as authorizations progress to completion. Also, TBAC understands the
notion of “usage” associated with permissions. Thus an active permission resulting
from an authorization does not imply a licence for an unlimited number of
accesses with that permission. Rather, authorizations have strict usage, validity,

and expiration characteristics that may be tracked at run time.

The main objective is the preservation of integrity, but confidentiality

applications are also possible.
2.3.4 Lattice-based Access Control Models

In this section, we recall basic notions on orders and lattices. The
relationship of the information flow policy proposed by Denning [71], and the
lattices also is presented. Next, the Bell LaPadula confidentiality model, which is

used in our study and based on the lattice based access control models, is given.

Definition (Partial order): A relation R on a set is called a partial order if it is
reflexive, antisymmetric and transitive. 4 set S together with a partial ordering R is

called a partially ordered set, or poset, and it is denoted by (S,R). [61]

For example, let p(4) =21 = X be the power set of a set 4. That is, X is the set
of subsets of A. The relation of set inclusion () on X is a partial ordering,

because, it is:

- reflexive : a < a for every subset a of X,
- antisymmetric : if a < b and b < a, then a = b for every subsets a, b of X,

- transitive: @ € b and b C ¢ implies a C ¢, where a, b and ¢ are subsets of

X

Definition (Hasse diagram): An undirected graph, which is derived after the
following reductions are applied to a directed graph for a finite poset, is called a

Hasse Diagram:
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- since a loop is present for each node (reflexivity), these loops are

removed,
- all edges present because of transitivity are removed,
- all the arrows on the directed edges are removed .

For example, Figure 2.1 illustrates the construction of a hasse diagram for

({1,2,3,4}.,5)

Definition (upper bound, lower bound, the least upper bound, the greatest lower

bound): For a subset 4 of a poset (S, <), if u is an element of S such that a <u for
all aeA, then u is called an wupper bound of A. Likewise, if u < a for all elements
of ae A, then u is called a lower bound of A. An element x is called the least upper
bound of a subset A4 if x is an upper bound of 4 and x<'z for all z, where z is an
upper bound of 4. Similarly, an element y is called the greatest lower bound of a

subset 4 if y is a lower bound of 4 and z <y whenever z is a lower bound of 4.

4
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O :

1 1
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Figure 2.1: Construction of a Hasse diagram



Definition (Directed set): 1f (S, <) is a partial order, then a subset DCS is directed
if every finite SocD has an upper bound in D; in other words, there is ye D such

that x<y for all xe Sy [60].

Definition (lattice): A partially ordered set in which every pair of elements has
both a least upper bound and a greatest lower bound. For example, the poset

diagram in Figure 2.2a is a lattice whereas Figure 2.2b is not.

The poset depicted in Figure 2.2b fails to be a lattice since the elements » and
¢ have no least upper bound. Although d, e, and f are upper bounds, none of them

precede the other two with respect to the ordering of the poset.

Definition (the principle (order) ideal): Let L be a lattice, and let a be an element
of the set L. The largest set of elements whose least upper bound is a is called the

principle (order) ideal of L generated by a.
(a] ={xe L:x<a}

Definition (the principle (order) filter): Let L be a lattice, and let a be an element
of the set L. The largest set of elements whose the greatest lower bound is a is

called principle (order) filter of L generated by a.

[a) ={xe L:a<x}

(a) (b)

Figure 2.2: Example Poset diagrams
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A lattice model can be used to represent different information flow and
access control policies. The Bell and LaPadula (BLP) model [41,71,12,46,42]
which is the first security model developed using MAC policy is a lattice-based
access control model to deal with information flow in computer systems.
Information flow is clearly central to confidentiality and also applies to integrity to

some extent.

Information flow policies are concerned with the flow of information from
one security class to another [18, 62, 17]. In a system, information actually flows
from one object to another. Information flow is usually controlled by security
classes which corresponds to disjoint classes of information. Each object a is
bound to a security class which specifies the security class associated with the
information stored in a. Whenever information flows from an object x to an object
v, there is an accompanying information flow from the security class of x to the
security class of y. There are two methods for binding objects to security classes:
static binding, where the security class of an object is constant, and dynamic
binding, where the security class of an object varies with its contents. Users may

be bound, usually statically, to security classes referred to as clearance.
Denning defined the concept of an information flow policy as follows [71]:

A triple <SC, —,® > where SC is a set of security classes, > < SCx SC is a
binary (can-flow) relation on SC and @ : SC x SC — SC is a binary class-

combining or join operator on SC.

Denning also showed that an information flow policy forms a finite lattice,
that is, with the sensitivity levels as nodes of a graph, the graph formed by the

information flow relationship should be acyclic (Denning’s axioms):
1. The set of security classes SC is finite.

2. The can-flow relation — is a partial order on SC. That is reflexive,
transitive and antisymmetric binary relation. 4—B denotes that

information can flow from the security class 4 to the security class B.
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3. SC has a unique lower bound with respect to — . This requires that SC
has a lower bound L, that is, L — A for all 4eSC. It acknowledges the
existence of public information (i.e. the least sensitive information) in the

system.

4. The join operator @ is a totally defined least upper bound operator. Join
operator combines the information from any two security classes and
gives the result a label. It can be applied to any number of security
classes. Thus, least upper bound of {Aj, A, ..., Ay} can be computed by

applying the join operator’s associativity property.
Similar to can-flow relation, a dominance relation was defined as:

A 2 B (read as A dominates B) if and only if B — A. The strictly dominates
relation > is defined by A4 > B if and only if 4 = B and 4 # B. A and B are

comparable if A > B or B > A4; otherwise they are incomparable.

The key idea in BLP is to augment discretionary access controls with
mandatory access controls to enforce information flow policies. Each subject and
object has an attribute associated with it to indicate its sensitivity level. The
information flow among these sensitivity levels forms a lattice. All authorizations
are controlled by a reference monitor which enforces two rules for information

flow:

1. Simply security property: No user may read information classified above

his clearance, a label given to subjects (“No read up”).

2. * property: No user may lower the classification of information (“No
write down”), that means, a subject s can write to an object o only if the

clearance of s is dominated by the security label of o.

These rules ensure that information can only flow from low sensitivity level
to high sensitivity level and prevent information flows from high sensitivity level

to low sensitivity level.
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There are three more axioms that govern the behavior of the system [41]:

Tranquility principle: A subject cannot change the security level of an

object.

Nonaccessibility of inactive objects: A subject cannot read the contents of an

inactive object.

Rewriting of inactive objects: A newly activated object is given an initial

state independent of any previous incarnation of the object.

BLP takes a two step approach to access control. First is a discretionay
access matrix D, whose contents can be modified by subjects. However,
authorization in D is not sufficient for an operation to be carried out. Second, the
operation must be authorized by the mandatory access control policy, over which

users have no control.

An interesting aspect of *-property is that an unauthorized subject can write
a secret file. It means that secret data can be destroyed or damaged by an
unauthorized subject. To prevent such an integrity problem, *-property is
sometimes used in the form that requires a subject can write only objects at the

same level of its own, not ‘up’.

Another approach in Bell LaPadula model is that a subject may violate
*-property but does not violate designer’s intuitive security [42]. In this approach,
the subject, called as the trusted subject, is something that is allowed to violate the
*-property provided that the security compromise that the property is designed to
guard against does not happen. This can be achieved through filtering [42] as

given below.

Definition (Container) : Let SC be a partially ordered (<) set of security classes.

Let SO be the set of all subjects and objects. Let TS be a special subset of subjects,
called trusted subjects. The set of all objects OB is a partial ordered set with partial

order-contains. If A contains B, then A is called a container of B.
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Definition (Filtering-Trusted subjects) : Let L <M < H be three security classes
in SC. A trusted subject of class H is allowed to read an object of class L from a
container of class M and write to a container of any class lying between L and M

inclusive.

In this approach of Bell LaPadula Model, the trusted subjects only allowed to

do filtering, the usual downgrading is not permissible.

The original Bell and LaPadula model dealt only with the unauthorized
disclosure of data (confidentiality), but extensions of it by Biba added the concept
of integrity to deal with the unauthorized modification of data [71,52,13]. Integrity
can be treated as a dual to confidentiality, enforced by controlling information
flows. Confidentiality requires that information be prevented from flowing to
inappropriate destinations: dually, integrity requires that information be prevented
from flowing from inappropriate sources [51]. Integrity has an important
difference from confidentiality: a computing system can damage integrity without

any interaction with the external world, simply by computing data incorrectly.

Biba noticed a class of threats based on the improper modification of
information that Bell and LaPadula model neglects. These threats arise because
there is often information that must be visible to users at all security levels but
should only be modified in controlled ways by authorized agents. The controls on
modification in the Bell and LaPadula model do not cover this case because they
are based only on the sensitivity to the disclosure of that information. To solve this
problem, Biba introduces the concept of integrity levels and integrity policy. The
integrity level of information is based on the damage its unauthorized modification
could use. Biba proposes the following mandatory controls in analogy with that of

BLP model:

1. Simple integrity property: A subject s can read an object o only if the

integrity level of s is less than that of the object o.

2. Integrity * property : A subject s can write to an object o only if the
integrity level of the subject s is greater than that of the object o.
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Information flow in the Biba model can be brought into line with BLP model
by simply saying that low integrity is at the top of the lattice and high integrity at
the bottom.

Denning E.D. and Denning P.J. developed a certification mechanism [18] for
verifying the secure information flow through a program (a Pascal-like program)
using the properties of a lattice structure among security classes. It is a compile
time mechanism that certifies a program only if it specifies no flows in violation of
the flow policy. Such a certification mechanism facilitates its comprehension and
its proof of correctness before it executes. It also greatly reduces the need for run-

time checking.
2.3.5 Logic-based Access Control Models

Bai and Varadharajan proposed a logical access control model based on
propositional logic and first order logic to represent and evaluate access control
policies [9]. They specified the model by a language, called L, and provided its
precise syntax and semantics. In their language they defined six disjoint sorts:
subject, group-subject, access-right, group-access-right, object and group-object.
Predicates are used to define rules (or formulas). For example, in order to represent
a rule like: A subject S has an access right R for object O, s-holds(S,R,O) is used.
Similarly, a group subject G has access right R for object O is represented as g-
holds(G,R,0). A group subject is a set of subjects, where these subjects are related

in some way, or have some common characters.

Bai and Varadharajan also realized the DAC model and MAC model by use
of this formal language L [8]. In order to represent DAC model, they enumarate all
subjects and objects in a system and regulate the access to the object by a subject
based on the identity of the subject. They used traditional access matrix model to
represent the relation of them and a system reference monitor to decide the
authorization between subjects and objects. In order to achieve MAC model
realization, its reference monitor also enforces two rules for information flow: no

read up, and no write-down which ensures that information can only flow from
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low sensitivity level to high sensitivity level. This information flow relationship

forms a lattice.

Similar to Bai and Varadharajan, Jajodia et al [34] and Woo et al [94]
proposed a logical language for expressing authorizations. They also use
predicates and rules to specify the authorizations and emphasize the representation
and evaluation of authorizations. The language allows the representation of
different policies and protection requirements, via understandable specifications
and clear semantics. Their language identifies following predicates for the
specification of authorizations (below s,0, and a denote subject, object and action

term, respectively):

cando(o,s,<sign>a) represents authorizations explicitely inserted by the

security administrator. <sign> shows ‘allow’ or ‘deny’ of accesses.

dercando(o,s,<sign>a) represents authorizations derived by the system using

logical rules of inference.

do (o,s,<sign>a) definetely represents the accesses that must be granted or

denied.

done(o,s,a,t) keeps the history of the accesses executed, where ¢ denotes the

timestamp.
Error signals errors in the specification or use of authorizations.
2.3.6 Certification-based Access Control Models

Today’s globally internetworked infrastructure connect remote parties
through the use of large scale networks such as the World Wide Web. Execution of
activities at various levels is based on the use of remote resources and services,
and on the interaction between different, remotely located, parties that may know
little about each other. In such a scenario, traditional assumptions for establishing
and enforcing access control regulations do not hold anymore. The server may
receive request from unknown users to the system. Therefore traditional

authentication and access control can not be applied. An alternative access control
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solution is devised. In this solution, digital certificates (or credentials) representing
statements certified by given entities (e.g. certification authorities), which can be
used to establish properties of their holder (such as identity, accreditation, or
authorizations) are used [64]. It uses credentials to describe specific delegation of
trusts among keys and to bind public keys to authorizations. Since parties in action
are unknown to each other, management of authorization specification is more
complex and difficult. On one side, the server may not have all the information it
needs in order to decide whether or not an access should be granted. On the other
side, the requestor may not know which certificate she needs to present on a server
in order to get access. Therefore, the server itself should, upon reception of the
request, return the user the information of what she should do to get access rather

than returning simply ‘yes/no’ access decision, e.g. credit card number.

The first proposals investigating the application of credential-based access
control regulating access to a server, were made by Winslett et all [93]. Access
control rules are expressed in a logic language and rules applicable to an access

can be communicated by the server to clients.
2.3.7 Language-based Information Flow Security

Standard security techniques such as access control, encryption, firewalls,
signatures, and antivirus scanning are not capable of enforcing end-to-end
confidentiality policies since they do not track the flow of information in
computing systems. Run-time monitoring of operating systems calls is similarly of
limited use because information flow policies are not properties of a single
execution; in general, they require monitoring all possible execution paths.
Recently, a new approach has been developed: the use of programming language
techniques for specifying and enforcing information flow policies [62,47,20].
Language based security mechanisms are built on technology for static analysis
and language semantics. They use type systems for information flow. In a security-
typed language, the types of program variables and expressions are augmented
with annotations that specify policies on the use of the typed data
[62,37,54,16,53,84]. These security policies are then enforced by compile-time
type checking, and thus add little or no run-time overhead. Like ordinary type
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checking, security-type checking is also inherently compositional: secure
subsystems combine to form a larger secure system as long as the external type
signatures of the subsystems agree. Another recent development of semantics-
based security models (i.e. models that formalize security in terms of program
behaviour) has provided powerful reasoning technique about the properties that
security-type systems guarantee. These properties increase security assurance
because they are expressed in terms of end-to-end program behaviour and thus
provide a suitable vocabulary for end-to-end policies of the program such as

noninterference and its extensions [83,1,91].
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CHAPTER 3

LITERATURE ON SOFTWARE ARHITECTURE

3.1 Software Architectures and Architecture Description Languages

As the size and complexity of software systems increases, the design
problem goes beyond the algorithms and data structures of the computation:
designing and specifying the overall system structure emerges as a new kind of
problem. Structural issues include gross organization and global control structure,
protocols for communication, synchronization, and data access, assignment of
functionality to design elements, physical distribution, composition of design
elements, scaling and performance, and selection among design alternatives [25].
This is the sofiware architecture level of design. An architecture is a specification
of the components of a system and the communication between them [6,11,80].
Systems are constrained to conform to an architecture. An architecture should
guarantee certain behavioral properties of a conforming system, i.e. the one whose
components are configured according to the architecture. An architecture should
also be useful in various ways during the process of building a system

[43,82,24,23,81,11,50,78].

Software architectures are intended to describe essential high level structural
and behavioral characteristics of a software-intensive system. They allow
programmers to compose an application from a mixture of existing software
modules, third party libraries, legacy programs and a minimal amount of code
developed for that particular application. A software architecture defines

applications in terms of components, connectors and configurations [35,23,11,15]:
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- A component is a computational unit written in some programming

language,

- A connection defines the type of interactions among components (e.g.
remote procedure calls) via commectors that transport data between
components and perform the necessary transformations on that data, so

that the interfaces of the components are respected.

- A configuration defines the application structure through components and
their interconnections. In addition to specifying the structure and topology
of the system, the configuration shows the intended correspondence

between system requirements and the elements of the constructed system

D.C. Luckham [43] presents three alternative concepts of architecture: the
object connection architecture, the interface connection architecture and the plug
and socket architecture. He emphasizes that the first two architectures, although
similar, they differ in how they relate to systems. Similar to object oriented
systems, object oriented architecture is defined by the system. Thus, it is not used
as a template to construct and modify systems or to decide about the correctness of
the system. Interface connection architecture, on the other hand, requires that all
communication into and out of a component go through that component’s
interface. So, the communication architecture can be defined purely in terms of the
interfaces before components are constructed to implement those interfaces, which
means a system can be specified before the components are implemented. Plug
and socket architecture, in addition to the advantages of interface connection
architecture, introduces some ways of dealing with the scale and conformance

problems of the interface connection architecture.

An important research area in software architecture is Architecture
Description Languages (ADL) [24,23,4,19], which provide a conceptual
framework and a concrete syntax for characterizing software architectures. They
describe essential high level structural and behavioral characteristics in ways that
can be analyzed and manipulated algorithmically. These languages are used to

specify components, connectors, constraints among those and the glue that
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specifies how these items are interrelated. Shaw et al [79] elaborate six classes of

properties that characterize an ideal architectural description language:

i.

ii.

iii.

iv.

vi.

Composition: 1t should be possible to describe a system as a composition

of independent components and connections.

Abstraction: 1t should be possible to describe the components and their
interactions within software architecture in a way that clearly and

explicitly prescribes their abstract roles in a system.

Reusability: 1t should be possible to reuse components, connectors, and
architectural patterns in different architectural descriptions, even if they

were developed outside the context of the architectural system.

Configuration.: Architectural descriptions should localize the description
of system structure, independently of the elements being structured. They

should also support dynamic reconfiguration.

Heterogeneity: It should be possible to combine multiple, heterogeneous

architectural descriptions.

Analysis.: 1t should be possible to perform rich and varied analysis of

architectural descriptions.

There are a number of Architecture Description Languages. Most common

ADLSs among these are Wright [4,31,95], Rapide [49,44], UniCon [78].

In Wright a component type is described as a set of ports and a computation

that specifies the component’s abstract behavior. Each port defines a logical point

of interaction between component and its environment. Ports allow a component to

define multiple interfaces to other parts of a system.

A connector type is defined by a set of roles and a glue specification. The

roles describe the expected local behavior of each of the interesting parties. That

is, they act as a specification that determines the obligations of each component

participating in the interaction. For example, Figure 3.1 shows a simple client-
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server specification. There are two components, namely ‘client’ and ‘server’. Each
has a single port (but might have many). C-S-connector has a client role and a
server role. The client role might describe the client’s behavior as a sequence of
alternating requests for service and receipts of the results. The server role might
describe the server’s behavior as the alternate handling of requests and return of
results. The glue specification describes how the activities of the client and server
roles are coordinated. e.g., it would say that the activities must be sequenced in a
certain order: the client requests service, the server handles the request, the server
provides the result, the client gets the result. The second part of the system
definition is a set of component and connector instances. In the third part, namely
the Attachments part, it is given how connector and component instances are

combined.

System SimpleExample
Component Server =
Port provide [provide protocol]
Spec [Server specification]
Component Client =
Port request [request protocol]
Spec [client specification]
Connector C-S-connector =
Role client [client protocol]
Role server [server protocol]
Glue [glue protocol]
Instances
S: Server
C: Client
CS: C-S-Connector
Attachments
S.provide as CS.server

C.request as CS.client

end SimpleExample

Figure 3.1: A simple Wright configuration: Client-Server System [4]
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In order to describe a complete system architecture, the components and
connectors of a Wright description must be combined into a configuration. A
configuration is a collection of component instances combined via connectors. If
an architect is dealing with a single system, (s)he introduces component and
connector types and then uses these to create instances of components and
connectors. Then, topology of the configuration is specified through attachments
of ports to roles. Often, however, an architect is concerned not with a single
system in isolation, but rather with a system in the context of entire family of
systems. So, he seeks not merely to develop an arbitrary architecture, but to select
that architecture from a particular style, i.e. a family of architectures. A style
defines a set of properties that are shared by the configurations that are members
of the style. These properties can include a common vocabulary and restrictions on

the ways this vocabulary can be used in configurations.

In Wright, a common vocabulary is introduced by declaring a set of
component and connector types, using the declaration constructs introduced above
for instance descriptions. The pipe-filter style, for example, would include a
declaration of connector type Pipe. Then, when a configuration is declared in the

pipe-filter style, pipes are automatically available for use.

A Wright style contains common vocabulary and restrictions. Figure 3.2

shows a simple pipe-filter style specification.

In the example given in Figure 3.2, Pipe is a connector type that is a common
vocabulary used in a family of system using that style. Similarly, Datalnput and

DataOutput are interface types that are available for use in this family of systems.

In order to specify restrictions for a family of systems, a Wright style
description may declare properties that must be obeyed by any configuration in the
style. For example, the first predicate given in the example above indicates that all
connectors must be pipes. The second predicate says that the style would require

that all components in the system use only ‘Datalnput’ and ‘DataOutput’ ports. Each
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of the constraints declared by a style represents a predicate that must be satisfied

by any configuration declared to be a member of the style.

Style Pipe-Filter

Connector Pipe

Role Source = write!x — Source [ close — §

[deliver data repeatedly, signaling termination by close]
Role Sink = read?x — Sink [ close — §

[read data repeatedly, closing at or before end of data]
Glue = (Source.write!x — Sink.read?x — Glue)

[ ( Source.close — Sink.close — §)

[Sink will receive data in same order delivered by Source]
Interface Type Datalnput=(read —

(data?x — Datalnput [] end-of-data — close — §)) ' (close—§)

[read data repeatedly, closing the port at or before end-of-data]

Interface Type DataOutput=(write!x — DataOutput) 1 (close — §)

[write data repeatedly, closing the port to signal end-of-data]
Constraints
vc - Connectors e Type(c) = Pipe

Avc . Components; p.:Portfp € Ports(c) e Type(p) = Datalnput v
Type(p)=DataOutput

End Style

Figure 3.2: The pipe-filter Style [6]

A critical issue for complex component-based systems design is the
modelling and analysis of the architecture. One of the complicating factors in
developing architectural models is accounting for systems whose architecture

changes dynamically [5,2]. This is because dynamic changes to architectural
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structure may interact in subtle ways with on-going computations of the system.
Allen et al. [5] provide a modelling approach that accounts for the interactions
between architectural reconfiguration and non-reconfiguration system
functionality, while maintaining a seperation of concerns between these two

aspects of a system.

In dynamic architectures which are the systems whose compositions of
interacting components change during a single computation, the system should
allow reconfiguration with the guarantee that reconfigurations occur only at points
in the computation permitted by the participating components and connectors
(conformance). Also whenever a new connection is established, the participating
components must exist at the moment of attachment (communication integrity).
Allen proposed two solutions to allow dynamic behavior of component-based
systems. In both cases, he extended Wright ADL to perform necessary
descriptions. His focus is on reconfiguration of the system such that if a server
fails, the client is directed to a backup server in a typical client server system. In
the first approach, all clients are described to be connected to all servers. They use
only one server at a time and all specifications are described inside the component.
It actually simulates the dynamism inside static topology. The disadvantage in this
way is that distribution of the configuration state and reconfiguration actions in the
components makes the modifications of the system difficult. The second approach
provides constructs to describe dynamics of the system explicitely. Rather than
using a fixed topology of two servers and hiding the changes inside the
component, it uses two (or as many as needed) configurations. It is the connectors
that alternate between the servers that need to be connected to the client using the
control events introduced into a component’s port descriptions. A configuror is
responsible for achieving the changes to the architectural topology using these
control events. The configuror describes all potential configurations (a set of
component and connector types a configuration can use and the constraints it must

satisfy). It is assumed that there are finite number of configurations.
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3.2 Security Concerns in Architectures

Having overviewed some related research on architectural concepts, the
following is the overview of recent studies that address security issues as a part of

architectural descriptions.

One of these studies is done by Jensen [35]. He proposes a protection model
based on software architectures, where security policy is programmed separetely
from the application code. He examines how composing applications affects
security. Since security problems in distributed applications are superset of those
encountered in centralized system, he focuses on applications in distributed
systems. He defines two terms used in computer security: a subject which is an
active entity (a user or a running process) that consumes resources and
manipulates passive objects in the system. The other term is an object which is a
passive entity (e.g. external device) or information (e.g. stored in a file) in the
system. In general, components must trust each other to a certain degree, but there
is no general trust in the machines and communication channels, that make up the

distributed system.

Threats to an application can be directed to the components, the connectors
or the configuration as a whole. Component threats may be either the failure of a
component or an adversary can substitute a trojan horse in place of a valid
component. The work done in this study considers static configuration of the
application. Reconfiguration of a running application requires a mechanism to
dynamically add, replace and retire components. This configuration mechanism
itself may be the target of an adversary that can replace a component with a Trojan

horse. So dynamic reconfiguration is not considered.

In their secure software architecture model, they propose to associate a set of
access rights with each component in a particular application. The set of access
rights is called a protection domain and it is required that the components execute
in a particular protection domain. The protection domain is used to implement
isolation of the components. Further access rights can be transferred to the

protection domain along with references to shared objects, following the “need fo
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know principle”. The ability to dynamically transfer access rights to a protection
domain allows to limit the initial access rights of a protection to a strict minimum.
This transfer of access rights should be implemented in the connector, which
handles the transfer of parameters between the protection domains. The connector
can also be used to authenticate the identity of components and transparently
encrypt communication (like SSL) between components on different machines in
the network. The configuration identifies the components used in the application
and the connectors needed to establish the proper inter-operations between these
components. The configuration must also specify the protection domain associated

with each component in that application.

The security policy of the application is primarily expressed at the connector
level. Connectors are often generated automatically from the specification (either
graphically or in some specification language), that is compiled into a form
suitable for the underlying runtime support when the configuration is instantiated.
Little work has been done to standardize the specification of connectors and the
instantiation of software architectures. Secure connectors are specialized versions
of the connectors available in the system. So they can be specified in a way that is
similar to the ordinary connectors. Separation of security specifications from the
algorithmics of the application facilitates reuse of software components in

different security contexts.

Bidan and Issarny [14] described an approach to specify and compose
security requirements of the software systems. With a configuration-based
environment, called ASTER, their approach provides a framework enabling the
application developers (e.g. security managers) to specify security requirements of
their software components. In their approach, each component specifies their
security related requirements and constraints. The application developer, while
building connectors, customizes connectors to provide the requirements of
participating components. In order to achieve the customized connector to meet
security related issues, the developed environment provides security properties for
encryption, authentication and access control together with the reasoning about

these specifications to compose and compare them.
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S. Schneider [77] described security properties as CSP (Communicating
Sequential Processes) [30,29,58,76] specifications. Security properties such as
confidentiality and authenticity may be considered in terms of the flow of
messages within a network. He claims that use of process algebra such as CSP
seems appropriate to describe and analyze them. In his study, he explores how
security mechanisms may be captured, and how particular protocols designed to
provide these properties may be analyzed within the CSP framework in theoretical

basis.

D. Kirlt [37] proposes a type-based approach in mobile systems to prevent
high sensitivity data leakage. They focus on the problem of providing secrecy
within the framework of a high order mobile code language called Mobile-A with
its roots in languages such as Concurrent ML and Facile. In their work, an
appropriate notion of secrecy for Mobile-A, focusing on information flow aspects
rather than access control, is discussed. Following the type-based approach to
security, they propose a type system to enforce this property. Their type system
views types as a pair consisting of two components: a raw type T and a secrecy
label £ Raw types classify values in the conventional sense whereas secrecy labels
associate with them a particular secrecy level. The secrecy labels can be
considered as elements of a lattice with the least element L (low sensitivity) and
the greatest element H (high sensitivity) where ordering is denoted by the symbol
<, so that L < H.

Component technology is currently a growing approach in developing
information systems. Software components are reusable building blocks for
constructing software systems. Rayis [56] presented an approach to use component
technology to achieve security. A framework that consists of a component
repository, a security architecture together with a process model is presented for
the development of secure information system. A security policy is achieved by
the utilization of security services and scenarios through software security
components. The two main advantages of using components and scenarios were,
achieving reuse, and reducing the technical gap between software developers and

security developers. The lifecycle of the security system proposed is described as:

37



- Planning

- Requirements Analysis and Specification (including security

requirements)
- Logical Design
- Physical Design
- Coding
- Testing for Security

- Certification and Accreditation

Operation and Testing

The process model proposed by Rayis [56] constitutes a Component Factory,
a Security Consultant, a Domain Consultant and Software Development House.
The Component factory builds security components as well as system components.
The security consultant forms primary security requirements, generates the
security policy analysis, and generates security implementation plan and secure
operation plan models, contacts with the domain consultant to know about the
software architecture and develops Security Architecture models. Then he
generates the security Structural models. These models are further forwarded to
assist in the architectural design of the software at the software development

house.

Having presented the literature on security and software architectures, we see
that software architecture can be a good level of abstraction to develop secure
software systems during the design phase. More information on our approach and
how we relate the studies of security and software architecture to address the

confidentiality in a software system are given at the beginning of the next chapter.
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CHAPTER 4

WRIGHT/C: WRIGHT WITH CONFIDENTIALITY
EXTENSIONS

4.1 Approach

Confidential information flow in a software system composed of a number of
interacting modules requires an end-to-end behaviour analysis. An end-to-end
behaviour of a computing system reflects the flow of information between
endpoints in the system [63,90,36,21,89]. This end-to-end information flow also
affects the security requirements of the system that we refer to as end-to-end
security. Standard security mechanisms such as access control (ACL or
capabilities), and firewalls provided by individual modules (components) are
inadequate to assure end-to-end security when the system is composed of a
number of interacting modules. A firewall, for example, protects confidential
information by preventing communication with outside in both directions.
Whether this communication violates confidentiality lies outside the scope of
firewall mechanism. Access control, on the other hand, does not control how data
is used after, for example, it is read from a file. To enforce confidentiality using
this access control policy, it is necessary to grant the file access privilege only to
processes that will not improperly transmit or leak the confidential data. However,
access control mechanisms can not identify these processes; therefore, access

control, while useful, can not substitute for information flow control.

Thus, we propose that software architectures seem useful as an abstraction
for structuring secure systems that provide end-to-end-security. In a software
system described in Wright, the ports of component instances can be regarded as

the endpoints in a configuration.
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In order to enhance the architectural description of a software system to
address end-to-end security issues, we extend the Wright ADL, namely Wright/c,
by labeling its constructs with sensitivity levels [88]. The extended description is
used in a static verification of a software architecture configuration to assure end-
to-end confidentiality of data flow by applying a data flow analysis in port-to-port

basis.

Figure 4.1 illustrates the data flow diagram of the specification and the data
flow analysis included in the verification process taking place within a software

developer’s organization.

The verification process requires two inputs: an access control lattice model
that includes security label and authorization level relations, and the Wright/c
description of the software configuration that also includes the confidentiality

authorizations in a suitable format for the processing.

The construction of the access control lattice model is carried out separately
from architectural description regarding the safety requirements that include

confidentiality of the information manipulated by the software.

The ADL description of the configuration, on the other hand, is produced
using Wright/c language. The lattice model and the description are represented in
XML (eXtended Meta Language) to leverage tool support. XML schemas of both
representations are presented in Appendix D and Appendix E. A front-end has
been developed to extract the essential information for the verification from these
XML-based inputs [96].

The verification process performs two main tasks: a data flow analysis
process, and an anomaly and excess privilege detection processes. The processes

operate on the abstract form of the configuration with respect to the lattice model.

While performing the configuration-wide data flow analysis it relies on a
CSP (Communicating Sequential Processes) Analyser which analyzes a CSP

expression in terms of security labels of data that it inputs and outputs [83].
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A CSP expression may involve input channels, so that incoming data are
processed in the expression, and output channels through which results are sent
out. The analyzer takes the security labels of input data, and computes the possible

security labels of output data for each output channel.

The verification process reports the result of the analysis when it completes.
The report includes anomalies with respect to BLP principles, excess privileges or

an announcement for successful verification.

An anomaly appears when one or both of the axioms of BLP fail to be
verified. If this is the case, the report includes warnings together with the reasons

(in terms of authorization level conflicts of ports of component instances).

Determination of the excess privileges is based on the principle of least
privilege, which has been described as important for meeting security objectives.
The principle of least privilege requires that a subject be given no more privilege
than necessary to perform a job. Ensuring least privilege requires identifying what
the subject's job is, determining the minimum set of privileges required to perform
that job, and restricting the subject to a domain with those privileges and nothing

more.

Excess privilege arises if higher excessive authorization is assigned to an
input port although a lower one might be given without causing a violation to the
‘simple security property’, and if lower excessive authorization is assigned to an
output port although a higher one might be given without causing a violation to the
“*-property’. If an anomaly or an excess privilege is included in the report, then,
the description of the configuration is supposed to be revised by the design team

and rechecked by the verification algorithm.

The study considers a description of the system under consideration.
Therefore, the verification of confidentiality does not involve dynamic (run time)
monitoring or checking of information flow or access control. It verifies
confidentiality between components and data flow among connections statically,
assuming trustworthiness of components. Trustworthiness of a component inherits

the properties of the trusted subjects defined in Chapter 2, as a component can be
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regarded as a subject. It can be assumed that a trusted component can protect its
data from outside attacks and does not allow any information leakage. The CSP

analyzer reports which components must be trustworthy.

This chapter introduces the specification of Wright/c and the access control
lattice model. Chapter 5 describes the verification process and the algorithms. The
front-end of the verification process that includes the abstract syntax of the
Wright/c descriptions and the mapping from concrete to abstract syntax are

presented in Chapter 6.

4.2 Wright/c

Wright/c is an architectural description language developed by extending the
Wright to address end-to-end security issues. As noted previously, a Wright
system description consists of components, connectors and their behavior. A
component has a number of ports to interact with the outside world (with other
components). The interactions are established through connectors by attaching
each port to a role that a connector supplies. Data flowing throughout the system
pass through ports (or roles if viewed from the connector side). A component
output is realized by writing data through a port. Similarly, inputs are received
from the outside of the component through ports. A port that executes an output
(or an input) is actually performing it on behalf of the component which it belongs
to. Therefore, we classify the ports in two, possibly overlapping classes, namely

input ports, and, output ports, as defined below.

Definition (output port): A port is called an output port if it can send (write) data

from the component.

Definition (input port): A port is called an input port if it can receive (read) data

into the component.

A component can have multiple ports for input or output operations. Recall
that the Bell-LaPadula model is based on the authorization level (clearance) of the
subject, which performs these operations. Letting the component (instance) have a

single clearance would not allow it to engage in 1/O operations on data with
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different security labels. A component, particularly an encryption component,
must be able to receive high-labeled data through one port and send low-labeled
data through another port, under the assumption that the component is trustworthy.
To provide a flexibility of I/O operation for a component instance without a
violation of Bell LaPadula model, the clearance is assigned to the ports, which
actually perform the operation rather than the component instance itself.
Therefore, having a single authorization level for a component would be too
restrictive. In our view, the ports are assigned authorization; thus the component

can be thought to have an “authorization vector”.

Each datum, passing through (some role of) a connector or used in a
computation of a component, will have a security label (or security class) that
indicates its sensitivity. While instantiating the components and the connectors,
data flowing within that instance are associated with security labels. Thus, a
security label can be viewed as a part of the data type of a variable. This can be
achieved by binding security labels to variables through the parameter mechanism

in the instance declaration. Then the confidentiality constraints are:

— An input port can receive data if and only if its clearance dominates the
data’s security label. This coincides with the ‘simple security’ property of
BLP model (‘“no read-up”).

— An output port can send data if and only if its clearance is dominated by
the data’s security label. This coincides with the ‘*-property’ of BLP

model (“no write-down”).

As a motivating example, consider a company which has two separate
computer networks inside (Figure 4.2). One of the networks is a critical one, say
Private Network, in which the servers running the company’s customer operations
are located. It has only a limited number of authorized users inside the company.
The other network is an intranet established to be used by all the personnel. The
company uses the intranet and the servers living in there for its back office
operations. Besides, there is a need for a connection between these two network to

transfer some data (a summary of daily operations, for example) from the Private
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Network to the Database Management System Server running in the intranet. To
perform such an operation, let a process run on a computer connected to these two
networks through its two distinct network adapters. The process has a read access
to the critical data in the Private Network, it collects and produces the required
summary and transfers them to the server in the intranet to make them available
for other users. Note that the process must be an authorized user over the Private
Network to read such critical data. On the other hand, it is an ordinary user in the
intranet. Therefore, it can be assigned two different clearance when involved in
through these distinct ports. Since the user lowers the sensitivity of data read from

the Private Network before transfering to the intranet, it must also be trusted.

A process to
collect data A
and extract
the summary

Intranet

A & VA 7\ R N
Network > 5

..iﬂ

Database
Management
System Server

The Server for
Customer
operations

|:

-_—
Private network
authorized users

]

Company’s ordinary users

The authorized The ordinary
interface interface

Figure 4.2: Interaction of two networks in a company

The components interact with other components by attaching their ports to
roles of the connectors. That means, a port and its attached role are identified in
the sense that they have the same behaviour. Therefore, assignment of clearance to

one of these two entities is enough to consider for the verification. We give
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clearance to the ports rather than the roles in our study although roles could have

been selected.
4.3 The Clearance Section in a Wright/c Configuration

Component and connectors are instantiated in the instances section of a
Wright description. A new section is added, called Clearance, to the description to
associate an authorization level to each port of the component instances (Figure
4.3). The authorization levels are defined in the access control lattice file. As a
shorthand, a component instance may be given clearance, meaning that it applies

to all of its ports as a default.

The main purpose of Clearance section is to bind each port of each instance of
each component type with a clearance which is defined in the access control lattice
model. Additionally, as argued above, each individual port or role can be intended
and bound by a different clearance if its construct (component) to which it belongs

has a clearance other than that is given to it.

The clearance section starts with a keyword Clearance and is placed between
instances and attachments sections in a Wright configuration (Figure 4.3). Each line
consists of a list of instances and the clearance assigned. A list element can be a

component instance name or a port name.

Let LN be an access control lattice model and C is a clearance defined in LN.
Then, being imported, the clearance identifier C becomes available for use in a

configuration as LN.C.

Security labels, on the other hand, can be bound to CSP variables through the
parameter mechanism in the instance declaration. The actual parameter may
involve the access control lattice model functions, which are evaluated and bound
to the corresponding formal parameters of the component and connector

definitions.

Let SL be a security label, LN be an access control lattice model, and C be a

clearance. Then, the built-in functions are as follows:
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— LN.SL refers to the security label SL in the lattice LN,

— LN.meet(SL;,SL;) refers to the greatest lower bound of the security labels
SL;and SL; in the lattice LN,

— LNjoin(SL,,SL;) refers to the least upper bound of the security labels SL;
and SL; in the lattice LN,

— LN.max() refers to the greatest security label in the lattice LN,

LN.min() refers to the lowest security label in the lattice LN.

Note that if a clash occurs in case of multiple imports, the last imported

lattice prevails.

The EBNF representation of Wright/c syntax is presented in Figure 4.3. Only
the affected parts of the original Wright BNF is illustrated. Bold face emphasizes
the extensions and keywords are in quotes. The complete representation can be
found in Appendix A. An XML schema for the syntax has been developed to

facilitate syntax analysis and tool interoperability [96].
4.4 Access Control Lattice Model

The construction of the access control lattice model can be carried out
separately from architectural description regarding the safety requirements that

include confidentiality of the information manipulated by the software.

The ‘Import Lattice’ directive in a style or configuration description
introduces the access control lattice structure into the style or configuration. The
structure is presented in three sections: Security Labels, Ordering and

Clearancelist.

— Security Labels section includes declarations for the security labels that
data (objects) can have. Each declared label corresponds to a point (node)

in the access control lattice.

47



SpecList = {Spec}-
Spec = Configuration | Style
Style = “Style”, Simple Name,
[“Import Lattice”, Lattice Name, Lattice File Name, |
{Type}, [ "Constraints" [ ConstraintExpression, ] ]
"End Style"
Lattice File Name = AFilePath
Type = Component | Connector | InterfaceType | GeneralProcess
Component = "Component”, Simple Name, [ “(*, Formal CCParam, {*;”,
FormalCCParam}, “)” ,]
{Port}, "Computation", BehaviorDescription

€,

Connector = "Connector", SimpleName, [ “(“,FormalCCParam, {*;”,
FormalCCParam}, “)”, ]

{Role}, "Glue", BehaviorDescription
Port = "Port", FormalPRName, “=", ProcessExpression
Role = "Role", FormalPRName, “=", ProcessExpression
Configuration = "Configuration", Simple Name,
[“Import Lattice”, Lattice Name, Lattice File Name, |
[ "Style" Simple Name, | {Type}, "Instances", {Instance}-,
“Clearance”, {ClearanceList}, "Attachments", { Attachment},
"End Configuration"
Instance = InstanceName, {“,”, InstanceName}, “:”, TypeUse
InstanceName = Simple Name, [ “_{“, FiniteRangeExpression, “}” ]
TypeUse = Simple Name, [ “(“, Actual CCParam, {*,”, ActualCCParam}, “)” ]

ClearanceList = aSubject , {“,”

, aSubject},”:”, Clearance
aSubject = ComponentConnectorName | PortRoleName

FiniteRangeExpressionOrIndex = FiniteRangeExpression
| IntegerExpression

ComponentConnectorName = Simple Name, [“_{*,
FiniteRangeExpressionOrIndex, “_}”]

PortRoleName=ComponentConnectorName, “.”, Simple Name, [ ¢ {*,
FiniteRangeExpressionOrIndex, “ }” |

Clearance = Simple Name

Attachment = Interface, "As", Interface

Figure 4.3. The EBNF definition of the Wright/c syntax
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Interface = Simple Name, [ "_{", IntegerExpression, “}”],”.”, ActualPRName
InterfaceType = "Interface Type", ProcessName, “=", ProcessExpression
GeneralProcess = "Process", ProcessName, “=", ProcessExpression

€,

FormalCCParam = NamelList,“:”,ProcessType | NameList, “:”,
FiniteRangeExpression | NameList, “:”, SecurityLabel”

ActualCCParam = ProcessExpression | IntegerExpression | LatticeFunction
LatticeFunction = LatticeName, “.”, FunctionName

FunctionName = NodeName
| “meet”, “(“, SetOfNodes, “)”
| “join”, “(“,SetOiNodes, cc)”

| “max()” | “min()”
SetOfNodes = NodeName, {“,”, NodeName}-
NodeName =Simple Name
LaticeName = Simple Name
ProcessName = Simple Name, [ "_{", ProcessParams, “}"’]

[T32]

NamelList = Simple Name, {*,”, Simple Name}

ElementList = DataExpression, {“,”, DataExpression}
FormalPRName = Simple Name, [ "_{", FiniteRangeExpression, “}”]
ActualPRName = Simple Name, [ "_{", IntegerExpression, “}” ]
EventName = [ ActualPRName, “.” ], SimpleName
BehaviorDescription = “="", ProcessExpression | Subconfiguration

Simple Name = IDENTIFIER

Figure 4.3. The EBNF definition of the Wright/c syntax (continued)

— Ordering section introduces the order relation of the lattice. An entry like

A, B declares an edge from label A to label B where A < B, whereas C,

D, and E represents 2 edges: one from C to D and one from D to E,

where C <D <E. There is no need to specify the edges implied by

transitivity (as in a Hasse diagram).

— ClearancelList section declares authorization levels (clearance) that can

be assigned to subjects (ports). Each entry in the section refers to one or

more labels from the Security Labels section. In general,
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CL: A1,A2,As, ..., An, where Aj is a point in the lattice, declares that CL is a

clearance that dominates all the labels in the set U; (Ai].

Example: The Figure 4.4 depicts a lattice structure containing 8 nodes. The

following is an example of clearance declarations:
K: Az, Az
L: A
M: Ay

K is a clearance that dominates the security labels in the union of (A;] and
(As], i.e. {Az, A3, As, Ae, A7}. Therefore, a subject with clearance K can read
objects labeled one of these; it can write objects labeled one of {A,, Az, Ao}, union

of [Az) and [A3).

L is a clearance that dominates (A;]. Therefore, a subject with clearance L
can read objects labeled one of {A;, A4, A;}; it can write objects labeled A; and

Ao.

A

Figure 4.4: An example lattice model: clearance and security labels
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Lastly, M dominates all the security labels. Therefore a port with clearance

M can input any type of data, but can only output A¢-labeled data.
An EBNF [55] definition of access control lattice is given in Figure 4.5.

A simple access control lattice model is shown in Figure 4.6. The lattice
constructed in the figure says that there are two security labels called H and L,
presumably corresponding to the high level and low level of privacy, respectively.
There is only one edge in the lattice, which connects these two nodes. Although
only two labels of secrecy are used in the examples below for simplicity, more

labels can easily be introduced into the configuration being studied.

Lattice = “Lattice”, Simple Name,
“Security Labels”, Node List,
“Ordering”, Edge Set,
“Clearance List”, {Clearance List},
“End Lattice”

Node List = Node Name, {“,””, Node Name}

Chain = Node Name, {“,””, Node Name}

Edge Set = {Chain}

Clearance List = Simple Name, {“,”, Simple Name}, “:”, NodeList
Node Name = Simple Name

Figure 4.5: EBNF definition of the Access Control Lattice Model syntax

The last section of the lattice model declares clearances in the system. There
are two levels of authorization assigned to the users in this example. EVERYONE
is declared for public people. The subjects having EVERYONE clearance
dominates objects having only L labels. AUTHORIZED is associated for those

who will have privilege to access (read) every objects labeled by either H or L.

The lattice description may also contain line comments. They start with “//.

All the characters till the end of line are interpreted as a comment.
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Lattice ExampleLattice
Security Labels // the keywords are used to start the node declaration
H, // the node represents high level of sensitivity of data
L // the node represents low level of sensitivity of data
Ordering  // the keyword is used to start the edge declaration

LH //L<H
Clearance List // the keyword is used to start the Clearance declaration
EVERYONE :L // EVERYONE has a low clearance
AUTHORIZED : H // AUTHORIZED has a high clearance
End Lattice

Figure 4.6: A Simple Access Control Lattice Model example

4.5 Access Control Constraints

A Wright ADL style defines a set of properties shared by the configurations
which are members of that style. Component and connector definitions described
in the style can be recognized as types of the instances occuring in a system
description obeying the rules and constraints of that style. These properties can
include a common vocabulary and restrictions on the ways this vocabulary can be
used in configurations. This vocabulary is extended to include security properties
and constraints related to access control issues referring to the lattice structure.
Access control related constraints, for example style-specific information flow
limitations, are put into a style using predicates like other style constraints. All
constraints (access control or other) are bound to the style, so any configuration

utilizing the style must obey these constraints.

In Figure 4.7, a style and a configuration utilizing this style are presented to

show the access control extensions in bold face.

According to the Bell LaPadula Principles that provide confidentiality in a
configuration, the components and the ports gain the following meanings when

they are bound a clearance:
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Style Client-Server
Import Lattice CSL “/project/CSLattice.txt”
Component Server
Port provide [ provide protocol, a CSP expression]
Computation [Server specification, a CSP expression]
Component Client
Port request [request protocol, a CSP expression]
Computation [client specification, a CSP expression]
Connector C-S-connector
Role client [client protocol, a CSP expression]
Role server [server protocol, a CSP expression]
Glue [glue protocol, a CSP expression]
Constraints
[Predicates for Client-Server style constraints ]
[Access control constraints for the style]
End Style
Configuration SimpleExample
Use Style Client-Server
Instances
S: Server
C: Client
Cs: C-S-Connector
Clearance
S : <clearance> [Default clearance for an instance of Server Type]
S.provide : <clearance> [Clearance for a specific port of Server Type]
C : <clearance> [Default clearance for an instance of C]
C.request :<clearance> [Clearance for a specific port of C]
Attachments
S.provide as Cs.server
C.request as Cs.client
End SimpleExample

Figure 4.7: Structure of a Wright/c configuration
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e Ports: A clearance assigned to an input port of a component
represents the maximum secrecy label of data that the component can
receive through that port. That means, the clearance of the port must
dominate the secrecy label of data. A clearance of an output port, on

the other hand, must be dominated by the secrecy label of data.

e  Components: Generally, components are not associated with a
clearance explicitly. It is inferred from those of its ports. By default,
the clearance of a component is the maximum clearance out of those
given to its ports. On the other hand, if no clearance is declared
explicitly to a port then it is taken by that of the component which it
belongs.

The item to be given a secrecy level is the data. Each datum is labelled with a
secrecy level and represented by superscript like x™ or x" (although x is a name of

a variable, we assume that its label also refers to security label of its content).

In the next section, an example application is presented to show how the

access control extensions are applied to an ADL description.
4.6 An Example Application: Secure Print Server (SPS)

The personnel of a company uses a group of printers to print their
documents. The company management requires a secure printing system that

protects document confidentiality.

Documents to be printed can be directed to one of two printers located at

different rooms. The printers are managed by a common Print Server.

The documents in the company are classified into two groups of
confidentiality, namely Public and Secret. Clients, who are the users of the system,

can supply print requests after getting connected to the Print Server.

54



CPrintP

» CONN] (a public (a public
PrintP connection) connection Receive
RequestP OutputP port
port port
Ua .
« . » . Printer A
an ordinary user Print “Public”
CONN, Server (PS) .
(a public conn. CPrintS
t
RequestS  Outputs (a secre
port port connection)
PrintP
Receive
PrintS CONN, ) port
o ] (a secure connection)
Us Printer B

“an authorized user”

“Secret”

Figure 4.8: A box-and-line diagram for Secure Print Server

Printer A, the Public Printer, prints Public documents, whereas Printer B, the
Secret one, fulfills only Secret document print requests. The aim in this
configuration is to provide a way of printing user documents while, at the same

time, preserving the confidentiality by regarding the privacy of the documents.

Each user must establish a connection to the server before sending
documents for printing. He/she is assigned a clearance that represents the
authorization level by which he/she is allowed to supply print requests. Two types
of clearance, namely ‘EVERYONE’ and ‘AUTHORIZED’, are associated with

users.

The Print Server, having received the request from a user connected through
one of its ports, directs the document to a suitable printer regarding the secrecy of
the document. The server can use public printer if it receives a request from its
public port (RequestP). It is expected to send the document to the secret printer if
the user uses the server’s secret port (RequestS) for his print request. The
connections between the server and the printers are established using separate

connectors.
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In the example SPS configuration, as shown in Figure 4.8, there are two
users, namely Ua and Ug. Uy is an ordinary user and involved in the connection
CONN; which connects the user to the public port of the server. Ug, on the other
hand, is a privileged user and involved in two connections called CONN, and
CONNg3, to the secure port and public port, respectively. The print server is

connected to printers by connectors called CPrintP and CPrintS.

If the authorized user, i.e. Ug, needs a secret document to be printed out, this
document must not be printed by the public printer. He is required to use its PrintP
port to send a public document. In such a case, print server directs the document to
the public printer for the output. Ug must use its PrintS port for secret documents.
The ordinary user, on the other hand, has a single connection to the print server
through its PrintP port. Therefore, the print server always prints his documents

using the public printer.

The access control lattice model and the Wright/c description of the system is

presented in Figure 4.9.

In our example, there are three connections instantiated between users and
the Print Server (PS). User U, establishes a single connection to a public port of
the server (CONN;) whereas Ug creates one to the public port (CONN3), and also
one connection to the secret port of the server (CONN»). Therefore, U can only
send public documents to be printed through CONN; and they are printed by
Printer A. User Ug, who is an authorized person, uses either PrintP or PrintS ports,
and so CONN; or CONNj3 connector, respectively, depending on the secrecy of the
documents, to make a print request to the server. However, CONN, must be used
in cases where a document labeled as secret is intended for printing. In such cases,
the server receives a request from its secure port, where CONN; is established
onto, and directs the document to ‘Secure’ Printer B to fulfill the print request of
Ug. The description of the computation part of Component PrintServer clearly
describes what to do after observing a request from one of its ports. The external
(or nondeterministic) selection is needed since the server selects one of two
printers according to the port through which the document is received. The Print

Server is connected to public printer by the connector CPRINTP and to secure
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printer by the connector CPRINTS. These connectors are of the same type used

between users and the print server.

Lattice CSL // content of lattice file “/project/printing/ACLattice.txt”
Security Labels
PUBLIC,
SECRET
Ordering
PUBLIC, SECRET
Clearance List
EVERYONE :PUBLIC
AUTHORIZED : SECRET
End Lattice
// Wright/c description of Secure Print Server
Style ClientServerPrinting //style description
Import Lattice CSL “/project/printing/ACLattice.txt”
Component Client(t : SecurityLabel) =
Port PrintP = request! X* — PrintP
Port PrintS = request! x> %' — PrintS
Computation = PrintP. request! x* — Computation

SECRET

M PrintS. request! x — Computation

Component Printer =

Port Receive = request? x — Receive

Computation = Receive. Request? x — DoPrint— Computation
Component PrintServer =

Port RequestP = request?x — RequestP

Port RequestS = request?x — RequestS

Port OutputP = Print!x — OutputP

Port OutputS = Print!x — OutputS

Computation = RequestP.Request?x —OutputP.Print!x — Computation

O RequestS.Request?x—OutputS.Print!x— Computation

Connector PrintConnector =
Role ClientP = request?x — ClientP
Role ServerP = request!x — ServerP

Glue = ClientP.request?x — ServerP.request!x — Glue
End Style

Figure 4.9: Access Control Lattice Model and Wright/c description of
Secure Print Server
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Configuration PrintServer
Style ClientServerPrinting

Instances
Ua : Client(CSL.min())
Us : Client(CSL.min())
PS : PrintServer

SECUREPRINTER : Printer
PUBLICPRINTER : Printer
CONN; : PrintConnector
CONN, : PrintConnector
CONN3 : PrintConnector
CPRINTS : PrintConnector
CPRINTP : PrintConnector
Clearance
Ua
Us
Ug.PrintP
PS.RequestP
PS.RequestS
PS.OutputP
PS.OutputS
SECUREPRINTER
PUBLICPRINTER
Attachments
Ua.PrintP as CONN,.ClientP
PS.RequestP as CONN;.ServerP
Ug.PrintS as CONN,.ClientP
PS.RequestS as CONN,.ServerP
Ug.PrintP as CONNj;.ClientP
PS.RequestP as CONNs.ServerP
PS.OutputP as CPRINTP.ClientP

: EVERYONE
: AUTHORIZED
: EVERYONE
: EVERYONE
: AUTHORIZED
: EVERYONE
: AUTHORIZED
: AUTHORIZED
: EVERYONE

PUBLICPRINTER.Receive as CPRINTP.ServerP

PS.OutputS as CPRINTS.ClientP

SECUREPRINTER.Receive as CPRINTS.ServerP

End Configuration

Figure 4.9: Access Control Lattice Model and Wright/c description of Secure

Print Server (continued)
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Some cases for possible violations:

The description written above agrees with Bell LaPadula principles for

preserving confidentiality:

e No read up: the connections are established such that the documents are
directed to an unintended port. Moreover, the server reads secret data
only from its authorized port and assumes that it is not public. Therefore,
it selects the Secret printer, which is located in a secure room, for the
output of documents read from authorized port. Then, unauthorized

persons can not access these printouts of secret documents.

e No write down: The server computation is designed so that it does not
produce secret printouts using the public printer which everbody can

access.

If the description is created disregarding the principles, there may appear
some situations that may cause violations for confidentiality. The algorithm that
we will propose detects potential violations and produces warnings for the

developers.

1. Improper clearance might be assigned to the ports while instantiating the

components

Il.a. Components are instantiated and their ports are given clearance
before attachments are made. In order to fulfill the rules of principles,
sufficient clearance should be associated with the port instances.
Otherwise, a component instance can try to read a secret document
through an unauthorized port. Moreover, a component instance can try to
write secret data through a public port. Both of these cases violate
confidentiality principles. For example, in our Secure Print Server,
assume that Uy is associated with a clearance value AUTHORIZED.
Their ports, by default, inherit this clearance. In such a case, Uy (or its
port PrintP in particular) will try to write public data which violates the

no write-down rule of BLP model.
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1.b. Another case for improper clearance might be originated from the
behaviour of the component, i.e. from its computation. For example, an
authorized component instance can lower the secrecy label of some
datum and output through one of its ports. However, if the clearance of
the port for such an output is not considered in parallel to this action, a
violation to BLP appears. Assume that the computation part of

component PrintServer is modified as below:

Computation = RequestP.Request?x —
(OutputS.Print!x — Computation
" OutputP.Print!x — Computation)
O RequestS.Request?x — OutputS.Print!x — Computation

This modified computation, clearly, violates the BLP model. The
server reads a public document from its public port and directs it to be
printed by a secure printer using QutputS port. Since that port has a
AUTHORIZED clearance, it violates no write-down principle.

2. Improper attachments

Once the components and connectors are instantiated, their ports are
attached to suitable roles in the attachment section. Since ports have their
own clearance, the attachments need to be established by respecting the
principles. If a high clearance port (say an output port) is attached to a role of
a connector whose some other roles are attached to ports (say input ports)
with low clearance, a potential violation may appear. For example, assume

that our configuration had an attachment like :

Attachments
Ug.PrintS as CONN;.ClientP
PS.RequestP as CONN;.ServerP

Up is an authorized user. It sends SECRET documents through port

PrintS. However, on the other side of the connection, the server tries to read
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this secure document through its RequestP port whose clearance is

EVERYONE. Therefore, the no read-up principle is violated.

3. To ignore the simple security property of Bell LaPadula model in Glue

part of a connector.

If the description of the glue unexpectedly changes the secrecy level of
data flowing through it, this may also cause a violation. For example,

suppose that the glue of PrintConnector is rewritten as below:

SECRET

Glue = ClientP.request?x — ServerP.request!x — Glue

The modification says that whatever the secrecy label of data received
by the connector is, it is carried to a port as a SECRET data. This may
potentially cause a no read-up principle violation if the receiving port has the
EVERYBODY clearance.

In Chapter 5, the Secure Print Server is taken as an example application to
illustrate the verification algorithm. The cases for possible violations are also

applied and discussed in that chapter.
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CHAPTER 5

VERIFICATION OF CONFIDENTIALITY

In this chapter, the phases of static verification of the architecture of a
software configuration to check the consistency of confidentiality authorizations
will be described. The verification process first applies data flow analysis, and
then anomaly detection and excess privilege detection on the abstract syntax of a
Wright/c configuration with respect to an access control lattice model. Moreover,
an analysis of the process in terms of correctness (soundness and completeness),

and the computational complexity (running time and space) will be discussed.

The subsequent sections elaborate on the verification process and the

infrastructure required to run it.
5.1 The Verification Model

The verification process can start once the parser (in the front-end) constructs
the abstract syntax of the configuration and initializes the generated data
structures. Before detailing the steps of the process, some definitions and notations
are introduced. The definitions in the sequel refer to a fixed (but arbitrary)

configuration under consideration, thus the definitive article in “the configuration”.

Notation (Components, ports) : The Components stands for the set of all
component instances in the configuration. The Ports® is the set of all ports that a

component instance ce Components has.
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Notation (Connectors, roles) : The Connectors stands for the set of all connector
instances in the configuration. The Roles‘ is the set of all roles that the connector

instance ¢ € Connectors has.

Notation: caj, denotes the clearance assigned to the port pe Ports® of a component

instance ce Components.

Notation: Re ceivedSetj, (SentSety,) denotes a set of security labels associated

with the input (output) port pe Ports® of a component instance ce Components.

Definition (Conforming received (sent) set): A conforming received (sent) set
associated with the input (output) port pePorts“ of a component instance
ceComponents is a subset of (Ic], the principle order ideal generated by Ic ([lc),
the principle order filter generated by Ic), where [c is the label cajis associated

with. A member of a conforming received (sent) set is called a conforming label.

Definition (Port event): Let L be ReceivedSety, (SentSety,) for an input (output)
port pePorts® of a component instance ce Components. Then for each /gL we
associate an input (output) event on port p where ¢ receives (sends) a datum with
label Zthrough the port p. An input (output) event on port p with label /is called a
conforming input (output) event if its associated label is conforming (cap>¢
(cay <4). An input (output) event on a port p with label Zis an action expressed in
CSP as p?x (p!e) where p is regarded a channel, and x is a variable whose contents
have label Z(e is an expression whose value has label ). An (conforming) input or

output event is called a (conforming) port event.

An astute reader will notice that what we simply call an “event” is, strictly
speaking, an “event type”, or action. As our context is static analysis the distinction
should not matter. Events will occur when the software, whose architecture is
being described, runs. Rather than “event of type e’ we simply talk about

“event e”.

Notation: /e) denotes the label associated with a port event e. More specifically,

Ae) is the security label of the input (output) datum if e is an input (output) event.
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Definition (received label set assignment, risa): A received label set assignment
(rlsa) of a configuration is an indexed collection of conforming received sets of

each input port of every component instance in the configuration.

Definition (sent label set assignment, slsa): A sent label set assignment (slsa) of a
configuration is an indexed collection of conforming sent sets of each output port

of every component instance in the configuration.

A pair of rlsa and slsa constitutes a label set assignment (Isa) for the

configuration: Isa=(rlsa, slsa).

Definition (GRLSA): GRLSA (Global Received Label Set Assignment) is a set of
all received label set assignments (r/sa) for the configuration. Note that GRLSA is

finite.
Notation (Projection): The projection of a received (send) label assignment risa
(slsa) on a component instance ce Components is shown as risa (slsa®).

Proj* risa = rlsa“ where Proj¢ is the projection operator.

Similarly, Proj¢ slsa = slsa’.

Notation (Product): The product of received (sent) label set assignments is a

collection of risa“ (slsa‘) sets indexed by ¢ € Components.

slsa = H slsa“ , and

ceComponents

rlsa = Hrlsac , where H is the product operator.

ceComponents

Definition (Data source ports) : The set of data source ports of a port pe Ports*
of a component instance ce Components, denoted DSP;, is a set of ports that
potentially supply data to the port p (through connections in which p plays a role).

By considering the attachment entries of the configuration, the parser determines
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the data source ports for every port of each component instance, based on the port

adjacency concept.

To illustrate the port adjacency concept, consider an example configuration
in Figure 5.1. The (p,r) relations indicate that port p; plays the role 7; in the
connection it is attached. The port adjacency in this configuration has four entries,

one for each port. Note that N; can be viewed as a “hyper-edge” with three ports
(nodes) playing their roles. The DSP;’ , for port p;, are p, and p; through
connection N; and p4 through connection N>. p; plays the role »; on the connection

N; and the role »s on the connection N,. Note that a port that is both an input and

output port is a data source for itself in any connection.

Figure 5.1: Port Adjacency in a Wright/c configuration

Port p,4, on the other hand, has only one data source port, p;, which plays the
role 75 in the connection N,. Note that, we do not consider, at this stage, whether
input or output are realized on the related ports, rather, consider the potential for

each port.
5.2 Static Analysis of CSP Expressions
Wright configurations (thus, Wright/c configurations) involve CSP

expressions for the behavioral aspect of their description. Therefore, the analysis
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of data flow (or, strictly speaking, the flow of security labels of data) through the
ports requires an analysis of these CSP expressions. To perform this analysis two
approaches can be followed. The first, which we adopted in our study, is the
development of a CSPAnalysis function which extracts the data flow dependencies
among the channels from the CSP expression. The other approach is the analysis
of the traces of the expression using the CSP tool called FDR (Failures,

Divergences and Traces). The subsequent subsections outline these approaches.
5.2.1 CSP Analysis Function

The CSPAnalysis function takes a CSP expression, a list of input and output
channels (ports) that occur in it, and the received (sent) label set assignments for
the input (output) channels. The type of the label set assignments for each of these
channels input to and output from depends on the construct in which the CSP

expression is placed:

® In case the computation of a component c is analyzed in the function, the
input label set assignment is the received label set assignments of the

ports of the component ¢, and the output is SentSet” ,

¢ In case the glue of a connector is analyzed in the function, the input label
set assignment is the sent label set assignments of the ports playing some

roles in the connection. The output is ReceivedSet for all of these ports.

For the sake of simplicity, we will use the analysis of a Computation (i.e.

rlsa) since the Glue has the same structure.
CSPAnalysis : risa“— SentSet, where ce Components

The domain and codomain are both collections of security label sets indexed

by the ports of the component instance.

The CSPAnalysis function is written by Ali Ferhat Tamur, and the source
codes are given in Appendix H. This implementation version does not include

parallel operator (||) which is one of the basic operators of CSP. To include parallel
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operator, the second approach to CSP analysis using a CSP tool called FDR is

considered.
5.2.2 CSP Analysis with FDR

FDR tool provides a facility to check traces of CSP expressions by
refinement [22,32]. A trace of a process is a finite sequence of events, which the
process can perform. A process Q is a trace refinement of another process P, if all
possible sequences of traces, which O can do, are also possible for P. The

relationship is written as

PC 1 O def traces(Q) C traces(P)

Suppose c is an input port and d is an output port in a Wright configuration.
Our verification process requires a CSP analysis to check if there is a trace
<c¢?x,d!f(x)>, where x is a datum that is input by port ¢ and f'is an operation. If
there exists such a trace, we can conclude the output port d depends on (a function
of) the data input by port ¢, i.e. the datum x. Taking all possible combination of
input port and output port pairs in a CSP expression, data flow dependencies

through ports can be obtained.

Let 7 be the set of all traces of the configuration, and let ¢[ 4 denote the traces
t when restricted to symbols in the set A; it is formed from 7 simply by omitting all

symbols outside 4. Then, using the traces refinement:
(TTieap) T {<c?x,d!(x)> | c?x: an input event, d!f(x): an output event}
implies
(Tlea) &7 {<c?x,d!H(x)> | c?x: an input event, d!f(X): an output event}
That means, we can check if there exists a trace in the configuration
consisting of an input event occurring in a process description (like ¢?x) followed

by an output event occurring in the description (like d/f{x)). This must be checked

for any combination of input and output event pairs. Then, dependent input ports
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whose data and security labels are known (see the verification process algorithm in

the next section) can be collected for each output port.

Therefore, all operators of CSP including parallel (||) operator can be subject
to analysis using the traces refinement facility of FDR. Since CSP analysis is not
the main focus of this study, a system to perform the analysis excluding (]|)

operator is implemented.
5.3 The Verification Process

The verification process consists of three parts that are executed sequentially:
preprocessing and initializations, data flow analysis, and postprocessing. A data

flow diagram of the verification process is presented in Figure 5.2.

5.3.1 Preprocessing and Initializing

Taking the abstract syntax of the Wright/c description and the access control
lattice model as inputs, the verification process starts by initializing the label set
assignment (Isa) of the configuration (although logically included in the

verification process, it is implemented as a part of the parsing process).

The initial #/sa is set up by flooding: All conforming labels are offered to all
input ports.

Another task that is performed in the preprocessing is to determine the data
source ports for each port of every component instance in the configuration. Recall
that the data source ports of a port p of a component ¢, denoted DSP;, are the
those that play some role in the connectors in which p also plays a role. The details

of data source ports are given in Section 5.1.

The next step, data flow analysis, is a fixed point computation. It can be

viewed as an iterative improvement on the initial Isa.
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Figure 5.2: Data flow diagram of the Verification Process
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5.3.2 Data Flow Analysis

The data flow analysis starts after the preprocessing and initialization phase
is completed. The analysis repeatedly executes the NEXT function until two
successive rlsas coincide (i.e. the fixed point rlsa is obtained). The NEXT function

maps an rlsa A to a new risa (A') in an iteration step, i.e. A'=NEXT (A).

The NEXT function calls CompFilter and GlueFilter functions alternatingly.
In each iteration, a new rlsa is computed from the risa given as an argument

(Figure 5.3).

[1

tlsa® GlueFilter slsa € ceComponents slsa
ceComponents CompFilter
risa p rlsa’

Proj*

Figure 5.3: An iteration of Data Flow Analysis realizing the NEXT function.

Iteration starts from rlsa.

The descriptions of the GlueFilter and the CompFilter, which are parts of the
data flow analysis, are given below together with the description of two auxiliary

functions, namely CSPAnalysis and ViolationPrevention.
CSPAnalysis:

Wright configurations (thus Wright/c configurations) involve CSP
expressions. Therefore, the analysis of data flow within a component or connector
needs an analysis on these CSP expressions. The details of this analysis are

presented in Section 5.2.
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ViolationPrevention:

ViolationPrevention refuses (filters out) any security labels that can cause

flow anomalies from the security label set given as an input to the function. It,

then, constructs and returns a label set assignment sisa (rlsa), which is the

conforming subset of its input security label set (SentSet (ReceivedSet)). Two types

of flow anomalies can be defined in regards to the BLP principles:

il

Through some connector a datum with security label Zis sent to an input
port p with clearance not dominating Z (Hence if it were to be received
by the port p, that would be a violation regarding the BLP ‘no-read up’
principle).

Some component attempts to send a datum with security label ¢ through
one of its ports, say p, with clearance not dominated by / (Hence if the
port p were to send the data, that would be a violation of the BLP’s ‘no-

write down’ principle.)

Note that type (i) anomalies arise from the glue of some connector, and type

(ii) anomalies arise from the computation of some component.

CompPFilter:

It is a function that applies the following operations to perform a data flow

and violation prevention analysis within every component instance c:

The function inputs a received label set assignment for the component ¢

(rlsa”).

The CSPAnalysis module is called by supplying the computation of c,
and rlsa‘. The CSPAnalysis module returns SentSet® for the component

instance c.

The ViolationPrevention module is called by supplying SentSet’ and
access control lattice model to determine if there exists any violation to

BLP principles. The module checks the security labels of data possibly
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output by the component ¢ and authorization levels assigned to its ports
(cap, where pePorts®). Then, it returns slsa® which excludes the
security labels that can cause violation to BLP’s ‘no-write down’
principle. The excluded security labels are put into a list, called refused

sent list. Note that earlier refused sent lists are discarded.

e The function CompFilter, then, returns sent label set assignment for the

component instance ¢, which is sisa“.
In short, slsa“ =CompFilter(risa), for each ce Components
GlueFilter:

It is a function that performs a data flow and violation prevention analysis for

every component instance ce Components through the connectors it is incident

on:

e The function inputs a sent label set assignment (s/sa) for the

configuration.

e It then, extracts the data source ports, DSP, for each port p of the
component instance c¢. Note that a port can play multiple roles in
different connections. Therefore, since GlueFilter runs on connection

basis, the outputs for the same port playing multiple roles are unioned.

e For each connector instance a, the CSPAnalysis module is called by
supplying the glue of a, the ports p that play some roles in a, and slsa:T
for each ze DSPpT , where T is a component instance to which z belongs.
The CSPAnalysis function returns Re ceivedSetzT for each ze DSP,,T ,

which are subsequently unioned in port basis.

e The ViolationPrevention module is called by supplying ReceivedSet”
and the access control lattice model to determine if there exists any
violation to BLP principles. The module checks the security labels of

data possibly input by the component ¢ and authorization levels assigned
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to its ports (cay, , where pe Ports®). Then, it returns rlsa® which excludes
the security labels that cause violation to BLP’s ‘no-read up’ principle.
The excluded security labels are put into a list, called refused received

list. Earlier refused received lists are discarded.

e  The function GlueFilter, then, returns received label set assignment for

the component instance ¢, rlsa.

In short, rlsa“ =GlueFilter(slsa°), for each ce Components

Having described the functions that the NEXT function utilizes, the
following paragraph describes the operations it performs on rlsa to compute »/sa’

(Figure 5.3):

e Applies the Projection operator Proj to risa to extract rlsa“ for every

ce Components

e Runs CompkFilter to obtain sisa“ for every ce Components
e Applies the product operator H to all sisa® to form sisa, where

ce Components. Thatis, slsa= H slsa” .

ceComponents
e Runs GlueFilter to obtain risa®, for every ce Components

¢ Finally, applies the product operator to obtain r/sa.

risa = H rlsa .

ce Components

To represent and analyze the iteration cycle more formally, we express the

function NEXT: GRLSA — GRLSA as a composition of constituent functions:
NEXT = Ils, 0 GlueFilter o Ilgs, o CompFilter® o Proj‘, where
Proj‘: rlsa > rlsa®, for ce Components

CompFilter: rlsa® — slsa®, for ce Components
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Igsa : {slsa’| ce Components} +> slsa
GlueFilter : slsa — rlsa’ €
[ysa: {rlsa’ ¢ | ce Components} > rlsa’

Having presented a single iteration to compute NEXT(rlsa), Figure 5.4 shows
the overall data flow analysis phase in terms of r/sa transitions. As seen in the
figure, each iteration ends up with an rlsa, which is the new received label set
assignment obtained from the r/sa of the previous iteration. The data flow analysis
phase terminates when two successive rlsas are the same, i.e., the NEXT function
yields no change in the security label sets. Consequently, the data flow analysis
returns the fixed point received label set assignment which is, then, subjected to

analysis by the portprocessing operations.
5.3.3 Postprocessing

After the termination of the data flow analysis, the verification process
moves on to produce reports by checking the label set assignments. The reports

can be grouped into three:
i. Flow Anomaly Detection:

It is the function that checks whether an assignment of clearance to the ports
of the components in a configuration has any data flow anomalies granted that the
BLP principles are not to be violated. Our view is that in a configuration with a
proper clearance assignment, no input port must be sent data that it cannot receive,
and no output port must get data that it cannot send without violating the BLP

principles.

To perform the detection, the refused lists (sent refused list, received refused
lists) are checked if there are entries in them. An anomaly is detected in the

configuration of the software system if,
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Figure 5.4: Isa development in the Verification Process

o Sent refused list contains security labels. These labels are in the list
because they are refused since they are attempted to be sent by a port p
whose clearance assignment (cay) is not dominated by these labels.
Though the list entries are discarded in each iteration, the existence of
them at the end indicates potential violation of BLP ‘*-property’. (Note
that this is a programming optimization.) The computation of ¢ offers
output port pePorts® with clearanceca;, some data labelled ¢ such that

/>cay, does not hold.
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® Received refused list contains security labels. These labels are put into
the list because they are attempted to be input by a port whose clearance
assignment (cay) does not dominate these labels. Though the list entries
are discarded in each iteration, the existence of them at the end indicates
potential violation of BLP ‘simple-security property’ (Note that this is a
programming optimization). The glue of some connector offers input port

pePorts® with caj, some data labelled /such that /<ca;, does not hold.

ii. Excess Privileges

Excess privilege can be defined as the privilege (clearance) that cannot be
exercised under given clearance assignment for the configuration. Hence, if some
input port p has clearance K but is not sent (through some connector to which it is
attached) a datum with label /dominated by K, then K is an excess privilege. Thus
there might be a lower clearance than K to be assigned to p without restricting the
data flow within the configuration. Similarly, if some output port p has clearance K
but p does not get (from the computation of its component) a datum with label £
which dominates K, then K is an excess privilege. Thus, there might be a higher
clearance than K (in the access control lattice model) to be assigned to p without

restricting the existing data flow within the configuration.

In order to determine whether excess privileges exist, every port p of each
component instance ¢ is checked in terms of their clearance assignment (cay,)
against its the label set assignment (/say,). If there is another clearance assignment,
say cay ', which is dominated by ca;,, and does not cause any decrease in existing

data flow then the designer is reported about this situation.

If either, or both, of these cases occur, the verification process reports it to
the users to consider the anomalies and revise the clearance assignment, and
perhaps, the access control lattice. The report, in general, contains information on

component instance basis. For every component instance, the ports are reported as:
e The component instance name it belongs,

e [ts name,
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e [ts assigned clearance,
e Security labels of data that potentially input by the port,
e Security labels of data that potentially output from the port,

e Security labels of data that potentially causes anomalies with respect to

BLP’s simple security property,

e Security labels of data that potentially causes anomalies with respect to

BLP’s *-property,

e Excess privileges (if any exists) by reporting more suitable privilege (if

any exists) in place of its assigned clearance,

e Ifthere is no anomaly, a message stating the successful verification.
iii. Successful Verification

If no flow anomalies and no excess privileges are detected, the verification
process announces success.
5.3.4 Programmer’s View of the Verification Process

The following pseudo-code presents a “programmer’s view” of the
verification process described above.

S0. LET KerationCount = 0

S1. INITIALIZE the received label set assignment;

RETURN risa(lterationCount). (flooding).
S2. EXTRACT DSP; for each pe Ports® and ce Components

S3. WHILE IterationCount=0 OR rlsa(lterationCount) <> rlsa(lterationCount-1)
DO step ‘S3.1° through step ‘S3.8°.
S3.1. APPLY the Projection operator Proj° to the rlsa(lterationCount);

RETURN rlsda’(lterationCount) for each ce Components.
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S83.2. CALL CompFilter for each ce Components,

input: risa‘(IterationCount)

S§3.2.1. CALL CSPAnalysis input.: the computation expression of c,

and Ports,
RETURN the sets of security labels (SendSet").

S$3.2.2. CALL ViolationPrevention input: SentSet

RETURN sisa’ (TterationCount) together with Refused labels in
SentRefusedList..

S§3.2.3._RETURN slsa‘ (IterationCount).

S3.3. CALL the product operator ITinput: slsda’(lterationCount), for each

ce Components,;

RETURN slsa(lterationCount).

S3.4. LET ReceivedSeth, ={}, for each pe Ports‘ and ce Components

S3.5. CALL the GlueFilter for each ne Connectors;

input:sisa(lterationCount)
S§3.5.1. FOR each role reRoles” DO

S3.5.1.1.RETRIEVE the ports P,.c < Ports® playing the

roler from the attachments, for each

ce Components.

S$3.5.1.2.RETRIEVE the data source ports DSP; and their
entries from the slsa(IterationCount),

where pe PS, for each ce Components.

§3.5.2. LET TempReceivedSet;, = ReceivedSet,,,

for each pePorts” and ce Components

S3.5.3. CALL CSPAnalysis input: the glue expressions of n, DSPS

C
and, where pe P, , reRoles", ce Components;
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RETURN ReceivedSet; , for each ce Components.

S$3.5.4. LET
ReceivedSet[C7 = ReceivedSet[C7 u T empReceivedSet;,
for each pe Ports® and ce Components

S3.6. CALL ViolationPrevention input: ReceivedSet‘;

RETURN risa’ (IterationCount+1) together with Refused labels in

ReceivedRefusedList, for each ce Components.

S3.7. CALL the product operator ITinput: Isa® (TrerationCount+1);

RETURN rlsa(TerationCount+1), where ce Components.
S83.8. IterationCount = IterationCount + 1
S4. FOR each port p of every component instance ¢ DO

S4.1. IF there exists any security label in the ReceivedRefusedList;
THEN

S4.1.1. DISPLAY “Potential No-read up anomaly is detected for

port” p “of the component instances” ¢

ENDIF

S4.2. IF there exists any security label in the SentRefusedList[c7 THEN

S§4.2.1. DISPLAY “Potential No-write down anomaly is detected for

port” p “of the component instances” ¢
ENDIF
S5. FOR each port p of component instance ¢ DO

S5.1. CALL ExcessPrivilege input: ca;7 and lsa;, where

ce Components and pe Ports® .

RETURN a clearance assignment ca‘,'.
S5.1.1.IF cay,' <> caj, THEN
S5.1.1.1. DISPLAY “Excess Privilege is detected for port”

p “of the component instances” ¢
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S§5.1.1.2.DISPLAY ca;’ “can be assigned instead of “ca;

S5.1.2. ELSE
S§5.1.2.1. DISPLAY “No Excess Privilege was detected”

. ENDIF

S6. IF ReceivedRefusedList is empty AND SentRefusedList is empty THEN
S6.1.DISPLAY “SUCCESSFUL VERIFICATION”

ENDIF
END
It can be clearly identified that the steps SO through S2 are the preprocessing

phase, step S3 is the iteration phase, and the remaining steps constitute the

postprocessing phase.

The verification algorithm and the data flow analysis are implemented in

ML. The source code is presented in Appendix H.

Having presented the verification algorithm, the next section illustrates its
steps by applying it to the Secure Print Server whose description is given in

Section 4.6.
5.4 lllustration of the Verification Process for SPS

In this section, an illustration of the verification process including iteration
steps is presented. The variations of the Secure Print Server, given in Section 4.6,

to show possible violations is also included in the illustration.

The reader is supposed to refer to the following remarks in order to follow

the illustration tables given in this section:

e Each row of the tables depicts state transitions for a port of a component

instance,
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A state consists of a Received Label Set Assignment (rlsa) and a Sent
Label Set Assignment (slsa). rlsa of the first state is constructed by
applying the flooding,

e Each risa or slsa entry is a list of sublattices that are represented by their

maximum and the minimum elements.

e P and § stand for PUBLIC and SECRET data labels, respectively.
Therefore, an entry ‘P S’ denotes a sublattice with the maximum element
S, and the minimum element P. A single data label is represented by
either ‘P P’ (PUBLIC) or ‘S S’ (SECRET). An entry valued as Empty

refers to an empty list.

e The strikethrough over a label denotes the refusal because of the

violation prevention with respect to BLP model,

e The bold face emphasizes the updates during the state transitions, and if

there appears no change in either rlsa or sisa lists, the process stops,

e At the termination of the process, if there is a potential violation to BLP

principles, the r/sa or slsa entry that causes the violation is shaded.

Table 5.1 illustrates that the algorithm executes for three iteration steps since
the content of the r/sa in step 3 does not change. There is no need to calculate sisa
for step 3 since the rlsa is the same at this step. The process starts by flooding the
rlsa regarding the clearance of the ports. Next, the s/sa is computed for the initial
step. Note that PUBLIC labels for OutputP port of PS, and Receive port of
PUBLICPRINTER are refused by the violation checking algorithm since their

clearance are not proper.
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Table 5.1. Illustration of the iteration steps for the Secure Print Server

C STEP 1 STEP 2 STEP 3
omponent
Port Clearance of
Instance rlsa
Name the Port rlsa
Name slsa rlsa slsa (no slsa
(Flooded)
change)
U, PrintP | EVERYONE P S PP | Empty PP | Empy
U, PrintS | AUTHORIZED | P S SS | Empty S S | Empty
U, PrintP | EVERYONE P S PP | Empy PP | Empty
PS RequestS | AUTHORIZED P S Empty | S S [ Empty | S S
PS RequestP | EVERYONE P S Empty | PP  Empty | P P
PS OutputP | EVERYONE P S PS | Empy P P | Empty
PS OutputS | AUTHORIZED | P S PSS | Empty S S | Empty
SECURE
Receive | AUTHORIZED P S Em, SS Em S S
PRINTER Py Ly
PUBLIC
Receive | EVERYONE P S Empty | PPS  Empty | P P
PRINTER

Since there is no refused label left after termination of the process (i.e. after
state is completed), the verification results with a success. That means, statically,
there is no data flow that may potentially cause a violation to Bell LaPadula

model.

In Section 4.6, we have presented some cases to show possible violations to
Bell LaPadula model by modifying the SPS. Similar to the original description,
their verification steps are depicted in Table 5.2, Table 5.3, Table 5.4, and Table

5.5, respectively.

In Table 5.2, the process terminates in step 3 where there is no modification
in the s/sa. It is shown that PrintP port of component instance U, violates the
‘no-write down’ principle since it tries to output a PUBLIC datum while it is given
an AUTHORIZED clearance.
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Table 5.2. Illustration of the iteration steps for Secure Print Server

(improper clearance, case 1.a)

C STEP 1 STEP 2 STEP 3
omponent
Port Clearance of
Instance slsa
Name the Port rlsa
Name slsa rlsa slsa rlsa (no
(Flooded)
change)
Ua PrintP . AUTHORIZED | P S PP | Empy | PP | Empy PP
Ug PrintS | AUTHORIZED P S SS | Empty | SS | Empty S S
Ug PrintP | EVERYONE P S PP | Empty | PP | Empy . P P
PS RequestS | AUTHORIZED PS  Empy| SS | Empty | S S  Empty
PS RequestP | EVERYONE PS Empy| PP | Empry | PP Empry
PS OutputP = EVERYONE PS PS | Empy | PP | Empy P P
PS OutputS | AUTHORIZED PS (PSS|Empry | SS | Empty ;| S S
SECURE Recei P S E SS | E SS E
ecerve AUTHORIZED mpt mpt mpt
PRINTER i i i
PUBLIC Recei P S E PPS | E PP E
eceve EVERYONE mpt mpt mpt
PRINTER i i i

Table 5.3 illustrates another case for improper clearance assignment (1.b). In
this case, OutputS port of PS component also causes a potential violation ‘no-write

down’ principle.
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Table 5.3. Illustration of the iteration steps for Secure Print Server

(improper clearance, case 1.b)

Component STEP 1 STEP 2 STEP 3
Port Clearance
Instance slsa
Name of the Port rlsa
Name slsa rlsa slsa rlsa (no
(Flooded)
change)
Ua PrintP | EVERYONE P S PP | Empy | PP | Empy P P
Ug PrintS  AUTHORIZED P S SS | Empty | SS |Empty S S
Ug PrintP = EVERYONE P S PP | Empy | PP | Empty, PP
PS RequestS | AUTHORIZED PS Empyy| SS | Empty | S S Empty
PS RequestP | EVERYONE PS Empty| PP | Empty | PP | Empty
PS OutputP | EVERYONE P S PS | Empy | PP | Empry . PP
PS OutputS | AUTHORIZED | P S PSS | Empyy | BS S| Empry BS S
SECURE Recei PS E SS | E SS E
ecerve AUTHORIZED mpt mpt mpt
PRINTER e i i
PUBLIC Recei EVERYONE PS | E PPS|E PP E
ecelve mpt mpt mpt
PRINTER i i i

Table 5.4 is a trace of the verification for improper attachments. It shows the

occurrence of the flow anomalies violation when an attachment is modified as

given in Section 4.6 (Case 2). RequestP port of PS component violates ‘no-read

up’ principle when such an improper attachment is established.
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Table 5.4. Illustration of the iteration steps for Secure Print Server

(improper attachment, case 2)

C STEP 1 STEP 2 STEP 3
omponent
Port Clearance
Instance slsa
Name of the Port rlsa
Name slsa rlsa slsa rlsa (no
(Flooded)
change)
Ua PrintP | EVERYONE P S PP | Empty | PP | Empty . P P
Ug PrintS | AUTHORIZED P S SS | Empy | SS | Empty S S
Ug PrintP | EVERYONE P S PP | Empyy | PP | Empy | P P
PS RequestS | AUTHORIZED | P S Empyy | S S | Empty | S S | Empty
PS RequestP | EVERYONE PS  Empy |PP S| Emprn | P PS Empty
PS OutputP | EVERYONE P S PS | Empy | PP | Empty 1 P P
PS OutputS | AUTHORIZED PS PSS| Empty | SS | Empy i S S
SECURE Recei PS E SS |E SS | E
ecerve | AUTHORIZED mpt mpt mpt
PRINTER e i i
PUBLIC Recei EVERYONE PS E PPS |E PP E
ecelve mpt mpt mpt
PRINTER e i i

Lastly, Table 5.5 shows the case where the glue of a connector causes a
potential violation as in described in Section 4.6. The RequestP port of PS

component violates ‘no-read up’ principle.
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Table 5.5. Illustration of the iteration steps for Secure Print Server

(invalid glue description, case 3)

Component STEP 1 STEP 2 STEP 3
Port Clearance
Instance slsa
Name of the Port rlsa
Name slsa rlsa slsa rlsa (no
(Flooded)
change)
Ua PrintP | EVERYONE PS PP |Empy | PP | Empy P P
Ug PrintS  AUTHORIZED | P S SS | Empty | SS | Empty 0 S S
Ug PrintP = EVERYONE P S PP |Empty| PP | Empy | P P
PS RequestS | AUTHORIZED | P S Empty | S S | Empty | S S | Empty
PS RequestP | EVERYONE PS Empry| SS | Empy | S S  Empty
PS OutputP | EVERYONE PS P S | Empty | Empty | Empty | Empty
PS OutputS ;| AUTHORIZED | P S (PSS | Empty | S S | Empty | S S
SECURE e PS Empy| SS |Emw | SS E
ecelve AUTHORIZED mpt mpt mpt
PRINTER o e i
PUBLIC Recei EVERYONE PS E SS|E E E
ecelve mplt mpt mpt mpt
PRINTER IpLy Iply ply Iply

5.5 Trace Model of the Behavior of Wright/c Descriptions

In this section, we present a trace model for the behaviour of a Wright/c

description. The trace model, that will be utilized to show the correctness of the

verification process in Section 5.6, provides a framework for the actions of the

input and output port events realized by the Wright/c description.

Let Behaviour be the CSP process derived from the Wright/c description of

the architectural configuration under consideration, as described in Appendix C.

Consider traces of Behaviour restricted to the set of port events, such that each

event occurring in a trace is a conforming event (in other words, no port event

violates the BLP). We call such sequences port traces. More formally, ¢ is called a

port trace if =s[cpg for some s in Traces(Behaviour), where CPE is the set of
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conforming port events (types). The notion of a port trace allows us to ignore

events occurring inside a component (in a computation) or a connector (in a glue).

Definition (alf): One can partition a port trace ¢ into substrings each consisting of
only input events or only output events. More specifically, assuming that ¢ contains
some input events, we can write t = O Ip* O; ™ ... * O, ™I, Opyy for some n 20
such that each I; (0 <j <n) is a nonempty string of input events, each Ok (1 <k <n)
is a nonempty string of output events, and Og and Oy+; are (possibly empty) strings

of output events. We define alt(t)=n.

Definition (Rank): Let e be a port event occurring in ¢. Then e must occur in some
I; if e is an input event, or Oy if e is an output event. We define rank(e,t)=j in the

former case, and rank(e,t)=k in the latter case.

Definition (Normal form): We say that a port trace ¢ is in normal form if it has at
least one input event and rank(e,t) is minimum for each e occurring in . More
formally, let # be port trace consisting of the same events as 7 (i.e. u is a

permutation of 7). Then rank(e,t) <rank(e,u) for every e occurring in ¢ (or u).

Lemma 5.1: For any port trace ¢ with at least one input event there is a port trace u

in the normal form consisting of exactly the same events as ¢.
Proof:

Intuitively, # can be shuffled so that each event e is now occurring “as early
as possible” (more precisely, in a substring /; where j is as small as possible;
similarly for output events). Cyclic dependencies among event types (actions)
arising from the CSP expression Behaviour are broken by forcing the new trace

start with input events (i.e. with empty Oy).

Lemma 5.2: The first # iterations of the data flow analysis algorithm yield a port

trace 7 in the normal form with alt(z)=n, for n>0.
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Proof:

Consider the first # iterations of the algorithm. Then, the following sequence

of label set assignments is formed:
risa(0), slsa(0), risa(l),..., slsa(n-1), risa(n),

where rlsa(0) is the initial rlsa obtained by the flooding procedure, and
slsa(i)=CompFilter(risa(i)), and risa(i+1)=Gluefilter(slsa(i)) as described in
Section 5.2. Then listing the input events associated with the members of rlsa(i) in
some arbitrary order we obtain the string I;; similarly listing the output events
associated with the members of slsa(i) in an arbitrary order we obtain O,.

Concatenating these substrings yields the port trace t= Iy Op" [; ..~ Op " 1, .

Note that all events in the same substring occur independently (in different
parallel processes). Furthermore, the generation of the dependent events are not
delayed. That is, all output events depending directly on the events in J; occur in
Oy; similarly all input events depending directly on the events in O; occur in J;;.

Thus 7 is in normal form.

Lemma 5.3: Let 7 be a port trace in the normal form with alt(t)=n. Then, for any
input event e (on a port p of component ¢) occurring in ¢, {e) is in rlsaf7 (n), where

rank(e,t)=n.

Proof (By induction on alt(t)):

For the basis, assume alt(t)=0. Then, =0y " Iy. Suppose e is in Iy. Then fe),
which must be conforming, is in rlsaj(0) by initialization (flooding). Suppose
alt)=n+1 and e occurs in I,;;. As ¢ is in normal form, all the output events on
which e directly depends are in O,.;, and all the input events on which events in
Oy directly depend are in /,. By inductive hypothesis the labels of all events in 7,
are in rlsa(m). Then risa(n+1)=NEXT(rlsa(n)) contains all input events that follow

the input events in rlsa(n), in particular e.
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Definition (Infinite traces): An infinite trace is a member of X°, where X is an
action alphabet, the sequences of the form <a;, ie N>, which represents a complete
(i.e., throughout all time) communication history of a process that neither pauses

indefinitely without communicating nor terminates [60].

The CSP modeling of Wright/c configuration behaviour, as described above,
can be analyzed using its infinite traces. Our approach to the verification adopts
this semantic model. We also consider finite prefixes of infinite traces, that is,

traces in the ordinary sense.
5.6 The Correctness of the Verification Process

In this section, the correctness of the verification process will be discussed.
The correctness of the result of the iteration phase will be analyzed in terms of

soundness and completeness.

Definition (Complete Lattice): A lattice L is a complete lattice is every subset S of

L has both the least upper bound (US) and the greatest lower bound (1S). [60].

We also use dual lattices. Given a lattice (L,<), the dual lattice of L is
defined as (L,>), that is one gets the dual lattice of L by taking L’s reverse order.
The corresponding definition is also quite simple: one only has to exchange the
operations M and LI, that is given such a lattice (L, M, L), its dual lattice is
(L, L, ). Therefore, it should be clear that dual of a complete lattice is also a

complete lattice.

Definition: A binary relation on received label set assignments is defined as
follows. Let 4 and B be any two received label set assignments, 4, Be GRLSA.
Then,

(ACB) if and only if (A, cB,) holds for all ceComponents and for every

pe Ports".

Lemma 5.4: (GRLSA, C) is a complete lattice with respect to the order C as

defined above.
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Proof:

In order (GRLSA, C) to be a complete lattice:

i.  (GRLSA, C) must be a poset,

ii.  Each subset S € GRLSA must have a least upper bound and a
greatest lower bound in GRLSA.

(i) Let 4, B be any two members of GRLSA. ACB if A,c B, for
each ce Components and for each pePorts‘. Therefore, we have a subset relation

which is easy to see that it is reflexive, transitive and antisymmetric.

(ii) Each subset S of GRLSA has a least upper bound (written LIS) and a
greatest lower bound (written MS) as:

us= I I g4

ceComponents pe Ports®

ns= I II o4
pe

cep

Since (GRLSA, C) is a complete lattice, by the definition of the duality of
lattices, (GRLSA, 1) is also a complete lattice. In the correctness analysis of the
verification process, we will make use of (GRLSA, 1) due to the direction of risa
development during the iteration phase of the verification process. Initial risa
consists of all data security labels corresponding the conforming input port events

(flooding), and corresponds to the minimum of the dual lattice.

5.7 Fixed Point Induction

In our proof, we apply a fixed point induction principle [45,60]. In stating the
rules of fixed point induction, ¢ — A means that the statement 4 is provable from
the set ¢ of statements using the axioms and inference rules. If 4 has the form

M <N, then we write [P/x]A for the result [P/x] M <[P/x]N of substituting P for
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x in both terms, assuming P and x has the same type. If 4 is an equation, we define
[P/x]A similarly. A predicate P is said to be admissible or inclusive if, for every
directed S, P(d) for all d € S, then P(LfS). Using the notation, the rule is written as

follows:

PH[L/x]A §O{[c/x]A} F—[F(c)/x]A
o —/[fix F/x]A

constant ¢ not occuring in @.

If we think of 4 as a way of saying that the variable x has some property,
then [L/x]A says that the property 4 holds for L (initial value for x). The second
hypothesis, ¢ U{ [c/x]A} F—[F(c)/x]A, is a way of saying that if 4 holds for some
arbitrary fixed value ¢, then it holds for F(c). We conclude that the property holds
for every element of the set {F' (1) | n >0}, by induction on n. This implies that
the property holds for the fixed point of F.

Definition (Complete partial order) [60]: A complete partial order (cpo) is a

partial order in which every directed set has a least upper bound, and has a bottom

(-

Clearly every complete lattice is a cpo. So, (GRLSA, J) is also a cpo.

Theorem (Tarski’s theorem for complete partial orders) [60]: Suppose P is a
complete partial order and f- P — P is continuous. Then f has a least fixed point
given by LI o "W).

At this point, we show that fixed point induction is applicable to the
verification algorithm using Tarski’s theorem. According to the theorem, if the set
of received label set assignments (r/sa) is a complete partial order, then the NEXT
function implemented in the algorithm must have a fixed point. We need to
establish that the algorithm’s NEXT operator that is applied to an r/sa (which
corresponds to the function F in the fixed point induction principle) is monotonic.
Then, the stable Isa that is reached after applying the NEXT for a finite number of

iterations, will be the greatest fixed point of NEXT as we interpret the fixed point
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rlsa in the dual lattice (or equivalently, the least fixed point, when interpreted in

the original lattice).

Lemma 5.5: CSPAnalysis function f: risa® — SentSet® (f: slsa® — Re ceivedSet©)

is monotonic, where ce Components.

Proof:

Let P be a CSP expression and po be an output channel. Call the input

channels, the data input from which affects the data sent to po as pi, pis, . pix. Let

e

S(pi;) be the set of data security labels input from pi; and S(po) be the set of the
data security labels output to po. Generally, S(po) depends on P, and S(pi;) :

S(po) =AS(piy), S(pis), ..., S(pix)); The specific f depending on P.

Then, we need to show that f is monotonic on subset order in every

parameter.

First observe that the run-time behaviour of P does not depend on S(pi)
(there is no branching that depends on the security label of some data). The outputs

to a channel are only done by output events. There are two types of output events:
OUTPUT(port, FIXED(security label, value list))
OUTPUT(port, DEFAULT(value_list))

In the first case, the security label of the data output is fixed and does not

depend on the security labels of value_list.

Let us consider the second case. The DEFAULT construct models some
unspecified function application that takes value list as parameter. Let V; be the i"
value, S(V;) be the security label of V;, and S(o) be the security label output to

channel.

Clearly, S(o) should only depend on {S(V;)}. By the non-interference
principle, which declares that a change in high inputs should not yield to a change

in low outputs, CSPAnalyser, as always done in the literature, defines S(o) as:
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S(0) = LUB{S(V))}

Before run-time we may not actually know S(7})'s, instead we will know the
set SET S(V;) of security labels that S(V;) is an element of. Let A/IP be the set of

all minimal sets that has an element from all S(7):

AlIP = {Pos | (Vi dx: x e SET_S(Vj) and xe Pos) and
(Vx: xePos = dJi:xe SET _S(Vi))}

Then, the set SET S(o) of the security labels output to the channel will be:

SET_S(0) = {LUB(Pos) | Pos € AlIP}

That is, SET S(o) is the minimal set such that for each possible choice Pos
of S(V;) from SET S(V;) for all i, SET S(o) has LUB(Pos) as an element.

Now, it is clear that SET S(o) is monotonic on every SET S(V;). Without

loss of generality suppose:
SET _S(V1)  SET _S(Vi)', SET_S(Vi) = SET_S(V))' for all other i.

Let AlIP = {Pos | (Vi Ix: xe SET_S(V;) and xe Pos) and
(Vx: xePos = Ji: x € SET _S(V)))},

AlIP' = {Pos | (Vi Ix: xeSET_S(V;)' and xe Pos) and
(Vx: xePos = Jdi: x e SET_S(Vy)")},

Then, SET _S(o) = {LUB(Pos) | Pose AlIP} , and

SET S(0)' ={LUB (Pos) | Pose AlIP'}

But AlIP cAlIP'. So, SET _S(0) cSET_S(o)', which completes the proof.

Lemma 5.6: The NEXT : GRLSA — GRLSA function, defined in the verification

process, is monotonic.

Proof:
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Let A and B be any two elements of GRLSA, where ACB. Let, also,
A' = NEXT(A) and B'=NEXT(B). In order NEXT to be a monotonic function,
A'CB" must be satisfied.

Recall that NEXT function can be decomposed as:

NEXT = Ils, 0 GlueFilter o I, o0 CompFilter® o Proj*

For the NEXT function to be monotonic, it is sufficient that the constituent
functions be monotonic. By their definitions, Proj and II have no effects in
achieving the monotonicity since they project the output of the function result on
component basis and compose them, respectively. Therefore, monotonicity of

NEXT function requires:

CompFilter( A° )E CompFilter(B¢), and

CompGlue( A° )E CompGlue( B¢ ), where ce Components

These two functions, CompFilter and GlueFilter, both consists of two
phases: the CSPAnalysis and the ViolationPrevention. The former is monotonic as

shown by Lemma 5.5.

The ViolationPrevention refuses (removes) any label from its input label set
assignment if it does cause a violation with respect to BLP principles. If some
label Zerisa is filtered out (refused) in A', and if Zstill appeared in B’, then it must
also be filtered out from B’, by the definition of the ViolationPrevention, which

preserves the monotonicity of CSPAnalysis.

Therefore, NEXT function is monotonic.

Having a complete partial order GRLSA, which is finite, and the
monotonicity of the NEXT function implies that NEXT is continuous. Then, the

least fixed point exists according to the Tarski’s theorem.

We now define the property which will be the subject of induction.
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Definition: (Infinitely often) : 1f at all time instants, there is a future instant that

L o AN
an event e occurs, then e is said to occur infinitely often (i.0.) .

The predicate we develop is based on the infinite traces of the configuration
as it refers to i.o. events. If some event e appears in an infinite trace of the
configuration, all the events that lead to the occurrence of e are also expected to be

in the trace.

Definition (D(s,e)): Define a predicate D(s,e) as such that; for an event e and an
rlsa s, there is an infinite trace 7 of the configuration such that all input events in ¢

are in (some member of) s and e occurs infinitely often in ¢.
We define the property 4 of the fixed point induction as follows:
A(s) : rlsa s contains all conforming input events e that satisfies D(s,e).

The property 4 is admissible since if it is satisfied in a set S of r/sa, it must

be satisfied by LIS of the set because LIS is componentwise union of the S.

Lemma 5.7: A(u) is satisfied, where u is the greatest fixed point (r/sa) of the
NEXT function, u=Fix(NEXT).

Proof:
We use the fixed point induction to prove that 4(u) is satisfied.

Basis (1): All conforming events are included in r/sa (flooding). Therefore,
all events that satisfy D(s,e) are also in the initial 7/sa. A(L) is satisfied. (Note that

1 is the top element of the dual lattice.)
Induction hypothesis: Assume that A(s) is satisfied.

Induction step.: A(s"), where s'=NEXT(s), must be satisfied.

"In temporal logic, this can be expressed by the formula “G F occurs (e)”, which is interpreted on
the infinite traces of the CSP process, which is the behaviour of the configuration.
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s—s'
(removed during a NEXT operation)

O

Figure 5.5: Removal of events after NEXT operation

For a received label set assignment s, assume that s includes all events that

satisfy D(s,e). Then, some events that does not satisfy D(s',e) are filtered out from

s’ or s=s’ in which case the algorithm terminates thereby obtaining s'. Because if

the event e occurs after the NEXT operator is computed, it must reside in the next

rlsa. That means, the events that are still included in s are only those which satisfy

D(s,e). Figure 5.5 illustrates that there are three possible received label set

assignments that an event e may reside in after a NEXT operator is applied to s:

ii.

iii.

The event e in s’ : It is clear that if D(s,e) then D(s',e) is satisfied since
s'cs. Note that it is thought that because of the events in s-s', D(s’,e)
may not be satisfied. It is not the case since infinitely often events are

not in s-s'.

The event e in s-s' : Since e is refused in iteration », it does not have to
be infinitely often (i.0.). Suppose that e occurs i.o. Then, e occurs in
some normal form trace ¢ with rank(e,t) =k > n. By Lemma 5.3, {e) is
in rlsa(k). Since NEXT function is monotonic and /e) is not in
rlsa(n+1), then, it can not be in rlsa(k), (contradiction). Therefore, e is
not infinitely often which subsequently leads to D(s-s',e) is not

satisfied.

The event e not in s: It is clear that it is also not in s'. (Induction

hypothesis).
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Therefore, by principle of induction we have A(u) satisfied, where u is a

fixed point rlsa obtained by u=NEXT"(u) for any n.

At this point we only know by Lemma 5.7 that u contains all the events e
satisfying D(u,e). Then we must come up with an argument to show that the fixed

point u satisfies D(u,e) for any e contained in u.
Lemma 5.8: The fixed point u satisfies D(u,e) for any e contained in .
Proof:

Let d be in u. Show that D(u,d). We have NEXT(u)=u. Therefore, d is in
NEXT"(u) for any n. So d is i.0. and D(u,d) is satisfied (lemma 5.7), which implies

D(u,e) for any e contained in u.

Thus we have the following result characterizing the outcome of data flow

analysis:

Lemma 5.9: Let risa(u) = Fix (NEXT), computed by the data flow algorithm.
Then u exactly contains those input events e occurring i.0. in some infinite port
trace ¢+ whose input events (other than e) are in u. Similarly, u exactly contains
those output events e occurring i.0. in some ¢ whose output events (other than e)

are in u.
Here is our main result:

Theorem 5.1: The verification algorithm produces a flow anomaly notification if

and only if a flow anomaly exists in the configuration.

Proof: (“only if” part —soundness, or “no false alarms”)

Suppose that the verification algorithm produces a type (i) flow anomaly
notification. This is when the detection procedure finds an output port p (of some
component, say ¢) with slsay(u)containing some label ¢ and a connected input
port ¢ (of some component, say d) such that rlsa,‘,j (u ) does not contain 4, as ca;’ *

Z Let e be the output event corresponding to label Zat port p. Then by lemma 5.9,

97



e occurs i.0. in some infinite trace ¢ consisting of events in u. As the ports p and ¢
are connected (through some connector) some datum with label ¢is bound to be
offered to port ¢, by the fairness assumption, but it must be rejected so as not
violate the simple security property. This constitutes a data flow anomaly of type

(1). Argument for type(ii) anomaly is similar. Hence, the “only if” part.
(“if” part —completeness, or “no missed alarms”)

Let p be an output port (of some connector ¢) and ¢ be an input port (of some
component, say d). Let also e be the output event at port p. As the ports p and ¢ are
connected (through some connector) some datum with label ¢ corresponding to e,
is bound to be offered to port g. Suppose that a data flow anomaly of type (i)
exists. This requires that e does not occur i.0. in some infinite trace ¢ consisting of
events in #. Thus, by lemma 5.9, it must be rejected so as not violate the simple
security property. This results that slsa (u) contains the label ¢ whereas
rlsa,‘; (u)does not contain 4 as ca,‘,j # ¢ This concludes that the verification
algorithm produces a type (i) flow anomaly notification. Argument for type(ii)

anomaly is similar. Hence, the “if” part.

Thus, the greatest fixed point rlsa u will contain al// and only the events e that

occur infinitely often in some sequence whose input events are all in .

The all part tells that the /sa at the fixed point is complete. This means, u
contains all the events such that D(u,e) is satisfied. It helps ensure “no missed

alarms” when the flow anomalies are reported.

The only part helps for the soundness, i.e. there is no event included in #, the
fixed point, that does not satisfy D(u,e). It helps ensure “no false alarms” when the

flow anomalies are reported.

5.8 Computational Complexity Analysis

In this section, we analyze the worst case running time and space complexity

of the verification algorithm, whose programmer’s view is presented in Section
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5.3.4. The analysis will be discussed in three parts corresponding the phases of the
algorithm: the preprocessing, the iteration process, and the postprocessing. For the

analysis we use the following abbreviations:
¢: Number of component instances in the configuration
p: Maximum number of ports in a component instance
C: Number of component type definitions
A: Number of connector type definitions
a: Number of connector instances
r: Maximum number of roles in a connector
sl: Number of security labels in the access control lattice model.
cl: Number of clearance declared in the access control lattice model.

The number of attachments is, then, (p-c:k, + ark,)/2, where k, is the
number of roles that a port plays, and &, is the number of ports that a specific role

is assigned to be played.
5.8.1 Running Time Complexity

The worst case running time (RT) of the verification algorithm, say RT(A4), is

the sum of the running times of its constituent subprocesses:
RT(preprocessing) + Rl (iteration) + RT(postprocessing)
The following parts present the RT of each of these subprocesses.

i. Preprocessing:

The steps S0, S1 and S2 belong to preprocessing. The step SO is a single
assignment statement and can be ignored. In step S1 (flooding), each (conforming)

label in the access control lattice model is assigned to every port pe Ports‘, where

ce Components. Note that the lattice is represented as a list of edges. Therefore,
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S1 requires a sequential scan on the ports of each component and assignments of

the labels for each of them. So, it has a RT of p-csl.

The step S2 is used to extract the data source ports (DSP, ) for all pePorts*

and ce Components. It requires a complete sequential scan on the attachments for

each indexed collection of ports of components. So, its RT s

é~(p-c~kp+a-r~kr)~(p~c).
Thus, RT(preprocessing)= p-c-sl + é (pchky +ark)(pc

=pesl + é'p2'02'kp +é. arkepe.

ii. Iteration:

The fixed point iteration is the step S3. Since the iteration continues as long
as there is a change (removal of at least one label) in two consecutive received
label set assignments, the number of iterations can be at most p-c-sl. During each

iteration, the substeps result the following RTs:
The step S3.1 is the projection operation that simply has a RT of c.

The step S3.2 consists of a call to CSPAnalysis function and a call to
ViolationPrevention function for each component instance. The former has an RT

of ki p”-sl’ as calculated below, where k;, is a positive constant of proportionality:

Let Exp be the CSP expression, and p,, p,, .., p» be the input ports in Exp. Let
Ipil be the number of different security labels that the data input from p; may be of.
Then, RT of CSPAnalysis is op - |IO| - max(|pi))®, where op is the number of
operations, and |IO| is the number of input or output operations. Since we analyze
the worst case, |[IO| is equal to the number of operations of Exp (i.e. |IO=op).
Moreover, the number of input and output operations is linear with the number of
ports in a component so it is k;,'p. It is also easy to see that max(|pj|) is s/. Then,

RT of CSPAnalysis is k,-oz-p2 sP.
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The ViolationPrevention is a sequential traversal on the label set assignments
of every indexed collection of the ports, and a comparison of it versus its clearance
assignment. So, its RT is p-s/, which results that the RT of step S3.2 is
c-(k,-oz-pz-slz+ psi).

The step S3.3 is a product operations on each sent label set assignment,

which requires a sequential scan on the sent label set assignments. So, its RT is c.

The step S3.4 is just an initialization of ReceivedSets of each port of every

component instance. So, its RT is p-c.

The function GlueFilter is called for each connector instance cne Connectors

in the configuration in step S3.5. So, it is executed a times. For each iteration of

S3.5, the following substeps are executed:

i. In step S3.5.1, there is a loop for each role »/ of the connector cn, whose
one iteration includes the determination of the ports playing the role 7/,

and data source ports of these determined ports. The former has an RT of

é(p-c-kp+a~r~kr), which is the number of attachments, and the latter has a

RT of k+( é ‘p-¢) since data source ports are already computed and stored
in a list in step S2. So, a sequential search is applied to each port that

plays the role #/, which is épc.

Therefore, the RT of the step S3.5.1 is r~(é- (p-chkytark)+ k-( é ‘pc))

ii. In step S3.5.2, there is a set assignment that takes RT of p-c-sl.

iii. The CSPAnalysis function is called in step S3.5.3. As discussed above its

RT is ki r7sl° (in the glue, its roles are in question, so p is replaced by 7).

iv. Lastly, step S3.5.4 is a union operation with an assignment on sets. The

RT is p-csl.

Thus, the step S3.5 yields the RT:
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a~(r~[§~(p'c~kp+a'r~kr)+ kr'(é'p'c)]‘Fp'C'sl-i- k,-oz'rz'Slz-i-p'C’Sl)

1 1
= E'a'r'p'c'(kp_l— kr)+3~a2-r2-kr+2-a'p'0'sl+a~ kl_OZ_’/,Z,SZZ

The step S3.6 is a call to ViolationPrevention function for each port of every

component instance. So its RT is p-c-s/.

The last steps of the iteration phase are S3.7 and S3.8. The former has an RT
of ¢ (the product operator), and the latter is a constant value that is ignorable since

it is just a simple integer assignment.

Therefore, the running time of the iteration phase, RT(iteration) is:
pcsih (3-c+k,-02-c-p2-slz+2-p-c-sl+p-c+é -a~r-p~c-ﬂcp+kr)+é -k,

+2-apcsi+a k,-oz-rz-slz)

iii. Postprocessing:

The steps S4, S5, and S6 constitute this part. S4 is a repetition statement
executed for each port of every component instance. The two refused label lists
(ReceivedRefusedList and SentRefusedList) are sequentially traversed in each
iteration. So, RT of the step S4 is p-c:2-sl, where 2-sl corresponds to the elements

of these lists.

The step S5 is also a repetition statement for each port of every component
instance. In each repetition, since we assume the worst case, all types of clearance
are exercised to the port’s label set assignments (#/sa and s/sa) to find out, if any
exists, the one which best suits, i.e. with the minimum authorization, to these
labels while still conforming the Bell LaPadula principles. The clearance checking
has an RT of ¢/-2-sl, where 2-s/ is for the two label set assignments (r/sa and sisa).
So, RT of the step S5 is p-ccl-2-sl.

The step S6 is just a check on two refused lists, so it has a constant RT.

Therefore, the running time of the portprocessing phase is:
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RT(postprocessing)= p-c-2-sl+ p-c-cl-2-sl = 2-p-c-sl-(1+cl)
Consequently, the running time of the algorithm is:

RT(A) = RT(preprocessing) + RT(iteration) + RT(postprocessing)
I 5 1
RT(A)= pcsi+ E-p ¢k +5- ark-pc

+p'C'Sl'(3'0+k,-02'C'p2~slz+2'p'C'Sl+p'C+é -a~r'p'0ﬂ€p+kr)+§ _aZ,’,,Z.kr

+2-a-p-c-sl+a-k,-02-r2-s12)

+2-pcsl-(1+cl)

=3-p-cz-sl+ k,02~02-p3-sl3+ pz-cz-(é -kp+2-slz+sl) +é -a-r-pz-cz-slﬂcpvL k)

+§'p'C'Sl'a2~r2'kr+2'a'pz'cz'slz+ a'p'C'rz'kl-oz'slj+§'a'r'kr'p'0+p'C'Sl'(3+2'Cl)

Practically, the number of security labels s/ and the number of clearance
assignments ¢/ are very small values compared to the total number of ports and the
total number of roles. Moreover, s/ and c/, in principle, are independent of the
software architecture. So, they can be considered as constants. Applying these

considerations to the result (after simplification):

RT (A)=kjarp*c’+ kya* ¥ pc +hkyap’c’ + kyp™+ ksapcr + kep’c®
+ krp ¢ tkrarpet kepet ko,

where k;’s, i:1..10, are the coefficients

Therefore, the running time complexity of the algorithm is polynomial with
respect to the number of ports in a component and the number of roles in
connector together with the number of component instances and the number of
connector instances. The dominating terms are either k1~a~r~pz~c2 or k2~a2~r2~p~c
depending on the topology of the configuration. If the number of component
instances and the number of ports are higher than those of connector instances and
the roles, then the former will dominate, otherwise the latter will. However, if the

values of these numbers are taken as the maximum of them, say » and define
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n=max(p,c,a,r) for the worst case, then the running time complexity of the

algorithm becomes om°), regardless of the topology of the configuration.
5.8.2 Space Complexity

The verification algorithm inputs the Wright/c description and the access
control lattice model in an abstract form, which are produced by the parser, using
the /ist and record data types of ML. The verification algorithm mainly applies
basic list and record operations on these inputs. Therefore, the worst case space
complexity (SC) of the algorithm depends on the maximum sizes of these data

structures used in the algorithm.

To check the utilization of these data structures, we list them below with the
maximum sizes that can possibly be allocated using the abbreviations given at the

beginning of this section:

e SentSet: This list consists of two constituent lists, namely the sent label
set assignment (s/sa) and SentRefusedLabelSet. Both of the lists have an
entry for each port of every component (p-¢). In each entry, a set of data
security labels is stored. There can be a maximum of s/ labels that can
be stored since we assume the worst case. Therefore, the space needed
by SentSet is 2-p-c'sl. Note also that, there is no further dynamic
allocation for the elements of the list, once they are initialized by the

parser.

e ReceivedSet: This list is has the same utilization as of SewntList. It
consists of lists of the received label set assignment (r/sa) and the
ReceivedRefusedLabelSet whose entries are as above. So, the space

needed by ReceivedSet is also 2-p-c-si.

e Attachments: For each attachment in the configuration, there is an entry

for this list including a component name, a port name, a connector name

. . Lo 1
and a role name. So, the maximum size of the list is ) ‘(p-ck, +ark,).
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Since each attachment entry has 4 elements, the space needed by the list
is2:(p-cky, +ark,).
e [nstances: There are c+a instances in a configuration. So, the size of this

list is c¢+a.

e Components: We store the definitions of a component types in this list.
So we have C entries in the list. Each entry stores p number of ports and
a CSP expression to store the computation in CSP notation. Therefore,
the space needed by this list is C:(p+op), where op represents the

number of operations in the CSP expression.

e (Connectors: Similar to the list of components, this list needs 4-(#+op)

size of space.

e Port Adjacency: This list keeps data source ports for each port of every
component instance in the configuration. Totally, there are p-c number
of entries in the list. For the worst case, we can take all of the ports of
the configuration to be a data source for each port. Moreover, each data
source port keeps a set of data security label, which has a maximum size

of sl. Therefore, the list needs a data space of (p-c)”sl.

Having determined the spaces needed by each of the lists of Wright/c

configurations and styles, the total space is calculated as:
SC(Wright)=4-p-c-sl+2-(p-c-k,+ ark,)+cta+C-(p+op)+ A-(r+0p)+(p-c)z-sl
=4-p-csl+ 2-pck,t2ar k,+c+a+C-p+C-0p+A-r+A-0p+(p-c)2-sl
Using the same remarks as in the calculation of the running time complexity,
the number of security labels 4 the number of component type and connector type
definitions, and the number of operations in the CSP expressions are practically

very small values and they can be considered as constants. Therefore, rewriting the

result, after the simplification:
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SC(Wright) =k1-(p-c)2+kg-p-c+k3~a-r+k4-p+k5-r+k6-c+k7-a+k8) where k;’s,
i:1..9 are the coefficients. It is clear that the dominating term is k1~(p~c)2, which is
polynomial in terms of the number of ports in a component instance and the
number of component instances. By taking both p and ¢ as the maximum of them,
say n and define n=max(p,c,a,r), and we get the space complexity of a Wright/c

description, used by the algorithm, as O(’).

The verification algorithm also inputs the access control lattice model, which
is also stored in some list data types. There are 3 lists allocated to represent the

lattice contents:

o SecurityLabels: The data security labels declared in the lattice are held in

this list. So, it has s/ entries.

e ClearancelList: The authorization level types declared in the lattice with
the security labels they dominate are held in this list. The entries are a
clearance and a security label it dominates. If there is a distinct clearance
declared for each of the security labels, the size of the list becomes the

maximum. So, the list has a data space of 2-s/.

® Ordering: The edges of the lattice are stored in this list pairwise. Since

o . sl .
transitive closures are not stored, we have a maximum of Elog 5 sl pairs.

So, the size of the list is : 2-%]log2 sl=sllog, sl .

Thus, the space complexity of the access control lattice model is:

SC(Lattice) = sl+2-sl+ sllog, sl . So, SC(Lattice)=0(sllog, sl ).
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CHAPTER 6

THE FRONT-END OF THE VERIFIER

This chapter explains the details of the front-end of the verification process.
Taking Wright/c description of the configuration and the access control lattice
model as inputs, the front-end produces a suitable syntax over which the

verification process can perform the analysis.

In the scope of the front-end, the abstract syntax of a Wright/c description
and access control lattice model, and the mapping from the concrete to abstract

syntax are presented with examples.
6.1 Abstract Syntax of a Wright/c Description

The abstract form of the inputs is produced by the Parser extracting relevant
information in a suitable format for the verification process [96]. The inputs of the
parser are the lattice model and the Wright/c description of the software
architecture. As the inputs are encoded in XML [96], the front-end processing is
easily accomplished by an application based on an XML parser [96]. The XML
schemas of the lattice model and the Wright/c description are given in the

Appendices D and E, respectively.

The abstract syntax of the output of the parser is expressed in ML [38] as
presented below. The definitions mainly use the /ist and record data types. ML
provides a clean notation for lists whose elements are of a single type. A list is
surrounded by square brackets, and the elements are separated by commas. The
empty list is denoted by either nil or a pair of brackets. The Ad function returns the

head (the first element) of a list, while #/ returns the tail (the list after its head
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removed). Moreover, map function takes a function F and a list [a;, ay, a3, .... a4],
and produces the list [F(a;), F(az), F(a3)...., F(as)]. That is, F is applied to each

element of the list and the list of resulting values is returned.

A set of security labels of data, say L, can be represented as a list of
sublattices. A sublist can be formed by an intersection of the principle order filter
generated by A4 and the principle order ideal generated by B, where 4, B are
elements of a lattice and 4 < B. The labels 4 and B, then, become the minimum
and the maximum elements of the sublattice, respectively. Thus, the set L can be

formulated as:

L= U[A,-) M (B;], where i is the number of sublattices to represent L, and 4,

1

and B, are the minimum and the maximum elements of the sublattice i,

respectively.

The data type for such a sublattice is what we call as FlowData. The
min level field denotes the maximum element while max level is for the
minimum. Note that a single security label has equal min level and max level

values.

type FlowData = {
min level : Securitylabel,

max level : SecurityLabel

For example, to represent a list of security labels A,, A3, As, As, A7 of Figure

4.4 as a list of sub-lattice, the following structure is constructed:

[{min_level="A7", max_level="A3"},

{min_level="A2", max_level="A2"}]: FlowData list
Next, the representation of the CSP expressions in ML is given below.

CSP Var is a variable that holds CSP expression and used for the definition

of CSP expressions with fixed points.

108



type CSP Var = string

A value varis a variable that holds a datum read from a channel in the CSP

expression.
type Value Var = string

A Value is what can be written to a channel. It is a list of Value var's, and
can be denoted with a fixed security label. If not, the security label is calculated

using the least upper bound (LUB) function for the given lattice.

datatype Value = DEFAULT of Value Var list

|FIXED of SecurityLabel * (Value Var list)

The events in a CSP expression are TnpUT, oOUTPUT and ATOMIC. INPUT i$

from a channel to a variable, ouTpuT is from a value to a channel.

datatype Event = INPUT of port * Value Var
| OUTPUT of port * Value
| ATOMIC of string

Then, the data type for CSP expressions is defined as:

datatype CSPExpression =

PVAR of CSP_Var (*A CSP Expression that is previously
declared with W (FIX) *)
| MU of CSP_Var * CSPExpression(* A Fixed Point Declaration¥*)
| -==> of Event * CSPExpression (* Engages in Event and then
behaves like CSPExpr *)

| \/ of CSPExpression * CSPExpression (* Internal Choice ¥*)
| <|> of CSPExpression * CSPExpression (* External Choice *)
| |]] of CSPExpression * CSPExpression (* Interleaving *)
| IF THEN ELSE of (Value * CSPExpression * CSPExpression)

(* One of the CSP Expressions is choosen according to value *)
| STOP (* STOP *)

infix -->; infix \/; infix <|>; infix || |; (* infix operator *)

A style consists of connector descriptions, component descriptions,

interface type descriptions, and general process descriptions. As detailed before, a
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connector has one or more roles together with a glue description. A component
consists of one or more ports and a computation acting on these ports. The abstract

syntax definitions of them are given below.

A port consists of an identification name and CSP expression.

type Port = {
ID : Name,
CSPExp : CSPExpression

}
A role consists of an identification name and its CSP expression.

type Role = {
ID : Name,

CSPExp : CSPExpression

A component consists of an identification name, a list of ports, a CSP
expression describing its computation, and the formal parameter list used in its

definition.

type Component ={

ID : Name,

Ports : Port list,
Computation : CSPExpression,
Parameters : FormalParameter list

}

A connector consists of an identification name, a list of roles, a CSP

expression describing its glue, and the formal parameter list used in its definition.

type Connector ={

ID : Name,

Roles : Role list,

Glue : CSPExpression,
Parameters : FormalParameter list

}
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An interface consists of an identification name, a CSP expression

describing its behavior, and the formal parameter list used in its definition.

type Interface ={

ID : Name,
CSPExp : CSPExpression,
Parameters : String list

}

A general process consists of an identification name, a CSP expression

describing its behavior, and the formal parameter list used in its definition.

type GeneralProcess={

ID : Name,
CSPExpr : CSPExpression,
Parameters : String list

A style is, then, described using the type StyleDescription given

below.

type StyleDescription = {

ID : Name,

Components : Component list,
Connectors : Connector list,
Interfaces : Interface list,
GeneralProcesses : GeneralProcess list,
Constraint : LogicalExpression

A configuration can be expressed, similar to the style definition, in ML

syntax:

type Configuration = {

ID : Name,

Ordering : Order 1list,
Clearancelist : Clear 1list,
Style : Name,
Components : Component list,
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Connectors : Connector list,

Interfaces : Interface list,
GeneralProcesses : GeneralProcess list,
Instances : Instance list,
Attachments : Attachment list

}

Configuration defines a type for a configuration description, where
Connector, Component, Interface and GeneralProcess types are
defined as in style description. Order, Clear, Instance, and Attachment
types are described below. Note that a configuration may have component and
connector descriptions in addition to those supplied in the style being included.
This may be required if configuration-specific components or connectors which

are not available in the style are needed.

An order is a pair of security labels. The first member of the pair is
dominated by the second one, i.e. (a,b) indicates that a < b in the lattice that they

appear in. The lattice model imported into the configuration is represented as a list

of such orders.
type Order = SecuritylLabel * SecurityLabel

Definition (Dominance set): The dominance set of a clearance ¢/ is the subset of
nodes in a lattice whose elements are dominated by c/. It is the principle order
ideal of the label (node) which ¢/ is declared to dominate if a read access is

considered, or the principle order filter of it if a write access is considered.

A clear is a pair of a security label and a clearance. It represents the
dominance set of a clearance in the lattice model. The first member of the pair, i.e.
a security label, is declared to be dominated by the clearance specified as the

second member of the pair.
type Clear = Securitylabel * Clearance

Style is a style name whose entry is imported into the configuration. A
connector/component description can be imported from a style or can be described

explicitly in the configuration. The latter approach is generally practical when a
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configuration-specific connector or component type is needed. Functions of the
verification process, which refer to a component/connector type, first check the
Components/Connectors lists. If it is not found in these lists, the Style is

searched.

An instance of a component, or of a connector, consists of an
identification name, an identification name of a component/connector type from
which the instance is to be constructed, a list of ports/roles with their assigned
clearance, the CSP expression (the glue or the compuation in which the formal
parameters are replaced by the actual parameters), and a clearance value which is
given to the instance to be inherited by the ports of the clearance as a default

clearance (when not explicitly specified in the Clearance section).

type Instance = {
ID : Name,
InstanceOf: Name, (* a Connector or a Component id *)
Port : PortClearance list,
IClearance: Clearance, (* clearance of the instance *)
Parameters: ActualParameter list(*actual parameter list¥*)
CsSp : CSPExpression (* the behaviour of the

instance with actual parameters *)
}, where

type PortClearance={ (*instance’s ports information¥*)

PortId : Name,

PClearance : Clearance

An attachment entry comprises a component instance’s port and a

connector instance’s role to which the attachment is made.

type Attachment = {

ComponentName : Name, (* component instance name *)
PortName : Name, (* port name ¥*)
ConnectorName :Name, (* connector instance name *)
RoleName : Name (* role name *)
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Having described the types occuring in the abstract syntax definitions for a
style and a configuration of a Wright/c description, the following is the additional
data structures that are constructed by the parser with their initial values and

processed internally by the verification process:

e  Port Adjacency List

The following structure, called PortInfo, keeps attributes of a port with its
data source ports in a connection as defined in section 5.1. The structure includes
the connector name in which it is involved, the role that it plays in this connection

and a list of data source ports with their roles in the connection.

type PortInfo = { (* a port entry with its
connector involved *)
Connector : Name, (* connector instance name to
which the port is attached *)
Role : Name, (* the role of the port in the

connection¥)

ConnectedPorts : TargetPort list

where Targetport is defined as

type TargetPort = {

CName: Name, (* component instance name of CPort *)
CPort: Name, (* a source port which the port in
question is connected *)

CRole : Name (* the role of Cport on this connection *)

A PortAdjacency structure, then, is defined as an element of
PortAdjacency list for each port of every component instance in the
configuration. Since a port can possibly play multiple roles on different
connections, a list of PortInfo is allocated for it. Clearly, a component name and

a port name constitute a key in PortAdjacency list elements.
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type PortAdjacency = {

Component : Name, (* instance name of a component *)
Port : Name, (* the port which the entry belongs to¥*)
SourcePort : PortInfo list(* source ports through

any connection to the port *)

For the example illustrated in Figure 5.1, the PortAdjacency list is

constructed by the parser as follows:

PortAdjacency = [
(* an entry for Component C; - port P; pair *)
{Component="C1"”, Port ="P1l”,
SourcePort=[
{Connector="N1",
Role="R1”,
ConnectedPorts=][
{Component="C2", CPort="P2”,Role="R2"},
{Component="C3"”, CPort="P3”,Role="R3"}
1
{Connector="N2",
Role="R5",
ConnectedPorts=]|
{Component="C3"”, CPort="P4”,Role="R4"}
1Y}, (% CayPp o *)
(* an entry for Component C, - port P, pair *)
{Component="C2”, Port ="P2",
SourcePort=[
{Connector="N1",
Role="R2",
ConnectedPorts=][
{Component="Cl"”, CPort="P1”,Role="R1"},
{Component="C3"”, CPort="P3”,Role="R3"}
1Y}, (% CoyPp *)
(* an entry for Component C3 - port P3 pair *)
{Component="C3"”, Port ="P3”,
SourcePort=][
{Connector="N1",

Role="R3",
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ConnectedPorts=]|
{Component="Cl1"”, CPort="P1”,Role="R1"},
{Component="C2"”, CPort="P2"”,Role="R2"}
1YY, (% Cs,P3 *)
(* an entry for Component C3; - port P, pair *)
{Component="C3"”, Port ="P4”",
SourcePort=][
{Connector="N2",
Role="R4",
ConnectedPorts=[
{Component="Cl1”, CPort="P1”,Role="R5"}
131 (* C3,Pg *)

] (* end of PortAdjacency list *)

® ReceivedDataSecurityLabel List:

This is a list in which there exists an entry for each port pePorts® of every
component instance ce Components in the configuration. It consists of elements of

the data type SentReceivedDataSecurityClass whose structure is given below. The

set of data security labels, which can potentially be received through the port p of
component ¢ (Re ceivedSet; ), are kept in the list indexed by p of c. After

computing the labels in the GlueFilter function of the verification process, the
sublattices representing these labels are constructed and stored in the
SecurityLabels.AcceptedSRData field. Securitylabels.RefusedSRData field
is also created, by the ViolationPrevention function, to keep the sublattices for the
set of data security labels not allowed to be received by the port p regarding the
Bell LaPadula principle (simple security property to be specific). The computation
of the values of the fields are detailed in Chapter 5. The sublattices, as described in
the previous sections, are represented by its maximum and its minimum (the type
FlowData). Since uncomparable nodes may exist, a list of them are constructed

and stored in the field.
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e SentDataSecurityLabel List :

This is a list, whose structure is the same as that of
ReceivedDataSecurityClass, in which there is an entry for each port pe Ports® of
every component instance ce Components. The element, indexed by p of ¢, keeps

the set of data security labels that can potentially be sent through the port p
( SentSet;). Similarly, the sublattices representing the security labels of data that

are output through this port are computed by the CompFilter function and stored in
the SecuritylLabels.AcceptedSRData field. The ViolationPrevention
function also creates the Securitylabels.RefusedSRData field to keep the
sublattices for the security labels not allowed to be sent by the port because of the
Bell LaPadula principle ( *-property to be more specific). Similarly, the details of

computation of the security labels are presented in the verification process.

SentDataSecurityClass and ReceivedDataSecurityClass also include two
additional fields: io type and warnings. The type of the port (InpUT,
OUTPUT, INPUTOUTPUT Or NONE) is stored in io_type during the calculation of
slsa in the verification process. warnings field, on the other hand, is used to keep
the warnings when a component lowers the security label of data, i.e. when the
component must be trusted. These fields are kept empty in
ReceivedDataSecurityClass since SentDataSecurityClass is sufficient to determine

the port types, and only components can be trusted.

Both ReceivedDataSecurityLabel and SentDataSecurityLabel
lists utilize the following data type as their elements. The parser constructs these

lists by considering each component instance and their ports:

type SendReceiveDataSecurityClass = {
(* component name which the port belongs to *)
Component: Name,
(* the port which it sends/receives data *)
Port: Name,
(* a list to hold security labels of data
sent/received by the port *)

SecuritylLabels: SecuritylLabellists list,
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io_type: IO TYPE, (* INPUT, OUTPUT, or INPUTOUTPUT ¥*)
warnings : string list (*warning list used when

information leakage exists in the component *)

}

where SecurityLabellLists is defined as:

type SecuritylabellLists = {

AcceptedSRData: FlowData, (* to hold security
labels of data
sent/received by the
port *)

RefusedSRData: FlowData list (* a list to hold

REFUSED labels of
data after violation

prevention *)

Having given the abstract syntax definitions of a style and a configuration of
an Wright/c description, the next section describes the syntax rules of the

description.
6.2. Mapping From Concrete to Abstract Syntax

A configuration consists of the following items whose values are extracted

during parsing:
1. Ordering
2. Clearance List
3. Components
4. Connectors
5. Instances

6. Attachments
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The remainder of this section presents the mapping of these items from the
concrete syntax in the Wright/c description to the abstract syntax given in Section

6.1.
6.2.1 Ordering

As described before, an order is a pair of strings. The first member of the
pair is dominated by the second one, i.e. if (a, b) is an order then a < b in terms of

the lattice they appear in.
In general, the declaration in a configuration:

Ordering
01102/ 031 <. On

P11P21P3I «er Pn
results the ordering list value:

[ (\\01", "0271) , (\\02”, ”03") , (\\03", "0471) P (“On—lnl "On") ,

(“Plnl NPZII) , (\\PQ!I, NP3H) S ey (“Pm—1"1 "Pm”) J

Note that the pairs due to transitive closure, such as (“0,”, ”03”) , are not

included in the list.
6.2.2 ClearancelList

A clear is a pair of a security label and a clearance. The first member, i.e.
the security label, is dominated by a clearance specified as the second member of

the pair.

In general, the declaration:

Clearancelist
Cl . Ll
C2 . Lz, L3
Cn ¢ Lp

results the list value of data type Clear:
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[ (“Ll", /Iclll) , (“LZ", IICZI/) , (“LB”, IICZI/) , R (“Ln", /Icnll) ]

6.2.3 Components

For each component definition of the configuration, or of the style, an entry
of data type Component is constructed with values from the port information
that it includes and the computation it uses. The computation and the port
descriptions are CSP expressions. These expressions are input to the CSPAnalysis
function to be analyzed in terms of data flow by the verification process where

needed.
In general, a component description like

Component GenComp (T: SecurityLabel) =
Port P1 = CSP_P1
Port P2 = CSP_P2
Computation CSP_Comp

End

causes the following Component data structure to be constructed:

{ID ="GenComp”,
Ports = [{ID: “P1”, (* first port *)
CSPExp = CSP_Pl},
{ID= “p2", (* second port *)
CSPExp = CSP_P2}],
Computation = CSP_COMP ,

Parameters = [ (“T”, SecuritylLabel)]}

For each component in the configuration, an entry such as above is

constructed and inserted into the Configuration’s Components list.
6.2.4 Connectors

For each connector in the configuration, or in the style, an entry of data type

Connector is constructed with values from the role information that it includes
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and the glue it uses. Like in components, the roles and the glue descriptions are

CSP expressions.
In general, a connector description like

Connector GenConn(T1: SecurityLabel, N: integer) =
Role R1 = CSP_R1
Role R2 = CSP_R2
Glue CSP_Conn

End

causes the following data structure, a connector type, to be constructed:

{ID ="GenConn”,
Roles = [{ID= “R1”, (* first role *)
CSPExp = CSP R1 },
{ID= “R2”, (* second role *)
CSPExp = CSP _R2 }],
Glue = CSP _Conn ,

Parameters = [ (“T”,”SecurityLabel), (“™N”,”Integer”)]}

For each connector in the configuration such an entry is constructed and

inserted into the Configuration’s Connectors list.
6.2.5 Instances and Clearance

A component or a connector is instantiated by creating an entry from the data
type Instance. An instance value consists of an identification of the instance, a
component/connector type identification from which the instance is created, the
default clearance of the instance, a list of port/role names with their clearance, an
actual parameter list, and the CSP expression which describes the behaviour of the

instance with formal parameters are replaced by their actual values.

To assign clearance values to the ports of the component instances, the
declarations in Clearance section is referenced. For the remaining ports, which are
not associated with a clearance, the default clearance value of the instance is

inherited from the component/connector. Although roles are not associated with a
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clearance in this study, a framework is constructed for future study to use roles in

assigning clearance (see Chapter 8).
An Instances and Clearance declarations like,

Instances
I1: GenComp (LABEL1) (* GenComp is a component defined as above *)

12: GenConn (LABEL2, 5) (* GenConn is a connector defined as above *)

Clearance
I1 : C1, (* Default clearance for the instance I1 is C1 *)
12 : C2, (* Default clearance for the instance 12 is C2 *)
I1.P1 : C3 (* a port is assigned with a clearance C3*)
12.R1 : C1 (* aroleis assigned with a clearance C1 *)

cause an Instance entry to be created by the parser as follows:

[{ ID= “I1”,
InstanceOf = “GenComp”,
PortRoles = [
{PortRoleId= “P1”, PRClearance = “C3”}
]

IClearance = “C1”, (* default clearance for the

component *)

Parameters = [ ( “LABEL1"”) 1,
CSP = CSP_GenComp
by
{ID= “I2”,
PortRoles = [

{PortRoleId= “R1”, PRClearance = “C1”}
]

InstanceOf = “GenConn”,

IClearance = “C2”, (* default clearance for the
connector *)

Parameters = [ ( “LABEL2"”, “5") 1 ,

CSP = CSP_GenConn
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The parser constructs a list of datatype Instance by including each instance

of components/connectors declared in the configuration.

6.2.6 Attachments

For each attachment established in the configuration, an entry of the data

type Attachment is created and inserted into the list of Attachments.
In general, an attachment like,
I1.P1 as I2.R1
constructs an Attachment entry as follows:

{ComponentName = “I1”,
PortName= “P1”,
ConnectorName= “I2”,
RoleName= “R1”

}

The attachment list plays an important role in constructing the
PortAdjacency list for the ports by the parser. Given a component ¢ and a port
pePorts, the parser extracts and constructs the port’s DSP; referring to the

attachment list.

After constructing the abstract syntax of a configuration, the parser builds:

¢ The adjacency 1list for each port of every component instances.

e The SentDataSecurityLabel and ReceivedDataSecurityLabel
index collection of the lists for each port of every component instance in
the configuration. The former is initially empty, while the latter is applied

to flooding to offer all types of the data security label in the lattice model.

The verification process given in Chapter 5 can start once the parser

constructs and initializes all of the lists mentioned above.
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6.3 Syntax of the CSP Analysis Function

The CSPAnalysis function analyzes the CSP expressions in terms of the flow
of security labels of data through ports, as described in Section 5.2. The syntax of

the function is given below.

fun CSPAnalysis( Lattice : Order list,
Csp : CSPExpression,
Channels labels : CompPort ConnRole list,
Channels : Name list

) : CompPort ConnRole list

where CompPort ConnRole is defined as

type CompPort ConnRole = {
RolePortName : Name,

SentReceivedSL : FlowData list

CSPAnalysis function takes an access control lattice, a CSP expression to be
analyzed in which actual parameters are replaced by the formal parameters, a list
of port names (role name in case a connector description is to be analyzed) with a
set of security labels represented by a list of sublattices (a type
CompPort_ConnRole), and a list of port names. These labels are possible data
labels for data that can be received by the port (or role). The function, taking data
with these security labels as inputs, determines an output set of security labels that
can potentially be sent by each port (or role) by making a data flow analysis in the
expression. The function, then, returns a list of security labels of type

CompPort ConnRole list.
6.4 Front-End Process on Secure Print Server

This section presents an example front-end process applied to the Secure

Print Server (SPS) as presented in Section 4.6.
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6.4.1 The Style and the Configuration Descriptions of SPS

The following is a value of type Style to represent the ClientServer style of

the Secure Print Server.

val Style ClientServerPrinting = {
ID = "ClientServerPrinting",
Components = [
{ID = "Client",
Ports = |
{ID="PrintP",
CSPExp = MU ("PrintP", OUTPUT ("request",
FIXED("T", [])) --> PVAR("PrintP"))
}, (* PrintP*)
{ID="PrintsS",
CSPExp = MU ("PrintS", OUTPUT ("request",
FIXED ("SECRET", []))—--> PVAR("PrintS"))
} (* PrintServiceS*)
], (* Client ports ¥*)

Computation = MU ("Computation", (OUTPUT ("PrintP.

request", FIXED("T",[])) —-->PVAR("Computation"))
\/ (OUTPUT ("PrintS.request", FIXED("SECRET",[])) -->
PVAR ("Computation"))),
Parameters = [ ("T", "Security Label")]

}, (* Client component *)
{ID = "Printer",
Ports = [
{ID="Receive",
CSPExp = MU ("Receive", INPUT ("request", "x")
--> PVAR ("Receive"))
} (* Receive¥*)
], (* Printer ports *)
Computation = MU ("Computation", INPUT ("request", "x")
--> PVAR ("Computation")),
Parameters = [ ]
}, (* Printer component *)
{ID = "PrintServer",
Ports = [

{ID="RequestP",
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CSPExp = MU ("RequestP", INPUT ("request", "x")
-—-> PVAR ("RequestP")
}, (* RequestP*)
{ID="RequestS",
CSPExp = MU ("RequestS", INPUT ("request", "x")
--> PVAR ("RequestS"))
}, (* RequestsS*)
{ID="OutputP",
CSPExp = MU ("OutputP", OUTPUT ("Print",
DEFAULT ["x"]) --> PVAR("OutputP"))
Y, (* OutputP*)
{ID="Outputs",
CSPExp = MU ("OutputS", OUTPUT ("Print",
DEFAULT ["x"]) --> PVAR("OutputsS"))
} (* Outputs*)
], (* PrintServer ports *)
Computation = MU ("Computation", (INPUT ("RequestP", "x")
--> (OUTPUT ("OutputP", DEFAULT ["x"])
--> PVAR "Computation"))

<|> (INPUT ("RequestS", "x") -->
(OUTPUT ("OutputsS", DEFAULT ["x"]) -->
PVAR "Computation"))),

Parameters = [ ]
} (* PrintServer component *)
] (* Components *),
Connectors = [
{ID = "PrintConnector",
[
{ID="ClientP",

Roles

CSPExp MU ("ClientP", INPUT ("request", "x")

—--> PVAR("ClientP")

}, (* ClientP *)

{ID="ServerP",

CSPExp = MU ("ServerP", OUTPUT ("request",
DEFAULT ["x"]) —--> PVAR("ServerP"))

} (* ServerP *)

1, (* PrintConnector roles ¥*)
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Glue = MU ("Glue", (INPUT("ClientP.request", "x")
--> (OUTPUT ("ServerP.request", DEFAULT ["x"])
--> PVAR "Glue"))),
Parameters = [ |
} (* PrintConnector connector *)

], (* connector *)

Interfaces = [] (* Interfaces *),
GeneralProcesses = [] (* GeneralProcesses *),
Constraints = "" (* Constraints *)

} : StyleDescription; (* ClientServerPrinting style *)

val Configuration PrintServer = {
ID = "PrintExample",
Ordering = [ ("PUBLIC", "SECRET") 1,
Clearancelist = [ ("PUBLIC", "EVERYONE"),
("SECRET", "AUTHORIZED") 1],
Style = "ClientServerPrinting",
Components = [] (* Components *),
Connectors = [] (* Connectors *),
Interfaces = [] (* Interfaces *),
GeneralProcesses = [] (* GeneralProcesses *),
Instances = [
{ ID = "uUA",
InstanceOf = "Client",
PortRoles = [], (* PortRoles *)
IClearance = "EVERYONE",
Parameters = [ "PUBLIC" ],

CSP= MU ("Computation", (OUTPUT ("PrintP",
FIXED ("PUBLIC", [])) -->PVAR("Computation"))
\/ (OUTPUT ("PrintS", FIXED("SECRET", []))
--> PVAR ("Computation"))

} (* dinstance *),

{ ID = "UB",
InstanceOf = "Client",
PortRoles = [
{ PortRoleId = "PrintP", PClearance = "EVERYONE" }
], (* PortRoles *)
IClearance = "AUTHORIZED",
Parameters = [ "PUBLIC" ],
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CSP= MU ("Computation", (OUTPUT ("PrintP",
FIXED ("PUBLIC", [])) -->PVAR("Computation"))
\/ (OUTPUT ("PrintS", FIXED("SECRET", []))
--> PVAR ("Computation"))
} (* dinstance *),
{ ID = "pS",
InstanceOf = "PrintServer",
PortRoles = [
{PortRoleId ="RequestP", PClearance ="EVERYONE"},
{PortRoleId ="RequestS", PClearance ="AUTHORIZED" },
{PortRoleId ="OutputP", PClearance = "EVERYONE" 1},
{PortRoleId = "OutputS", PClearance = "AUTHORIZED" }
], (* PortRoles *)

IClearance = "",

Parameters = [ ],

CSP = MU ("Computation", (INPUT ("RequestP", "x") -->
(OUTPUT ("OutputP", DEFAULT ["x"]) -->

PVAR "Computation"))
<|>(INPUT ("RequestS", "y") --> (OUTPUT ("OutputS",
DEFAULT ["y"]) --> PVAR "Computation")))

} (* dinstance *),

{ID = "SECUREPRINTER",
InstanceOf = "Printer",
PortRoles = [], (* PortRoles *)
IClearance = "AUTHORIZED",
Parameters = [ 1,

CSP=MU ("Computation", INPUT ("Receive", "x")

--> PVAR ("Computation"))

} (* instance *),
{ID = "PUBLICPRINTER",

InstanceOf = "Printer",
PortRoles = [ ], (* PortRoles *)
IClearance = "EVERYONE",
Parameters = [ 1,

CSP=MU ("Computation", INPUT ("Receive", "x")
--> PVAR ("Computation"))

} (* dinstance *),

{ID = "CONN1",

InstanceOf = "PrintConnector",
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PortRoles = [ ], (* PortRoles *)

IClearance = "EVERYONE",

Parameters = [ 1,

CSP=MU ("Glue", (INPUT("ClientP", "x") -->
(OUTPUT ("ServerP", DEFAULT ["x"]) --> PVAR "Glue")))

}, (* 1instance *)

{ID = "CONN2",

InstanceOf = "PrintConnector",

PortRoles = [ ], (* PortRoles *)

IClearance = "AUTHORIZED",

Parameters = [ 1,

CSP=MU ("Glue", (INPUT("ClientP", "x") -->
(OUTPUT ("ServerP", DEFAULT ["x"]) --> PVAR "Glue")))

}, (* 1dinstance ¥*)

{ID = "CONN3",

InstanceOf = "PrintConnector",

PortRoles = [ ], (* PortRoles *)

IClearance = "EVERYONE",
Parameters = [ 1,
CSP=MU ("Glue", (INPUT("ClientP", "x") -->
(OUTPUT ("ServerP", DEFAULT ["x"]) --> PVAR "Glue")))
}, (* instance *)
{ID = "CPRINTS",
InstanceOf = "PrintConnector",
PortRoles = [ ], (* PortRoles *)
IClearance = "AUTHORIZED",
Parameters = [ ],
CSP=MU ("Glue", (INPUT("ClientP", "x") -->
(OUTPUT ("ServerP", DEFAULT ["x"]) --> PVAR "Glue")))
}, (* dinstance *)
{ID = "CPRINTP",
InstanceOf = "PrintConnector",
PortRoles = [ ], (* PortRoles *)
IClearance = "EVERYONE",
Parameters = [ 1,
CSP=MU ("Glue", (INPUT("ClientP", "x") -->
(OUTPUT ("ServerP", DEFAULT ["x"]) --> PVAR "Glue")))

} (* dinstance *)

1, (* Instances *)
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Attachments = [

{

by

by

by

ComponentName = "UA",
PortName = "PrintP",
ConnectorName = "CONN1",
RoleName = "ClientP"

(* attachment *)
ComponentName = "PS",
PortName = "RequestP",
ConnectorName = "CONN1",
RoleName = "ServerP"

(* attachment ¥*)
ComponentName = "UB",
PortName = "PrintS",
ConnectorName = "CONN2",
RoleName = "ClientP"

(* attachment ¥*)
ComponentName = "PS",
PortName = "RequestS",
ConnectorName = "CONN2",
RoleName = "ServerP"

(* attachment *)
ComponentName = "UB",
PortName = "PrintP",
ConnectorName = "CONN3",
RoleName = "ClientP"

(* attachment *)
ComponentName = "PS",
PortName = "RequestP",
ConnectorName = "CONN3",
RoleName = "ServerP"

(* attachment *)
ComponentName = "PS",
PortName = "OutputP",
ConnectorName = "CPRINTP",
RoleName = "ClientP"

(* attachment *)

ComponentName = "PUBLICPRINTER",
PortName = "Receive",
ConnectorName = "CPRINTP",
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RoleName = "ServerP"

}, (* attachment *)

{ ComponentName = "PS",
PortName = "OutputS",
ConnectorName = "CPRINTS",
RoleName = "ClientP"

}, (¥ attachment *)

{ ComponentName = "SECUREPRINTER",
PortName = "Receive",
ConnectorName = "CPRINTS",
RoleName = "ServerP"

} (* attachment ¥*)

] (* Attachments *)

} ¢ Configuration ; (* PrintServer configuration *)

Having constructed the abstract syntax of the configuration using ML style,
the following is the additional lists to be used by the verification process for the

SPS description:
6.4.2 The Port Adjacency List of SPS

Port adjacency list stores the data source ports of each port of every

component instance in the SPS as given below.

val PrintExample PortAdjacency = [
{ Component="UA", Port="PrintP",
SourcePort = [
{ Connector="CONN1", Role="ClientP",
ConnectedPorts = [

{CName="PS", CPort="RequestP", CRole="ServerP"}

} (* UA, PrintP *) ,
{ Component="PS", Port="RequestP",
SourcePort = [
{ Connector="CONN1", Role="ServerP",

ConnectedPorts = [

131



{CName="UA", CPort="PrintP",
CRole="ClientP" }

by
{ Connector="CONN3", Role="ServerP",
ConnectedPorts = [
{ CName="UB", CPort="PrintP",

CRole="ClientP" }

} (* PS, RequestP *) ,
{ Component="UB", Port="PrintS",
SourcePort = [
{ Connector="CONN2", Role="ClientP",
ConnectedPorts = [

{CName="PS", CPort="RequestS", CRole="ServerP"}

1
} (* UB, PrintsS *) ,
{ Component="PS", Port="RequestS",
SourcePort = [
{ Connector="CONN2", Role="ServerP",
ConnectedPorts = [

{CName="URB",CPort="PrintS",CRole="ClientP"}

]
} (* PS, Requests *) ,
{ Component="UB", Port="PrintP",
SourcePort = [
{ Connector="CONN3", Role="ClientP",
ConnectedPorts = [

{CName="PS", CPort="RequestP", CRole="ServerP"}
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]

{ Component="PS", Port="OutputP",

SourcePort = [
{ Connector="CPRINTP",

ConnectedPorts = [

Role="ClientP",

{CName="PUBLICPRINTER", CPort="Receive",

CRole="ServerP" }

]
} (* PS, OutputP *) ,
{ Component="PUBLICPRINTER",
SourcePort = [
{ Connector="CPRINTP",

ConnectedPorts = [

Port="Receive",

Role="ServerP",

{CName="PS", CPort="OutputP", CRole="ClientP"}

]

]

} (* PUBLICPRINTER, Receive *) ,

{ Component="PS", Port="OutputS",

SourcePort = [
{ Connector="CPRINTS",

ConnectedPorts = [

Role="ClientP",

{ CName="SECUREPRINTER", CPort="Receive",

CRole="ServerP" }

]
} (* PS, Outputs *) ,
{ Component="SECUREPRINTER",
SourcePort = [
{ Connector="CPRINTS",

ConnectedPorts = [

Port="Receive",

Role="ServerP",

{CName="PS", CPort="OutputS", CRole="ClientP"}

]

} (* SECUREPRINTER, Receive *)

PortAdjacency list; (* PrintExample PortAdjacency *)
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6.4.3 The Lists of Received/Sent Data Security Labels for SPS

The following is the initial values of ReceivedSet and SentSet. Note

that ReceivedsSet is flooded and Sentset is created with empty lists.

val PrintServer ReceivedSet = |
{ Component="UA", Port="PrintP",
SecurityLabels=[{AcceptedSRData={ min level="PUBLIC",
max level="SECRET" },
RefusedSRData=[]:FlowData list }],
io_type=UNUSED_ PORT,

warnings=[] }:SRDataSecurityClass ,

—~—

Component="UA", Port="PrintS",
SecurityLabels=[{AcceptedSRData={min_level="PUBLIC",
max level="SECRET" },
RefusedSRData=[]:FlowData list }],
io_type=UNUSED_ PORT,
warnings=[] }:SRDataSecurityClass ,
{ Component="UB", Port="PrintP",
SecurityLabels=[{AcceptedSRData={min_level="PUBLIC",
max level="SECRET" },
RefusedSRDbata=[] }1,
io_type=UNUSED_ PORT,
warnings=[1]},
{ Component="UB", Port="PrintS",
SecuritylLabels=[{AcceptedSRData={min_level="PUBLIC",
max_ level="SECRET" },
RefusedSRData=[] }],
io_type=UNUSED_ PORT,
warnings=[]},
{ Component="PS", Port="RequestS",
SecurityLabels=[{AcceptedSRData={min_level="PUBLIC",
max level="SECRET" },
RefusedSRData=[] }],
io_type=UNUSED_ PORT,
warnings=[1]},
{ Component="PS", Port="RequestP",
SecurityLabels=[{AcceptedSRData={min_ level="PUBLIC",

max level="SECRET" },
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RefusedSRData=[] }],
io_type=UNUSED_PORT,
warnings=[] },
{ Component="PS", Port="OutputP",
SecurityLabels=[{AcceptedSRData={min_level="PUBLIC",
max level="SECRET" },
RefusedSRData=[] }1,
io_type=UNUSED_PORT,
warnings=[1]},
{ Component="PS", Port="OutputS",
SecurityLabels=[{AcceptedSRData={min_level="PUBLIC",
max level="SECRET" },
RefusedSRData=[] }1,
io_type=UNUSED_ PORT,
warnings=[1]},
{ Component="SECUREPRINTER", Port="Receive",
SecurityLabels=[{AcceptedSRData={min_level="PUBLIC",
max level="SECRET" },
RefusedSRData=[ ] }],
io_type=UNUSED_ PORT,
warnings=[]},
{ Component="PUBLICPRINTER", Port="Receive",
SecurityLabels=[{AcceptedSRData={min_level="PUBLIC",
max level="SECRET" },
RefusedSRData=[ ] }1,
io_type=UNUSED_ PORT,
warnings=[1]}
] :SRDataSecurityClass list;

(* Received data security label list *)
On the other hand, the elements of the SentSet list are initially empty.

val PrintServer SentSet = [
{ Component="UA", Port="PrintP",
SecurityLabels=[],io_ type=UNUSED PORT,warnings=[] },
{ Component="UA", Port="PrintS",
SecurityLabels=[],io_ type=UNUSED PORT,warnings=[] },
{ Component="UB", Port="PrintP",

SecurityLabels=[] ,io type=UNUSED PORT,warnings=[]},
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{ Component="UB", Port="PrintS",
SecurityLabels=[] ,io type=UNUSED PORT,warnings=[]},
{ Component="PS", Port="RequestS3S",
SecurityLabels=[] ,io type=UNUSED PORT,warnings=[]},
{ Component="PS", Port="RequestP",
SecurityLabels=[],io_ type=UNUSED PORT,warnings=[] },
{ Component="PS", Port="OutputP",
SecurityLabels=[] ,io type=UNUSED PORT,warnings=[] },
{ Component="PS", Port="OutputsS",
SecurityLabels=[] ,io type=UNUSED PORT,warnings=[] },
{ Component="SECUREPRINTER", Port="Receive",
SecurityLabels=[] ,io type=UNUSED PORT,warnings=[]},
{ Component="PUBLICPRINTER", Port="Receive",
SecuritylLabels=[] ,io type=UNUSED PORT,warnings=[]}
] :SRDataSecurityClass list; (* Sent data security label list
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CHAPTER 7

CASE STUDY: THE PROJECTIT

In this chapter, we present an additional example software system described
in Wright/c. An illustration of the verification process applied to the system is also

given by elaborating each step of the process.
7.1 Wright/c Description of the ProjectIT

The software system supports data exchange, in the context of a project
called ProjectIT, between a customer and a consortium formed by two companies:
a software vendor that develops an application software for the customer, and a

hardware vendor that supplies the hardware platform for the software.

Throughout project life cycle, information of various sensitivity flows
between the vendors and the customer. The vendors establish interfaces to the
customer to exchange project-specific information that may also flow between the
vendors. Additionally, the companies set up a communication path for transferring
project-specific information not to be shared with the customer. The topology of

the architecture is depicted in Figure 7.1.

An access control lattice model, shown in Figure 7.2, introduces the security
labels of data that flow within the project. The clearance that dominates a security

label is shown in parentheses.

As depicted in Figure 7.1, the connections between the customer and the
vendors are bidirectional and ProjectWide labeled data flows on these connections.

Such connection is also established between the vendors.
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Vendor-related information is exchanged between the partner vendors using
two unidirectional connectors. Software vendor sends SWSpecific data through
SwHwConn connector while the hardware vendor sends HWSpecific data on

HwSwConn connector.

The description of the lattice model and Wright/c description of ProjectIT

configuration is presented in Figure 7.3 and Figure 7.4, respectively.

As shown in the Wright/c description, the ports are assigned suitable
clearance to send and receive data in compliance with the BLP principles. For
example, on the HwCustConn connection, only ProjectWide labeled data transfer
is allowed. For instance, sending a vendor-specific data (labeled HwSpecific)
through that connection causes a violation of the ‘no read up’ principle at the

receiving side of the connection.

SwHwConn
Hard <
ardware HwSwConn Software
Vendor - > Vendor

Consortium
ProjectConn

HwCustConn SwCustConn

Figure 7.1: Topology of ProjectIT
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ConsortiumSpecific

(ConsortiumCL)
SWSpecific HWSpecific
(SWCL (HWCL)

ProjectWide
(ProjectCL)

Figure 7.2: An access control lattice model for ProjectIT

Lattice PLM
Security Labels
ConsortiumSpecific, SWSpecific,
HWSpecific, ProjectWide
Ordering
ProjectWide, SWSpecific, ConsortiumSpecific

ProjectWide, HWSpecific, ConsortiumSpecific

Clearance List

ConsortiumCL : ConsortiumSpecific
HWCL : HWSpecific
SWCL : SWSpecific
ProjectCL : ProjectWide

End Lattice

Figure 7.3: Wright/c description of the access control lattice model for

ProjectIT
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Configuration ProjectIT
Import Lattice PLM “PITLattice.txt”
Component Vendor(t, u : SecurityLabel) =
Port VendorSend = SendData! x* — VendorSend
Port VendorReceive = ReceiveData?x — VendorReceive
Port VendorProject = SendData!x" — VendorProject
O ReceiveData?x — VendorProject
Port CustomerProject= SendData!x* — CustomerProject
0 ReceiveData?x — CustomerProject
Computation = ( CustomerProject.SendData!x* — Computation
M VendorSend.SendData!x" — Computation
M VendorProject.SendData!x* — Computation)
0 CustomerProject. ReceiveData?x — Computation
O VendorReceive. ReceiveData?x — Computation
O VendorProject. ReceiveData?x — Computation
Component Customer(n:1..10; t : SecurityLabel) =
Port VendorInterface; , = ReceiveData?x — VendorInterface
O SendData!x® — Vendorlnterface
Computation = ;i;(1..n) ¢ (VendorInterface. ReceiveData?x —
DoOwnJob — Computation
M VendorInterface;.SendData!x" — Computation)
Connector BiDirectionallink =
Role SideA = Receive?x — SideA O Send!x — SideA
Role SideB = Receive?x — SideB O Send!x — SideB
Glue = SideA. Receive?x — SideB.Send!x — Glue
O SideB. Receive?x — SideA.Send!x — Glue

Connector UniDirectionalLink =
Role SideA = Receive?x — SideA
Role SideB = Send!x — SideB
Glue = SideA. Receive?x — SideB.Send!x — Glue

Figure 7.4: Wright/c description of ProjectIT configuration
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Instances

SWVendor : Vendor(PLM.SWSpecific, PLM.ProjectWide)
HWVendor : Vendor(PLM.HWSpecific, PLM. ProjectWide)
CustomerA : Customer(2, PLM. ProjectWide)

SwHwConn, HwSwConn : UniDirectionalLink
HwCustomerConn, SwCustomerConn,
ConsortiumProjectConn : BiDirectionalLink

Clearance
SWVendor.VendorSend 1 SWCL
HWVendor.VendorReceive : ConsortiumCL
HWVendor.VendorSend : HWCL

SWVendor.VendorReceive : ConsortiumCL
SWVendor.CustomerProject, HWVendor.CustomerProject : ProjectCL

SWVendor.VendorProject, HWVendor.VendorProject : ProjectCL
CustomerA : ProjectCL // all ports of CustomerA
Attachments

SWVendor.VendorSend As SwHwConn.SideA
HWVendor.VendorReceiveAs SwHwConn.SideB
HWVendor.VendorSend As HwSwConn.SideA
SWVendor.VendorReceive As HwSwConn.SideB
SWVendor.VendorProject As ConsortiumProjectConn.SideA
HWVendor.VendorProject As ConsortiumProjectConn.SideB
SWVendor.CustomerProject As SwCustomerConn.SideA
CustomerA. VendorInterface; As SwCustomerConn.SideB
HWVendor.CustomerProject As HwCustomerConn.SideA
CustomerA. VendorInterface, As HwCustomerConn.SideB
End Configuration

Figure 7.4: Wright/c description of ProjectIT configuration (continued)

7.2 Verification of the ProjectIT System

This section gives an illustration of the verification process applied to the

ProjectIT system. The XML representations of the configuration and the access

control lattice model are presented in Appendix F. The verification starts by

invoking a call to the verify function in ML run-time environment as:
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- verify(configuration, style);

The output of the function is the report including the information, as given in
Section 5.3.3, for each port of every component instance in the configuration. The
contents of the risa, the slsa, and the labels refused due to violation prevention are
displayed after each iteration step of the verification process. In the report, the
labels are represented in the form of sublattices. Moreover, for each component
instance that lowers security labels of its input data in its computation, a warning

message is produced saying that the component must be trusted.

The following is the output of the verification process after the iteration 0
and iteration 1 where the stable state is reached. The warning messages for
trustworthiness of SWvendor and HWVendor are reported in the first iteration
since all security labels are offered to the ports of these components but, for

example, ConsortiumSpecific labeled data are not output.

Warning !...SWVendor MUST BE TRUSTED!...

Warning !...HWVendor MUST BE TRUSTED!...
EREEE SRR LR EEEEEEEEEEEEEEEEE L LR
Iteration No: O
RECEIVED LIST (0)
Component .Port: SWVendor.VendorSend clearance:SWCL
Allowed Security Labels (min,max): (ProjectWide,ConsortiumSpecific)
Refused Security Labels (min,max):

Component.Port: SWVendor.VendorReceive clearance:ConsortiumCL
Allowed Security Labels (min,max): (ProjectWide,ConsortiumSpecific)
Refused Security Labels (min,max):

Component.Port: SWVendor.VendorProject clearance:ProjectCL
Allowed Security Labels (min,max): (ProjectWide,ConsortiumSpecific)
Refused Security Labels (min,max):

Component.Port: SWVendor.CustomerProject clearance:ProjectCL
Allowed Security Labels (min,max): (ProjectWide,ConsortiumSpecific)
Refused Security Labels (min,max):

Component .Port: HWVendor.VendorSend clearance:HWCL
Allowed Security Labels (min,max): (ProjectWide,ConsortiumSpecific)
Refused Security Labels (min,max):

Component.Port: HWVendor.VendorReceive clearance:ConsortiumCL
Allowed Security Labels (min,max): (ProjectWide,ConsortiumSpecific)
Refused Security Labels (min,max):

Component.Port: HWVendor.VendorProject clearance:ProjectCL
Allowed Security Labels (min,max): (ProjectWide,ConsortiumSpecific)

Refused Security Labels (min,max):

Component .Port: HWVendor.CustomerProject clearance:ProjectCL
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Allowed Security Labels (min,max): (ProjectWide,ConsortiumSpecific)
Refused Security Labels (min,max):

Component.Port: CustomerA.VendorInterface 1 clearance:ProjectCL
Allowed Security Labels (min,max): (ProjectWide,ConsortiumSpecific)
Refused Security Labels (min,max):

Component.Port: CustomerA.VendorInterface 2 clearance:ProjectCL
Allowed Security Labels (min,max): (ProjectWide,ConsortiumSpecific)
Refused Security Labels (min,max):

SENT LIST (O0)

Component.Port: SWVendor.VendorSend type: OUTPUT PORT clearance:SWCL
Allowed Security Labels (min,max): (SWSpecific,SWSpecific)
Refused Security Labels (min,max):

Component.Port: SWVendor.VendorReceive type: INPUT PORT
clearance:ConsortiumCL

Component.Port: SWVendor.VendorProject type: INPUTOUTPUT_ PORT
clearance:ProjectCL
Allowed Security Labels (min,max): (ProjectWide,ProjectWide)
Refused Security Labels (min,max):

Component.Port: SWVendor.CustomerProject type: INPUTOUTPUT_ PORT
clearance:ProjectCL
Allowed Security Labels (min,max): (ProjectWide,ProjectWide)
Refused Security Labels (min,max):

Component.Port: HWVendor.VendorSend type: OUTPUT PORT clearance:HWCL
Allowed Security Labels (min,max): (HWSpecific,HWSpecific)
Refused Security Labels (min,max):

Component.Port: HWVendor.VendorReceive type: INPUT PORT
clearance:ConsortiumCL

Component.Port: HWVendor.VendorProject type: INPUTOUTPUT_ PORT
clearance:ProjectCL
Allowed Security Labels (min,max): (ProjectWide,ProjectWide)
Refused Security Labels (min,max):

Component.Port: HWVendor.CustomerProject type: INPUTOUTPUT_PORT
clearance:ProjectCL
Allowed Security Labels (min,max): (ProjectWide,ProjectWide)
Refused Security Labels (min,max):

Component.Port: CustomerA.VendorInterface 1 type: INPUTOUTPUT PORT
clearance:ProjectCL
Allowed Security Labels (min,max): (ProjectWide,ProjectWide)
Refused Security Labels (min,max):

Component.Port: CustomerA.VendorInterface 2 type: INPUTOUTPUT PORT
clearance:ProjectCL
Allowed Security Labels (min,max): (ProjectWide,ProjectWide)
Refused Security Labels (min,max):

dhhkhkhkhkdhkdxhkhkhhdrdkdhdhhkhdhdrhhkdhhhkddhdrhrhkdhddrdkdhdhrhkddhrhrhdrhhhdhrhkhhkhrhhkdrhrhhhkk

Iteration No: 1
RECEIVED LIST (1)
Component .Port: SWVendor.VendorSend clearance:SWCL

Component .Port: SWVendor.VendorReceive clearance:ConsortiumCL
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Allowed Security Labels (min,max): (HWSpecific,HWSpecific)
Refused Security Labels (min,max):

Component.Port: SWVendor.VendorProject clearance:ProjectCL
Allowed Security Labels (min,max): (ProjectWide,ProjectWide)
Refused Security Labels (min,max):

Component.Port: SWVendor.CustomerProject clearance:ProjectCL
Allowed Security Labels (min,max): (ProjectWide,ProjectWide)
Refused Security Labels (min,max):

Component.Port: HWVendor.VendorSend clearance:HWCL

Component.Port: HWVendor.VendorReceive clearance:ConsortiumCL
Allowed Security Labels (min,max): (SWSpecific,SWSpecific)
Refused Security Labels (min,max):

Component.Port: HWVendor.VendorProject clearance:ProjectCL
Allowed Security Labels (min,max): (ProjectWide,ProjectWide)
Refused Security Labels (min,max):

Component.Port: HWVendor.CustomerProject clearance:ProjectCL
Allowed Security Labels (min,max): (ProjectWide,ProjectWide)
Refused Security Labels (min,max):

Component.Port: CustomerA.VendorInterface 1 clearance:ProjectCL
Allowed Security Labels (min,max): (ProjectWide,ProjectWide)
Refused Security Labels (min,max):

Component.Port: CustomerA.VendorInterface 2 clearance:ProjectCL
Allowed Security Labels (min,max): (ProjectWide,ProjectWide)
Refused Security Labels (min,max):

SENT LIST (1)

Component.Port: SWVendor.VendorSend type: OUTPUT PORT clearance:SWCL
Allowed Security Labels (min,max): (SWSpecific,SWSpecific)
Refused Security Labels (min,max):

Component.Port: SWVendor.VendorReceive type: INPUT_PORT
clearance:ConsortiumCL

Component.Port: SWVendor.VendorProject type: INPUTOUTPUT PORT
clearance:ProjectCL
Allowed Security Labels (min,max): (ProjectWide,ProjectWide)
Refused Security Labels (min,max):

Component.Port: SWVendor.CustomerProject type: INPUTOUTPUT PORT
clearance:ProjectCL
Allowed Security Labels (min,max): (ProjectWide,ProjectWide)
Refused Security Labels (min,max):

Component.Port: HWVendor.VendorSend type: OUTPUT PORT clearance:HWCL
Allowed Security Labels (min,max): (HWSpecific,HWSpecific)
Refused Security Labels (min,max):

Component.Port: HWVendor.VendorReceive type: INPUT_PORT
clearance:ConsortiumCL

Component.Port: HWVendor.VendorProject type: INPUTOUTPUT PORT
clearance:ProjectCL
Allowed Security Labels (min,max): (ProjectWide,ProjectWide)
Refused Security Labels (min,max):
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Component.Port: HWVendor.CustomerProject type: INPUTOUTPUT PORT
clearance:ProjectCL
Allowed Security Labels (min,max): (ProjectWide,ProjectWide)
Refused Security Labels (min,max):

Component.Port: CustomerA.VendorInterface 1 type: INPUTOUTPUT PORT
clearance:ProjectCL
Allowed Security Labels (min,max): (ProjectWide,ProjectWide)
Refused Security Labels (min,max):

Component.Port: CustomerA.VendorInterface 2 type: INPUTOUTPUT PORT
clearance:ProjectCL
Allowed Security Labels (min,max): (ProjectWide,ProjectWide)
Refused Security Labels (min,max):

E R e R R R R R e R R e i e e R

Next, the stable r/sa and s/sa are reported including the same type of

information as follows:

STABLE RECEIVED LIST (1)
Component.Port: SWVendor.VendorSend clearance:SWCL

Component.Port: SWVendor.VendorReceive clearance:ConsortiumCL
Allowed Security Labels (min,max): (HWSpecific,HWSpecific)
Refused Security Labels (min,max):

Component.Port: SWVendor.VendorProject clearance:ProjectCL
Allowed Security Labels (min,max): (ProjectWide,ProjectWide)
Refused Security Labels (min,max):

Component.Port: SWVendor.CustomerProject clearance:ProjectCL
Allowed Security Labels (min,max): (ProjectWide,ProjectWide)
Refused Security Labels (min,max):

Component .Port: HWVendor.VendorSend clearance:HWCL

Component .Port: HWVendor.VendorReceive clearance:ConsortiumCL
Allowed Security Labels (min,max): (SWSpecific,SWSpecific)
Refused Security Labels (min,max):

Component .Port: HWVendor.VendorProject clearance:ProjectCL
Allowed Security Labels (min,max): (ProjectWide,ProjectWide)
Refused Security Labels (min,max):

Component.Port: HWVendor.CustomerProject clearance:ProjectCL
Allowed Security Labels (min,max): (ProjectWide,ProjectWide)
Refused Security Labels (min,max):

Component.Port: CustomerA.VendorInterface 1 clearance:ProjectCL
Allowed Security Labels (min,max): (ProjectWide,ProjectWide)
Refused Security Labels (min,max):

Component.Port: CustomerA.VendorInterface 2 clearance:ProjectCL
Allowed Security Labels (min,max): (ProjectWide,ProjectWide)
Refused Security Labels (min,max):

STABLE SENT LIST (1)
Component.Port: SWVendor.VendorSend type: OUTPUT PORT clearance:SWCL
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Allowed Security Labels (min,max): (SWSpecific,SWSpecific)
Refused Security Labels (min,max):

Component.Port: SWVendor.VendorReceive type: INPUT PORT
clearance:ConsortiumCL

Component.Port: SWVendor.VendorProject type: INPUTOUTPUT PORT
clearance:ProjectCL
Allowed Security Labels (min,max): (ProjectWide,ProjectWide)
Refused Security Labels (min,max):

Component.Port: SWVendor.CustomerProject type: INPUTOUTPUT PORT
clearance:ProjectCL
Allowed Security Labels (min,max): (ProjectWide,ProjectWide)
Refused Security Labels (min,max):

Component.Port: HWVendor.VendorSend type: OUTPUT PORT clearance:HWCL
Allowed Security Labels (min,max): (HWSpecific,HWSpecific)

Refused Security Labels (min,max):

Component.Port: HWVendor.VendorReceive type: INPUT PORT
clearance:ConsortiumCL

Component.Port: HWVendor.VendorProject type: INPUTOUTPUT_ PORT
clearance:ProjectCL
Allowed Security Labels (min,max): (ProjectWide,ProjectWide)
Refused Security Labels (min,max):
Component.Port: HWVendor.CustomerProject type: INPUTOUTPUT_ PORT
clearance:ProjectCL
Allowed Security Labels (min,max): (ProjectWide,ProjectWide)
Refused Security Labels (min,max):
Component.Port: CustomerA.VendorInterface 1 type: INPUTOUTPUT PORT
clearance:ProjectCL
Allowed Security Labels (min,max): (ProjectWide,ProjectWide)
Refused Security Labels (min,max):
Component.Port: CustomerA.VendorInterface 2 type: INPUTOUTPUT_PORT
clearance:ProjectCL

Allowed Security Labels (min,max): (ProjectWide,ProjectWide)
Refused Security Labels (min,max):

Then, a verification report combining the 7/sa and s/sa information is output.
For each port of every component instance, the type of the port (INPUT,
OUTPUT, INPUTOUTPUT), its clearance, and potentially input and output data
security labels are included in the report. The potentially input (output) data
security labels and the potentially input data security labels will be ‘No data...’
when the port is an output (input) port. If refused security label list has some
entries in the stable r/sa or slsa, a potential anomaly notification is also produced.
If no such anomalies are detected, a success notification message is displayed as

shown below.
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VERIFICATION REPORT
R RS SRS LRSS EEEEEEE LR L L EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE SRR
Component.Port: SWVendor.VendorSend type :0UTPUT PORT clearance:SWCL
potentially output data security labels: SWSpecific
potentially input data security labels: No data...

Component.Port: SWVendor.VendorReceive type :INPUT PORT
clearance:ConsortiumCL

potentially output data security labels: No data...
potentially input data security labels: HWSpecific

Component.Port: SWVendor.VendorProject type :INPUTOUTPUT PORT
clearance:ProjectCL
potentially output data security labels: ProjectWide
potentially input data security labels: ProjectWide

Component.Port: SWVendor.CustomerProject type :INPUTOUTPUT PORT
clearance:ProjectCL
potentially output data security labels: ProjectWide
potentially input data security labels: ProjectWide

Component.Port: HWVendor.VendorSend type :OUTPUT PORT clearance:HWCL
potentially output data security labels: HWSpecific
potentially input data security labels: No data...

Component.Port: HWVendor.VendorReceive type :INPUT_PORT
clearance:ConsortiumCL

potentially output data security labels: No data...
potentially input data security labels: SWSpecific

Component.Port: HWVendor.VendorProject type :INPUTOUTPUT PORT
clearance:ProjectCL
potentially output data security labels: ProjectWide
potentially input data security labels: ProjectWide

Component.Port: HWVendor.CustomerProject type :INPUTOUTPUT_ PORT
clearance:ProjectCL
potentially output data security labels: ProjectWide
potentially input data security labels: ProjectWide

Component.Port: CustomerA.VendorInterface 1 type :INPUTOUTPUT_PORT
clearance:ProjectCL

potentially output data security labels: ProjectWide

potentially input data security labels: ProjectWide
Component.Port: CustomerA.VendorInterface 2 type :INPUTOUTPUT_PORT
clearance:ProjectCL

potentially output data security labels: ProjectWide

potentially input data security labels: ProjectWide

Frxxkkxkxkxxx The verification is SUCCESSFUL **xHxskkkdkx

Lastly, the report displays excess privileges if any is detected during the
verification process, and recommends a new (minimum) clearance in place of

currently assigned. In our case, the HWCL and SWCL the VendorReceive ports of
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SWvendor and HWVendor are recommended, respectively, although

ConsortiumCIL was originally assigned to both of them.

EXCESS PRIVILEGES

Fhhkkhkhkkkhkhkkkkhkkhk

Excess privilege for SWVendor.VendorReceive found:
Current: ConsortiumCL Recommended: HWCL

Excess privilege for HWVendor.VendorReceive found:
Current: ConsortiumCL Recommended: SWCL

WARNING : Some excessive privileges are associated with ports as given
above!..

Please check them and revise your system configuration...
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CHAPTER 8

CONCLUSIONS AND DISCUSSION

In this study, a static verification of a software architecture in terms of data
confidentiality is proposed by relating the studies on software architectures and

confidentiality.

For architectural study, Wright architecture description language (ADL) is
selected due to its amenability to static analysis. Firstly, Wright is extended so that
confidentiality authorizations can be specified. An architectural description in
Wright/c, the extended language, assigns clearance to the ports of the components
and treats security labels as a part of data type information. The security labels are
declared along with clearance assignments in an access control lattice model, also
expressed in Wright/c. This enables static analysis of data flow over the
architecture subject to confidentiality requirements as per ‘no-read up’ and ‘no-
write down’ principles of Bell-LaPadula. The lattice model and the Wright/c are
described in XML notation. XML notation facilitates the tasks performed by the
parser which produces necessary information in abstract syntax for the

verification.

Taking the ADL description in a suitable abstract syntax and the access
control lattice model as inputs, a verification process that includes a data flow
analysis and an anomaly detection process is developed. The verification process
checks if there is a potential violation with respect to Bell LaPadula principles. For
data flow analysis, input and output data flows through the ports of component
instances in the software configuration are analyzed by an algorithm. A violation

prevention, which is a part of the data flow analysis, is performed by checking the
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clearance of ports of component instances against the security labels of data input
or output through these ports. The algorithm benefits from a CSP analysis study
developed separately.

The verification process also reports on excess authorizations. It extracts the
minimum required clearance of the constructs (ports) without disturbing the
existing data flow over the architecture. Therefore, if it is given a clearance more

than needed, the surplus authorization (excessive clearance) can be reclaimed.

An implementation of the verification and the CSP Analysis (without parallel
|| operator) are implemented in ML. Taking concrete syntax of the system
configuration and access control lattice model in XML notation as inputs, a front-
end processing provides their abstract syntax that is offered to the verification
process and the CSP Analysis. A potential work could be the integration of these

processes in order to provide an easy-to-use interface to the designers.

The worst case computational complexity of the verification algorithm is
discussed in terms of running time and space. The running time complexity is
polynomial, O(n°), where n is the maximum value out of the number of ports in a
component, the number of port instances, the number of roles in a connector, and
the number of connector instances. The space complexity, on the other hand, is
analyzed for both Wright/c descriptions and the access control lattice model. The
former is found as O(n’), where n is taken as the maximum value out of the
number of ports in a component and the number of component instances. The
latter is calculated as O(nlogn), where n is the number of data security labels in the

lattice.

This work can be effectively applied to a software system during the design
phase of its development. Having an access control model based on the security
policy of the company, the verification of the Wright/c description of the system

helps to see the possible data flow confidentiality violations in advance.

The verification algorithm deals with the confidentiality of a software
system. The integrity model, propesed by Biba, can be incorporated using the same

way. Similar to the lattice model for confidentialy, an integrity lattice can be
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constructed and the principles of Biba model can be applied with respect to the
integrity lattice. To do that data are grouped in terms of integrity classes, and each
class is denoted by an integrity label. Authorization levels (clearance) of the ports

are then associated with the integrity lattice to obtain the dominance relation.

Moreover, the algoriths is based on assignment of clearance to ports or
components. However, the similar approach can be followed by assigning
clearance to roles and connectors. The Wright/c provides the framework and

supports such assignments.

As mentioned throughout the document, our study involves the static nature
of a system architecture. Allen et. al. studied dynamic architecture [5] to allow the
system to be reconfigured dynamically. This dynamism is obtained by a special
component, called a configuror, which oversees the entire system and manages the
connections by attaching or detaching them. The annotations that we introduced
into the static nature of a Wright system description can be applied to dynamic

architectures by annotating the configuror.

The approach used in this study is particularly aimed to the design phase of
the system being developed. How it can be adapted to an implemented system is
another issue, which is worth studying. A possible way could be the benefits of the
reverse engineering approach for the implemented system to reconstruct the

architecture of the system.

Lastly, other architecture description languages, such as ACME, can be
adapted to support specifications of confidentiality or integrity authorizations

benefiting the approach used in this study on Wright.
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APPENDIX A

COMPLETE EBNF DESCRIPTION FOR WRIGHT/C

SpecList = {Spec}-
Spec = Configuration | Style
Style = “Style”, Simple Name,
[“Import Lattice”, Lattice Name, Lattice File Name, ]
{Type}, [ "Constraints" [ ConstraintExpression, ] ]
"End Style"
Lattice File Name = AFilePath
Type = Component | Connector | InterfaceType | GeneralProcess
Component = "Component", Simple Name, [ “(“, FormalCCParam, {*;”,
FormalCCParam}, “)” ,]
{Port}, "Computation", BehaviorDescription
Connector = "Connector", SimpleName, [ “(*“,FormalCCParam, {*;”,
FormalCCParam}, “)”, ]
{Role}, "Glue", BehaviorDescription
Port = "Port", FormalPRName, “=", ProcessExpression
Role = "Role", FormalPRName, “=", ProcessExpression
Configuration = "Configuration", Simple Name,
[“Import Lattice”, Lattice Name, Lattice File Name, ]
[ "Style" Simple Name, ]
{Typej},
"Instances", {Instance}-,
“Clearance”, {ClearanceList},

"Attachments", { Attachment},
"End Configuration"
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T

Instance = InstanceName, {*,”, InstanceName}, “:”, TypeUse

InstanceName = Simple Name, [ “_{*, FiniteRangeExpression, “}” ]

TypeUse = Simple Name, [ “(“, Actual CCParam, {*,”, ActualCCParam}, “)” ]

ClearanceList = aSubject , {“,”, aSubject},”:”, Clearance

aSubject = ComponentConnectorName | PortRoleName

FiniteRangeExpressionOrIndex = FiniteRangeExpression | IntegerExpression

ComponentConnectorName = Simple Name, [“_{“,
FiniteRangeExpressionOrIndex, “_}”]

PortRoleName=ComponentConnectorName, ““.”, Simple Name, [ “_{*,
FiniteRangeExpressionOrIndex, “_}” |

Clearance = Simple Name

Attachment = Interface, "As", Interface

Interface = Simple Name, [ "_{", IntegerExpression, “}”],”.”, ActualPRName
InterfaceType = "Interface Type", ProcessName, “=", ProcessExpression
GeneralProcess = "Process"”, ProcessName, “=", ProcessExpression

73]

FormalCCParam = NameList,“:”,ProcessType | NameList, “:”,
FiniteRangeExpression | NameList, “:”, SecurityLabel”
Actual CCParam = ProcessExpression | IntegerExpression | LatticeFunction
LatticeFunction = LatticeName, “.”, FunctionName
FunctionName = NodeName
| “meet”, “(“, SetOfNodes, “)”
| “join”, “(“,SetOfNodes, “)”
[ “max()” | “min()”
SetOfNodes = NodeName, {*,”, NodeName }-
NodeName =Simple Name
LaticeName = Simple Name
ProcessName = Simple Name, [ "_{", ProcessParams, “}"’]

[T32]

NameList = Simple Name, {“,”, Simple Name }

ElementList = DataExpression, {*“,”, DataExpression }
FormalPRName = Simple Name, [ "_{", FiniteRangeExpression, “}”]
ActualPRName = Simple Name, [ "_{", IntegerExpression, “}” ]
EventName = [ ActualPRName, “.” ], SimpleName

BehaviorDescription = “="", ProcessExpression | Subconfiguration
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Simple Name = IDENTIFIER
AlphabetName = "ALPHA", SimpleName
DefnName = ProcessName | AlphabetName
Subconfiguration = “Configuration”, "Bindings", {Bindings}, "End Bindings"
Binding = “Interface”, “=", ActualPRName
Declaration = DefnName, “=", AnyExpression
| DefnName, “=", "Cond", “{*, {ConditionalDefinition}-, “}”
ConditionalDefinition = ProcessExpression, "When", “{*, LogicalExpression “}”
| ProcessExpression, "Otherwise"
FormalParam = NamelList, “:”, SetExpression
FormalParamNL = SimpleName,” :”, SetExpression
ProcessParams = AnyExpression, { AnyExpression, “,”}
ProcessType = "Interface Type" | "Process" | "Port"
| "Role" | "Computation" | "Glue"
ProcessExpression = ProcessExpression, ““;”, ProcessExpression
| ProcessExpression, "/\", ProcessExpression
| EventExpression, "->", ProcessExpression
| ProcessExpression, "||", ProcessExpression
| ProcessExpression, "|||"", ProcessExpression
| ProcessExpression, "[]", ProcessExpression
| ProcessExpression, "|~|", ProcessExpression

[73%1)

[ "[1", FormalParam,{‘‘;”,FormalParam}, “@", ProcessExpression

[T L)

| "I~I", FormalParam,{‘;”,FormalParam}, “@”, ProcessExpression

€,

[ “;” FormalParam,{*;” ,FormalParam}, “@”, ProcessExpression

[T

| "||", FormalParam,{‘;”,FormalParam}, “@", ProcessExpression
[ "Ill", FormalParam,{*;”,FormalParam}, ” @”, ProcessExpression
| ToolAnnotation

| ProcessName

| "Computation"

| "Glue"

| "Success"

| "Skip"

| "Stop"
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| ProcessExpression, "Where", “{*, {Decleration}, “}”
| “(*, ProcessExpression, “)”
ToolAnnotation = "diamond", “(“, ProcessExpression, “)”
| "normalise", “(*, ProcessExpression “)”
EventExpression = “_”, EventName, [ EventDataL.ist ]
| EventName, [ EventDataList ]
EventDataList = “7” | ”!”, NonEventDataExpression,
{“7’, “I”, NonEventDataExpression }
LogicalExpression = "not", LogicalExpression
| LogicalExpression, "or", LogicalExpression
| LogicalExpression, "and", LogicalExpression

[T L)

| "forall", FormalParam, {“;”,FormalParam} , “@”, LogicalExpression

[T L)

| "forall", FormalParam, {*;”,FormalParam},

GGl?’

, LogicalExpression , “@”,
LogicalExpression

73]

| "exists", FormalParam, {*;”,FormalParam} , “@”, LogicalExpression

73]

| "exists", FormalParam, {*;”,FormalParam},

“I”

, LogicalExpression, “@”,
LogicalExpression
| NonEventDataExpression, "==", NonEventDataExpression

ny—=n

| NonEventDataExpression, , NonEventDataExpression
| IntegerExpression, “<”, IntegerExpression
| IntegerExpression, “>”, IntegerExpression
| IntegerExpression, "<=", IntegerExpression
| IntegerExpression, ">=", IntegerExpression
| DataExpression, "in", SetExpression
| DataExpression, "notin", SetExpression
| "true"
| "false"
| LogicalExpression, "Where", “{*, {Decleration}, “}”
| “(“, LogicalExpression, “)”
ConstraintExpression = LogicalExpression
SetExpression = SetExpression, "union", SetExpression
| SetExpression, "intersection", SetExpression

| SetExpression, "setminus", SetExpression
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| SetExpression, "cross", SetExpression

| "power", SetExpression

| "sequence", SetExpression

[ ““{*, ElementList, “}”

| “{*, FormalParamNL, {“;”,FormalParamNL} [ “I”,
LogicalExpression ] [ “@”, DataExpression] , “}”

| RangeExpression

| SimpleName

| AlphabetName

| "Integer"

"

| SetExpression, "Where", “{*, {Decleration}, “}”

| “(**, SetExpression, )’
SequenceExpression = “<”, ElementList, “>”

| SequenceExpression, “*”, SequenceExpression

| SimpleName
| H<>H

| SequenceExpression, "Where", “{*, {Decleration}, “}”
| “(“‘, SequenceExpression, “)”

IntegerExpression =  SimpleName | INTEGER

RangeExpression =  IntegerExpression, "..", IntegerExpression

| IntegerExpression, ".."

| "..", IntegerExpression
FiniteRangeExpression = IntegerExpression, "..", IntegerExpression
TupleExpression = “(“, DataExpression, “,”, DataExpression, “)”

NonEventDataExpression = SetExpression

| IntegerExpression

| SequenceExpression

| LogicalExpresssion

| TupleExpression
DataExpression = EventExpression | NonEventDataExpression

AnyExpression = ProcessExpression | DataExpresssion
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APPENDIX B

CSP (COMMUNICATING SEQUENTIAL PROCESSES)
FUNDAMENTALS

CSP (Communicating Sequential Processes) is a calculus for studying
processes which interact with each other and their environment by means of
communication. The most fundemantal object in CSP is therefore a
communication event. These events are assumed to be drawn from a set £ which
contains all possible communications for processes in the universe under
consideration. A communication is a transaction or synchronization between two

or more processes rather than necessarily being the transmission of data one way.

In CSP, we assume firstly that an event only happens when all its participants
are prepared to execute it (handshaken communication), and secondly that the
abstract event is instantaneous. The instantaneous event can be thought of as
happening at the moment when it becomes inevitable because all its participants
have aggreed to execute it. These two related abstractions constitute the most

fundemantal steps in describing a system using CSP.

A CSP process is completely described by the way it can communicate with
its external environment. In constructing a process we first have to decide on an
alphabet of communication events — the set of all events that the process (and any
other related processes) might use. The choice of these events determines both the
level of detail or abstraction in the final specification, and also whether it is

possible to get a reasonable result at all.
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In order to create processes that simply describes (internally sequential)
patterns of communication, a number of operators are provided. The rest of the

appendix describes these fundamental operators.
Prefixing:

The simplest CSP process of them all is the one which can do nothing. It is

written STOP and never communicates.

Given an event @ in X and a process P, a— P is the process which is initially

willing to communicate ¢ and will wait indefinitely for this a to happen. After a it
behaves like P. Thus

up — down — up — down — STOP
will communicate the cycle up, down twice before stopping.

Clearly STOP and prefixing, together, allow us to describe just the processes

that make a fixed, finite sequence of communications before stopping.
Recursion:

CSP allows recursion by using defined process’s name on the right hand side

of the equations. For example,
P=up - down — P performs up, down indefinitely.

Instead of defining one process by a single equation, a number of equations

can be used to achive mutual recursion. For example,
P,=up - Py
Py =down — P,

behaves like P defined above.
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Guarded alternative:

CSP provides a few ways of describing processes which offer a choice of
actions to their environment. They are largely interchangeable from the point of
view of what they can express, each being included because it has its distinct uses

in programming.

The simplest of them takes a list of distinct initial actions paired with
processes and extends the prfix operator by letting the environment choose any

one of the events, with the subsequent behaviour being the corresponding process.
(a1 HP] ‘ az HP2| | ay HPn)

can do any events a;, ap, ..., a, on its first step , if the event chosen is a;

subsequently behaves like P;. This construct is called guarded alternative.
External Choice:

In guarded alternatives such as (a — P | b — (), the a and b are an integral
part of the operator even though it is tempting to think that this process is a choice
between the processes a — P and b — O . From the point of view of possible
implementations, the explicitness of the guarded alternative has many advantages
but from an algebraic standpoint and also for generality it is advantageous to have
a choice operator which provides a simple choice between processes; this is what

we wil now meet.

P O Q is a process which offers the environment the choice of the first
events of P and of Q and then behaves accordingly. This means that if the first
event chosen is one from P only, then P [0 QO behaves like P, while if one is chosen
from Q it behaves like Q. Thus, (¢ — P) O (b — Q) means exactly the same as
(a—P | b— Q). This generalizes totally: any guarded alternative of the sorts
described in the previous operator is equivalent to the process obtained by

replacing all of the I’s of the alternative operator by [1’s.
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A deterministic process is one where the range of events offered to the
environment depends only on things it has seen (i.e. the sequence of
communications so far). Therefore external choice is a deterministic choice. The

next operator, given below, describes the nondeterministic choice.
Nondeterministic Choice:

CSP contains two closely related ways of presenting the nondeterministic
choice of processes. These are P M Q and M S, where P and Q are processes and S
is a non-empty set of processes. The first of these is a process which can behave

like either P or Q, and the second one that can behave like any member of S.

It is important to appreciate the difference between P [ Q and P 1 Q. The
process (a — STOP) [ (b — STOP) is obliged to communicate « or b if offered
only one of them, whereas (@ — STOP) 1 (b — STOP) may reject either. It is
only obliged to communicate if the environment offers both a and b. In the first
case, the choice of what happens is in the hands of the environment, in the second

it is in the hands of the process.
Conditional Choice:
Conditionals can be presented as if ... then ... else .... constructs, as case

statements, or in the following syntax which elegantly reduces the conditional to

an algebraic operator:
P<| b >Q means exactly the same as if b then P else Q.
Communication Channels:

Communication between processes in CSP is over unidirectional channels. A
channel links exactly one pair of processes, meaning that multiplexers processes
are required for multiple communications. Similarly, since channels are
unidirectional, two-way communication between processes requires two separate

channels, as no process can input and output on the same channel.
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Communication is actually just a special case of an event, where the event
chan.val denotes the communication of val along channel chan. Each
communication event is a shared event of the two processes involved in the

communication, and, requires synchronization between the two processes.

Notationally, inputs and outputs are distinguished using the symbols ? and !.
So Out!2 denotes the output of the value 2 on channel out, while engaging in event
in in.?x would result in the value input on channel in being placed in the variable

X.
Pipes:

A pipe is a special case of a CSP process; it is essentially a process that may

input only on channel in and output only on channel out.

Pipes offer a great advantage, however, in that they can be linked together
using the chaining operator, >>, to make larger pipes. For example, if P1 and P2
are pipes, then P1 >> P2 is also a pipe. It still inputs only on channel in and

outputs only on channel out, but it combines the functionality of both P1 and P2.
Renaming:

Renaming applies a function mapping events in the alphabet onto events in
another set. The function should be total, although since there is no requirement
that the two sets of events are disjoint, certain event names need not be changed.
For example, P1[m/out] denotes a process P1 with every instance of out in P1

replaced by m.
Labelling:

Renaming is very useful when process definitions are re-used in different
contexts. However, when we have multpile instances of the same process in a
specification, defining the renaming function becomes tiresome and labour-
intensive (especially if we consider a specification with possibly hundreds of
instances of the same process), as we must define a separate renaming function for

each instance.
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It would be much easier if we could distinguish different instances in such a
way that we could access each instance via an index. The labelling operator
(written “:”) enables us to do this. It is a shorthand notation for renaming events by
prefixing each event with a label. Process i. P, for example, will engage in event i.e

whenever P would have engaged in e.
Sequential Processes:

Earlier we saw that STOP to denote termination. SKIP also denotes
termination, but successful termination. To distinguish it from STOP, we view
successful termination of SKIP as its engagement in the event V. V is a special
event, it can not be used in the choice construct, and a process can not engage in ¥

except as its final event.

All processes in CSP are sequential processes. That is, each process denotes
a separate behaviour pattern that obeys the laws of structured programming. P ; Q
, the sequential composition of P and Q is a process that behaves as process P, and
then as process Q once P has terminated successfuly (engaged in the event V). If P

never terminates then Q is never enabled, and P ; Q is equialent to P.
Algebra:

There are a number of basic patterns that many laws conform to; the

following are a few familiar examples illustrating these:

X+y = y+x
Xx*¥y=y*x
XUY=YyUX
x+y)+tz=x+(y+z)

(xty) *z=(x*2) + (y*2)

0+x=x
nx={}
XUX=X
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All of these patterns and more amongs are the laws of CSP. These properties
all hold whether the environment or the process gets to choose which path is

chosen. Thus, there are idempotence, symmetry and associative laws for both [

and M:

PP=P
POP=P
rpOQ=900P
pPnQ=9npe

PO@OR =@POQOR
PN(NR =@PNO) MR

Synchronous Parallel:

The processes interact by agreeing, or handshaking, on communications. The
simplest form of the CSP parallel operator insists that processes agree on all

actions that occur. It is written P||Q. For example, if a € ¥, then

(a—> REPEAT) | REPEAT

will have the same behaviour as ip.a — p. We can see this by following

through how this combination works. Assume that
REPEAT = ?x : £ - x — REPEAT

Since both sides have to agree on all events, it is clear that the only possible
first event is @, and this indeed is a possible event for the right hand process. The
copy of REPEAT on the right hand side then forces the second event to be an
a,which is accepted by REPEAT on the left hand side, forcing the third event to be

a also, and so on for ever.
The description of the paralle operator is contained in the following law:
?x:A—>Pl|?x:B—Q="7?x:AnB — (P||Q)

|| is also symmetric, associative and distributive.
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Interleaving:

The parallel operator has the property that all partners allowed to make a
particular communication must synchronize on it for the event to occur. To
opposite is true of parallel composition by interleaving, written P||Q. Here the
processes run completely independently of each other. Any event which the
combination communicates arose in precisely one of P and Q. If they could both
have a communicated the same event then the choice of which one executed it is

nondeterministic, but only one did it.

We have described some fundamentals of CSP. The more and detailed

information can be found in [60] and [30].
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APPENDIX C

BEHAVIOUR OF WRIGHT DESCRIPTIONS

In this appendix, the behaviour of a WRIGHT configuration (also Wright/c)
as a whole will be described by combining behaviour patterns of different

elements [6].

Behaviors are specified by combining events into patterns called processes.
There is a process for each of the elements of a WRIGHT description, one for each
port, role, computation and connector glue. Of these, the port and role
specifications represent the interfaces to the components and connectors, while the
computation and glue represent the overall, complete behavior of the components
and connectors, respectively. In this section we explain how these distinct
processes work together to define the behavior of the configuration and help us to
determine whether the configuration contains inconsistencies that mean the system

cannot operate correctly.

Abstractly, the behavior of an architectural configuration consists of each of
the behaviors of the individual components, each operating independently except
that they are coordinated by the glue of the connectors to which they are attached.
The computation of each component forms a part of the overall behavior, where
the order in which the computations occur and the transfer of data from one to the

other is coordinated by the connectors.

The basic technique used in CSP to model the combination of coordinated

processes is parallel composition. Two processes are composed in parallel
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(indicated in CSP with the operator ||) by having both processes control, which
events can occur. If both processes agree on an event then the event can occur. For

example, consider two processes, P and Q:

P=(—->f—-P)0(g— P), and
Q=e->F >QUOh—-Q).

What will happen if we combine these in parallel, as P || Q? At first, P
permits either e or g. But Q may only engage in e, so this is what will happen.
Once e has occurred, Q may now engage in either f or h. But now P is only
capable of f, so f occurs. After the <e,f> sequence, both P and Q are in their
original states, so the sequence repeats. Thus, the process P || Q is equivalent to the

process

R=e—>f—R.

The parallel composition can be applied to WRIGHT specifications. The
components’ computations interact only according to the constraints of the
connectors' glue. That is, each computation should proceed independently of the
other components, except that the events published in the interface (the ports)
should be coordinated via the glue processes of the attached connectors. Basically,
the behavior specifications of each instance of an architectural element in the
system can be combined via parallel composition. That is, there will be a process
for each component instance and one for each connector instance. The two main

difficulties in this approach and their solution is given below:

1. Behavior specifications are associated with a type, not an instance. So a

combination of multiple uses of a type in a single system is a question.

2. The types' specifications are context-independent: How can the attachment
declarations be used to ensure that the right interactions take place? If we look at
the way behaviors are specified in a component's Computation and a connector's
Glue, none of the event names match up. The Glue will refer to an event with a

role name, and the Computation will refer to it by a port name.
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These problems can be tackled using renaming and labeling functions.
Wright's local event names are converted into CSP's global events using renaming
functions. A renaming function takes a process and changes all of the names of its
events. For example, consider a function shift that shifts each event by one letter, a
to b, b to ¢, etc. When shift is applied to a process, P = a—b—P, the result is a
process with the same structure, but with different event names: shifi(P) =

b—c—shift(P).

Two different kinds of renaming can be used to combine the types' behavior
specifications into an overall behavior of a WRIGHT configuration. The first is
used to make multiple copies of the specifications for instances. These functions
add the names of the instances to each event name, and are called labeling
functions. They are written L: P to indicate the process P with its events prefixed
by the label L. Thus, an instance of the SplitFilter named Splitter, for example,
would refer to its events with the name Splitter: Splitter.Left.write,
Splitter. Left.close, etc. This way, there can be multiple instances of a type and they

will not interfere.

Relabeling is sufficient to construct processes to represent each component
instance. A relabeled version of the Computation associated with the component
type is simply used. For a declaration "N : CT," where the component type CT has
a computation process P, we will use the relabeled process N:P. This has the effect
of giving each event of component instance N a three-leveled structure: The
component name, the port name, and the local event name (N.P.e). If the
computation uses any internal events (not associated with any port) these will have

two level names: the component name and then the event name (NV.e).

The second kind of renaming matches up the names of attached ports and

role. If we have an attachment declaration,
Splitter.Left as P1 .Source

For example, these functions make sure that all of the events for the Left port

in the Splitter's computation match up with the events from the Source role of the
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P1 glue. Thus Splitter. Lefi.close would be the same event as P1 .Source.close after

the attachment renaming functions are applied.
To achieve this, we use another special form of renaming function:

Definition (renaming): For any names N,N',M, M', not necessarily distinct,

N’M’e’ if e=N.M.¢e’
e otherwise

9‘5%%’) (e) ={

(PL,Sc ) .
In the case of the attachment above, we would thus use R g ron) - We will

call this function an attachment function. In the following definition we use these
functions to the connector instance processes to ensure that the behavior model of
a WRIGHT configuration uses the communication pathways laid down by the

connector instances and attachment declarations.

Definition (Configuration Behaviour): If a configuration declares component
instances Cp; :CpT; ... Cp, :CpT, where each component type Cp7; has
computation process CpP, connector instances Cn; :CnT; ... Cny:CnT,, where
each connector type CnT; has glue process CnP;, and attachment declarations with
attachment functions 9, ... I, let ¥ = ;0 ...o Ry . Then the behavior of the
configuration is the CSP process (||i - I.n ® Cp; : CpP; ) || (|lj - 1..m & % (Cn; :
CnP;)).

In this definition, the definition % = 9 o ..o I indicates that the
attachment functions are composed to form a single function. The definition of the
attachment functions made it a total function over events, but that only the relevant
events (of the specific role on the connector) are changed by the definition. The
requirement that all connector names be unique and all roles be attached to at most
one port ensures that there will be no conflicts when composing attachment

functions in a configuration.
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APPENDIX D

XML SCHEMA DESCRIPTION FOR THE LATTICE MODEL

The access control lattice model of security classes is represented in
eXtended Meta Language (XML), which facilitates the tasks performed by the

parser. The schema of XML data for the lattice model is given below.

<x:schema xmins:x="http://www.w3.0rg/2001/XMLSchema">
<x:simpleType name="IDENTIFIER">
<x:restriction base="x:NCName"><x:pattern value="\w(\w|\d)*"/>
</x:restriction>
</x:simpleType>
<x:simpleType name="SimpleName">
<x:restriction base="IDENTIFIER"/>
</x:simpleType>
<x:simpleType name="NodeList">
<x:restriction base="x:string">
<x:pattern value="( |\t)*(\Ww(\w|\d)*)( [\M)*(,( |\)*(Ww(w\d)*)( [\t)*)*"/>
</x:restriction> </x:simpleType>
<x:simpleType name="IdentifierList">
<x:restriction base="NodeList"/> </x:simpleType>
<x:element name="Lattice" type="Lattice"/>
<x:complexType name="Lattice">
<x:sequence>
<x:element name="SecurityLabels" type="NodeList"/>
<x:element name="Ordering" type="EdgeLists"/>
<x:element name="ClearanceList" type="ClearanceLists"/>
</x:sequence>
<x:attribute name="name" type="SimpleName"/> </x:complexType>
<x:complexType name="EdgeLists">
<x:sequence>
<x:element name="Order" type="NodeList" maxOccurs="unbounded"/>
</x:sequence>
</x:complexType> <x:complexType name="ClearanceLists">
<x:sequence>
<x:element name="Clearance" type="ClearanceList" maxOccurs="unbounded"/>
</x:sequence>
</x:complexType> <x:complexType name="ClearanceList">
<x:attribute name="names" type="IdentifierList"/>
<x:attribute name="labels" type="NodeList"/>
</x:complexType>
</x:schema>
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APPENDIX E

XML SCHEMA DESCRIPTION FOR WRIGHT/C

Similar to the lattice model whose schema is given in Appendix D, the
Wright/c style and the configuration are represented in XML to facilitate the
construction of the abstract syntax by the parser. The schema descriptions consists

of the following xsd (XML Schema Description) files:
e  Wrightc.xsd
e (CSP.xsd
e Constructs.xsd
¢ Implicit-Event-Expression.xsd
e Explicit-Event-Expression.xsd
e Event.xsd
e MathML2.xsd.
The schemas are given below.

<!-- Wright/c schema: Wrightc.xsd -->
<!--x:schema xmins:x="http://www.w3.0rg/2001/XMLSchema"-->
<x:schema
xmins:math="http://www.w3.org/1998/Math/MathML"
xmins:x="http://www.w3.0rg/2001/XMLSchema">

<x:include schemalLocation="csp.xsd"/>

<!-- Type Definitions -->
<x:simpleType name="IDENTIFIER">
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<x:restriction base="x:NCName">
<x:pattern value="\w(\w|\d)*"/>
</x:restriction> </x:simpleType>
<x:simpleType name="NormalizedString">
<x:restriction base="x:string">
<x:whiteSpace value="collapse"/> </x:restriction>
</x:simpleType>
<x:simpleType name="StaticRangeExpression">
<x:restriction base="x:string">
<x:pattern value="(\d)+\.\.(\d)+"/></x:restriction>
</x:simpleType>
<x:simpleType name="DynamicRangeExpression">
<x:restriction base="x:string">
<x:pattern value="(\w(\w\d)*)\.\.(\w(\w\d)*)"/>
<x:pattern value="(\w(\w[\d)*)\.\.((\d)+\.\.(\d)+)"/>
<x:pattern value="((\d)+\.\.(\d)+)\.\. (\w(\w|\d)*)"/>
</x:restriction> </x:simpleType>
<x:simpleType name="FiniteRangeExpression">
<x:union memberTypes="StaticRangeExpression DynamicRangeExpression"/>
</x:simpleType>
<x:simpleType name="SubjectRangeExpression">
<x:union memberTypes="StaticRangeExpression x:integer"/>
</x:simpleType>
<x:simpleType name="SimpleName">
<x:restriction base="IDENTIFIER"/>
</x:simpleType>
<x:simpleType name="NameList">
<x:restriction base="x:string">
<x:pattern value="( |\t)*(\Ww(\w\d)*)( [\)*(,( |\)*(Ww(w\d)*)( [\t)*)*"/>
</x:restriction> </x:simpleType>
<x:simpleType name="NodeSet">
<x:restriction base="x:string">
<x:pattern value="( |\t)* \Ww(\w\d)*)( |\)*(,( [\t)*(Ww(w[\d)*)( |\t)*)+"/>
</x:restriction> </x:simpleType>
<x:simpleType name="FilePath">
<x:restriction base="x:anyURI">
<x:pattern value=".*\.xml"/>
</x:restriction> </x:simpleType>
<x:simpleType name="ProcessType">
<x:restriction base="x:string">
<x:enumeration value="Interface Type"/>
<x:enumeration value="Process"/>
<x:enumeration value="Port"/>
<x:enumeration value="Role"/>
<x:enumeration value="Computation"/>
<x:enumeration value="Glue"/>
</x:restriction> </x:simpleType>
<x:simpleType name="SecurityLabel">
<x:restriction base="x:string">
<x:enumeration value="Security Label"/>
</x:restriction> </x:simpleType>
<x:simpleType name="FormalParamType">
<x:union memberTypes="ProcessType SecurityLabel"/>
</x:simpleType>
<x:simpleType name="FunctionName">
<x:restriction base="x:NCName">
<x:enumeration value="max"/>
<x:enumeration value="min"/>
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<x:enumeration value="meet"/>
<x:enumeration value="join"/>
</x:restriction> </x:simpleType>
<l--x:element name="CSPExp" ref="CSP"/-->

<x:simpleType name="IntegerExpression">
<x:union memberTypes="IDENTIFIER x:integer"/>
</x:simpleType>
<x:element name="IntegerExp" type="IntegerExpression"/>
<x:element name="ImportLattice" type="ImportLattice"/>
<!l-- The start symbol -->
<x:element name="Descriptions" type="SpecList"/>
<x:complexType name="SpecList">
<x:group ref="Spec" maxOccurs="unbounded"/>
</x:complexType>
<x:group name="Spec">
<x:choice>
<x:element name="Configuration" type="Configuration"/>
<x:element name="Style" type="Style"/>
</x:choice></x:group>
<x:complexType name="Style">
<x:sequence>
<x:element ref="ImportLattice" minOccurs="0"/>
<x:group ref="TypeList" minOccurs="0"/>
<x:element name="Constraints" type="NormalizedString" minOccurs="0"/>
</x:sequence>
<x:attribute name="name" type="SimpleName" use="required"/>
</x:complexType>
<x:complexType name="ImportLattice">
<x:attribute name="name" type="SimpleName" use="required"/>
<x:attribute name="filename" type="FilePath" use="required"/>
</x:complexType>
<x:group name="TypeList">
<x:sequence>
<x:group ref="Type" maxOccurs="unbounded"/></x:sequence>
</x:group>
<x:group name="Type">
<x:choice>
<x:element name="Component" type="Component"/>
<x:element name="Connector" type="Connector"/>
<x:element name="InterfaceType" type="I1G"/>
<x:element name="Process" type="1G"/>
</x:choice> </x:group>
<x:complexType name="Component">
<x:sequence>
<x:element name="param" type="FormalCCParam" minOccurs="0"
maxOccurs="unbounded"/>
<x:group ref="PortList" minOccurs="0"/>
<x:element name="Computation" type="BehaviourDescription"/>
</x:sequence>
<x:attribute name="name" type="SimpleName" use="required"/>
</x:complexType>
<x:complexType name="Connector">
<x:sequence>
<x:element name="param" type="FormalCCParam" minOccurs="0"
maxOccurs="unbounded"/>
<x:group ref="RoleList" minOccurs="0"/>
<x:element name="Glue" type="BehaviourDescription"/>
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</x:sequence>
<x:attribute name="name" type="SimpleName" use="required"/>
</x:complexType>
<x:complexType name="FormalCCParam">
<x:attribute name="names" type="NameList" use="required"/>
<x:attribute name="type" type="FormalParamType" use="optional"/>
<x:attribute name="range" type="StaticRangeExpression" use="optional"/>
</x:complexType>
<x:group name="PortList">
<x:sequence>
<x:element name="Port" type="PR" maxOccurs="unbounded"/>
</x:sequence> </x:group>
<x:complexType name="PR">
<x:sequence>
<x:element ref="CSPExp"/> </x:sequence>
<x:attribute name="name" type="SimpleName" use="required"/>
<x:attribute name="range" type="FiniteRangeExpression" use="optional"/>
</x:complexType>
<x:complexType name="BehaviourDescription">
<x:choice>
<x:element ref="CSPExp"/>
<x:group ref="Subconfiguration"/>
</x:choice>
</x:complexType>
<x:group name="Subconfiguration">
<x:sequence>
<x:element name="Configuration" type="Configuration"/>
<x:element name="Bindings" type="Bindings"/>
</x:sequence> </x:group>
<x:complexType name="Bindings">
<x:sequence>
<x:element name="Binding" type="Binding" minOccurs="0"
maxOccurs="unbounded"/>
</x:sequence>
</x:complexType>
<x:complexType name="Binding">
<x:sequence>
<x:element name="Outer" type="Interface"/>
<x:element name="Inner" type="ActualPRName"/>
</x:sequence>
</x:complexType>
<x:complexType name="ActualPRName">
<x:attribute name="pr" type="SimpleName" use="required"/>
<x:attribute name="index" type="x:integer" use="optional"/>
</x:complexType>
<x:complexType name="Interface">
<x:attribute name="cc" type="SimpleName" use="required"/>
<x:attribute name="cclndex" type="x:integer" use="optional"/>
<x:attribute name="pr" type="SimpleName" use="required"/>
<x:attribute name="prindex" type="x:integer" use="optional"/>
</x:complexType>
<x:group name="RoleList">
<x:sequence>
<x:element name="Role" type="PR" maxOccurs="unbounded"/>
</x:sequence>
</x:group>
<x:complexType name="Configuration">
<x:group ref="Configuration"/>
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<x:attribute name="name" type="SimpleName" use="required"/>
<x:attribute name="style" type="SimpleName" use="optional"/>
</x:complexType>
<x:group name="Configuration">
<x:sequence>
<x:element ref="ImportLattice" minOccurs="0"/>
<x:group ref="TypeList" minOccurs="0"/>
<x:element name="Instances" type="InstanceList"/>
<x:element name="Clearances" type="ClearanceLists" minOccurs="0"/>
<x:element name="Attachments" type="AttachmentList"/>
</x:sequence>
</x:group>
<x:complexType name="InstanceList">
<x:sequence>
<x:element name="Instance" type="Instance" minOccurs="0"
maxOccurs="unbounded"/>
</x:sequence>
</x:complexType>
<x:complexType name="ClearanceLists">
<x:sequence>
<x:element name="ClearanceList" type="ClearanceList" minOccurs="0"
maxOccurs="unbounded"/>
</x:sequence>
</x:complexType>
<x:complexType name="AttachmentList">
<x:sequence>
<x:element name="Attachment" type="Attachment"
minOccurs="0" maxOccurs="unbounded"/>
</x:sequence>
</x:complexType>
<x:complexType name="ClearanceList">
<x:sequence>
<x:element name="CCName" type="Subject" maxOccurs="unbounded"/>
</x:sequence>
<x:attribute name="clearance" type="SimpleName" use="required"/>
</x:complexType>
<x:complexType name="Subject">
<x:sequence>
<x:element name="PRName" type="PRName" minOccurs="0"/>
</x:sequence>
<x:attribute name="id" type="SimpleName" use="required"/>
<x:attribute name="index" type="SubjectRangeExpression"
use="optional"/>
</x:complexType>
<x:complexType name="PRName">
<x:attribute name="id" type="SimpleName" use="required"/>
<x:attribute name="index" type="SubjectRangeExpression"
use="optional"/>
</x:complexType>
<x:complexType name="Instance">
<x:sequence>
<x:element name="name" type="InstanceName"
maxOccurs="unbounded"/>
<x:element name="param" type="ActualCCParam" minOccurs="0"
maxOccurs="unbounded"/>
</x:sequence>
<x:attribute name="type" type="SimpleName" use="required"/>
</x:complexType>
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<x:complexType name="InstanceName">
<x:attribute name="id" type="SimpleName" use="required"/>
<x:attribute name="range" type="StaticRangeExpression"
use="optional"/>
</x:complexType>
<x:complexType name="ActualCCParam">
<x:choice>
<x:element ref="CSPExp"/>
<x:element ref="IntegerExp"/>
<x:element name="LatticeFunction" type="LatticeFunction"/>
</x:choice>
</x:complexType>
<x:complexType name="LatticeFunction">
<x:attribute name="lattice" type="SimpleName" use="required"/>
<x:attribute name="function" type="FunctionName" use="required"/>
<x:attribute name="nodes" type="NodeSet" use="optional"/>
</x:complexType>
<x:complexType name="Attachment">
<x:sequence>
<x:element name="From" type="Interface"/>
<x:element name="To" type="Interface"/>
</x:sequence>
</x:complexType>
<x:complexType name="1G">
<x:sequence>
<x:element name="param" type="NormalizedString" minOccurs="0"
maxOccurs="unbounded"/>
<x:element ref="CSPExp"/>
</x:sequence>
<x:attribute name="name" type="SimpleName" use="required"/>
</x:complexType>
</x:schema>

<!--CSP.xsd -->

<xs:schema xmins:math="http://www.w3.org/1998/Math/MathML"
xmins:xs="http://www.w3.0rg/2001/XMLSchema">
<xs:import namespace="http://www.w3.org/1998/Math/MathML"
schemalocation="mathml2.xsd"/>
<xs:include schemalocation="Implicit-Process-Expression.xsd"/>
<xs:include schemalLocation="Explicit-Process-Expression.xsd"/>
<xs:include schemalocation="Constructs.xsd"/>
<xs:include schemalocation="Event-Expression.xsd"></xs:include>

<xs:complexType name="Process-Expression.class">
<xs:choice>
<xs:group ref="Implicit-Process-Expression.class"/>
<xs:group ref="Explicit-Process-Expression.class"/>
</xs:choice>
</xs:complexType>

<!-- at outernost level a CSPExp may actually be an CSP, a refference to a CSP param,
or a refference to an interface param optionally with additional arguments. -->
<xs:simpleType name="boolean.string.type">
<xs:restriction base="xs:string">
<xs:enumeration value="True"/>
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<xs:enumeration value="False"/>
</xs:restriction>
</xs:simpleType>

<xs:complexType name="InterfaceParam">
<xs:simpleContent>

<xs:extension base="paramLabel.type">

<xs:attribute name="inheritFromPR" type="boolean.string.type"
use="required"/>

</xs:extension>
</xs:simpleContent>
</xs:complexType>

<xs:complexType name="InterfaceSubstitution.type">

<xs:sequence>

<xs:element name="Param" type="InterfaceParam" minOccurs="0"
maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="Name" type="ProcessLabel.type" use="required"/>
</xs:complexType>
<xs:element name="InterfaceSubstitution" type="InterfaceSubstitution.type"/>

<|-c========= CSPExp ===========__>
<xs:complexType name="WhereExpression.type">
<xs:sequence>
<xs:element ref="CSPExp" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
<xs:element name="Where" type="WhereExpression.type"/>

<xs:attributeGroup name="CSPExp.attlist">

<xs:attribute name="Name" type="ProcessLabel.type"/>
<l--xs:attributeGroup ref="Common.attrib"/-->

</xs:attributeGroup>
<xs:group name="CSPExp.regular.content.group">

<xs:sequence>
<xs:group ref="Implicit-Process-Expression.class"/>
<xs:element ref="Where" minOccurs="0"/>
</xs:sequence>

</xs:group>
<xs:group name="CSPExp.content.group">

<xs:choice>
<xs:group ref="CSPExp.regular.content.group"/>
<xs:element ref="InterfaceSubstitution"/>
<xs:element ref="Param'/>

</xs:.choice>

</xs:group>
<xs:group name="CSPExp.content">

<xs:sequence>
<xs:element minOccurs="0" ref="subscript"/>
<xs:group ref="CSPExp.content.group"></xs:group>
</xs:sequence> </xs:group>

<xs:complexType name="CSPExp.type">

<xs:group ref="CSPExp.content"/>
<xs:attributeGroup ref="CSPEXxp.attlist"/>

</xs:complexType>
<xs:element name="CSPExp" type="CSPExp.type"/>
</xs:schema>
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<l-- Construct.xsd -->

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmins:math="http://www.w3.org/1998/Math/MathML"
xmins:xs="http://www.w3.0rg/2001/XMLSchema">
<xs:import namespace="http://www.w3.org/1998/Math/MathML"
schemalocation="mathml2.xsd"/>
<|--===== Pjecewise =======-->
<!-- otherwise -->
<xs:group name="otherwise.content">
<xs:sequence>
<xs:group ref="Explicit-Process-Expression.class"></xs:group>
</xs:sequence>
</xs:group>
<xs:complexType name="otherwise.type">
<xs:group ref="otherwise.content"/>
<!l--xs:attributeGroup ref="Common.attrib"/--> </xs:complexType>
<xs:element name="otherwise" type="otherwise.type"/>

<!l-- piece -->
<xs:group name="piece.content">
<xs:sequence>
<xs:group ref="Implicit-Process-Expression.class" minOccurs="1"/>
<xs:element minOccurs="1" maxOccurs="1" ref="math:condition"/>
</xs:sequence> </xs:group>
<xs:complexType name="piece.type">
<xs:group minOccurs="1" maxOccurs="1" ref="piece.content"/>
</xs:complexType>
<xs:element name="piece" type="piece.type"/>

<l-- piecewise -->
<xs:attributeGroup name="piecewise.attlist">
<!l--xs:attributeGroup ref="Common.attrib"/-->  </xs:attributeGroup>
<xs:group name="piecewise.content">
<xs:sequence>
<xs:element maxOccurs="unbounded" minOccurs="0" ref="piece"/>
<xs:sequence minOccurs="0">
<xs:element ref="otherwise"/>
<xs:element maxOccurs="unbounded" minOccurs="0" ref="piece"/>
</xs:sequence> </xs:sequence> </xs:group>
<xs:complexType name="piecewise.type">
<xs:group ref="piecewise.content"/>
<xs:attributeGroup ref="piecewise.attlist'/> </xs:complexType>
<xs:element name="Piecewise" type="piecewise.type"/>

<|e-===== App|y0p ===
<!--"bvar" -->
<xs:attributeGroup name="bvar.attlist">
<l--xs:attributeGroup ref="Common.attrib"/-->
</xs:attributeGroup>
<xs:group name="bvar.content">
<xs:sequence>
<xs:group ref="Explicit-Process-Expression.class"/>
</xs:sequence> </xs:group>
<xs:complexType name="bvar.type">
<xs:group maxOccurs="unbounded" minOccurs="1" ref="bvar.content"/>
<xs:attributeGroup ref="bvar.attlist"/>
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</xs:complexType>
<xs:element name="bvar" type="bvar.type"/>

<I-- ApplyOp -->
<xs:simpleType name="applyOp.operationList">
<xs:restriction base="xs:string">
<xs:enumeration value="PRef"/>
<xs:enumeration value="Choice"/>
<xs:enumeration value="ExtChoice"/>
<xs:enumeration value="Prefix"/>
<xs:enumeration value="Interleave"/>
</xs:restriction> </xs:simpleType>
<xs:attributeGroup name="applyOp.attlist">
<xs:attribute name="OpName" type="applyOp.operationList" use="required"/>
<!l--xs:attributeGroup ref="Common.attrib"/--> </xs:attributeGroup>
<xs:group name="applyOp.content">
<xs:sequence>
<xs:element ref="math:bvar"/>
<xs:element ref="math:condition"/>
<xs:group ref="Implicit-Process-Expression.class"/>
</xs:sequence> </xs:group>
<xs:complexType name="applyOp.type">
<xs:group ref="applyOp.content"/>
<xs:attributeGroup ref="applyOp.attlist"/> </xs:complexType>
<xs:element name="ApplyOp" type="applyOp.type"/>
</xs:schema>

<I-- Implicit-Process-Expression.xsd -->

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmins:math="http://www.w3.org/1998/Math/MathML"
xmins:xs="http://www.w3.0rg/2001/XMLSchema">
<xs:import namespace="http://www.w3.org/1998/Math/MathML"
schemalocation="mathml2.xsd"/>
<| PRef =====__>
<xs:attributeGroup name="PRef.attlist">
<xs:attribute name="to" type="PRLabel.type"/>
<l--xs:attributeGroup ref="Common.attrib"/-->
</xs:attributeGroup>
<xs:group name="PRef.content">
<xs:sequence>
<xs:element minOccurs="0" ref="subscript"/>
</xs:sequence>
</xs:group>
<xs:complexType name="PRef.type">
<xs:group ref="PRef.content"/>
<xs:attributeGroup ref="PRef.attlist"/>
</xs:complexType>
<xs:element name="PRef" type="PRef.type"/>
<|--======= Syccess =========-->
<xs:attributeGroup name="Success.attlist">
<l--xs:attributeGroup ref="Common.attrib"/-->
</xs:attributeGroup>
<xs:group name="Success.content"> <xs:sequence/>
</xs:group>
<xs:complexType name="Success.type">
<xs:group ref="Success.content"/>
<xs:attributeGroup ref="Success.attlist"/> </xs:complexType>
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<xs:element name="Success" type="Success.type"/>
<|--======= Choice =========-->
<xs:attributeGroup name="Choice.attlist">
<l--xs:attributeGroup ref="Common.attrib"/-->
</xs:attributeGroup>
<xs:group name="Choice.content">
<xs:sequence>
<xs:group maxOccurs="unbounded" minOccurs="2"
ref="Implicit-Process- Expression.class"/> </xs:sequence> </xs:group>
<xs:complexType name="Choice.type">
<xs:group ref="Choice.content"/>
<xs:attributeGroup ref="Choice.attlist"/>
</xs:complexType>
<xs:element name="Choice" type="Choice.type"/>
<l--==== External Choice ======-->
<xs:attributeGroup name="ExtChoice.attlist">
<l--xs:attributeGroup ref="Common.attrib"/-->
</xs:attributeGroup>
<xs:group name="ExtChoice.content">
<xs:sequence>
<xs:group maxOccurs="unbounded" minOccurs="2"
ref="Implicit-Process-Expression.class"/> </xs:sequence> </xs:group>
<xs:complexType name="ExtChoice.type">
<xs:group ref="ExtChoice.content"/>
<xs:attributeGroup ref="ExtChoice.attlist"/>
</xs:complexType>
<xs:element name="ExtChoice" type="ExtChoice.type"/>
<l Prefix >
<xs:attributeGroup name="Prefix.attlist">
<l--xs:attributeGroup ref="Common.attrib"/-->
</xs:attributeGroup>
<xs:group name="Prefix.content">
<xs:sequence>
<xs:element maxOccurs="unbounded" ref="Event"/>
<xs:group ref="Implicit-Process-Expression.class"/>
</xs:sequence> </xs:group>
<xs:complexType name="Prefix.type">
<xs:group ref="Prefix.content"/>
<xs:attributeGroup ref="Prefix.attlist"/>
</xs:complexType>
<xs:element name="Prefix" type="Prefix.type"/>
<|--======= |nterleave =========-->
<xs:attributeGroup name="Interleave.attlist">
<l--xs:attributeGroup ref="Common.attrib"/-->
</xs:attributeGroup>
<xs:group name="Interleave.content">
<xs:sequence>
<xs:group maxOccurs="unbounded" minOccurs="2"
ref="Implicit-Process-Expression.class"/> </xs:sequence> </xs:group>
<xs:complexType name="Interleave.type">
<xs:group ref="Interleave.content"/>
<xs:attributeGroup ref="Interleave.attlist'/> </xs:complexType>
<xs:element name="Interleave" type="Interleave.type"/>
<!l--= Class of Implicit Expressions ==-->
<xs:group name="Implicit-Process-Expression.class">
<xs:choice>
<xs:element ref="PRef"/>
<xs:element ref="Success"/>
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<xs:element ref="Choice"/>

<xs:element ref="ExtChoice"/>

<xs:.element ref="Prefix"/>

<xs:.element ref="Interleave"/>

<xs:element ref="ApplyOp"/>

<xs:element ref="Piecewise"/>  </xs:choice> </xs:group>
</xs:schema>

<I-- Explicit-Process-Expression.xsd -->

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmins:math="http://www.w3.org/1998/Math/MathML"
xmins:xs="http://www.w3.0rg/2001/XMLSchema">
<xs:import namespace="http://www.w3.org/1998/Math/MathML"
schemalocation="mathml2.xsd"/>
<|--===== Named PEx =======-->
<xs:attributeGroup name="NamedPEx.attlist">
<xs:attribute name="name" type="ProcessLabel.type"/>
<l--xs:attributeGroup ref="Common.attrib"/-->
</xs:attributeGroup>
<xs:group name="NamedPEx.content">
<xs:sequence>
<xs:element minOccurs="0" ref="subscript"/>
<xs:group ref="Implicit-Process-Expression.class"></xs:group>
</xs:sequence> </xs:group>
<xs:complexType name="NamedPEx.type">
<xs:group ref="NamedPEx.content"/>
<xs:attributeGroup ref="NamedPEx.attlist"/>
</xs:complexType>
<xs:element name="NamedPEXx" type="NamedPEx.type"/>
<!l--= Class of Explicit Expressions ==-->
<xs:group name="Explicit-Process-Expression.class">
<xs:choice>
<xs:element ref="NamedPEXx"/>
</xs:choice>
</xs:group>
</xs:schema>

<!l-- Event-Expression.xsd -->

<xs:schema xmins:math="http://www.w3.org/1998/Math/MathML"
xmins:xs="http://www.w3.0rg/2001/XMLSchema">

<xs:import namespace="http://www.w3.org/1998/Math/MathML"
schemalocation="mathml2.xsd"/>

<|--======= New Types =—======__>

<!-- common -->

<xs:simpleType name="PRLabel.type">

<xs:restriction base="xs:string"/> </xs:simpleType>

<xs:complexType name="subscript.type">

<xs:sequence>

<xs:group ref="math:Content-expr.class"/> </xs:sequence> </xs:complexType>

<xs:element name="subscript" type="subscript.type"/>
<!-- for event type -->
<xs:simpleType name="eventLabel.type">

<xs:restriction base="xs:string"/> </xs:simpleType>
<xs:simpleType name="datalLabel.type">
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<xs:restriction base="xs:string"/> </xs:simpleType>
<xs:simpleType name="direction.type">
<xs:restriction base="xs:string">
<xs:enumeration value="inbound"/>
<xs:enumeration value="outbound"/>
</xs:restriction> </xs:simpleType>

<xs:complexType name="data.type">
<!I-- some event ecpressions may include operations on data
i.e doubler = in.read?x -> out.write!(2*x) -->
<xs:group ref="math:Content-expr.class"/>
</xs:complexType>
<xs:element name="data" type="data.type"/>

<xs:complexType name="PR.type">
<xs:sequence>
<xs:element ref="subscript" minOccurs="0"/> </xs:sequence>
<xs:attribute name="Name" type="PRLabel.type" use="required"/>
</xs:complexType>

<!-- for explicit (named) events -->
<xs:simpleType name="ProcessLabel.type">
<xs:restriction base="xs:string"/> </xs:simpleType>

<l-- for handling references -->
<xs:simpleType name="paramLabel.type">
<xs:restriction base="xs:string"/> </xs:simpleType>

<xs:complexType name="securityLabel.type">
<xs:simpleContent>
<xs:extension base="xs:string"></xs:extension>  </xs:simpleContent>
</xs:complexType>
<xs:element name="securityLabel" type="securityLabel.type"/>

<xs:complexType name="Ref.type">
<xs:simpleContent>
<xs:extension base="paramLabel.type">
<l--xs:attribute name="type" type="xs:string"/-->
</xs:extension>
</xs:simpleContent>
<!l-- TODO: type will be union of paramLabel, interfaceLabel, processLabel -->
</xs:complexType>
<xs:element name="Param" type="Ref.type"/>

<!l--xs:complexType name="dataExpression.type">
<xs:choice>
<xs:element ref="Param"/>
<xs:element ref="data"/>
</xs:choice>
</xs:complexType>
<xs:element name="Data" type="dataExpression.type"></xs:element-->
<xs:group name="dataExpression.group">
<xs:choice>
<xs:group ref="math:Content-expr.class"></xs:group>
<xs:element ref="Param"/>
</xs:choice>
</xs:group>
<xs:element name="Data">
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<xs:complexType>
<xs:sequence>
<xs:group ref="dataExpression.group"></xs:group>
</xs:sequence>
</xs:complexType>
</xs:element>

<l--xs:complexType name="securityExpression.type">
<xs:choice>
<xs:element ref="Param"/>
<xs:element ref="securityLabel"/>
</xs:choice>
</xs:complexType>
<xs:element name="SecurityLabel" type="securityExpression.type"/-->

<xs:complexType name="securityExpression.type">
<xs:choice>
<xs:element ref="Param"/>
<xs:group ref="math:Content-expr.class"></xs:group>
</xs:choice>
</xs:complexType>
<xs:element name="SecurityLabel" type="securityExpression.type"/>

<! Event >
<xs:attributeGroup name="Event.attlist">
<l--xs:attributeGroup ref="Common.attrib"/-->
<xs:attribute name="label" type="eventLabel.type" use="required"/>
<xs:attribute name="direction" type="direction.type" use="required"/>
<I-- this is an abbreviation for <data><ci>...</ci></data> in case
only a single variable name will be given, which is usually the case -->
<xs:attribute name="data" type="datalLabel.type" use="optional"/>
</xs:attributeGroup>
<xs:group name="Event.content">
<xs:sequence>
<xs:element name="PR" type="PR.type" minOccurs="0"/>
<!I-- some event ecpressions may include operations on data
i.e doubler = in.read?x -> out.write!(2*x) -->
<xs:element ref="Data" minOccurs="0"/>
<xs:element ref="SecurityLabel" minOccurs="0"/>
</xs:sequence>
</xs:group>
<xs:complexType name="Event.type">
<xs:group ref="Event.content"/>
<xs:attributeGroup ref="Event.attlist"/>
</xs:complexType>
<xs:element name="Event" type="Event.type"/>
</xs:schema>

<l-- MathML2.xsd -->
<?xml version="1.0" encoding="UTF-8"?>

<xs:schema
xmins:xs="http://www.w3.0rg/2001/XMLSchema"
xmins="http://www.w3.org/1998/Math/MathML"
targetNamespace="http://www.w3.org/1998/Math/MathML"
elementFormDefault="qualified"
>
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<xs:annotation>
<xs:documentation>
This is an XML Schema for MathML.
Author: St&#233;phane Dalmas, INRIA.
</xs:documentation>

</xs:annotation>

<l-- common stuff -->

<xs:include schemalLocation="common/math.xsd"/>
<xs:include schemalLocation="common/common-attribs.xsd"/>

<!-- Presentation -->

<xs:include schemalocation="presentation/common-types.xsd"/>
<xs:include schemalocation="presentation/common-attribs.xsd"/>
<xs:include schemalocation="presentation/characters.xsd"/>
<xs:include schemalocation="presentation/tokens.xsd"/>
<xs:include schemalocation="presentation/scripts.xsd"/>
<xs:include schemalocation="presentation/space.xsd"/>
<xs:include schemalocation="presentation/layout.xsd"/>
<xs:include schemalocation="presentation/table.xsd"/>
<xs:include schemalocation="presentation/style.xsd"/>
<xs:include schemalocation="presentation/error.xsd"/>
<xs:include schemalocation="presentation/action.xsd"/>

<l-- Content -->

<xs:include schemalLocation="content/common-attrib.xsd"/>
<xs:include schemalocation="content/tokens.xsd"/>
<xs:include schemalocation="content/arith.xsd"/>
<xs:include schemalocation="content/functions.xsd"/>
<xs:include schemalLocation="content/logic.xsd"/>
<xs:include schemalocation="content/constructs.xsd"/>
<xs:include schemalocation="content/constants.xsd"/>
<xs:include schemalocation="content/elementary-functions.xsd"/>
<xs:include schemalocation="content/relations.xsd"/>
<xs:include schemalocation="content/semantics.xsd"/>
<xs:include schemalocation="content/sets.xsd"/>
<xs:include schemalocation="content/linear-algebra.xsd"/>
<xs:include schemalLocation="content/calculus.xsd"/>
<xs:include schemalocation="content/vector-calculus.xsd"/>
<xs:include schemalocation="content/statistics.xsd"/>

</xs:schema>

<l--
Copyright &#251; 2002 World Wide Web Consortium, (Massachusetts Institute
of Technology, Institut National de Recherche en Informatique et en
Automatique, Keio University). All Rights Reserved. See
http://www.w3.org/Consortium/Legal/.

-->
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APPENDIX F

DESCRIPTION OF THE PROJECTIT SYSTEM IN XML
NOTATION

F.1 Access Control Lattice Model for the ProjectIT in XML Notation

<Lattice name="PLM" xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="lattice.xsd">
<SecurityLabels>ConsortiumSpecific, SWSpecific, HWSpecific,
ProjectWide
</SecurityLabels>
<Ordering>
<Order>ProjectWide, SWSpecific, ConsortiumSpecific</Order>
<Order>ProjectWide, HWSpecific, ConsortiumSpecific</Order>
</Ordering>
<ClearancelList>
<Clearance labels="ConsortiumSpecific" names="ConsortiumCL"/>
<Clearance labels="HWSpecific" names="HWCL"/>
<Clearance labels="SWSpecific" names="SWCL"/>
<Clearance labels="ProjectWide" names="ProjectCL"/>
</ClearancelList>
</Lattice>

F.2 Configuration of the ProjectIT in XML Notation

<Descriptions xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="extendedwright.xsd">
<Configuration name="Project|T">
<ImportLattice filename="ITLattice.xml" name="PLM"/>
<Component name="Vendor">
<param names="T" type="Security Label"/>
<param names="M" type="Security Label"/>
<Port name="VendorSend">
<CSPExp xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="extendedwright_2.xsd"
name ="VendorSend">
<Prefix>
<Event label="SendData" direction="outbound" data="x">
<SecurityLabel><Param>T</Param></SecurityLabel>
</Event>
<PRef to="VendorSend" />
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</Prefix>
</CSPExp>
</Port>
<Port name="VendorReceive">
<CSPExp xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="extendedwright_2.xsd"
name ="VendorReceive">
<Prefix>
<Event label="ReceiveData" direction="inbound" data="x" />
<PRef to="VendorReceive" />
</Prefix>
</CSPExp>
</Port>
<Port name="VendorProject">
<CSPExp xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="extendedwright_2.xsd"
name ="VendorProject">
<ExtChoice>
<Prefix>
<Event label="SendData" direction="outbound" data="x">
<SecurityLabel><Param>M</Param></SecurityLabel>
</Event>
<PRef to="VendorProject" />
</Prefix>
<Prefix>
<Event label="ReceiveData" direction="inbound" data="x" />
<PRef to="VendorProject" />
</Prefix>
</ExtChoice>
</CSPExp>
</Port>
<Port name="CustomerProject">
<CSPEXxp xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="extendedwright_2.xsd"
name ="CustomerProject">
<ExtChoice>
<Prefix>
<Event label="SendData" direction="outbound" data="x">
<SecurityLabel><Param>M</Param></SecurityLabel>
</Event>
<PRef to="CustomerProject" />
</Prefix>
<Prefix>
<Event label="ReceiveData" direction="inbound" data="x" />
<PRef to="CustomerProject" />
</Prefix>
</ExtChoice>
</CSPExp>
</Port>
<Computation>
<CSPExp>
<ExtChoice>
<Choice>
<Prefix>
<Event label="SendData" direction="outbound" data="x">
<SecurityLabel><Param>M</Param></SecurityLabel>
<PR Name="CustomerProject" />
</Event>
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<PRef to="Computation" />
</Prefix>
<Prefix>
<Event label="SendData" direction="outbound" data="x">
<SecurityLabel><Param>T</Param></SecurityLabel>
<PR Name="VendorSend" />
</Event>
<PRef to="Computation" />
</Prefix>
<Prefix>
<Event label="SendData" direction="outbound" data="x">
<SecurityLabel><Param>M</Param></SecurityLabel>
<PR Name="VendorProject" />
</Event>
<PRef to="Computation" />
</Prefix>
</Choice>
<Prefix>
<Event label="ReceiveData" direction="inbound" data="x">
<PR Name="CustomerProject" />
</Event>
<PRef to="Computation" />
</Prefix>
<Prefix>
<Event label="ReceiveData" direction="inbound" data="x">
<PR Name="VendorReceive" />
</Event>
<PRef to="Computation" />
</Prefix>
<Prefix>
<Event label="ReceiveData" direction="inbound" data="x">
<PR Name="VendorProject" />
</Event>
<PRef to="Computation" />
</Prefix>
</ExtChoice>
</CSPExp>
</Computation>
</Component>
<Component name="Customer">
<param names="n" range="1..2"/>
<Port name="Vendorinterface" range="1..n">
<CSPExp xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="extendedwright_2.xsd"
name ="Vendorlnterface">
<ExtChoice>
<Prefix>
<Event label="ReceiveData" direction="inbound" data="x" />
<PRef to="Vendorinterface" />
</Prefix>
<Prefix>
<Event label="SendData" direction="outbound" data="x">
<SecurityLabel><Param>T</Param></SecurityLabel>
</Event>
<PRef to="Vendorinterface" />
</Prefix>
</ExtChoice>
</CSPExp>
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</Port>
<Computation>
<CSPExp>
<Interleave>
<ApplyOp OpName="Interleave">
<bvar xmins="http://www.w3.org/1998/Math/MathML">
<ci>i</ci>
</bvar>
<condition xmIns="http://www.w3.org/1998/Math/MathML">
<apply>
<in />
<ci>i</ci>
<interval>
<cn>1</cn>
<csymbol>n</csymbol>
<[interval>
</apply>
</condition>
<Choice>
<Prefix>
<Event label="ReceiveData" direction="inbound" data="x">
<PR Name="Vendorinterface">
<subscript>
<ci xmlns="http://www.w3.org/1998/Math/MathML" >
i
</ci>
</subscript>
</PR>
</Event>
<PRef to="DoOwnJob" />
<PRef to="Computation" />
</Prefix>
<Prefix>
<Event label="SendData" direction="outbound" data="x">
<SecurityLabel><Param>T</Param></SecurityLabel>
<PR Name="VendorInterface" >
<subscript>
<ci xmIns="http://www.w3.org/1998/Math/MathML">
i
</ci>
</subscript>
</PR>
</Event>
<PRef to="Computation" />
</Prefix>
</Choice>
</ApplyOp>
</Interleave>
</CSPExp>
</Computation>
</Component>
<Connector name="BiDirectionalLink">
<Role name="SideA">
<CSPExp xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="extendedwright_2.xsd"
name ="SideA">
<ExtChoice>
<Prefix>
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<Event label="Receive" direction="inbound" data="x" />
<PRef to="SideA" />
</Prefix>
<Prefix>
<Event label="Send" direction="outbound" data="x"/>
<PRef to="SideA" />
</Prefix>
</ExtChoice>
</CSPExp>
</Role>
<Role name="SideB">
<CSPEXxp xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemal ocation="extendedwright_2.xsd"
name ="SideB">
<ExtChoice>
<Prefix>
<Event label="Receive" direction="inbound" data="x" />
<PRef to="SideB" />
</Prefix>
<Prefix>
<Event label="Send" direction="outbound" data="x"/>
<PRef to="SideB" />
</Prefix>
</ExtChoice>
</CSPExp>
</Role>
<Glue>
<CSPExp>
<ExtChoice>
<Prefix>
<Event label="Receive" direction="inbound" data="x">
<PR Name="SideA" />
</Event>
<Event label="Send" direction="outbound" data="x">
<PR Name="SideB" />
</Event>
<PRef to="Glue" />
</Prefix>
<Prefix>
<Event label="Receive" direction="inbound" data="x">
<PR Name="SideB" />
</Event>
<Event label="Send" direction="outbound" data="x">
<PR Name="SideA" />
</Event>
<PRef to="Glue" />
</Prefix>
</ExtChoice>
</CSPExp>
</Glue>
</Connector>
<Connector name="UniDirectionalLink">
<Role name="SideA">
<CSPExp xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemal ocation="extendedwright_2.xsd"
name ="SideA">
<Prefix>
<Event label="Receive" direction="inbound" data="x" />
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<PRef to="SideA" />
</Prefix>
</CSPExp>
</Role>
<Role name="SideB">
<CSPExp xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="extendedwright_2.xsd"
name ="SideB">
<Prefix>
<Event label="Send" direction="outbound" data="x"/>
<PRef to="SideB" />
</Prefix>
</CSPExp>
</Role>
<Glue>
<CSPExp>
<Prefix>
<Event label="Receive" direction="inbound" data="x">
<PR Name="SideA" />
</Event>
<Event label="Send" direction="outbound" data="x">
<PR Name="SideB" />
</Event>
<PRef to="Glue" />
</Prefix>
</CSPExp>
</Glue>
</Connector>

<Instances>
<Instance type="Vendor">
<name id="SWVendor"/>
<param>
<LatticeFunction function="SWSpecific" lattice="PLM"/>
</param>
<param>
<LatticeFunction function="ProjectWide" lattice="PLM"/>
</param>
</Instance>
<Instance type="Vendor">
<name id="HWVendor"/>
<param>
<LatticeFunction function="HWSpecific" lattice="PLM"/>
</param>
<param>
<LatticeFunction function="ProjectWide" lattice="PLM"/>
</param>
</Instance>
<Instance type="Customer">
<name id="CustomerA"/>
<param>
<IntegerExp>2</IntegerExp>
</param>
<param>
<LatticeFunction function="ProjectWide" lattice="PLM"/>
</param>
</Instance>
<Instance type="BiDirectionalLink">
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<name id="HwCustomerConn"/>
<name id="SwCustomerConn"/>
<name id="ConsortiumProjectConn"/>
</Instance>
<Instance type="UniDirectionalLink">
<name id="SwHwConn"/>
<name id="HwSwConn"/>
</Instance>
</Instances>
<Clearance>
<ClearancelList clearance="SWCL">
<CCName id="SWVendor">
<PRName id="VendorSend"/>
</CCName>
</ClearanceList>
<ClearancelList clearance="ConsortiumCL">
<CCName id="HWVendor">
<PRName id="VendorReceive"/>
</CCName>
<CCName id="SWVendor">
<PRName id="VendorReceive"/>
</CCName>
</ClearanceList>
<ClearancelList clearance="HWCL">
<CCName id="HWVendor">
<PRName id="VendorSend"/>
</CCName>
</ClearanceList>
<ClearanceList clearance="ProjectCL">
<CCName id="SWVendor">
<PRName id="CustomerProject"/>
</CCName>
<CCName id="HWVendor">
<PRName id="CustomerProject"/>
</CCName>
<CCName id="SWVendor">
<PRName id="VendorProject"/>
</CCName>
<CCName id="HWVendor">
<PRName id="VendorProject"/>
</CCName>
<CCName id="CustomerA"/>
</ClearanceList>
</Clearance>
<Attachments>
<Attachment>
<From cc="SWVendor" pr="VendorSend"/>
<To cc="SwHwConn" pr="SideA"/>
</Attachment>
<Attachment>
<From cc="HWVendor" pr="VendorReceive"/>
<To cc="SwHwConn" pr="SideB"/>
</Attachment>
<Attachment>
<From cc="HWVendor" pr="VendorSend"/>
<To cc="HwSwConn" pr="SideA"/>
</Attachment>
<Attachment>
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<From cc="SWVendor" pr="VendorReceive"/>
<To cc="HwSwConn" pr="SideB"/>
</Attachment>
<Attachment>
<From cc="SWVendor" pr="VendorProject"/>
<To cc="ConsortiumProjectConn" pr="SideA"/>
</Attachment>
<Attachment>
<From cc="HWVendor" pr="VendorProject"/>
<To cc="ConsortiumProjectConn" pr="SideB"/>
</Attachment>
<Attachment>
<From cc="SWVendor" pr="CustomerProject"/>
<To cc="SwCustomerConn" pr="SideA"/>
</Attachment>
<Attachment>
<From cc="CustomerA" pr="Vendorlnterface" prindex="1"/>
<To cc="SwCustomerConn" pr="SideB"/>
</Attachment>
<Attachment>
<From cc="HWVendor" pr="CustomerProject"/>
<To cc="HwCustomerConn" pr="SideA"/>
</Attachment>
<Attachment>
<From cc="CustomerA" pr="Vendorlnterface" prindex="2"/>
<To cc="HwCustomerConn" pr="SideB"/>
</Attachment>
</Attachments>
</Configuration>
</Descriptions>
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APPENDIX G

THE EXTENDED AEGIS

In this appendix, we present the Wright/c description a system, namely
Extended AEGIS Weapons System. The AEGIS Weapons System [3] is a large,
complex software system that controls many of the defense functions of modern
US Navy ships. The extended AEGIS is one with Wright/c constructs to include

confidentiality issues.

As described in one DoD report: The AEGIS Weapons Systems (AWS) is
an extensive array of sensors and weapons designed to defend a battle group
against air, surface and subsurface threats. These weapons are controlled through a
large number of control consoles, which provide a wide variety of tactical decision
aids to the crew. To manage complexity, the crew can preset conditions under
which automated or semi-automated responses occur. This capability is generally
referred to as doctrine. The motivation for using AEGIS as a challenge problem
arose through a demonstration exercise of the ARPA Prototyping Technology
Program in 1993. Engineers on the real AEGIS system provided a proposed
redesign for a part of the system that takes monitored sensor data about moving
objects near the ship, and decides what actions to take. To do this the system must
resolve the “tracks” of moving objects against its geometrical model of the ship

and nearby entities.

An informal description of the proposed architecture of the system is shown
in Figure G.1. The system consists of eight modules. The Experiment Control
module provides simulated input from the operator and sensors, as well as a

“heartbeat” signal indicating the passage of simulation time. There are 3 types of
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sensors that provide information in 3 different levels of sensitivity (unclassified,
secret of type A and secret of type B). Experiment Control module connected to
each of these sensors requests if any data is ready and receives it when it is
available. Tracking data is sent to the Track Server, which maintains a record of
the currently-monitored moving objects (missiles, other planes, submarines, etc.)
within its tracking region. The Doctrine Authoring module receives input
describing rules of engagement and activation. The GeoServer module takes
doctrine information (from the Doctrine Authoring module), and track information
(from the Track Server) and, based on its own geometric models, determines
which tracks intersect which geometric regions. This information (together with
track and doctrine information) is fed to the Doctrine Reasoning module, which
determines what action should take place. For the purposes of the prototype these
actions, as well as other status information is displayed to the user via a Display
Server modules. There are 4 types of display servers. First display server can allow
monitoring unclassified information, the second server and the third server
displays secret data of type A and type B, respectively. The last display server is
used to see the top secret information produced by Doctrine Reasoning module.

The arrows in the figure indicate the direction of information flow.

The project developers initially agreed to use a uniform client-server
organization, in which clients requested data from the servers. Thus information
would be “pulled” from the top to the bottom of the figure: i.e., clients at the tip of
the arrows, and the servers at the tails. Components that have both incoming and
outgoing arrows would act both as a client and a server. Therefore, there will be 3

different types of components in the system:
e (lient: for modules which act as a client
e Server: for modules which act as a server

e  MixedComp: for modules which act both as a server and a client

ClientPullT and ServerPushT are interface types in a typical client server

style. The client initiates a request to server and the server responds to the client by
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Figure G.1: The Extended AEGIS system topology (cf. [3])
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Other interface types (ClientPushT and ServerPullT) are specific client server
interface types in which the data flow operates in an opposite direction, i.e. Client
requests to Server by sending the data and the Server responds it by an
acknowledgement (result). This type of connection (whose description is the
connector type ClientServerPush) is used in Display Server modules of the system.
Clients of these servers initiate the data flow in the direction of clients to Display
Servers. ClientServerPush connections are represented by dashed lines in Figure
G.1.

The access control lattice model for the AEGIS project and its Wright/c
descriptions are given in Figure G.2. and Figure G.3., respectively. The clearance

that dominates a security label is shown in parentheses.

TOPSECRET
(ADMINISTRATOR)

SECRET B SECRET A
(AUTHORIZED B) (AUTHORIZED A)

UNCLASSIFIED
(ORDINARY)

Figure G.2: Access control lattice model for the extended AEGIS

The following is the ClientServer style for the extended AEGIS project. It
begins by importing the lattice file for the project given above. Interface types are
then described. ClientPullT and ServerPushT are interface types in a typical client
server style. The client initiates a request to server and the server responds to the
client by providing the data requested. These interface types are used in Client
component, Server component, ClientServer connector and MixedComp
component types. Other interface types (ClientPushT and ServerPullT) are specific
client server interface types in which the data flow operates in an opposite
direction, i.e. Client requests to Server by sending the data and the Server responds

it by an acknowledgement (result). This type of connection (whose description is
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the connector type ClientServerPush) is used in Display Server modules of the
system. Clients of this servers initiate the data flow in the direction of clients to
Display Servers. ClientServerPush connections are represented by dashed lines in

Figure G.1.

Lattice AL

SecurityLabels
UNCLASSIFIED,
SECRET A,
SECRET B,
TOPSECRET

Ordering
UNCLASSIFIED, SECRET A, TOPSECRET
UNCLASSIFIED, SECRET B, TOPSECRET

Clearancelist
ADMINISTRATOR : TOPSECRET
AUTHORIZED A : SECRET A
AUTHORIZED B : SECRET B
ORDINARY : UNCLASSIFIED

End Lattice

Figure G.3: The Wright/c description of the access control lattice model for
the Extended AEGIS

204



Style ClientServer

Import Lattice AL “/project/aegis/Aegis_lattice.txt”
Interface Type ClientPullT = open — Operate 1 §
Where Operate = request — result?x — Operate [1 Close
Close = close — §

Interface Type ServerPushT (r . Securitylabel) = open — Operate O §
Where Operate = request — result!x’ — Operate O Close
Close = close — §

Interface Type ClientPushT = open — Operate 1§
Where Operate = request!x — result — Operate 'l Close
Close = close — §

Interface Type ServerPullT = open — Operate O §
Where Operate = request?x — result — Operate O Close
Close = close — §

Connector ClientServer =
Role Client = ClientPullT
Role Server = ServerPushT

Glue = Client.open —>Wr.open — Glue
O Client.close — Server.close — Glue
O Client.request — Server.m — Glue
O Server.result?x — Client.result’x — Glue
0§
Connector ClientServerPush =
Role ClientP = ClientPushT

Role ServerP = ServerPullT

Glue = ClientP.open — ServerP.open — Glue

0O ClientP.close — ServerP.close — Glue

O ClientP.request?x — ServerP.request!x — Glue
O ServerP.result — ClientP.result— Glue

0§

Figure G.4: Wright/c description of client-server style of the Extended AEGIS
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Component Client(numServers: 0..) =
Port Service;_ umservers = ClientPull T
Computation = (;x:1..numServers o Service,.open — §); UseOrExit
Where UseOrExit = UseService 'l Exit
UseService = M x :1 .. numServers
¢ Servicey.request — Service,.result?y — UseOrExit
Exit = (;x : 1 ..numServers e Service,.close — §) ; §

Component Server(numdClients : 0.., numPClients . 0.., t . Securitylabel) =
Port Client;. numcients = ServerPushT(t)
Port ClientP;_nympciients = ServerPullT
Computation = WaitForClienty;
Where WaitForClientg,-= O X : ((1..(numClients+numPClients)) \ (O u C)
¢ (Clienty.open — DecideNextActiong ;¢
O ClientPy.open — DecideNextActiono x,c)

(WaitForCIientO,C M (M x: O e ReadFromClient,q,c),
When O={} A OuC = (1..numdClients+ numPClients)
M x: O e ReadFromClient, ¢
DecideNextActiongc = < When O={} A OUC=(1..numClients+ numPClients)
WaitForClient; ¢
When O = {} A C = ((1..numdClients+ numPClients)
§,
\ When O = {} A C = (1..numClients+ numPClients)

ReadFromClient, o= Clients.request — Clienty.result!ly" — DecideNextActiong ¢
O Clienty.close — DecideNextAction o4 copg
O ClientPy.request?!y® — ClientPy.result — DecideNextActiong ¢
O ClientPy.close — DecideNextAction gy cosg

Component MixedComp( numServers:0..; numClients:0..,numPServers:0..; numPClients:0..;) =
Port Service; nymservers = ClientPullT

Port Client;_numclients = ServerPushT

Port ServiceP;_numpservers = ClientPushT

Port ClientP;_numeciients = ServerPullT

Figure G.4: Wright/c description of client-server style of the Extended AEGIS
(continued)
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Computation = OpenServices ; WaitForClientg; ¢
Where WaitForClientg e = O X : ((1..numClients+numpPClients)\ (O u C)
e (Clienty.open — DecideNextActiong ¢x,c
O ClientPy.open — DecideNextActiono,x;,c)

WaitForClientg ¢ ' (I x : O @ ReadFromClient, ¢,¢)
I (UseService; DecideNextAction,c),
When O= {} A O u C = (1..numClients+numPClients)

(M x : O o ReadFromClient, g,¢)
[l (UseService; DecideNextAction ;)
DecideNextActiong,c = < When O= {} A O u C = (1..numdClients+numPClients)

WaitForClient; I (UseService; DecideNextAction; ),
When O = {} A C = (1..numdClients+numPClients)

(UseService; DecideNextAction ¢..numcienss)) 1 EXit,
When O = {} A C = (1..numClients+numPClients)

ReadFromClient, o= Clients.request — (OptionalUseService;
Client,.resultly — DecideNextAction,c)
O Clienty.close — DecideNextAction g4 comg
O ClientPy.request!y — (OptionalUseService;
O ClientPy.result — DecideNextAction,c)
O ClientP,.close — DecideNextAction o, s
UseService = 'l x : (1..numServers+numpPServers)
o (Service,.request — Service,.result?y — §
O ServicePy.requestly — Servicey.result — §)
OptionalUseService = (UseService; OptionalUseService) 1 §
OpenServices = ;X : (1..numServers+numpPServers)
o (Servicey.open — § O ServicePy.open — §)
Exit = ; x:(1..numServers+numpPServers)
o (Service,.close — § [ ServicePy.close — §)

EndStyle

Figure G.4: Wright/c description of client-server style of the Extended AEGIS

(continued)
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The style presented above has component and connector types to be used in

the configuration given below. The informal descriptions of them are as follows:

e Component Client: a component that acts as a client. It may have one or
more ports (named as Servicei) to connect to different server components.
The number of ports is dynamic and bound when it is instantiated in the

configuration.

e Component Server: a component that acts as a server. It may have one or
more ports (named as Client;) to connect to different client components.
The number of ports is dynamic and bound when it is instantiated in the

configuration.

e Connector ClientServer: a connector to make a connection between Client
and Server components. It has two roles (named Client and Server, one for
client side and one for server side, respectively). ClientServer connector
together with Client and Server components operates as a typical client
server style. That means, client makes request and server responds it by
providing data. In order to handle opposite direction of data flow, we have
defined ClientServerPush connector and an additional port (namely

ClientP;) in Server component described above.

e Connector ClientServePush: a connector to make a connection between
Client and Server components. It has two roles (named ClientP and
ServerP, one for client side and one for server side, respectively).
ClientServerPush connector together with Client and Server components
operates such that client makes request by providing data to server and
server responds it by an acknowledgement. We did not need to define a
separate Client component for this type of connection since the client side

is MixedComp type of component in our example project.

e Component MixedComp: a component that acts both as client and as
server. It has 4 types of ports : Client; and Service; for ClientServer type of

connection, and ClientP; and ServiceP; for ClientServerPush type of
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connection. The numbers of ports (i and j) to make multiple connections is

taken as parameters and bound when the component is instantiated.

All the component and connector description take an additional argument,
which is bound when it is instantiated, called SecurityLabel and variables carrying
information are superscripted by this Security label. So, it means the variables
have data with that security (or sensitivity) level. This is necessary because the
ports in a component should allow data flow with allowed access authority. The
tool developed verifies data flowing between or inside the components and

connectors with respect to clearance and the lattice constructed.

Figure G.5 presents the Wright/c configuration the extended AEGIS using
the style given in Figure G.4.

Configuration AEGIS

Style ClientServer

Instances
SensorI : Server(1,0,ALT.min())
SensorlIl : Server(1,0,SECRETA)
SensorlIIl : Server(1,0,SECRETB)
ExperimentControl : MixedComp(3,3,0,0)
DoctrineAuthoring : MixedComp(1,3,1,0)
DoctrineValidation : MixedComp(3,0,2,0)
TrackServer : MixedComp(1,3,2,0)
GeoServer : MixedComp(2,1,0,0)
DoctrineReasoning : MixedComp(2,0,4,0)
CS; 13 : ClientServer()
CPy.5 : ClientServerPush()
CP4 6 : ClientServerPush()
CPs9 : ClientServerPush()
CPA : ClientServerPush()
DisplayServerl : Server(0,3,ALT.min())
DisplayServerIl : Server(0,3,SECRET_A)
DisplayServerIII : Server(0,3,SECRET_B)
DisplayServerIV : Server(0,1, TOPSECRET)

Figure G.5: Wright/c description of the Extended AEGIS configuration
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Clearance
Sensorl
SensorlII
SensorIII
ExperimentControl
ExperimentControl.Client,
ExperimentControl.Client,
ExperimentControl.Clients
DoctrineAuthoring
DoctrineAuthoring.Client;
DoctrineAuthoring.Client;,
DoctrineAuthoring.Clients
DoctrineValidation
DoctrineValidation.Service;
DoctrineValidation.ServiceP,
TrackServer
TrackServer.ServiceP;
TrackServer.ServiceP,
GeoServer
DoctrineReasoning
DoctrineReasoning.ServiceP,
DoctrineReasoning.ServiceP,
DoctrineReasoning.ServicePs
DisplayServerl
DisplayServerII
DisplayServerIII
DisplayServerIV

Attachments

ExperimentControl.Client; as CS;.Server
DoctrineAuthoring.Service; as CS;.Client
ExperimentControl.Client; as CS,.Server
DoctrineValidation.Service; as CS,.Client
ExperimentControl.Client; as CSs.Server
TrackServer.Service; as CSs.Client
DoctrineAuthoring.Client; as CS4.Server
DoctrineValidation.Service; as CS,.Client
TrackServer.Client; as CSs.Server
DoctrineValidation.Servicez as CSs.Client

: ORDINARY

: AUTHORIZED_A
: AUTHORIZED_B
: ADMINISTRATOR
: AUTHORIZED_A
: AUTHORIZED_A
: AUTHORIZED_B
: ORDINARY

: AUTHORIZED_A
: AUTHORIZED_A
: AUTHORIZED_A
: AUTHORIZED_A

: AUTHORIZED_B

: AUTHORIZED_B
: AUTHORIZED_B
: ORDINARY

: AUTHORIZED_A
: AUTHORIZED_A
: ADMINISTRATOR
: ORDINARY

: AUTHORIZED_A
: AUTHORIZED_B
: ORDINARY

: AUTHORIZED_A
: AUTHORIZED_B
: ADMINISTRATOR

Figure G.5: Wright/c description of the Extended AEGIS configuration
(continued)
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DoctrineAuthoring.Client; as CSg.Server
DoctrineReasoning.Service; as CSe.Client
DoctrineAuthoring.Client, as CS;.Server
GeoServer.Service; as CS;.Client
TrackServer.Client; as CSg.Server
DoctrineReasoning.Service; as CSg.Client
TrackServer.Client, as CSq.Server
GeoServer.Service; as CSy.Client
GeoServer.Client; as CSy,.Client
DoctrineReasoning.Service; as CS;q.Client
SensorI.Client; as CS;3.Server
ExperimentControl.Service; as CS;3.Client
SensorlII.Client; as CS;,.Server
ExperimentControl.Service; as CS;,.Client
SensorIII.Client; as CS;;.Server
ExperimentControl.Service; as CS;;.Client
DisplayServerl.ClientP; as CP,.ServerP
DoctrineAuthoring.ServiceP; as CP;.ClientP
DisplayServerl.ClientP; as CP,.ServerP
TrackServer.ServiceP; as CP,.ClientP
DisplayServerl.ClientP, as CP3.ServerP
DoctrineReasoning.ServiceP; as CPs.ClientP
DisplayServerlIl.ClientP; as CP4.ServerP
DoctrineValidation.ServiceP; as CP4.ClientP
DisplayServerII.ClientP, as CPs.ServerP
TrackServer.ServiceP, as CPs.ClientP
DisplayServerlIl.ClientP; as CPg.ServerP
DoctrineReasoning.ServiceP, as CPg.ClientP
DisplayServerIII.ClientP, as CP;.ServerP
DoctrineValidation.ServiceP, as CP;.ClientP
DisplayServerlIII.ClientP, as CPg.ServerP
TrackServer.ServiceP; as CPg.ClientP
DisplayServerIII.ClientP; as CPy.ServerP
DoctrineReasoning.ServiceP5; as CPq.ClientP
DisplayServerIV.ClientP, as CPA.ServerP
DoctrineReasoning.ServiceP4 as CPA.ClientP

End AEGIS

Figure G.5: Wright/c description of the Extended AEGIS configuration
(continued)
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In the attachment section, all the connections (see the Figure G.1) are
established. This is done by attaching each instance of components to a suitable
role of a connector instance. The number of ports of an instance of a component is
declared in the instances part of the configuration. For example, Experiment
control is a MixedComp type with 3 service port and 3 client port. Each server port
of this component is connected to Client port of sensors. In these connections,
Experiment control acts as a client and sensors act as servers. On the other hand,
Experiment Control module is connected (using CS;, CS, and CS3 connectors) to
components DoctrineAuthoring, DoctrineValidation and TrackServer components.
In these connections, Experiment Control acts as server whereas

DoctrineAuthoring, DoctrineValidation and TrackServer act as clients.

In the configuration, Experiment Control module collects, classifies and
dispatches the raw data to Doctrine Authoring, Doctrine Validation and Track
Server. The security labels of the first two data are of type SECRET A whereas
that of sent to the Track Server is SECURITY_B.

Doctrine Authoring displays its log data labelled as UNCLASSIFIED on the
Display Server 1. It provides SECRET A type of data to GeoServer and also to

Doctrine Reasoning components.

Doctrine Validation having data from Experiment Control, Doctrine
Authoring and Track Server, validates them and produces two types (SECRET A,
SECRET _B) of output to be displayed on Display Server I and II, respectively.

Track Server accepts data from Experiment Control and supplies information
to Doctrine Validation, Doctrine Reasoning and to GeoServer components. The
data labels for these information are all of type SECURITY_ B. Moreover, it
produces some more outputs to be displayed on Display Server I, Display Server

II, and Display Server III.

GeoServer module process data that are received from Doctrine Authoring
and sends them to Doctrine Reasoning. The label of its output is of type

SECURITY_A.
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Lastly, Doctrine Reasoning module that collects preprocessed information
through Doctrine Authoring, Track Server and GeoServer, makes decisions on
these information and produces output with four types of security labels. These are

sent to the suitable Display Servers.

CP; connections use ClientServerPush description. The connections between
the components and the components’ display servers are depicted in Figure G.1.
Only Display Server I is available to be monitored by an ordinary users. Others are

restricted by their clearance.
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APPENDIX H

SOURCE CODES FOR THE VERIFICATION PROCESS AND
CSP ANALYSIS IN ML

The verification and the CSP analysis processes are implemented in ML.

Their source codes are given below.

The Verification codes:

type Name = string; (* an ordinary string *)

type SecurityLabel = string; (* a security label associated
with data *)

type Clearance = string; (* a clearance associated with a
subject *)

type LogicalExpression = string; (* a string for style’s

constraint *)
type CSPExpression = Process; (* a CSP expression as a

string keeping the
description of the
construct ¥*)

type FormalParameter = Name * Name; (* a parameter name and a
name of a type *)
type ActualParameter = string; (* value string of an actual

parameter *)
datatype IO=READ | WRITE | READWRITE | NA;
datatype StyleElement = CONNECTOR | COMPONENT
| INTERFACETYPE |GENERALPROCESS;

type FlowData = {
min level :SecurityLabel, (* minimum security label of data,
the greatest lower bound of the
sub-lattice *)
max level :SecuritylLabel (* maximum security label of data,
the least upper bound of the
sub-lattice *)
}i
type Port = {
ID : Name,
CSPEXp : Process
}i
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type Role = {

ID : Name,
CSPExp : Process
}i

type Component ={
ID : Name,
Ports : Port list,
Computation : Process,
Parameters : FormalParameter list
}
type Connector ={
ID : Name,
Roles : Role 1list,
Glue : Process,
Parameters : FormalParameter list
i
type Interface ={
ID : Name,
CSPexp: Process,
Parameters : string list
}i
type GeneralProcess={
ID : Name,
CSPExpr: Process,
Parameters : string list
}i

type StyleDescription = {

ID : Name,

Components : Component list,
Connectors: Connector list,

Interfaces : Interface list,
GeneralProcesses : GeneralProcess list,
Constraints : LogicalExpression

i

type Order =Securitylabel * SecurityLabel;

type Clear = Securitylabel *Clearance;

type PortClearance = {(* instance’s ports/roles information *)
PortRoleId: Name,
PClearance : Clearance

i

type Instance = {

ID : Name,
InstanceOf : Name, (* a COMPONENT or a CONNECTOR name*)
PortRoles : PortClearance 1list,

IClearance : Clearance, (* clearance of the instance *)
Parameters : ActualParameter list,
CSP: Process (* Behaviour of the instance *)
I
type Attachment = {
ComponentName : Name,
PortName : Name,
ConnectorName :Name,
RoleName : Name
I

type Configuration = {
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ID : Name,

Ordering : Order list,
ClearancelList : Clear 1list,
Style : Name,

Components : Component list,
Connectors : Connector list,
Interfaces : Interface list,
GeneralProcesses : GeneralProcess list,
Instances : Instance list,

Attachments : Attachment list
i

type TargetPort = { (*eklenecek *)
Cname : Name, (* component instance name of Cport *)
Cport : Name, (* an end point port which the port in
question is connected *)
CRole : Name (* role of Cport on this connector *)
i
type PortInfo = {(*a port entry with its connector involved *)
Connector : Name, (* connector instance name to
which the pivot port is attached *)
Role : Name, (* the role of pivot port in the
connection¥*)
ConnectedPorts : TargetPort list

}i
type PortDependency = {
Component : Name, (* instance name of a component *)
Port : Name, (* the pivot port which the entry
belong to *)
SourcePort : PortInfo list (* ports related through a
connection to pivot port *)

i

type SecuritylLabellists = {
AcceptedSRData : FlowData , (* to hold security labels
of data sent/received by the port *)
RefusedSRData : FlowData list (* a list to hold REFUSED
labels of data after violation cheking *)

i

type SRDataSecurityClass = {
Component : Name, (* component name which the port
belongs to *)
Port : Name, (* the port which it sends/receives data *)
SecuritylLabels : SecuritylLabellists list,
io_type : portType, (* 1o type of comp-port *)
warnings : warningType list (*leakage list for each port *)
}i

type CompPort ConnRole = {
RolePortName : Name,
SentReceivedSL : FlowData list
}i
exception NotFound;
exception InvalidIOType;
exception ParameterMismatch;
fun maplist(F,nil) =nil
| maplist(F,x::xs) = F(x) :: maplist(F,xs);

216



fun OneLevelDown (s1B : SecurityLabel,

orders : Order list)=
if orders = nil then nil
else if (#2(hd(orders)) = sl1lB) then [#1 (hd(orders))] @

OneLevelDown (sl1lB, tl(orders))
else OnelevelDown(slB, tl(orders));

fun OneLevelUp( slA :SecurityLabel,
orders :Order list)=
if orders = nil then nil
else if (#1 (hd(orders)) = slA) then [#2(hd(orders))] @

OnelevelUp (slA, tl(orders))
else OnelevelUp(slA, tl(orders));

fun ExistsOrder (slA :SecurityLabel,
slB :SecurityLabel,
orders :Order list)=

if orders= nil then false
else if (hd(orders)=(slA,slB)) then true
else ExistsOrder (slA , slB, tl(orders));

fun Comparel.abels (s1A :SecurityLabel,
slB :SecurityLabel list,
orders:0Order list,
OpType:I0) =
(* returns true if orders has (slA,slB) where slB is a list
for OpType=READ, (sl1B,slA) for OpType=WRITE *)

if (OpType=READ) then
if (sl1lB) = nil then false
else if (ExistsOrder (slA,hd(slB),orders)) then true
else Comparelabels (slA,
OneLevelDown (hd(slB), orders),
orders,
OpType) orelse
Comparelabels (slA, tl(slB), orders,OpType)
else if OpType = WRITE then
if (sl1lB) = nil then false
else if (ExistsOrder (hd(slB),slA, orders)) then true
else Comparelabels (slA,
OnelevelUp (hd(sl1lB), orders),
orders,
OpType) orelse
Comparelabels (slA, tl(slB), orders,OpType)
else
raise InvalidIOType;

fun GetNextLevels (label : SecurityLabel,
labels: SecuritylLabel list,
orders: Order list)=
if labels=nil then nil
else if (Comparelabels(label, [hd(labels)],orders,READ)) then
[hd(labels) ] @GetNextLevels (label, tl (labels),orders)
else GetNextLevels (label,tl (labels),orders);
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fun GetMaxLabelIteration (maxlabel:SecurityLabel,
(* head of the list *)
labels : Securitylabel 1list, (* tail of the list *)
orders : Order list)=

if (labels=nil ) then maxlabel

else

let
val nextlist=GetNextLevels (maxlabel, labels,orders)

in
if (nextlist=nil) then maxlabel
else
GetMaxLabelIteration (hd (nextlist),tl(nextlist),orders)
end;

fun GetMaxLabel (labels : SecurityLabel list,
orders : Order list)=
if labels=nil then raise NotFound
else GetMaxLabelIteration(hd(labels),tl(labels),orders);

fun Inthelist(x : SecuritylLabel,
SL : SecurityLabel list)=
if SL = nil then false
else if x=hd(SL) then true
else InthelList(x,tl(SL));

fun EliminateDuplicates (SL : Securitylabel list) =
if (SL = nil) then nil
else if InthelList (hd(SL),tl(SL)) then
EliminateDuplicates (tl(SL))
else [hd(SL)] @ EliminateDuplicates (tl(SL));

fun GetNextofRange (maxL : SecuritylLabel list,
minL : SecurityLabel,

orders : Order list)=
if maxL = nil then nil
else if Comparelabels (minL, [hd (maxL)],orders,READ) then
[hd (maxL)] @ GetNextofRange (tl (maxL),minlL,orders)

@GetNextofRange (OnelLevelDown (hd (maxL) ,orders) ,minL, orders)
else GetNextofRange (tl (maxL),minL,orders);

fun GetListinRange (maxL : SecurityLabel,
minL : SecurityLabel,
orders: Order list)=
if maxL=minL then [maxL]
else if Comparelabels (minL, [maxL],orders,READ) then
EliminateDuplicates ([maxL,minL] @
GetNextofRange (OnelLevelDown (maxL,orders),minL, orders))
else if Comparelabels (maxL, [minL],orders,READ) then
EliminateDuplicates ([minL,maxL] @
GetNextofRange (OnelLevelDown (minlL,orders) ,maxL, orders) )
else nil;

fun RemoveLabel (x : SecurityLabel,
SL : SecuritylLabel list)= (* will remove x from SL *)

if SL=nil then nil
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else if x=hd(SL) then RemovelLabel (x,tl(SL))
else [hd(SL)] @RemoveLabel (x,tl(SL));

fun RemoveSet( SL1 : SecurityLabel list,
SL2 : SecuritylLabel list) =
(* will remove all SL1 members from SL2 *)
if (SL1=nil) then SL2
else RemoveSet (tl (SL1l),RemovelLabel (hd(SL1l),SL2));

fun AllExist (SL1 : SecuritylLabel list,
SL2 : SecuritylLabel list) =
(* return true if all SL1 members appear in SL2 *)
if SL1=nil then true
else InthelList (hd(SL1),SL2) andalso AllExist (tl(SL1l),SL2);

fun GoDown ( maxl : SecurityLabel,
X : SecurityLabel,
SL : SecuritylLabel list,
orders : Order list)=
let
val nextlevel=OnelevelDown (x,orders)
in
if nextlevel=nil then x
else

if AllExist (GetListinRange (maxl,hd(nextlevel),orders), SL)
then GoDown (maxl,hd(nextlevel), SL,orders)

else x
end;

fun CreateFlowDatalist(SL1 : SecuritylLabel list,
orders: Order list)=

let val SL=EliminateDuplicates(SL1)

in
if SL = nil then nil
else if (tl(SL) = nil) then
[{max level=hd(SL),min level=hd(SL)}]
else
let
val maxl=GetMaxLabel (SL,orders);
val fd=({max level=maxl,min level=
(GoDown (maxl,max1l, SL,orders) ) }) :FlowData
in [fd] @CreateFlowDatalList (RemoveSet (
GetListinRange (#max level (fd),
#min level (£fd),orders), SL),orders)
end
end;
fun CreatelListFromFlowDataLists (fd : FlowData list,

orders: Order list)=
if fd=nil then nil
else if (#max level (hd(fd)) = "NONE") then
CreatelListFromFlowDatalists (tl (fd),orders)
else
EliminateDuplicates(
GetListinRange (#max level (hd(£fd)),
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#min level (hd(fd)),orders)@
CreatelListFromFlowDatalists (tl (fd),orders));

fun GetSLForClearance (clearance :Clearance,

clearances :Clear list) =
if clearances = nil then (print clearance; raise NotFound)
else if #2 (hd(clearances)) = clearance then #1 (hd(clearances))

else GetSLForClearance (clearance, tl(clearances));

fun FilterEmptyLists(SL : FlowData list) =
if SL = nil then nil
else if (#max level (hd(SL)) = "NONE" andalso
#min_level(hd(SL)) ="NONE" ) then
FilterEmptyLists (tl(SL))
else [hd(SL)] @ FilterEmptyLists(tl(SL));

fun unionList (FD: FlowData list, orders : Order list)=
if (FD = nil) then nil
else CreatelistFromFlowDatalLists (FD,orders) ;

fun findnextSL(sl: Name, orders: Order list)=
if (orders = nil) then "":Name
else if (#1 (hd(orders))= sl) then #2 (hd(orders))
else findnextSL(sl,tl (orders)):;

fun GetTheMaximumLabelIteration(sl: Name, orders:Order list)=

if (orders = nil) then sl
else let
val nextSL=findnextSL(sl, orders)
in
if (nextSL="") then sl
else GetTheMaximumLabelIteration (nextSL, orders)
end;
fun GetInstance (CompConn : Name,
AllInstances : Instance list) =
if AllInstances = nil then raise NotFound

else if CompConn = #ID(hd(AllInstances)) then hd(AllInstances)
else GetInstance (CompConn, tl(AllInstances));

fun GetPortClearance (PR :Name,
CompCL :Clearance,
PortCL :PortClearance list) =

if PortCL = nil then CompCL

else if PR= #PortRoleld (hd(PortCL)) then
#PClearance (hd (PortCL))

else GetPortClearance (PR, CompCL, tl(PortCL));

fun GetCompPortAttachments (Comp:Name,
Port : Name,
attach : Attachment list) =

if (attach= nil) then nil

else if (#ComponentName (hd(attach)) = Comp andalso
#PortName (hd (attach)) = Port) then
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[hd (attach)] @ GetCompPortAttachments (Comp, Port, tl(attach))
else GetCompPortAttachments (Comp, Port,tl (attach));

fun printIOtype (io: portType)=
if (io=INPUT_PORT) then print "INPUT_ PORT"
else if (1i0=O0OUTPUT_ PORT) then print "OUTPUT_ PORT"
else if (1i0=INPUT_PORT) then print "INPUT_ PORT"
else if (1i0=INPUTOUTPUT PORT) then print "INPUTOUTPUT_ PORT"
else if (1i0=UNUSED_PORT) then print "UNUSED"
else print "UNDEFINED";

fun GetTheMaximumLabel (orders : Order list)=
if (orders = nil ) then raise NotFound
else GetTheMaximumLabelIteration (#2 (hd(orders)), orders);

fun printNames (names: Name list)=
if (names=nil) then ""
else (print (hd(names)); print " ";printNames (tl (names))):;

fun printFlowData( f: FlowData list) =

if (f=nil) then print ""

else (print " (";print (#min level (hd(f))) ;
print ",";print (#max level (hd(f))) ;print ")";
printFlowData (tl (f))

fun printCompPort ConnRole (Ports: CompPort ConnRole list)=
if (Ports = nil) then "1"
else (print "ChannelName:"; print
(#RolePortName (hd (Ports))) ;print "\n";
printFlowData (#SentReceivedSL (hd(Ports))) ; print "\n";
printCompPort ConnRole (tl (Ports)));

fun printPortLabellist (Ports: (string * string list) list)=
if (Ports = nil) then "1"
else (print "ChannelName:"; print (#1 (hd(Ports)));print " ";
printNames (#2 (hd (Ports))) ; print " ";
printPortLabellist (tl (Ports)));

fun printSecuritylabels(slist: SecuritylLabellists list)=
if (slist=nil) then "\n"
else (print " Allowed Security Labels (min,max):
";printFlowData ( [#AcceptedSRData (hd(slist))]) ;print "\n";
print " Refused Security Labels (min,max): ";
printFlowData (#RefusedSRData (hd(slist)) ) ;print "\n";
printSecuritylLabels (tl(slist)))

fun printSRList (SR: SRDataSecurityClass,
configuration: Configuration)=
let val AnInstance=GetInstance (#Component (SR),
#Instances (configuration))

in
(print "Component.Port: ";
print (#Component (SR));
print ".";
print (#Port (SR));
print " type: ";

printIOtype (#io_type (SR));
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print clearance:";
print (GetPortClearance (#Port(SR),
#IClearance (AnInstance),
#PortRoles (AnInstance))) ;
print "\n";
printSecuritylabels (#SecuritylLabels (SR)))
end;

fun printSRLists(slist: SRDataSecurityClass list,
configuration: Configuration)=
if (slist=nil) then "\n"
else if (GetCompPortAttachments (#Component (hd(slist)),
#Port (hd(slist)),
#Attachments (configuration)) = nil) then
printSRLists (tl (slist),configuration)
else (printSRList (hd(slist),configuration);print "\n";
printSRLists (tl(slist), configuration));

fun CSPAnalysis(orders : Order list,
instanceCSP : Process,
Ports : CompPort ConnRole list,
Channels : Name list (* port or role list *)
)=
let
val maxLabel=GetTheMaximumLabel (orders) ;
(* Lnames must be nonempty- taking the maximum element if
needs to be so *)
val LNames=(map (fn(x:CompPort ConnRole)
=>( (#RolePortName (x),
let val thelist=unionList (#SentReceivedSL(x),orders)
in 1if (thelist=nil) then [maxLabel]
else thelist
end
))) Ports)
in
analyseGeneral (orders, Channels,LNames, instanceCSP)
end;

(xxK Kk x COMPARISION OF THE LISTS ******xxkkok)

fun GetListEntry (A : SRDataSecurityClass list,
Comp : Name,
port : Name) =

if A = nil then raise NotFound

else if #Component (hd(A)) = Comp andalso #Port (hd(A))= port
then #SecurityLabels (hd(A))

else GetListEntry(tl(A), Comp, port);

fun GetSREntry (A : SRDataSecurityClass list,
Comp : Name,
port : Name) =

if A = nil then raise NotFound

else if #Component (hd(A)) = Comp andalso #Port (hd(A))= port
then hd(R)

else GetSREntry(tl(A), Comp, port);
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fun Comparelists (A : FlowData list,
B : FlowData list) =

(* returns false if the lists are the same, true otherwise *)

if A = nil then false

else 1if (#max level (hd( <> #max level (hd(B)) orelse

A))
#min_level(hd A)) <> #min _level (hd(B))) then true
else ComparelLists(tl(A),tl(B));
fun IsSLListsModified (NewSL : SRDataSecurityClass list,
0ldsL : SRDataSecurityClass list) =

(* return true i1if the list is modified, false otherwise *)

if NewSL = nil then false
else if Comparelists((map (fn(x:SecurityLabellists) =>
#AcceptedSRData (x)) (#SecurityLabels (hd(NewSL)))),
(map (fn(x:SecurityLabellists) => #AcceptedSRData (x))
(GetListEntry (01dSL,
#Component (hd (NewSL) ),
#Port (hd (NewSL)))))) then
true
else IsSLListsModified(tl (NewSL), O1ldSL);

(K kK ko Construction of a new Sent List ***x&kkkxdisk)
fun GetComponentDescr (InstanceCompName : Name,
AllComp : Component list) =

if AllComp = nil then raise NotFound

else if (#ID(hd(AllComp)) = InstanceCompName) then
hd (AllComp)

else GetComponentDescr (InstanceCompName, tl (AllComp) ) ;

fun GetComponentType (InstanceName :Name,
instances :Instance 1list) =

if [hd(instances)] = nil then raise NotFound

else if #ID(hd(instances)) = InstanceName then
#InstanceOf (hd(instances))

else GetComponentType (InstanceName, tl (instances));

fun FindComputation (InstanceComponentName:Name,
configuration :Configuration,
style :StyleDescription)=
(* given an instance name find the computation string *)

#Computation (GetComponentDescr (
GetComponentType (InstanceComponentName,
#Instances (configuration)),
#Components (configuration)@
#Components (style))) ;

fun FindComponentFormalParameters (InstanceComponentName:Name,
configuration:Configuration,
style :StyleDescription) =

(*given an instance name, returns the formal parameters list*)
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#Parameters (GetComponentDescr (
GetComponentType (InstanceComponentName,
#Instances (configuration)),
#Components (configuration) @
#Components (style)));

fun GetConnectorDescr (InstanceConnName : Name,
AllConn : Connector list) =

if AllConn = nil then raise NotFound

else if (#ID(hd(AllConn)) = InstanceConnName) then
hd (Al1Conn)

else GetConnectorDescr (InstanceConnName,tl (A1l1lConn));

fun GetConnectorType (InstanceName :Name,
instances : Instance 1list) =

if [hd(instances)] = nil then raise NotFound

else if #ID(hd(instances)) = InstanceName then
#InstanceOf (hd (instances))

else GetConnectorType (InstanceName, tl(instances));

fun CheckIfItIsComponent (id :Name,
AllComp : Component list) =
if AllComp=nil then "":Name
else if #ID(hd(AllComp))= id then #ID(hd(AllComp) )

else CheckIfItIsComponent (id, tl(AllComp));

fun GetComponentList (instances :Instance list,
configuration : Configuration,
style :StyleDescription)=

if instances=nil then nil
else if CheckIfItIsComponent (#InstanceOf (hd(instances)),
#Components (configuration) @
#Components (style)) <> "" then
[#ID(hd (instances))] @ GetComponentList (tl (instances),
configuration, style)
else GetComponentList (tl(instances), configuration,style);

fun CheckIfItIsConnector (id :Name,
AllConn :Connector list) =
if AllConn=nil then "":Name
else if #ID(hd(AllConn))= id then #ID(hd(AllConn))

else CheckIfItIsConnector (id, tl(AllConn));

fun GetConnectorList(instances :Instance list,
configuration :Configuration,
style :StyleDescription)=

if instances=nil then nil
else if CheckIfItIsConnector (#InstanceOf (hd(instances)),
#Connectors (configuration) @
#Connectors(style)) <> "" then
[#ID(hd(instances))] @ GetConnectorList (tl (instances),
configuration, style)
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else GetConnectorList(tl(instances), configuration, style);

fun CreateCompPortForAnalysis (Comp :Name,
ReceivedList:SRDataSecurityClass list) =

if (ReceivedList nil) then nil
else if (Comp= #Component (hd(ReceivedList))) then
[{RolePortName= (#Port (hd (ReceivedList))),
SentReceivedSL=(map (fn(x:SecuritylLabellists) =>
#AcceptedSRData (x)) (#SecurityLabels (hd(ReceivedList))))}]
@ CreateCompPortForAnalysis (Comp, tl(ReceivedList))
else CreateCompPortForAnalysis (Comp, tl(ReceivedList));

fun NewSentListForaComponent (cur component:Name,
ReceivedList :SRDataSecurityClass list,
configuration:Configuration,
style :StyleDescription) =

let
val plist=(map (fn(x:Port) => #ID(x))
(#Ports (GetComponentDescr (GetComponentType (
cur_ component,
#Instances (configuration)),
#Components (configuration) @
#Components (style)))));
(* instance a ait port name listesi *)
val result=CSPAnalysis (#Ordering(configuration),
#CSP (GetInstance (cur_component,
#Instances (configuration))),
CreateCompPortForAnalysis (cur_component,
ReceivedList),

plist)
in
(let val warns=(#warningList result)
in if (warns=nil ) then print " "
else (print "\n Warning !...";print cur_ component;
print " MUST BE TRUSTED!...\n")
end;

(map (fn(x:Name) => (* for each port of cur_ component *)
{Component=cur_ component,
Port=x,
SecuritylLabels= (map (fn(f:FlowData ) =>
{RefusedSRData=[],
AcceptedSRData =f

}:SecurityLabellLists)

(CreateFlowDatalist ( (#outputs result) x,

#Ordering (configuration)))),
io_type= (#portTypes result) x,
warnings = (#warningList result)

}:  SRDataSecurityClass ) plist
) : SRDataSecurityClass list)
end;

fun NewSentListForComponents (ComponentInstances :Name list,
(* component instance list *)
ReceivedLists :SRDataSecurityClass list,
Configuration :Configuration,
style :StyleDescription) =
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if (ComponentInstances = nil) then nil
else NewSentListForaComponent (hd(ComponentInstances),
ReceivedLists,
configuration,
style) @
NewSentListForComponents (tl (ComponentInstances),
ReceivedLists,
configuration,
style) ;

fun NewGlobalSentLists (SentLists: SRDataSecurityClass list,

ReceivedLists : SRDataSecurityClass list,
configuration : Configuration,
style :StyleDescription)=

NewSentListForComponents (
GetComponentList (#Instances (configuration),
configuration, style),
ReceivedLists,

configuration,
style);
(ko Construction of a new Received List **xkxxkxix)
fun FindGlue (InstanceConnectorName : Name,
configuration : Configuration,
style :StyleDescription) =

#Glue (GetConnectorDescr (
GetConnectorType (InstanceConnectorName,
#Instances (configuration)),
#Connectors (configuration) @
#Connectors(style)));

fun FindConnectorFormalParameters (InstanceConnectorName:Name,
configuration: Configuration,
style :StyleDescription)=
#Parameters (GetConnectorDescr (
GetConnectorType (InstanceConnectorName,
#Instances (configuration)),
#Connectors (configuration) @

#Connectors (style)));
fun ExtractSL (comp :Name,
port :Name,
SLList :SRDataSecurityClass list)=

if SLList = nil then raise NotFound
else if comp = #Component (hd(SLList)) andalso
port = #Port (hd(SLList)) then map
(fn(x:Securitylabellists) => #AcceptedSRData (x))
(#SecurityLabels (hd (SLList)))
else ExtractSL(comp, port, tl(SLList)) ;

(***************** Received LlSt Functions *************)
type RoleReceivedSL = {
Connector : Name,
RoleReceivedSList : CompPort ConnRole list
}i
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fun GetRoleReceivedList (Conn : Name,
attachments : Attachment list,

SentLists : SRDataSecurityClass list)=
if attachments = nil then nil
else if (#ConnectorName (hd(attachments)) = Conn) then
[{RolePortName= (#RoleName (hd (attachments))),

SentReceivedSL= (ExtractSL (#ComponentName (hd (attachments)),
#PortName (hd (attachments) ), SentLists)) }]
@ GetRoleReceivedList (Conn,tl (attachments), SentLists)
else GetRoleReceivedList (Conn,tl (attachments),SentLists);

fun GetAttachmentofRole( conn : Name,
sl : CompPort ConnRole,
attach : Attachment list) =

if attach = nil then nil

else if #ConnectorName (hd(attach))= conn andalso
#RolePortName (sl)= #RoleName (hd(attach)) then [hd(attach)]

else GetAttachmentofRole( conn,sl, tl(attach));

fun GetRoleSL (comp: Name,
port : Name,
attach : Attachment list,
conn : Name,
recSL : CompPort ConnRole list) =

if recSL = nil then nil
else
let
val TRec=
GetAttachmentofRole (conn, hd (recSL),attach) :Attachment list
in
if TRec = nil then
GetRoleSL (comp,port,attach,conn,tl (recSL))
else if #ComponentName (hd(TRec)) = comp andalso
#PortName (hd (TRec) ) =port then
#SentReceivedSL (hd (recSL)) @
GetRoleSL (comp,port,attach,conn, tl (recSL))
else GetRoleSL (comp,port,attach,conn,tl (recSL))
end;

fun ExtractRolePortSL (Comp: Name,
Port : Name,
attach : Attachment 1list,
RoleSL : RoleReceivedSL list) =

if (RoleSL = nil ) then nil
else GetRoleSL (Comp, Port,attach, #Connector (hd(RoleSL)),
#RoleReceivedSList (hd (RoleSL))) (*check one connector's roles¥*)
@ ExtractRolePortSL (Comp, Port,attach,tl (RoleSL ));
(* check the other connectors *)

fun MergeRolelabels (fd: FlowData list,
orders : Order list) =
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(map (fn(x:FlowData) => {AcceptedSRData=x,

RefusedSRData=[]}: SecurityLabellists )
(CreateFlowDatalist (CreatelListFromFlowDataLists (fd,
orders),
orders) ) ) :Securitylabellists list;

(* I check all connector entries for each comp-port pair *)

fun AssignReceivedLabelstoPorts (RoleSL : RoleReceivedSL list,
(* a 1list having an entry for each connector instance *)
attachments : Attachment list,
orders : Order list,
ReceivedLists: SRDataSecurityClass list ) =

(* map for each comp-port pair *)
(map (fn(x: SRDataSecurityClass)=>{Component= (#Component (x)),
Port=(#Port(x)),
SecurityLabels=MergeRoleLabels (
ExtractRolePortSL (#Component (x),

#Port (x),
GetCompPortAttachments (#Component (x),
#Port (x),

attachments),
RoleSL) :FlowData list,
orders): SecurityLabellists list,
(* for each comp-port *)
io_ type=UNUSED PORT, (* default value for connector *)
warnings=[] (*default value for connector *)
} :SRDataSecurityClass
) ReceivedLists) : SRDataSecurityClass list

fun NewGlobalReceivedLists (

ReceivedLists :SRDataSecurityClass list,
SentLists :SRDataSecurityClass list,
Configuration :Configuration,

Style :StyleDescription)=

AssignReceivedLabelstoPorts (
((map (fn(x:Name)=>{Connector=x,
(* creates a list of type RoleReceivedSL: sent labels of
each role for each connector instance *)
RoleReceivedSList= (
let
val rlist=(map (fn(x:Role) => #ID(x))
(#Roles (GetConnectorDescr (
GetConnectorType (x,
#Instances (configuration)),
#Connectors (configuration) @
#Connectors (style)))));
(* instance a ait port name listesi *)
val result=CSPAnalysis (#0Ordering(configuration),
#CSP (GetInstance (x,
#Instances (configuration))),
GetRoleReceivedList (x,
#Attachments (configuration),
SentLists),rlist)
in
(map (fn (r:Name) => {RolePortName=r,
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SentReceivedSL=CreateFlowDatalist ( (#outputs result) r,
#0rdering (configuration))
} :CompPort ConnRole

) rlist)
end ) } : RoleReceivedSL)
(GetConnectorList (#Instances (configuration),
configuration,style))) : RoleReceivedSL list),

#Attachments (configuration),
#Ordering (configuration),
(map (fn(x: SRDataSecurityClass) =>
({Component= (#Component (x) ),

(* initializes new global received list to nil *)
Port= (#Port (x)),
SecuritylLabels=nil,
io_type=UNUSED_ PORT,
warnings=[]}: SRDataSecurityClass)) ReceivedLists)
) : SRDataSecurityClass list ;

(***************** VIOLATION CHECKING ****************)

fun CalculateNewRefusedListsforOutput (mn : SecurityLabel,
mx : SecurityLabel,
ordering: Order list) =
if ordering = nil then nil
else CreateFlowDatalist (CreatelListFromFlowDatalLists (map
(fn(x:SecurityLabel)=> { min level=mn,
max level=x}:FlowData)
(OneLevelDown (mx, ordering) ) ,ordering),ordering)

fun CalculateNewRefusedListsforInput (mn : SecurityLabel,

mx : SecurityLabel,
ordering: Order list) =

if ordering = nil then nil
else if #1 (hd(ordering)) = mn then
[{min level=(#2 (hd(ordering))),
max level=mx}:FlowData] @
CalculateNewRefusedListsforInput (mn, mx, tl(ordering))
else CalculateNewRefusedListsforInput (mn, mx, tl(ordering)):;

fun CheckAndUpdateOneSubLattice (Comp :Name,
port :Name,
SL :SecuritylLabellists,
CL :Clearance,
ordering :Order list,
clearances :Clear list,
OpType :I0) =

(* will return a SecurityLabellists record *)
let

val mnlevel = #min level (#AcceptedSRData (SL)) ;

val mxlevel = #max level (#AcceptedSRData (SL));

val pCLdominates = GetSLForClearance (CL,clearances)
in

if (OpType = READ) then

if (mxlevel= pCLdominates ) then SL
(* what Port clearance dominates and
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the max level in the sublattice are the same *)
else if Comparelabels (mxlevel, [pCLdominates],
ordering,OpType) then SL
(* the label what port clearance
dominates also dominates the max level *)
else if (mnlevel=pCLdominates) then
(* the clearance is not enough for the maxlevel and
it is equal to min level *)
{AcceptedSRData = {min_ level=pCLdominates,
max level=pCLdominates},
RefusedSRData=CalculateNewRefusedListsforInput (
pCLdominates,
mxlevel,
ordering)
}:SecuritylLabellists

else if
Comparelabels (mnlevel,
[pCLdominates],
ordering,
OpType) then
(* the clearance is not enough for the maxlevel
and it is greater than min level *)
{AcceptedSRData = {min_ level=mnlevel,
max level=pCLdominates},
RefusedSRData=CalculateNewRefusedListsforInput (
pCLdominates, mxlevel,ordering) }:SecuritylLabellists
(* the clearance is not enough for the maxlevel
and it is less than min level ¥*)
{AcceptedSRData = {min_level="NONE",
max_level="NONE"},
RefusedSRData=[{min level=mnlevel,
max level=mxlevel}]}:SecurityLabellLists
else if (OpType = WRITE) then (
if (mnlevel= pCLdominates ) then SL
(* what Port clearance dominates and
the min level in the sublattice are the same *)
else if Comparelabels (mnlevel, [pCLdominates],
ordering,OpType) then SL
(* the label what port clearance dominates also
dominates the min level *)
else if (mxlevel=pCLdominates) then
(* the clearance is not enough for the minlevel and
it is equal to max level *)
{AcceptedSRData = {min_ level=pCLdominates,
max level=pCLdominates},
RefusedSRData=CalculateNewRefusedListsforOutput (
mnlevel,
pCLdominates,
ordering) } :SecurityLabellists

else

else if Comparelabels (mxlevel,
[pCLdominates],

ordering,
OpType) then (* the clearance is not enough

for the minlevel but dominates max_ level *)
{AcceptedSRData = {min_ level=pCLdominates,
max level=mxlevel},
RefusedSRData=CalculateNewRefusedListsforOutput (
mnlevel,
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pCLdominates,
ordering) }:SecurityLabellLists

else (* the clearance is not enough for the maxlevel and
it is less than min level ¥*)
{AcceptedSRData = {min_level="NONE",

max_ level="NONE"},
RefusedSRData=[{min level=mnlevel,

max level=mxlevel}]}:SecuritylLabelLists
)
else
raise InvalidIOType

end;

fun VPForCompPort (Comp :Name,
port :Name,
SL :SecurityLabellists list,
CL :Clearance,
ordering :Order list,
clearances :Clear list,
OpType :I0) =

(map (fn(sublattice: SecurityLabellists) =>
CheckAndUpdateOneSubLattice (Comp,port, sublattice, CL,
ordering,clearances,OpType): SecurityLabellists)
SL): SecuritylLabellists list;

fun ViolationPreventionForLists (

SRLists : SRDataSecurityClass list,
configuration : Configuration,

style : StyleDescription,

OpType : I0)=

(* process for each component-port pair *)
(map (fn(SR: SRDataSecurityClass) => {
Component= (#Component (SR) ),
Port=(#Port (SR)),
SecurityLabels=VPForCompPort (#Component (SR),
#Port (SR),
#SecuritylLabels (SR),
let
val AnlInstance=GetInstance (#Component (SR),
#Instances (configuration))

in
GetPortClearance (#Port (SR),
#IClearance (AnInstance),
#PortRoles (AnInstance))
end,

#O0rdering (configuration),
#ClearancelList (configuration),

OpType) ,

io_type=(#io_type(SR)),

warnings= (#warnings (SR)) } :SRDataSecurityClass)
SRLists) : SRDataSecurityClass list;
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fun checkViolation (sr :SRDataSecurityClass,
orders: Order list)=
if ((#SecurityLabels(sr))=nil) then false

else if ((#RefusedSRData (hd (#SecurityLabels(sr))))=nil) then
false
else (print "!!!!.Security labels causing violation: ";
printNames (CreatelListFromFlowDataLists (
#RefusedSRData (hd (#SecurityLabels (sr)))),orders));
print "\n";
true);

fun printPotentiallabels (sr:SRDataSecurityClass,
orders: Order list)=
if ((#Securitylabels(sr))=nil) then print " No data..."
else (

let
val labels=CreatelistFromFlowDatalists((map (fn

(x:SecuritylLabellists) => (#AcceptedSRData(x)))
(#SecurityLabels(sr))), orders)
in
if (labels=nil) then print "NONE "
else (printNames (labels); print " ")
end ) ;

fun printResult (oneport: (Name*Name*Clearance) list,

configuration :Configuration,
SentList :SRDataSecurityClass list,
ReceivedList :SRDataSecurityClass list,

anyViolation: bool)=

if (oneport=nil) then if (anyViolation) then

print "WARNING :Potential confidentiality VIOLATION!.. \n
Please check the refused data security labels above...\n"
else

print "***** The verification is SUCCESSFUL *******x\pn"
else if (GetCompPortAttachments ((#1 (hd(oneport))),
(#2 (hd (oneport))),
#Attachments (configuration))=
nil) then
(* the port is not involved in any attachment *)
printResult (tl (oneport),
configuration,
SentList,ReceivedList,anyViolation)

else
let
val rl=GetSREntry (ReceivedList, (#1 (hd(oneport))),
(#2 (hd (oneport))));
val sl=GetSREntry(SentList, (#1 (hd(oneport))),
(#2 (hd (oneport))));
in
(print "Component.Port: "; print ((#1 (hd (oneport)))
(#2 (hd (oneport)))); print " type :";
printIOtype (#io_type(sl));print " clearance:";
print (#3 (hd(oneport)));print "\n";
print " potentially output data security labels: ";
printPotentiallabels (sl, #Ordering (configuration));

print "\n";

Ao A
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print " ©potentially input data security labels: ";
printPotentiallabels (rl, #Ordering (configuration));
print "\n";
let
val foundViolationS=checkViolation(sl,
#0rdering (configuration));
val foundViolationR=checkViolation(rl,
#Ordering (configuration)) ;
val foundViolation=foundViolationS orelse foundViolationR;

in
(print "\n";
printResult (tl (oneport),
configuration,
SentList,
ReceivedList,
(anyViolation orelse foundViolation)))
end )
end;

fun CreatePossibleCL(cl :Clearance,
clearances: Clear list,
allclearances: Clear 1list,
orders: Order list,
iotype:I0)=

if (clearances = nil) then nil

else if (ComparelLabels (#1 (hd(clearances)),

[GetSLForClearance (cl,allclearances)],orders,iotype))

then
[#2 (hd (clearances) ) ] @CreatePossibleCL(cl, tl(clearances),
allclearances, orders, iotype)
else CreatePossibleCL(cl, tl(clearances), allclearances,

orders, iotype);

fun AllComparelabels (labels: Securitylabel list,
sl:SecurityLabel,
orders: Order list,
iotype:I0)=

(* return true if all members of labels are dominated by sl *)

if (labels=nil) then true

else (Comparelabels (hd(labels), [sl],orders,iotype) orelse
(hd(labels)= sl)) andalso

AllComparelLabels (tl (labels),sl,orders, iotype);

fun FindMaxClearance (cl: Clearance,
labels: SecuritylLabel list,
clearances: Clear 1list,
csl: Clearance list,
orders: Order list,
iotype:I0)=

if (csl=nil) then cl
else if (AllComparelabels(labels,

GetSLForClearance (hd(csl),clearances),orders, iotype))
then (*check if all member of labels are dominated by csl's*)
FindMaxClearance (hd(csl), labels,clearances, tl(csl),
orders,iotype)
else FindMaxClearance(cl, labels,clearances,tl(csl),

orders, iotype) ;
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fun checkExcessPrivilege (oneport: (Name*Name*Clearance) list,
configuration :Configuration,
SentList :SRDataSecurityClass list,
ReceivedList:SRDataSecurityClass list,
anyExcess: bool)=

if (oneport=nil) then if (anyExcess) then print "\n\nWARNING
Some excessive privileges are associated with ports as given

above!.. \n Please check them and revise your system
configuration...\n"
else print "There is no excessive privileges...\n"

else if (GetCompPortAttachments ((#1 (hd(oneport))),
(#2 (hd (oneport))),
#Attachments (configuration))= nil) then
(* the port is not involved in any attachment *)
checkExcessPrivilege (tl (oneport),
configuration,
SentList,ReceivedList,anyExcess)
else let
val rl=GetSREntry(ReceivedList,
(#1 (hd (oneport))),
(#2 (hd (oneport))));
val sl=GetSREntry(Sentlist,
(#1 (hd (oneport))),
(#2 (hd (oneport))));
val slabels=CreatelistFromFlowDatalists ( (map
(fn(x:SecurityLabellLists) => #AcceptedSRData (x))
(#SecuritylLabels (sl))), #Ordering (configuration));
val rlabels=CreatelistFromFlowDatalists ( (map
(fn(x:SecurityLabellists) => #AcceptedSRData (x))

(#SecurityLabels (rl))), #Ordering (configuration))
(* slabels and rlabels are accepted label list *)
in
if ((#io_type(sl))=INPUT_PORT) then
let
val newcl=FindMaxClearance (#3 (hd (oneport)),
rlabels,

#ClearancelList (configuration),

CreatePossibleCL (#3 (hd (oneport) ),
#Clearancelist (configuration),
#Clearancelist (configuration),
#0Ordering (configuration),

READ) ,
#Ordering (configuration),
READ)
in
if (newcl <> (#3(hd(oneport)))) then
(print "\nExcess privilege for ";
print (#1 (hd(oneport))); print ".";
print (#2 (hd (oneport))); print " found:";
print "\n Current: ";
print (#3 (hd(oneport))):;
print " Recommended: "; print newcl;
checkExcessPrivilege (tl (oneport),
configuration,
SentList,

ReceivedList, true))
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else checkExcessPrivilege (tl (oneport),
configuration,
SentList,
ReceivedList,
anyExcess)
end
else 1f ((#io_type(sl))=0OUTPUT_ PORT) then
let
val newcl=FindMaxClearance (#3 (hd (oneport)),
slabels,
Clearancelist (configuration),
CreatePossibleCL (#3 (hd (oneport)),
#Clearancelist (configuration),
#ClearancelList (configuration),
#O0rdering (configuration),
WRITE),
#Ordering (configuration),
WRITE)
in
if (newcl <> (#3 (hd(oneport)))) then
(print "Excess privilege for ";
print (#1 (hd(oneport))):;
print "."; print (#2 (hd(oneport)));
print " found:";
print "\n Current: ";
print (#3(hd(oneport))):;
print " Recommended: "; print newcl;
checkExcessPrivilege (tl (oneport),
configuration,
SentList,
ReceivedList, true))
else checkExcessPrivilege (tl (oneport),
configuration,
SentList,
ReceivedList,
anyExcess)
end
else 1f ((#io_type(sl))=INPUTOUTPUT PORT) then
let
val rnewcl=FindMaxClearance (#3 (hd(oneport)),
rlabels,
#ClearancelList (configuration),
CreatePossibleCL (#3 (hd (oneport)),
#ClearancelList (configuration),
#Clearancelist (configuration),
#Ordering (configuration),
READ) ,
#Ordering (configuration),
READ) ;
val snewcl=FindMaxClearance (#3 (hd(oneport)),
slabels,
#Clearancelist (configuration),
CreatePossibleCL (#3 (hd (oneport) ),
#Clearancelist (configuration),
#Clearancelist (configuration),
#Ordering (configuration),
WRITE),
#O0rdering (configuration),
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WRITE) ;
in
if ((snewcl = rnewcl) andalso
(rnewcl <> (#3 (hd(oneport))))) then
(print "Excess privilege for ";
print (#1 (hd(oneport))); print ".";
print (#2 (hd (oneport))) ;
print " found:";
print "\n Current: ";
print (#3(hd(oneport)));
print " Recommended: ";
print rnewcl;
checkExcessPrivilege (tl (oneport),
configuration,
SentList,
ReceivedLlist,
true))
else checkExcessPrivilege (tl (oneport),
configuration,
SentlList,
Receivedlist,
anyExcess)
end
else checkExcessPrivilege (tl (oneport),
configuration,
SentList,
ReceivedLlist,
anyExcess)
end;

fun Verify(configuration :Configuration,
style :StyleDescription,
SentList :SRDataSecurityClass list,
ReceivedList :SRDataSecurityClass list,
stateNo :int) =

let
val NewSentList=ViolationPreventionForLists (
NewGlobalSentLists (SentList,

ReceivedList,
configuration,
style),

configuration,

style,

WRITE) ;

val NewReceivedList=ViolationPreventionForLists (
NewGlobalReceivedLists (ReceivedList,

NewSentList,
configuration,
style),

configuration,

style,

READ) ;

in
(print "*****************************\n";
print "Iteration No: ";
print (Int.toString(stateNo) );
print "\nRECEIVED LIST (";
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print (Int.toString(stateNo) ~ ")" );
print "\n"; printSRLists (ReceivedList,configuration);

print "-----—-mm \n";
print "\nSENT LIST (";
print (Int.toString(stateNo) ~ ")" );

print "\n"; printSRLists (NewSentList, configuration);
if IsSLListsModified (NewReceivedList,ReceivedList)
orelse IsSLListsModified (NewSentList, SentlList)

then
Verify(configuration,
style,
NewSentList,
NewReceivedList,
stateNo+1)
else
(print "*****************************\n"’-
print "Iteration No: ";
print (Int.toString(stateNo) ~ ")");
print "\nSTABLE RECEIVED LIST (";
print (Int.toString(stateNo) ~ ")" );

print "\n";
printSRLists (NewReceivedList,configuration);

print "---------mmmm \n";
print "\nSTABLE SENT LIST (";
print (Int.toString(stateNo) ~ ")" );

print "\n";
printSRLists (NewSentList,configuration) ;
let
val CompPortCL=(map (fn (x:SRDataSecurityClass) =>
(let
val AnInstance=GetInstance (
#Component (x) ,
#Instances (configuration))
in
(#Component (x) ,
#Port (x),
GetPortClearance (#Port (x),
#IClearance (AnInstance),
#PortRoles (AnInstance)))
end) ) SentList)
(* returns a list of triples: comp-port and its CL *)
in (print "VERIFICATION REPORT \n";
print Tk %k % %k ko ok ok ko ke ko ke ke ok ok ok ok ok \n";
printResult (CompPortCL,
configuration, NewSentList,
NewReceivedList, false);
print "\n EXCESS PRIVILEGES \n";
print n *****************\n";
checkExcessPrivilege (CompPortCL,
configuration,
NewSentList,
NewReceivedList,
false) )
end) )
end;

(* verify is the main function of the verification process *)
fun verify (configuration :Configuration,
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style :StyleDescription,
) =

Verify(configuration, style, SentlList,ReceivedList,0);
CSP Analysis Function codes:

(* CSP analyser for information flows.
This tool records the possible outputs of a given CSP process.
Ali Ferhat Tamur
v 1.2 *)

(* This is a generic error message for bad process descriptions.
For example you declare a port but do not define the security
label of values input from that port *)

exception BADINPUT;

(* SecurityLabel is the clearance level of subjects.
i.e. Public, Low, High, etc
*)
type SecuritylLabel = string;
datatype 'a VALUE_TYPE = UNDEFINED | DEFINED of 'a;
(* A Lattice is implemented as a record:
elements: the nodes of the lattice
precedes: < relation among the elements
lub: a function that gives the least upper bound of two elements.
Functions that converts a lattice that is given as a list to this
type of record are given below *)
type lattice = {elements: SecuritylLabel list,
precedes: Securitylabel * Securitylabel -> bool,
lub: SecuritylLabel * SecuritylLabel -> SecurityLabel};
(* A port is denoted by a string *
type port = string;
(* Process Var is a variable that holds CSP processes.
Used for definition of CSP processes with fixed points *)
type Process Var = string;
(* A Value Var is a variable that holds a value read from a port*)
type Value Var = string;
(* A value is what can be written to a port. It is a list of
Value Var's, and can be denoted with a fixed security label.
If not the security label is calculated using the LUB function
fo the given lattice *)
datatype Value = DEFAULT of Value Var list
| FIXED of SecurityLabel * (Value Var list);
(* The events in a CSP process. Input is from a port to a
variable, output is from a value to a port. *)
datatype Event = INPUT of port * Value Var
| OUTPUT of port * Value
| ATOMIC of string;
(* The BNF notation of a CSP process. || is not implemented. *)

datatype Process =

PVAR of Process Var (*A Process Variable that is
previously declared with MU (FIX) *)
| MU of Process Var * Process (* A Fixed Point Declaration *)
| ==> of Event * Process (* Engages in Event and then behaves
like Process *)
| \/ of Process * Process (* Internal Choice *)
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| <|> of Process * Process (* External Choice *)
| |'ll of Process * Process (* Interleaving *)
| IF _THEN ELSE of (Value * Process * Process)
(* One of the processes is choosen according to value *)
| STOP; (* STOP *)

infix -->; infix \/; infix <|[|>; infix || |;

(* The "Type" of a process consists of two fields.
The first is a mapping from output ports to list of
security labels. This denotes to which ports and what
kind of data can a process write.
The second is a list of type variables that needs to unify
with the result. For a "closed" process this is nil *)
type ProcessType = port -> (SecurityLabel list)
(* These environments are used by the analyser.
Process Environment is a mapping from Process variables to
processes. Type Environment is a mapping from Type variables to
types. *)
type ProcessEnvironment = (Process Var * Process) list;

(* A port is of one of the four types: input, output, input/output
or unused ¥*)
datatype portType = INPUT_ PORT | OUTPUT_PORT

| INPUTOUTPUT_ PORT |UNUSED_PORT;

(* The warning types.
ENCRYPTION is, a low value is calculated by using high data.
(With FIXED construct) PORT_HAS HIGH DATA (port) is, a higher data
than the port should handle is written to port.*)

datatype warningType=NONE|ENCRYPTION|PORT HAS HIGH DATA of port;

(*This is the type of values returned from a call to
analyseGeneral. It is a record of three fields:

outputs is a function from ports to the list of security
labels, denoting values of type of those security labels can be
written to the port.

warningList is a list of warnings generated. If null, then
there is no warning.

portTypes is a function from ports to port types.*)

type analyseResultType = {outputs: (port -> Securitylabel list),
warningList: warningType list,
portTypes: (port -> portType) };

(*Initially every port is unused.This returns a function that maps
every port to "unused" *)
fun initialPortTypes() = fn(aPort) => UNUSED PORT;

(* There is an action in the named port. Change the type of port
accordingly. The third argument should be either INPUT PORT or
OUTPUT_PORT *)

fun addPortType (fnTypes:port ->portType, aPort, action:portType)=

let val oldValue = fnTypes (aPort)
in case oldvValue of
INPUT PORT => (if action = OUTPUT_PORT

239



then fn(aPort2) => if aPort2 = aPort then
INPUTOUTPUT_PORT else fnTypes (aPort2)
else fnTypes)
| OUTPUT_PORT => if action = INPUT PORT
then fn(aPort2) => if aPort2 = aPort
then INPUTOUTPUT PORT else fnTypes (aPort2)
else fnTypes
| INPUTOUTPUT_ PORT => fnTypes
| UNUSED PORT => fn(aPort2) => if aPort2 = aPort then
action else fnTypes(aPort2)
end;

(* General Functions *)

(* Is x an element of the 1list 17 *)
fun member (x,nil) = false
| member (x, el::1) = if x = el then true else member(x,1);

(* Return the minimal reflexive relation that includes the given

relation. i.e. add (x,x) for all elements *)
fun addReflexive (l,els) = 1 @ (List.map (fn (el) => (el,el))
els;

(* For every (a,b) and (b,c) in the list add (a,c) and go on
until no new pair can be added. *)
fun transitiveClosure (1) =
let val change = ref false
val newList = ref 1
in (List.app
(fn (a,b) => List.app (fn (c,d) => if (b = c) andalso
not (member ( (a,d), 1))

then (newList := (a,d):: (!newlList);
change := true)
else ()) 1) 1;
if !change then transitiveClosure (!newList)
else 1)
end;
(* Return a list that every element appears only once *)
fun removeDuplicates (nil) = nil
| removeDuplicates (a::1l) = if member (a,l) then

removeDuplicates (1)
else a:: (removeDuplicates(l));

(* this function takes a list of lists and returns all possible
selections one from the first 1list, one from the second list,
so on..

i.e. generalCartesian [[1,2,3]1,[4],15,6]] = [[1,4,5], [2,4,5],

(3,4,51, [1,4,6]1, [2,4,6], [3,4,6]]

Used for the general case where a number of securitylLabeled
values can be input from each port. *)

fun generalCartesian (first::nil)=List.map(fn (el) => [el]) first
| generalCartesian (first::1) =
let val subtree = generalCartesian 1

in List.foldl (op @) nil
(List.map (fn (aResult) => List.map (fn(ankEl) => anEl
aResult) first) subtree)
end;
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(* Takes two lists and returns a list of pairs *)

fun combine (nil, ) = nil
| combine (_,nil) = nil
| combine (a::aa,b::bb) = (a,b):: (combine (aa,bb));

(* Calculate the Lattice from the Input *)

fun minimum2 (m,nil,precedes) = m
| minimum?2 (m,a::1,precedes) = if precedes (m,a)
then minimum?2 (m,1l,precedes)
else minimum?2 (a,l,precedes);

fun minimum (nil, precedes) raise BADINPUT

| minimum (a::nil,precedes) = a
\ minimum (a::b::1,precedes) = minimum2 (a,b::1,precedes)

(* Take a list of pairs (x,a) and return the function

f(x) = DEFINED a (if x is in the 1list)
f(x) = UNDEFINED (if not) *)
fun list2Fun (nil) = (fn (x) => UNDEFINED)
| 1list2Fun ((a,b)::1) = fn(x) => if (x=a) then (DEFINED b) else

(list2Fun(l)) x;

(* Like list2Fun but the function returns a default value

instead of UNDEFINED for x's not in the list *)
fun list2FunDefault (nil,default) = (fn (x) => default)
| list2FunDefault((a,b)::1, default) = (fn (x) => 1if (a=x) then b

else list2FunDefault (l,default) x);

(* Add a new binding to a function. The new binding is in effect

whether or not there was a previous binding. *)
fun O (f, (y,a)) = fn(x) => if x = y then a else f x;
infix O;

(* Reduce 1is a generic function that reduces a list (should be
non-nil) to a single element by using the given function f. Like
fold function but takes no default value. f is assumed to be
symmetric and associative *)

local
fun r (f,v,nil) = v

| r (f£f,v,el::1) = r(f,f(v,el), 1)
in
fun reduce(f,nil) = raise BADINPUT
| reduce(f,el::1) = r(f,el, 1)
end;

(* Takes a list and returns a member function specific for that

list. Could be implemented with "member 1" *)
fun list2BoolFun (nil) = (fn (x) => false)
| list2BoolFun (el::1) = fn(x) => if (x=el) then true else

(list2BoolFun(l)) x;

(* Return the intrersection of given lists *)

fun intersection(l,nil) = nil
| intersection(l,el::11) = if member(el,l) then
el:: (intersection(l,11)) else intersection(1l,11);
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(* Strips the "DEFINED" mark from a function result defined by
list2Fun.If the value was UNDEFINED an exception will be raised.
*)
fun getValue (x) = case x of

DEFINED a => a

[ = raise BADINPUT;

(* Takes a lattice in the form of list of pairs and returns

a record of lattice type. (See above) *)
fun calculatelattice (1l: (SecuritylLabel * SecurityLabel) list) =
let val latticeElements = removeDuplicates(let val rec f = fn
(nil) => nil
| (a,b)::11 => a::b::£(11) in £ 1 end)
val closurelist = transitiveClosure (
removeDuplicates (addReflexive (1, latticeElements)))
val precedes = list2BoolFun closurelist;

val prelist = List.map
(fn(el) => (el,List.filter (fn (x) => precedes|(el,x))

latticeElements)) latticeElements
val prelListFun = list2Fun prelist
val lub = fn (a,b) => minimum(intersection

getValue (prelListFun a),
getValue (prelListFun b)),
precedes)
in {elements = latticeElements,
precedes = precedes,
lub = lub}:lattice

end;

(* Function noOutput maps every port to nil. This is the result of
the analysis of process STOP *)

fun noOutput (portList) = list2FunDefault (List.map (fn(p) =>
(p,nil)) portList, nil);

(* This function takes a result (a process type) and outputs it
except for the given port also outputs a value of the given
security label *)
fun addOutput (f,port:port, label:SecuritylLabel) =

let val oldValue = f port

val newValue = removeDuplicates (label::oldValue)
in fn (p) => if p = port then newValue else f p
end;

(* The function unite unites two process types. For example to
calculate P \/ Q, the results of P and Q are united by a call to
this function. *)

fun unite(fl, f2,portlList) =

let val newValues = List.map (fn (aPort) =>
let val oldl = fl1 aPort
val old2 = f2 aPort
val new

removeDuplicates (oldl@old2)
in (aPort,new)
end) portlList
in list2FunDefault (newValues,nil)
end;
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(* calculateValue calculates the security label of a value that is
output to a port.
The second value returned denotes whether there is an

encryption (which is possible only in FIXED construct) *)
fun calculateValue (portVarsEnv, lattice:lattice, inputPorts,
FIXED (a,ls)) =

let val portlList = List.map (fn(var) => getValue
(portVarskEnv var)) 1ls

val labellist = List.map (fn(p) => getValue (inputPorts p))

portlList
in if null labellist
then (a,false)
else let val result = reduce( (#lub lattice), labelList)
val encryption = not ((#precedes lattice)

(result, a))
in (a,encryption)
end
end
| calculateValue (portVarsEnv, lattice:lattice, inputPorts,
DEFAULT 1s) =
let val portlList = List.map (fn(var) =>
getValue (portVarsEnv var)) 1s
val labellist = List.map (fn(p) =>
getValue (inputPorts p)) portlList
val result = reduce( (#lub lattice), labellist)
in (result, false)
end;

(* obeyLowerBound updates a result (a process type) such that the
security label of every output should be at least of the given
lower bound. Used in IF THEN_ELSE *)

fun obeyLowerBound (bound, ports, lattice:lattice, f) =

fn (aPort) => let val res = f aPort
in let val lubs = List.map (fn (el) =>
(#1lub lattice) (el,bound)) res
in removeDuplicates (lubs)
end
end;

(* analyse takes the lattice, ports, input types and process
as input and calculates the outputs that can be done by the
process. Also returns whether or not there is a violation.
(High output to a low port)

DO NOT CALL THIS DIRECTLY, USE analyseGeneral INSTEAD *)

fun analyse (latticeAsList, portsList: port list, portLabelPairs:
(port * SecuritylLabel) list, process) =
let val lattice = calculatelattice (latticeAsList)
val portsTolLabels = list2Fun portLabelPairs;
val initialPortVarEnv: (Value Var * port) list = nil

val warningList = ref nil

fun uniteResults (portVarsEnv,P,Q) = let
val resP = a(portVarsEnv, P)
val resQ = a(portVarsEnv,Q)
in unite(resP,resQ,portslList)
end

and
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a (portVarsEnv, STOP) = noOutput (portsList)
| a (portVarsEnv, INPUT (aPort,avVar) --> P) =
a(portVarskEnv O (aVar, DEFINED aPort), P)
| a (portVarsEnv, OUTPUT (aPort,value) --> P) =

let val (this, isEncrypted) =
calculateValue (portVarsEnv, lattice, portsToLabels, value)

val Pres = a(portVarsEnv,P)
in (if isEncrypted then
warningList := ENCRYPTION :: (!warningList)
else ();
if not ((#precedes lattice)
(this, getValue (portsTolLabels (aPort))))
then
warningList := PORT_HAS HIGH DATA(aPort) :: (!warningList)
else ();
addOutput (Pres,aPort, this))
end
| a (portVarsEnv, ATOMIC (anEvent) --> P) = a(portVarsEnv,P)
| a (portVarsEkEnv, P \/ Q) = uniteResults(portVarsEnv,P,Q)
| a (portVarsEnv, P <|> Q) = uniteResults (portVarsEnv,P,Q)
| a (portVarsEnv, P ||| Q) = uniteResults (portVarsEnv,P,Q)
| a (portVarsEnv, MU(P,Q)) = a(portVarsEnv,Q)
| a (portVarsEnv, PVAR V) = noOutput (portsList)
| a (

portVarskEnv, IF THEN ELSE (value, P, Q)) =
let val (lowerBound,isEncrypted) =
calculateValue (portVarsEnv, lattice, portsToLabels, value)
in (if isEncrypted
then warningList := ENCRYPTION :: (!warningList)
else ();
obeyLowerBound (lowerBound, portslList, lattice,uniteResults (portVarsEk
nv,P,Q)))
end
in (a (list2Fun(initialPortVarEnv), process), !warningList)
end;

(* This function takes a process and returns the port types
(as a function from port names to port types) *)
fun analysePortTypes (portsList: port list, process) =

let fun
aa (portTypes,STOP) = portTypes
| aa (portTypes, INPUT (aPort,aVar) --> P) =
aa (addPortType (portTypes, aPort, INPUT_ PORT),P)
| aa (portTypes, OUTPUT (aPort,value) --> P) =
aa (addPortType (portTypes, aPort, OUTPUT_ PORT),P)
| aa (portTypes, ATOMIC (anEvent) --> P) = aa(portTypes,P)
| aa (portTypes, P \/ Q) = aa(aa(portTypes,P), Q)
| aa (portTypes, P <|> Q) = aal(aa(portTypes,P), Q)
| aa (portTypes, P ||| Q) = aa(aa(portTypes,P), Q)
| aa (portTypes, MU(P,Q)) = aa(portTypes,Q)
| aa (portTypes, PVAR V) = portTypes
|

aa (portTypes, IF THEN ELSE(value,P,Q))=aa(aa(portTypes,P), Q)
in aa(initialPortTypes (), process)
end;

(* This is the only function to be used.
This is similar to analyse, but the third argument is a mapping
from ports to lists of securityLabels. Returns a value of
analyseResultType *)
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fun analyseGeneral (latticeAsList,

portslList,
portLabellistPairs,
process) =
let val labellists = List.map (fn (a,b) => b) portLabellistPairs
val firstElements = List.map (fn (a,b) => a)
portLabellistPairs
val allPermutations = generalCartesian labellists
val warningList = ref nil
val portTypes = analysePortTypes (portsList, process)
val allPortlLabelPairs = List.map (fn (aPermutation) =>

combine (firstElements, aPermutation)) allPermutations
val allResults =
List.map (fn (aPortLabelPair) =>

let val (res,newWarningList) =
analyse (latticeAsList, portsList, aPortLabelPair, process)

in (warningList := !warningList @ newWarningList;
res)
end
) allPortLabelPairs
val uniting = fn (rl,r2) => unite(rl,r2,portslList)

val result =
List.foldl uniting (noOutput (portsList)) allResults
in {outputs = result,
warninglList = removeDuplicates(!warningList),
portTypes = portTypes}
end;
(***** Sample runs of Analyze function******x*)
(* analyse is called with 4 arguments.
The first argument is the lattice: *)
(* A lattice is given as a list of string pairs. The strings
correspond to Security Labels *)
val latticeAsList = [("public","lowl"), ("public","low2"),
("lowl", "high"), ("low2","high")1;
(* The second argument is the list of all ports the process may
input/output *)
val portsList = [ "portl", "port2", "port3", "portd"];

(* The third argument is a mapping between ports and lists of
security labels.
In the example below, the input from portl may be lowl or low2,
the input from port2 is low2, the input from port3 is public,
and the input from port4 is high.
User should give a non-empty list for all ports even if there
is no input from that port. Otherwise BADINPUT exception will
be raised. *)

val portlLabellistPairs = [ ("portl"™, ["lowl", "low2"]),
("port2", ["low2"]),
("port3", ["public"l]),
("port4™, ["high"])];

(* The fourth argument is the process. The Datatype for processes
is given line 55. Here are some examples: *)

val processl = INPUT ("portl", "x") --> (INPUT ("port2", "y") -->
(OUTPUT ("port3"™, DEFAULT ["x", "y"]) --> STOP));
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(* processl inputs x from portl than inputs y from port2 and than
outputs a value to port3 that is
dependent on x and y and stops. *)

(* We call analyseGeneral with these four arguments: *)
val result = analyseGeneral (latticeAsList, portsList,
portLabellistPairs, processl);

(* result is a record of analyseResultType.

Use (#outputs result) to get the outputs to the ports,
(#warningList result) to see if there is a security violation,
(#portTypes result) to get the types of the ports.

*)

(* The analyser returns a function from ports to Security Label
lists. In this example above, result will be a function that takes
a port as argument and returns a list of securityLabels.
For example:
> (f#outputs result) "portl";
nil
> (#outputs result) "port3";
["low2", "high"] *)
(* Since port3 is public, there is a security violation:
> (#warningList result);
[PORT_HAS HIGH DATA "port3"]
If port3 were of type "low2", there would be still a violation,
since it is *possible* that a high value will be written to port3.
> (#portTypes result) "portl";
INPUT PORT
> (#portTypes result) "port2";
INPUT PORT
> (#portTypes result) "port3";
OUTPUT_PORT
> (#portTypes result) "portd";
UNUSED_PORT

*)

(* Another example explaining ENCRYPTION warning: *)

val process2 = INPUT ("portl", "x") --> (INPUT ("port2", "y") -->
(OUTPUT ("portd4", FIXED("low2", ["x", "y"])) --> STOP));
val result2 = analyseGeneral (latticeAsList, portslist,

portLabellistPairs, process2);
(* Since the value from portl can also be of type lowl, we cannot
in general declare the value written to port4 as low2. (Unless
there is an encryption)

> (#warningList result2);
[ENCRYPTION]

*)
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