
DESIGN AND IMPLEMENTATION OF A SOFTWARE DEVELOPMENT

PROCESS MEASUREMENT SYSTEM

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

ÖZGÜR ERALP

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR DEGREE OF

MASTER OF SCIENCE

IN

THE DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

JANUARY 2004

Approval of the Graduate School of Natural and Applied Sciences

 Prof. Dr. Canan Özgen

 Director

I certify that this thesis satisfies all the requirements as a thesis for the
degree of Master of Science.

 Prof. Dr. Mübeccel Demirekler

 Head of Department

This is to certify that we have read this thesis and that in our opinion it is
fully adequate, in scope and quality, as a thesis for the degree of Master of
Science.

 Prof. Dr. Semih Bilgen
 Supervisor

Examining Committee Members

Prof. Dr. Uğur Halıcı _________________________

Prof. Dr. Semih Bilgen _________________________

Assoc. Prof. Dr. Onur Demirörs _________________________

Asst. Prof. Dr. Cüneyt Bazlamaçcı _________________________

Levent Alkışlar (Ms.) _________________________

ii

ABSTRACT

DESIGN AND IMPLEMENTATION OF A SOFTWARE

DEVELOPMENT PROCESS MEASUREMENT SYSTEM

ERALP, Özgür

MSc. , Department of Electrical and Electronic Engineering

 Supervisor: Prof. Dr. Semih BİLGEN

January 2004, 142 pages

This thesis study presents a software measurement program. The

literature on software measurement is reviewed. Conditions for an

effective implementation are investigated. A specific measurement system

is designed and implemented in ASELSAN, Inc. This has involved

organizational as well as technical work. A software tool has been

developed to assist in aggregating measurements obtained from various

CASE tools in use. Results of the implementation have started to be

achieved. Lots of useful feedbacks have been returned to the organization

as a result of analyzing of the measurement data.

Keywords: Software Measurement, Software Metric, PSM, GQM

iii

ÖZ

YAZILIM GELİŞTİRME SÜRECİ İÇİN BİR ÖLÇÜM SİSTEMİ

TASARIMI VE GERÇEKLEŞTİRİLMESİ

ERALP, Özgür

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Semih BİLGEN

Ocak 2004, 142 sayfa

Bu tez çalışması, bir yazılım ölçüm programını sunmaktadır. Yazılım

ölçümü ile ilgili literatür incelenmiş, ve etkili bir uygulama için şartlar

araştırılmıştır. ASELSAN AŞ özelinde bir ölçüm sistemi tasarlanmış ve

organizasyonda uygulanmıştır. Bu, hem organizasyonel hem de teknik

çalışmayı içermektedir. Kullanımdaki çeşitli CASE araçlarından elde

edilen ölçüm verilerinin analizini kolaylaştırmak amacı ile bir yazılım

aracı geliştirilmiştir. Uygulanan ölçüm programının sonuçlarına

erişilmeye başlanmıştır. Verilerin analiz edilmesiyle, organizasyona birçok

yararlı bilgi geri dönüşü gerçekleşmektedir.

Anahtar Kelimeler: Yazılım Ölçüm, Metrik, PSM, GQM

iv

ACKNOWLEDGEMENTS

I would like to thank the following people:

• Prof. Dr. Semih Bilgen, for his help, professional advice and

valuable supervision during the development and the

improvement stages of this thesis. This thesis would not be

completed without his guidance and support.

• The members of PAT-G team in MST Division of ASELSAN Inc.

that are Levent Alkışlar, Ayşın Zaim, Özgü Özköse Erdoğan, Güliz

Aykut, Aydan Doğru, Zühre Yılmazer, for their contributions on

this study.

• My parents, Avni and Semahat Eralp; my brother, Arda Eralp, for

their great encouragement and continuous morale support.

v

TABLE OF CONTENT

ABSTRACT ...iii

ÖZ.. iv

ACKNOWLEDGEMENTS .. v

TABLE OF CONTENT.. .. vi

LIST OF FIGURES ... ix

LIST OF TABLES ... xi

LIST OF ABBREVIATIONS AND ACRONYMS....................................... xv

CHAPTER

1. INTRODUCTION..1

1.1. Measurement Process ...1

1.2. The Purpose and Scope of the Study..5

1.3. Basic Measures...6

1.4. Types of Metrics ..8

1.5. Outline ..9

2. INITIATION STAGE ..11

2.1. The Organizational Goals ..11

2.2. How? ...13

2.3. Applications At Industry ...15

vi

2.4. At the Organization ..16

3. ANALYSIS STAGE..19

3.1. Introduction to Analysis Stage ..19

3.2. Identify Project Issues...21

3.3. Prioritize Issues ...24

3.4. Mapping to Common Issues..27

3.5. Measurement Scope..30

4. DESIGN STAGE ..31

4.1. Introduction to the Design Stage ..31

4.2. Issue Measure Mapping ...33

4.3. Schedule Measures..37

4.4. Product Quality Measures ...48

4.5. Resource and Cost Measures...53

4.6. Size and Stability Measures ...59

4.7. Roles and Responsibilities ...67

4.8. Tailoring ...69

5. BUILD STAGE..71

5.1. Introduction to Build Stage..71

5.1.1. Characterize Environment ...73

5.1.2. Identify Measurement Opportunities74

5.1.3. Specify Measurement Implementation Requirements75

5.2. Measurement Plan For System41 Project...77

vii

5.2.1. Introduction ...77

5.2.2. Project Description ..77

5.2.3. Measurement Roles and Responsibilities77

5.2.4. Description of Project Issues..77

5.2.5. Measurement Specifications ..80

5.2.6. Reporting Mechanisms and Periodicity...................................97

6. IMPLEMENTATION STAGE ...98

6.1. User’s Guide for The YazOlc-Yardim Tool98

6.2. Historical Data Collection..99

6.2.1. Reports of Problem Report Status Measurement99

6.2.2. Overview of the Problem Report Status Measurement.......103

6.2.3. Reports of Defects Measurement ..105

6.2.4. Overview of the Defects Measurement110

6.2.5. Review Status Measurement ...112

6.2.6. Overview of the Review Status Measurement113

6.2.7. Source File and Complexity Measurements..........................114

7. DISCUSSION AND CONCLUSIONS ..119

REFERENCES ...127

APPENDICES ...129

A - YAZOLC-YARDIM ...129

B - MEASUREMENT REPORT ...142

viii

LIST OF FIGURES

Figure

1 - Measurement Process Life-Cycle ..……………………………...

2 - Basic Measures ……………………………………………………

3 - Types of Metrics ………………………………………….……….

4 - The Issue Identification Model ………….…………………........

5 – Selecting Measures ……………….………………………………

6 – Measurement Selection Mechanism ……….…………………...

7 – The Three Components of a Measurement Program ………...

8 - Evolution of Project Issues ………………………………………

9 - Sub-Tasks of Build Stage ………………………………………...

10 - An Overview of the Measurement Process…………….……..

11 - System11 Measurement Result ……………………….………..

12– System60 Measurement Result ………………………………...

13 – System20 Measurement Result ………………………………..

14 – Histograms of All Measurement Results …………….……….

15 – System20 Defects Measurement Results …...………………...

16 – System37 Defects Measurement Results ……...............……...

2

6

8

22

32

33

69

71

72

79

100

101

102

103

106

108

ix

17 – DSP SCU Measurement Result …………..…………………....

18 – Control SCU Measurement Result ……..……………………..

19 – DSP SCU Measurement Result ……..…..……………………..

113

116

118

x

LIST OF TABLES

Table

1 - The Goals and Issues Relations………......……………………...

2 - The Organizational Goals and Issue(s)……..…………..………

3 - Issue Prioritization …………..…………………………..……….

4 - Goal and Common Issue Relation ……….………………..........

5 – Common and Related Issues ………….…………………...……

6 – Prioritized Goals ………………………………….............……...

7 – Measurement Categories and Related Questions………...…...

8 - Common Issue Mapping to Categories….………………..……

9 - Related Issues and Measurement Categories …………...……..

10 - I-C-M Mapping …………………………………………...……..

11 - Schedule Measurement Candidates ….…..……………..……..

12– The Milestone Dates Measure …………...…………...………...

13 – The Requirements Status Measure ………………......………..

14 – The Problem Report Status Measure ……….…………..…….

15 – The Review Status Measure ………………......………..……...

16 – The Change Request Status Measure ……...………......……...

17 – The Component Status Measure …………….………..……....

14

25

26

27

29

29

34

35

35

36

38

41

42

43

44

45

46

xi

18 – The Test Status Measure ……………….....……………..……..

19 – Product Quality Measurement Candidates …………..….…..

20 - The Defects Measure …………………………...……………….

21 - The Technical Performance Measure ……..………...…..……..

22– The Cyclomatic Complexity Measure …………….…………...

23 – Resource and Cost Measurement Candidates ………...……..

24 – The Effort Measure ……………………………….....………….

25 – The Staff Experience Measure ………………….........………...

26 – The Staff Turnover Measure ……………………….…...……...

27 – Product Size and Stability Measurement Candidates…….....

28 – The Database Size Measure ……………………..……………..

29 – The Components Measure ……………………..………….…..

30 - The Interfaces Measure …………………………...…………….

31 - The Source File Measure ……..…………………..….…..……..

32– The Requirements Measure ………………...………..………...

33 – Data Sources in MST Division …………………..………...…..

34 – Common and Related Issues ……………………….………….

35 – Prioritized Goals ……………………...……................………...

36 – Milestone Dates Specification ………..……..……….....……...

37 – Requirements Status Specification…………………..………...

38 – Problem Report Status Specification …....…………...………..

47

48

50

51

52

54

56

57

58

60

62

63

64

65

66

75

78

78

80

81

82

xii

39 – Review Status Specification ………………………...…..….…..

40 - Change Request Status Specification…………………………..

41 - Component Status Specification ……………...…..……..……..

42– Test Status Specification ………………...…..………...………...

43 – Defects Specification ………………………………..……...…..

44 – Technical Performance Specification ……….............…..…….

45 – Cyclomatic Complexity Specification ………………...….…...

46 – Effort Specification ……………………………….....…...……...

47 – Staff Experience Specification………………………..………...

48 – Staff Turnover Specification ……………...…………......……..

49 – Database Size Specification ……………...……………..….…..

50 - Components Specification …………...………………..……….

51 - Interfaces Specification ……..………………………..…..……..

52– Source File Specification ………………...…..………..………...

53 – Requirements Specification …………………………...…...…..

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

xiii

LIST OF ABBREVIATIONS AND ACRONYMS

ASELSAN Military Electronics Industry in Turkey

CASE Computer Aided Software Engineering

CMM Capability Maturity Model

COTS Commercial Off-The-Shelf

DSP Digital Signal Processing

GQM Goal Question Metric

GUI Graphical User Interface

I-C-M Issue - Category - Measure

IEC International Electrotechnical Commission

ISO International Organizational for Standardization

KALDER Turkish Quality Association

LOC Line of Code

MST
Microwave and System Technologies Division in

ASELSAN Inc.

NASA National Aeronautics and Space Administration

PAT-G One of Process Action Teams in YİE, called G

PSM Practical Software Measurement

QA Quality Assurance

xiv

QIP Quality Improvement Paradigm

SCU Software Configuration Unit

SDD Software Design Document

SDP Software Development Plan

SEL Software Engineering Laboratory

SIDD Software Interface Design Document

SLOC Source Lines of Code

SRS Software Requirement Specification

WBS Work Breakdown Structure

YİE Software Process Group in ASELSAN Inc.

YMM Software Engineering Department in ASELSAN Inc.

YT Software Test Department in ASELSAN Inc.

xv

CHAPTER 1

INTRODUCTION

1.1. Measurement Process

Software measurement plays an important role in whole software

development activities. Paul Goodman, writer of Practical Implementation

of Software Metrics, claims that the role of software metrics is to enable

engineers and managers to survive in today’s business environment [9].

Measures that are obtained as a result of measurement are the numbers used

to create the metrics, and the metrics are the numbers turned into

information. Managers need a basis for evaluating product quality and

analyzing issues or problems, and a foundation for quantitative control of

the project management and engineering processes. In addition,

measurement provides the insight a manager needs to make decisions

critical to project success [5]. Effective measurement programs help and

succeed them by enabling to develop achievable plans.

1

In 1987 Gabriel Pall defined a process as the logical organization of people,

materials, energy, equipment, and procedures into work activities designed

to produce specified end results [6].

The Figure 1 indicates measurement process life-cycle ([3],[5],[9]). The stages

very resemble well-known software development life-cycle steps. This fact

should not be surprising, because before starting implementation, analysis

and design are fundamental stages in software engineering.

Figure 1 - Measurement Process Life-Cycle

The first stage of measurement process, called “Initiation”, is described in

Chapter 2 in detail. In this stage, the analyst, who can be a person or group,

should understand all organizational goals clearly, since the analyst tailors

measurement process in direction of these goals. If the costume is not

2

suitable, the organization can not put it on. Besides understanding, the

analyst should obtain organizational support and required equipments for

measurement program must be provided.

According to the KALDER survey in Turkey about difficulties in software

measurement, the most encountered difficulties are in data collection

process, organizational participation and support. The other difficulties are

in analysis of the gathered data and the measurement plan [7].

In the “Analysis” stage, which is described in Chapter 3 in detail, project

issues must be identified and prioritized. Also, the measurement scope

should be well-defined according to project(s), and phase(s) of software life-

cycle. Not excess, only adequate measures should be implemented to

address those issues.

In the “Design” stage, which is described in Chapter 4 in detail, selecting

appropriate measures is very critical for the measurement process. Only

required and applicable measures should be implemented based on the

issues and objectives of the organization. The roles and responsibilities are

also identified in this stage.

The measurement roles and responsibilities bring additional costs to budget.

The source of data brings 2 %, analysis and packaging brings 7 %, and

technical support brings 4 % additional costs over budget approximately [4].

3

The output of the “Build” stage is a Measurement Plan. This plan is actively

used at rest of the measurement process. This stage is described at Chapter 5

in details.

The last stage of software measurement process, called “Implementation”, is

described at Chapter 6 in details. There are 3 sub-tasks in this stage.

• Collect Data: At first, the data or information should be taken

from source (Access Data), then ensure that the accessed data is

relevant to requirements (Verify Data), finally normalize them to

use in analysis (Normalize Data) [5].

• Analyze Issues: This sub-task has some direct relations with

technical adequacy, development performance, growth and

stability, resources and cost, schedule and progress and product

quality. Estimation produces projections of software size, effort,

schedule and quality. Feasibility Analysis deals with the technical

accuracy and realism of plans, estimates or assumptions.

Performance Analysis determines if the project is meeting targets

and goals.

• Make Decision: It includes reporting, alternative selection and

action. Not every analysis result requires action [5]. The one

important point is that people are the most significant factor in

software measurement success [11]. While making a decision, this

point should not be disregarded.

4

1.2. The Purpose and Scope of the Study

In this thesis study, a software measurement program has been designed,

and then implemented in order to provide a software development process

measurement system at YMM Departments of MST Division in ASELSAN

Inc. The objective of the study is to demonstrate the viability of software

measurement process life-cycle in an existing organization.

There are three key reasons for implementing a software measurement

program [4].

• Understanding: The fundamental requirement is to gather

information about what organization does and how it operates.

Better understanding leads to better management of software

projects and improvements in process. It supports the managers

make correct decisions.

• Management: Measurement is intended to help the project

manager, to make a reasonable decision, not to make an automatic

decision. Measurement also assists management processes such as

planning, estimating, tracking and validating.

• Guiding Improvement: The primary objective of any software

engineering organization is to produce a high-quality product

within schedule and budget. This goal can be achieved by

improving the software development process. Process improvement

can be accomplished by modifying managerial or technical

5

processes. By measurement program, the organization can find

weak points in its processes.

Different levels within the same organization have different information

needs. Executive managers usually make investment decisions with respect

to software process technology and tools. Project managers make decisions

about specific technologies and resources to best satisfy project objectives.

As a result, the reason for applying software measurement usually depends

on information needs.

1.3. Basic Measures

In Figure 2, the core measures and their application phases are shown

clearly. The important attributes in each type of measure are addressing the

three key reasons (Understanding, Managing, and Guiding Improvement)

and being easy to collect and achieve.

Figure 2 - Basic Measures [4]

The basic measures are cost, errors, process characteristics, project dynamics

and project characteristics [4].

6

• Cost: It can be used for understanding and managing software

processes and products. Its scope depends on the organization’s

goal. Measurement frequency is at least monthly or more frequently

if needed.

• Errors: A better understanding of characteristics of software

defects is necessary to reach higher quality and greater reliability.

This measurement should be applied whenever the controlled unit

is modified.

• Process Characteristics: It is applied at the end of acceptance

testing phase. It is used for investigation of the effectiveness of

various software engineering methods and techniques.

• Project Dynamics: It can be used for controlling the project

dynamics that are changes in product requirements and source

code. Measurement frequency can be weekly, biweekly or monthly.

• Project Characteristics: It is applied at the end of acceptance

testing phase. It can be broken down into 5 categories. The first is

“Development Dates” which includes beginning and ending of each

life-cycle phase and final project completion date. The second is

“Total Effort” which includes hours used by programmers,

managers and support services. The third is “Project Size” which

includes total size of software product and the total number of

components within the product. The fourth is “Component

7

Information” which includes collecting size and origin information

for software components and defines components as separately

compliable units. And the last is “Software Classification” as

Business/Administrive, Scientific/Engineering, Embedded/Non-

Embedded, Real Time/Non-Real Time, and Secure/Nonsecure.

1.4. Types of Metrics

Based on their intended use, software metrics can be classified as [3]

• Process Metrics for improving the software development and

maintenance process,

• Product Metrics for improving software product,

• Project Metrics for tracking and improving project.

In Figure 3, the types of quality metrics and their relationships are shown

based on the ISO/IEC 9126.

Figure 3 - Types of Metrics [2]

The internal metrics can be applied to a software product during its

development stages and they provide features to measure the intermediate

8

deliverables, and predict final product. The external metrics can only be

used during the testing stage of the life cycle process and during any

operational stages. The quality in use metrics measure the level of product

meets the specified needs and the specified goals. This type of metrics can be

used in a realistic system environment [2].

1.5. Outline

Rather than the traditional approach of separating the literature study and

the description of specific application, presentation of the approach taken in

a specific project realized at ASELSAN Inc. right after a review of the

literature on each stage of the measurement process has been preferred in

this report.

Hence, this thesis is organized as follows; each chapter is presenting a brief

review of related literature, followed by a description of how each stage has

been realized in ASELSAN Inc.:

• In Chapter 2, the INITIATION stage of measurement process is

described in detail.

• In Chapter 3, the ANALYSIS stage of measurement process is

described in detail.

• In Chapter 4, the DESIGN stage of measurement process is described

in detail.

• In Chapter 5, the BUILD stage of measurement process is described in

detail.

9

• In Chapter 6, the IMPLEMENTATION stage of measurement process

is described in detail.

• Finally, some discussion and concluding remarks are given in

Chapter 7.

10

CHAPTER 2

2.

INITIATION STAGE

2.1. The Organizational Goals

The first stage of measurement process life-cycle is INITIATION. At this

stage, the key activities are understanding organizational goals and

obtaining organizational support. At the end of this stage, everyone in the

organization should understand what measurement process is, and why a

measurement program is required. In order to do that, a briefing was given

in MST division of ASELSAN Inc.

The prerequisites for applying a software measurement program can be

enumerated. These are [13]

• A cost accounting system,

• A software configuration management system, and

• A problem reporting/corrective action system.

11

In ASELSAN Inc., the Rational’s ClearCase tool is actively used for software

configuration management, and the Rational’s ClearDDTS tool is actively

used for problem reporting/corrective action.

What about the reflections of these prerequisites in software industry in

Turkey?

The KALDER survey has impressive results and one of them is about the

software configuration management system [7]. From this survey, in

approximately 35% of the firms, written procedures and standards are

deployed but they are partly applied into the process. In addition,

approximately 30% of the firms apply some rules but they are not written

anywhere. The responsibility of software configuration management is

given to project managers in approximately 70% of the firms.

The typical organizational goals are:

• Increasing functionality,

• Reducing cost,

• Reducing time to market (improve timing in schedule), and

• Improving product quality [6].

Apart from that, the organization specific goals can be declared according to

its specific structure.

Understanding the organizational goals consists of goals, objectives, and

expectations.

12

2.2. How?

There are two studies that have terrifying results about software projects

and measurement process. First was carried out in 1995 by Standish Group

and included software projects status. The Standish Survey was applied

over 800 software projects and the results were:

• 52.7 % were completed but incurred cost and schedule overruns,

• Average cost overrun was 189%,

• Average schedule overrun was 222%, and

• 31.1% of all projects were cancelled [3].

These results indicate that the software development process must be

controlled anyway, and one method is measuring.

The second survey was done by Howard Rubin. The result is

• Within the 610 measurement programs in 1998, only 140

survived after two years [11].

In other words, only one of the five started measurement programs had

been survived within two years.

At the first stage of measurement process life-cycle, the organizational goals

and objectives are defined. At the second stage, project issues that depend

on these defined goals are identified and prioritized. After doing that the

appropriate measures are selected. As a result, the measures are selected by

goals, objectives, and issues. To make a correct decision about measures, the

organizational goals and objectives should be defined correctly at the fist

13

stage. Table 1 shows a vision of these stages. It can be very useful while

defining goals.

Table 1 - The Goals and Issues Relations [6]

One of the most important points is that each one of the selected measures

should be matched with at least one or more of the organizational goals,

objectives, and issues. Conversely, each organizational goal, objective, or

issue should be matched with corresponding measure(s).

GQM is one of the popular methods for selecting appropriate metrics. This

method starts with defining organizational goals and objectives. The goals

constitute questions. Finally, the answers of questions form the metrics. In

this method, the goals must have some information about object, purpose,

quality focus, viewpoint, and environment [12]. In short view,

A GOAL → [object] [purpose] [quality focus] [viewpoint] [environment]

14

2.3. Applications in the Industry

First application example is from Motorola [13]. They use metrics for both

process improvement and in-process project control. For Motorola,

measurement is not a goal; the goal is improvement with measurement,

analysis, and feedback [13]. They adopt GQM model to select appropriate

metrics for their measurement program.

An example of use of GQM model for defining metrics is from [13]:

Goal: Decrease Software Defect Density

 Question1: What is the currently known effectiveness of the defect

detection process prior to release?

 Metric 1: Total Defect Containment Effectiveness.

 Question 2: What is the currently known containment effectiveness of

faults introduced during each constructive phase of software development

for a particular software product?

 Metric 2: Phase Containment Effectiveness for phase i.

Second application example is from Nokia [14]. They have derived

“Nokiaway” metrics program from GQM method. There are some

differences between GQM and Nokiaway. GQM identification goals include

characterizing projects and organizations, and identifying improvement of

both measurement and GQM goals. Nokiaway uses a quality metrics library

instead of defining a new set of metrics for each project. In GQM method,

person who takes part in the operative tasks in measurement program is a

15

full-time employee, on the other hand, he is a part-time employee in

Nokiaway method [14].

Each organization has special objectives and goals. The author’s opinion is

that it is too hard to implement the popular methods, which are GQM and

PSM, without modification. The mixture of methods can be used in the

measurement program. The goal identification stage of GQM is very

powerful, and the GQM goal definition, which is mentioned at the previous

part, should be used. However, the selection of appropriate measures

becomes very easy by using the PSM guide.

In KALDER Survey 2001 in software industry, names of the applied

software measures are asked to the firms [7]. Approximately 50% of the

answers contain the number of requirements, approximately 45% contain

realized effort (person-hours), and approximately 40% contain software

errors.

Another important question in the survey is about the obstacles in adopting

the measurement process. Approximately 65% of the answers indicate big

work-load and approximately 40% refer to the reluctance of staff [7].

2.4. At the Organization

ASELSAN Inc. is the biggest military electronics industry firm in Turkey; in

addition the MST Division has mostly system projects. These projects

include huge software components. The process and standards that contain

managing and engineering activities are well defined in the organization. As

16

a result of the investigation in 2002 done by Undersecretariat for Defense

Industries (Savunma Sanayi Müsteşarlığı), ASELSAN Inc. has obtained

“Class-A” software organization qualification.

The error tracking and configuration management systems are actively used

at the organization. However, the author thinks that the collected data

should be analyzed more effectively. One reason of the scheduling problems

in organization is lacking of detailed both software estimation and risk

management. The absence of sufficient productivity analysis may be another

reason. The effort is measured only as person-month, but systematic

calculation of lines of code or module number hasn’t been done yet except

some projects. The product performance and reliability are important points,

so organizational managers indicate that they want to work on these issues

and improve them.

In order to realize deployment of software measurement process in MST

Division, the process action team PAT-G has been formed in organization.

The members are

• L. A., Headmaster of Software Engineering Department,

• A. Z., Headmaster of Software Engineering Department,

• Ö. Ö. E., Technical Leader in Software Engineering,

• G. A., Technical Leader in Software Testing Department,

• A. D., Principal Engineer in Product Quality Department,

• Z. Y., Senior Engineer in Product Quality Department,

17

• Ö. E., Engineer in Software Engineering Department.

The organizational goals have been listed and prioritized respectively by

members of PAT-G,

1. Track and analyze the schedule to improve and minimize it

from the viewpoint of software development team leader,

2. Analyze the software product and its functionality to improve

the performance,

3. Analyze the development cost in order to minimize it,

4. Evaluate and analyze the productivity to improve it from the

viewpoint of department manager, and

5. Collect and analyze required data to make software estimation.

Measurement is a tool to illuminate the project situation to managers [15].

This tool can be more useful and effective when one first understand exactly

what one want to accomplish. The defined organizational goals contain this

information.

18

CHAPTER 3

3. ANALYSIS STAGE

3.1. Introduction to Analysis Stage

Quality Improvement Paradigm (QIP) is defined by V.R. Basili, famous

software engineering expert, based on the reusing experience [18].

Experience can be more useful when it is recorded and suitably packaged.

The Quality Improvement Paradigm is identified by steps as

1. Characterize the project and its environment,

2. Set quantifiable goals for successful project performance and

improvement,

3. Choose the appropriate process model and supporting models,

4. Execute the process, construct the products, collect and validate

the prescribe data, and analyze it to provide real-time feedback for

corrective action,

5. Analyze the data to evaluate the current practices, determine

problems, record findings, and make recommendations for future

projects,

19

6. Package the experience in the form of updated and refined

models and save it in an experience base to be reused on future

projects [18].

Software measurement is a necessary component for developing experience

and retrieving knowledge on software development in the Quality

Improvement Paradigm.

In ASELSAN Inc., the measurement program will be firstly deployed in

detail, so one of the outcomes of this thesis will be the starting point of

metric-experience database.

At analysis stage, issues must be identified and prioritized. Also, the scope

of measurement program should be defined.

The organizational goals and issues are related to each other tightly. In order

to define project issues, it is necessary to understand what can be an issue. A

problem, a risk, or a lack of information can be an issue [5].

• A problem: As an example, development team has some newly

graduated members who lack sufficient skills about the project area.

• A risk can be noticed but it is not certain. A risk is a potential

problem. As an example, as a result of the slower than estimated

speed of project development, slipping in the schedule can occur.

• A lack of information means that the available information is

inadequate; e.g., the lack of information about project size to be

developed.

20

It is obvious that not all defined issues are problems. In addition, issue

identification and tracking operation may protect the project from probable

problems. These issues can vary from project to project, and also change

over time within a given project. As a result, besides the issues defined at

the beginning of the project, new issues may appear while the project carries

on. Furthermore, the list of issues should be revisited periodically during the

project life cycle.

In ISO 15939, accepting of requirements for measurement activity includes a

clear statement that the scope of measurement shall be identified [1]. At this

point, the effective questions which should be answered are:

• Which projects should be included in the organization’s

measurement program?

• Which phases of the software life cycle should be included?

The answers to these two questions may be a single project, two projects,

and one phase of software life cycle.

• Which elements of the project staff should be included?

For example, the effort of one or more level managerial support (i.e.,

department manager, software development team leader) can be considered

as an answer.

3.2. Identify Project Issues

In Figure 4, the model which is derived from Practical Software and Systems

Measurement (version 4.0b) is shown. The difference between PSM model

21

and the derived model is the direct usage of defined organizational goals in

the derived model. It has filtering properties in order to prevent unnecessary

measures and provide measures within appropriate scope. As emphasized

in the previous parts, measurement programs should be driven by

organizational goals.

Figure 4 - The Issue Identification Model [5]

When performing the issue identification process, there are useful sources

that can help to reveal the correct ones. The sources are [5]

• Risk Assessments: Risk assessment may point to potential

requirements, technology, process, cost, and schedule issues. Risk

may be identified informally in the absence of structured risk

management process.

Identify
Project
Issues

Prioritize

Issues

Risk Assessments

Map to

Common

Issues Constraints and

Assumptions

Product

Acceptance

Criteria

Required

Software

Technologies

External

Requirements

Experience

The

Organizational

Goals

22

• The developer’s and manager’s experience with similar past

projects.

• Product Acceptance Criteria: If there is a doubt about the

systems capability to meet defined acceptance criteria, then

satisfaction of these criteria should be marked as an issue.

• Required Software Technologies: Entire risk assessment can find

out this type of issue.

• External Requirements

• Constraints and Assumptions: For example, the lack of

information about effort and schedule estimates should be treated

as issues. Schedules and budgets are usually inflexible constraints

so if some deviations threaten the project success then they are also

issues.

The source of identified issues is mostly the lack of information to determine

the state. In the relation of the identified goals at previous stage, the issues

can be listed as follows.

The risks are

1. The intensive project schedule,

2. Unstable requirements,

3. Constant budget, and

4. Staff experience.

23

The lack of information about

5. Whether project going on schedule or not,

6. Whether scheduled milestones meeting or not,

7. Whether software product ready to delivery or not,

8. Whether all identified problems resolved or not,

9. Whether staff effort is adequate or not,

10. Whether the number of staff is adequate or not,

11. How much the requirements are changing, and

12. How much the product size is changing,

13. How much difficult the software is to maintain.

In ISO 15939, the requirement of prioritization of the identified information

needs is stated clearly. The identified information needs are based on goals,

constraints, risks, and problems of the organizational unit. Another

important statement is that the selected measures should reflect the priority

of the information needs [1].

3.3. Prioritize Issues

In Table 2, the relations between the identified organizational goals listed in

Section 2.4 and issues are shown.

24

Table 2 – The Organizational Goals and Issue(s)

The issues have two important properties, namely their probability and

impact according to [5]. Probability contains information about how likely it

will result in a problem. The probability of occurrence can be expressed on a

scale of 0 to 1. In addition, the impact contains information about what

impact it will have on project success if occurs. A scale of 1 to 10 can be used

for the impact of an issue [5].

The prioritization formula is from PSM methodology [5] as

Priority = [Probability x Impact].

Table 3 is formed with average of given values from members of the PAT-G.

Goal # Related Issue(s)

1
The risk of the intensive project schedule.
The lack of information about whether project going on schedule or not.
The lack of information about whether scheduled milestones meeting or not.

2

The lack of information about whether software product ready to delivery or
not.
The lack of information about whether all identified problems resolved or not.
The lack of information about how much difficult the software is to maintain.

3 The risk of constant budget.

4
The risk of staff experience.
The lack of information about whether staff effort is adequate or not.
The lack of information about whether the number of staff is adequate or not.

5
The risk of unstable requirements.
The lack of information about how many the requirements are changing.
The lack of information about how much the product’s size is changing.

25

Table 3 - Issue Prioritization

ISSUE PROBABILITY IMPACT TOTAL

The intensive project
schedule 0,9 8 7,2

Unstable requirements 0,8 7 5,6

Constant budget 0,5 4 2,0

Staff experience 0,6 6 3,6

Whether project going
on schedule or not 0,7 7 4,9

Whether scheduled
milestones meeting or
not

0,6 7 4,2

Whether software
product ready to
delivery or not

0,6 7 4,2

Whether all identified
problems resolved or
not

0,6

X

7

=

4,2

How much difficult
the software is to
maintain

0,7 0,6 4,2

Whether staff effort is
adequate or not 0,9 8 7,2

Whether the number
of staff is adequate or
not

0,6 6 3,6

How much the
requirements are
changing

0,7

7

4,9

How much the
product’s size is
changing

0,4

3 1,2

26

3.4. Mapping to Common Issues

The defined organizational goal and common issue relation is exhibited by

using [5] in Table 4.

Table 4 - Goal and Common Issue Relation [5]

In Practical Software and Systems Measurement Guide, there are seven

“common issue areas” which contains the most project-specific software

issues based on experiences [5]. The seven common software issues are as

follows:

Goal # Related Common Issue Questions Addressed

1 Schedule and Progress
-Is the project meeting scheduled milestones?
-Are critical tasks or delivery dates slipping?
-Is capability being delivered as scheduled in
incremental builds and releases?

2 Product Quality

-Is the product good enough for delivery?
-Are identified problems being resolved?
-How difficult is it to maintain?
-Does the target system make efficient use of
system resources?
-To what extent can the functionality be re-
hosted on different platforms?
-Are operator errors within acceptable bounds?
-Are failure rates within acceptable bounds?

3 Resources and Cost -Is project spending meeting budget and
schedule objectives?

4 Resources and Cost -Is effort being expended according to plan?
-Is there enough staff with the required skills?

5 Product Size and
Stability

-How much is the product’s size, content,
physical characteristics, or interfaces changing?
-How much are the requirements and
associated functionality changing?

1. Schedule and Progress issue relates to the achievement of major

milestones and individual work units.

27

2. Resources and Cost issue relates to the balance between the

work to be performed and personnel resources assigned to the

project.

3. Growth and Stability issue relates to the stability of the

functionality or capability required of the software.

4. Product Quality issue relates to the ability of the delivered

software product to support the user’s needs without failure.

5. Process or Development Performance issue relates to the

capability of the developer and the life cycle processes relative to

project needs.

6. Technology Effectiveness or Technical Adequacy issue relates to

the viability of the proposed technical approach.

7. Customer Satisfaction issue relates to the customer’s perception

of product value.

After combining prioritized issues with common issues, the Table 5 is

constructed. It shows the particular relations between organizational and

common issues. Table 6 relates organizational goals to common issues.

28

Table 5 – Common and Related Issues

Table 6 – Prioritized Goals

COMMON ISSUE RELATED ISSUES

1 Schedule and
Progress

- The risk of the intensive project schedule.
- The lack of information about whether project going
on schedule or not.
- The lack of information about whether scheduled
milestones meeting or not.

2 Product Quality

- The lack of information about whether software
product ready to delivery or not.
- The lack of information about whether all identified
problems resolved or not.
- The lack of information about how much difficult the
software is to maintain.

3 Resources and Cost

- The risk of staff experience.
- The lack of information about whether staff effort is
adequate or not.
- The lack of information about whether the number of
staff is adequate or not.
- The risk of constant budget.

4 Product Size and
Stability

- The risk of unstable requirements.
- The lack of information about how many the
requirements are changing.
- The lack of information about how much the
product’s size is changing.

priority GOAL Priority Common Issue

1
Track and analyze the schedule to
improve and minimize it from the
viewpoint of development team leader.

5,4 Schedule and
Progress

2 Analyze the product and its functionality
to improve software performance. 4,2 Product Quality

3 Analyze the development cost in order to
minimize it. 4,1 Resources and Cost

4
Evaluate and analyze the productivity to
improve it from the viewpoint of
department headmaster.

4,1 Resources and Cost

5 Collect and analyze required data to make
software estimation. 3,2 Product Size and

Stability

29

3.5. Measurement Scope

The three questions that can be informative about which projects should be

included at which phases of the software life cycle with which elements of

the project staff, have been listed above in section 3.1. With the scope of this

activity, all stakeholders, individuals or organizations who sponsor

measurement, provide data, and use results, should be identified [5].

Two rules from [6] which can help in defining scope are “focus locally” and

“start small”. It means that the answers to the questions should be as short

as possible.

In ASELSAN Inc., starting one project from analysis stage of software

development life cycle is considered on account of the two important rules

mentioned above. In addition, the stakeholders are identified as PAT-G

team and the software development team leader of the selected project.

30

CHAPTER 4

4. DESIGN STAGE

4.1. Introduction to the Design Stage

The important step in establishing a measurement program is selecting the

measures to be used. [4]

One of the common measurement problems is “No Measurement

Plan/Design”. [19] Furthermore, measurement success critical factors are

listed in [20] as following:

• Collect meaningful, valid, reliable measures,

• Use consistent measures,

• Management must require and use the derived measurement

information,

• Management must be willing to change the process.

The measures, which have these properties, should be clearly defined

according to the related to goals. In addition, the required source data

should be available [20].

31

When selecting measures, the next important rule is “make sure the

measures apply to the goals”. They should directly relate to the defined

goals of the organization. For example, if there is no goal to relate with a

selected measure, it is a waste of time and effort to collect data about this

measure.

Another rule is “keep the number of measures to a minimum” [4].

Steps of selecting and specifying project measures are shown in Figure 5.

Figure 5 – Selecting Measures [5]

After the analysis stage of measurement life-cycle, the issues and the

common issue areas are identified and prioritized. The first step of design

stage, which is identifying measurement categories, should be realized by

using outputs of the previous stage. While implementing all three steps

shown in Figure 5, various types of tables may be used. The tables and

included information are critical elements of success of the design stage.

32

4.2. Issue Measure Mapping

Figure 6 shows the relationship among project issues, common issue areas,

measurement categories, and measures. Selecting a common issue area

narrows the range of categories; also selecting a category narrows the range

of measures that should be considered.

Figure 6 – Measurement Selection Mechanism [5]

One way to determine a category, which addresses an issue, is to consider

the table of measurement categories and related questions as shown in

Figure 7. For critical or high-priority issues, selecting more than one

measurement category should be considered. This will lead to different

types of measures, allowing for more effective analysis.

Using Table 5 from the previous stage and Table 7 below, common issues

are mapped to measurement categories as shown in Table 8. These tables

provide a link between the goals, issues or information needs and the

candidate measures.

33

Table 7 - Measurement Categories and Related Questions [5]

34

Table 8 - Common Issue Mapping to Categories

COMMON ISSUE MEASUREMENT CATEGORY

1 Schedule and Progress Milestone Performance
Work Unit Progress

2 Product Quality Functional Correctness
Supportability and Maintainability

3 Resources and Cost Personnel
Financial Performance

4 Product Size and Stability Physical Size and Stability
Functional Size and Stability

In Table 9, the relationship between the project issues and measurement

category is shown and it is formed by using Table 8 and Table 5.

Table 9 - Related Issues and Measurement Categories
ISSUE MEASUREMENT CATEGORY

- The risk of the intensive project schedule.
- The lack of information about whether project
going on schedule.
- The lack of information about whether
scheduled milestones meeting or not.

Milestone Performance
Work Unit Progress

- The lack of information about whether
software product ready to delivery or not.
- The lack of information about whether all
identified problems resolved or not.
- The lack of information about how much
difficult the software is to maintain.

Functional Correctness
Supportability and Maintainability

- The risk of staff experience.
- The lack of information about whether staff
effort is adequate.
- The lack of information about whether the
number of staff is adequate or not.
- The risk of constant budget.

Personnel
Financial Performance

- The risk of unstable requirements.
- The lack of information about how many the
requirements are changing.
- The lack of information about how much the
product’s size is changing.

Physical Size and Stability
Functional Size and Stability

35

In Table 10, the whole relationship among common issues, measurement

categories, and measures is shown clearly. List of the measures

corresponding to selected categories is also given [5]. Description tables,

where the properties of a measure are listed in detail, are very useful and

suitable for a measurement program.

Table 10 – I-C-M Mapping [5]

36

4.3. Schedule Measures

In the previous section as shown in Table 8, the Milestone Performance and

the Work Unit Progress measurement categories are selected for Schedule

and Progress common issue.

The Milestone Performance measures provide basic schedule and progress

information for key development activities and events. The measures also

help to identify and assess dependencies among development activities.

Monitoring schedule changes helps to assess the risk in achieving future

milestones. This category is applicable to all types and sizes of projects, and

all process models. The measures of this category do not address the amount

of effort to complete a scheduled activity [5]. The measures of Milestone

Performance category are shown in Table 10.

Work Unit Progress measures address progress, based on the completion of

hardware and/or software work units. If objective completion criteria are

defined, Work Unit Progress measures are very effective for assessing

progress at any point in the project. This category is applicable to all types

and sizes of projects, and all product-oriented process models [5]. The

measures of Work Unit Progress category are shown in Table 10.

The list of candidate measures for Schedule and Progress common issues is

presented in Table 11.

37

Table 11 – Schedule Measurement Candidates

The following decisions about candidate measures are made by the author:

CATEGORY MEASURES

Milestone Performance · Milestone Dates
· Critical Path Performance

Schedule

And

Progress

Work Unit Progress

· Requirements Status
· Problem Report Status
· Review Status
· Change Request Status
· Component Status
· Test Status
· Action Item Status

• The Milestone Dates Measure is selected as one of measures in

the software measurement program, since required data for this

measurement can be obtained easily from MS Project tool which is

actively used at the MST-YMM departments of ASELSAN Inc. On

account of the structural properties of software development

process in ASELSAN Inc., the data items for this measure will be

collected for each SCU (Software Configuration Unit) of project.

• In the Critical Path Performance Measure, all schedule

dependencies, and assumptions and causes of dependency between

activities should be identified in order to determine and track

dependent activities. Because of the decision to “focus locally and

start small”, the Critical Path Performance Measure is excluded

from the measurement program.

38

• The Requirements Status Measure is selected on grounds of

applied test activities both in YMM and software test departments

of MST division.

• The Problem Report Status Measure is selected on grounds of

the fact that in the MST Division the most projects use a problem

reporting system, whose name is ClearDDTS.

• The Review Status Measure is selected since review activities in

software development process are in use at entire organization. Due

to properties of the process in organization, the description and

data items in PSM table may need changes.

• The change request system is actively in use at most projects in

the MST Division of ASELSAN. Therefore, the Change Request

Status Measure is selected.

• The Component Status Measure is selected since the necessity of

configuration management system is provided in YMM

departments. The required data can also be obtained from

documentation process in the development.

• The Test Status Measure is selected due to similar reasons in the

selection of the Requirements Status Measure. Both YMM and YT

departments are applied test activities with procedural manner.

• A process for identifying, handling, and tracking action items

is partially available in organization, so the requirement of the

39

Action Item Status Measure is not achieved completely. As a result,

this candidate measure is not selected.

Detailed information about the measures is given in description tables.

• Table 12 contains The Milestone Dates Measure,

• Table 13 contains The Requirements Status Measure,

• Table 14 contains The Problem Report Status Measure,

• Table 15 contains The Review Status Measure,

• Table 16 contains The Change Request Status Measure,

• Table 17 contains The Component Status Measure,

• Table 18 contains The Test Status Measure,

In tables:

• Typical Data Items identifies typical data that is collected in the

measure,

• Typical Attributes are characteristics or properties used to

categorize the data,

• Typical Aggregation Structure is the levels used to aggregate

data to the system level including component, function, or activity,

• Counts Actuals Based On identifies typical exit criteria used to

determine when a measure is counted as an actual.

40

Table 12 - Milestone Dates Measure [5]

Description: Milestone Dates measures the start and end dates for activities, events, and
products. The measure provides a view of scheduled activities. Comparison of plan and
actual milestone dates provides insight into significant and repetitive schedule changes at
the activity level.

Selection Guidance

Project Application
Applicable to all sizes and types of projects.
Included in most government and industry
measurement practices.

Process Integration
Required data is generally obtained from
project scheduling systems and/or
documentation.
Detailed milestones provide a better
indication of progress and allow earlier
identification of problems.
If activities or events are re-planned to
occur at a different time, the original dates
should be retained to observe planned
schedule changes.

Usually Applied During
Project Planning (Estimates)
Requirements Analysis (Estimates and
Actuals)
Design (Estimates and Actuals)
Implementation (Estimates and Actuals)
Integration and Test (Estimates and
Actuals)
Operations and Maintenance (Estimates
and Actuals)

Specification Guidance
Typical Data Items
Start date of activity or event
End date of activity or event

Typical Attributes
Activity or event name
Version of the plan
Increment

Typical Aggregation Structure
Component
Activity

Count Actuals Based On
Documents base lined
Milestone review held
Successful completion of tasks

This measure answers questions such as:
Is the current schedule realistic?
How many activities are concurrently
scheduled?
How often has the schedule changed?
What is the projected completion date for the
project?
What activities, events, or products are on
time, ahead of schedule, or behind schedule?

41

Table 13 - Requirements Status Measure [5]

Description: It counts the number of defined requirements that have been allocated to test
cases, and the number that have been successfully tested. The measure is an indication of
product design and test progress. When used to measure test status, the measure is used to
evaluate whether required functionality has been successfully demonstrated against the
specified requirements, and the amount of testing that has been performed. The measure
provides excellent test coverage and is also known as "Breadth of Testing.”

Selection Guidance

Project Application
Generally applicable to all sizes and types
of projects with a requirements or design
activity.

Process Integration
Requires disciplined requirements
traceability and testing processes for
successful implementation. Allocated
requirements should be testable and
mapped to test sequences.
Some requirements may not be testable
until late in the testing process. Others are
not directly testable. Some may be verified
by inspection.

Usually Applied During
Requirements Analysis (Estimates)
Design (Estimates and Actuals)
Implementation (Estimates and Actuals)
Integration and Test (Estimates and
Actuals)

Specification Guidance

Typical Data Items
Total number of requirements
Number of requirements traced to detailed
specifications
Number of requirements traced to test
specifications
Number of requirements tested successfully

Typical Attributes
Increment
Specification reference
Test sequence reference

Typical Aggregation Structure
Function

Count Actuals Based On
Completion of specification review
Baselining of specifications
Baselining of requirements traceability
matrix
Successful completion of all tests in the
appropriate test sequence

This measure answers questions such as:
Are the requirements being tested as
scheduled?
Is implementation of the requirements
behind or ahead of schedule?

42

Table 14 - Problem Report Status Measure [5]

Description: Problem Report Status counts the number of hardware or software problems
reported and resolved. This measure provides an indication of product maturity and
readiness for delivery. The rates at which problem reports are written and resolved can be
used to estimate product completion. This measure can also indicate the quality of the
problem resolution process, based on the average age of reported problems and the average
time to resolve them.

Selection Guidance

Project Application
Applicable to all sizes and types of projects.

Process Integration
Data is generally available, since most
projects have an established problem
reporting system.
On development projects, data is generally
available during integration and test.
Problem report data is more difficult to
collect earlier (during requirements
analysis, design, and implementation)
because a formal problem reporting system
is usually not in place and enforced.
When this data is available, it provides
good progress information. An inspection
or peer review can provide this
information.
Projects may track the phase or source
where the problem was injected and
detected.

Usually Applied During
Requirements Analysis (Estimates)
Design (Estimates and Actuals)
Implementation (Estimates and Actuals)
Integration and Test (Estimates and
Actuals)
Operations and Maintenance (Actuals)

Specification Guidance

Typical Data Items
Number of problem reported
Number of problem resolved
Average age of problems
Average time between assignment and
resolving
Average time between submission and
opening

Typical Attributes
Increment

Typical Aggregation Structure
Component

Count Actuals Based On
Problem reported
Problem resolved

This measure answers questions such as:
Are open problem being closed at a sufficient
rate to meet the test completion date?
Is the product maturing?
When will testing be complete?
What components have the most problem
reports?

43

Table 15 - Review Status Measure [5]
Description: The measure provides an indication of progress in completing review
activities. The Review Status measure also counts the number of types of review items
determined during the review process. The relationship between total identified numbers
in review and total page number of reviewed software product can be established by using
the results of this measure.

Selection Guidance

Project Application
Used on medium to large projects.

Process Integration
Easy to collect if formal reviews are a part
of the development process.

Usually Applied During
Requirements Analysis (Estimates and
Actuals)
Design (Estimates and Actuals)
Implementation (Estimates and Actuals)
Integration and Test (Estimates and
Actuals)

Specification Guidance

Typical Data Items
Number of reviews
Number of reviews completed successfully
Number of “important” items
Number of "minor" items
Number of “incomprehensible” items
Number of “total” items
Number of items which are not agreed on at
meeting.

Typical Attributes
Name of the component being reviewed
Increment

Typical Aggregation Structure
Component

Alternatives to Reviews Include
Inspections
Walkthroughs

Count Actuals Based On
Completion of review
Resolution of all associated action items

This measure answers questions such as:
What types of review items are determined?

44

Table 16 - Change Request Status Measure [5]

Description: The Change Request Status measure counts the total number of change
requests that affect a product. The measure provides an indication of the amount of rework
that has been performed or will be required. This measure only identifies the number of
changes; it does not report on the functional impact of changes or the amount of effort
required to implement them.

Selection Guidance

Project Application
Applicable to all sizes and types of projects.
Often used on operations and maintenance
programs.

Process Integration
Data should be available from most projects
that put Change Requests under
configuration control.

Usually Applied During
Requirements Analysis (Actuals)
Design (Actuals)
Implementation (Actuals)
Integration and Test (Actuals)
Operations and Maintenance (Actuals)

Specification Guidance

Typical Data Items
Number of change requests generated
Number of change requests resolved

Typical Attributes
Increment
Priority
Change classification (defect correction,
enhancement)
Valid/Invalid

Typical Aggregation Structure
Function
Component

Count Actuals Based On
Change Request Approval
Change Request Implemented
Change Request Integrated
Change Request Tested

Alternatives to Change Requests Include:
Enhancements
Corrective Action Reports
Engineering Change Proposals

This measure answers questions such as:
How many change requests have impacted
the product?
Are change requests being implemented at a
sufficient rate to meet the schedule?
Is the trend of new change requests
decreasing as the project nears completion?

45

Table 17 - Component Status Measure [5]

Description: The Component Status measure counts the number of hardware or software
components that complete a specific activity. A comparison of plans and actual helps assess
the status of development progress. Early in the development activity, planning changes
should be expected. Later in the process, an increase in the planned number of components
that are scheduled for a specific activity may indicate unplanned or excessive growth.

Selection Guidance

Project Application
Usually used on medium to large projects.

Process Integration
Easier to collect if formal reviews,
inspections, or walkthroughs are included
in the development process.
Data is sometimes available from
configuration management systems or
development tools.
Data is generally available if there is a
mature and disciplined development
process.
Component status during system test
activities is generally one of the more
difficult Work Unit Progress measures to
collect since most integration and test
activities are based on requirements or
functions instead of components.

Usually Applied During
Requirements Analysis (Estimates)
Design (Estimates and Actuals)
Implementation (Estimates and Actuals)
Integration and Test (Estimates and
Actuals)
Operations and Maintenance (Estimates
and Actuals)

Specification Guidance

Typical Data Items
Total number of components
Number of components completed
successfully

Typical Attributes
Increment

Typical Aggregation Structure
Component

Additional Information
Progress can be measured for individual
processes such as preliminary design,
detailed design, implementation, component
test.

Count Actuals Based On
Completion of component reviews,
inspections, or walkthroughs
Successful completion of specified test
Release to configuration management

This answers questions such as:
Are components completing development
activities as scheduled?
Is the planned rate of completion realistic?
What components are behind schedule?

46

Table 18 - Test Status Measure [5]

Description: The Test Status measure counts the number of test cases that have been
attempted and the number that have been completed successfully. This measure can be
used with the Requirement Status measure to evaluate test progress. This measure helps
assess product quality based on the proportion of attempted test cases that have been
successfully executed.

Selection Guidance

Project Application
Applicable to all sizes and types of projects.
Especially important to those projects with
high reliability requirements, security
implications, or catastrophic failure
potential.

Process Integration
Disciplined test planning and tracking
processes are needed to implement this
measure successfully.
There should be a mapping between
defined test cases and requirements to
analyze which functions are passing test
and which ones are not.
Easy to collect if projects define and allocate
a quantifiable number of test cases to each
product test sequence.
Can utilize design or architecture
information, concentrating on interfaces
among components or configuration items.

Usually Applied During
Integration and Test (Estimates and
Actuals)
Operations and Maintenance (Estimates
and Actuals)

Specification Guidance

Typical Data Items
Total number of test cases
Number of test cases attempted
Number of test cases passed

Typical Attributes
Increment
Test environment
Test configuration

Typical Aggregation Structure
Component

Count Actuals Based On
Successful completion of each test case in the
appropriate test sequence

Alternatives to Test Cases Include:
Test procedures
Test threads
Logical paths

This measure answers questions such as:
Is test progress sufficient to meet the
schedule?
Is the planned rate of testing realistic?
What functions have been tested or are
behind schedule?

47

4.4. Product Quality Measures

The Functional Correctness is selected for Product Quality common issue.

The measures of Functional Correctness identify the accuracy that is

achieved in product functions and the number of functional defects that are

observed. These measures provide an indication of product quality. This

category is applicable to all types and sizes of projects, and all process

models. Measures in this category do not address the effort that is required

to implement changes to correct the problems. A defect results from a

product's non-conformance with its functional specification, or a deficiency

in that specification [5]. The measures of Functional Correctness category

were shown in Table 10.

The list of candidate measures for Product Quality common issues is shown

in Table 19.

Table 19 – Product Quality Measurement Candidates

The following decisions about candidate measures are made by the author:

CATEGORY MEASURES

Functional Correctness · Defects
· Technical Performance Product

Quality
Supportability and
Maintainability · Cyclomatic Complexity Measure

• The ClearDDTS tool, which is used actively within organization,

provides information about defects. As a result, The Defects

48

Measure is selected as one of measures in the software

measurement program.

• The Technical Performance Measure is selected because of

importance of performance information about system component

functions, response time, data handling capability, and signal

processing in real time embedded softwares. In addition, the

required data can also be obtained from functional test records. The

data items in measurement table are modified according to

properties of the projects in organization.

• The software maintenance has an important role in software

projects within organization. So the Cyclomatic Complexity

Measure is selected.

Detailed information about the measures is given in description tables.

• Table 20 contains The Defects Measure,

• Table 21 contains The Technical Performance Measure,

• Table 22 contains The Cyclomatic Complexity Measure.

49

Table 20 - Defects Measure [5]

Description: The Defects measure provides useful information on the ability of a supplier
to find and fix defects in hardware, software or documentation. The number of defects
indicates the amount of rework, and has a direct impact on quality. Arrival rates can
indicate product maturity. Closure rates can be used to predict test completion. Tracking
the length of time that defects have remained open can be used to determine whether
progress is being made in fixing defects, or whether rework is being deferred. A Defect
Density measure, which is an expression of the number of defects in a quantity of product,
can be derived from this measure.

Selection Guidance

Project Application
Applicable to all sizes and types of projects.

Process Integration
Requires a well-defined testing and
inspection process and a disciplined defect
tracking process.
Easy to collect actual when an automated
defect tracking system is used.
The number of discovered defects is
relative to the amount of discovery activity,
such as number of inspections and amount
of testing.
Defect density requires the collection of
both defect and size data for each
component.

Usually Applied During
Requirements Analysis (Estimates and
Actuals)
Design (Estimates and Actuals)
Implementation (Estimates and Actuals)
Integration and Test (Estimates and
Actuals)
Operations and Maintenance (Actuals)

Specification Guidance

Typical Data Items
Defect Statistics

Typical Attributes
Increment
Defect Status
Defect Severity
Defect Category
When Found
How Found
When Fixed
How Resolved

Typical Aggregation Structure
Component

Count Actuals Based On
Defects accepted
Defects validated
Defect correction successfully
tested/inspected
Defect assessment of readiness for delivery

This measure answers questions such as:
How many critical defects have been
reported for each component?
Do defect reporting and closure rates
support the scheduled completion date of
integration and test?
What components have a disproportionate
amount of defects, and therefore require
additional testing, review, or are candidates
for rework?

50

Table 21 - Technical Performance Measure [5]

Description: The Technical Performance measure is a combination of other measures that
are defined by the system’s functional and technical requirements. These measures address
any functional characteristics that can be quantitatively defined and demonstrated. Various
types of functional requirements may be measured including user and mission functions,
interoperability of components, security features, accuracy of the system component
functions, response time, data handling capability, or signal processing. These measures
provide an indication of the overall ability of a system to meet the users’ functional
requirements.

Selection Guidance

Project Application
Applicable to all sizes and types of projects.

Process Integration
It is often difficult to generate accurate
estimates early in the project, especially for
new technologies and new projects.
Data may not be available until late in a
project, when system functional testing is
performed.
Resource and technology limitations may
prohibit demonstration and measurement
of all technical performance parameters.
Data may be available from functional test
records.
Modeling and simulation results may be
used to estimate functional performance
levels.
Specific measures are defined by the
technical requirements of the system,
software and components.

Usually Applied During
Requirements Analysis (Estimates)
Design (Estimates)
Implementation (Estimates and Actuals)
Integration and Test (Actuals)
Operations and Maintenance (Actuals)

Specification Guidance

Typical Data Items
Datum Interface Speed
Block Processing Speed

Typical Attributes
Increment

Typical Aggregation Structure
Component
Function

Count Actuals Based On
Passing functional test

This measure answers questions such as:
How accurate was the signal processing
function in this release?
Is the system able to read all the required
data files in the required time?
Was the system able to perform all required
functions within the specified system
response time?

51

Table 22 – Cyclomatic Complexity Measure [5]

Description: The Cyclomatic Complexity measure is usually applied to count the number
of unique logical paths in a software component. However, the concept of Cyclomatic
Complexity also can be used to evaluate the complexity of control or information flow in a
system. This measure provides an indication of both design quality and the amount of
testing required. A high complexity rating is often a leading indicator of a high defect rate.
Components with high complexity usually require additional reviews, increased, testing, or
rewriting.

Selection Guidance

Project Application
Applicable to projects with testability,
reliability, or maintainability concerns.

Process Integration
Operational requirements may require
efficient, highly complex code.
The interpretation of complexity is different
for each high-order language.
Estimates are generally not produced, but a
desired threshold or expected distribution
may be specified, based on experience.

Usually Applied During
Design (Estimates)
Implementation (Estimates and Actuals)
Integration and Test (Actuals)
Operations and Maintenance (Actuals)

Specification Guidance

Typical Data Items
Complexity Value

Typical Attributes
Increment
Source (new, reused, or COTS)
Language
Delivery status (deliverable, non-deliverable)

Typical Aggregation Structure
Component

Count Actuals Based On
Passing inspection
Passing component test
Release to configuration management

This measure answers questions such as:
How many complex components exist in this
project?
What components are the most complex?
What components should be subject to
additional testing or reviews?
What is the minimum number of test cases
required to test the logical paths through the
component?

52

4.5. Resource and Cost Measures

The Personnel and Financial Performance measurement categories are

selected for Resource and Cost common issue.

The Personnel characterize the amount of effort that is planned and

expended by defined activities or products. These measures may also

describe the number and experience of personnel assigned to a project and

may evaluate the rate at which people are added to and removed from a

project. Personnel measures can be used to assess the adequacy of planned

effort and to analyze the actual allocation of labor. They are essential to

evaluating development productivity. Personnel measures are especially

critical for a software project, since it is a labor-intensive process. Measures

are not always available at lower levels of product and activity detail.

Measures may not capture the total effort applied to a project if they do not

distinguish between full and part-time personnel. This category is applicable

to all types and sizes of projects, and all process models [5]. The measures of

Personnel category were shown in Table 10.

The Financial Performance measures report the difference between

budgeted and actual cost for a specific product or activity. These measures

are used to assess whether the project can be completed within cost and

schedule constraints, and to identify potential cost overruns. This category is

applicable to all types and sizes of projects, and all process models [5]. The

measures of Financial Performance category were shown in Table 10.

53

The list of candidate measures for Resource and Cost common issues is

shown in Table 23.

Table 23 – Resource and Cost Measurement Candidates

The following decisions about candidate measures are made by the author:

CATEGORY MEASURES

Personnel
· Effort
· Staff Experience
· Staff Turnover

Resource

and

Cost

Financial Performance · Cost

• The Effort Measures is selected since the managers’ request to

measure the performance absolutely. In addition, the required data

can be obtained from “İşçilik Bildirim Sistemi” which is actively

used in the MST division of ASELSAN Inc.

• The Staff Experience Measure is selected since required data is

available in related organization. Also, the managers records

personnel information about their staff.

• The Staff Turnover Measure is selected due to similar reasons in

the selection of the Staff Experience Measure. These two measures

are highly related with each other.

• Demonstration of variation in cost against progression in

schedule is useful in order to track the financial performance within

organization. However, accessing required data may become

54

unavailable because of the organizational rules. As a result, the Cost

Measure is not selected.

Detailed information about the measures is given in description tables.

• Table 24 contains The Effort Measure,

• Table 25 contains The Staff Experience Measure,

• Table 26 contains The Staff Turnover Measure.

In tables:

• Typical Data Items identifies typical data that is collected for

the measure,

• Typical Attributes are characteristics or properties used to

categorize the data,

• Typical Aggregation Structure is the levels used to aggregate

data to the system level including component, function, or activity,

• Counts Actuals Based On identifies typical exit criteria used to

determine when a measure is counted as an actual.

55

Table 24 - Effort Measure [5]

Description: The Effort measure counts the number of labor hours or number of personnel
applied to all tasks. This measure can address cost, Schedule and Progress, and Process
Performance.

Selection Guidance

Project Application
Applicable to all sizes and types of projects.

Process Integration
Data is usually derived from a financial
accounting and reporting system.
This measure is most effective when
financial accounting and reporting systems
are directly tied to individual products and
activities at a WBS component level of
detail. Counting personnel may be difficult
if they are not allocated to the project on a
full-time basis or if they are assigned to
more than one WBS component.
Planning data is usually based on
estimation models, historical data, or
engineering judgment.

Usually Applied During
Project Planning (Estimates)
Requirements Analysis (Estimates and
Actuals)
Design (Estimates and Actuals)
Implementation (Estimates and Actuals)
Integration and Test (Estimates and
Actuals)
Operations and Maintenance (Estimates
and Actuals)

Specification Guidance

Typical Data Items
Number of labor hours (days, months, etc.)
Number of personnel

Typical Attributes
Labor category
Increment

Typical Aggregation Structure
Activity/Component

Count Actuals Based On
Financial reporting criteria

This measure answers questions such as:
Are development resources being applied
according to plan?
Are certain tasks or activities taking more or
less effort than expected?

56

Table 25 – Staff Experience Measures [5]

Description: The Staff Experience measure counts the total number of experienced
personnel in defined areas. The measure determines whether sufficient experienced
personnel are available.

Selection Guidance

Project Application
Applicable to projects that require
particular expertise and level of experience
to complete.

Process Integration
Requires a personnel database that includes
experience data.
Difficult to collect and keep up-to-date as
people are added to or removed from a
project. Generally has to be maintained
manually.
Experience factor may be defined for
software language, system engineering
discipline, domain, hardware, application,
platform, and length of time together as a
team.

Usually Applied During
Project Planning (Estimates)
Requirements Analysis (Actuals)
Design (Actuals)
Implementation (Actuals)
Integration and Test (Actuals)
Operations and Maintenance (Actuals)

Specification Guidance

Typical Data Items
Number of personnel
Number of years of experience

Typical Attributes
Branch (GUI, Control, DSP)

Typical Aggregation Structure
Activity

Typically Collected for Each
Project

Count Actuals Based On
Staff changes

This measure answers questions such as:
Are sufficient experienced personnel
available?
Will additional training be required?

57

Table 26 - Staff Turnover Measures [5]

Description: The Staff Turnover measure counts staff losses and gains. Excessive turnover
impacts learning curves, productivity, and the ability of the supplier to implement the
system with the resources provided within cost and schedule.

Selection Guidance

Project Application
Applicable to all sizes and types of projects.

Process Integration
It is useful to categorize the number of
personnel lost into planned and unplanned
losses, since most projects plan to add and
remove personnel at various stages of the
project.
Experience factor may be defined for
software language, system engineering
discipline, domain, hardware, application,
platform, and length of time together as a
team.

Usually Applied During
Requirements Analysis (Actuals)
Design (Actuals)
Implementation (Actuals)
Integration and Test (Actuals)
Operations and Maintenance (Actuals)

Specification Guidance

Typical Data Items
Number of personnel
Number of personnel gained (per period)
Number of personnel lost (per period)

Typical Attributes
Experience factor
Branch (GUI, Control, DSP)
Sex (Male/Female)
Degree (MSc., PHD, ..)
School (METU, BU, HU)

Typical Aggregation Structure
Activity

Typically Collected for Each
Project

Count Actuals Based On
Financial reporting criteria
Organization restructuring or new
organizational charts

This measure answers questions such as:
How many people have been added or have
left the project?
How are the experience levels being affected
by the turnover rates?
What areas are most affected by turnover?

58

4.6. Size and Stability Measures

The Physical Size and Stability, and Functional Size and Stability are

selected for Product Size and Stability common issue.

Physical Size and Stability measures quantify the physical size of a system

or product. Size is a critical factor for estimating development schedules and

costs. These measures also provide information on the amount and

frequency of change to products. This category is applicable to all types and

sizes of projects, and all process models. Physical size measures do not

always map directly to the amount of functionality in the system. Measures

in this category do not generally address product quality, complexity, or

difficulty. Accurate estimates are dependent on the availability of good

historical data or engineering experience [5]. The measures of Physical Size

and Stability category were shown in Table 10.

Functional Size and Stability measures quantify the functionality of a system

or product. Functional size may be used to estimate development schedule

and cost. These measures also provide information about the amount and

frequency of change to the system’s functionality. Functional changes

generally correlate to effort, cost, schedule, and product size changes. This

category is applicable to all types and sizes of projects, and all process

models. Functional size does not generally address the quality of the

product or system measured [5]. The measures of Functional Size and

Stability category were shown in Table 10.

59

The list of candidate measures for Product Size and Stability common issues

is shown in Table 27.

Table 27 – Product Size and Stability Measurement Candidates

The following decisions about candidate measures are made by the author:

CATEGORY MEASURES

Physical Size and Stability

· Database Size
· Components
· Interfaces
· Source File

Product Size

 and

Stability

Functional Size and Stability
· Requirements
· Functional Change Workload
· Function Points

• The candidates in Physical Size and Stability category are basic,

easy, and fundamental measures and an organization should

measure these metrics. Therefore, Database Size, Components,

Interfaces, and Source File measures are selected. The Source File

measure is more enhanced according to available data from this

measurement.

• Tracking changes in user requirements is required for ASELSAN

Inc., where customer requirements are mostly change during

development process. The Requirements Measure provides the data

in order to evaluate the variation in requirements.

• The Functional Change Workload Measure is very convenient to

determine (and estimate) the amount of person-hour required for

implementing functional change.

60

• The Function Points Measure can be used to estimate weighted

factor in function point’s evaluation, and normalize productivity

measures. In order to construct the base for Function Point Analysis

in the organization, the measurement table will be formed after a

study in the direction of collected data from related measures.

Detailed information about the measures is given in description tables.

• Table 28 contains The Database Size Measure,

• Table 29 contains The Components Measure,

• Table 30 contains The Interfaces Measure,

• Table 31 contains The Source File Measure,

• Table 32 contains The Requirements Measure.

In tables:

• Typical Data Items identifies typical data that is collected for

the measure,

• Typical Attributes are characteristics or properties used to

categorize the data,

• Typical Aggregation Structure is the levels used to aggregate

data to the system level including component, function, or activity,

• Counts Actuals Based On identifies typical exit criteria used to

determine when a measure is counted as an actual.

61

Table 28 - Database Size Measure [5]

Description: The Database Size measure counts the number of words, records, or tables in
each database. The measure indicates how much data must be handled by the system.

Selection Guidance

Project Application
Applicable to all domains. Often used on
information system software projects.
Used for any project with significant
database processing. Especially important
for those with performance constraints.

Process Integration
In order to estimate the size of a database, a
data model and an operational profile must
be developed. This is generally a manual
process that can be difficult.
Actuals are relatively easy to collect.

Usually Applied During
Requirements Analysis (Estimates)
Design (Estimates)
Implementation (Estimates and Actuals)
Integration and Test (Actuals)
Operations and Maintenance (Actuals)

Specification Guidance

Typical Data Items
Number of tables
Number of records or entries
Number of words or bytes

Typical Attributes
Increment
Database identifier

Typical Aggregation Structure
Component

Count Actuals Based On
Schema design released to configuration
management
Schema implementation released to
configuration management

This measure answers questions such as:
How much data has to be handled by the
system?
How many different data types have to be
addressed?

62

Table 29 - Components Measure [5]

Description: The Components measure counts the number of elementary components in a
system or product, and the number that are added, modified, or deleted. The total number
of components defines the size of the system. Changes in the number of estimated and
actual components indicate risk due to product size volatility and additional work that may
be required.

Selection Guidance

Project Application
Applicable to all sizes and types of projects.

Process Integration
Requires a well-defined and consistent
component allocation structure.
Required data is generally easy to obtain
from design tools, configuration
management tools, or documentation.
Counts of deleted and added components
are relatively easy to collect. Modified
components are sometimes not tracked.
Volatility in the planned number of
components may represent instability in the
requirements or in the design of the system
or product.

Usually Applied During
Requirements Analysis (Estimates)
Design (Estimates and Actuals)
Implementation (Estimates and Actuals)
Integration and Test (Actuals)
Operations and Maintenance (Actuals)

Specification Guidance

Typical Data Items
Number of units
Number of units added
Number of units deleted
Number of units modified

Typical Attributes
Increment
Source (new, reused, or COTS)
Language (if software)
Delivery status (deliverable, non-deliverable)
End-use environment (operational, support)

Typical Aggregation Structure
Component

Count Actuals Based On
Release to configuration management
Passing unit test
Passing inspection

This measure answers questions such as:
How many components need to be
implemented and tested?
How much has the approved system
baseline changed?
Have the components allocated to each
increment changed?

63

Table 30 - Interfaces Measure [5]

Description: This measure is particularly useful when allocating functions during
architecture development, to quantify the number of pair-wise relationships between
components. This measure also counts the number of interfaces that are added, modified,
or deleted. Changes in the number of estimated and actual interfaces indicate risk due to
requirements, architectural, or design volatility and may result in additional work.

Selection Guidance

Project Application
Applicable to all application domains.
Applicable to all sizes and types of projects,
generally with different interface
definitions.

Process Integration
Requires a definition of the component
level where interfaces must be counted.
Requires a well-defined and consistently
detailed architecture or design.
Required data is generally easy to obtain
from design tools, configuration
management tools, or documentation.
Counts of deleted and added interfaces are
relatively easy to collect; counts of modified
interfaces are more difficult to obtain.

Usually Applied During
Requirements Analysis (Estimates)
Design (Estimates and Actuals)
Implementation (Actuals)
Integration and Test (Actuals)

Specification Guidance

Typical Data Items
Number of interfaces
Number of interfaces added
Number of interfaces deleted
Number of interfaces modified

Typical Attributes
Increment
Nature of interface (e.g., data, control
signals, mechanical action)

Typical Aggregation Structure
Component

Count Actuals Based On
Release to configuration management
Passing an integration test

This measure answers questions such as:
How many interfaces need to be
implemented and tested?
How much has the approved system or
software baseline changed?
Have the interfaces allocated to each
increment changed?

64

Table 31 – Source File Measure [5]

Description: Lines of code are a well-understood software measure that helps in estimating
project cost, required effort, schedule, and productivity. Changes in the number of lines of
code indicate development risk due to product size volatility, and possible additional work.

Selection Guidance

Project Application
Used for projects of all sizes.
Not usually tracked for COTS software
unless changes are made to the source code.

Process Integration
Define lines of code for each language.
Lines of code from different languages are
not equivalent.
It may be necessary to calculate an effective
or equivalent SLOC count based on source.
New and modified lines would count at
100% while reused code would count at a
lower percentage (to address the effort
required to integrate and test the reused
code).
It is sometimes difficult to generate
accurate estimates early in the project,
especially for new types of projects.
Estimates should be updated on a regular
basis.
Actuals can easily be counted using
automated tools.

Usually Applied During
Project Planning (Estimates)
Requirements Analysis (Estimates)
Design (Estimates)
Implementation (Estimates and Actuals)
Integration and Test (Actuals)
Operations and Maintenance (Actuals)

Specification Guidance

Typical Data Items
Count Line Code
Count Line Comment
Count Line Inactive
Count Source File
Number of Functions in Source File

Typical Attributes
Increment
Source (new, reused, or COTS)
Language
Delivery status (deliverable, non-deliverable)

Typical Aggregation Structure
Software Configuration Unit / Component

Count Actuals Based On
Release to configuration management
Passing unit test
Passing inspection

This measure answers questions such as:
How accurate was the project size estimate
on which the schedule and effort plans were
based?
How much has the project size changed? In
what components have changes occurred?
Has the size allocated to each increment
changed?

65

Table 32 - Requirements Measure [5]

Description: The Requirements measure counts the number of requirements in the system
or product specifications. It also counts the number of requirements that are added,
modified, or deleted. The measure provides information about the total number of
requirements and the development risk due to growth and/or volatility in requirements.

Selection Guidance

Project Application
Applicable to all domains.
Useful for any size and type of project that
tracks requirements.
Effective for both non-developed
(COTS/Reuse) and newly developed
components.

Process Integration
It is sometimes difficult to specifically
define discrete requirements. A consistently
applied definition makes this measure
more effective.
Requires a good requirements traceability
process. If an automated design tool is
used, the data is more readily available.
Count changes against a baseline that is
under formal configuration control. Both
stated and derived requirements may be
included.
To evaluate stability, a good definition of
the impacts of each change is required.
Organize requirements hierarchically (e.g.
user requirements lead to system
requirements which are decomposed into
software, hardware, operations, and
maintenance requirements.

Usually Applied During
Project Planning (Estimates)
Requirements Analysis (Estimates and
Actuals)
Design (Actuals)
Implementation (Actuals)
Integration and Test (Actuals)
Operations and Maintenance (Actuals)

Specification Guidance

Typical Data Items
Number of requirements (user, system,
component, etc.)
Number of requirements added
Number of requirements deleted
Number of requirements modified

Typical Attributes
Increment
Change source (supplier, acquirer, user)
System component
Priority (high, medium, low)
Level of requirement (user, system, software)

Typical Aggregation Structure
Function

Typically Collected for Each
Requirement specification

Count Actuals Based On
Passing requirements inspection
Release to configuration management

This measure answers questions such as:
Have the requirements allocated to each
incremental delivery or increment changed?
Are requirements being deferred to later
increments?
How much has functionality changed? What
components have been affected the most?
Is the number of requirements growing? If
so, at what rate?

66

4.7. Roles and Responsibilities

There are three tasks that support measurement implementation in an

organization. They are obtaining organizational support, defining

responsibilities and providing resources.

The organizational support is obtained at Initiation stage of the

measurement process life-cycle. At this stage, the roles and responsibilities

are defined.

Three important components of a measurement program can be listed as [4]:

1. The source of data: The responsibility of the development and

maintenance component is to provide project data. Providing data

is the only responsibility imposed on the development and

maintenance personnel; they are not responsible for analyzing the

data.

2. Analysis and packaging: Analysis and packaging personnel

must design and develop the data forms and receive the raw data

from the repository. They are responsible for examining project

data; producing tailored development and maintenance processes

for the specific project. The analysis and packaging personnel are

necessarily separate from the development and maintenance

personnel because their objectives are significantly different.

67

3. Technical support: This component provides essential support

services including implementing the database as specified by the

analysis and packaging component.

Each component must perform its distinct role and responsibilities. In

Figure 7, the three important components of a measurement program are

shown in detail.

Typical roles and responsibilities in measurement process are usually

assigned as [5]:

• Executive manager: The executive manager is generally an

organizational or enterprise manager responsible for multiple

projects. He/She uses measurement results to make organizational

and enterprise level decisions.

• Project or technical manager: He/She is responsible for

identifying issues, reviewing analysis results, and acting on

measurement information.

• Measurement analyst: This role can be assigned to either an

individual or a team. Developing the project measurement plan,

collecting and analyzing measurement data, and reporting results

are responsibilities of analyst.

• Project team: This is the team of project personnel responsible

for development and maintenance of software and system projects.

68

The team is source of measurement data and uses the measurement

results to guide engineering activities.

Figure 7 – The Three Components of a Measurement Program [4]

4.8. Tailoring

New issue areas, categories, and measures may be defined during the

tailoring activity. As an organization gains experience in implementing

measurement, it may update the I-C-M table [5].

The need for a new common issue area typically becomes apparent during

the tailoring phase when a project specific issue cannot be mapped to a PSM

common issue area. Also, the need for a new measure, or an entirely new

69

category of measures, might arise when none of the candidate measures are

appropriate for target development environment or existing measures do

not provide the insight needed to address an issue [5].

As new elements are proposed, it is recommended that complete issue

descriptions and full category and measurement tables be constructed. This

level of definition clarifies why, what, and how data is being measured and

provides the information needed to effectively implement measurement

collection and reporting.

In section 4.7, the measurement Table 14, 15, 20, 21, 25, 26 and 31 were

formed after tailoring activities. The others were reviewed carefully, and

small modifications in tables such as adding some new items, deleting

unreachable and non-existent attributes, changing typical level to SCU

(software configuration unit) were made when necessary.

70

CHAPTER 5

5. BUILD STAGE

5.1. Introduction to Build Stage

The answer of how the measurement process can be effectively applied

appears in the “Measurement Plan” which is the output of the Build Stage.

The measurement process can be integrated with the technical and

managerial process according to measurement plans.

Figure 8 shows the evolution of an information need (project issues) with a

measurement plan. [8]

Figure 8 - Evolution of Project Issues

Project
Issues

Measurable
Concept

Measurement
Construct

Measurement
Procedure

Measurement
Plan

71

Defining of the information needs is starting point of measurement

planning. The measurable concept is an idea about entities that should be

measured in order to satisfy an information need. The measurable concept

can be formalized as a measurement construct that specifies exactly what

will be measured and how data will be combined to produce results. A

measurement procedure defines the mechanics of collecting and reporting.

The sub-tasks of the Build stage are shown in Figure 9.

Figure 9 - Sub-Tasks of Build Stage [5]

The inputs of this stage are measurement specifications and the outputs are

the Measurement Plan. At first, the measurement environment will be

characterized. Then measurement opportunities will be identified. Lastly,

the measurement implementation requirements will be specified.

72

5.1.1. Characterize Environment

In ISO 15939, one of the activities in measurement process is “Characterize

Organizational Unit” [1]. Significant aspects that characterize an

organizational unit are [5]:

• The life-cycle model used,

• Current measurement activities employed,

• System and software technology, including design techniques,

software programming languages, and tools used,

• Planned sources of software components (i.e. COTS, reused) ,

• Management, review, test, and inspection practices,

• Engineering and management standards to be applied,

• Process maturity of the organizations, and

• Project organization and teaming structure.

In ASELSAN Inc., the MST division projects’ typical properties, which are

defined by members of the PAT-G team, are

• Contractual Projects,

• Project End Time and Price defined,

• Military and Professional System Softwares,

• Project includes new technology intensively,

• At least 1.5 years development times,

• Variety at application areas, and

• Integration software and hardware.

73

5.1.2. Identify Measurement Opportunities

Measurement data comes from many sources such as forms, databases, and

tools. Extracting data from electronic sources is usually more cost effective

than manual collection methods. Especially CASE tools used actively in

organization are very suitable source of data items.

Three primary forms of data are [5]

• Historical Data – This form of data is collected from past projects

in order to help in estimating and in determining the feasibility of

plans.

• Planning Data – This form of data must be collected from all

plans that include incremental changes to plans.

• Actual Performance Data – While a project evolves, actual data

will become available. Many sources of data exist within the life-

cycle process.

 The configuration management tool ClearCASE, the defect and problem-

tracking tool ClearDDTS, the project management tool MS Project, effort

record tool Iscilik Bilgi Sistemi, and Change Request Tracking System are

some of the tools that are used actively in MST Division of ASELSAN Inc.

Other sources are usually at document form. In order to obtain data from

documents systematically, some tools are intended to be developed in the

scope of the thesis. These data sources are combined within a table shown in

Table 33.

74

Table 33 – Data Sources in MST Division

Measurement
Category Electronic Source Document Source

Milestone Performance MS Project SDP

Work Unit Progress
MS Project / Configuration

Management System
(ClearCASE)

Status Report

Functional Correctness

Defect/Problem Tracking
System (ClearDDTS)/

Configuration Management
System (ClearCASE) / Case

Tools / Test Automation Tools

Review/Inspection
Reports / Design
Review Notes and

Actions / Test
Reports

Supportability and
Maintainability Analysis Tool

Personnel Information System (İscilik Bilgi
Sistemi)

Physical Size and
Stability

Analysis Tool / Configuration
Management System

(ClearCASE)

Functional Size and
Stability

Change Request Tracking
System / Configuration

Management System / CASE
Tools

Requirements and
Design

Specifications /
Change Request

5.1.3. Specify Measurement Implementation Requirements

This step involves developing a combination of operational definitions and

procedures that guide the application of measurement activity. At this stage,

the issues are [5]

• Measurement Definitions: The definition of selected measure is

given in specification table at the previous design stage.

75

• Measurement Scope: For each selected measure, the life cycle

phases or activities should be described.

• Data Collection: This includes defining the measurement source,

responsibility for conducting the measurement, and periodicity of

data collection, as well as the tools, forms, and databases used to

collect and store the data.

• Data Analysis: The basic indicators to be generated from

measures should be defined and the process for generating and

analyzing each indicator should be described. This includes

defining the periodicity and responsibility for conducting the

analysis. However, serious experience in measurement programs is

prerequisite to determine indicators in details, so new indicators

can be added at following phases of the measurement program.

• Result Reporting: The process for reporting analysis results

should be described. This includes selecting the analyses to be

reported, responsibility for preparing the reports, format, and

periodicity of reporting.

• Measurement Evaluation: The measurement process and

measures need to be evaluated periodically.

76

5.2. Measurement Plan for ASELSAN’s System41 Project

5.2.1. Introduction

The software measurement program is intended to monitor and control

software development process in this project that has been recently started

in ASELSAN-MST called System41.

5.2.2. Project Description

Confidential.

5.2.3. Measurement Roles and Responsibilities

• Executive manager: L. A.

• Software Development Team Leader: H. K.

• Measurement analyst: Ö. E.

• Project team: ASELSAN - MST

5.2.4. Description of Project Issues

The prioritized lists of goals and related issues are defined in analysis stage

of software measurement program. They are valid for the System41 project

and shown in Table 34 and Table 35 below.

77

Table 34 – Common and Related Issues

Table 35 – Prioritized Goals

COMMON ISSUE RELATED ISSUES

1 Schedule and Progress

- The risk of the intensive project schedule.
- The lack of information about whether project
going on schedule or not.
- The lack of information about whether
scheduled milestones meeting or not.

2 Product Quality

- The lack of information about whether
software product ready to delivery or not.
- The lack of information about whether all
identified problems resolved or not.
- The lack of information about how much
difficult the software is to maintain.

3 Resources and Cost

- The risk of staff experience.
- The lack of information about whether staff
effort is adequate or not.
- The lack of information about whether the
number of staff is adequate or not.
- The risk of constant budget.

4 Product Size and
Stability

- The risk of unstable requirements.
- The lack of information about how many the
requirements are changing.
- The lack of information about how much the
product’s size is changing.

Priority GOAL Priority Common Issue

1
Track and analyze the schedule to improve
and minimize it from the viewpoint of
development team leader.

5,4 Schedule and
Progress

2 Analyze the product and its functionality to
improve software performance. 4,2 Product Quality

3 Analyze the development cost in order to
minimize it. 4,1 Resources and

Cost

4
Evaluate and analyze the productivity to
improve it from the viewpoint of
department headmaster.

4,1 Resources and
Cost

5 Collect and analyze required data to make
software estimation. 3,2 Product Size and

Stability

78

In the following Figure 10, an overview of the measurement process is

shown in detail.

Fi
gu

re
 1

0
–

A
n

O
ve

rv
ie

w
 o

f t
he

 M
ea

su
re

m
en

t P
ro

ce
ss

79

5.2.5. Measurement Specifications

Specifications of the measurements to be applied in ASELSAN are given in

tables, 36 through 53.

Table 36 – Milestone Dates Specification

MEASURE
Milestone Dates
Category: Milestone Performance
Issue: Schedule and Progress

Data Items Start date of activity or event
End date of activity or event

Attributes

Activity or event name
Version of the plan
Increment
Organization

Aggregation
Structure

Component
Activity

Definition

Milestone Dates measures the start and end dates for
activities, events, and products. The measure
provides an easy-to-understand view of scheduled
activities and events. Comparison of plan and actual
milestone dates provides insight into significant
schedule changes.

Collection Level SCU (Software Configuration Unit)

Count Actual
Based On

Successful completion of tasks
Documents base lined
Milestone review held

Applied During
Project Planning, Requirement Analysis, Design,
Implementation, Integration and Test, Operations
and Maintenance.

Data Reporting
Process

Data is available from Project Management tool
(MSProject) and can be collected and reported
manually.

Periodicity Monthly

80

Table 37 – Requirements Status Specification

MEASURE
Requirements Status
Category: Work Unit Progress
Issue: Schedule and Progress

Data Items

Total number of requirements
Number of requirements traced to detailed
specifications
Number of requirements traced to test specifications
Number of requirements tested successfully

Attributes
Increment
Specification reference
Test sequence reference

Aggregation
Structure Function

Definition

The measure is an indication of product design and
test progress. When used to measure test status, the
measure is used to evaluate whether required
functionality has been successfully demonstrated in
the specified requirements, and the amount of testing
that has been performed.

Collection Level SCU (Software Configuration Unit)

Count Actual
Based On

Completion of specification review
Baselining of specifications
Baselining of requirements traceability matrix
Successful completion of all tests in the appropriate
test sequence

Applied During Requirement Analysis, Design, Implementation,
Integration and Test.

Data Reporting
Process

Data is available from
SRS,
SDD, and
Test Reports.

A tool is intended to develop in order to make data
collection and reporting systematically.

Periodicity Monthly

81

Table 38 – Problem Report Status Specification

MEASURE
Problem Report Status
Category: Work Unit Progress
Issue: Schedule and Progress

Data Items

Number of problem reported
Number of problem resolved
Average age of problems
Average time between assignment and resolving
Average time between submission and opening

Attributes Increment

Aggregation
Structure Component

Definition

Problem Report Status measure provides an
indication of product maturity and readiness for
delivery. The rates at which problem reports are
written and resolved can be used to estimate product
completion. This measure can also indicate the
quality of the problem resolution process, based on
the average age of reported problems and the
average time to resolve them.

Collection Level SCU (Software Configuration Unit)

Count Actual
Based On

Problem report reported
Problem report implemented
Problem report integrated
Problem report tested

Applied During Requirement Analysis, Design, Implementation,
Integration and Test, Operations and Maintenance.

Data Reporting
Process

Data is available from ClearDDTS and its reports. A
tool is intended to develop in order to make data
collection systematically. (YazOlc-YARDIM tool)

Periodicity

Monthly (Requirement Analysis, Design,
Implementation Stages)
Two weekly (Integration and Test, Operations and
Maintenance)

82

Table 39 – Review Status Specification

MEASURE
Review Status
Category: Work Unit Progress
Issue: Schedule and Progress

Data Items

Number of reviews
Number of reviews completed successfully
Number of “important” items
Number of "minor" items
Number of “incomprehensible” items
Number of “total” items
Number of items which are not agreed on at meeting.

Attributes Name of the component being reviewed
Increment

Aggregation
Structure Component

Definition

The measure provides an indication of progress in
completing review activities. The Review Status
measure also counts the number of types of review
items determined during the review process. The
relationship between total identified numbers in
review and total page number of reviewed software
product can be established by using the results of this
measure.

Collection Level SCU (Software Configuration Unit)

Count Actual
Based On

Completion of review

Applied During Requirement Analysis, Design, Implementation,
Integration and Test.

Data Reporting
Process

Data is available from the review reports.
A tool is intended to develop in order to make data
collection systematically. (YazOlc-YARDIM tool)

Periodicity Monthly

83

Table 40 – Change Request Status Specification

MEASURE
Change Request Status
Category: Work Unit Progress
Issue: Schedule and Progress

Data Items Number of change requests generated
Number of change requests resolved

Attributes

Increment
Priority
Change classification (defect correction,
enhancement)
Valid/Invalid

Aggregation
Structure

Function
Component

Definition

The Change Request Status measure counts the total
number of change requests that affect a product. The
measure provides an indication of the amount of
rework that has been performed or will be required.
This measure only identifies the number of changes;
it does not report on the functional impact of changes
or the amount of effort required to implement them.

Collection Level SCU (Software Configuration Unit)

Count Actual
Based On

Change Request Approval
Change Request Implemented
Change Request Integrated
Change Request Tested

Applied During Requirement Analysis, Design, Implementation,
Integration and Test, Operations and Maintenance.

Data Reporting
Process

Data is available from the Change Request Tracking
system and ClearDDTS.

Periodicity Monthly

84

Table 41 – Component Status Specification

MEASURE
Component Status
Category: Work Unit Progress
Issue: Schedule and Progress

Data Items Total number of components
Number of components completed successfully

Attributes Increment

Aggregation
Structure Component

Definition

A comparison of plans and actual helps assess the
status of development progress. Early in the
development activity, planning changes should be
expected. Later in the process, an increase in the
planned number of components that are scheduled
for a specific activity may indicate unplanned or
excessive growth.

Collection Level Project

Count Actual
Based On

Completion of component reviews, inspections, or
walkthroughs
Successful completion of specified test
Release to configuration management

Applied During Requirement Analysis, Design, Implementation,
Integration and Test, Operations and Maintenance.

Data Reporting
Process

Data is available from Configuration Management
System, and can be collected manually.

Periodicity
Monthly (Requirement Analysis, Design, Operations
and Maintenance Stages)
Two weekly (Implementation, Integration and Test)

85

Table 42 – Test Status Specification

MEASURE
Test Status
Category: Work Unit Progress
Issue: Schedule and Progress

Data Items
Total number of test cases
Number of test cases attempted
Number of test cases passed

Attributes
Increment
Test environment
Test configuration

Aggregation
Structure Component

Definition

The Test Status measure counts the number of test
cases that have been attempted and the number that
have been completed successfully. This measure can
be used with the Requirement Status measure to
evaluate test progress. This measure helps assess
product quality based on the proportion of attempted
test cases that have been successfully executed.

Collection Level SCU (Software Configuration Unit)

Count Actual
Based On Successful completion of each test case

Applied During Integration and Test, Operations and Maintenance.

Data Reporting
Process

Data is available from Test Reports prepared by V&V
department, and will be collected manually.

Periodicity Monthly

86

Table 43 – Defects Specification

MEASURE
Defects
Category: Functional Correctness
Issue: Product Quality

Data Items Defect Statistics

Attributes

Increment
Defect Status
Defect Severity
Defect Category
When Found
How Found
When Fixed
How Resolved

Aggregation
Structure Component

Definition

The Defects measure provides useful information on
the ability of a supplier to find and fix defects in
hardware, software or documentation. The number
of defects indicates the amount of rework, and has a
direct impact on quality. Arrival rates can indicate
product maturity. Closure rates can be used to
predict test completion. A Defect Density measure,
which is an expression of the number of defects in a
quantity of product, can be derived from this
measure. Defect Density can identify components
with the highest concentration of defects.

Collection Level SCU (Software Configuration Unit)

Count Actual
Based On

Defects accepted by configuration control
Defects validated
Defect correction successfully tested/inspected
Defect assessment of readiness for delivery to a field

Applied During Requirement Analysis, Design, Implementation,
Integration and Test, Operations and Maintenance.

Data Reporting
Process

Data is available from ClearDDTS and its reports.
(YazOlc-YARDIM tool)

Periodicity

Monthly (Requirement Analysis, Design,
Implementation Stages)
Two weekly (Integration and Test, Operations and
Maintenance)

87

Table 44 – Technical Performance Specification

MEASURE
Technical Performance
Category: Functional Correctness
Issue: Product Quality

Data Items Datum Interface Speed
Block Processing Speed

Attributes Increment

Aggregation
Structure Component

Definition

The Technical Performance measures address any
functional characteristics that can be quantitatively
defined and demonstrated. Various types of
functional requirements may be measured including
user and mission functions, security features,
accuracy of the system component functions,
response time, data handling capability, or signal
processing. These measures provide an indication of
the overall ability of a system to meet the users’
functional requirements.

Collection Level SCU (Software Configuration Unit)

Count Actual
Based On Passing functional test

Applied During Implementation, Integration and Test, Operations
and Maintenance.

Data Reporting
Process

Data is available from test reports, and will be
collected manually.

Periodicity Monthly

88

Table 45 – Cyclomatic Complexity Specification

MEASURE
Cyclomatic Complexity
Category: Supportability and Maintainability
Issue: Product Quality

Data Items Complexity Value

Attributes Increment

Aggregation
Structure

Component
Source (new, reused, or COTS)
Language
Delivery status (deliverable, non-deliverable)

Definition

The concept of Cyclomatic Complexity also can be
used to evaluate the complexity of control or
information flow in a system. This measure provides
an indication of both design quality and the amount
of testing required. A high complexity rating is often
a leading indicator of a high defect rate. Components
with high complexity usually require additional
reviews, increased, testing, or rewriting.

Collection Level SCU (Software Configuration Unit)

Count Actual
Based On

Passing inspection
Passing component test
Release to configuration management

Applied During Implementation, Integration and Test, Operations
and Maintenance.

Data Reporting
Process

Data is available by using Understand For C++ tool
and its report.
A tool is intended to develop in order to report result
systematically. (YazOlc-YARDIM tool)

Periodicity
Two weekly (Implementation Stage)
Monthly (Integration and Test, Operations and
Maintenance)

89

Table 46 – Effort Specification

MEASURE
Effort
Category: Personnel
Issue: Resource and Cost

Data Items Number of labor hours (days, months, etc.)
Number of personnel

Attributes Labor category
Increment

Aggregation
Structure Component/Activity

Definition

The Effort measure counts the number of labor hours
or number of personnel applied to all tasks. This is a
straightforward, easily understood measure. This
measure usually correlates directly with cost, but can
also address other common issue areas including
Schedule and Progress, and Process Performance.

Collection Level Project

Count Actual
Based On Financial reporting criteria

Applied During
Project Planning, Requirement Analysis, Design,
Implementation, Integration and Test, Operations
and Maintenance.

Data Reporting
Process

Data is available from İscilik Bildirim Sistemi and its
report.

Periodicity Monthly

90

Table 47 – Staff Experience Specification

MEASURE
Staff Experience
Category: Personnel
Issue: Resource and Cost

Data Items Number of personnel
Number of years of experience

Attributes Branch (GUI, Control, DSP)

Aggregation
Structure Activity

Definition

The Staff Experience measure counts the total
number of experienced personnel in defined areas.
The measure determines whether sufficient
experienced personnel are available. The experience
factors are based on the requirements of each
individual project, such as environment or
application. Experience is usually measured in years.

Collection Level Project

Count Actual
Based On Staff changes

Applied During
Project Planning, Requirement Analysis, Design,
Implementation, Integration and Test, Operations
and Maintenance.

Data Reporting
Process Data is available from managerial reports.

Periodicity Monthly

91

Table 48 – Staff Turnover Specification

MEASURE
Staff Turnover
Category: Personnel
Issue: Resource and Cost

Data Items
Number of personnel
Number of personnel gained
Number of personnel lost

Attributes

Branch (GUI, Control, DSP)
Sex (Male/Female)
Degree (MSc., PHD, …)
School (METU, BU, HU)

Aggregation
Structure Activity

Definition

The Staff Turnover measure counts staff losses and
gains. This measure is most effective when used in
conjunction with the Staff Experience measure. Loss
of key and experienced personnel is critical.

Collection Level Project

Count Actual
Based On

Financial reporting criteria
Organization restructuring or new organizational
charts

Applied During
Project Planning, Requirement Analysis, Design,
Implementation, Integration and Test, Operations
and Maintenance.

Data Reporting
Process Data is available from managerial reports.

Periodicity Monthly

92

Table 49 – Database Size Specification

MEASURE
Database Size
Category: Physical Size and Stability
Issue: Product Size and Stability

Data Items
Number of tables
Number of records or entries
Number of words or bytes

Attributes Increment
Database identifier

Aggregation
Structure Component

Definition

The Database Size measure counts the number of
words, records, or tables in each database. The
measure indicates how much data must be handled
by the system.

Collection Level SCU (Software Configuration Unit)

Count Actual
Based On

Schema design released to configuration
management
Schema implementation released to configuration
management

Applied During Requirement Analysis, Design, Implementation,
Integration and Test, Operations and Maintenance.

Data Reporting
Process

Data is available from SRS, SDD and source code and
will be collected manually or by using development
tool.

Periodicity
Two weekly (Implementation Stage)
Monthly (Requirement Analysis, Design, Integration
and Test, Operations and Maintenance)

93

Table 50 – Components Specification

MEASURE
Components
Category: Physical Size and Stability
Issue: Product Size and Stability

Data Items

Number of units
Number of units added
Number of units deleted
Number of units modified

Attributes

Increment
Source (new, reused, or COTS)
Language
Delivery status (deliverable, non-deliverable)
End-use environment (operational, support)

Aggregation
Structure Component

Definition

The Components measure counts the number of
elementary components in a system or product, and
the number that are added, modified, or deleted. The
total number of components defines the size of the
system. Changes in the number of estimated and
actual components indicate risk due to product size
volatility and additional work that may be required.

Collection Level Project

Count Actual
Based On

Release to configuration management
Passing unit test
Passing inspection

Applied During Requirement Analysis, Design, Implementation,
Integration and Test, Operations and Maintenance.

Data Reporting
Process

Data is available from Configuration Management
Reports.

Periodicity Monthly

94

Table 51 – Interfaces Specification

MEASURE
Interfaces
Category: Physical Size and Stability
Issue: Product Size and Stability

Data Items

Number of interfaces
Number of interfaces added
Number of interfaces deleted
Number of interfaces modified

Attributes
Increment
Component boundary
Nature of interface (e.g. data, control signals,
mechanical action)

Aggregation
Structure Component

Definition

The Interfaces measure is particularly useful when
allocating functions during architecture
development, to quantify the number of pair-wise
relationships between components. This measure also
counts the number of interfaces that are added,
modified, or deleted. Changes in the number of
estimated and actual interfaces indicate risk due to
requirements, architectural, or design volatility.

Collection Level SCU (Software Configuration Unit)

Count Actual
Based On

Release to configuration management
Passing an integration test

Applied During Requirement Analysis, Design, Implementation,
Integration and Test, Operations and Maintenance.

Data Reporting
Process

Data is available from SIDD and can be collected
manually or by using software development tool.

Periodicity Monthly

95

Table 52 – Source File Specification

MEASURE
Source File
Category: Physical Size and Stability
Issue: Product Size and Stability

Data Items

Count Line Code
Count Line Comment
Count Line Inactive
Count Source File
Number of Functions in Source File

Attributes

Increment
Source (new, reused, or COTS)
Language
Delivery status (deliverable, non-deliverable)

Aggregation
Structure Software Configuration Unit / Component

Definition

The Source File helps in estimating project cost,
required effort, schedule, and productivity. Changes
in the number of data indicate development risk due
to product size volatility, and possible additional
work.

Collection Level SCU (Software Configuration Unit)

Count Actual
Based On

Release to configuration management
Passing unit test
Passing inspection

Applied During Implementation, Integration and Test, Operations
and Maintenance.

Data Reporting
Process

Data is available from source code and can be
collected by using software development tool or
Understand For C++ tool.
A tool is intended to develop in order to report result
systematically. (YazOlc-YARDIM tool)

Periodicity
Two weekly (Implementation Stage)
Monthly (Requirement Analysis, Design, Integration
and Test, Operations and Maintenance)

96

Table 53 – Requirements Specification

MEASURE
Requirements
Category: Functional Size and Stability
Issue: Product Size and Stability

Data Items

Number of requirements (user, system, component,
etc.)
Number of requirements added
Number of requirements deleted
Number of requirements modified

Attributes

Increment
Change source (supplier, acquirer, user)
System component
Priority (high, medium, low)
Level of requirement (user, system, software)

Aggregation
Structure Function

Definition

The Requirements measure counts the number of
requirements in the system or product specifications.
It also counts the number of requirements that are
added, modified, or deleted. The measure provides
information about the total number of requirements
and the development risk due to growth and/or
volatility in requirements.

Collection Level SCU (Software Configuration Unit)

Count Actual
Based On

Passing requirements inspection
Release to configuration management

Applied During Requirement Analysis, Design, Implementation,
Integration and Test, Operations and Maintenance.

Data Reporting
Process

Data is available from SRS and will be collected
manually or by using development tool.

Periodicity Monthly

5.2.6. Reporting Mechanisms and Periodicity

The report that includes results of applied measurements in ASELSAN will

be prepared monthly. The period can be shortened if needed.

97

CHAPTER 6

6. IMPLEMENTATION STAGE

6.1. User’s Guide for the YazOlc-Yardim Tool

Since there is no way to collect data automatically for some selected

measurements, the need for an auxiliary tool appears in the applied

measurement program. The YazOlc-Yardim is designed and developed with

in the scope of this study in order to collect data and report analysis

measures related to Defects, Problem Report Status, Review Status, Source

File, and Complexity Measurements.

The YazOlc-Yardim has to be inter-operable with other tools, namely,

Rational ClearDDTS (version 4.5.1) and Understand for C++ (version 1.4). In

other words, their outputs constitute the inputs of YazOlc-Yardim tool.

The tool has been put to use in MST Division of ASELSAN Inc. The user

interfaces are designed in Turkish. The users’ Guidelines document of

“YazOlc-Yardim” tool is written in Turkish.

For more details, please see APPENDIX A.

98

6.2. Historical Data Collection

Defects, Problem Report Status, Source File, Complexity, and Review Status

measurements are applied at the organization in order to collect historical

data about these measures. The measurement specification tables defined at

Design stage of the program have been implemented. These measures were

applied at 8 projects in MST Division of ASELSAN Inc. The historical data

and measurement results are reported by using YazOlc-Yardim tool. The

some of these reports and overview of measurements are reviewed below.

6.2.1. Reports of Problem Report Status Measurement

These reports include:

• The life time of all problems (from submit to resolve),

• The open time of all problems (from submit to open), and

• The resolve time of all problems (from assign to resolve).

The average values are also calculated and presented within these reports.

The report produced after the measurement was applied in System11 project

is shown in Figure 11.

The System11 project is still in progress, so the measurement results show

snapshot data taken within software life-cycle.

99

Project No - System11

Measurement Date: November, 2003

Average Opening Time [open - submit] = 32 days

Average Resolve Time [resolve - assign] = 20 days

Average Life Time of Problem [resolve - submit] = 41 days

Figure 11 - System11 Measurement Result

100

The next report produced after measurement was applied in System60

project is shown in Figure 12. The System60 project is still in progress, so the

measurement results show snapshot data taken within software life-cycle.

Figure 12 – System60 Measurement Result

Project No - System60

Measurement Date: December, 2003

Average Life Time of Problem [resolve - submit] = 105 days

Average Opening Time [open - submit] = 99 days

Average Resolve Time [resolve - assign] = 87 days

101

The report produced after measurement was applied in System20 project is

shown in Figure 13. This project is still in progress, and the measurement

results show snapshot data taken within software life-cycle.

Figure 13 – System20 Measurement Result

Project No - System20
Measurement Date: December, 2003

Average Life Time of Problem [resolve - submit] = 35 days

Average Opening Time [open - submit] = 34 days

Average Resolve Time [resolve - assign] = 5 days

102

6.2.2. Overview of the Problem Report Status Measurement

The projects for which problem report status measurement has been applied

are System20, System60, System37, System38, System12, System90,

System96, and System11. Figure 14 shows the histograms of the problem life

time, opening time and resolve time.

Figure 14 continued.

The Histogram of Problem Life Time [resolve - submit]

The Histogram of Opening Time [open - submit]

103

The Histogram of Resolve Time [resolve - assign]

Figure 14 – Histograms of All Measurement Results

The following mean values are obtained over these eight projects:

• Life Time of Problem [resolve - submit] is 63.2 days.

• Opening Time [open - submit] is 59.6 days.

• Resolve Time [resolve - assign] is 35.1 days.

These measurement results are discussed in a PAT-G meeting in ASELSAN

Inc. As a result, improvements in the structure of evaluation meeting where

the submitted items are discussed by development team members and

usage of ClearDDTS tool within organization are decided. The decisions are

summarized below.

• The evaluation meeting should be done more frequently. It

should not have a period longer than two weeks, especially in later

phases of implementation phase of software life cycles.

104

• When an item which has high severity is submitted, the

evaluation meeting should be done immediately, possibly using

electronic mail facilities.

• The exact harmony between ClearDDTS tool and software

development process in organization should be constructed in

order to provide the most effective usage of ClearDDTS tool.

• The collective usage of configuration management tool

ClearCASE and ClearDDTS should be provided.

• A state between “submitted” and “assigned” called “not agreed

in meeting” should be added in order to track the item closely.

• A directive about the more effective usage of ClearDDTS tool

should be prepared and published within the organization.

6.2.3. Reports of Defects Measurement

These reports include:

• The actual states of defects,

• The actual severity levels of defects,

• The information about how defects are found,

• The information about how defects are resolved,

• The information about when defects are found, and

• The information about when defects are resolved.

In order to achieve the measurement data, the ClearDDTS records and

YazOlc-YARDIM tool were used.

105

The report produced after measurement was applied in System20 project is

shown in Figure 15. The System20 project is still in progress, and the

measurement results show snapshot data taken within software life-cycle.

Figure 15 – System20 Defects Measurement Result

Project No – System20

Measurement Date: December, 2003

Total Item Number: 237

106

 Figure 15 continued.

107

Figure 15 – System20 Defects Measurement Result

The defect measurement report produced for the System37 project is placed

in Figure 16.

Figure 16 – System37 Defects Measurement Results

Project No – System37

Measurement Date: November, 2003
Total Item Number: 387

108

 Figure 16 continued.

109

Figure 16 – System37 Defects Measurement Results

6.2.4. Overview of the Defects Measurement

The projects in which defects measurement has been applied are System20,

System60, System37, System38, System12, System90, System96, and

System11. The distribution of the techniques by which the problems are

noticed is as follows: (How Found)

110

• Functional test (%37),

• System test (%30),

• Customer in-use (%16),

• Random unplanned test (%3).

The problems are resolved usually via modifications to: (How Resolved)

• Source code (%64),

• Not a bug (%15),

• Design (%14),

• Documentation (%3).

The problems are found usually during: (When Found)

• Integration (%27),

• Functional test (%24),

• Post-release (%16),

• Implementation (%8),

• Installation (%3).

The problems are resolved usually during: (When Resolved)

• Post-release (%25),

• Functional test (%21),

• Implementation (%20),

• Integration (%16),

• Design (%5),

• Alpha-test (%4).

111

These measurement results are discussed in a PAT-G meeting in ASELSAN

Inc. As a result, the following interpretations are agreed on.

• The problems are found in usually later stages of

implementation in software development process, they should be

found in early stages.

• The ratio of the problems that are found by customer use is not

very low, so the delivered product (given to customer) has few

flaws.

• The test procedures should be more effective within the

development process. So, the ratio of problems found in post-

release should be less.

• The problems are usually resolved by modification in source

code. This seems as a problem in implementation phase of

development process. The code review activity should become

more considerable in implementation phase.

• Fifteenth out of hundred submitted defects is not a bug, so more

effective usage of the ClearDDTS tool should be provided.

6.2.5. Review Status Measurement

These reports include:

• The information about ratios of “important”, “minor”, and

“incomprehensible” items,

112

• The information about number of items which is not agreed on

at review meeting.

The following report produced after measurement was applied to software

specification document of DSP software configuration unit in System37

project and it is shown in Figure 17.

Figure 17 – Kontrol SCU Measurement Result

Software Configuration Unit: DSP SRS
Measurement Date: 29/12/2002
Ver. : 01.01

 Toplantıda Karar Alınamayan Madde Sayısı = 1

6.2.6. Overview of the Review Status Measurement

The Review Status Measurement is applied in five software configuration

units of System37 project. The following average values are obtained.

• Average ratio of “important” items is % 56.

• Average ratio of “minor” items is % 30.

• Average ratio of “incomprehensible” items is % 14.

• Average ratio of “un-agreed” items is % 3.

113

These values express that the reviews are quite necessary and useful in the

organization since lots of important items are noted during review process.

In addition, more than half of them are “important” items.

After review, the distribution of items should be examined. The “un-agreed”

items should be tracked during and after review process, and they must be

reached a decision anyway.

The ratio of “incomprehensible” items can give some idea about product

understandability. Threshold value for the ratio of incomprehensible items

can be defined for software product. Then it can be used to make a decision

about readability and understandability. But lots of historical data may be

needed in order to decide this threshold value.

6.2.7. Source File and Complexity Measurements

These reports include:

• Count Line Code

• Count Line Inactive

• Count Source File

• Number of Functions in Source File

• Complexity Value

This measure can show a snapshot of situation of the existent project. For

example, one can easily see the progress in the software configuration unit

within one year.

An example of the report in text form is enclosed at Appendix B.

114

The following Figure 18 was produced for Control software configuration

unit from the System37 project. This configuration unit has features of

control processor and it has been generated automatically by Rhapsody

development tool in C++ programming language. The time span between

version 01.01 and version 01.05 is approximately one year and indicates that

project is in the last part of implementation phase. The version 01.01

indicates the time of first delivery of product, and the version 01.05 indicates

the second delivery of product.

The time spans between versions are:

− Ver 01_01 - Ver.01_02 : 90 work days

− Ver 01_02 - Ver.1_021 : 40 work days

− Ver 1_021 - Ver.1_022 : 20 work days

− Ver 1_022 - Ver.01_03 : 20 work days

− Ver 01_03 - Ver.1_031 : 12 work days

− Ver 1_031 - Ver.01_04 : 16 work days

− Ver 01_04 - Ver.01_05 : 15 work days

115

Software Configuration Unit: Kontrol

Measurement Date: November, 2003

Figure 1 – LOC

Figure 2 – Function Number

Figure 18 – Control SCU Measurement Result

A report included details of progress was prepared by using both

configuration management system reports and measurement results, then it

was given to the manager. The main objective of this report was

determining the cost of newly added customer requirement after the first

delivery of product.

116

This new functional requirement was implemented between versions 1_031

and 01_04 in the graphs. It took sixteen days with including integration to

the system.

Within this period, the lines of code increased 3.9 percent, from 34.863 lines

to 36.232 lines. This functionality includes 3.7 percent of all lines of code.

In the same period of time, the number of functions increased 2.3 percent.

The number of total functions added in the last year is 163, and the number

of functions implemented for adding this functionality is 50. As a result,

approximately one of the three added functions was implemented in this

period.

Another example is shown in Figure 19, and it was produced by YazOlc-

Yardim tool after measurement was applied on the DSP software

configuration unit of the System37 project. This configuration unit has signal

processing features and it is coded by using C programming language.

From version 00_01 to version 00_02, the number of functions decreased

however the lines of code increased. By using the records of configuration

management system for this unit, two or more functions were combined in

one function and new functionality was also added to the system in this

period of time. Another point is that the complexity value was increased due

to this modification.

Threshold values about complexity can be defined for softwares. Then it can

be used to make a decision about design quality and amount of testing

117

required. But lots of historical data for various software units are needed in

order to decide this threshold value.

Figure 19 – DSP SCU Measurement Result

Software Configuration Unit: DSP

Measurement Date: November, 2003

Figure 1 – LOC

Figure 2 – Function Number

Figure 3 – Complexity

118

CHAPTER 7

7. DISCUSSION AND CONCLUSIONS

In this thesis study, a software measurement program has been designed

and then implemented in order to provide a software development process

measurement system at YMM Departments of MST Division in ASELSAN

Inc. Software measurement by itself cannot solve problems, but it can clarify

and focus one’s understanding of them. It is a supporting discipline. Also,

managers require methods to plan, track and control the complex software

and system processes and products [5]. Measurement can provide the

information required to make key project decisions and to take appropriate

action.

The stages of software measurement life-cycle are Initiation, Analysis,

Design, Build and Implementation; they resemble well-known software

development life-cycle steps.

First, the organizational support for measurement was obtained. A briefing

was given to the members of YİE team, which is software process

engineering group in MST Division. After this briefing, YİE formed a

119

subgroup to establish software measurement process within organization.

This process action team is called PAT-G, and it consists of managers,

technical leaders and experts. The member details are given in Chapter 2.

The thesis study was sometimes in parallel progress with this group’s

activities. The PAT-G still works on this objective.

The measurement program started with the initiation stage where the

organizational goals were defined.

Then the issues related with these goals were identified in the analysis stage.

They were also prioritized and fixed because of the idea that “focus locally

and start small”. The scope of the measurement program was also defined at

this stage. The organization undertakes system projects, but only the

software components of projects were considered in the scope of this

measurement program. The projects that were in the development phase

have been used for obtaining historical data about some measures.

While defining organizational goals and prioritizing the issues, only the

managers in the software engineering department and the members of PAT-

G participated in assessment. Completion of the first two stages was

painless. However, in PAT-G study whose scope was very wide, there were

more than two stakeholders, namely, software engineering department, test

engineering department, and product quality department. It was too hard to

prioritize various issues originating from the various departments since each

department had individual priorities which could be very different from

120

others. So, these stages would become more difficult unless the team focuses

locally at first application of a measurement program in an organization.

The measures were selected and also roles were identified at the design

stage. In the thesis study, the schedule, product quality, resource and cost,

and size and stability measurement categories were selected according to

the organizational goals and issues.

It should be emphasized that selecting appropriate measures is very critical

for a measurement program. The measurement program should include

only the required and realistic measures based on the issues and objectives.

This is very important because each measure has a cost which is mentioned

in Chapter 1. So, one should avoid selecting unnecessary measures.

In measurement table, all required information about a measure and its

application are given in detail. The PSM measurement specifications are

useful and applicable to the MST Division of ASELSAN Inc. However, some

modifications in tables were done with respect to the organizational

structure and data availability. Especially the data items and attributes

should be reviewed. In Chapter 4, the measurement Table 14, 15, 20, 21, 25,

26 and 31 were formed after tailoring activities. The others were reviewed

carefully, and small modifications in tables were made where necessary.

These modifications were such as adding some new items, deleting

unreachable and non-existent attributes, changing typical level to SCU

(software configuration unit) in order to adapt the tables to the organization.

121

All attained information up to the build stage in measurement process had

to be reflected in a measurement plan. In addition, the measurement plan

contains more details about each selected measure such as data reporting

process, and measurement application periodicity. This information was

defined according to measure data sources in the organization such as tools,

forms, and databases.

The output of build stage is the measurement plan. Within the scope of

thesis, the measurement plan for System41 project was prepared and then

presented to project team leader who is determined and willing to use a

measurement program in the project.

In order to constitute a basis and collect historical data for recent projects,

some measures have been applied over existent projects at the

implementation stage of the measurement program. An important point at

this stage is that the team should verify and normalize the collected data.

They should be sure about the collected data are the required ones and they

are ready for analysis. The verification and normalization activities were

realized in the applied measures at MST Division. Some project measures

were discarded as a result of these activities. These abnormal data were not

used in analysis activity. For instance, the obtained data about severity level

of defect in the defects measurement were not analyzed. Default value for

severity in the defect tracking tool was three, and some users were not be

careful about severity level when they were entering a defect to the system.

122

So, the severity values usually indicated the third level, which reflected the

default value rather than the considered opinion of the users.

The results of these applied measures were beneficial and lots of feedbacks

were returned to the organization from these measures. Some of them

showed the organizational average values that were discussed in PAT-G

meetings. Some decisions about some processes were taken, and they are

given in details in Chapter 6. A directive about the more effective usage of

ClearDDTS tool is being prepared at the time of writing. After being

prepared, it will be published within the MST division. These measures

were very useful especially for managers of software engineering

departments. The main objectives of these measures are understanding,

management, and guiding improvement. The managers reached some

important indicators such as average of problem resolution time and when

defects were mostly found (in which phase of software development

process). In the author’s opinion, these measures, problem report status and

defects measures should be applied periodically in order to continuously

observe and track organizational average values. Other details were

presented in Chapter 6.

The applied measures were also snapshots that show the status of an

existent project. So, these measures were very useful for technical managers

of the projects. The main objectives of these measures are understanding and

management. They can easily see progress in the software configuration unit

123

within one year. They can also obtain a graphical representation of current

status of defects in their project. In the lights of these values, they can make

a decision with quantitative manner. As a result of the source file measure, a

report included details of each version was prepared also by using records

of configuration management tool, then it was presented to the manager.

The author’s thought is that the source file and complexity measures should

be applied periodically especially at implementation stage in order to

observe and track progress in software product. A point that the author

wishes to emphasize at this point is that, when sample points in the graphics

are increased (i.e., versions are given more frequently), one will obtain more

sensitive and detailed representations. Other comments about these

measures have been presented in Chapter 6.

Although the measures have lots of important information themselves, the

combined analysis of two or more measures can give more meaningful

information. When the problem status measure result in System37 project

was analyzed with respect to activity dates, the long problem solution times

can be connected to acceptance phase of the project when lots of new

customer requirements added so the project team becomes overloaded.

Also, a measure can be derived from one or more measure. The defect

density measure, which is an expression of the number of defects in a

quantity of product, can be an example in this case.

124

To provide data collection and reporting automatically, YazOlc-YARDIM

tool has been developed. It can be used for in defects, problem status, source

file, complexity, and review status measures. It has feature of report

generating. The users’ guide of this tool was prepared and published within

the organization. An important point is that the measurement reports about

problem status measure, which were generated by this tool, were presented

at AQAP-150 audit of the MST Division in December 2003.

The most important conclusion of this thesis study is that the measurement

activity can be undertaken in a satisfactory way within the MST Division of

ASELSAN Inc. The organization has implemented the infrastructure in

order to apply a measurement program.

From now on, the prepared measurement plan will be applied in the

System41 project within 2004. This plan has the property of being a baseline

for other projects that have been started recently in the author’s opinion. It

includes fundamentals, general, and easy-applicable measures. So, with

small modifications it becomes convenient for any project. All the measures

in plan should be applied as widely as possible.

This thesis has focused on preparing the organization for measurement. At

this point, the organization was analyzed, all needed and applicable

measures were identified, the measurement tables, which include all

information about when and how measures applied, were defined, and the

125

measurement plan was prepared. Five important measures were

implemented within the organization.

The organization has all materials and documents to apply the basic

measures in measurement plan. In the author’s opinion, the measures in the

prepared measurement plan should be applied at least once in the

organization, since the practice of measurement has been shown to

appropriate for analysis and applicable in the organization.

One should evaluate the measures and the measurement activities, and store

lessons learned [1]. The feedback from previous application and analysis

will be very useful for enhancement in measure and increasing effectiveness

of measurement program. It will be helpful to identify improvements.

Especially when making an on/off decision, threshold value is usually

needed. In order to obtain the average value correctly, one should have a

strong database of past measures where results are stored. The threshold

value may depend on kind of the software unit. For instance, the complexity

threshold value can be different for graphical user interface softwares than

embedded softwares. To define the threshold for embedded software, the

average values in database should be examined. In short, to have a strong

database, the results of applied measures should be reported and stored

systematically.

126

REFERENCES

[1] ISO/IEC, ISO/IEC CD 15939 – Information Technology –
Software Measurement Process, 2000.

[2] ISO/IEC, ISO/IEC TR 9126-3: Software Engineering – Software
Product Quality – Part 3: Internal Metrics, 2000.

[3] Pete Christensen, John Kennedy, Tom Ullrich, “Software
Metrics“, MITRE, 2001, http://www.mitre.org.

[4] SEL / NASA, Software Engineering Program – Software
Measurement Guidebook, 1995.

[5] PSM Group, Practical Software and Systems Measurement,
Version 4.0b, October 2000.

[6] William A. Florac ,Robert E. Park, Anita D. Carleton,
“Practical Software Measurement: Measuring for Process
Management and Improving”, April 1997.

[7] KALDER, Software Industry Survey in 2001, 2001.

[8] John McGarry, David Card, Cheryl Jones, Beth Layman,
Elizabeth Clark, Joseph Dean, Fred Hall, PSM Objective
Information for Decision Makers, Addison Wesley, 2002.

[9] Paul Goodman, Practical Implementation of Software Metrics,
1993.

[10] Bertrand Meyer, “The Role Of Object-Oriented Metrics”, 1998,
IEEE Computer.

[11] Carol A. Dekkers, Patricia A. McQuaid, “The Dangers Of
Using Software Metrics To (Mis)Manage”, 2002, IEEE IT Pro.

[12] Frank van Latum, Rini van Solingen, Markku Oivo, Barbara
Hoisl, Dieter Rombach, Günther Ruhe, “Adopting GQM-
Based Measurement in an Industrial Environment”, 1998,
IEEE Software January/February.

127

[13] Micheal K. Daskalantonakis, “A Practical View of Software
Measurement and Implementation Experiences Within
Motorola”, 1992, IEEE Transactions on Software Engineering.

[14] Tapani Kilpi, “Implementing a Software Metrics Program at
Nokia”, 2001, IEEE Software November/December.

[15] Betsy Clark, “Eight Secrets Of Software Measurement”, IEEE,
IT Pro 2000.

[16] Peer Kulik, “A Practical Approach to Software Metrics”, IEEE,
IT Pro 2000.

[17] Rini van Solingen, Frank van Latum, Markku Oivo, Egon
Berghout, “Application of Software Measurement at
Schlumberger RPS”, The sixth European Software Cost
Modeling conference (ESCOM), http://www.escom.co.uk.

[18] V.R. Basili, “The Experience Factory and its Relationship to
Other Improvement Paradigms”, Springer Verlag, 1993.

[19] Beth Layman, “Measurement and the CMMs”, 6th PSM
Conference, 2002, www.teraquest.com.

[20] John VanOrden Carol Dekkers,” PSM and Successful Software
Measurement”, Quality Plus Technologies, Inc., 2002,
www.qualityplustech.com.

128

APPENDIX A

YAZOLC-YARDIM

Bu araç, ASELSAN şirketi MST kısmı YMM bölümünde uygulanan yazılım

ölçüm programında kullanılmak üzere tasarlanmıştır. Ölçüm programı

içerisinde yer alan 5 temel ölçüm için verilerin toplanmasına, analizine ve

raporlanmasına yardımcı olmaktadır. Program içinde bu ölçümlerle ilişkili

belirlenen ölçüm tabloları esas alınıp, bu tablolarda yer alan veriler

toplanarak, kullanıcıya grafiksel gösterim sağlanmıştır. Ayrıca elde edilen

veriler ile grafiklerin dokümantasyonuna da olanak sağlanmaktadır.

 Şekil 1 – Ana Mönü

129

Bu aracın, ölçümünün gerçekleşmesine yardımcı olduğu 5 ölçüm:

• Kaynak Kod Ölçümü: Bu ölçüm; proje maliyetinin, gerekli

işçiliğinin, zaman çizelgesinin ve üretkenliğin doğru tahminine ve

izlenmesine olanak verir. Ayrıca, ürün boyutundaki değişime

bakarak muhtemel ek çalışma ve risk tahmin edilebilir.

• Karmaşıklık Ölçümü: Bu ölçüm; tasarım kalitesinin ve gerekli

test büyüklüğünün belirlenmesine olanak sağlar. Yüksek

karmaşıklık düzeyi, yüksek hata/kusur oranının göstergesi

olabilmektedir. Yüksek karmaşıklık oranına sahip yazılım

bileşenleri ek gözden geçirme, test ve yeniden kodlama

gerektirebilmektedir.

• Gözden Geçirme Ölçümü: Bu ölçüm; gözden geçirme sırasında

elde edilen veriler ile ürünün boyutunun ilişkilendirilmesine olanak

sağlamaktadır. Ayrıca, süreç içerinde karar alınamayan maddelerin

sayının belirlenmesi ve takibi önemlidir.

• Hata/Kusur Ölçümü: Hata gözlenebilen işlevsel bir

bozukluktur. Kusur ise, kaynak kodun içerisinde yer alan bir

yanlışlıktır, görülebilir veya görülemez. Kusur bir hataya yol

açabilir veya açmayabilir. Bu ölçüm; projedeki hataların ve

kusurların takibine ve tahminine olanak sağlamaktadır. Tespit

edilen hata/kusur sayısı ürünün kalitesi hakkında önemli bir

göstergedir. Ayrıca, çeşitli grafiklerden (tespit safhası, çözüm

130

safhası, kaynağı, ciddiyeti vb.) çeşitli verilere ulaşmak mümkün

olmaktadır. Örneğin, hata/kusur tespit yoğunluğuna bakılarak

ürünün ulaştığı olgunluk ile ilgili tahmin yapılabilmektedir. Bu

ölçüm ile birlikte Kaynak Kod ölçümü kullanılarak “Hata/Kusur

Yoğunluğu” kolayca hesaplanabilmektedir.

• Problem Durum Ölçümü: Bu ölçüm; projede tespit edilen

problemlerin çözüm oranının, buna bağlı olarak çözüm sürecinin

kalitesinin belirlenebilmesine olanak sağlamaktadır. Ayrıca,

problemin ortala ömrü ve ortalama çözüm süresi, proje

değerlendirmesi için önemli göstergelerdir.

1. Kaynak Kod Kısmı

Bu kısım 2 farklı ölçümü (Kaynak Kod ve Karmaşıklık Ölçümleri)

kapsamaktadır. Bu ölçümü etkili olarak gerçekleştirebilmek için proje

içerisinde “Konfigürasyon Kontrolü” yapılmalıdır. Proje gelişimi esnasında

erişilen versiyonlara ait Understand for C++ raporları elde edilebilmelidir.

Girdi olarak Understand for C++ aracının “Dosya Metrikleri Ortalamaları

(File Average Metrics) ve Proje Metrikleri (Project Metrics)” raporunu

kullanmaktadır.

Üretilecek raporun bu bilgileri içermesi için Understand aracında yapılması

gereken, üst menüden:

“Projects ► Reports Generate ► Choose Reports” seçilmelidir.

131

Gelen menüden sadece “File Average Metrics” ve “Project Metrics” seçilip,

onaylanmalıdır.

Bu raporları saklama esnasında dosya isminin sonuna “02_01” formatında

versiyon bilgisi eklenmelidir. Bu formatın “02” kısmı majör, “01” kısmı

minör olarak yer almaktadır. Dosya isimlendirilmesi sırasında versiyon

bilgisi eklenmediği takdirde kullanıcının versiyon bilgisini klavye ile

girmesi gerekecektir.

YazOlc-Yardim aracı, bu raporlarda yer alan verilerin çeşitli grafiksel

gösterimlerini, ayrıca bu verilerin ve grafiklerin Word dokümanı olarak

raporlanmasını sağlamaktadır.

Kaynak Kod ve Karmaşıklık Ölçümleri

YazOlc-Yardim aracında yer alan üst mönüler kullanılarak istenilen ölçüm

gerçekleştirilebilmektedir.

 Şekil 2 – Kaynak Kod Ana Mönüsü

132

Ölçüm programı içerisinde belirlenen ölçüm tabloları çerçevesinde toplanan

veriler:

• Dosya Sayısı

• Fonksiyon Sayısı

• SLOC (Kaynak Kod Satır Sayısı)

• Açıklama Satır Sayısı

• Aktif Olmayan Kod Satır Sayısı

Veri girişi için üst mönüden:

“Bilgi Girişi ► Dosyadan” seçilmelidir.

Ölçüm tabloları taban kabul edilerek kullanıcıdan istenen fakat zorunlu

olmayan diğer bilgiler:

• Karmaşıklık Değeri (açılan içerik penceresinden alınabilir)

• Kaynak (Yeni / Yeniden Kullanım / COTS)

• Programlama Dili

• Teslim Durumu (Teslim Edilebilir / Edilemez)

Kullanıcıya sunulan grafiksel tablolar:

• SLOC ve Karmaşıklık Değeri Değişimi

• SLOC ve Fonksiyon Sayısı Değişimi

• Fonksiyon Sayısı ve Karmaşıklık Değeri Değişimi

• SLOC ve Açıklama Satır Sayısı Değişimi

• SLOC Değişimi

133

• Fonksiyon Sayısı Değişimi

• Karmaşıklık Değeri Değişimi

• Açıklama Oranı Değişimi

• Aktif Olmayan Satır Sayısı Değişimi

Bu grafikleri çizdirmek için üst mönüden:

“Grafik Çiz ► Tek Boyut ► ….”

“Grafik Çiz ► 2’li Gösterim ► ….” seçilmelidir.

Şekil 3 – Üst Mönüden Grafik Seçimi

Raporlama: YazOlc-Yardim aracı kullanılarak elde edilen veriler ve grafikler

Word dokümanına aktarılarak raporlanabilmektedir.

Ayrıca, verilerin dosyadan okunması yerine istenirse klavyeden girilmesine

ve veri listesi üzerinde silme işlemine olanak sağlanmaktadır. Bunun için üst

mönüden “Bilgi Girişi ► Manuel” seçilmelidir.

2. Gözden Geçirme Kısmı

YazOlc-Yardim aracının bu kısmı, gözden geçirme sürecinde katılımcılar

tarafından doldurulan gözden geçirme formlarında yer alan verilerin

134

toplanması ve raporlanmasını sağlamak amacı ile tasarlanmıştır. Ek olarak

grafiksel gösterim özelliğine sahiptir. Girdi olarak bu formların .txt (text)

formatlarını kabul etmektedir.

Şekil 4 – Gözden Geçirme Ana Mönüsü

Gözden Geçirme Ölçümü

Ölçümü gerçekleştirmek için izlenecek adımlar araç içerisinde de

numaralandığı gibi:

1. YKB bilgisini gir,

2. Dosya seç,

3. Analiz et,

4. Sonucu rapora ekle,

5. Bilgi girişinin devamı için 2. adıma geri dön,

135

6. Raporla

Ölçüm programı içerisinde belirlenen ölçüm tabloları çerçevesinde toplanan

veriler:

• Önemli madde sayısı

• Ufak madde sayısı

• Anlaşılmayan madde sayısı

• Toplam madde sayısı

• Toplantıda Karar Alınamayan madde sayısı

Ölçüm tabloları taban kabul edilerek kullanıcıdan istenen diğer bilgiler:

• YKB ismi

• Gözden Geçirme Tarihi veya Versiyon

Kullanıcıya sunulan grafiksel tablolar:

• Genel Dağılım Yüzdeleri (Önemli, Ufak, Anlaşılmayan)

• Karar Alınamayan Madde Sayısı Oranı

Şekil 5 – Gözden Geçirme Ölçüm Grafikleri

136

Raporlama: YazOlc-Yardim aracı kullanılarak gözden geçirme ölçümüne ait

elde edilen veriler ve ilişkili grafikler Word dokümanına aktarılarak

raporlanabilmektedir.

3. Hata Kısmı

Bu kısım 2 farklı ölçümü (Hata/Kusur ve Problem Durum Ölçümleri)

kapsamaktadır. YazOlc-Yardim aracı bu bölümde girdi olarak Rational

ClearDDTS aracının “Çözülmüş Problemlerin Ayrıntılı Listesi” (Detailed

List of Resolved Problems) ve “Problemlere İlişkin Genel İstatistikler”

(General Problem Statistics) rapor dosyalarını kullanmaktadır. Bu rapor

dosyalarında yer alan verilerden ortalama değerler hesaplanmakta, ayrıca

verilerin çeşitli grafiksel gösterimlerini kullanıcıya sunulmaktadır.

Şekil 6 – Hata Kısmı Ana Mönüsü

137

Hata/Kusur Ölçümü

YazOlc-Yardim aracında yer alan üst mönüler kullanılarak istenilen ölçüm

gerçekleştirilebilmektedir.

Bu ölçüm için gerekli girdi “Problemlere İlişkin Genel İstatistikler” (General

Problem Statistics) raporudur.

Bu dosyayı okutmak için üst mönüden:

“Ölçüm Verileri ► Hata Veri Dosyasından Oku” seçilmelidir.

Ölçüm programı içerisinde belirlenen ölçüm tabloları çerçevesinde toplanan

veriler:

• Durumu

• Ciddiyeti

• Düzeltildiği safha

• Bulunduğu safha

• Sebep olduğu safha

• Nasıl çözüldüğü

• Nasıl bulunduğu

Kullanıcıya sunulan grafiksel tablolar:

• Durumu gösteren

• Ciddiyeti gösteren

• Düzeltildiği safha

• Bulunduğu safha

138

• Sebep olduğu safha

• Nasıl çözüldüğü

• Nasıl bulunduğu

Bu grafikleri çizdirmek için üst mönüden:

“ANALİZ ► Hata Ölçümü Grafik Analizi” seçilmelidir.

Şekil 7 – Hata Ölçüm Grafik Seçimi

Raporlama: YazOlc-Yardim aracı kullanılarak elde edilen veriler grafikler

Word dokümanına aktarılarak raporlanabilmektedir. Bunun için üst

mönüden:

“Raporlama ► Hata/Kusur Ölçümü” seçilmelidir.

Problem Durum Ölçümü

YazOlc-Yardim aracında yer alan üst mönüler kullanılarak istenilen ölçüm

gerçekleştirilebilmektedir.

Bu ölçüm için gerekli girdi “Çözülmüş Problemlerin Ayrıntılı Listesi”

(Detailed List of Resolved Problems) raporudur.

Bu dosyayı okutmak için üst mönüden:

139

“Ölçüm Verileri ► Problem Verileri Oku” seçilmelidir.

Ölçüm programı içerisinde belirlenen ölçüm tabloları çerçevesinde toplanan

veriler, problemin:

• Girilme zamanı

• Atanma zamanı

• Açılma zamanı

• Çözülme zamanı

Toplanan bu veriler kullanılarak;

• Problemin ortalama kaç gün canlı kaldığı (girilmesinden

çözülmesine kadar geçen zaman) bilgisi,

• Girildikten ortalama kaç gün sonra ilgili kişi tarafından “açık”

durumuna getirildiği bilgisi,

• Atandıktan sonra ortalama kaç gün içerisinde ilgili kişi

tarafından çözüldüğü bilgisi hesaplanılıyor.

Hesaplanan bu bilgiler ile birlikte kullanıcıya sunulan grafiksel

tablolar:

• Tüm maddelerin kaç gün canlı kaldığına ilişkin grafik

• Tüm maddelerin kaç gün içinde açıldığına ilişkin grafik

• Tüm maddelerin kaç gün içerisinde çözüldüğüne ilişkin grafik

Bu grafikleri çizdirmek için üst mönüden:

“ANALİZ ► Problem Durum Ölçümü Analizi” seçilmelidir.

140

Raporlama: YazOlc-Yardim aracı kullanılarak elde edilen veriler ve grafikler

Word dokümanına aktarılarak raporlanabilmektedir. Bunun için üst

mönüden:

“Raporlama ► Problem Durum Ölçümü” seçilmelidir.

141

APPENDIX B

MEASUREMENT REPORT

An example of source file measurement report in text format is shown in
table below.

Table 1 – Source File Measurement Report

KAYNAK KOD OLCUM RAPORU

Versiyon: 00_01
Elde Edilen Veriler:
 .:. DosyaSayisi:18 .:. FonksiyonSayisi: 13
 .:. KodSatirSayisi:3549 .:. AciklamaSatır: 1575
Kaynak (Yeni/Reuse/COTS): Yeni
Programlama Dili: Ansi C
Durumu (Teslim Edilebilir/Edilemez): Edilemez

Versiyon: 00_02
Elde Edilen Veriler:
 .:. DosyaSayisi:18 .:. FonksiyonSayisi: 10
 .:. KodSatirSayisi:3906 .:. AciklamaSatır: 1676
Kaynak (Yeni/Reuse/COTS): Yeni
Programlama Dili: Ansi C
Durumu (Teslim Edilebilir/Edilemez): Edilemez

Versiyon: 01_01
Elde Edilen Veriler:
 .:. DosyaSayisi:18 .:. FonksiyonSayisi: 13
 .:. KodSatirSayisi:3814 .:. AciklamaSatır: 1622
Kaynak (Yeni/Reuse/COTS): Yeni
Programlama Dili: Ansi C
Durumu (Teslim Edilebilir/Edilemez): Edilebilir

Versiyon: 01_02
Elde Edilen Veriler:
 .:. DosyaSayisi:18 .:. FonksiyonSayisi: 14
 .:. KodSatirSayisi:3993 .:. AciklamaSatır: 1674
Kaynak (Yeni/Reuse/COTS): Yeni
Programlama Dili: Ansi C
Durumu (Teslim Edilebilir/Edilemez): Edilebilir

142

