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ABSTRACT

THE INCLUSIVE SEMILEPTONIC DECAYS OF THE B-MESON IN A CP

SOFTLY BROKEN TWO HIGGS DOUBLET MODEL

Acar, Hilal

M.S., Department of Physics

Supervisor: Assoc. Prof. Dr. Gürsevil Turan

January 2004, 53 pages.

In this work, the B → Xd `
+`−decays are examined in the context of a CP

softly broken two Higgs doublet model. The differential branching ratio, forward-

backward asymmetry, CP-violating asymmetry, CP-violating asymmetry in the

forward-backward asymmetry and polarization asymmetries of the final lepton

in this decay are studied. The dependencies of these physical parameters on

the model parameters are analyzed by paying a special attention to the effects

of neutral Higgs boson (NHB) exchanges and possible CP violating effects. It

has been found that NHB effects are quite significant for the τ mode and the

above-mentioned observables seems to be promising as a testing ground for new

physics beyond the SM, especially for the existence of the CP-violating phase in

the theory.

Keywords: Two Higgs doublet model, Flavor Changing Neutral Current, Rare

Decay, CP asymmetry.
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ÖZ

CP ZAYIFÇA KIRILAN İKİ HIGGS DUBLET MODELDE İNKLUSİF

YARILEPTONİK B-MESON BOZUNMALARI

Acar, Hilal

Yüksek Lisans Tezi , Fizik Bölümü

Tez Yöneticisi: Assoc. Prof. Dr. Gürsevil Turan

Ocak 2004, 53 sayfa.

Bu çalışmada, CP simetrisinin zayıfça bozulduğu iki Higgs dublet modelinde

B → Xd `
+`−bozunumu incelendi. Bu bozunumun difransiyel dallanma oranı,

ileri-geri asimetrisi, CP bozulma asimetrisi, ileri-geri asimetrisindeki CP bozulma

asimetrisi ve lepton polarizasyon asimetrisi çalışıldı. Bu fiziksel parametrelerin

model parametrelerine bağlılıkları nötr Higgs bozon etkileri (NHB) ve CP bozulma

etkileri özellikle dikkate alınarak incelendi. NHB etkilerinin τ modu için oldukça

fazla olduğu, incelenen parametrelerin SM ötesi yeni modellerin test edilmesinde,

özellikle teorideki CP bozan fazın varlığı konusunda umut vaat ettiği görüldü.

Anahtar Sözcükler: İki Higgs Dublet Modeli, Çeşni Değiştiren Nötr Akımlar,

Nadir Bozunumlar, CP Asimetrisi.
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CHAPTER 1

INTRODUCTION

The theory that currently describes all what is known about matter and the forces

of nature is the Standard Model (SM). According to the SM, all the particles in

the universe can be grouped into three ”families” of particles: quarks, leptons,

and force carrier particles. There are six types (’flavours’) of quarks u,d,c,s,t,b,

and also six flavours of leptons e, µ, τ, νe, νµ, ντ . The charge of each quark is a

fraction of the charge of an electron. Leptons and quarks are classified in three

generations. Each generation is made up of a charged lepton, its associated

neutrino and two quarks, one quark with charge -1/3 and one with charge +2/3.

There appear to be four distinctly different types of forces in nature. The

gravitational and electromagnetic forces are already known from classical physics.

Gravitation is believed to play a negligible role in the phenomenology of elemen-

tary particle physics, since it is extremely weak between the individual particles.

Whereas the gravitational and electromagnetic forces have an infinite range, i.e.,

they produce potentials which fall off as 1/r with distance r, there are also two

very short range-forces: the weak and strong forces. The strong force has a

range of about 10−13 cm, and is responsible for binding the quarks into the finite

structures called hadrons. The weak force has a range of about 10−16 cm, and is

responsible for the β-decay of nuclei.

All the known elementary particles are subject to the gravitational and weak

interactions. Particles that are not influenced by the strong force are leptons. All

hadrons and leptons, apart from the neutrinos, take part in the electromagnetic

interactions. On the other hand, the strong interaction is only effective between
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hadrons. The quark scheme naturally accommodates the observed separation of

hadrons into baryons and mesons. The baryons are bound states of three quarks;

the mesons are composed of a quark and an antiquark.

All these forces are associated with elementary spin-1 bosons, the gauge bosons

or force carriers. Consider for example the electromagnetic interaction. Accord-

ing to the quantum theory of electromagnetism, the so-called Quantum Elec-

trodynamics (QED), the interaction is transmitted discontinuously by exchange

of spin-1 photon, whereas in the classical theory the interaction between two

charged particles is transmitted by electromagnetic waves which are continuously

emitted and absorbed. The classical description is adequate at long distances,

but at short distances the quantum nature of the interaction must be taken into

account. The long-range nature of the electromagnetic force is related to the fact

that the photons have zero mass.

The equivalent exchange particles for the strong interactions are called gluons,

and are massless like the photon. In addition to electric charge, quarks have

another property called color; each flavor of quark comes in three colors: red,

green, blue. The theory of the strong force, which is modelled directly on QED,

is called Quantum Chromodynamics (QCD) and acts not between the electric

charges but between the color charges. Whereas QED has a single photon to

transmit the electromagnetic interaction, QCD has eight gluons, which carry

color charges too. By analogy with electromagnetism, the basic strong interaction

between the quarks is long-range. However, the strong interaction between the

quark bound states, namely hadrons, is short range. This is a result of the fact

that the gluons carry color charges and they become asymptotically free at small

separations.

For the weak interactions, the spin-1 exchange particles which transmit the

interaction are called W and Z bosons, and are very massive. So the resulting

force is short-range, and in many applications may be approximated by an inter-

action at a point. However, this phenomenological heavy boson exchange model

of weak interactions ( Fermi model) is very singular and of no use for higher-order
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calculations.

Calculations of various phenomena in QED show that there are similar prob-

lems with this theory in that divergent results are obtained for physically mea-

surable quantities such as mass and charge of the electron. However, these di-

vergences can be controlled by a procedure known as renormalization, leading to

successful estimates of quantities such as the anomalous magnetic moment of the

electron and the Lamb shift in hydrogen. The crux of QED, which guarantees

its renormalizability, is its gauge invariance. In the same way as the photon is

massless, the gauge invariance requires the fundamental vector fields of any gauge

theory to be massless. To resolve this dilemma, one should introduce the photon

and the intermediate bosons W± and Z0 on an equal basis, as massless gauge

fields, and then give masses spontaneously to intermediate bosons leaving the

photon massless. So the extension of the Fermi model to a renormalizable theory

of weak interactions results in a unification of the electromagnetic and weak in-

teractions. Today, the standard model for the unified electromagnetic and weak

interactions is that of Glashow, Weinberg and Salam (GWS) [1]-[4].

The SM has been very successful phenomenologically; there is no confirmed

experimental evidence against the SM with the exception of neutrino oscillations.

1 Nevertheless, there are some unsatisfactory features and unanswered questions

of the SM that make physicists to think that it is not the final theory of nature.

First of all, the SM contains at least 19 physical parameters that can not be

computed in the context of the model: 3 gauge couplings, 6 quark and 3 charged-

lepton masses with 3 charged weak mixing angles and 1 CP-violating phase and 2

parameters to characterize the Higgs sector and 1 CP-violating non-perturbative

vacuum angle. Another point is that the SM does not unify all the fundamental

interactions, which also gives rise to the problem known as the hierarchy prob-

lem. The latter is related to the instability of the Higgs’ mass under radiative

corrections in the presence of a high scale, say Λ ≈ (10−15 − 10−19), the scale

1 There are some indications that there exits neutrino oscillation between different flavors.

This implies nonzero neutrino masses which are not allowed in the SM.
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where the quantum gravity becomes effective. Finally, the SM does not address

the question of the replication of families and the observed mass spectra.

There are various new models beyond the SM that proposes new approaches

to solve the open questions of the SM. Some of them are left-right symmetric

models, the minimal supersymmetric model (MSSM), technicolor models, and the

two Higgs doublet models (2HDM). Among them, the most economical extension

of the SM is the 2HDM, which is obtained from the SM with the addition of one

extra scalar SU(2)L doublet. We note that such a Higgs structure is also required

in low energy supersymmetric models, which are the most popular models in the

field of particle physics at present.

The weak decays are concerned with all the unanswered questions of the SM,

as summarized above and their phenomenology is very rich. Among the weak

interactions, the rare B-meson decays have a special place for providing the es-

sential information about the higher structure of the SM, and also poorly studied

aspects of it, particularly Cabibbo-Kobayashi-Maskawa matrix elements, the lep-

tonic decay constants, etc. From the theoretical point of view, rare decays take

place via flavor changing neutral currents (FCNC), that is, via the currents that

change the flavor but not the charge of the quark. In the SM at tree level, unitar-

ity implies that FCNC processes are absent. However, they may appear at one

loop level through the so-called box and/or penguin diagrams in the SM , but

they are very suppressed with respect to the processes that occur at tree level.

Therefore, as far as FCNC processes are concerned, any deviations from the SM

results would be a certain indication of the presence of the new physics beyond

the SM.

A very important and distinct property of the weak interaction is that it is

invariant under neither the parity P transformation (that changes the sign of

spatial coordinates) nor the charge conjugation C transformation (that changes

a particle into its antiparticle). In fact, the combination of C and P is also not

conserved in weak interaction. It is this CP violation, first detected in the decay

of K0 mesons, which is recognized as one of the most important phenomena
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in particle physics. However, the problem of CP violation is still one of the

least tested aspects of the the SM. Since its first observation in K-meson system,

accurate measurements have taken place to determine its origin. However, in the

K-mesons, the effects of strong interactions are too large to draw any conclusion

about the CP violation. The expectation is that these effects will be less and

better to determine in case of B-meson, which is much more heavier than the

K-meson. Indeed, very recently, the first observation of CP violation in the B-

meson system have been reported by the e+e− B factories [5] providing the the

first test of the SM CP violation. In the near future, more experimental tests will

be possible at the B factories and possible deviations from the SM predictions

will provide important clues about physics beyond it. This situation makes the

search for CP violation in B decays highly interesting.

In this thesis, we investigate the rare inclusive B → Xd`
+`− decays with the

emphasis on CP violation and NHB effects within the framework of a CP sponta-

neously broken 2HDM, which is called model IV in the literature. Being a FCNC

process, B → Xs,d `
+`− decays provide the most reliable testing grounds for

the SM at the loop level and they are also sensitive to new physics. In addition,

B → Xd `
+`−mode is especially important in the CKM phenomenology. In Chap-

ter 3, after introducing the basic formulas of the double and differential decay

rates, the physical observables such as CP violation asymmetry, ACP , forward-

backward asymmetry, AFB, and CP violating asymmetry in forward-backward

asymmetry ACP (AFB) for B → Xd `
+`−decays are calculated. The last chapter

of the thesis is devoted to the conclusion of the thesis. Before presenting the

work outlined above, we will first give a brief summary of the SM and a CP

spontaneously broken 2HDM in Chapter 2 and 3, respectively.
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CHAPTER 2

THE STANDARD MODEL

The SM is a gauge theory based on a SU(3)C×SU(2)L×U(1)Y group for the de-

scription of the current view of elementary particle physics and three fundamental

interactions of the nature.

2.1 The Gauge Theories

According to the Gauge principle, for a field whose Lagrangian is invariant

under a global symmetry, if this global symmetry is turned to a local one then

the original free theory transforms into an interacting theory [6]. The procedure

in order to get the theory invariant under local transformations is to introduce

new vector boson fields, the so-called gauge fields, that interact with the field in

a gauge invariant way. The number of associated gauge boson fields is equal to

the number of generators of the group. That is, SU(N) has N 2 − 1 generators so

it has the same number of gauge bosons.

2.1.1 Quantum Electrodynamics (QED) : The Paradigm of Gauge Theories

QED is the gauge theory of system of interacting electrons, positrons and

photons. Its many predictions have been tested up to an extremely high level of

precision so that it appears to give a completely satisfactory account of electro-

dynamic processes.

Starting with a free Dirac field ψ with spin s = 1
2

, mass m and electric charge
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eQ, the Lagrangian is given by

L = ψ(x)(i 6∂ −m)ψ(x) , (2.1)

which follows from the Dirac equation

(i 6∂ −m)ψ(x) = 0 . (2.2)

The Lagrangian in Eq.(2.1) is invariant under global U(1) transformations

ψ → eiQθψ , ψ → e−iQθψ , ∂µψ → eiQθ∂µψ . (2.3)

By Noether’s theorem, this invariance implies the conservation of electromagnetic

current Jµ and charge eQ, which are given by

Jµ = eQψγµψ , eQ =
∫
d3xJ0(x) . (2.4)

Transformation becomes local if the parameter θ is allowed to depend on the

space-time point x. The corresponding transformations are

ψ → eiQθ(x)ψ , ψ → e−iQθ(x)ψ , ∂µψ → eiQθ(x)∂µψ + iQ(∂µθ(x))e
iQθ(x)ψ . (2.5)

Lagrangian is not invariant under this local transformation. So, introduce a gauge

vector boson field, Aµ(x) (the photon field), which interacts with the field ψ and

transforms under U(1) gauge transformation as

Aµ → Aµ −
1

e
∂µθ(x) . (2.6)

The most economical way of building this gauge invariant Lagrangian is simply

to replace the normal derivative ∂µ by the so-called covariant derivative Dµ so

that

Dµψ = (∂µ − ieQAµ)ψ , (2.7)

which transforms as

Dµψ → eiQθ(x)Dµψ . (2.8)

To include the propagation of photon field we add a so-called kinetic term which

must be also gauge invariant and is given in terms of field strength tensors by

Fµν = ∂µAν − ∂νAµ . (2.9)
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The total Lagrangian is Lorentz and U(1) gauge invariant and is the well known

Lagrangian of QED

LQED = ψ(x)(i 6D −m)ψ(x) − 1

4
Fµν(x)F

µν(x) . (2.10)

The gauge group for electromagnetism is U(1)em with one generator Q and one

parameter θ.

2.2 The Structure of the Standard Model

The SM consists of three components:

1. The basic constituents of matter are leptons and quarks which are realized

in three families:

leptons : νe νµ ντ

e− µ− τ−

quarks : u c t

d s b

2. Four different forces act between the leptons and quarks. These are the

electromagnetic, strong, weak and gravitational forces. The electromagnetic

and weak forces are unified in the SM. The fields associated with these forces

and also with the strong force, are spin-1 fields, describing the photon γ, the

electroweak gauge bosons W± and Z0, and the gluon g. The gravitational

interaction is mediated by a spin-2 field, describing the graviton G. The

gravity sector is not yet formulated as a proper quantum field theory.

3. The third component of the SM is the Higgs mechanism [7]. Any unified

theory of the weak and electromagnetic interactions must be broken, since

the photon is massless while the W± and Z0 bosons are not. The SM is

defined with the simplest realization of the Higgs mechanism by adding one

scalar doublet to the theory which interacts with each other in such a way

that the ground state acquires a non-zero field strength, breaking the elec-

troweak symmetries spontaneously. The interaction energies of electroweak

8



gauge bosons, leptons, and quarks with these field manifest themselves as

non-zero masses of these particles.

The gauge group of the SM is SU(3)C×SU(2)L×U(1)Y of unitary gauge trans-

formations. SU(3)C is the non-Abelian symmetry group of the strong interactions

of quarks and gluons, which is described by the gauge theory called Quantum

Chromodynamics (QCD). SU(2)L is the non-Abelian electroweak-isospin group,

to which three W gauge fields are associated. U(1)Y is the Abelian hypercharge

group, where the hypercharge Y is connected with electric charge Q and the

isospin T3 by the by the Gell - Mann - Nishijima formula, Q = T3 + Y
2

[8]. The

associated B field and the neutral component of the W triplet field mix to form

the photon field A and the electroweak field Z. The gauge theory of the elec-

troweak interactions based on the symmetry group SU(2)L × U(1)Y is known as

the Glashow-Weinberg-Salam theory [1]-[4].

Before going into the details of the construction of the SM, let us briefly

summarize the mathematical details of its third component, namely the Higgs

mechanism.

2.3 Goldstone Theorem and Higgs Mechanism

The simple definition of the phenomenon of spontaneous symmetry breaking

can be given as follows: A physical system has a symmetry that is spontaneously

broken if the interactions governing the dynamics of the system possess such a

symmetry but the ground state of this system does not. In addition, the so-

called Goldstone theorem [9] states that if a theory has a global symmetry of the

Lagrangian which is not a symmetry of the vacuum then there must exist one

massless boson, scalar or pseudoscalar, associated to each generator which does

not annihilate the vacuum and having its same quantum numbers. These modes

are referred to as Goldstone bosons.
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Suppose a complex scalar filed of the form

Φ =



φ+

φ0


 , (2.11)

described by the Lagrangian

LΦ = (∂µΦ)†(∂µΦ) − µ2Φ†Φ − λ(Φ†Φ)2, (2.12)

with

Φ(x) =
1√
2
(φ1(x) + iφ2(x)) , (2.13)

where µ and λ are arbitrary real parameters. The Lagrangian is invariant under

the group SO(2) rotations in the plane



φ1

φ2


→




cos θ sin θ

− sin θ cos θ






φ1

φ2


 . (2.14)

We shall see that this symmetry is spontaneously broken in this model.

Depending on the sign of the mass parameter µ2, there are two possibilities

for the vacuum expectation value < Φ >0≡< 0 | Φ | 0 > that minimizes the

potential part of the Lagrangian (2.12):

1. µ2 > 0. There is a unique vacuum at < φ1 >0=< φ2 >0= 0. The vacuum

is symmetric and therefore no symmetry breaking occurs.

2. µ2 < 0. The minimum is at

< |Φ|2 >0= −µ
2

2λ
=
v2

2
(2.15)

which shows a SO(2) symmetry unless a choice of vacuum is made. Let us choose



< φ1 >0

< φ2 >0


 =



v

0


 . (2.16)

Then the Lagrangian becomes

LΦ =
1

2
∂φ′

1 ∂φ
′
1 −

1

2
(−2µ2)φ′2

1 +
1

2
∂φ′

2 ∂φ
′
2 + other int. terms, (2.17)
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where we shifted the fields so that


φ′

1

φ′
2


 =



φ1 − v

φ2


 . (2.18)

Thus, after spontaneous breakdown of the SO(2) symmetry, we get a scalar field

φ′
1 with real and positive mass −2µ2 and a massless scalar boson φ′

2, as predicted

by the Goldstone theorem.

The Goldstone theorem is for theories with spontaneously broken global sym-

metries but does not hold for gauge theories. When a spontaneous symmetry

breaking takes place in a gauge theory, the Goldstone model is to be generalized

to be invariant under local gauge transformations, and in this way the so called

Higgs mechanism operates. There we require that the Lagrangian is invariant

under local gauge transformation

Φ → eiQθ(x)Φ . (2.19)

We introduce a gauge field Aµ, replace the ordinary derivatives in the Goldstone

Lagrangian (2.12) by the covariant derivatives

∂µ → Dµ + iQAµ , (2.20)

and add the Lagrangian of the free gauge field

Fµν(x) = ∂νAµ(x) − ∂µAν(x).

In this way the Lagrangian (2.12) becomes

LΦ = (DµΦ)(DµΦ)∗ − µ2Φ∗Φ − λ(Φ∗Φ)2 − 1

4
Fµν(x)F

µν(x), (2.21)

This Lagrangian is invariant under local gauge transformations (2.19) and under

Aµ → A′
µ = Aµ −

1

e
∂µθ(x) . (2.22)

For µ2 < 0, the vacuum state is not unique, leading to spontaneous symmetry

breaking. Choosing the vacuum expectation value and the shifted fields as in the
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Goldstone model (see Eqs.(2.16) and (2.18)), the Lagrangian becomes

LΦ =
1

2
∂φ′

1 ∂φ
′
1 +

1

2
∂φ′

2 ∂φ
′
2 −

1

2
(−2µ2)φ′1

1 − 1

4
Fµν(x)F

µν(x)

+ +
1

2
Q2v2AµA

µ +QvAµ∂
µφ′

2 + other int. terms . (2.23)

We can see from the above Lagrangian that after spontaneous symmetry breaking,

the vector boson Aµ gains a mass of mA = Qv. In addition, there is a scalar field

φ′
1 with mass mφ′

1
=

√
−2µ2 and also a massless scalar field φ′

2, which is identified

as Goldstone boson.

2.4 Constructing the Standard Model

The matter fields of the SM, which are the leptons and quarks carrying spin-

1/2, are classified as left-handed (LH) isospin doublets and right-handed (RH)

isospin singlets:

`L =



νe

e



L

,



νµ

µ



L

,



ντ

τ



L

, `R = eR , µR , τR ,

qL =



u

d



L

,



c

s



L

,



t

b



L

, qR = uR , dR , cR .

(2.24)

As the gauge sector, there are four vector bosons as carriers of the electroweak

force, and the corresponding spin-1 gauge vector fields are the SU(2)L isotriplet,

W 1
µ , W 2

µ ,W 3
µ and U(1)Y hypercharge Bµ.

For spontaneous breaking of the SU(2)L × U(1)Y symmetry leaving the elec-

tromagnetic gauge subgroup U(1)em unbroken, a single complex scalar doublet

field with hypercharge Y = 1

Φ(x) =



φ+(x)

φ0(x)


 (2.25)

is coupled to the gauge fields.

The interactions of the SM are summarized by the three terms in the basic

Lagrangian:

LSM = Lgauge + Lfermions + LHiggs . (2.26)
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The first term represents the self interactions of the gauge fields, and given by

Lgauge = −1

4
W i
µνW

iµν − 1

4
BµνB

µν (2.27)

where

W i
µν = ∂µW

i
ν − ∂νW

i
µ + gεijkW j

µW
k
ν ,

Bµν = ∂µBν − ∂νBµ . (2.28)

The tensor εijk is the SU(2)L structure constant, and g is the weak coupling

constant.

The second term in (2.26) represents the fermion-gauge boson couplings

Lfermions =
∑

f i 6Df , (2.29)

with the sum running over the LH and RH field components of the leptons and

quarks, and the covariant derivative is given by

Dµ = ∂µ − igτ iW i
µ − ig′

Y

2
Bµ , (2.30)

where the hypercharge coupling is denoted by g′ and τ i are Pauli matrices.

Finally, the Higgs Lagrangian contains the Higgs-gauge boson interactions

together with the Higgs self-interaction potential, LHG and Higgs-fermion Yukawa

couplings, LYW :

LHiggs = LHG + LYW (2.31)

where

LHG = (DµΦ)+(DµΦ) − µ2Φ+Φ − λ(Φ+Φ)2

LYW = λe ¯̀LΦeR + λuq̄LΦ̃uR + λdq̄LΦdR + h.c + 2nd and 3rdfamilies.(2.32)

Next step is to apply the Higgs mechanism to SU(2)L × U(1)Y group to

acquire mass for gauge bosons and fermions. The following steps summarize the

procedure to get the spectrum from LSM :
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1. A non-symmetric vacuum must be fixed. Let’s choose

< Φ >0≡< 0 | Φ | 0 >=




0

v√
2


 . (2.33)

2. The physical spectrum is built by performing small oscillations around this

vacuum. These are parameterized by

Φ(x) = exp


 i
~ξ(x) · ~σ
v







0

v+H(x)√
2


 , (2.34)

where ~ξ(x) is a small field and H(x) describes the neutral Higgs boson.

3. In order to eliminate the unphysical field ~ξ(x) we make the following gauge

transformation

Φ
′

= U(ξ)Φ =




0

v+H√
2


 , (2.35)

where

U(ξ) = exp


−i

~ξ · ~σ
v


 . (2.36)

The fermion and the gauge fields are transformed accordingly;

`
′

L = U(ξ)`L , e
′

R = eR ,

q
′

L = U(ξ)qL , u
′

R = uR , d
′

R = dR ,

~σ · ~W ′

µ

2
= U(ξ)

~σ · ~Wµ

2
U−1(ξ) − i

g∂µU(ξ)U−1(ξ)
,

B
′

µ = Bµ , (2.37)

and we rewrite the Lagrangian for them in a new gauge.

The physical bosons consist of the charged particles W±
µ and the neutrals Zµ

and Aµ (the photon). The latter are taken as a linear combinations of W 3
µ and

Bµ. Thus, we can set

W±
µ =

1√
2
(W 1

µ ± iW 2
µ) ,

Zµ =
gW 3

µ − g′Bµ√
g2 + g′2

, Aµ =
g′W 3

µ + gBµ√
g2 + g′2

. (2.38)
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It is possible to relate the coupling constants of SU(2)L and U(1)Y to the so-called

the Weinberg angle θW by using the definition g/g′ = tan θW ,

sin θW =
g′√

g2 + g′2
, cos θW =

g√
g2 + g′2

. (2.39)

The photon field Aµ couples via the electric charge e =
√

4πα to the electron,

thus e can be expressed in term of the gauge couplings in the following way

e =
gg′√
g2 + g′2

or e = g sin θW = g′ cos θW . (2.40)

It is now easy to read the masses from the following terms of LSM :

DµΦ
′

DµΦ
′

=
g2v2

4
W+
µ W

µ−

+
1

2

(g2 + g
′2)v2

4 µ
Zµ + ....

V (Φ
′

) =
1

2
2µ2H2 + ....

LYW = λe
v√
2
e
′

Le
′

R + λu
v√
2
u

′

Lu
′

R + λd
v√
2
d

′

Ld
′

R + .... (2.41)

and get finally the three level predictions

mW =
gv√

2
, mZ =

√
g2 + g′2

2
v , mH =

√
2µ ,

me = λe
v√
2
, mu = λu

v√
2
, md = λd

v√
2
, (2.42)

where

v =

√
µ2

λ
, (2.43)

and photon remains massless, mA = 0. The relations in Eq. (2.42) together

with (2.39) allow the masses of the W± and Z0 bosons to be determined in

terms of three experimentally well known quantities: the fine structure constant

α = e2/4π = 1/137, the Fermi coupling constant GF = 1.166 × 10−5GeV −2,

and the weak mixing angle θW , which is determined from neutrino scattering

experiments and given by sin2 θW = 0.231 ± 0.014. Since the Fermi Constant G

is related to g/MW , one finds

GF√
2

=
g2

8m2
W

=
1

2v2
⇒ v = 2−1/4G

−1/2
F = 246GeV . (2.44)
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Combining (2.40),(2.42) and (2.44) gives

mW =

(
απ

GF

√
2

)1/2
1

sin θW
, mZ =

(
απ

GF

√
2

)1/2
2

sin 2θW
, (2.45)

and substituting the above values for α, GF and θW leads to

mW = 78.3+2.5
−2.3 GeV , mZ = 89.0+2.1

−1.8 GeV . (2.46)

These predictions of the electroweak theory are in a good agreement with the

experimental masses of the W± and Z0 bosons, which were measured for the first

time in very high energy experiments at CERN [10].

This leaves only the parameter λ in (2.43) to be determined. From Eqs. (2.42)

and (2.43)

mH =
√

2vλ (2.47)

which can not be predicted in the SM since the coupling λ is an unknown pa-

rameter. Nevertheless, its value can be constrained by the assumption that the

SM is valid up to an energy scale Λ. If one demands that the SM remains as a

perturbative theory up to the scale of the so-called GUT (Grand Unified Theory),

which is O(1016) GeV, an upper bound of the Higgs mass is given by ∼ 200 GeV.

For Λ ∼ 1 TeV and the constraint mH ≤ Λ predict an upper bound of ∼ 700

GeV. A lower bound on the Higgs mass is given by the requirement of vacuum

stability. With a top quark of mass 175 GeV, and Λ ∼ 1 TeV , the Higgs mass is

given by ∼ 55 GeV. For Λ ∼MGUT the lower bound increases to 130 GeV.

The direct Higgs boson search in the e+ e− → H0 Z0 process at CERNs LEP

experiment indicates that mH > 114 GeV. Search for Higgs particles will be the

main goal of a new machine at CERN, namely Large Hadron Collider (LHC),

which is expected to operate in the year 2005.

2.5 Unsatisfactory Features of the SM

Despite the SM has been very successful in describing most of the elementary

particles phenomenology, there are several unsatisfactory features of the theory.

Let us enumerate some them:

16



• The Higgs sector of the theory: It remains unknown so far, and there is

not any fundamental reason to assume that this sector must be minimal i.e.

only one Higgs doublet.

• There are too many free parameters: There are at least 19 physical param-

eters that can not be computed in the context of the SM model: 3 gauge

couplings, 6 quark and 3 charged-lepton masses with 3 charged weak mixing

angles and 1 CP-violating phase and 2 parameters to characterize the Higgs

sector and 1 CP-violating non-perturbative vacuum angle.

• The mass scale v is not ”natural”: The only scale in the SM is v; all masses

are proportional to v. However, since gravity is not included in the SM,

there is for sure another relevant scale, a scale Λ ' MP lanck ' 1019 GeV

>> v. Since the radiative corrections to the Higgs mass term is proportional

to this scale, δm2
H ∼ Λ2, it qaudratically divergent since Λ >> v.

• Interactions are not unified: There is no unification of the fundamental

forces in the SM, because a separate gauge group and coupling is introduced

for each interaction.

• Gravity is not included in the SM: General relativity can be formulated as a

classical field theory, but attempts to quantize it yield a non-renormalizable

theory. The hope is to unify gravity with other forces in such a way that

the infinities arising in different sectors cancel among themselves, yielding

a combined renormalizable theory.

• Origin of CP violation: In the SM the only source of CP violation is the

complex Cabibbo-Kobayashi-Maskawa (CKM) matrix elements which ap-

pears too weak to drive the observed asymmetry in the nature.

These and many other unsatisfactory features of the SM lead the physicists

to search for new models beyond it. In the next chapter, we will give a brief

summary of one these models, namely, the two Higgs doublet model, which is the

most economical extension of the SM.
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CHAPTER 3

THE TWO HIGGS DOUBLET MODEL

The SM has a minimal Higgs sector: there is one physical neutral Higgs scalar

in the spectrum and its mass is a free parameter not fixed by the theory. How-

ever, experimental information concerning the Higgs sector is still very limited;

it is therefore reasonable to explore the implications of more complicated Higgs

models.

The two Higgs doublet version of the SM [11]-[13] is particularly attractive

because

1. It is an extension of the minimal model which adds new phenomena ( e.g.

physical charged Higgs bosons ).

2. It is a minimal extension in that it adds the fewest new arbitrary parameters.

3. It satisfies theoretical constraints of

ρ =
m2

W

m2
Zcos

2θW
' 1 . (3.1)

In the SM at tree level, this relation is exact. In addition, an infinite number

of complicated Higgs representations satisfy this constraint. The simplest

choice among them are SU(2) doublets with Y = 1.

4. Such a Higgs structure is required in ’low energy’ supersymmetric models.

5. It contains direct CP violating vertices.

To summarize, this model possesses five physical Higgs bosons: a charged pair

(H±); two neutral CP even scalars (H0and h0); and a neutral CP odd scalar (A0),
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often called a pseduoscalar. Instead of one free parameter of the minimal model,

this model has six free parameters: four Higgs masses, the ratio of the vacuum

expectation values, tanβ, and a Higgs mixing angle, α. Note that v2
1 + v2

2 is fixed

by the W mass m2
W = g2 (v2

1
+v2

2
)

2
, and the Goldstone bosons G± and G0 are eaten

by the W± and Z0 bosons.

A possible problem in the 2HDM is the possibility of appearing flavor changing

neutral currents (FCNC) at the tree level, which are automatically absent in the

SM, because the same operations that diagonalize the mass matrix automatically

diagonalize the Higgs-fermion coupling. To avoid this unwanted FCNCs one can

impose an ad hoc discrete symmetry based on a theorem of Glashow and Weinberg

[14] which states that the tree level FCNC’s mediated by Higgs bosons will be

absent if all fermions of a given electric charge couple to no more than one Higgs

doublet. However this constraint on the coupling is not unique. For example,

there are at least two ways to satisfy this theorem in 2HDM [13]: One possibility

( Model I ) is a model in which one Higgs doublet does not couple to fermions

at all and the other Higgs doublet couples to fermions in the same way as in the

minimal Higgs model. A second possibility ( Model II ) is a model in which one

Higgs doublet couples to down quarks while the second Higgs doublet couples

to up quarks. Then, the part of the Lagrangian that contains the interaction of

the fermions and the scalars can be written for model I and II, respectively, as

follows:

LY I = −λdij qLi Φ2 dRj − λuij qLi, Φ̃2 uRj − λ`ij `Li Φ2 `Rj + h.c. ,

LY II = −λdij qLi Φ2 dRj − λuij qLi Φ̃1 uRj − λ`ij `Li Φ1 `Rj + h.c. , (3.2)

where

Φ̃ ≡ iσ2Φ
∗ =




0 1

−1 0


Φ∗ , (3.3)

and i, j label the three generations.
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As explained above, in the 2HDM, the scalar sector contains two Higgs dou-

blets with the same quantum numbers

Φ1 =



φ+

1

φ0
1


 , Φ2 =



φ+

2

φ0
2


 . (3.4)

In general, both doublets could acquire vacuum expectation values (vev)

〈Φ1〉 =
v1√
2

, 〈Φ2〉 =
v2√
2
eiξ . (3.5)

so it is more convenient to parametrize the doublets in the following way

Φ1 =




φ+
1

h1+v1+ig1√
2


 ; Φ2 =




φ+
2

h2+v2eiξ+ig2√
2


 (3.6)

The most general Higgs potential describing the interactions of scalar fields

Φ1 and Φ2 which spontaneously breaks SU(2)L×U(1)Y down to U(1)em contains

all possible hermitian bilinear and quartic interactions compatible with gauge

invariance:

VG (Φ1,Φ2) = −µ2
1Â− µ2

2B̂ − µ2
3Ĉ − µ2

4D̂ + λ1Â
2 + λ2B̂

2 + λ4Ĉ
2 + λ5D̂

2

+λ3ÂB̂ + λ6ÂĈ + +λ7B̂Ĉ + λ8ÂD̂ + λ9B̂D̂ + λ10ĈD̂, (3.7)

where

Â ≡ Φ†
1Φ1 , B̂ ≡ Φ†

2Φ2, Ĉ ≡ 1

2

(
Φ†

1Φ2 + Φ†
2Φ1

)
= Re

(
Φ†

1Φ2

)
,

D̂ ≡ − i

2

(
Φ†

1Φ2 − Φ†
2Φ1

)
= Im

(
Φ†

1Φ2

)
,

and λi’s are all real parameters because of hermiticity.

Let us investigate the conditions of CP invariance of the Higgs potential (3.7):

The CP violation is the violation of the combined conservation laws associ-

ated with parity P and charge conjugation C. The parity operation is the spatial

inversion of the coordinates; (x, y, z) −→ (−x,−y,−z) and it is a discrete trans-

formation. Under P, left-handed (LH) components of fermions, ψL = 1
2
(1 − γ5)ψ

transform into right-handed (RH) ones, ψR = 1
2
(1 + γ5)ψ, and vice-versa. Since
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weak interactions only involve the LH components, parity is not a good symme-

try of the weak force. The charge conjugation operation reverses the sign of the

charge and magnetic moment of a particle, leaving coordinates untouched. Thus,

it converts each particle into its antiparticle. Charge conjugation implies that

every charged particle has an oppositely charged antiparticle. The antiparticle

of an electrically neutral particle may be identical to the particle, as in the case

of the neutral pi meson, or it may be distinct, as the antineutron. Strong and

electromagnetic interactions are found experimentally to be invariant under the

C conjugation operation. On the other hand , it is not a symmetry of weak inter-

actions, because when it is applied to a neutrino (LH) it gives a LH antineutrino

which does not exist.

If we come back to the Higgs potential in Eq. (3.7), since all fields are scalars,

CP invariance is equivalent to the charge conjugation invariance here. Under

charge conjugation, a Higgs doublet Φi transforms as Φi → eiβiΦ∗
i , where the

parameters βi are arbitrary. Therefore, we get Φ†
iΦj → ei(βj−βi)Φ†

jΦi. In par-

ticular, if we choose βi = βj, the operator D̂ in Eq.(3.7) reverses sign under

C-conjugation, while the others are invariant. Then, the number of parameters

of the Higgs potential that holds a C-conjugation invariance reduces to ten

V ′
G (Φ1,Φ2) = −µ2

1Â− µ2
2B̂ − µ2

3Ĉ + λ1Â
2 + λ2B̂

2 + λ3Ĉ
2 + λ4D̂

2

+λ5ÂB̂ + λ6ÂĈ + λ7B̂Ĉ . (3.8)

However, potential (3.8) could induce spontaneous CP violation due to the

complex phase ξ in the vev of Φ2 [15]-[18]. It is possible to demand a Z2 invariance

where Φ1 → Φ1, Φ2 → −Φ2, under which vev is CP invariant. The resulting

potential is given by

V ′′
G = −µ2

1Â− µ2
2B̂ + λ1Â

2 + λ2B̂
2 + λ4Ĉ

2 + λ5D̂
2 + λ3ÂB̂ , (3.9)

and correspond to setting µ2
3 = λ6 = λ7 = 0 in Eq. (3.8). If we permit a soft

breaking term of the form −µ2
3Ĉ, spontaneous CP violation occurs, in that case
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the potential explicitly reads

V (Φ1,Φ2) =
∑

i=1,2

[µ2
iΦ

†
iΦi + λi(Φ

†
iΦi)

2] + µ2
3Re(Φ†

1Φ2) + λ3[(Φ
†
1Φ1)(Φ

†
2Φ2)]

+ λ4[Re(Φ†
1Φ2)]

2 + λ5[Im(Φ†
1Φ2)]

2 . (3.10)

Comparing with the model I and II, the Higgs potential of such a model,

which is called as model IV in the literature, has an additional linear terms of

Re(Φ†
1Φ2). So, model IV is the minimal among the extensions of that provide a

new source of CP violation [17, 18].

The constraints on the λi’s can be obtained from the requirement that the

vacuum is at least a stationary point of the potential, that is

∂V

∂Φi

∣∣∣∣∣
min

= 0 , (3.11)

where ”min” means the vanishing expectation values of all components except

the real parts of the neutral components of the doublets. From (3.11), we get the

following conditions

m2
1 = −[2λ1v

2
1 + (λ3 + λ5)v

2
2],

m2
2 = −[2λ2v

2
2 + (λ3 + λ5)v

2
1],

m2
3 = −2v1v2(λ4 − λ5) cos ξ. (3.12)

From Eq. (3.12), one can see that the necessary condition to have spontaneously

broken CP is λ4 6= λ5 and m2
3 6= 0, i.e., the real and imaginary parts of φ+

1 φ2

have different self-couplings and there exists a linear term of Re(φ+
1 φ2) in the

potential.

As has already been noted, after the spontaneous symmetry braking of the

gauge symmetry five physical Higgs fields appear in the Higgs sector. The masses

of these Higgs bosons can be calculated from the mass squared matrix defined by

M2
ij =

1

2

∂2V

∂Φi∂Φj

∣∣∣∣∣
min

, (3.13)

with i = 1, .., 8. We can write the potential at the stationary point as:

V = m2
1v

2
1 +m2

2v
2
2 + λ1v

4
1 + λ2v

4
2 + (λ3 + λ5)v

2
1v

2
2

+(λ4 − λ5)v
2
1v

2
2

[
(cos ξ − ∆)2 − ∆2

]
, (3.14)
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with

∆ = − m2
3

2v1v2(λ4 − λ5)
.

In model IV, for charged components, the mass-squared matrix for negative states

is given as

−λ5




v2
1 −v1v2e

iξ

−v1v2e
−iξ v2

2


 , (3.15)

Diagonalizing the mass-squared matrix results in one zero-mass Goldstone state:

G− = eiξ sin βφ−
2 + cos βφ−

1 , (3.16)

and one massive charged Higgs boson state:

H− = eiξ cos βφ−
2 − sin βφ−

1 , (3.17)

mH− = |λ5|v2, (3.18)

where tanβ = v2/v1 and v2 = v2
1 + v2

2, which is determined by 2m2
W/g

2. The

positive states G+ and H+ could be obtained similarly.

For neutral Higgs components, because CP-conservation is broken, the mass-

squared matrix is 4×4, which can not be simply separated into two 2×2 matrices

as usual. After rotating the would-be Goldestone boson (v1Imφ
0
1+v2Imφ

0
2)/v away

and using the constraints in Eq. (3.12), the elements of the mass matrix of the

three physical neutral Higgs bosons µij, in the basis of {Reφ0
1,Reφ0

2, (v2Imφ
0
1 −

v1Imφ
0
2)/v}, can be written as

µ11 = 4λ1v
2
1 + (λ4 − λ5)v

2
2 cos2 ξ ,

µ12 = v1v2[2λ3 + λ4 cos2 ξ + λ5(1 + sin2
ξ)] ,

µ13 =
1

2
(λ4 − λ5)v2vs sin2 ξ ,

µ22 = 4λ2v
2
2 + (λ4 − λ5)v

2
1 cos2 ξ ,

µ23 =
1

2
(λ4 − λ5) sin2 ξv1v ,

µ33 = (λ4 − λ5)v
2 sin2 ξ . (3.19)
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In eq. (3.19), the constraints in eq. (3.12) have been used. Diagonalizing the

Higgs boson mass-squared matrix results in




H0
1

H0
2

H0
3




=
√

2




cosα sinα 0

− sinα cosα 0

0 0 1







Imφ0
1

Reφ0
1

Reφ0
2




(3.20)

with masses

m2
H0

1
,H0

2

=
1

2

(
µ11 + µ33 ∓

√
(µ11 − µ33)2 + 4µ2

13

)
(3.21)

and the mixing angle

tan(2α) =
2µ13

µ33 − µ11

. (3.22)

In model IV, it is assumed that the fermions obtain masses in the same way

as in model II 2HDM. That is, the up-type quarks get masses from Yukawa

couplings to the Higgs doublet Φ2 and down-type quarks and leptons get masses

from Yukawa couplings to the Higgs doublet Φ1. Then it is easy to obtain the

couplings of neutral Higgs bosons to fermions

H0
1 f̄f : − igmf

2mW cos β
(sinα + i cosαγ5)

H0
2 f̄f : − igmf

2mW cos β
(cosα− i sinαγ5) (3.23)

where f represents down-type quarks and leptons. The couplings of the charged

Higgs bosons to fermions are the same as those in the CP-conservative 2HDM

(model II).
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CHAPTER 4

B → Xd`
+`− in a CP SOFTLY BROKEN TWO HIGGS

DOUBLET MODEL

4.1 Introduction

Although CP violation is one of the most fundamental phenomena in particle

physics it is still one of the the least tested aspects of the SM. Before the start

of the B factories, CP violation has only been measured in the kaon system

[19]. Very recently, the observation of CP violation in the B-meson system have

been reported by the e+e− B factories [5] providing the first test of the SM CP

violation. In the near future, more experimental tests will be possible at the B

factories and possible deviations from the SM predictions will provide important

clues about physics beyond it. This situation makes the search for CP violation

in B decays highly interesting.

Interest in CP violation is not limited to particle physics; it plays an important

role in cosmology, too. One of the necessary conditions to generate the matter-

antimatter asymmetry observed in the Universe is -in addition to baryon number

violation and deviations from the thermal equilibrium- that the elementary in-

teractions have to violate CP. In the SM the only source of CP violation is the

complex Cabibbo-Kobayashi-Maskawa (CKM) matrix elements which appears

too weak to drive such an asymmetry [20], giving a strong motivation to search

for new physics. In many cases, extensions of the SM such as the 2HDM or the

supersymmetric extensions of the SM are able to supply the new sources of CP

violation, providing an opportunity to investigate the new physics by analyzing
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the CP violating effects.

Being a FCNC process, B → Xs,d `
+`− decays provide the most reliable test-

ing grounds for the SM at the loop level and they are also sensitive to new

physics. In addition to, B → Xd `
+`−mode is especially important in the CKM

phenomenology. In case of the b → s`+`− decays, the matrix element receives

a combination of various contributions from the intermediate t, c or u quarks

with factors VtbV
∗
ts ∼ λ2, VcbV

∗
cs ∼ λ2 and VubV

∗
us ∼ λ4, respectively, where

λ = sin θC ∼= 0.22. Since the last factor is extremely small compared to the

other two, we can neglect it and this reduces the unitarity relation for the CKM

factors to read VtbV
∗
ts +VcbV

∗
cs ≈ 0. Hence, the matrix elements for the b→ s`+`−

decays involve only one independent CKM factor so that CP violation would not

show up. On the other hand, as pointed out before [21, 22], for b→ d`+`− decay,

all the CKM factors VtbV
∗
td, VcbV

∗
cd and VubV

∗
ud are at the same order λ3 in the

SM and the matrix element for these processes would have sizable interference

terms, so as to induce a CP violating asymmetry between the decay rates of the

reactions b → d`+`− and b̄ → d̄`+`−. Therefore, b → d`+`− decays seem to be

suitable for establishing CP violation in B mesons.

We note that the inclusive B → Xs`
+`− decays have been widely studied

in the framework of the SM and its various extensions [23]-[40]. As for B →
Xd`

+`− modes, they were first considered within the SM in [21] and [22]. The

general two Higgs doublet model and MSSM contributions to the CP asymmetries

were discussed in refs. [41] and [42], respectively. Recently, CP violation in the

polarized b → d`+`− decay has been also investigated in the SM [43] and also in

a general model independent way [44].

In this work, we investigate B → Xd `
+`−decay with an emphasis on CP

violation and NHB effects in a CP softly broken 2HDM ( model IV) [17, 18],

whose main points are already summarized in Chapter 3. In summary, in model

IV, up-type quarks get masses from Yukawa couplings to the one Higgs doublet,

and down-type quarks and leptons get masses from another Higgs doublet. In

such a 2HDM, all the parameters in the Higgs potential are real so that it is
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CP-conserving, but one allows the real and imaginary parts of φ+
1 φ2 to have

different self-couplings so that the phase ξ, which comes from the expectation

value of Higgs field, can not be rotated away, which breaks the CP symmetry. In

model IV, interaction vertices of the Higgs bosons and the down-type quarks and

leptons depend on the CP violating phase ξ and the ratio tan β = v2/v1, where

v1 and v2 are the vacuum expectation values of the first and the second Higgs

doublet respectively, and they are free parameters in the model. The constraints

on tan β are usually obtained from B − B̄, K − K̄ mixing, b→ s γ decay width,

semileptonic decay b→ c τ ν̄ and is given by [45]

0.7 ≤ tan β ≤ 0.52(
mH±

1 GeV
) , (4.1)

and the lower bound mH± ≥ 200 GeV has also been given in [45]. As for the

constraints on ξ, it is given in ref.[17] that
√
| sin 2ξ| tan β < 50, which can be

obtained from the electric dipole moments of the neutron and electron.

For inclusive B-decays into lepton pairs, in addition to the CP asymmetry and

the forward-backward asymmetry, there is another parameter, namely polariza-

tion asymmetry of the final leptons, which is likely to play an important role for

comparison of theory with experimental data. It has been already pointed out

[46] that together with the longitudinal polarization, PL, the other two orthog-

onal components of polarization, transverse, PT , and normal polarizations, PN ,

are crucial for the τ+τ− mode since these three components contain the indepen-

dent, but complementary information because they involve different combinations

of Wilson coefficients in addition to the fact that they are proportional to m`/mb.

The rest of the chapter is organized as follows: Following this brief introduc-

tion, in section 4.2, we first present the effective Hamiltonian. Then, we introduce

the basic formulas of the double and differential decay rates, CP violation asym-

metry, ACP , forward-backward asymmetry, AFB, and CP violating asymmetry in

forward-backward asymmetry ACP (AFB) for B → Xd `
+`−decay. Section 4.3 is

devoted to the numerical analysis and discussion.

27



4.2 The Effective Hamiltonian for B → Xd`
+`−

It is well known that inclusive decay rates of the heavy hadrons can be calcu-

lated in the heavy quark effective theory (HQET) [47] and the important result

from this procedure is that the leading terms in 1/mq expansion turn out to be

the decay of a free quark, which can be calculated in the perturbative QCD. On

the other hand, the effective Hamiltonian method provide a powerful framework

for both the inclusive and the exclusive modes into which the perturbative QCD

corrections to the physical decay amplitude are incorporated in a systematic way.

In this approach, heavy degrees of freedom, namely t quark and W±, H±, h0, H0

bosons in the present case, are integrated out. The procedure is to take into

account the QCD corrections through matching the full theory with the effective

low energy one at the high scale µ = mW and evaluating the Wilson coefficients

from mW down to the lower scale µ ∼ O(mb). The effective Hamiltonian obtained

in this way for the process b→ d `+`−, is given by [37, 38]:

Heff =
4GFα√

2
VtbV

∗
td

{
10∑

i=1

Ci(µ)Oi(µ) +
10∑

i=1

CQi
(µ)Qi(µ)

− λu{C1(µ)[Ou
1 (µ) −O1(µ)] + C2(µ)[Ou

2 (µ) −O2(µ)]}
}
, (4.2)

where

λu =
VubV

∗
ud

VtbV ∗
td

, (4.3)

and we have used the unitarity of the CKM matrix i.e., VtbV
∗
td+VubV

∗
ud = −VcbV ∗

cd.

The operator basis in the 2HDM for the process under consideration is given by

[48, 49]

O1 = (d̄LαγµcLβ)(c̄Lβγ
µbLα),

O2 = (d̄LαγµcLα)(c̄Lβγ
µbLβ),

O3 = (d̄LαγµbLα)
∑

q=u,d,s,c,b

(q̄Lβγ
µqLβ),

O4 = (d̄LαγµbLβ)
∑

q=u,d,s,c,b

(q̄Lβγ
µqLα),
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O5 = (d̄LαγµbLα)
∑

q=u,d,s,c,b

(q̄Rβγ
µqRβ),

O6 = (d̄LαγµbLβ)
∑

q=u,d,s,c,b

(q̄Rβγ
µqRα),

O7 =
e

16π2
d̄ασµν(mbR +msL)bαFµν ,

O8 =
g

16π2
d̄αT

a
αβσµν(mbR +msL)bβGaµν ,

O9 =
e

16π2
(d̄LαγµbLα)(l̄γ

µl) ,

O10 =
e

16π2
(d̄LαγµbLα)(l̄γ

µγ5l) ,

Q1 =
e2

16π2
(d̄αL b

α
R) (τ̄ τ) ,

Q2 =
e2

16π2
(d̄αL b

α
R) (τ̄ γ5τ) ,

Q3 =
g2

16π2
(d̄αL b

α
R)

∑

q=u,d,s,c,b

(q̄βL q
β
R) ,

Q4 =
g2

16π2
(d̄αL b

α
R)

∑

q=u,d,s,c,b

(q̄βR q
β
L) ,

Q5 =
g2

16π2
(d̄αL b

β
R)

∑

q=u,d,s,c,b

(q̄βL q
α
R) ,

Q6 =
g2

16π2
(d̄αL b

β
R)

∑

q=u,d,s,c,b

(q̄βR q
α
L) ,

Q7 =
g2

16π2
(d̄αL σ

µν bαR)
∑

q=u,d,s,c,b

(q̄βL σµνq
β
R) ,

Q8 =
g2

16π2
(d̄αL σ

µν bαR)
∑

q=u,d,s,c,b

(q̄βR σµνq
β
L) ,

Q9 =
g2

16π2
(d̄αL σ

µν bβR)
∑

q=u,d,s,c,b

(q̄βL σµνq
α
R) ,

Q10 =
g2

16π2
(d̄αL σ

µν bβR)
∑

q=u,d,s,c,b

(q̄βR σµνq
α
L) (4.4)

where α and β are SU(3) colour indices and Fµν and Gµν are the field strength

tensors of the electromagnetic and strong interactions, respectively.

Ou
1 and Ou

2 are the new operators for b → d transitions which are absent in

the b→ s decays and given by

Ou
1 = (d̄αγmuPLuβ)(ūβγ

muPLdα) ,

Ou
2 = (d̄αγmuPLuα)(ūβγ

muPLdβ).
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The initial values of the Wilson coefficients for the relevant process in the SM

are [26]

CSM
1,3,...6,11,12(mW ) = 0 ,

CSM
2 (mW ) = 1 ,

CSM
7 (mW ) =

3x3 − 2x2

4(x− 1)4
ln x+

−8x3 − 5x2 + 7x

24(x− 1)3
,

CSM
8 (mW ) = − 3x2

4(x− 1)4
ln x+

−x3 + 5x2 + 2x

8(x− 1)3
,

CSM
9 (mW ) = − 1

sin2θW
B(x) +

1 − 4 sin2 θW
sin2 θW

C(x) −D(x) +
4

9
,

CSM
10 (mW ) =

1

sin2 θW
(B(x) − C(x)) ,

CSM
Qi

(mW ) = 0 i = 1, .., 10 . (4.5)

The initial values for the additional part due to charged Higgs bosons are

CH
1,...6(mW ) = 0 ,

CH
7 (mW ) =

1

tan2 β
F1(y) + F2(y) ,

CH
8 (mW ) =

1

tan2 β
G1(y) +G2(y) ,

CH
9 (mW ) =

1

tan2 β
H1(y) ,

CH
10(mW ) =

1

tan2 β
L1(y) , (4.6)

and due to the neutral Higgs bosons are [37]

CH
Q1

(mW ) =
mbm` tan

2 β x

2 sin2 θW

{ ∑

i=H1,H2

Ai
m2
i

(f1Bi + f2Ei)

}

, CH
Q2

(mW ) =
mbm` tan

2 β x

2 sin2 θW

{ ∑

i=H1,H2

Di

m2
i

(f1Bi + f2Ei)

}

, CH
Q3

(mW ) =
mbe

2

mτg2
(CQ1

(mW ) + CQ2
(mW ))

, CH
Q4

(mW ) =
mbe

2

mτg2
, (CQ1

(mW ) − CQ2
(mW ))

, CQi
(mW ) = 0 , i = 5, .., 10 , (4.7)

where

AH1
= − sin ξ , DH1

= i cos ξ , AH2
= −iDH1

, DH2
= −iAH1

,

30



BH1
=

i

2
eiξ , BH2

=
1

2
eiξ ,

f1 =
x ln x

x− 1
− y ln y − x ln x

y − x
, f2 =

x ln x

(x− 1)(y − 1)
− y ln y

(y − x)(y − 1)
,

EH1
=

1

2
(c2 cos ξ − c1 sin ξ) , EH2

=
1

2
(c2 sin ξ + c1 cos ξ) ,

c1 = −y + 2BH2
cos ξxH1

− 2BH1
sin ξxH2

,

c2 = i(−y − 2BH1
sin ξxH1

+ 2BH2
cos ξxH2

) , (4.8)

with

x =
m2
t

m2
W

, y =
m2
H±

m2
W

, xHi
=
m2
Hi

m2
W

. (4.9)

The explicit forms of the functionsA(x), B(x), C(x), D(x) and F1(2)(y), G1(2)(y),

H1(y) and L1(y) are given as

A(x) =
x(8x2 + 5x− 7)

12(x− 1)3
+
x2(2 − 3x)

2(x− 1)4
ln x ,

B(x) =
x

4(1 − x)
+

x

4(x− 1)2
ln x ,

C(x) =
x(x− 6)

x(x− 1)
+
x(3x+ 2)

8(x− 1)2
ln x ,

D(x) =
−19x3 + 25x2

36(x− 1)3
+
x2(5x2 − 2x− 6)

18(x− 1)4
ln x− 4

9
ln x ,

F1(y) =
y(7 − 5y − 8y2)

72(y − 1)3
+
y2(3y − 2)

12(y − 1)4
ln y ,

F2(y) =
y(5y − 3)

12(y − 1)2
+
y(−3y + 2)

6(y − 1)3
ln y ,

G1(y) =
y(−y2 + 5y + 2)

24(y − 1)3
+

−y2

4(y − 1)4
ln y ,

G2(y) =
y(y − 3)

4(y − 1)2
+

y

2(y − 1)3
ln y ,

H1(y) =
1 − 4sin2θW
sin2θW

xy

8

[
1

y − 1
− 1

(y − 1)2
ln y

]

− y

[
47y2 − 79y + 38

108(y − 1)3
− 3y3 − 6y + 4

18(y − 1)4
ln y

]
,

L1(y) =
1

sin2θW

xy

8

[
− 1

y − 1
+

1

(y − 1)2
ln y

]
.

(4.10)
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Finally, the initial values of the coefficients in the 2HDM are given by

C2HDM
i (mW ) = CSM

i (mW ) + CH
i (mW ) . (4.11)

In Eq.(4.2), Ci(µ) are the Wilson coefficients calculated at a renormalization

point µ and their evolution from the higher scale µ = mW down to the low-energy

scale µ = mb is described by the renormalization group equation. Although this

calculation is performed for operators Oi in the next-to-leading order (NLO) the

mixing of Oi and Qi in NLO has not been given yet. Therefore we use only the

LO results. Ceff
7 (µ) is defined as [50]

Ceff
7 (µ) = C2HDM

7 (µ) +Qd (C2HDM
5 (µ) +NcC

2HDM
6 (µ)) ,

where Nc is the number of colors, Qd is the charge for down type quarks, and

the leading order QCD corrected Wilson coefficients CLO,2HDM
7 (µ) are given by

[48, 49, 34]:

CLO,2HDM
7 (µ) = η16/23C2HDM

7 (mW ) + (8/3)(η14/23 − η16/23)C2HDM
8 (mW )

+ C2HDM
2 (mW )

8∑

i=1

hiη
ai , (4.12)

and η = αs(mW )/αs(µ), hi and ai are the numbers which appear during the

evaluation [34].

The Wilson coefficient C9(µ) contains as well as a perturbative part, a part

coming from long distance (LD) effects due to conversion of the real c̄c into lepton

pair `+`−:

Ceff
9 (µ) = Cpert

9 (µ) + Yreson(s) , (4.13)

where

Cpert
9 (µ) = C9 + h(u, s)[3C1(µ) + C2(µ) + 3C3(µ) + C4(µ) + 3C5(µ) + C6(µ)

+ λu(3C1 + C2)] −
1

2
h(1, s) (4C3(µ) + 4C4(µ) + 3C5(µ) + C6(µ))

− 1

2
h(0, s) [C3(µ) + 3C4(µ) + λu(6C1(µ) + 2C2(µ))] (4.14)

+
2

9
(3C3(µ) + C4(µ) + 3C5(µ) + C6(µ)) ,
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and

Yreson(s) = − 3

α2
κ
∑

Vi=ψi

πΓ(Vi → `+`−)mVi

m2
Bs−m2

Vi
+ imVi

ΓVi

× [(3C1(µ) + C2(µ) + 3C3(µ) + C4(µ) + 3C5(µ) + C6(µ))

+ λu(3C1(µ) + C2(µ))] . (4.15)

In Eq.(4.14), s = q2/m2
B where q is the momentum transfer, u = mc

mb
and the

functions h(u, s) arise from one loop contributions of the four-quark operators

O1 −O6 and are given by

h(u, s) = −8

9
ln
mb

µ
− 8

9
ln u+

8

27
+

4

9
y (4.16)

−2

9
(2 + y)|1 − y|1/2





(
ln
∣∣∣
√

1−y+1√
1−y−1

∣∣∣− iπ
)
, for y ≡ 4u2

s
< 1

2 arctan 1√
y−1

, for y ≡ 4u2

s
> 1,

h(0, s) =
8

27
− 8

9
ln
mb

µ
− 4

9
ln s+

4

9
iπ . (4.17)

The phenomenological parameter κ in Eq. (4.15) is taken as 2.3 (see e.g. [51]).

Finally, the Wilson coefficients CQ1
(µ) and CQ2

(µ) at any scale are given by

[37]

CQi
(µ) = η−12/23 CQi

(mW ) , i = 1, 2 . (4.18)

Next we proceed to calculate the differential branching ratio dBR/ds, forward-

backward asymmetry AFB, CP violating asymmetry ACP , CP asymmetry in

the forward-backward asymmetry ACP (AFB) and finally the lepton polarization

asymmetries of the B → Xd `
+`−decays. In order to find these physically measur-

able quantities we first need to calculate the matrix element of the B → Xd`
+`−

decay. The relevant one-loop diagrams contributing to this decay in the SM are

given in Fig.(4.1). The additional contributions from the 2HDM can be obtained

from Fig. (4.1) by replacement W,φ → H±. When we take into account the

contributions coming from NHB we get the diagrams depicted in Fig. (4.2).

Neglecting the mass of the d quark, the effective short distance Hamiltonian

in Eq.(4.2) leads to the following QCD corrected matrix element:

M =
GFα

2
√

2π
VtbV

∗
td

{
Ceff

9 d̄γµ(1 − γ5)b ¯̀γµ`+ C10 d̄γµ(1 − γ5)b ¯̀γµγ5`
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b d

γ, Z

`− `−

b ui

W

(a)

b d

γ, Z

`− `−

dui

W

(b)

b d

γ, Z

`− `−

ui
W W

(c)

b d

γ, Z

`− `−

ui ui

W

(d)

Figure 4.1: The one-loop Feynman diagrams contributing the decay b → d`+`−

in the SM.

− 2Ceff
7

mb

q2
d̄iσµνq

ν(1 + γ5)b ¯̀γµ`+ CQ1
d̄(1 + γ5)b ¯̀̀ + CQ2

d̄(1 + γ5)b ¯̀γ5`

}
.

(4.19)

When the initial and final state polarizations are not measured, we must average

over the initial spins and sum over the final ones, that leads to the following

double differential decay rate

d2Γ

ds dz
= Γ(B → Xc`ν)

3α2

4π2f(u)k(u)
(1 − s)2 |VtbV ∗

td|2
|Vcb|2

v
{
2 v zRe(Ceff

7 C∗
10)

+ 2
(
1 +

2t

s

)
Re(Ceff

7 Ceff ∗
9 ) + v s zRe(C10C

eff ∗
9 )

+ v
√
tzRe((2Ceff

7 + Ceff
9 )C∗

Q1
) +

√
tRe(C10C

∗
Q2

)

+
1

4

[
(1 + s) − (1 − s) v2z2 + 4t

]
|Ceff

9 |2 +
[(

1 +
1

s

)
−
(
1 − 1

s

)
v2z2 +

4t

s

]
|Ceff

7 |2

+
1

4

[
(1 + s) − (1 − s) v2z2 − 4t

]
|C10|2 +

1

4
s|CQ2

|2 +
1

4
(s− 4t)|CQ1

|2
}
. (4.20)

Here, v =
√

1 − 4t/s, t = m2
`/m

2
b and z = cos θ, where θ is the angle between

the momentum of the B-meson and that of `− in the center of mass frame of the
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b d

H0, h0 A0

`− `−

b ui

W, φ, H

(a)

b d

H0, h0 A0

`− `−

dui

W, φ, H

(b)

b d

H0, h0 A0

`− `−

ui
W, φ, H W, φ, H

(c)

b d

H0, h0 A0

`− `−

ui ui

W, φ, H

(d)

Figure 4.2: The one-loop diagrams contributing the process b → d`+`− within
the framework of model IV by including NHB contributions

dileptons `−`+. In Eq. (4.20),

Γ(B → Xc`ν) =
G2
Fm

5
b

192π3
|Vcb|2f(u)k(u) , (4.21)

where

f(u) = 1 − 8u+ 8u4 − u8 − 24u4 ln(u) (4.22)

k(u) = 1 − 2αs(mb)

3π

[ (
π2 − 31

4

)
(1 − u2) +

3

2

]
, (4.23)

are the phase space factor and the QCD corrections to the semi-leptonic decay

rate, respectively, which is used to normalize the decay rate of B → Xd`
+`− to

remove the uncertainties in the value of mb.

Having established the double differential decay rates, let us now consider the

forward-backward asymmetry AFB of the lepton pair, which is defined as

AFB(s) =

∫ 1
0 dz

d2Γ
dsdz

− ∫ 0
−1 dz

d2Γ
dsdz∫ 1

0 dz
d2Γ
dsdz

+
∫ 0
−1 dz

d2Γ
dsdz

. (4.24)
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The AFB’s for the B → Xd `
+`−decays are calculated to be

AFB(s) =
−3 v

∆(s)
Re[C10(2C

eff
7 + sCeff ∗

9 )] +
√
tRe[CQ1

(2Ceff ∗
7 + Ceff ∗

9 )],(4.25)

where

∆(s) =
(s+ 2s2 + 2t− 8st)

s
|C10|2 +

4

s2
(2 + s)(s+ 2t)|Ceff

7 |2

+ (1 + 2s)(1 +
2t

s
)|Ceff

9 |2 +
12

s
(s+ 2t)Re(Ceff

7 Ceff ∗
9 ) + 6

√
tRe(Ceff

9 C∗
Q2

)

+
3

2
(s− 4t)|CQ1

|2 +
3

2
s|CQ2

|2 , (4.26)

which agrees with the result given by ref. [22], in case of switching off the NHB

contributions and setting m` = 0, but differs slightly from the results of [42].

We next consider the CP asymmetry ACP between the B → Xd`
+`− and the

conjugated one B̄ → X̄d`
+`−, which is defined as

ACP (s) =
dΓ
ds

− dΓ̄
ds

dΓ
ds

+ dΓ̄
ds

, (4.27)

where
dΓ

ds
=

dΓ(B → Xd`
+`−)

ds
,
dΓ̄

ds
=

dΓ(B̄ → X̄d`
+`−)

ds
. (4.28)

After integrating the double differential decay rate in Eq.(4.20) over the angle

variable, we find for the B → Xd `
+`−decays

dΓ

ds
= Γ(B → Xc`ν)

α2

4π2f(u)k(u)
(1 − s)2 |VtbV ∗

td|2
|Vcb|2

√

1 − 4t

s
∆(s) . (4.29)

For the antiparticle channel, we have

dΓ̄

ds
=

dΓ

ds
(λu → λ∗u; ξ → −ξ) (4.30)

We have also a CP violating asymmetry in AFB, ACP (AFB), in B → Xd `
+`−

decay. Since in the limit of CP conservation, one expects AFB = −ĀFB [22, 52],

where AFB and ĀFB are the forward-backward asymmetries in the particle and

antiparticle channels, respectively, ACP (AFB) is defined as

ACP (AFB) = AFB + ĀFB , (4.31)
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with

ĀFB = AFB(λu → λ∗u; ξ → −ξ) . (4.32)

Finally, we would like to discuss the lepton polarization effects for the B →
Xd `

+`−decays. The polarization asymmetries of the final lepton is defined as

Pn(s) =
(dΓ(Sn)/ds) − (dΓ(−Sn)/ds)
(dΓ(Sn)/ds) + (dΓ(−Sn)/ds)

, (4.33)

for n = L, N, T . Here, PL, PT and PN are the longitudinal, transverse and

normal polarizations, respectively. The unit vectors Sn are defined as follows:

SL = (0, ~eL) =

(
0,

~p−
|~p−|

)
,

SN = (0, ~eN ) =

(
0,

~p× ~p−
|~p× ~p−|

)
,

ST = (0, ~eT ) =

(
0, ~eN × ~eL

)
, (4.34)

where ~p and ~p− are the three-momenta of d quark and `− lepton, respectively.

The longitudinal unit vector SL is boosted to the CM frame of `+`− by Lorentz

transformation

SL,CM =

(
|~p−|
m`

,
E` ~p−
m`|~p−|

)
. (4.35)

It follows from the definition of unit vectors Sn that PT lies in the decay plane

while PN is perpendicular to it, and they are not changed by the boost.

After some algebra, we obtain the following expressions for the polarization

components of the `− lepton in B → Xd `
+`−decays:

PL =
v

∆
Re
[
2C10(6C

eff,∗
7 + (1 + 2s)Ceff,∗

9 ) − 3CQ1
(2

√
t C10 + sC∗

Q2
)
]
,

PT =
3π

√
t

2
√
s∆

(
− 4

s
|Ceff

7 |2 − s|Ceff
9 |2 + Re

[
2Ceff∗

7 (C10 − 2Ceff∗
9 +

s

2
√
t
C∗
Q2

)

+ Ceff
9 (C10 +

s

2
√
t
C∗
Q2

) +
s− 4t

2
√
t
C10C

∗
Q1

])
, (4.36)

PN =
3πv

4
√
s∆

Im
[
C10(sC

∗
Q2

+ 2
√
t(Ceff∗

7 + sCeff∗
9 )) + sCQ1

(2Ceff∗
7 + Ceff∗

9 )
]
.
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4.3 Numerical results and discussion

In this section we present the numerical analysis of the inclusive decays B →
Xd `

+`−in model IV. We will give the results for only ` = τ channel, which

demonstrates the NHB effects more manifestly. The input parameters we used in

this analysis are as follows:

mb = 4.8GeV , mc = 1.4GeV , mt = 175GeV , mτ = 1.78GeV ,

BR(B → Xceν̄e) = 10.4% , mH± = 200GeV , mH0 = 160GeV ,

mh0 = 115GeV , α−1 = 129 , GF = 1.17 × 10−5GeV −2 . (4.37)

The Wolfenstein parametrization [53] of the CKM factor in Eq. (4.3) is given

by

λu =
ρ(1 − ρ) − η2 − iη

(1 − ρ)2 + η2
+O(λ2) , (4.38)

and also

|VtbV ∗
td|2

|Vcb|2
= λ2[(1 − ρ)2 + η2] + O(λ4) . (4.39)

The updated fitted values for the parameters ρ and η are given as [54]

ρ̄ = 0.22 ± 0.07 (0.25 ± 0.07) ,

η̄ = 0.34 ± 0.04 (0.34 ± 0.04) , (4.40)

with (without) including the chiral logarithms uncertainties. In our numerical

analysis, we have used (ρ, η) = (0.25; 0.34) .

The masses of the charged and neutral Higgs bosons, mH± , mH0 , and mh0 ,

and the ratio of the vacuum expectation values of the two Higgs doublets, tan β,

remain as free parameters of the model. The restrictions on mH± , and tan β have

been already discussed in section 4.1. For the masses of the neutral Higgs bosons,

the lower limits are given as mH0 ≥ 115 GeV and mh0 ≥ 89.9 GeV in [55].

In the following, we give results of our calculations about the dependencies of

the differential branching ratio dBR/ds, forward-backward asymmetry AFB(s),
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CP violating asymmetry ACP (s), CP asymmetry in the forward-backward asym-

metry ACP (AFB)(s) and finally the components of the lepton polarization asym-

metries, PL(s), PT (s) and PN(s), of the B → Xd τ
+τ−decays on the invariant

dilepton mass s. In order to investigate the dependencies of the above physical

quantities on the model parameters, namely CP violating phase ξ and tan β, we

eliminate the other parameter s by performing the s integrations over the allowed

kinematical region so as to obtain their averaged values, < AFB >, < ACP >,

< ACP (AFB) >, < PL >, < PT > and < PN >.

Numerical results are shown in Figs. (4.3)-(4.15) and we have the following

line conventions: dashed lines, dot lines and dashed-dot lines represent the model

IV contributions with tan β = 10, 40, 50, respectively and the solid lines are for

the SM predictions. The cases of switching off NHB contributions i.e., setting

CQi
= 0, almost coincide with the cases of 2HDM contributions with tan β = 10,

therefore we did not plot them separately.

In Fig.(4.3), we give the dependence of the dBR/ds on s. From this figure

NHB effects are very obviously seen, especially in the moderate-s region.

In Fig. (4.4) and Fig. (4.5), AFB(s) and < AFB > as a function of s and CP

violating phase ξ are presented, respectively. We see that AFB is more sensitive

to tan β than the dBR/ds and it changes sign with the different choices of this

parameter. It is seen from Fig.(4.5) that < AFB > is quite sensitive to ξ and

between (0.15, 0.28) × 10−1. We also observe that < AFB > differs essentially

from the one predicted by the CP-conservative 2HDM (model II), which is 0.028

and 0.023 for tan β = 40, 50, respectively. In region 1 < ξ < 2 change in < AFB >

with respect to model II reaches 25%.

Figs. (4.6) and (4.7) show the dependence of ACP (s) on s and < ACP > on ξ,

respectively. We see that ACP (s) is also sensitive to tan β and its sign does not

change in the allowed values of s except in the resonance mass region. It follows

from Fig. (4.7) that < ACP > is not as sensitive as < AFB > to ξ, and it varies

in the range (0.15, 0.33) × 10−1.

ACP (AFB)(s) and < ACP (AFB) > of B → Xd τ
+τ−as a function of s and CP
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violating phase ξ are presented in Fig. (4.8) and Fig. (4.9), respectively. We see

that ACP (AFB)(s) changes sign with the different choices of tan β.

< ACP (AFB) > is between (0.010, 0.040) and differs essentially from the one

predicted by model II, which is 0.038 and 0.027 for tan β = 40, 50, respectively.

In region 1.5 < ξ < 2.5 change in < AFB > with respect to model II reaches 35%.

In Figs. (4.10)-(4.12), we present the s dependence of the longitudinal PL,

transverse PT and normal PN polarizations of the final lepton for B → Xd τ
+τ−

decay. It is seen that NHB contributions changes the polarization significantly,

especially when tan β is large. We also observe that except the resonance region,

PT is negative for all values of s, but PL and PN change sign with the different

choices of the values of tan β. In Figs. (4.13)-(4.15), dependence of the averaged

values of the longitudinal < PL >, transverse < PT > and normal < PN >

polarizations of the final lepton for B → Xd τ
+τ−decay on ξ are shown. It is

obvious from these figures that < PN > and < PT > are more sensitive to ξ than

< PL >. In region 1.5 < ξ < 2.0 change in < PN > with respect to model II

reaches 25%.
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Figure 4.3: Differential branching ratio as a function of s, where ξ = π/4.
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Figure 4.4: The forward-backward asymmetry as a function of s, where ξ = π/4.
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Figure 4.11: PT (s) as a function of s , where ξ = π/4.

tan β = 50

tan β = 40

tan β = 10
SM

s

P
N

(B
→

X
d
τ

+
τ
−

)

10.90.80.70.6

0.1

0.075

0.05

0.025

0

-0.025

-0.05

-0.075

Figure 4.12: PN(s) as a function of s , where ξ = π/4.

tan β = 50
tan β = 40

ξ

<
P

L
>

(B
→

X
d
τ

+
τ
−

)

32.521.510.50

0.4

0.35

0.3

0.25

0.2

Figure 4.13: < PL > as a function of ξ.

44



tanβ = 50
tanβ = 40

ξ

<
P

T
>

(B
→

X
d
τ

+
τ
−

)

32.521.510.50

-0.2

-0.25

-0.3

-0.35
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CHAPTER 5

CONCLUSION

The SM has been very successful as a theory for the quantitative description of

all interactions of fundamental particles except gravity; all measurements are in

agreement with the SM predictions with the exception of neutrino oscillations.

However, there are several motivations for physicists to search for physics beyond

it, such as having a totally unknown Higgs sector, hierarchy problem, origin of

CP violation, etc. There are several classes of new approaches in this direction

and among them the 2HDM, as being the most economical extensions of the SM,

has been very attractive. To summarize, this model is obtained from the SM

with the addition of one extra scalar SU(2)L doublet and possesses five physical

Higgs bosons: a charged pair (H±); two neutral CP even scalars (H0and h0);

and a neural CP odd scalar (A0), often called a pseduoscalar. Instead of one free

parameter of the minimal model, this model has six free parameters: four Higgs

masses, the ratio of the vacuum expectation values, tanβ, and a Higgs mixing

angle, α.

In this thesis, we have examined the rare inclusive B → Xd`
+`− decay with

emphasis on CP violation and neutral Higgs boson (NHB) effects within the

framework of the model IV version of the 2HDM. Being a FCNC process, it

is well known that B → Xs,d `
+`− decays provide reliable testing grounds for

the SM at the loop level and they are also sensitive to new physics. In addition,

B → Xd `
+`−mode is especially important in the CKM phenomenology. Although

CP violation is one of the most fundamental phenomena in particle physics it is

still one of the the least tested aspects of the the Standard Model (SM). In
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the near future, more experimental tests will be possible at the B factories and

possible deviations from the SM predictions will provide important clues about

physics beyond it. This situation makes the search for CP violation in B decays

highly interesting.

After presenting a brief summary of the SM and a CP spontaneously broken

2HDM in chapter 2 and 3, respectively, in Chapter 3, we have analyzed the double

and differential decay rates, CP violation asymmetry, ACP , forward-backward

asymmetry, AFB, and CP violating asymmetry in forward-backward asymmetry

ACP (AFB) for B → Xd `
+`−decay in detail. The important conclusions that can

be pointed out from this work can be summarized as follows:

• NHB effects are seen to be quite significant on the differential branching

ratio of the inclusive process B → Xd `
+`−for the τ mode, especially in the

moderate-s region.

• AFB is more sensitive to tan β than the dBR/ds and it changes sign with

the different choices of this parameter. It is also seen that < AFB > is

quite sensitive to ξ and between (0.15, 0.28) × 10−1. We also observe that

< AFB > differs essentially from the one predicted by the CP-conservative

2HDM (model II), which is 0.028 and 0.023 for tan β = 40, 50, respectively.

In region 1 < ξ < 2 change in < AFB > with respect to model II reaches

25%.

• ACP (s) is also sensitive to tan β and its sign does not change in the allowed

values of s except in the resonance mass region. < ACP > is not as sensitive

as < AFB > to ξ, and it varies in the range (0.15, 0.33) × 10−1.

• ACP (AFB)(s) changes sign with the different choices of tan β. < ACP (AFB) >

is between (0.010, 0.040) and differs essentially from the one predicted by

model II, which is 0.038 and 0.027 for tan β = 40, 50, respectively. In region

1.5 < ξ < 2.5 change in < AFB > with respect to model II reaches 35%.

• NHB contributions changes the polarization significantly, especially when
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tan β is large. We also observe that except the resonance region, PT is

negative for all values of s, but PL and PN change sign with the different

choices of the values of tan β. < PN > and < PT > are more sensitive to

ξ than < PL >. In region 1.5 < ξ < 2.0 change in < PN > with respect

to model II reaches 25%. Thus, measurement of this component in future

experiments may provide information about the model IV parameters.

Therefore, the experimental investigation of AFB, ACP , ACP (AFB) and the

polarization components in B → Xd `
+`−decays may be quite suitable for testing

the new physics effects beyond the SM.
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[46] K. Krüger and L.M. Sehgal, Phys. Lett. B380(1996)199.

[47] I.I. Bigi, M. Shifman, N.G. Vraltsev and A.I. Vainstein, Phys. Rev. Lett.
71 (1993) 496; B. Blok, L. Kozrakh, M. Shifman and A.I. Vainstein, Phys.
Rev. D49 (1994) 3356; A.V. Manohar and M.B. Wise, Phys. Rev. D49
(1994)1310; S. Balk, T.G. Körner, D. Pirjol and K. Schilcher, Z. Phys.
C64 (1994) 37; A.F. Falk, Z. Ligeti, M. Neubert and Y. Nir, Phys. Lett.
B326(1994)145.

[48] B. Grinstein, R. Springer and M. Wise, Nucl. Phys. B339 (1990) 269;
R. Grigjanis, P. J. O’Donnell, M. Sutherland and H. Navelet, Phys. Lett.
B213 (1988) 355; Erratum: ibid B286 (1992) 413; G. Cella, G. Curci, G.
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