MODEL INDEPENDENT ANALYSIS OF RARE, EXCLUSIVE B-MESON
DECAYS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

MEHMET KERIM CAKMAK

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE
DEGREE OF
DOCTOR OF PHILOSOPHY
IN

THE DEPARTMENT OF PHYSICS

JANUARY 2004



Approval of the Graduate School of Natural and Applied Sciences.

Prof. Dr. Canan Ozgen
Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of
Doctor of Philosophy.

Prof. Dr. Sinan Bilikmen
Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Doctor of Philosophy.

Prof. Dr. Mustafa Savci
Supervisor

Examining Committee Members

Prof. Dr. Mustafa Savci

Prof. Dr. Erhan Onur Iltan

Prof. Dr. Takhmassib Aliev

Prof. Dr. Hiiseyin Koru

Prof. Dr. Satilmig Atag




ABSTRACT

MODEL INDEPENDENT ANALYSIS OF RARE, EXCLUSIVE B-MESON

DECAYS

Cakmak, Mehmet Kerim
PhD, Department of Physics

Supervisor: Prof. Dr. Mustafa Savci

January 2004, 138 pages

Using the general, model independent form of the effective Hamiltonian, the gen-
eral expressions of the longitudinal, normal and transversal polarization asymme-
tries for £~ and ¢* for the exclusive B — K (K*)¢{~¢* decays has been calculated.
Existence of regions of Wilson coefficients for which the branching ratio coincides
with the Standard Model result, while the lepton polarizations differ from the
standard model prediction is expected. Hence, studying lepton polarizations in
these regions of new Wilson coefficients may be helpful in establishing new physics

beyond the standard model.

Keywords: B-Meson Decays, Branching Ratio, Lepton Polarization Asymmetry
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0Z

NADIR B-MEZON BOZUNUMLARININ MODEL’'DEN BAGIMSIZ ANALIZI

Cakmak, Mehmet Kerim
Doktora, Fizik Boliimii

Tez Yoneticisi: Prof. Dr. Mustafa Savci

Ocak 2004, 138 sayfa

Efektif Hamiltonun en genel ve model bagimsiz formu kullanilarak, B — K (K*)¢~¢*
bozunumlar: i¢in, ¢~ ve ¢~ leptonlarinin dik, paralel ve capraz polarizasyon
asimetrileri hesaplanmigtir. Wilson katsayilari icin, dallanma oranlarinin stan-
dart modelde hesaplanan oranlarla uyum gosterdigi fakat lepton polarizasyon-
lar1 agisindan farklilik oldugu bolglerin olmasi beklenmektedir. Boylece, Wil-
son katsayilarinin bu bolgelerinde, lepton polarizasyonlar: iizerinde yapilacak
caligmalarin standart modelin 6tesinde, yeni teorilerin kurulmasinda yardimci

olacag diigiintilmektedir.

Anahtar Kelimeler: B-Meson Bozunumlari, Dallanma Orani, Lepton Polariza-

syon Asimetrisi
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CHAPTER 1

INTRODUCTION

Experimental discovery of the rare B — X,y and B — K™~ decays opened a new
window in investigation of Flavor Changing Neutral Currents (FCNC) processes
[1]. On the experimental side, this is due to the fact that the study of the FCNC
decays will provide a precise determination of the Cabibbo-Kobayashi-Maskawa
(CKM) matrix elements, which are free parameters of the Standard Model (SM).
On the theoretical part, investigation of the FCNC decays allows us to check the
predictions of the SM the quantum i.e., at one-loop level [2]. For these reasons
investigations on the rare radiative and semileptonic decays of B mesons received
special attention. Such decays are also very useful in looking for new physics
beyond SM. Especially the inclusive decay channel b — s(d)¢*¢~ is known to be

very sensitive to various extensions of the SM.

In this thesis, a theoretical analysis of the semileptonic exclusive B — K{T(~
and B — K*/™¢  decays are carried out in a model independent way. These
decays at quark level are described by the FCNC b — s transition, which has been
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argued in detail in section 2.1. Note that recently, BaBar and Belle Collaboration
announced observation of the B — K/¢*¢~ decay [3]. The semileptonic decays
of B mesons are much clearer compared to the non-leptonic decay modes. Since
in these modes, there does not exist any problems connected with the presence
of the third strong interacting particle. For this reason, in the present thesis our
main interest is on semileptonic decays.

In our analysis, we mainly focused on the polarizations of the leptons, since
measurement, of the lepton polarizations is one of the most efficient ways to es-
tablish new physics beyond the SM [4] - [13]. We use the most general form
of the effective Hamiltonian, where in addition to the penguin and vector type
interactions are included in SM, we also included the scalar and tensor type in-
teractions in the effective Hamiltonian. Using the Operator Product Expansion
(OPE), method, an effective Hamiltonian can be represented as (see section 2.2)
[14]-[18], Hcsf ~ 3= C;0;. This representation have the following advance, namely
one can factorize low energy weak processes in terms of perturbative short dis-
tance Wilson coefficients, C; [19], from the long distance operator matrix elements
< O; >.

It is well known that theoretical analysis of inclusive decay channels, are rather
easy but their experimental discovery is quite problematic. For the exclusive de-
cays, the case is contrary, i.e., their experimental detection is easy but theoretical
studies have their own drawbacks. The main problem in analyzing exclusive de-
cays is the appearance of the form factors, i.e. the matrix elements of the effective
Hamiltonian between final and initial meson states are needed. Obviously, these

matrix elements as we already noted, belong to the perturbative (long distance)



part of the theory.

The analysis of the semileptonic B decays includes as a first step, the deriva-
tion of the effective Hamiltonian. The effective Hamiltonian, as mentioned above
and discussed in 2.2, is first obtained by Feynman diagram technique at large
mass scale. Then using the renormalization group equation we can calculate
the effective Hamiltonian at low energy scale (in our case, ;. = my). These two
steps are calculated in the framework of the perturbative approach. In further
investigation of the B — (K K*){*¢~ transitions, we need the matrix elements
(M ‘Heff‘ B). These matrix elements cannot be calculated in the framework
of the perturbative approach and its calculation demands non-perturbative ap-
proach (see chapter3). These matrix elements have been studied in the framework
of different approaches, such as Chiral Theory [20], Three-point QCD Sum Rules
[21], and Light Cone QCD Sum Rules [22],[23]. In this thesis, we have used the
Light Cone QCD Sum Rules Method as described in chapter 3.

The aim of our work is to present a rigorous study of the lepton polariza-
tions in the exclusive B — (K K*){*(~ decays for a general form of the effective
Hamiltonian, including tensor and scalar type interactions as well as the vector
type interaction and without forcing concrete values for Wilson coefficients corre-
sponding to any specific model. Investigations on the lepton polarizations itself,
might lead to strong indications to new physics. In our analysis, we try to answer
the following question: Do certain regions of Wilson coefficients exist for which
the value of the Branching ratio of the corresponding decay coincides with that
of the SM prediction but its lepton polarizations do not? We have found out that

such regions of Wilson coefficients indeed do exist, i.e. the study of the lepton



polarizations itself can give promising information for establishing new physics
beyond SM.

The thesis is organized as follows; in Chapter 2, we present a brief overview of
the SM of the electroweak interactions by introducing the theoretical framework
in analyzing the tree level decays and the FCNC processes. In this chapter, we
also discuss briefly a more formal and more complete approach based on the
Operator Product Expansion (OPE) and the renormalization group. We present
the classification of all operators relevant for further analysis as well as Feynman
diagrams from which they originate. We then introduce the effective Hamiltonian,
and the coefficients appearing in the expression as well. Chapter 3 is devoted to
the QCD Sum Rules method, which is an effective approach in calculating the
form factors of the transitions from heavy to light quark systems. In Chapter 4
we present the our calculations for the lepton polarization asymmetries for the
decays B — K(*{~ and B — K*(*{~ decays. Finally, Chapter 5 contains our

conclusion.



CHAPTER 2

STANDART MODEL AND FLAVOR

CHANGING NEUTRAL CURRENTS

2.1 The Flavor Sector and Flavor Changing Neutral Cur-

rents

At all events, the weak and electromagnetic interactions of both quarks
and leptons are described in a partially unified way by the electroweak theory
(SU(2)r, ® U(1)y) which is based on the spontaneous breaking of the SU(2), ®
U(1)y to U(1)ep. This theory is a non-Abelian gauge theory which is based on
the local gauge invariance. The new Abelian U(1) group is associated with a
weak analogue of hypercharge, just as SU(2);, was associated with weak isospin.

The quark transitions can be represented in the left handed doublets,

U c t
qr. = ) and

d s’ b’
L L L

For the weak isospin we use symbols T, T3 and we can make specific lepton
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assignments as

1 +1/2 Ve vy v,
—1/2 \ e o ™
L L L

For quarks we assign in a corresponding sequence of generations,

1 +1/2 | u c t
T = ) T3 = 5 5 . (22)

-1/2 d' s b
L L L
The subscript L denotes that only the left handed parts of the wave functions
enter into these weak transitions. For this reason the weak isospin group is usually

referred to as SU(2)r. The primes will be discussed below.

The relation of weak hypercharge with weak isospin is [24]:
Q= (T3 +Y/2), (2:3)

where @) is the electric charge (in units of e), T3 is the third component of weak
isospin and Y is the weak hypercharge. Clearly, the lepton doublets (v, e”) ,
etc. have y = —1, while the quark doublets (u,d’), etc. have Y = 1/3. The
Electroweak interactions of quarks and leptons are mediated by massive gauge
bosons W+ and Z° and by the photon . The dynamics of the theory is described

by the fundamental Lagrangian [25]:
L=L(QCD)+ L(SU(2), @ U(1)y). (2.4)

Let us here state a few more things about the fermion-gauge-boson electroweak
interactions resulting from (2.4). These interactions are summarized by the La-

grangian

Eint - Ecc + ['nca (25)

6



where

Loo=—=(JIWTH + W), (2.6)

2f

describes the charged current interactions and

ne = —e AR 4 T J0 700, 2.
Loc=—eJS T QWJ (2.7)

the neutral current interactions. Here 6y is the Weinberg angle and ¢ is the

coupling constant for weak interactions. The currents are given as follows:

Ji = (ud)yv_a+ (s )voa+ (0 )v_a + (ee)v—a + (Vutt)v-a
+ (v, T)v_a, (2.8)
St = zf:fo%f, (2.9)
Ty = Xf: Frulvs —agys) f, (2.10)
with
vy =Tf —2Q;sin? Oy,  a;y =T, (2.11)

where Q¢ and T3f denote the charge and the third component of weak isospin,
respectively. Here V' and A represent the vector and axial vector currents.

Additionally, £(QCD) in (2.4) can be written as follows

L(QCD) = J2PGre, (2.12)
with
A
Jyo = gs(qvugq), (2.13)

where )\, denotes the 8 Gell-Mann A matrices and G** is the gluon field, g, is the
coupling constant for strong interactions, p is Lorentz and « is the color index.

7



We represent the elementary interaction vertices in Fig. 2.1 which follows

from the interaction Lagrangian, (see 2.5-2.13)

Figure 2.1: Elementary Vertices

The striking property of the interactions listed above is the flavor conservation
in the vertices involving neutral gauge bosons, Z°, v and G. This fact implies the
absence of FCNC transitions at tree level [27]. However the charged current
processes mediated by W* are obviously flavor violating with the strength of
violation given by the gauge coupling ¢ and effectively at low energies by the

Fermi constant

Gr _ ¢
V2 8miy

and a unitary 3 x 3 CKM matrix [28, 29]. This matrix connects the weak eigen-
states (d', s’,0') and the corresponding mass eigenstates (d, s, b) through the trans-

8



formation

dl Vud Vus Vub d
S = Ve Vs Vo | X s | (2.14)
v Vie Vis Va b

so that by using Eqs. (2.5-2.11) we get

d e

. g W
Why i I (=), ¢
2\/5 td’)/u( 75)

.9 s
——d = 12—\/5‘%%(1 —%). (2.15)

In the leptonic sector the analogous mixing matrix is a unit matrix due to the
masslessness of neutrinos in the SM.

The unitary condition of the CKM matrix reads as

> ViV = 0. (2.16)
J

This condition also assures the absence of FCNC transitions at tree level. More-
over, the fact that V;;’s can a priori be complex numbers allows the introduction
of CP-violation in SM. FCNC transitions only occur in the one loop level in SM.
The FCNC processes can be summarized by a set of basic triple and quartic ef-
fective vertices. In literature, they appear under the names of penguin (Fig. 2.2)

and box (Fig. 2.3) diagrams.



Figure 2.2: Penguin vertices

J n j m\\
(a) (b)

Figure 2.3: Box vertices

where i and j denote the quarks with different flavor but same charge and k is
the internal quark whose charge is different from i and j, and i, j, m and n in Fig.
2.3, stand for external quarks or leptons and k and | denote the internal quarks
and leptons.

Those effective vertices can be calculated by using the elementary vertices and
propagators. Important examples to penguin and box vertices are given in Fig.

2.4 and Fig. 2.5, respectively.

10



Figure 2.4: Penguin vertices resolved in terms of basic vertices

d W- b

t |t = t t -+
b d b wi d
d v d wt oy
t | e = t e
v s wit v

Figure 2.5: Box vertices resolved in terms of elementary vertices
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2.2 The Effective Hamiltonian

For the investigation of the b — s¢*¢~ transition, we will use a very pow-
erful method, namely the effective Hamiltonian approach. Generally an effective

Hamiltonian for a FCNC transition in the absence of QCD corrections is [25],
HISNC =3 GOy, (2.17)
k

where Oy, denote a set of the local operators and the (. are the coefficients of these
operators called as Wilson coefficients. Firstly, these coefficients are calculated at
high scale, namely ;1 = myy, using Feynman diagrams which describes b — sf*¢~
transition. Then, using the renormalization group equation, we can carry out the
calculations in the low energy scale (u = my).

For the sake of the completeness of the theory, we classify the operators (Oy)
and represent the typical diagrams in Fig. 2.6, which are originated by these

operators as [25]:

Current-Current Operators (Fig. 2.6a):
Q1 = (Cabg)v-a(Spca)v-n, Qo= (ch)v-a(5c)v_a,
QCD-Penguin Operators (Fig. 2.6b)

Qs =(8b)v_a D (7Q)v_a, Qi = (5abg)v_a > (@ga)v-a,

q=u,d,s,c,b q=u,d,s,c,b
Qs=(B)v-a Y, (@via, Qs=Gabs)v-a Y (Ts¢a)via,
q=u,d,s,c,b q=u,d,s,c,b

Electroweak-Penguin Operators (Fig. 2.6¢)

3 3

Qr = §(=§b)V—A > e via, Qs = i(gabﬁ)V—A > eg(@sda)via,
q:u,d’s7c’b qzu,d,s,c,b
3, _ 3, _
Qo = i(Sb)V—A > e(q@@)v-a, Q1o = i(sabﬁ)VfA > e(@pga)v-a,
q:u,d’s7c’b qzu,d,s,c,b

12



Figure 2.6: Typical Penguin and Box Diagrams.

Magnetic-Penguin Operators (Fig 2.6d)

€
Q?’Y g megawj(l + 75)bFl“”

9 = 14 [ a
Qsc = g 5mMSa0™ (1 +75)Tagbs Gl

AS =2 and AB = 2 Operators (Fig. 2.6e)

Q(AS = 2) = (5b)y—_a(5b)y_a, Q(AB = 2) = (5b)y_a(5b)y_a,
Semi-Leptonic Operators (Fig. 2.6f)

Qov = (5b)yv_a(ll)v, Quoa = (5b)v—a(ll)a,

Qus = (3b)v_a(PV)y_4, Qi = (8b)v_a(ll)v_a, (2.18)

13



with o and  denoting the color indices and V' and A representing the vector and
axial vector currents such that (gq)yv, (gg)a and (gq)va are gyuq, Gy, V59 and
77,(1 £ v5)q, respectively, also in F),, and Gy, are field strengths of photon and

gluon fields.

The Wilson coefficients at high energy scale are [30, 31, 32]

11&5 m 11043 m
Ol(mW) = %7 OZ(mW) =1- #7
—Cy(m —Cs(m 2 o (m
Cofmw) = =) gy = ) (2 ) etw)
7—5x—8z% 2*(3r —2)
= 1
Cr(mw) x 4(z = 1) + z 1) nz,
—x(z? — 51 — 2) 32
Cslmw) = —sn =79 ~Im—1f
B(z) 1—4sin®fy
= - C
Cy(mw) S Oy + S0y (x)
N —1923 + 2522 N —3x* 4+ 3023 — 542 + 322 — 8 o 4
36(z —1)3 18(z — 1)2 9’
1
Cuo(mw) = g (B(r) = C(a), (2.19)
where
x x
= - 1
B(r) 4($—1)+4(x—1)2 nw,
x ([ x—6 3x + 2
= -7 |
oo = 5 (s iy ).
—92” 4 162 — 4 2+ 112 — 18
= 1
E(z) 6e—1)r T T REo1p
2
= &; (2.20)
myy

and sin? fyy = 0.23 is the Weinberg angle. With y = myy, the large logarithms are
in the matrix elements of the operators O; — Og, which are transferred from the
matrix elements of the operators to their coefficients C; by scaling the subtraction

14



point 2 down from my to m, using the renormalization group equation [33],

d 8
M@CJ‘(M) — > 7iCi(p) =0, (2.21)
=1

where ;; is the anomalous dimension matrix [33]. The Wilson coefficients for the

operators O — Oy are given in the logarithmic approximation by [32, 34, 35, 36|

8
Ci(p) = > kyn™ (j=1,..,6), (2.22)
=1

1

e 16 8/ 1 8 o
C () = m% Cr(mw) + 3 (7723 - 7723) Cy(mw) +Y_h",  (2.23)

>

with
as(myy)
n= , 2.24
as () (2:24)
and the numbers a;, k;; and h; are given by
a; = (14/23,16/23,6/23,—-12/23,0.4086, —0.423, —0.8994, 0.1456),
ki = (0,0,1/2,-1/2,0,0,0,0),
ke = (0,0,1/2,1/2,0,0,0,0),
ks; = (0,0,—1/14,1/6,0.051, —0.1403, —0.0113, 0.0054), (2.25)

ki = (0,0,—1/14,—1/6,0.0984,0.1214,0.0156, 0.0026),
ksi = (0,0,0,0,—0.0397,0.0117, —0.0025, 0.0304),
ke = (0,0,0,0,0.0335,0.0239, —0.0462, —0.0112),

h; = (2.2996,—1.088,—3/7,—1/14, —0.6494, —0.038, —0.0186, —0.0057),

where

1
~ AnBoln(p2/A2)’

O‘S(,u)
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with [, is the lowest order coefficient of Gell-Mann-Low f—function and A is QCD
scale parameter [34]. The coefficient Cg(my) does not appear in the effective
Hamiltonian of b — s¢T¢~ decay and Cio(mw) = Cio(my) since Oy does not
renormalize under QCD [34]. Finally the explicit form of the coefficient of Oy at

p = my scale is [37]
Co'l = Co(mw) + g(1e, 8)BC1 (1) + Co(u) + 3Cs(p)
+ Ci(p) +3C5(1) + Co(p)]

+ Aulg(me, 8) — g(mu, $)1[3C1 (1) + Ca(p)] - %g(ms, §)[Cs(p) +3Cu(p)]

_ %g(mb, $)[ACs () + 4Cu (1) + 3C5 (1) + Cs ()]

2
+ gBCs(1) + Ca(p) +3C5(n) + Co(m)l, (2.26)
where
ViV
Ay = 22 us, 2.27
o

and the one loop-functions,

N 8 8 4 2
g(mi, 8) = —§ln(mi/mb)+2—7—|—§yi—§(2—|—yi) 11—yl (2.28)
1+V1—-y . 1
X {@(1 Yi) [ln (1 — m) m] + O(y; — 1)2arctan — 1}

with y; = 4m?/5, m? = m?/m? and 5§ = p> = p?/m% and O’s being the step
functions.

With these remarks, the effective Hamiltonian for the standard model for
b — sfT¢~ transition can be written as,

Gra eff_ _ - _
Hepp = == ViV {C57 501 = 7s)b0y € + Crody (1 = 5)blysy e
212

—207%51'%79”(1 + 75)667’%} : (2.29)
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where p is the 4-momentum transfer, V;, and V,, are the CKM matrix factors and
Ce Oy and C; are the Wilson coefficients.

In the Standard Model, the left handed parts of quarks and leptons are dou-
blets whereas the right handed contributors are singlets. So, only the left handed
parts of the wave functions enter into the weak transitions. That is why we did
not included the right handed contributors of the relevant wave functions into the
above effective Hamiltonian representation. In order to consider a model inde-
pendent representation, the SM Hamiltonian given in Eq. (2.29) can be rewritten

as,

. GFCY % eff _ —
Hepp = m‘@b‘@s{(og — Cho) (sLyubrley"ls)

e — 3 my _. v 7
+(C§ + Cho) (spyubrlrylr) — 2C’7p—2bswu,,p Rbﬁv“ﬁ} .(2.30)
To construct a most general representation of the effective Hamiltonian above,
we include the right handed contributions of leptons and quarks as well as the

left handed ones to get,

GFCY
Hepp = \/ﬁ

+Cik51Yubi w1 + Crrsuubrly "l + Craseyubrlnyln +

{CSLSMWZ—QLMW n CBRsiaWZ—QRbh“l + O b I,

+CrrrrSEbrILIR + CriLrSROLILIR + CLrrSLORIRIL + CrERLSROLIRIL

—l—C’TEUWbl_U“”l + iC’TEe"”aﬁEUWbl_aaﬁl} (2.31)

where the chiral projection operators L and R in (2.31) are defined as

_ L= poLltm

L Y Y
2 2

and C'x are the coefficients of the four—Fermi interactions. The first two of these
coefficients, Cs;, and Cgpg, are the nonlocal Fermi interactions which correspond
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to —2m,C</" and —2m,C</7 in the SM, respectively. The following four terms in

this expression are the vector type interactions with coefficients Crr, Crgr, Crr

and Crgr. Two of these vector interactions containing C% and C!% do already

exist in the SM in combinations of the form (C¢// — Cy) and (C' + Cy).
Therefore by writing

Crr = Cs!l — Cro+ C11

Crt = C§' 4+ Ci+ Crr,

one concludes that C%% and C%% describe the sum of the contributions from SM

and the new physics. The terms with coefficients CrLrrr, Crrrr, Crrrr and
Crrrr describe the scalar type interactions. The remaining two terms leaded by
the coefficients Cr and C'rg, obviously, describe the tensor type interactions.
So, our next task is to calculate the matrix elements for the B — K¢/~ and

B — K*(*{~ decays. In other words, we need the matrix elements

(K[57.b|B)

(K|s1i0,,q"b|B)

(K |3b|B) (2.32)

(K |50,,0| B)
and

(K" [57,(1 £ 75)b| B)

(K*|s10,,q" (1 + v5)b| B)

(K*[5(1 4 5)b| B) (2.33)
(K*[50,u,b|B)
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respectively.

For calculation of these matrix elements, we need some non—perturbative ap-
proach. Among non—perturbative approaches QCD sum rules method is the most
powerful one since it is based on the first principle of the fundamental QCD La-
grangian. In the next chapter, we will give a brief introduction to the QCD sum
rules method and state the calculation of the form factors with respect to these

matrix elements.
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CHAPTER 3

QCD SUM RULES

In order to calculate the lepton polarizations for the decays B — K¢/~ and
B — K*(*/~, first we have to calculate the matrix elements for these decays,
which is nothing but the effective Hamiltonian sandwiched between final and
initial states. The calculations of these exclusive decays, require an additional
knowledge of the decay form factors for the relevant decays. In the first section,
we will introduce the parametrizations of these matrix elements. In the second
section, we will explain the Light Cone QCD Sum Rules method which we will
use to calculate the corresponding form factors. Finally, the third section will

include calculations for these form factors.

3.1 The Effective Hamiltonian and Matrix Elements

In our calculations, we use the most general form of the effective Hamiltonian as
follows:
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GFCY . q” - _. qy 7 ot — B

Hyp = NS {CSstu,,?Lblv“l + CBRSZU”V?R()Z’)/MZ + O st yubrlin s
+02015817ubLl;z7”lR + CRLSkVMbRZLVHZL + CRRS}zwle;ﬂ“lR +
+CrrrrStbrlLlr + CrirSrbrlilr + CrrriStbrIRlL + CrirrSrbLlRlL

+C’T§wal_a‘“’l + iCTEe“”aﬁsauyb[aagl}. (3.1)

The matrix elements for the decay B — K[t~ and B — K*/*]~ can be
written as M = (K|H.sr|B) and (K*|H.¢|B), respectively. Thus, to calculate
the matrix element for B — KITl~ decay, the following matrix elements are

needed.

(K|57.0|B),

(K|5i0,,4"b| B),

(K|sb|B), (3.2)
(K|50,,b| B).

Note that the matrix elements of operations involving =5 are zero due to the
parity arguments. Then the first and the fourth matrix elements for the relevant

decays can be parametrized as follows,

_ m% —m? m2 —m?
(K|5v,b|B) = f+[(pB —H?K)ﬂ—%qu] +fo%qw (3.3)

(K|50,,b|B) = —iﬁ [(pB + 1K), 8 — 4%(pB +pK)V]- (3.4)

The matrix elements (K|sio,,¢"b|B) and (K |sb|B) can be calculated by con-
tracting both sides of Egs. (3.3) and (3.4) with ¢*. Using the equation of motion,
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we get

o, T
(K|5i0,,4"B) = m (pB +pK),ﬂ2 - qu(mQB —mi)|, (3.5)

2 2

(K|sb|B) = fo (3.6)

mp — Mg ,
where ¢ = pp — px is the momentum transfer.

Similarly, we need the matrix elements for the decay B — K*I*]~ as

(K*[57,(1 £ 75)b|B),

(K*|5i0,,q" (1 & 75)b| B),

(K*|5(1 + v5)b| B), (3.7)
(K*[50,,b|B),

which are parametrized in terms of form factors as follows,

2V (¢?)
mp + Mg~

As(¢%)
mp + Mg~

(€"q) [A3(q2) - AO(QQ)], (3.8)

o

<K*(pK*7 €)|§7M(1 + ’75)b|B(pB)> = _Gull/\ag*yp/l\(*q +

-k

ie; (mp +mg-)A1(q®) F i(ps + pre)u(e°0)

2mK*
q2

1qy
(K*(prc+, €)|5i0,q” (1 £ 75)b|B(pg)) = d€unoe™pi-a"T1 ()
2i[eh(m — m.) — (05 + prc-)u(£°0) | Ta(d®) F

2i(e%q) lqu - (pB + pK*)Manig*] Ts(q%), (3.9)

(K*(p-,)[50,b| B(PB)) = i€ o l = 2T1(¢*)™ (pp + pr-)” +

2 *A O 4 q2 * A o
?(WZB — mi. )" — ?(Tl((f) ~Tz(¢*) - st(QZ))(f? D97 |

(3.10)
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where ¢ = pp — px+ is the momentum transfer and ¢ is the polarization vector
of K* meson. The matrix element (K*|5(1 + 75)b|B) can be calculated from Eq.
(3.8) by contracting both sides of Eq. (3.8) with ¢* and using equation of motion.

Neglecting the mass of the strange quark, we get
(K*(pg~,£)|5(1 & v5)b|B(pg)) = mib [ F QimK*(e*q)Ao(q2)]. (3.11)
In deriving this equation, we have used the relation
2mp- As(q?) = (mp +mx-)A1(¢?) — (mp — mg-)As(q?). (3.12)

For calculating both of these decays, the form factors fy, fi, fr, A1, As, Ao,
Ty, T,, and T3 need to be calculated. We will use the Light Cone QCD Sum Rules

method to calculate these form factors.

3.2 Light Cone QCD Sum Rules

The SVZ sum rules [53], proposed more than twenty years ago, is one of the most
powerful analytical non-perturbative approaches. Compared to lattice calcula-
tions, the main power of SVZ sum rules (and its extensions) is in the analyticity
of the methods. In this approach, deep connection is established between the low
energy process and the non-trivial QCD vacuum through several condensates,
the quark condensate (Gq), the quark gluon mixed condensate (GjoGq), the gluon
condensate (g2G?) and other higher dimensional condensates. These condensates
are either calculated in other approaches or else obtained from the sum rules
itself.

The starting point of QCD sum rules approaches is that, hadrons are repre-
sented by their interpolating quark currents taken at large virtuality. Then the
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correlation function of these currents is introduced and treated within the frame-
work of the operator product expansion (OPE), where the short and long distance
quark—gluon interactions are separated. In SVZ Sum Rules, OPE is performed

with respect to dimension of operators.

In this section, the general machinery of the SVZ sum rules and of its exten-
sions, the light cone QCD sum rules will be described. For illustrative purposes

the mass sum rule for the B meson will be considered.

3.2.1 The Correlator Function

In order to study the properties of quarks in the vacuum, what is done is to
inject quarks into the QCD vacuum at the space-time point z = 0 and study its

evolution. This process is described by the correlation functions:

(g®) =i [ d'z (0T (x)j(0)[0), (3.13)

where T is the time ordering operator, j(z) is the current that injects quarks into
the vacuum at space time point z, and ¢ is the total momentum of the quarks.
Eq. (3.13) is an example of a two-point correlation function which leads to mass

sum rules.

For large negative ¢* = —Q* << —Ajp, the main contribution to the func-
tion (3.13) comes from short spatial distances and short times [54] and hence can
be calculated in terms of quarks and gluons. To see that this is indeed so, in
the case of massless quarks, first note that the vacuum expectation value of the
correlator can only depend on the space-time interval 2. Introducing the Fourier
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transform of the vacuum expectation value through
(O[T (2)j(0)10) = [ de e £ (o), (3.14)

and inserting Eq. (3.14) into Eq. (3.13) one obtains
() =i [ae [ dte et % £ (0). (3.15)

The contribution of the integrand in Eq. (3.15) is suppressed if at least one
of the exponential functions oscillates rapidly. Hence, for large Q?, the main

contribution comes from the region ¢ ~ Q? and x> ~ % which implies that

i.e. the quarks propagate near the light cone. This does not, by itself, imply that

the main contribution comes from short spatial distances and short times. For

¢?> < 0 it is always possible to choose a reference frame in which ¢y = 0 so that
2

¢®> = Q*. In this frame, the exponential in Eq. (3.13) is simply €. Again, to

avoid a fast oscillating integrand, it is required that

1
x|~ —, 3.17
] N (3.17)
which, when combined with the previous result, gives
1
|z ~ @ ~ (3.18)

\/7.
For massive quarks, the analysis is even more simpler since the quark masses
Mep >> ANgep introduces an intrinsic high energy scale and the and the distance
that a quark can propagate is determined by its inverse mass.
As ¢? approaches positive values, the quarks tend to move to larger spatial
separations and eventually for sufficiently large positive values of ¢?, the quarks
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start to form hadrons. In this regime, the correlator function Eq. (3.13) can be

calculated by inserting a complete set of hadronic states between the two currents

2ImIl(¢%) = > (01j(0)|n)(n]j(0))dlu(27)"6 (¢ — pu)

n

= 2 fio(q* — miy) +27p"(¢*)0(q* — 5), (3.19)
where the sum rules goes over all possible hadronic states that can be created by
its currents, d¢ denotes integration over all phase-space volume of the hadron. In
Eq. (3.19), in the second line, H is the hadron with the lowest mass that can be
created by current j(z), (H|7(0)|0) = fg, and p"(¢*) denotes the contributions of
the higher states and continuum, where sg is their threshold. In general little is

known about p"(¢?), and one approximates p"(¢?) using the quark-hadron duality.

3.2.2 Dispersion Relation

The correlation function (3.13) is an analytic function of its argument ¢®. Hence
using the Cauchy formula for analytical functions it is possible to link the values
of T(¢q?) for positive values of ¢, which can be expressed in terms of hadron
properties as in Eq. (3.19), to its values at negative values of ¢°.

For this purpose, consider the contour shown in Fig 3.1. Using the Cauchy

formula for analytical functions, one can write,

1 I1(2)
2 _
M) = %%cdzz—f

1 IT 1 (R P e) — (2 —1
_ fj | & (2) L L / & i(z + ig) (2 — ie) (3.20)
z|=R ? tmin

2mi z— q>? 27i z — q?

where t,,;, is the threshold for creation of real states.
Eventually, the radius R of the circular part of the contour will be sent to
infinity. Now, let us consider the first term, i.e. the integral over the infinite
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Figure 3.1: The contour integral

circle. If TI(z) vanishes sufficiently last at |z| — oo, then the integral vanishes.
On the other case, if it does not vanish sufficiently fast, or if it does not vanish
at all, one can expand the denominator in terms of ¢?/z, and eventually, at some
order n, I1(g%)/2" would vanish sufficiently fast and hence the remaining terms
in the expansion will not contribute. Thus, one sees that in the limit R — oo,
the first term reduces to a polynomial in ¢2, the so called subtraction terms.
Using a theorem from complex analysis, the so-called Schwartz reflection
principle and noting that II(¢?) is real for ¢> < ty,, one can conclude that
(2 +ie) — (2 — ie) = 2i ImIl(¢?) at ¢> > tnin. Hence we obtain the dispersion

relation:

1 o I'mlIl
M(¢?) = —/ ds mf(s) + subtraction terms, (3.21)
T i S —q? — i€

where Imll(s)/m = p(s) is called the spectral density. The dispersion relation
can be used to link the values of TI(¢?) for positive values of ¢* to the values of
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1(¢?) at negative values of ¢*.

The spectral density for positive g2 can be expressed in terms of the hadronic
parameters using Eq. (3.19). It can also be expressed in terms of quarks and
gluons by evaluating the correlation function in the large Euclidean momenta

limit and than extracting the corresponding spectral density, p?(s), from:

qg
/ ds Z (3.22)
s—q?

for large Euclidean Q* = —¢* >> Agep. Using Egs. (3.19) and (3.22), one

obtains:

[ as Ps) _Ju +/ a5 2 (3.23)

s—q2  my

To get rid of the subtraction terms which are polynomials in ¢2, and suppress the
contribution of the higher states and the continuum, one applies Borel transfor-
mation on Q? = —¢* to both sides of Eq. (3.23). The Borel transformation is

defined as,

B (@)f (@) = Jim ((n_z ir;, (%) @), (3.24)

Any polynomial gives zero after Borel transformation. Two important examples

are,

) 1 1 e
md) () = e 429
By (¢P)e 0 = 5(%—04) (3.26)

After Borel transformation, Eq. (3.23) takes the form

/ ds p(s)e=*/M" = f2 e=mu/M” 4 /h ds pt(s)e /M, (3.27)
0 S0
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Indeed, the subtraction terms are eliminated and the contribution of higher states
and the continuum are exponentially suppressed.

In order to get an approximation of the contribution of the higher states and
the continuum to the r.h.s. of Eq. (3.23), note that in the limit Q* — oo, the
correlation function is given completely in terms of the perturbative part. Hence,

one assumes that for sufficiently large Q?

00 h 00 a9
ds L) [ P1) (3.28)
sg S0 q2

s—q2 s —

which is called the local quark hadron duality approximation. In Eq. (3.28),
Sg, which is called the continuum threshold, is a parameter to be fitted to the
available data. Applying Borel transformation of Eq. (3.28) and substituting the

result into Eq. (3.27), one obtains the following sum rules:
9 m% S0 s
fr e M2 :/ ds p¥(s)e”m2, (3.29)
0

In Eq. (3.29), there are two unknowns: the Borel mass parameter, M?, and the
continuum threshold, sy. The continuum threshold is not completely arbitrary,
being related to the energy of the excited states. It is in general taken to be
around (mg + 0.7GeV)?, but the result should be stable with respect to small
variations of this quantity. A2 is in general completely arbitrary. But due to
the approximations used, it is restricted to a window; out of this window, either
the contributions of the continuum or the contributions of the neglected higher
dimensional operators become large. It cannot be too small since in this case, the
contributions of higher dimensional operators, which are inversely proportional
to powers of M?, becomes important and hence one cannot neglect them. A
lower limit on M? is obtained by demanding that the contribution of the highest
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dimensional operator in the expansion is not more than a small fraction of the
total result. On the other hand, the parameter cannot be too large either, since
in this case, the quark-hadron duality cannot be trusted and the exponential
suppression of the contributions of higher states is reduced. The upper limit on
M? is obtained by demanding that the contributions of excited states to the sum
rules remains a small part of the total dispersion integral. In this window, it
should be checked that any physical quantity calculated using the sum rules is
almost independent of the value of M?2.

After introducing the QCD sum rules, let us now show the calculations of the
form factors for B — K and B — K* decays. In this thesis, instead of the SVZ
version of Sum Rules, we will employ Light Cone QCD Sum Rules. The main
reasons why we use Light Cone version of Sum Rules are as follows,

1. In the SVZ Sum Rules, OPE breaking upsets counting in the large mo-
mentum/mass. As an example, the sum rule for pion electromagnetic form factor

[50],[51] schematically can be written as

1 2G?
FW(QZ) ~ @ 4 <gM4 >

(7q)*

2
+ QR

(3.30)

where M is the Borel parameter which is of the order 1 GeV?2. The first term
describes contribution of perturbation theory and we see that at large Q?, F,(Q?)
increases. Such behavior clearly is unphysical and indicates that at large Q?> OPE
breaks down.

2. The Three-Point Sum Rules for heavy-light decays, which we are interested
in our thesis, have similar problem at large recoil, i.e. around ¢ = 0 point. For
example, Sum Rules for form factor A; in B — plv decay [52] at maximum recoil
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¢> = 0 has the following structure,

Ay(* =0) ~ 3/2+Bm1/2< q) +ym mg(ag) + .. (3.31)

and at my — 0o, A;(¢*> = 0) — oo. Obviously this is also unphysical.

3. Another problem with the Three—Point Sum Rules is the contamination of
the sum rule by non-diagonal transitions of the ground state to the excited states.
In other words, these transitions are exponentially not suppressed. Therefore,
contribution of continuum and Sum Rule prediction are not reliable.

For solving these problems, Light Cone QCD Sum Rules are introduced. For
these reasons we preferred to work with the Light Cone version of the Sum Rules.
Note that OPE is done in terms of twist of the operators, rather than their

dimensions as in SVZ version of the Sum Rules.

3.3 Calculation of Form Factors in B — KI*l~ Decay

For calculating the form factors appearing in the parametrizations (Eqs. 3.3-
3.6) of the matrix element in the B — KI"I~ decay, we consider the following

correlation functions

00 =i [ d'we® (K (pio)| T{5()7,b(2)b(0)i754(0) Ho), (3.32)

Hﬁf) = z'/d4xeiq’”(K(pK)|T{,§(x)iauyq”b(x)barb(O)i%q(O)}|0>, (3.33)

where px is the K-meson momentum and q is the transfer momentum. IIM is
the relevant correlation function for calculating the form factors f, and f_, and
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I1® is the relevant one for calculating fr.

It is helpful to note here that the form factor fy;, which appears in the
parametrizations of the matrix elements of the B — KItl~ decay is nothing
but the combination of the form factors f, and f_ which can be written in the

form,

(K (px)|@v.b|B(ps)) = f1(a*) (0 + 1K), + f-(@°)du,

where f_ = (fo — fi)(m% —m%)/q?, from Eq. (3.31).

A formal expression can be represented as,

I1,(Pxk, q) :/0 6.2 a2/d4xezq‘” et

(K st 010 + S (K s(a i a0)0)) (530

where we have made use of the following representation of the free propagator Sy

(0IT{b(x)b(0)}]0) = iSy()

A

X 2.2

- —/ 167r s (o i )e i (3.35)

Considering the first term in Eq. (3.34), the matrix element for the non-local

operator is given by [38], [39]

50%

(K (i)l 3050(0)10) = =P [ e (e () + 20 (w) (3.30)

where ¢k (u) is the K-meson light cone wave function of the leading twist—2 and
Yy (u) represents one of the next-to-leading twist-4 wave functions. All wave
functions, normalized to unity and §% is a dimensionfull parameter which is ~

0.2 GeV?2.
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We can split the matrix element appearing in the second term of the Eq.
(3.34) into two using the identity v,v, = —io,, + g,,.- These matrix elements are

determined by the wave functions of twist—3:

me%(

1 .
due*'PE® 3.37
i [ e ), (3.37)

(K (px)|5(x)ivsq(0)]0) =

_ . me%( ! UpK T
(K (pr)|5(2)0754(0)[0) = —i(pruzy — Pro@p) -~ — [ due™" 1y (u).

Substituting (3.36), (3.37) and (3.38) into (3.34) and integrating over = and the

auxiliary parameter a, we obtain,

2 2 ! Ve (u) _ 1065 mivar (u) )
L Y R (e S e
fxkmi Vo ()
C mg+m, /0 du[(q +p;u)2 —m3
waK(u) (2 . q2 + mg )l
6((q + pru)? —mj) (¢ +pru)? —mp/ |

(3.39)

In addition to quark—antiquark wave functions described above, there are
also contributions from multi—particle wave functions. The most important cor-
rections arise from quark-gluon operators in the OPE. The leading contributor

arises from twist—3 operator.

(K(pK)|§($)95GW(Z)U,;A’Y5(](0)|0> = if3k [pKu(prg/\u - pK/\gpu) -
Prv(DKpIr. — DKAIpw)] / Dot (0 )P eteas) - (3.40)
where G, (2) = (A\°/2)G5,(2), \° and G, being usual color matrices and the
gluon field tensor, and Do; = dajdasdazd(ay + as + a3 — 1), sg(a;) =
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U3 (aq, g, a3) is the three particle wave function and fs3x is the correspond-
ing coupling constant which is introduced and discussed in [38], [40].

In the calculation of the gluonic correction, instead of the free propagator,
we use the b-quark propagator including the interactions with gluons in the first

order,
OIT {b()b(0)HO) = iS§(x) ~ ig [ d=S)(w - z)v%Az(z)sfs(z), (3.41)

where 5',? is the free b-quark propagator defined in [41]. In the fixed point gauge,
ztAf, = 0, the gluon field A} can be represented directly in terms of the field

strength G7,:

Al(2) = 2, /1 uduGy, (uz). (3.42)

0
Now, substituting (3.41) into (3.32) and using (3.40), (3.42) and integrating over

x and z, yields the following expression for the quark-gluon contribution as,

(¢-pr ) Y3x (ui)
((q + (Oél + UO(3)pK)2 — m%)

1
HCG)CD(q27 (¢+pK)?) = 4f3K/0 UdU/DCYi 5.(3.43)

Using Borel transformation (see Appendix for details of Borel transforma-
tions) for Eq. (3.39) and the correction (Eq. (3.43)), we get for the f, (p?) form

factor,

fc e | 1 2 — 21— u) + phu(l — u)d
) = 2?;%@ 2 /M {/ eap(— T q*( uuza/ﬁ P U));U
8my G 2
e
mi + ¢ — piu’
uM? )>]

Vo (u)
6

+ ug (uﬁ)p(u) + (2 +

1 2 _ ,2(1 — 2 (1 —
+ ng/O dU/Dai@(W—5)exp(—mb q*( :)])\4_'2_pKW( w))

[(Zu — D)3 3p% N Qung( 1 ml—q - pﬁ(cﬂ)

Ix wh? fK _EjL w3 M?2
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Lo (21/u — Py + 201 — N 2p5cas (U + 0 + T, + ‘I’H)) _
£V w?M? w? M*

(3.44)

The sum rules for fj, which is just the combination of f, and f_ can be calculated

in the same manner to get,

o) + ()=
mbe emg/Mz{ /1 @;L-p< B mg _ q2(1 — U) +p%(u(1 — u)) d_u

fem% ull? !
e+ 52— 2]
X 2 201 2 _
. /0 dU/Dai@(w B 6)exp< _my—¢*(1 5})\; prw(l w))

(3.45)

Also using (3.33) with the similar discussions above, one can calculate the sum

rules for the form factor fr as,

5 my(mp +mi) fx 2 e
= e’b
Ir(@) fam%
1 mi — ¢*(1 —u) + pru(l — u)
{/5 du exp( N uM?

% [_MK&FM?_Q U uM? u2M?

. /01 du/DO‘i@(w —9) exp(— miy — ¢*(1 — w) + pw(l _w)>

mye_ Lintt) (ko) - Cotu)

wM?

[U(%bn — 29, N Y+ P — 2 — 2%] }
w2M2 w2M2 )

X

(3.46)
where § = (mi —q?)/(so—q?), p¥ = m3% and px = m3%/(ms—m,). The functions
W (W), U(¥)) in Egs. (3.44)-(3.46) are defined in the following way,

V(b)) = - [ e ),
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For kaon wave functions, the results of [42], [43], [44], [45] are used as follows,

VK

Yy

Vo

i

92

Vsr (o)
(o)
Wy ()
()
¥y ()

where, 0%(up) =~ 0.17GeV? at py, ~ /m% —m2 ~ 2.4GeV, ¢ ~ 0.36. For the
values of the form factors, we have used the results of [46]. The ¢* dependence of

the form factors can be represented in terms of three parameters as,

12

12

12

12

12

12

12

f+ Jo

cp | 1.465 0.633

cs | 0.782 0.591

F(0) | 0.319 0.319 0.355

co | 0372 -0.095 0.373

Table 3.1: Parameters for the form factors

Uy (b)) = —/OUT/H(U)(%;”(U))CZU.

6u(1 — u){1+0.52[5(2u — 1)* — 1] + 0.34[21(2u — 1)* —

14(2u — 1)* 4 1],
1,

6u(l —u),
25%2(1 —u)?,
?5%(1 —u)(2u—1),

360 a; 0432,,

10 6% (a1 — an)as,

120 6%¢ () — an)a; s as,
10 6% a3(1 — a3),

—40 52 a1 Oy (3,

F(S) — F(O)ecls+0252+03s3
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where the values of parameters F'(0), ¢;, ¢, c3 for the B — K decay are listed

in Table 3.1.

3.4 Calculation of Form Factors in B — K*/"[~ Decay

For calculating the form factors appearing in the parametrizations of the matrix
element in the B — K*[*]~ decay, (Eqs. 3.8-3.11), we consider the following

correlation functions,

M (p,q) =i / d'z e (K*(p)|5(x)7,(1 — 75)b(2)b(0)irsq(0)[0),  (3.47)

H( )(p, = z/d4x " (K*(p)|5(x iowq” (1 + 795)b(2)b(0)iv5¢(0)[0).  (3.48)

The first correlator is relevant to calculate the form factors V' (¢?), A1(q?), A2(q?),
Ay(¢?) and the second is relevant to calculate T (q?), To(q?), T3(q?).

To derive the sum rule, let us start by considering the hadronic representation
of Eq. (3.48) with the following matrix element of the time-ordered product of

two currents between the vacuum state and the K*—meson at momentum p,

/d4x ele <K*(p7 )|T{T/)( )U;wq b( ) ( )Z’Yfﬂ/)( )}|0> =

i€uwpoe™q’p” T((p + q)?), (3.49)

and

Mu(a.p) = /d%emwK%n>uﬁ¢<wwmwb<><n%¢<nm>

%%%m @+QMﬁ€pw%“(WWW%
4o B G2, (4 0)). (3:50)
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Making use of the free propagator SP(z),

4

OT@BO)}0) = iS)(x) = / (;if; erive L

pT—=my

U —m2a+z2?/4a
= —/ 1671' a2 %)6 ot /4 ) (351)

a formal expression is obtained from Eq. (3.49) as in [47],

v

[t [ T o+ D O, (352

and from (3.50) as in [48]

167r a2 /d{L‘ ezq:v mba+m2/40¢<K*(pa )|T{¢( )O'uu’75q (mb+2—)l’y5¢( )}|0>

(3.53)

In general, Eqgs. (3.52) and (3.53) are expressed through matrix elements of
non-local operators sandwiched between the vacuum and meson state. The first

term in Eq. (3.52) is given by [47]

(0]8(0)010(2) | K*(p, €)) = i(€uby — EuPp) free X /0 " e~ | (u, 1u?). (3.54)

Likewise,
OO 02 = e [ e [, =000,
+ (su—pu(;i)>g$’)(u,u2)], (3.55)
s % 1 v o ! upT ( )
(OO @) (. 2)) =~ Cppe o e [ €57, ).
(3.56)

Also, the first term in Eq. (3.53) is given by [48]

(K*(p, &)|T{4(x)0,759" 15¢(0) }0) = =i pyfrc- /0 1 due™ ™ (u, %), (3.57)
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where, the functions ¢ (u, u*) and @|(u, *) give the leading-twist distributions
in the fraction of total momentum carried by the quark in transversely and longi-
(v)

tudinally polarized mesons, respectively. The functions ¢;’ and gf) are twist—3

wave functions and are given as,

0 () = 2[1 +(2u—1)Y, (3.58)
9\ (u) = 6u(1 — ). (3.59)

For the explicit form of ¢ we shall use the results of [47]

1

S p?) = Gull = u) {1+ an(u) (20— 1) + aa(n) | (20— 1) - <]

v aslp) [g(Qu ~ 1P - u 1))+, (3.60)

with

where b =11/3 N, —2/3 ny and

TL+11
’Yn:CF(l—f—élz—.).
i=2 7

Here, Cp = (N2—1)/(2N,), N, and ny being the number colors and active flavors,

respectively. Also for ¢ we use [48]
¢ = 6u(l —u). (3.61)

Considering Eq. (3.49) using Eqgs. (3.54) - (3.56) in Eq. (3.52), we obtain the

invariant amplitude T as,

T((p+af) = [ Slm S o100 +umie fie o) +

—’LL m * a
———— m%(* e gi)(u)a

1/4 mg- fg- QL / du
(3.62)
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where A =mj — (¢ + pu)?.
Since we have splited (3.48) into two terms, we similarly obtain the contribu-
tion from second term also, to get the whole expression as [49],

L du L du

HE?) = €upo g*”p”qg{mb fK* 0 A ¢L — Mgk~ fK* l/o K ((D” B Gﬁv))

- /ICZL gL /2A9L(A+q +2PC]U)]}+Z[ (p.q) — (q.s*)p“]

du L du v v
0 0

A
9" gVu(p.q) : . 2 ) Ldur o) p'u ()
+ S B [ e S = @] [T 00 - S0

+ 2img- fix-(q.e") [pqu - (p.q)qu] /01 Zqé (@H Gﬁa)). (3.63)

We can also calculate the theoretical part of the sum rules for the correlation Eq.

(3.47) as [49]

y ! du * v * ]‘ v
HE}) = —imy fk- mK*/O K[%gi) +2(q.€ )pug(q’u — Gﬁ ))]
*V o 1 Ldu a 1 ¢L
€uvpo € ppq lmbg fK* Mmg- /0 P gi) +fK* /0 dUK]
1
- ifK*/O du%[eﬁ(p.qupQu) —pu(q.e*)]. (3.64)

Having calculated the theoretical part of the correlation functions, let us focus
on their hadronic representations. The hadronic representation is obtained by
inserting a complete set of states including the B-meson ground state as for Eq.

(3.49) for instance

(K*(p,e)|th(x)0,q"b(x)| B)(B]b(0)ivs1(0)]0)
— (p+q)?
(K*(p, &) |(2)0,,q"b(x) |R) (h|b(0)iv51(0)]0)
" Z —(p+4q)? '

i€wpe €7D T((p+q)?) =

(3.65)

If we separate the contribution of the B-meson mass as the pole contribution to
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the invariant function T'((p + ¢)?) to get,

femi 2F*(0) :
T((p+q)?) = + + higher — mass resonance terms...
(3.66)
where
(017, 75b| B(pB)) =i Py fB) (3.67)

is used. Similar arguments on Eq. (3.50) can be carried on to get the invariant
amplitudes for G and H. Considering so, the hadronic representation of (3.48)

can be written as [49]

femy

m® —
my[m% — (q + p)?]

I

(K*(p, e)[5iomq” (1 +75)q(0)[B(p+¢)),  (3.68)

and similarly (3.47) as

femi

M =
mplm% — (¢ + p)?]

i

(K*(p,2)]57.(1 = 75)q(0)|B(p + q))- (3.69)

Using definitions of form factors in Eqgs. (3.8) - (3.11) and equating these to
(3.63) and (3.68), we get the sum rules for the form factors [49] after applying

the Borel transformations,

mp+mg- My o e [1 m? + p*uli — ¢*u
174 2 — mg /M / d o b
(q%) 5 Fom?, e : U erp Y
(a)
91 Jr-91
X {mbe*mK* SR » }, (3.70)
1 my 2 2 1 m?2 + p2uﬂ - q2ﬂ
AP = mi /M / d — 0
(@) mp + mg- fpm% ¢ ; L ETP w2
(v) 2 2 2,2
«@r(my —q” +pu
X {mbe*mK*—gZ + fi o b2u2q L )}, (3.71)
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2 2, 2o
0 m2 /M2 mb+puu—qu
As(q”) = —(mp+mg-) m2 B/ / du exp Vi
femp
my [ M e~ P oa 3.79
R (0= 60) ~ e (6.7
2 > 1 2 4 p>ut — ¢*u
A2 — A (2 = 4 M m2B/M2/d My +p
3(¢°) 0(¢°) Y- fam’ e ] u exp YT
My <M (v) 1 PL
{W(q’l -G - Ll (3.73)
1 my 2 ap [ du m2 + p*uti — ¢*u
Te’) = 4 fam% et 5ou 6xp< - uM? X Mol K0
(a) (@) (,),2 2 2,2
@ @ 9L gL (my+q°—piud)
- e [@L B JuM? !
(3.74)
T2 (qZ) _ 1 my emQB/MQ /1 d_u, eap| — mg -+ pZU,a — q2ﬂ/
2(m% —m3.) fpm% 5ou uM?
2
v p a m f *¢
X {fmmm [gi) = 2M29(ﬁ]q2 + #(mf — ¢ —p*u?)
(m2 — ¢% — pPu?) o
2 2 2,2\ ,(a)
(v) (mi — ¢ — p*u®)g}
+ ugy’ + e >] }, (3.75)
1 my 2 a2 [Ldu m? + p2ua - QQE g(a)
T 2 L my /M o B b . . 91
(mh — ¢*p"v?) (@) g\ g
+ Tz 9 | T 2meefe | 52 mu) = T
P — G( V) mi — ¢* — p*u? 5 5  uM?
— 2 * * — M
mi- fx l e ” +4q + 5
Using the equations of motion, we can relate T3 and A3 — Ay by,
A 2 2
As(g) — Aolg?) = —— 2T 4 (3.77)

2mK* (mB + mK*) ,

42



AB=KT 10.344£0.05 06 -0.023
AB=K* 10928+0.04 1.18 0.281
VB=E" 10,46 £0.07 1.55 0.575
TB2K"10.194£0.03 1.59 0.615
TE=K" | 0.19+0.03 0.49 -0.241
TE=K"10.134£0.02 1.20 0.098

Table 3.2: B-meson form factors in a three parameter fit, where the radiative
corrections to the leading twist contribution and SU(3) breaking effects are taken
into account.

As(q?) = Aolq?)
q2

Ts(q?) = mg-(my — my) , (3.78)

where M? is the Borel mass parameter. The ¢ dependence of the form factors is

given in [52], [45], [46] in terms of three parameters as,

F(0)

, 3.79
1—CLF%+[)F(TZ—ZB)2 ( )

F(¢?) =

where the values of parameters F'(0), ar and bp for the B — K* decay are listed

in Table 3.2.
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CHAPTER 4

MODEL INDEPENDENT ANALYSIS OF

SEMILEPTONIC B MESON DECAYS

In this chapter, we study the lepton polarizations in the exclusive B — K/{*¢~ and
B — K*{*¢~ decays using the most general form of the effective Hamiltonian
including all possible forms of interactions. As we noted in the Introduction
section, theoretical study of exclusive decays is rather more difficult than the
relevant inclusive decays, but the experimental detection of exclusive decays is

easier than the inclusive ones.

The main drawback of the theoretical calculation of exclusive decays is the
calculation of the matrix elements of the effective Hamiltonian sandwiched be-
tween final and initial meson states of the corresponding decay. In this chapter
we use the results for relevant form factors which were calculated in the Light

Cone QCD Sum Rules in the previous chapter.

One main goal of the B physics program in the current B factories and in
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the forthcoming LHC-B mechanics, is to find inconsistencies within the SM, in
particular to find indications for new physics in the flavor and CP violating sectors
[55]. In general, new physics effects manifest themselves in rare B meson decays
either through new contributions to the Wilson coefficients that exist in the SM
or by introducing new structures in the effective Hamiltonian which are absent

in the SM.

During the theoretical analysis of these two exclusive decays given above,
we will consider the most general model independent four-Fermi interactions,

governed by the effective Hamiltonian given as,

GFOé " . q” _ . q” _

Hepr = EWJ@{C@L swu,,? Lbl~"l + Cyr sww,? Rb "0
+C’20Lt §L’YubL ELW/MEL + C’zo}tz §L7ubL ER’)/MER + CRL gR’YubR EL’YMEL
+Crr 5RVubR Cry"lr + Crrir S1br 0 lr + Crirr Srbr (il (4.1)
+Crrrr 51br Crly, + Crrr Srbr (Rl + Cr 50,0 lo™v

+iCrg é“yaﬁEUWb Zaa[gﬁ} ,

where ¢? is the invariant dilepton mass, and L(R) = [l — (4+)vs]/2 are the
projection operators, Cx are the coefficients of the four-Fermi interactions and
¢ = pg — pk is the momentum transfer. Note that among twelve Wilson coef-
ficients several already exist in the SM. For instance, the coefficients C's;, and
CBr, which are the non-local Fermi interactions, correspond to —2msC$f I and
—2mbC’$f I in the SM respectively. The following four terms in this expression
are the vector type interactions with coefficients Cr, Crr, Crr, and Crr. Two
tot

of these vector interactions containing C%% and C1% do already exist in the SM
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in combinations of the form (C§/f — Cy,) and (C§'7 + Cyg). Therefore by writing

CE”E = Cgeff —Cyp+Crp,
Cih = Cgeff +Cyo+CLr ,

one concludes that C%¥% and C%% describe the sum of the contributions from SM

and the new physics. The terms with coefficients CrLrrr, Crrrr, Crrrr and

Crrrr, describe the scalar type interactions. The remaining two terms leaded by

the coefficients Cr and C'rg, obviously, describe the tensor type interactions.
The decay rate of any exclusive decay is determined by the following expres-

sion:

271'4 dg—» d3—* dg—»
FBHM_( )/( P1 P2 Par IMuy|?6% (g —pr—p2)  (4.2)

~ 2mp J (27m)32E, (27)32E, (27)32E ),
where M is the final meson state, ¢ = pg — par, p1 and p, are the 4-momenta,
of the final leptons and M is the matrix element of the decay, which is the
effective Hamiltonian sandwiched between final and initial states. Since our main
interest is to calculate the polarization asymmetries of the rare B meson decays,
after calculating the decay rate in Eq. (4.2) our next task is to compute the
final lepton polarizations. For this purpose, we define the following orthogonal
unit vectors, S; ¢ in the rest frame of £~ and S;* in the rest frame of ¢*, for the
polarization of the leptons along the longitudinal (L), transversal (T') and normal

(N) directions:



+£
St

r=(o )

> X P+
S+e = 076+ = (07 p—»l(i—»)a
N (0. ) Pr X D

St (0,&8) = (0,&F x &), (4.3)

where p and px are the three momenta of /T and K meson in the center of mass
(CM) frame of the ¢7¢~ system, respectively. The longitudinal unit vectors S,

and S} are boosted to the CM frame of £t¢~ by Lorentz transformation,

~ p-| Egp-
SL,ZCM - (ua — >7

my m£|p—|

P Eyp_
SLCM = (ua_ L ) (4.4)

my my |p—|

The vectors §N and §T are not changed by boost.
The differential decay rate of the B — K (K*){* ¢~ decay for any spin direction
¥ of the /F), where 7(¥) is the unit vector in the ¢(¥) rest frame, can be written

as

(n( )) L(dl (F ) ( ) (F ) ( ) (F ) ( ) 2(F
dI _ 1 P P P .7 4.5

where (dT"/dq?)y corresponds to the unpolarized differential decay rate which is
given in Eq. (4.2), and P, Py, and Pr represent longitudinal, normal and

transversal polarizations, respectively. The polarizations P, Py, and Pr are

defined as:
A (=(F) — (F)y _ 4L (=(F) — _ Z(F)
PO = w0 ) a0 (46)
I () = e+ AL () = —e ™)

where PF) represents the charged lepton ¢(F) polarization asymmetry for i =
L, N, T, i.e., P, and Pr are the longitudinal and transversal asymmetries in
the decay plane, respectively, and Py is the normal component to both of them.
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With respect to the direction of the lepton polarization, P, and Pr are P—odd,

T—even, while Py is P—even, T—odd and C'P—odd.

4.1 Exclusive B — K{T{~ Decay

Exclusive B — K/{¢*{~ decay is described by the matrix element of effective
Hamiltonian over B and K meson states, which can be parametrized in terms of
form factors. It follows from Eq. (4.1) that in order to calculate the amplitude

of the B — K/¢*¢~ decay, the following matrix elements are needed
(K570 B) ,
(K|si0,,4"b|B) ,
(K|sb|B)

(K|50,,b|B) .

These matrix elements are defined in Eqgs. (3.3) - (3.6) as follows

m2 — m2 mB2 — m?2
(K[537.0|B) = f4 [(pB +pK)u - %q“] + fOTKq,“ (4.7)
_ . Jr
<K|SO'M,,()|B> = —Zm (pB +pK)qu - qM(pB +pK)1/ ) (48)
o mp — mi
<K|SZO'M,,(] B> = fom, (49)
_ f
(K|sb|B) = mBTTmK (pp +pK)a* — qu(my —mi)|,  (4.10)

where ¢ = pp — px is the momentum transfer. So, the matrix element of the

B — K/(*¢~ decay can be written as,

G _
MB =K = 2Ly, v iv#e[A(ps + px)u + B,
427
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+ 07"t C(pp + pic) + Day) + 00Q + LysN

+ 4o l(—iQ) [(pB + pK)uqy — (P + pK)uQu]

+ 4!70“566””&5[{[(?93 + P)uqy — (PB + pK)un] };(4-11)

where the auxiliary functions above are defined as,

where

) (0} f
(C¥ + O + Crr, + Crr) fr +2(Cer + Csr) mBTTmK’
Clot L ctt 4 Cpp + C  —2(Cgr+C Lm
(CrL + Crr+ Cre + Crr) [- —2(Cpr + Csi) (s + M) (
(Cl%+ Crr — C1% — Cre) f+,
(Ci‘}% +Crr — C?Lt — Crr) f-,

mp — my
fo—————— (Crrir + Crirr + Crrrr + CrirL),
mpy — Mg
m2% — m?
fo —B K (Crrer + Crirr — Crrrr — CRLRL),
mpy — My
Cr
fT;
mp + mg
Cre
fT;
mp+ mg

2 2
mp — My
2

f-=(fo—f+) .

(4.12)

It follows from Eq. (4.11) that the difference from the SM is due to the last

four terms only, namely, scalar and tensor type interactions. Using Eq. (4.11) we

next calculate the final lepton polarizations for the B — K/™/~ decay.

In order to calculate the final lepton polarizations, firstly we have to find the

decay rate expression for the unpolarized leptons. The detailed calculations can

be found in the Appendix. We present here only the results. Taking the modulus

square of the Eq. (4.11), we find,
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GFCY 2
2/ 21

+ 2Re(AB")[(p-p1)(q-p2) + (p-p2)(q-p1) — (- @) (p1 - p2) — mi(p- q)]

|M[* =

“fthtﬁf{lAIZ[?(p-pl)(p-pz) P*(p1 - p2) — mip]

+ [BP2(¢- p1)(a- p2) — ¢*(p1 - p2) — miq’]

+ 2Re(AQ")mu[(p - p2) — (p - p1)] + 2Re(BQ")mu[(q - p2) — (¢ p1)]

+ 16Re(AG")mu[—(p - q)(p1 - p) — (P~ @) (P2 p) + P’ (01 - @) + P*(p2 - )]

+ 16Re(BG")my[~¢*(p1-p) = ¢*(p2-») + (P @) (p1 - @) + (0~ @) (P2 - 9)]

+ [CPR(p-p) (P p2) — (01 - p2) + mip?]

+ 2Re(CD)[(p-p1)(q-p2) + (P p2)(a-p1) — (0~ @) (pr - p2) + mi(p- )]

+ IDPR2(q-p1) (g p2) = ¢ (p1 - p2) + miq’]

— 2Re(CN*)mu[(p1 - p) + (p2 - p)] = 2Re(DN")mu[(p1 - q) + (p2 - 4)]

+ Q1 (p1 - p2) + [N (p1 - p2) — 4Re(QG™)[(p - p2)(q-p1) — (P p1)(a - p2)]

+ 128G [=2(p - p1)(q - p2) (- ) — 2(q - p1) (P~ P2) (P~ @) + 2(p - 1) (P - 2) g
+2(q - pi)(@ - p2)p” = (1~ P2)P°@* + (P1 - P2) (P ) (P @)
+mip*e® —mi(p-q)(p - )]

+ 256|H*[2(p - p1) (g p2) (P q) +2(q - p1) (- p2) (- @) — 2(p - 1) (P - p2)

—2(q - p1)(q - p2)p” + (01 - p2)P°¢* — (p1 - 2) (- 0) (p - q)]}, (4.13)

where we called p = (pp + pr) for simplicity, and ¢ = pp — pk-

Using Eq. (4.13) in Eq. (4.2), and after performing integration over final
lepton momenta, we find the unpolarized differential decay rate as, (we present
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these integration techniques in Appendix B)

dar G%a?
L
B

_ 2\1/2
d—q2 = m A (1, r, S)'UA, (414)

where A(1,7,8) = 1+ 72 + 82 —2r — 25 — 2rs, s = ¢*>/m%, r = m%/m% and
v = /1 —4m}/q? is the lepton velocity. The explicit form for A for massless

leptons is,

1024
A = 4m2Bs|N|2+T)\m%sﬁ-ﬂ2

8 012
+ 4mEs QI + g)\m%s |A]” + YAm%s |G|?

+ mbs{2alA - 301 7]} OP (4.15)

The calculations for massive leptons are represented in the Appendix section.

4.1.1 Polarization Asymmetries in B — K/*/~ Decay

We next calculate the differential decay rate when the leptons are polarized lon-
gitudinally or transversally. In order to do this calculations, we make use of the
expression in (4.6) where the differential decay rate here, is given in (4.5).

From the matrix element as given in Eq. (4.11), for the longitudinally polar-

ized decay, using Eq. (4.3) we find the module square as,

GFOZ
221

+4my (p.s)((p2-q) + (P1-0)) F 4mup® ((p1-5) + (p2-5)) F 8mup® (p2-5)

2
Mz = ‘ Vi

2{2R6(AC*) [ + 8my(p.s)((p1-p) + (p2.p))

F8mu(p-q) (p2-5) F 2mu(p2-5)q” £ 8mu(q-s)((p-p2) + (p-1))
+4m(¢.5) ((p1-9) + (p2-0))]
+ 2Re(AD*) [ + 4my(p.s)((p1.q) + (p2.q)) £ 4my(p.q)(p2.5) F 2myq*(ps.s)
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+4my(q.5)((p2-0) + (11-9)))]

2Re(BC*) | F 4mu(p-q) (po-5) F 2mug” (pa-s) £ 4mi(.5)(p1.p) + (p2.p))
+4my(q.5)((p2-9) + (p1-9)))]

2Re(BD")| F 2mig’ (p-5) + 4mi(g-5)((p2-) + (p1-9))]

2Re(AQ")| £ 2(p.p2) (p1-5) £ (p1.5)(p2.0))

2Re(AN") [ & 2m] (p.5) % 2(p.5) (p1.p>) F 2(p1.p) (P2-5) F (p1.0) (p2-5)
+m} (q.5) £ (4.5)(p1.po)]

2Re(AG")| F 32m} (p.q) (p-5) £ 32(p-a) (0-5) (01 p2)

F32(p-5)((p2.p) + (p2-0)) ((1-0) + (p1-p)) F 32(p-p2) (p-0) (P1-5)
F32(p-s) (p1-9) (p2-9) + 32p*(p1-5) (p2-q) £ 16(p.q) (p1-5) (p2-q)
F16miq*(p.s) £ 16¢*(p-s)(p1.p2) F 16¢°(p1-5) (p2-p) £ 32mip*(q.5)
£64(p1.p) (p2-p) (-5) £ 16m; (p.q)(q-5) F p* (p1.p2) (q-5)
F16(p.q)(p1.p2)(4-5) £ 32(p1.) (p2-4) (g-5)]

2Re(AH")| £ 256(p.5)((p.p1) + (p-p2))((2-p1) + (4.p2))
+£64(p.p1)(p-q) (p2-5) F 64p” (p1.q) (p2-5)

F32(p.q) (P1-0) (p2-5) + 32¢° (p1.p) (p2-5) ]

2Re(BQ")| £ (p1-5)(p2-9)]

2Re(BN*)[ F (p1-)(p2-5) £ (m] + (p1.02))(0-5)]

2Re(BG")| F 32(p-5) (91.9) (p2-) £ 16my(p.q) (p1.9) (p2-4)
F16miq*(p.5) + 16(p.5)(p1-p2)q” F 16(po-p) (p1-5)” £ 16m7 (p.q)(g.5)

F16(p-0)(p1-p2)(4:5) % 32(p1.p) (2-0) (0-5)]
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2Re(BH")| F 32(p.a) (p1.0) (p2-5) % 32(p1.9) (p2-5)’]
2Re(CQ") [ £ 2(psp) (pr-5) £ (p1.5) (p2-)]

2Re(CN*)| £ 2m} (p.s) £ 2(p-5) (p1-p2) F 2(p1-0) (P2-5) F (p1-4) (p2-5)
+m; (q.5) £ (p1.p2)(q.9)]

2Re(CG")| F 32 (p.0) (p-5) = 32(p-) (p-5) (01 2)

F32(p-p2) (p-0) (p1-5) F 32(p2.p) (p-5) (p1-0) F 32(p.5) (p1-0) (P2-9)
£32p”(p1-5) (p2-q) £ 16(p-q) (p1-5) (p2-q) F 16m7 (p.5)g”
+16(p-5) (p1-p2)a” F 16(p2-p) (p1-5)¢” £ 32m;p*(¢.5)
+£64(p1.p)(p2-p)(q-5) £ 16mi (p.q) (q-5) F 32p" (p1-p2)(¢-5)
F16(p.q)(p1-p2)(4-5) £ 32(p1.) (p2-0) (¢-5)]

2Re(CH")[ + 64(po.p) (p-5) (p1.q) + 64(p1.p) (p-q) (p2-5)
F64p”(p1.q) (p2-5) F 32(p-0) (1-0) (p-5) + 644 (p1.9) (ps-5)]
2Re(DQ")[ £ (015) (02.0) F (01.0)(12.5))]

2Re(DN")[ F (p1.9)(p2-5) F m7 (4.5) £ (p1.12)(¢.5)]
2Re(DG*)[ F 32(p.5) (p1.9) (p2-0) % 16(p.q) (p1.5) (p2.0)
F16miq* (p-s) £ 16¢°(p-5) (p1-p2) F 16(p2.p) (p1-5)¢”

+16m7 (p.q) (¢-5) F 16(p.q) (p1.p2)(q-5) % 32(p1.p) (p2-0) (¢.5)]
2Re(DH")| F 32(p4) (01.0) (p2-5) + 324" (p1.p) (p2-5)
2Re(QN*)[ F 2mk(ps.5)|

2Re(NG*)| F 32mu(p.s)((p1.q) + (p2-0))

+32mi(¢.5) (p1-9) + (p2-p))]
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+ 2Re(GH")| % 1024m(p.q)(p.5) ((p1-0) + (p2-0))

F512my(p.q)* (pa.s) & 512p2q2(p2.s)]. (4.16)

For the longitudinally polarized state, the branching ratio for the B — K/¢*(~

decay can be written as,

dly  GLo?|VVil?

A 4.17
ds 21 mp Ve ( )
where A, for longitudinally polarized decay for massless leptons is,
8 512
Al = 2R6(AC*)[:F g)\m‘}g] + 2Re(GH™) {?)\m%s]
+ 2Re(QN")| - 4m}s). (4.18)

Considering the transversal polarizations, Eq. (4.17) is still valid but we write

A for massless leptons as,
AT = m%m/E{ALRe(CQ*) + 2Re(AN*)}. (4.19)

It is now easy to calculate the polarization asymmetries for massless leptons,
given in Eq. (4.6), where the polarized differential decay rates are given in Egs.
(4.18, 4.19). So, calculations lead to the following results for the longitudinal,

transversal and normal polarization of the ¢(%):

P = 47223{ 4 g)\mQB Re(AC") + ?Am‘gsRe(GH*)

_ 2Re(NQ*)} (4.20)
pF = %ﬁ{izﬁe(m*)mf{e(cqy*)}, (4.21)
PF = ”%”T‘/a{zlm(czv*)wlm(m*)}, (4.22)
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where, A is given in Eq. (4.15). The results we have presented here are for the
massless leptons. In the Appendix, we present the results for massive leptons

also.

From these expressions we can make the following conclusion. Contributions
coming from the SM to P; and P; are exactly the same but with the opposite
sign. However contributions coming from new interactions to P; and P; can

have same or opposite sign. This can be useful in looking for new physics.

From Eq. (4.21) we observe that at zero lepton mass limit, contributions
coming from scalar interactions survive. Similarly terms coming from scalar and
tensor interactions survive in the massless lepton limit for PL@). Therefore, exper-
imentally measured value of PSFT) for the B — Kput o~ can give a very promising
hint in looking new physics beyond SM. About normal polarization we can com-
ment as follows. One can see from Eq. (4.22) the difference between Py and
Py (for which SM predicts Py = —Py’) can again be attributed to the existence
of the scalar and tensor interactions. Incidentally, we should note that a similar
situation takes place for the lepton polarizations in the B — K*¢*¢~ decay (see
next section). It follows from this discussion that a measurement of the lepton
polarization of each lepton and combined analysis of lepton and antilepton po-
larizations P; + P/, Py — Pff and Py + Py can give very useful information
to constraint or to discover new physics beyond SM, which are all zero in the
SM in the limit of massless leptons. Therefore if in experiments nonzero value
of the above mentioned combined lepton asymmetries were observed, this can be

considered as an indication of the new physics beyond SM.
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4.1.2 Numerical Analysis of the B — K/T/~ Decay

First of all we introduce the values of the input parameters used in the present
work: |V, Vi = 0.0385, ! = 129, Gp = 1.17 x 107° GeV 2, T = 4.22 x
10713 GeV, CS/T = 4.344, €y = —4.669. Tt is well known that the Wilson coef-
ficient C’gf I receives short as well as long distance contributions coming from the
real ¢c intermediate states, i.e., with the J/« family: But in this work we consider
only short distance contributions. Experimental data on B (B — X,v) fixes only
the modulo of C’?f I For this reason throughout our analysis we have considered
both possibilities, i.e., C’?ff = F0.313, where the upper sign corresponds to the

SM prediction.

For the values of the form factors, we have used the results of [57] (see also
[58], [45]). The ¢*> dependence of the form factors can be represented in terms of

three parameters as

F(s) = F(0) exp(cis + a5 + c35°) (4.23)

where the values of parameters F'(0), ¢1, ¢; and ¢3 for the B — K decay are listed

in Table 2.1.

From the expressions of the lepton polarizations we see that they all depend
on ¢> and the new Wilson coefficients. It may be experimentally difficult to
study the dependence of the the polarizations of each lepton on both quantities.
Therefore we eliminate the dependence of the lepton polarizations on ¢?, by per-
forming integration over ¢? in the allowed kinematical region, so that the lepton

56



polarizations are averaged. The averaged lepton polarizations are defined as

(mpy—mx)>  dB

/ i—dq2

4m% qu

/(mb_mK)2 aB .,
4

—d
m% dq2 7

(P) = (4.24)

We present our results in a series figures. Note that in all figures we presented
the value of C// which is chosen to have its SM value, i.e., C¢// = —0.313.

Figs. (4.1) and (4.2) depict the dependence of the averaged longitudinal polar-
ization <PL_> of /= and the combination <PL_ + PL+> on new Wilson coefficients,
at C’?ff = —0.313 for B — Ku™p~ decay. From these figures we see that <PL_>
is sensitive to the existence of all new interactions except to vector and scalar
interactions with coefficients Cr, Cgrr and Cgrrrr, Crrir, respectively, while
the combined average <P[ + P; > is sensitive to scalar type interactions only.
It is interesting that contributions from Crrrr, Crrir (Crrrr, Crrri) to the
combined asymmetry is always negative (positive). Therefore determination of
the sign of <PL’ + PZ“> can be useful in discriminating the type of the interaction.
From Fig. (4.2) we see that <PL_ + PL+> = 0 at Cx = 0, which confirms the SM
result as expected. For the other choice of C?ff, ie., C?ff = 0.313 the situation
is similar to the previous case, but the magnitude of <P[ + PL+> is smaller.

Figs. (4.3) and (4.4) are the same as Figs.(4.1) and (4.2) but for the B —
K777~ decay. In this case the difference of the dependence of the longitudinal
polarization <PL_ > on new Wilson coefficients from the muon case is as follows:
In the muon case <PL_ > is negative for all values of the new Wilson coefficients
while for the tau case <PL’> can receive both values, for example for Cr < 1,
<PL_> is positive, and for C'p > 1, <PL_> is negative.

It is obvious from Fig. (4.4) that if the values of the new Wilson coefficients
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CLRRL, CLRLR, CRLLR, CRLRL and CTE are negative (positive), <PE +PE_> is
negative (positive). Absolutely similar situation takes place for C<// > 0. For
these reasons determination of the sign and of course magnitude of <PE + Pt >

can give promising information about new physics.

In Figs. (4.5) and (4.6) the dependence of the average transversal polarization
<PT’ > and the combination <PT’ — P > on the new Wilson coefficients are pre-
sented for the B — Kpu™p~ decay, respectively. We observe from Fig. (4.5) that
the average transversal polarization is strongly dependent only on Cprrr and
Crrrr and quite weakly to remaining Wilson coefficients. It is also interesting
to note that for the negative (positive) values of these scalar coefficients <PT_ > is
negative (positive). For the <PT’ — Pt > case, there appears strong dependence
on all four scalar interactions with coefficients Crrrr, Crrrr, Crrrr, CRLRL-
The behavior of this combined average transversal polarization is identical for
the coefficients Crrrr, Crror and Crrrr, Crrrr in pairs, so that four lines
responsible for these interactions appear only to be two. Moreover <PT_ - Pf > is
negative (positive) for the negative (positive) values of the new Wilson coefficients
Crrrr, and Cgp g, and positive (negative) for the coefficients Cprrr and Crppr.
Remembering that in SM, in massless lepton case <PT’> ~ 0 and <PT’ — P;I> ~ 0.
Therefore determination of the signs and magnitudes of <PT’ > and <Pf - Pt >
can give quite a useful information about the existence of new physics. For the
choice of C’?f I'—=0.313, apart from the minor differences in their magnitudes, the

behaviors of <PT_ > and <PT_ - Pf > are similar as in the previous case.

As is obvious from Figs. (4.7) and (4.8), <PT_> and <PT_ - P;!> show stronger
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dependence only on Cr for the B — K717~ decay. Again <PT_> and <PT_ — P;f>
change sign at Cr ~ —1. As has already been noted, determination of the
sign and magnitude of <PT’ > and <Pf - Pt > are useful hints in looking for new

physics.

Note that for simplicity all new Wilson coefficients in this work are assumed
to be real. Under this condition <P]§> and <P]§ + Py > have non-vanishing values
coming from the imaginary part of SM, i.e., from Cgff. From Figs. (4.9) and
(4.10) we see that <P]§> and <P]§ + Pf\?> are strongly dependent on all scalar
type interactions for the B — Kpu*p~ decay. Similar behavior takes place for the
B — K717~ decay as well. The change in sign and magnitude of both <P]§> and
<P]§ + Py > that are observed in these figures is an indication of the fact that an
experimental verification of them can give unambiguous information about new

physics.

In the present work we analyze the possibility of pinning down new physics
beyond SM by studying lepton polarizations only. It follows from Eq. (4.14) that
the branching ratio of the B — K/{"¢~ decay depends also on the new Wilson
coefficients and hence we expect that it can give information about new physics.
In this connection there follows the question: Can one establish new physics by
studying the lepton polarizations only? In other words, are there regions of the
new Wilson coefficients C'x in which the value of the branching ratio coincides
with that of the SM prediction, but the lepton polarizations would not? In
order to answer this question, we present in Figs. (4.11)—(4.14) the dependence
of the branching ratio on the average and combined average polarizations of the
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leptons. In these figures the value of the branching ratio ranges between the values
100" < B(B — K7t77) < 5x 107 7. These figures depict that there indeed exist
such regions of C'x in which the value of the branching ratio does agree with the
SM result, while the lepton polarizations differ from the SM prediction. It follows
from the pair of Figs. (4.3), (4.11); (4.7), (4.13) and (4.8), (4.14), that if Cr lies
in the region —2 < Cp < 0, the above-mentioned condition, i.e., mismatch of
the polarizations in the standard model and the new physics, is fulfilled. On
the other hand one can immediately see from Fig. (4.12) that such a region for
the combined average longitudinal lepton polarization does not exist and hence
it is not suitable in search of new physics. Note that in all figures intersection
point of all curves correspond to the SM case. This analysis allows us to conclude
that there exists certain regions of new Wilson coefficients for which study of the
lepton polarization itself can give promising information about new physics.
Finally, a few words about the detectibilty of the lepton polarization asymme-
tries at B factories or future hadron colliders, are in order. As an estimation, we
choose the averaged values of the longitudinal polarization of muon and transver-
sal and normal polarizations of the 7 lepton, which are approximately close to the
SM prediction, i.e., (Pr) ~ —0.9, (Pr) ~ 0.6 and (Py) ~ —0.01. Experimentally,
to measure an asymmetry (P;) of a decay with the branching ratio B at the no
level, the required number of events is given by the formula N = n?/(B(P;)*. It
follows from this expression that to observe the lepton polarizations (PL), (Pr)
and (Py) in B — K717~ decay at 1o level, the expected number of events are
N = (1;3;10*) x 107, respectively. On the other hand, the number of BB pairs
that is expected to be produced at B factories is about N ~ 5 x 10%. A compari-
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son of these numbers allows us to conclude that while measurement of the normal
polarization of the 7 lepton is impossible, measurements of the longitudinal po-
larization of muon and transversal polarization of 7 lepton could be accessible at

B factories.
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Figure 4.1: The dependence of the average longitudinal polarization asymmetry
(P; ) of muon on the new Wilson coefficients.
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Figure 4.2: The dependence of the combined average longitudinal polarization
asymmetry (P, +P;") of £ £~ on the new Wilson coefficients for the B — Ky~

decay.
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Figure 4.3: The dependence of the average longitudinal polarization asymmetry
(P; ) of tau on the new Wilson coefficients.
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asymmetry (P; +P;) of * ¢~ on the new Wilson coefficients for the B — K7t7~
decay.
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4.2 Exclusive B — K*/*{~ Decay

Exclusive B — K*(*/~ decay is described by the matrix element of effective
Hamiltonian over B and K* meson states, which can be parametrized in terms
of form factors. It follows from Eq. (4.1) that in order to calculate the amplitude

of the B — K*(*¢~ decay, the following matrix elements are needed

(K" [57,(1 £ 75)b|B)
(K*|510,,q" (1 £ v5)b|B) ,
(K*[5(1 £ 75)b|B) ,

(K*|50,u,b]B) ,
These matrix elements are defined in (3.8) - (3.11) as follows

(K™ (k- €)|57u(1 £ 75)b|B(pp)) =

*U, A 2V(q2)

—€ro€ pK*quB g + i€} (mp + mg-) A1 (q°) (4.25)

. * Aq2 . 2mp- *
Filpn + o0 i, 2 ) [aa(a?) — Ale?)]

(K™ (k= €)|5iouq” (1 £ 75)b| B(ps)) =
A€o € Di-q" Th (¢%) £ 2i [GZ(mZB —m3.) — (pg + pK*)M(e*q)] Ty(q%)

£20(0) o~ -+ vy | ), (1.26)

(K™ (P, €)|50b| B(pB)) =

L€uvro [ - 2T1(q2)€ )‘(pB + pK*) + ?(m% - m%)e Aq (4-27)
A (1) - (@) - —— LT ) (e
¢ mp — mi-



(K*(p-, €)|5(1 £ 75)b| B(pp)) = mib [T 2img-(€°q) Ao (%)) - (4.28)

where ¢ = pp — px+ is the four-momentum transfer and ¢ is the polarization
vector of K* meson. In deriving the Eq. (4.28) it is assumed that Az(¢®> = 0) =

Ao(¢* =0) and Ty (¢*> = 0) = Tp(¢*> = 0). Also, we have used the relation
2m-As(q?) = (mp + mg-)A1(¢?) — (mp — mg-)Ay(¢%) .

The form factors in Eqs. (4.25)-(4.28) have already been calculated in the second
chapter presented in the Eqgs. (3.70)-(3.78) and tabulated in Table (3.2).
Taking into account the Eqgs. (4.1) and (4.25)-(4.28), the matrix element of

the B — K*¢*{~ decay can be written as,

M(B — K*(*0) = %VM";
X {Evu(l —75)¢ [ — 241 o€ Pi-q” — iBi€, +iB2(€"q) (5 + P+ )
+iB3(€"q)q)
+ V(1 +75)C | = 2C1€uan€Pi-a” — iD1€}, + iDa(€*q) (P + Prc- )
+iDs(€"q) ]
+ (1= 75)e[iBy(e )] + €1 + 7)€ [iBs(e"q)]

+ 4@0““€(iC’T6WM) [ — 2T16*’\(p3 +pr)’ + Bge* g7 — B7(e*q)pK*)‘q"]

+ ].GC’TEEO'W,E{ — 2T16*“(p3 + pK*)V + BGE*MqV — B7(€*q)p[(*“qy} R (429)

where the auxiliary functions in (4.29) are given by
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Vv T
A = (C¥ 4+ Cr)———— —2(Cpr + GSL)q—; ,

mp + Mg+
T
By = (C}% — Crp)(mp+mg-)A; —2(Cpr — Csr)(mp — m%«)q—; ,
Clot _ iy 1 >
B, = —LL %A, 9Crp—Cgr)— |Ty + ————T
2 T (Csr SL)q2 2+mQB—m%(* 3|
A; — A T.

By = 2(Cy — CRL)mK*% +2(Cpr — CSL)q_; ,
01 = Al(CzOLt — C’EO}; s CRL — CRR) ,
D1 = Bl(CzoLt — Czo}tz , CRL — CRR) R
D2 = BQ(CEOE — Czo}tz , CRL — CRR) X
D3 = B3(CEO£ — Czo}tz , CRL — CRR) X

m *
By, = —2(CrLgrrL — CRLRL)—KAU ,

myp

m *
Bs; = —2(Crrir — CRLLR)—KAO ;

myp

T, — T
B6 = 2(m2B_m§(*) : 2 2 )
q
4 q?

b nne ot ) wa

Here, we carry out similar steps with the previous section. Since the results are
too long to display here, we preferred to present modulus square of the matrix
element (4.29) in Appendix E. Referring to the result (E.1) we perform integration
over final lepton momenta and find the unpolarized differential decay rate using

Eq. (4.2) as,

dl G%a?

_ 2.1/2
d—q2 = m A / (1,7", S)’UA (431)

‘VibV;

where A\(1,7,8) = 1+ 72+ s — 2r — 25 — 2rs, s = ¢*°/m%, r = m%./m% and
v = /1 —4m?/q? is the lepton velocity. The explicit form of A for massless
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leptons is,

32 2
Ammo = FmbsA(|Af +[CP) + —mipsh (|Bif* + |Bs)

8
— gmpA (=13 [Re(B1Bj) + Re(Dy D3)]
4
+ o my(\+ 12rs)(|B1* + | Dy |?)
4
+ gm%)? (|BQ|2 + |D2|2)
256
+ 3—r|T1|2|C’T|2mQB( —127(2+ 2r — 5)] + mE [A(167 + 5)

+12rs(2 + 2r — 5)])
+ %|T1|2|CTE|2WQB (127"(2 +2r —s)]
+m% [N167 + 5) + 12rs(2 + 2r — 3)])
+ ngB (47712]_:;8|CTE|2 + m238v2|C'T|2) % (4()‘ +127s)| Bg|*
+ mpN2|Brf? — 4m(1 = — $)ARe(BoB;)
— 16[A+12r(1 — r)] Re(T1 Bg)

+ 8my(1+3r — s)ARe(TyB;)) . (4.32)

Here we have excluded the lepton masses. We have rewritten this expression for

massive leptons in Appendix E.

4.2.1 Polarization Asymmetries in B — K*/*/~ Decay

We now calculate the differential decay rate when the leptons are polarized lon-
gitudinally and/or transversally. In order to do these calculations, we make use
of the expression in Eq. (4.6), where the differential decay rate can be calculated
as in Eq. (4.5).

From the matrix element as given in Eq. (4.29), we now would like to calculate

72



the polarization asymmetries of the decay B — K*{™¢~. When we take the lepton
polarizations into consideration, the square of the matrix element of the decay
should be modified. This modification is presented in Appendix E in details. We
preferred to present the results here for massless leptons, for the sake of simplicity.

Considering the leptons to be polarized longitudinally, that is we use the

orthogonal unit vectors
5= 0.6 = (0.5
S+é = 07€+ = (07 —.\—> )
e =0 = {05
as given in Eq. (4.3). The decay rate expression calculated from the polarized

decay matrix element expression given in Eq. (E.3) will be,

(dr(é‘L:F)> _ G%O{Z “/tbv*
- ts
leO B

dq? 21475m

2{ [[AL? = |Gy + 2Re(A,CY)] [ + 3—;Am§35]

4
+ [IF |B, > F |D1)? + 2Re(BID1‘)] [ — g)\mZB — 16m233]

+ [+ 2Re(B,B;) + 2Re(B1D}) + 2Re(B, D}) + 2Re(Dy D3)]

4 4
X [ - g)\m‘g + yAm% - y)\m‘,gs]

+ [i|Bz|2$|D2|2+2Re(BgD;‘)H_%)\2m6B]

4Asmt
+ [|B4|2 - |B5|2] =
A+ 12rs 1672mS
+ [|BG|2T + | B[ B[ £ |CrPPmis

F4|Crp|*mys — 4Re(CTC’}E)m2Bs]

256m%
r

+ |T1|2 3rs

[ ¥ 4|C’TE|2(12mZB7"32(2 +2r —s)
+m%s(16r + s))
j:|C’T|2(12mZBr32(2 +2r — 5) + mys(16r + s)))

+2Re(CrCrp) (szs(12rs(—2 —2r 4+ s) — M(167 + s)))
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32 my(—1+7r+s)
3r

+ 2Re(BsB:) [+ |CrlPms

F4|Crp|*mys + 4Re(CTC’}E)mQBs]

—128m2B()\ —12(=14r)r)
3r

+ 2Re(BgT?) [ £ |CrPPms

F4|Crp|*mys + 4Re(CTC’}E)mQBs]

64 Amy(1 + 3r — s)

+ 2Re(B/TY) 5

[j: |Cr[*m%s

F4|Crp*mis + 4Re(CTC’}E)m2Bs] } , (4.33)

where the superscripts (+) and (—) in & is to represent the decay rate expres-
sion when the leptons /™ and ¢~ are polarized longitudinally, respectively. The
corresponding result for massive leptons can be found in Appendix E. In order
to calculate the polarizations of the leptons, we use Eq. (4.5) in such a way that,

for the longitudinally polarized lepton, Eq. (4.5) becomes,

(dr/lqu)o Pdréff) ) (5—90] =

We use Eq. (4.33) and Eq. (4.32) here and for the longitudinal polarization of the

¢~ and get (again for the massless leptons; the corresponding result for massive

leptons can be found in Appendix E).

(P s = 5= Omé{g_lq«AZm“‘B[lBQ|2—|D2|2]+§Am438[|A1|2—|01|2]
m;=

1
— ?)\mZBS[|B4|2 - |B5|2]

2

% AmE(1—17r — s) [Re(BlB;‘) - Re(DlD;)]

1
+ §(A+12rs)[|31|2—|91|2]

16
+ 3—)\2m638 |B7|2 RC(CTC;E)
r
64 2 2 ®
+ 5()\ + 12rs)mps |Bs|” Re(CrCry)
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64
— g)\m‘}gs(l —r — s) Re(BsB;)Re(CrCrp)

128

+ §Am%s(1 + 3r — 5) Re(B;T})Re(CrCip)
256 \ .
- ymBs[)\ + 12r(1 — )| Re(Bs T} )Re(CrCTry)
256 2 2 2 *
+ ymB[A(élr +s) + 12r(1 — r)]|T1|” Re(CTrCTg) ¢ - (4.34)

Similarly, we found for the longitudinal polarization for /T as,
+ 4 2 1 2,4 2 2 8 4 2 2
(PL )m,:() NN 3 mB[|B2| — | Dy ] - gAmBS[|A1| — ] ]
1
- Q_T)‘mZBS[ |Bu|” — |B5|2]

2

yAmQBa — 1= 5)[Re(B1B}) — Re(D1 D3)]
1

_ §(A+12rs)[|31|2—|D1|2]

16
+ 5)\2771638 |B7|2 RC(CTC;E)

4
+ S 1208 ms |Bsl? Re(CrCip)
r
64 4 * *
- g)\mBs(l — 1 — s)Re(BsB;)Re(CrCrp)
128 . .
+ y)\mBs(l + 3r — s) Re(B;T})Re(CrCrp)
256 . .
— ymBs[)\ + 127 (1 — r)] Re(Bs 17 )Re(CrCrp)
256 21 |7 |2 «
+ 3—rmB[)\(4r +5) 4+ 12r(1 —r)*] |T1|” Re(CrCrp) ¢ » (4.35)

where A is given in Eq. (4.32). Both of these last two results are calculated when
the mass of the leptons are neglected. we have re-calculated these polarizations
for massive leptons in Appendix E. From Eqs. (4.34) and (4.35) we observe
that the terms containing ”pure” SM contribution, i.e., the terms containing
Cgr, Csr, C¥ and C}% are the same for both lepton and antilepton but with
opposite sign. However for the terms containing new physics effects this does
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not hold. In other words, such terms may have same or different signs for lepton
and antilepton. In due course this difference can be a useful tool for looking new
physics effects.

Back to the matrix element of the polarized decay (please refer to Eq. (E.3)),
we now consider transversal polarizations. That is to say, in Eq. (E.3) the

orthogonal unit vectors (S) are now defined as,

Sr' = (0,80) = (0,éy x &),

Syt = (0,67) = (0,6 x &

I
1
I
N—"

for the polarizations of the leptons ¢~ and /T, respectively. We can now calculate

the decay rate expression for transversally polarized massless leptons as,

dr(e;F) G%a? .12 5 01 [(32Am% s
( dg? - 2147r5m3‘w”v“ < 1] 3
m;=0
4\ mp?
+ [|B1|2—|D1|2]< i +16mB2s>

+ [Re(BiB;) — Re(D\D3)] (

4 \2mp"
2 2 B
b [ - ) ()

CAdmp' (1-r—5)
3r

3 o
+ [2Re(B\B;) - 2Re(D, BY)] <$\/Xm3 u (;T r-s) \/§>
A5 mp®
+ [2Re(DyB2) — 2Re(B,B;)] (:Fmg—r”‘/g>
2Ampt s
[|B4|2—|B5|2] <7B>
T

2Re(B\ T Cy) — 2Re(Di T Cy)| (£32VAmp* 7 /5)
+ [2Re(BiT{C}) + 2Re(Dy Ty C5)| (£16 VAmp® 7 V/5)

[2Re(A, B;Ci0) + 2Re(C1 BsCip)| (£16 VAmp® 7 52)

[2Re(A1B;C;) — 2Re(C1 B;C3)] (£8VAmy" 7 5%)
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+ [2Re(A\T;C) + 2Re(Ci T Cp)] (F32VAmp" 53
T32VAm3 m/sVA + 4rs)
+ [2Re(A\T;C3) — 2Re(CHT7C)] (F16 VAmp" 757

:|216\/Xm%7r\/§\/)\+4rs)
256

+ %|T1|2|C’T|2m23 (m¥s [A16r + 5) + 12rs(2 + 2 — 5)])
1024

+ 5 [Ti*|Cref*mi; (mBs [A(16r + 5) + 12rs(2 + 2 — 5)])
16

+ gm% (4mZBS|OTE'|2 + mZBs|CT|2) X (4()\ + 12rs)|B6|2)

+ mpA?|B7]? — 4m%(1 — r — s)A\Re(BsBz)
— 16 [A+ 12r(1 — )] Re(T1 Bg)

+ 8mA(1+3r — s)A Re(TlB;‘))} : (4.36)

where the superscripts (—) and (+) in &, is to represent the decay rate expression
when the leptons ¢* and ¢~ are polarized transversally, respectively. In order
to calculate the transversal polarizations, we again use Eq. (4.5) to get the

transversal polarizations as,

, i 1 ) )
(PT )ml:o = - mpV SA{EU —r— s)m%s[Re(BlBD — RG(D1B5)]

1 * k
- Em%)\mQBS[Re(DQB5) - Re(B2B4)]

+ 16mj§s ].:{6[141< (CT - 2CTE)B6]

— 16mys Re[Cf (Cr + 2Crr) By

32
- ?m43 s (1 —r)Re[A](Cr — 2Crg)Ti]

32
+ ?m% s (1 —7)Re[CY(Cr + 2Crg)T1]
+ 64m% Re[(B, — Dy)(TiCrg)*]
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and,

-

™

Am;:O
1
~mA[Re(B2B;) — Re(D,Bj)|
T

mB\/ﬁ{ — %mZBs(l —r—3) [Re(BlB;) — Re(D1BZ)]

16m% s Re[A}(Cr + 2075) Bg)
16m% s Re[C}(Cp — 2Crg) Be)
32m%y(1 — r) Re[A} (O + 207x)T1]
32m%(1 — r)Re[C (Cr — 2C75)T1]
64m% Re[(By — D1)(T,Crp)*]

32m% Re[(B; + Dl)(TlCT)*]} , (4.38)

where A is given in Eq. (4.32). Here, again it is useful to denote that we neglected

the lepton masses in these results, for the sake of simplicity. The relevant results

for massive leptons can be found in Appendix E.

Finally for normal asymmetries for massless leptons, we get

(Px) s

1
Am;:O

16m%s(Im[A](Cr — 2Crg) Bg] + Im[C} (Cr + 2C71) B

1
ﬂm;\/ﬁ{ - ;mQB)\Im[(B;‘BQ + (D:Bs)]

32m%(1 — ) (Im[A}(Cr — 207p)Th] + Im[C} (Cr + 2C7p)T])

32(Im[B; (Cr — 2Crp)Th] — Im[ D} (Cr + 2CTE)T1])} . (4.39)

1 1
x TV SA{;m%)\Im[(B;BQ + (D3 By)]
ml:0

%(1 v — §)Im[(B!Bs) + (D! By)]

78



- 16m2Bs(Im[A’{ (CT + 2CTE)BG] + Im[C’f(C’T - 2C’TE)B(5])

— 32(Im[B{(Cr + 207p)Ty] — Im[ D} (Cr — QCTE)Tl])} . (4.40)

Again A is given in Eq. (4.32).

Concerning expressions PL(i), PT(,i) and P](Vi), taking the results presented in
the Appendix E into consideration also, few remarks are in order. The difference
between P; and P; results from the scalar and tensor type interactions. Similar
situation takes place for the normal polarization Pﬁ,i) of leptons and antileptons.
In the m, — 0 limit, the difference between P, and P; is due to again existence
of new physics, i.e., scalar and tensor type interactions. For these reasons the
experimental study of PL(i) and PT(,i) can give essential information about new
physics. Note that similar situation takes place for the inclusive channel b —
stt0~ (see [60]).

Combined analysis of the lepton and antilepton polarizations can also give very
useful hints in search of new physics, since in the SM P; + P;7 =0, Py + Py =0
and Py — Pf ~ 0.

Using Eqs. (4.34), (4.35) we get

_ 4 1
(P; + Pj)mlzo - m% { - ;mZBS)\( |Bif* = |Bs*)
32 ¢ 9 9 .
128

— ym‘}gs)\(l —r — s) Re(BsB7) Re(CrCip)

128
+ meBs()\ +12rs) | Bs|* Re(CrCip)

512 9 2 2 *
+ 3, B A(4r +s) + 12r(1 —r)°] |T1]” Re(CrCirg)
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512
— ym%s A+ 12r(1 — r)] Re(T1 Bg) Re(CrCrp)

256
+ ym%s)\(l + 3r — s) Re(T\ B7) Re(C’TC}E)} . (4.41)

For the case of transversal polarization, it is the difference of the lepton and
antilepton polarizations that is relevant and it can be calculated from Eqs. (4.37)
and (4.38)

T

m;=0 Aml:U

_ %m%(l —r —s)Re[(B1 + Dy)(B; — B;)]

mB@{%mgA Re[(Bs + Dy)(B; — BY)]

+ 32mysRe[(A; — C1)(BsCr)*]
— 64mz(1 — r)Re[(A; — C)(T1O7)*]

+ 128m% Re[(B; — Dl)(TlCTE)*]} : (4.42)

In the same manner it follows from Eqs. (4.39) and (4.40)

(Py+Py) = ——mm} SA{ _ %(1 —r— §) Im[(By — Dy)(B! — BY)|

ml:o ml:0

n %mZBAIm[(BQ — Dy)(B; — B})]
+ 32mpsIm[(A; + C1)(BsCr)*]
— 64m%(1 — r) Im[(A; + Cy)(TyCr)]

+ 128Tm[(B, + Dl)(TlCTE)*]} . (4.43)

It is evident from Eq. (4.41) that the "pure” SM contribution to the P, + P;
completely disappears. Therefore a measurement of the nonzero value of P; + P;"
in future experiments, is an indication of the discovery of new physics beyond SM.
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4.2.2 Numerical Analysis for the B — K*/*/~ Decay

The input parameters we used here is the same with the ones presented in the
previous chapter as: |V V| = 0.0385, o' = 129, Gp = 1.17 x 107° GeV 2,
I'p =4.22 x 10713 GeV, Cgeff = 4.344, Cy = —4.669. It should be noted here
that the above—value of the Wilson coefficient Cgf ! we have used in our numer-
ical calculations corresponds only to short distance contribution. In addition to
the short distance contribution Cgef T also receives long distance contributions as-
sociated with the real cc intermediate states, i.e., with the J/v family. In this
work we restricted ourselves only to short distance contributions. As far as C?f f
is concerned, experimental results fixes only the modulo of it. For this reason
throughout our analysis we have considered both possibilities, i.e., C?ff = F0.313,
where the upper sign corresponds to the SM prediction. The values of the input
parameters which are summarized above, have been fixed by their central values.

For the values of the form factors, we have used the results of [23], where
the radiative corrections to the leading twist contribution and SU(3) breaking

effects are also taken into account. The ¢? dependence of the form factors can be

represented in terms of three parameters as

F(0)
F(q2) = 2 2 20
- ar Lo t0p (L)
mp mp

where the values of parameters F'(0), ar and bp for the B — K* decay are listed
in Table 2.2.

Note that in the present analysis the final state Coulomb interactions of the
leptons with the other charged particles are neglected since this effect is known
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to be much smaller than the averaged values of the SM (see [13]). Furthermore
the final state interaction of the lepton polarization for the K, — n"u 1, or
KT — 7t~ pt decays is estimated to be of the order of a(m,,/mg) = 1073 [59].
For this reason the final state interaction effect is neglected as well.

We observe from the explicit form of the expressions of the lepton polarizations
that they all depend on ¢? and the new Wilson coefficients. Therefore it may be
experimentally difficult to study the dependence of the the polarizations of each
lepton on all £t~ center of mass energies and on new Wilson coefficients. So
we eliminate the dependence of the lepton polarizations on one of the variables,
namely ¢2, by performing integration over ¢? in the allowed kinematical region,
so that the lepton polarizations are averaged. The averaged lepton polarizations

are defined as

P——dq?
m? dq2
3
/(mb_mK*) d[); dq2
4m? dq

/(mb_mK*)2 dB
4

(P;) = (4.44)

We present our analysis in a series Figures. Figs. (4.15) and (4.16) depict
the dependence of the averaged longitudinal polarization <P[> of /= and the
combination <PL_ + PL+> on new Wilson coefficients, at C&// = —0.313 for B —
K*ptp~ decay. From these figures we observe that <PL_> is more sensitive to
the existence of the tensor interaction, while the combined average <P[ + PZ“>
is to both scalar and tensor type interactions. As has already been noted, this is
an expected result since vector type interactions are canceled when the combined

longitudinal polarization asymmetry of the lepton and antilepton is considered.

From Fig. (4.16) we see that <PL_ + PL+> =0 at C'x = 0, which confirms the SM
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result as expected. For the other choice of C&/7 ie., C5/7 = 0.313 the situation

is similar to the previous case, but the magnitude of <PL_ + PL+> is smaller.

Figs. (4.17) and (4.18) are the same as Figs.(4.15) and (4.16) but for the
B — K*rt7~ decay. Similar to the muon longitudinal polarization, <PE> is
strongly dependent on the tensor interaction coefficients C'r and Crg. It is very
interesting to observe that for Crgp > 0.5 <P[> changes sign, but for all other

cases <PE > is negative.

From Fig. (4.18) we see that the dependence of <PE + PZ“> on Cr is stronger.
Furthermore if the values of the new Wilson coefficients Crgrrr,, Crrrr and Cr are
negative (positive) so is <PE > negative (positive). The situation is to the contrary
for the coefficients Crrrr, CrLLr, i€, <PL_ + PZ’> is positive (negative) when
the corresponding Wilson coefficients are negative (positive). Absolutely similar
situation takes place for C?ff > 0. For these reasons determination of the sign
and of course magnitude of <PL_ > and <PL_ + P > can give promising information

about new physics.

In Figs. (4.19) and (4.20) the dependence of the average transversal polar-
ization <PT_> and the combination <PT_ - P:,Jf> on the new Wilson coefficients,
respectively, for the B — K*utpu~ decay and at C?ff = —0.313 are presented.
We observe from Fig. (4.19) that the average transversal polarization is strongly
dependent on Cr, Crg, Crrrr and Cgrrr, and quite weakly to remaining Wilson
coefficients. It is also interesting to note that for the negative (positive) values of

the coefficients Crr and Crrrr, <Pf> is negative (positive) while it follows the

opposite path for the coefficients Cr and Cgprr,. For the <PT_ — P;!> case, there
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appears strong dependence on the tensor interactions Cr and Crg, as well as
all four scalar interactions with coefficients Crrrr, Crrrrs Crrrr, Crirr. The
behavior of this combined average is identical for the coefficients Crrrr, CrLRL
and CrLrrr, Crrrr in pairs, so that four lines responsible for these interactions
appear only to be two. Moreover <PT_ - P;f> is negative (positive) for the neg-
ative (positive) values of the new Wilson coefficients Crg, Crrrr and Cgrrpr.
The situation is the other way around for the coefficients Cr, Crrrr and Crrrr.
Remembering that in SM, in massless lepton case <PT_> ~ 0 and <PT_ — P;!> ~ 0,
determination of the signs of the <PT’ > and <PT’ - Pf > can give quite a useful
information about the existence of new physics. For the choice of C?f I = 0.313,
apart from the minor differences in their magnitudes, the behaviors of <PT’ > and
<PT_ — P:,Jf> are similar as in the previous case.

As is obvious from Figs. (4.21) and (4.22), <PT_> shows stronger dependence
on Cr and <PT’ — P:,Jf> on Cr and Crg, respectively, at C’?ff = —0.313 for the
B — K*7t7 decay. Again change in signs of <PT_> and <PT_ — P:,Jf> are observed
depending on the change in the tensor interaction coefficients. As has already
been noted, determination of the sign and magnitude of <Pf> and <Pf — ij>
are useful tools in looking for new physics.

Note that for simplicity all new Wilson coefficients in this work are assumed
to be real. Under this condition <P]§> and <P]§ + Py > have non-vanishing values
coming from the imaginary part of SM, i.e., from C’gff. From Fig. (4.23) we see
that <P]§> is strongly dependent on all tensor and scalar type interactions. On
the other hand Fig. (4.24) depicts that the behavior <P]§ + P]JV’> is determined
by only the tensor interactions, for B — K*u*pu~ decay. Similar behavior takes
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place for the B — K*777~ decay as well, as can easily be seen in Figs. (4.25)
and (4.26). The change in sign and magnitude of both <P]§> and <P]§ + P]JV’>
that are observed in these figures is an indication of the fact that an experimental
verification of them can give unambiguous information about new physics.

In Figs. (4.27), (4.28) and (4.29) we present parametric plot of the corre-
lations between the integrated branching ratio and averaged lepton polarization
asymmetries of 7= and 7" as a function of the new Wilson coefficients. In Fig.
(4.27) we present the flows in the (B, <PL_ + PL+>) plane by varying the coeffi-
cients of the tensor and scalar type interactions. Fig. (4.28) shows the flows in
(B, <PT_ - Pf >) plane by varying the coefficients of vector, scalar and tensor
type interactions. Finally, Fig. (4.29) depicts the flows in (B, <P]§ + Pf\?>) plane
by changing the coefficients of the tensor type interactions only.

It should be noted that the influence of the variation of various coefficients
confirms our previous results, i.e., the influence of the tensor interactions is quite
large. The ranges of variation of the new Wilson coefficients are determined by
assuming that the value of the branching ratio is about the SM prediction. For
example if branching ratio is restricted to have the values in the range 10~7 <
B(B — K*rTr7) < 5 x 1077, then it follows from Fig. (4.27) that the new
Wilson coefficients of the tensor interactions lie in the region —2.6 < Cr < 1.55
or —0.35 < Crg < 1.15, while all scalar interaction coefficients vary in the range
between —4 and 4 (in the present work we vary all coefficients in the range —4
and 4).

Finally we would like to discuss briefly the detectibilty of the lepton polar-
ization asymmetries. Experimentally, to be able to measure an asymmetry (P;)
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of a decay with the branching ratio B at the no, the required number of events
are N = n?/(B(P,)°. As an example for detecting (Pr) ~ 0.3 the number of
events expected is N ~ 6 x 10"n? events. Therefore at B factories detection of

polarization asymmetries for 7 could be accessible.
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Figure 4.15: The dependence of the average longitudinal polarization asymmetry
(P;7) of £~ on the new Wilson coefficients at CS// = —0.313 for the B — K*ut
decay.
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Figure 4.16: The dependence of the combined average longitudinal polarization
asymmetry <P[ + PL+> of £~ and ¢* on the new Wilson coefficients at C?ff =

—0.313 for the B — K*pu~pt decay.
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—0.313 for the B — K*7~ 71 decay.
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Figure 4.19: The dependence of the average transversal polarization asymmetry
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decay.
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Figure 4.22: The dependence of the combined average transversal polarization
asymmetry <PT_ + P;f> of ¢~ and /T on the new Wilson coefficients at C?ff =
—0.313 for the B — K*7~ 71 decay.
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Figure 4.24: The dependence of the combined average normal polarization asym-
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CHAPTER 5

CONCLUSION

In this thesis, we investigated the B — K¢/~ and B — K*{*¢~ decays in
a model independent way. We have mainly focused our analysis to the lepton
polarization asymmetries of the relevant decays. This is because we expected
that studying the lepton polarizations only, would give promising information on

new physics.

The analysis of each decay constituted of two parts. At first part, we have
calculated the branching ratios of these decays using the most general form of
the effective Hamiltonian. Without forcing the concrete values for the Wilson
coefficients corresponding to any model, we found that the branching ratios are
in agreement with the SM predictions for some certain values of the Wilson

coefficients.

In the second part, we included the lepton polarizations in our calculations.
We have found some regions of Wilson coefficients for which the branching ratio
of the corresponding decay agrees with the SM prediction while the lepton po-
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larizations do not. This would be a strong indication that in establishing new
physics, the study of lepton polarizations would be an effective tool.

We studied the dependence of the longitudinal, transversal and normal po-
larization asymmetries of the /™ and ¢/~ and their combined asymmetries on the
Wilson coefficients. We have found that, besides the above-mentioned results, the
lepton polarizations are very sensitive to the existence of the vector and scalar

type interactions which do not take place in the SM.
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APPENDIX A

INPUT VALUES

my = 4.8GeV, m, = 1.4GeV, m; = 176 GeV, m, = mg = 10 MeV,
mp = 5.27GeV, mg = 049GeV, mg- = 0.89GeV, my = 80.2GeV,
o =1/129, A =081, X\ =022, 75 =16x10"%s, m, = 1.78GeV,
[V Vi = 0.0385, Gp = 1.17x 107°GeV 2, T'p = 4.22 x 107 *GeV,

Cell = 4344, Oy = —4.669.
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APPENDIX B

BOREL TRANSFORMATIONS

Consider a function f(z) and introduce f()\) which is defined via;

OV =5 [ (a5 (B.1)

N 271 Je—ico
where the integration contour runs to the right of all the singularities of the

function f(x). The function f(z) is called Borel transform of f(x). The inverse

transformation is given by

f) = [T e, (5.2)

X

To clarify the meaning of the Borel transform, assume that f(z) is given as a

power series of 7x”:
f(z) =ap + a1x + apr® + ... + apa® + ..., (B.3)

Then the expansion of f()) is,

+. (B.4)



so that the coefficients are factorially suppressed as compared to the case (B.3).
This implies that the approximation of the whole series by the few first terms is

more reliable for f()\) than for f(x).
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APPENDIX C

CALCULATION OF THE INTEGRAL OVER

FINAL LEPTON MOMENTA

To perform integration over final lepton momenta we will use the following in-
variant integration method, which is true for any arbitrary reference frame. Let

us consider the following integral

d3py d3ps
= L 2p1ap2554(p—p1 —p2). (C-l)

I, bl el
b 9F, 2F,

This integral can be represented as

[aﬁ :gaﬁKl +pocp6K25 (02)

where K; and K5 are two unknown coefficients. In order to calculate K; and Ks,
we multiply /g with the metric tensor and with p,pg, after which we get the two

equations

d*py d3py
wilas = | =222 2(p0 - o)t (p — py — o),
Japlap >F, 2F, (p1-p2)0"(p — p1 — D2)

= 4K1 +p2K2, (03)
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and

d*pi dpy
wPslas = " (p )0t (p — p1 — pa),

= p2K1 +p4K2.

From momentum conservation we have

p1-p2 = %[pZ—ng]a

and
pr'p = P2rP=73pP"
Using these relations we have

1
4K, +p’K, = 3 [pQ - sz] Iy,

1
P’K,+p'Ky = Zp4fo-

Making the replacement § = p*> = p?/m% and 7, = m2/m% we can write,

2
mgs

mp 32

23 2 2
m;'s [1— m{] Iy = 4K, +m3sKy,

I[) = m2B§K1—|—mj§§2K2

Solving these two equations for K and K5 we get,

K, - m2B§[0 [1_ 4m§],

12 m%$
I 2m3
K2 — —0 [1 + 2{] .
6 mgs

Therefore, (C.2) can be written as

2 2 2 2
mpsly 4my I 2m;
[aﬁzga[g 2 ll— 2A]+— 1—|—m—2

m%s 6 B§] PaPs;
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where

d*py &*p5

I, = [Z2£8L82ea o
0 2E, 2F, (p P1 p2);
= gv, (C.6)
with
4 2
v=,|1-— Zl{,
mys

is the lepton velocity. We present the calculation of I, below.

C.1 Calculation of the Integral I

We present I in Eq (C.6) as

d3p 1 d3p2 4

2E1 2E2 p P1 —p2) . (0-7)

In calculating this integral, we consider the center of mass frame of the final

leptons, i.e.,

Performing integration over d3ps, we get

d*pi
AF, Fy

Iy = S(E — Ey — Ey). (C.8)

Since py = —ps, so Ey = E;. Using this fact, we have

py | dFEy 4
I, = M(g(E_QEI)
4B,
E2/4) — m? 4m?2
_ nyB A mme x [ dmp (C.9)
2 E)2 2 fog
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This expression can be rewritten in any arbitrary frame by making the replace-

ment,

E? —>p2,

from which it follows that

v. (C.10)

o
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APPENDIX D

EXPRESSIONS FOR B — K/"¢~ DECAY FOR

MASSIVE LEPTONS

In this chapter, we would like to include the details of the calculations presented
in Section 3.1. We will also like to include the lepton masses here which we

neglect in our results presented in Section 3.1.

Performing for massive lepton case, the differential branching ratio is

ar Gka

d_q2 T 9ldgh,, ‘W Vis

)\1/2 1,7 s — 128 \m%m, Re(AG*
B

+ 32mEm; (1 — r) Re(CD*) + 16m%my(1 — r) Re(CN*)

1024
+ 16mBmgs|D|2+4mBs|N|2+16mBmgsRe(DN*)—i—T)\mBs |H|?
4 256
b Amsn? QP + 3 Ambs(3 — 0?) [ A1 + 2 ambs(3 ) |G
4
+ gm‘gs{zA — (1=} 22 =301 - )]} |c|2}, (D.1)

with lepton masses taken into consideration here. These integration techniques
are presented in Appendix C.
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D.1 Explicit Expressions for Lepton Polarization Asym-

metries in B — K/T{~ Decay

Using Eq. (4.3), we calculated the module square of the matrix element for

the polarized decay to find Eq. (4.16). When longitudinally polarizations are

considered, again integrating over final lepton momenta, we find the decay rate

expression for the massive leptons as,

dr'y GEa? |V Vii|?
ds I

= —v{QRe(AC*) [ F g)\m%v]

24 mdmp
12 12
+ 2Re(CG") [ + TS)\m%mlv] + 2Re(AH™) [ - ?Am‘gmlv]
x 2 212, 6
+ 2Re(CQ )[— 8mpmyu(l — 7")] +2Re(GH )[?)\mst]

+ 2Re(DQ") [ - SmQBmlv] + 2Re(QN™) [ - 4m2st] } (D.2)

Where, v = /1 — 4m?/q? is the lepton velocity. Similarly, when the leptons are

transversally polarized, we find the decay rate expression as,

(

ar.
ds

2 2 *|2 2
) - GelalAm f /i anetac) [ 2 - )
T

2144

+ 2Re(CG™)[ % %m?(l — )]

+ 2Re(CQ")[2(1 = m}/(m}s))] + 2Re(AD") |  2m)]

+ 2Re(DG")| + 32m;| + 2Re(AN") + 2Re(GN") [ + 16m,]. (D.3)

So, the longitudinal, transversal and normal polarization asymmetries, for

massive leptons are calculated respectively, as follows,

P

4 4 4
{ + g)\mZB Re(AC™) F %)\m%mg Re(CG*) — %)\mQBmg Re(AH™)

4mEu

A
* 256 4 *
4mye(1 — r)Re(CQ*) + ?)\mBs Re(GH")

4mys Re(DQ™) — 2Re(NQ*)} (D.4)
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3 4
pr %{ £ (1 1) Re(ac) 7 21 - vy Re(c6)
S
+ 4myRe(AD*) F 64m; Re(DG*) + 2 Re(AN*) F 32m; Re(GN*)
+ 207 Re(CQ*)} : (D.5)
3
PT 7mBUA\/§{4mz Im(CD*) + 2Tm(CN*) F 2Im(AQ") + 32m, Im(CG")} :

(D.6)
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APPENDIX E

EXPRESSIONS FOR B — K*/*¢~ DECAY FOR

MASSIVE LEPTONS

In this chapter, we would like to present modulus square of the matrix element
for the B — K*¢*¢~ decay, including the lepton masses which we have neglected
in Section 3.2.

After lengthy but straightforward calculations for the modulus square of the

matrix element given in Eq. (4.29), we obtain the following expression;

G%a? .
MP = VeV

Joaik + 6] - sicae o wm e
+32(e.q) (e".p2) (p-p1) (p-q) + 32(e-p2) (€”.q) (p-p1) (p-q)
+32(e.q)(e".p1) (p-p2) (p-q) + 32(e-p1) (") (p-p2) (p-q)
—32(e.p2)(e”.p1)(p-0)* — 32(e.p1)(e".p2) (p.q)?

+32(e.q) (€".q)p* (p1-p2) — 32(e.q)(e”-p2)p"(p1-9)
—32(e.p2)(e”.q)p" (p1-q) — 64(e-€") (p-p2) (p-0) (P1-0)

—32(e.q) (€".p1)p* (p2-q) — 32(e-p1)(e".q)p (p2-)
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—64(e.¢”) (p-p1) (p-0) (p2-q) + 64(e-€")p* (p1.9) (p2-q)
+32(e.p2) (" .p1)p°q” + 32(e.p1) (e*.p2)p°¢”

+64(e.€) (p-p1) (p-p2)a” = 32(e-€")p* (p1.p2)]

(1B + D1 ) [8(e-p2) (€".p1)8(e.p1) (€* p2) — 6(e.€") (p1.p2)

(|Bo]? + [ D2f*) [64(e-q) (¢".q) (p-1) (p-p2) — 32(e-q) (€".q)p* (p1-p2)
+32(e.q)(e".q)(p-p2) (p1-q) + 32(e-q) (€”.q) (p.p1) (p2-9)
+16(e.q)(€".q) (1-9) (2-9) — 8(e-4)(€".q) (1.p2)”]

(1Bs[” + | Ds[*) [16(e-) (e”.9) (p1-9) (p2-q) — 8(e-q)(e”.q) (p1.12) ]
2(Re(B1B;) + Re(D1D3)) | — 16(e.q)(e".2) (p-p1) — 16(e.q)(e” .p1) (p-p2)
+8(e.q) (¢".q) (pr-p2) — 8(e-q) (e*.p2) (pr-4) — 8(e-) (”p1) (p-9)
2(Re(B1B;) + Re(D1D;)) [8(e.q)(¢".q) (p1.p2) — 8(e-ps) (") (p1.q)
~8(ep1)(€”-q)(p2-0))]

2(Re(B2B;) + Re(DyD3)) | — 16(e.q)(e".q) (p-q) (p1.p2)
+16(e.q)(e".q)(p-p2) (p1-q) + 16(e-q) (e.".q) (p-p1) (p2-q)
+16(e.q)(e".4) (p1-9) (2-9) — 16(e-q)(€".q) (p1.92)4”]

2Re(B1D;)| — 8mj(e.e")|

2(Re(BoD;) + Re(B1Dj) + Re(BsD;) + Re(B1D3)) [8mj (e.q)(e”.q)]
2Re(ByD3)| — 32m} (e.q)(e".q)p* — 32m} (e.q)(e*.q) (p-q)

—8mj (e.q)(e”.q)q”]

2(Re(BsDj) + Re(B>D3)) | — 16m} (e.q)(e".q) (p.q)

—8m12(e.q)(e*.q)q2] + 2Re(B3D3) [ - Sm?(e.q)(e*.q)qﬂ

111



2Re(A,CY) | — 32m](e.q)(e".q)p” — 32mi (e.e) (p.g)* + 32m} (e.c")p’ ]
2(Re(A1B) — Re(C1D})) | — 16(e.q)(e* p2) (p-p1)
+16(e.q)(e".p1) (p-p2) — 16(e-€") (p-p2) (p1-q) + 16(e-€”) (p-p1) (p2-0))
2(Re(A,B;) — Re(C1D3)) [32(e-q)(e*.p2) (p-p1) (p-0)
—32(e.q)(e".p1) (p-p2) (p-q) — 32(e-q)(e".p2)p* (p1-q)
+16(e.q)(e”.q) (p.p2) (p1.q) + 32(e.q) (¢".p1)p* (p2-q)

—16(e.q)(e".q) (p-p1)(p2-q) + 16(e.q)(e".p1) (p-0) (P2-9)
—16(c.q)(¢".p1) (p-p2)q’]

2(Re(A1B;) — Re(C1D3)) [16(e-q) (¢"-a) (p-p2) (p1-0)
—16(e.q)(e".p2) (p-q) (p1-q) — 16(e-q)(e*.q) (p-p1) (p2-9)
+16(e.q) (e*.p1) (p-0) (p2-9) + 32(e-9)(€".p2) (P-p1)¢”]

2(Re(B1B;) — (D1B})) | — 8mu(e.pa)(e”.q)]

2(Re(B1B;) — (D1 B3)) [8mu(e.pr)(e”.q)]

2(Re(B.B}) — Re(D>B;) ) [16my(e.q)(e".q) (p.p2)
+8my(e.q)(e".q)(p1-q)|

(Re(B2B3) — Re(D2B3) ) | = 16mu(e.q)(e”.q) (p-p2)
—8mu(e.q)(e”.q)(p-q)|

(Re(B3B;) — Re(DsB;) + Re(B3B}) — Re(DsBy))
[8mu(e.q)(e”.q) (p2-0)]

2(Re(B1ByCyp) + Re(D1 By Cyp) ) [64my(e.p1) (e*.q)

+64my(e.ps)(e*.q) — 64my(e.e*)(p1.q) — 64ml(e.e*)(p2.q)]
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2(Re(B1B;Cy) — Re(D1B;Cy)) | — 32my(e.p1) (e .q)

+32m(e.p2) (€”.q) + 32my(e.€”) (p1.q) — 32my(e.€") (p.q)]
2(Re(ByB;Cyp) + Re(D2BsCi) ) | — 128my(e.pr)(e”.q) (p-g)
—128my(e.p2)(e".q) (p-q) + 64mu(e.q)(e".q)(p1-q)

+64m(e.q) (e".q) (p2.q) — 64mu(e.p) (e".q)q* — 64mu(e.py) (e".q)¢]
2(Re(B1B;Cy) — Re(D1 B;Cy) ) [64my(e.pr)(e”.q) (p-g)
—64my (e.p2) (€*.q) (p.q) — 32mu(e.q)(e*.q) (pr.q) + 32my(e.q)(e*.q) (p2-q)
+32m(e.pr) (€.q)q” — 32m(e.p2) (€”.q)q’]

2(Re(By B;Cip) + Re(DsB;Cr ) ) [64mu(e-q) (¢"q) (p1-4)

+64mi(e.q) (¢"-q) (p2-q) — 64mu(e.p1)(e*.q)q” — 64mu(e.p) (e*.q)q’]
2(Re(B; BiCy) — Re(DsByCy)) | = 32mi(e.q)(e”q) (pr-0)
+32m(e.q)(€".q) (p2.q) + 32mu(e.pr) (€".q)q” — 32mu(e.p2) (€".q)q’]
2(Re(ByB;Cip) + Re(D1B;Cip) ) | — G4mu(e.q)(e”.q)(p1.p) + (p2.))]
2(Re(ByB;Ct) — Re(D1B;Cy)) [32mu(e.q)(e".a) (p-p1) — (p-p2))]
2(Re(ByB;Cip) + Re(DyB;Crp) ) [128my(e.q) (¢".a) (p-p1)

+(p-p2)) (p-q) + 128mu(e-q) (e*.)p*((p1-q) + (2-q))

—64my(e.q)(e”.q) (p-q)((p1-9) + (p2-q))

+64my(e.q)(e”.q) (p-p1) + (-p2))4’]

2(Re(B,B:C}) — Re(D2B;Cy) ) [64mu(e.q)(e”.q) (p-p1) — (p-p2)) (p-0)
—64my(e.q) (€".q)p*((p1-9) — (p2-0)) — 32mu(e.q)(e”.q) (p-a) ((p1-9)

—(p2-q)) + 32my(e.q)(".q) ((p1-p) — (P2.)) ]
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2(Re(B3B;Ci) + D3BiCi) | — 64mu(e.q)(€".q)(p-a)(p1-9) + (p2-q))
+64my(e.q)(e”.q) (p-p1) + (-p2))4’]

2(Re(BsB;Cy) — D3 B;Cy) | = 32mu(e-q)(€".q) (p-0)((p1-q) — (p2-9))
+32mi(e-q)(¢"-q) (p-p1) — (p-p2))4’]

2(Re(BiT; C ) + Re(DiT{ Cyp) ) | = 128mu((epr) + (e-p2))(e”.q)
+256my(e.") ((p-p1) + (p-p2)) + 128my(e.”)(p1-q) + (p2-0))]
2(Re(BiT{ Cy) — Re(DiT{Cy) ) [64mu((e-p1) — (e.p2))(€".0)
+128m(c.c*)((p-p1) = (p-p2)) + 64my(e.c”) (p1-0) — (p2-0))]
2(Re(BoT{ Cy) + Re(DoT; Cyp)) [512mu((e-p1) + (e-p2))(e*.)p?
—256my(e.q)(e".q) ((p-p1) + (p-p2)) + 512my((e.p1) + (e.p2))(e".q) (p-q)
—128my(e.q)(¢".q) (p1-9) + (p2-9)) + 128mue-q)(¢"-q)(p1-9) + (p2-0))]
2(Re (BT Cy) — Re(DyTCy) ) [256mu((ep1) — (e-p2))(e”.)p’
+128my(e.q)(e".q)((p-p1) — (p-p2)) + 256my((e-p1) — (e.p2))(e".q) (p-q)
—64my(e.q) (¢".q) ((p1.q) — (p2-9)) + 64mu(e.q)(€”.q) ((1-0) — (p2-q))]
2(Re(ByT Ci ) + Re(ByTiCry)) | — 256mu(e.q)(e”.a)((p-p1) + (pp2))
+256mu((e-p1) + (e-p2))(e*.q) (p-q) — 128my(e.q)(e".q)((P1-q) + (p2-9))
+128my((e.p1) + (e-p2)) (€"-0)q”]

2(Re(BsT;C3) — Re(BsTy i) ) [128mu(e.q)(€".q) (pp1) — (p-ps))
+128my((e.p1) — (e-p2))(€".q) (p-q) — 64my(e.q)(e”.q)((p1-q) — (p2-q))
+64m((e.p1) = (e:p2))(e”0)d’]

2(Re(A1BiCyy) — Re(CiByChp)) [ — 128mu(e.q)(e".q) (p-p1) — (p-p2))
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+128my(e.q)((e".p1) — (e".p2))(p-q) — 128my(e.e”)(p-q)((p1-q) — (P2-))
+128my(e.”)((p-p1) — (pp2)) ]

2(Re(A1BiCy) + Re(C1BiC})) | — 64mu(e.q) (") ((pp1) + (p.p2))
+64my(e.q)((e".p1) + (€".p2)) (p-q) — 64my(e.€”) (p.q)((p1-9) + (P2-q))
+64my(e.c”) ((pp1) + (p-p2))’]

2(Re(A1B;Cyp) — Re(C1B;Crp) ) [128my(e.q)(e”.q) (p-p1)

—(p-p2)) (p-q) — 128mu(e-q)((e".p1) — (¢*.p2)) (p-q)°

—128my(e.q) (e*.Q)p*((p1-9) — (p2-9))

+128mi(e.q)(¢" 1) — (€ -p2)PP¢’]

2(Re(A1 BiCy) + Re(Cy BiCy) ) [64mu(e.q)(€".q) (p-p1) + (p-p2))(p-0)
—64my(e.q)((€".p1) + (€".p2)) (p-q)* — 64my(e.q)(e"-q)p*((p1-0) + (p2-q))
+64my(e.q)((¢".p1) + (¢*.p2))pd?]

2(Re(A T} Crp) — Re(CiT; Ci)) [512mu(e.q)(e* pr) — (*.p2))p’
—256my(e.q)(e*.q)((p-p1) — (p-p2)) — 256mu(e.q)((e".p1) — (e".p2))(p-q)
+512my(e.€")p*((pr-q) — (p2-0)) — 512mu(e.”) (p.q) ((p1-q) — (p2.0))]
2(Re(A T Cy) + Re(CiT;C5) ) [256mu(e.q) ((e”.p1) + (€".p2))p”
—128my(e.q)(e*.q)((p.p1) + (p.p2)) — 128my(e.q)((e*.p1) + (e*.p2))(p.q)
+256my(e.¢")p*(p1.0) + (p2-0)) — 256mi(e.e”) (p.0) (p1-0) + (p2-0))]
|Bul? [8(e-q)(e”.q) (pr-p2)] + | Bs 2 [mi(e.q) (e*.q)]

2Re(B4B;) [ — 8mi(e.q)(".q)]

2Re((By + Bs)BiCip) | — 64(c.p2)(e"-q) (pr-q) — 64(e.p1)(e”.0) (p2-q))]

115



+ 2Re((By — B5)BiCy) [32(e.p2) (”.q) (p1-q) — 32(e.p1)(e”.q) (p2-q)]

+ 2Re((By+ Bs)BiCip)| — 64(e.q)(e” p2) (p1-q) — 64(e.q)(e" p1) (p2-q)]

+ 2Re((By — Bs)B;Cy) [32(e.q)(¢".p2) (p1-q) — 32(e-q)(e”-p1) (p2-q)

+ 2(Re(BiT; Cyp) + Re(BsT; Cyp) ) [256(e-p2) (€”.q) (p-p1)
—256(e.p1)(".q)(p-p2) + 128(e.p2) (e".q) (p1.q) — 128(e-p1)(e".) (p2-q)]

+ 2(Re(BJT;Cy) — Re(BsT;Cy)) [ — 128(e.p2)(e”.q) (p.p1)
+128(e.p1)(e”.q) (P-p2) — 64(e.p2) (¢".0) (p1.q) + 64(e.p1)(€”.q) (p2.0)]

(E.1)

where, p = pg + px+ and ¢ = pg — px+. Performing integration over final lepton

momenta, we find the unpolarized differential decay rate, for massive leptons as,

dl’ G%.a? .
(), = g Vi

X {332m3)\[(m33 — mé)(|Al|2 + |C’1|2) + 6m; RG(A1CT)]
+ 96m; Re(B;D}) — %mQBmg)\ Re[(B; — Dy)(B; — B})]

4 S (RelBy(~B; + D + D3] + RelDy (B + B — D})] — Re(BiB3)))
b (1= )\ (Rel(B, — Do) (B; — Bi)] + 2me Rel(B, — D) (B; — D))

4
- %mBmL;)\(Q +2r — s) Re(ByD3) + ;m‘gmgs)\ Re[(B3 — D3)(B; — B;)]

4 2
+ ;m%mfs)\ |Bs — Ds|* + ;m%(m%s —2m2)A (|B4|2 + |B5|2)

8
- %mBA [ 72—=2r+s)+mys(l—r— s)] [Re(BlB;‘) + Re(DlD;)]
+ il [2m2()\ — 67s) + mps(\ + 127“3)] (|Bl|2 + |D1|2)
3rs ¢ B
+ b (mdsh 4 m22A + 3s(2 4+ 2 — 5)]) (1Bl + D)
35 B B ¢
32

+ —mBmg)\Q Re[(32 + D2)(B7CTE‘) ]
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+

32 %

7m‘}3mg)\(1 — T — S) (Re[(Bl + Dl)(B7CTE)*] + 2 Re[(32 + DQ)(BGCTE) ])

9%
r

256 2 2,2 2

3—|T1| |Cr|*m% (4m4 A(8r — s) — 12rs(2 4 21 — s)]
rs

()\ + 12rs)m23mg Re[(31 + Dl)(BgoTE)*]

ms [N(167 + ) + 12rs5(2 + 2r — 5)])

1024
3rs

T\ [*|Cre|*m% (Sm? (A(4r +s) + 12rs(2 4 2r — s)]

m%s [A(16r + s) 4+ 12rs(2 + 2r — 3)])

R me [\ +120(1 — )] Rel(By + D1) (T3 Cre)']

128
Tm%mg)\(l + 3r — S) Re[(Bg + DQ)(TlCTE)*]

512mymeA Re[(A, + C1)(T1Cr)*]

16
ngB (4(m2Bs +8m32)|Crp|* + mQst2|C’T|2) X (4()\ + 12r5)| Bg|*

mpA?|Br|? — 4m% (1 — r — s)ARe(BgB2) — 16 [A 4+ 12r(1 — 7)| Re(T\ BY)

8m% (1 + 3r — s)A Re(TlB;‘))} : (E.2)

where A\(1,7,8) = 1+ 72 + s> — 2r — 25 — 2rs, s = ¢°/m%, r = m%./m% and

v =14/1—4m?/q?* is the lepton velocity.
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E.1 Expressions for Lepton Polarization Asymmetries in

B — K*{*¢~ Decay

In the calculations we presented in the text, we neglected the mass of the leptons.

2
M = Vi,

In this section, we would like to include the mass of leptons in our calculations.
‘ GFCY

s 1|

*U, N O . * . * . * 2
x‘ — 2416 Pic-q” — iBig}, +iBs(¢".q) (P + PK+), +iBs(e -Q)qu‘

XTr[(pr +mu)(1 =75 B)vu(l = 75) (B2 — mu)va(l — 75)]

+ [—2A16#1,M£*”p?(*q” —iBg), + iBy(c*.q)(pB + pr+), + 1B3(¢".q)q,]
X [~2CT €appse ™ Pl-d” + iDje;, — iD3(e.q) (P5 + P+ )a — D3 (£.0)4a]
XTr[(#r+mi)(1 =5 B)yu(l —75) (B2 — mu)va(l + 75)]

+ [—2Cleuyme*”p}(*q“ —iDg), + iDy(e".q)(pB + Pr+)u + 1D3(€%.q)q,]
* [ =245 €appse D¢’ + iBie, — iB;(2.) (5 + P+ ) — B3 (£.0)0]
XTr[(pr +mu)(1 =75 B)vu(l 4+ 75) (2 — mu)va(l — 75)]

+ [—2A16#1,M£*”p?(*q” —iBg), + iBy(c*.q)(pB + pr+), + 1B3(¢".9)q,]
x[=iBi(e.q)] x Tr[(#r +mu)(1 — 75 B)7u(1 = 75) (2 — mu)(1 = 75)]

+  [=2AT€appse D@’ +iBiel, — iB3(c.q)(pB + P+ )a — B3 (£.0)qa)
x[iB4(e".q)] X Tr((#1 +mu)(1 —v5 E) (1 — 75) (B2 — mu)Va(l — 75)]

+ [—2A16M,,Ms*”p}(*q” —iBigy, +iBa(e".q)(pB + i) + iB3(e7.q)q,)
x[—iB;(e.q)] x Tr[(# +mu)(1 — 75 B)7u(l — %) (2 — mu) (1 + 75)]

+  [=2A%€appse D@’ +iBiel — iB3(6.q)(pB + P+ )a — B3 (£.0)qa)

x[iBs(e".q)] x Tr{(#1 +mu)(1 =75 B)(1 +75) (2 = mu)Ya(l = 75)]
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[—2A16M,,A(,6*"p}(*q” —iBigy, +iBa(e*.q)(pp + i)y + iB3(e%.q)q,)
X [—4iC}ea5p5[ — 2Te"(pp + px-)° + Bie’q’ — B (s.q)p’[’(*q‘;]]
XTr[(pr +mu)(1 =75 B)7u(l — 75) (B2 — mu)oag]

[4iCre s | — 2Tie™(pp + prc-)” + Bee™q” — Bi(e".q)pi-a°]]
x[=2A €appse P P-d’ +iBie;, — iB5(e.q) (P + Pr-)a — iB5(6.9)da]
XTr[(pr+mu) (1 =5 B)oww (B2 — mu)va(l — 75)]
[—2A16M,,A(,6*"p}(*q” —iBig, + iBs(£*.q)(pB + P+ )p + 1Bs(e".q)q,]
x[16C;5[ — 217" (pp + px-)” + Bie®q” — Bi(e.q)pi-q”]]
XTr[(pr +mu)(1 =75 B)7u(l — 75) (B2 — mu)oag]

[16CTE[ — 2T e (pp + pr-)" + Bse™'q” — B?(g*-Q)plf(*qy]]

X [—2A%€appse D@’ + iBiel, — iB3(c.q) (P + Pic+)a — 1B5(£.)qa]
XTr[(pr +mu) (1 =5 B)oww (B2 — mu)va(l — 75)]

‘ — 2016“”0.8*”10?(*(]” —iDyg}, +iDy (e*.q)(pB + pK+)p + D3 (5*-‘1)%‘2
XTr[(pr+mi) (1 =15 B)7u(l +75) (B2 — mu)va(l + 75)]

[ — QC’leW}\(,e*”p;‘(*q” — iDlez +1iDy(e*.q)(pB + Pr+)u + iD3 (8*.q)q#]
x| = iBi(e-)] x Tr|(# +mi) (1 =75 Byl +75) (B2 — m) (L = )]
[ — 2Cf€aﬂp58*ﬁp%*q6 +iDjel —iDy(e.q)(pp + pr+)a — 1D (s.q)qa]
x[iBi(e*.q)] x Tr[(#1 +mi) (1 = 75 B)(L = 95)(# — mu)va(1 +75)]

[ — 2016“”0.8*”10?(*(]” —iDie;, + iDy(*.q)(pp + P+ ) + 1D (5*-‘1)%]
X [ - iB§(5-Q)] X TT[(?fl +mu)(1 =7 8)yu(1+ ) (B — mu) (1 + 75)]

[ — 205 €appsc ™ phenq’ +iD}el, — iDy(2.q)(pB + Pr-)a — 1D} (6.q)qa]
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_|_

x[iBs(e".)] x Tr[(# +mi) (1 =75 8)(1 +75)(# = mu)va(l +75)]
| = 20 €unoe™ Pi-a” — iDre;, + iDs(e".q) (i + Pic- ) + D3 (=".0)
x [4iCreuss [ — 2T1e™ (05 + prc-)” + Bee™¢" — Br(e*.q)pi-°]]
XTr[(#+mu)(1 =75 8)7u(1+75) (B2 — mu)oas]

[4iCreune | — 2116 (p5 + pr-)” + Boe™q” — Ba(e*.q)pi-¢°]]

x| = 20} capprs"Pic-¢” + iDiel, — iD3(2.q) (s + pic-)a — iD5 (6.0
XTr (1 +mi) (1= 95 )0 (B2 — mi)va(l + 7))

| = 20 €unoe™ Pi-a” — iDre;, + iDs(e".q) (P + Pic- )y + D3 ("),
x[16C7p] — 277" (s + pi-)’ + Bie®d” — Bi(2.q)pi-d°]]
XTr[(#+mu)(1 =75 8)7u(1+75) (B2 — mu)oas]

[16Cr| = 215" (pp + pic-)" + Boe™q” = Br(e".q)phc-" ]

x| = 2C€appoe™ P’ + iDiey, = iD5(2.0) (P + Pic+)a — iD5(2-0)40]
XTr (1 +mi) (1= 95 )0 (Bo — mi)va(l + 7))

iBie"0)| % Tr [+ m) (1= 75 B)(1 =) (#s — i) (1 = 5)]
iBi(e*.q)| | - iBi(e.q)]

Tr{(#+ mi)(1 = 8)(1 = 75) (B2 = mu) (1 + )]

(iBs5(".0)]] | - iBi(e.q)]

Tr{(# +m)(1 =5 B)(1+5) (Fe — mi)(1 = 3)]

[ — 4iCieapm| = 217" (s + prc-)’ + Bye"a’ — Bj(e.q)p-']|
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<Tr[( +mu) (L= 5 8)o0 (Bo = mi)0as]

* [ v *p UV * 14 v 2
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KKokkok

Using the trace theorems and performing integration over final lepton mo-
menta we find the expression for the decay rate, when leptons are longitudinally

polarized as,

dr(ef) Gia? ;
dq? - 214715 mp ‘Vib%g
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[2Re((B; — D) B})] Am%TmZSU

[2Re((B, — Dy)BY) ””;{43”” (2= 25— v —vr)
[2Re((B; — Dy)B?) ”m%m% =)

(142 — |B5|’] 2A;”QB [ = 2m? + mis(1 + )
21126(343;;)7_4m23m12

1822120 1N o )

FA4|Crp*(8m] + mys) + 2R6(C’TC}E)(—2mQst)]

256m%
3rs

T, > [ F 4Crul? (12r(2 + 2r — 5)s(8m] + m};s))
+A(8m] (4r + s) + mys(16r + s))
i|CT|2(127"(2 +2r — 5)s(—4m] + m%s)

+A(4m} (87 — s) + m%s(16r + s)))

+2Re(CrChp) (mZBs(12rs(—2 —2r+s) — A\(16r + S))U)

322 mp(—1+7r + s)
3r

2Re(BgB?) [ £ |Cr*(—4m] + ms)

F4|Crp|?(8m] + m¥ys) — 2Re(C’TC’}E)(—2mQst)]

—128m% (A — 12(—=1 +r)r)

2Re(BT?) 5

[ + |Cr*(—4m] 4+ m%s)

FA|Cr*(8m] + ms) — 2Re(CrCip)(—2misv)]

64 Am% (1 + 3r — s)

2Re(B.TY) 5

[+ |CrP(—4m} + ms)

F4|Crp*(8m] + m¥ys) — 2Re(CTC’}E)(—2m2st)]} , (E.4)

where the superscripts (+) and (—) in € is to represent the decay rate expression

when the leptons ¢t and ¢~ are polarized longitudinally, respectively. We find
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the longitudinal polarization of the /= for massive leptons as,

P, =

4 1 1 x «
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Similarly, the longitudinal polarization of the ¢* for massive leptons becomes,

4 1 1
—mQBv{ — —T)\Zm%[|B2|2 — |D2|2] + ;)\mg Re[(B; — Dy)(Bj + B:)]
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where the A, appearing in Egs. (E.5) and (E.6) is the differential decay rate
when the leptons are unpolarized and is presented in Eq. (E.2).
We also calculate the decay rate expression for transversally polarized lepton

case and find,
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(E.7)

where the superscripts (—) and (+) in € is to represent the decay rate expression
when the leptons /1 and ¢~ are polarized transversally, respectively. We used Eq.
(4.5) to calculate the transversal polarization of massive leptons and found for
r,
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Normal asymmetries for massive leptons were also calculated as,
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64
E[ 2BTS — m?(]. + 7’/" — S)] Re[(31 — Dl)(TICTE)*]
32

= (4mj + mps) Re[(By + D1)(TCr)']
2048m%my Re[(CrTy) (BsCrr)*]

4096
TmQBmg(l —7) Ty Re(C’TC}E)} .

1
= vam% s)\{SmZIm[(BfCl)—l—(A’{Dl)]

1 * *
— ;mQB)\Im[(BQB4) + (D3 Bs)]
1
+ ;m%mg)\lm[(Bg — Dy)(B; — D})]
1
— ;mé (14 3r — s)Im[(B; — Dy)(B; — Dy)]
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—miy(1—7) (4m? Re[C}(Cr + 2CrE)T1] — mbs Re[Cy (Cr — 2C7p)Th])



(1 =7 —s)Im[(B}B4) + (D} Bs)]

my (1 —r —s)Im[(By — D;)(B; — D;})]

Sl= 3| =

oo

;mgmlnm[(m + Bs)(B:Crg)*] (E.10)

11"_6m£ (1 =7 —s)Im[(By + B5)(BsCrg)*]

32
7m4 (1 + 3r — S) Im[(B4 + B5)(T10TE)*]

16m%s( Im[A}(Cr — 2Cr5) Bg] + Im[C} (Cr + 2C71) B
32m3,(1 — ) (Im[A}(Cr — 2C7R)Th] + Im[C} (Cr + 2C7)TH])

32 (Im[Bf(CT — 2C7g)T1] — Im[D}(Cr + 2CTE)T1])

512my (|CT|2 —4|0TE|2) Im(Bng)} :

1
Kﬂvm?’B\/ﬁ{ — 8my Im[(BC1) + (A7 Dy)]

]‘ * *

;m2B)\ Im[(B; Bs) + (D3 By)]

1

;m%mg)\lm[(Bg — Dy)(B; — D})]
1

%(1 —r — 8)Im[(B!Bs) + (D! By)]

%mz (1—r—s)Im[(B, — Dy)(B; — D)

8

iﬂ_ﬁmg (1 —r — s) Im[(Bs + Bs)(BsCri)’]

32
7m4 (1 + 3r — S) Im[(B4 + B5)(T10TE)*]

16m%s(Im[A](Cr + 2Crg) Bg] + Im[C} (Cr — 2C71) B
32m%(1 — ) (Im[A}(Cr + 207p)Th] + Im[C} (Cr — 2C7p)Th))
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+ 512my (|Cr* = 4|Crpl’) Im(Bg‘TI)} .

It would also be very useful to present here the combined analysis of lepton

and antilepton polarizations for massive leptons, such that,

4 2
P; + P = X m2Bv {;mg)\ Re[(B; — Dy)(Bj + B:)]

_ gmémM(l — r)Re[(By — D,)(B; + B)]

1 2
_ ;mZBs)\( Byf* — |Bs ) - “mimesARe[(Bs — D) (B + B3)

8
+ gm%mg)? Re[(32 + DQ)(B7CT)*]

32
+ 5’/71638)\2 |B7|2 RQ(CTC;E)

8
— S—TmQBmg)\(l —r — S) Re[(B1 + Dl)(B7CT)*]

16
— §m23mg)\(1 —Tr — S) Re[(Bg + DQ)(BgoT)*]

12
- 3 8m;§sA(1 —r — 8)Re(BsB:) Re(CrCip)
"

+ gmg()\ + 12rs) Re[(By + Dy )(BsCr)*] (E.12)

128

+ gm%s()\ +12rs) | Bs|* Re(CrCiip)

+ =, B (A(4r + s) + 12r(1 — r)°] |T1|” Re(CrCip)
512 . ,

- 5, MBS A+ 12r(1 — r)] Re(T1 Bg) Re(CrCrp)

256
+ gm‘}gsm + 37 — 5) Re(T1 B%) Re(CrCir)

512
X Ymgmﬁ Re[(4; + C)(TiCrg)*)

_ %mz A+ 12r(1 — )] Re[(By + D1)(TiCr)"|

32
+ ngBmM(l —+ 3r — S) Re[(32 —+ Dg)(TlcT)*]} .

2
Py — Pt = %mB\/sA{Em;gmm —1)A[Byf* = [Dof]
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1 * *
;m‘}g)\ Re[(By + Do) (B} — B:)]

2

;m‘ngA Re[(By + D,)(B; — D3)]

2
;m%mg(l +3r — s) [Re(BlD;‘) - Re(BgDi‘)]

2 2 2
—my(1 —r=s)[|B:* = D1’

%m%(l —r — s)Re[(B1 + D1)(B; — B;)]

%szmé(l — 7 — s)Re[(By + D1)(B; — D)

%mgméu £ (1= )1 =7 - 8)|[Re(B, B}) — Re(D, D3)]

32
EmQBmfA Re[(B) — Dy)(B:Crg)*]
32
16

7nf*Bm,_;A Re[(By — Bs)(B:Crg)*]

32
7m%m§)\ Re[(33 — D3) (B7OTE')*]

%mg(l — 1 — 8)Re[(B, — D1)(BsCr)"]

64 5 ,

EmBmz(l —r)(1 =71 —s)Re[(B2 — D2)(BsCrp)’]

%m?gmz(l —r—s)Re[(Bs — B5)(BsCre)’]

64
7m23m§(1 —1r —s)Re[(B;s — D3)(BsCrp)"|

32mpsv? Re[(A; — C1)(BsCr)*]
64 2 *
7mBmg(1 + 3r — s)Re[(By — Bs)(T1Crg)*]

64mp (1 — 7)v? Re[(A; — C1)(T1Cr)*]

128
E[m%rs —mj (14 7r — s)]Re[(B1 — D1)(TyCrg)*]

128
KmQBmg(l — ’I“)(]_ + 3r — S)RQ[(BQ - Dg)(TIC'TE)*]

128
TmZBmf(l + 3r — s)Re[(B3 — D3)(TIC’TE)*]} :
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Py + Py

A

;mg(l —r—s)Im[(B, — Dy)(B; — D3)]

%(1 —r —s)Im[(By — D)(B; — BY))
Zmiyme\ (B, — Dy)(B; — D3)]
S\ Tml(B, — Dy)(B; — By)]
32m%s Im[(A; + C1)(BsCr)*]
1024m ( |Cr|* — [4Crs]* ) Im (B Ty)
64m%(1 — r)Im[(A; + C,)(TLCr)*]

128 Im|[(B; + Dl)(TICTE)*]} .
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