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ABSTRACT 

ACTIVE STEREO VISION: DEPTH PERCEPTION FOR NAVIGATION,  
 

ENVIRONMENTAL MAP FORMATION AND OBJECT RECOGNITION 
 

Ulusoy, 
�
lkay 

Ph. D., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. U� ur Halıcı 

September 2003, 148 pages 

 

 

In very few mobile robotic applications stereo vision based navigation and mapping 

is used because dealing with stereo images is very hard and very time consuming. 

Despite all the problems, stereo vision still becomes one of the most important 

resources of knowing the world for a mobile robot because imaging provides much 

more information than most other sensors. Real robotic applications are very 

complicated because besides the problems of finding how the robot should behave 

to complete the task at hand, the problems faced while controlling the robot’s 

internal parameters bring high computational load. Thus, finding the strategy to be 

followed in a simulated world and then applying this on real robot for real 

applications is preferable. In this study, we describe an algorithm for object 
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recognition and cognitive map formation using stereo image data in a 3D virtual 

world where 3D objects and a robot with active stereo imaging system are 

simulated. Stereo imaging system is simulated so that the actual human visual 

system properties are parameterized. Only the stereo images obtained from this 

world are supplied to the virtual robot. By applying our disparity algorithm, depth 

map for the current stereo view is extracted. Using the depth information for the 

current view, a cognitive map of the environment is updated gradually while the 

virtual agent is exploring the environment. The agent explores its environment in an 

intelligent way using the current view and environmental map information obtained 

up to date. Also, during exploration if a new object is observed, the robot turns 

around it, obtains stereo images from different directions and extracts the model of 

the object in 3D. Using the available set of possible objects, it recognizes the object. 

 

Keywords: stereo vision, active vision, disparity, depth perception, environmental 

map, object recognition 
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Stereo görme analizi çok zor ve zaman alıcı oldu� u için, robot çalı� malarında çok 

sık tercih edilen bir yöntem de� ildir. Buna ra� men, hareketli bir robot için çevrenin 

daha detaylı bilinmesi açısından stereo görüntüleme en temel kaynak olarak tercih 

edilmeye ba� lanmı� tır. Bunun en temel nedeni, görüntülemenin analizi çok zor 

olmasına ra� men di � er sensörlere nazaran çok daha fazla bilgi sa� lıyor olmasıdır. 

Gerçek robot uygulamaları çok karma� ıktır. Bu nedenle, robotun nasıl davranması 

gerekti � inin bulunması amaçlanıyorsa öncelikle simülasyonlar üzerinde çalı� ıp daha 

sonra bulunan stratejinin gerçek robot üzerinde uygulanması tercih edilen bir 

yöntemdir. Bu çalı� mada, üç boyutlu sanal bir ortam olu� turulmu� tur. Bu sanal 

ortamda üç boyutlu nesneler ve aktif stereo görme sistemine sahip sanal bir robot 
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yer almaktadır. Bu sanal ortamdan alınan stereo görüntüler kullanılarak sanal 

robotun nesne tanıması ve çevresel harita çıkarması hedeflenmi � tir. Stereo 

görüntüleme sistemi, gerçek insan görme sistemi özelliklerine göre simüle 

edilmi � tir. Sanal robot, sadece stereo görüntüleri kullanmaktadır. Farklılık 

algoritmamız kullanılarak stereo görüntülerden o anki görme alanı için derinlik 

bilgisi çıkarılmaktadır. Robot akıllı bir � ekilde etrafı tararken, derinlik bilgisi 

kullanılarak kognitif harita sürekli doldurulmaktadır. Robot, ortamda ilerlemeyi o 

anki görsel bilgi ve o ana kadar olu� turulmu�  kognitif harita yardımıyla 

gerçekle� tirmektedir. Aynı zamanda robot, ortamda dola� ırken yeni bir nesne ile 

kar� ıla� ırsa, nesnenin etrafında dönerek farklı yönlerden stereo görüntüsünü 

çekmekte ve üç boyutlu modelini çıkarmaktadır. Daha önceden tanımlanmı�  

olabilecek nesneler arasından, görmü�  oldu� u nesneyi üç boyutlu yapı bilgisinden 

çıkarmaktadır. 

 

Anahtar Kelimeler: stereo görme, aktif görme, farklılık, derinlik algısı, çevresel 

harita çıkarmak, nesne tanıma 
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CHAPTER 1  

INTRODUCTION  

1.1 Problem Definition and Motivation 

In this thesis the main goal is to develop a biologically inspired stereo vision system 

and to use this system in a robotic application where human-like activities such as 

cognitive map formation and object recognition are performed. 

Navigation could not be achieved unless distance information is obtained. For 

other activities of human such as object recognition, shape extraction, etc., some 

other cues such as silhouette, shading, texture, etc., could also be used but for 

navigation and localization depth information is crucial.  

Although monocular cues, such as previous familiarity, interposition, linear and 

size perspective, distribution of shadows and illumination and motion parallax, are 

effective for depth perception (See Appendix A for detailed information about 

depth perception), for many species with frontally located eyes including humans, 

binocular disparity provides a powerful and highly quantitative cue to near field 

(<100 ft) depth perception. Binocular disparity refers to a small positional 

difference between corresponding images features in the two eyes, and arises 

because the two eyes are separated horizontally. Depth perception based upon 

binocular disparities is known as stereopsis.  

In many robotics applications depth is usually extracted by proximity sensors 

such as ultrasound or laser scanners. However, cameras have several desirable 
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properties compared to these proximity sensors. They are low cost sensors that 

provide a huge amount of information, they are easy to set-up and they are passive 

so that vision based navigation systems do not suffer from the interferences often 

observed when using active sound- or light-based proximity sensors.  

For depth extraction, at least a stereo camera system is necessary. However, 

since dealing with stereo images is very hard and very time consuming, only in 

some recent mobile robotic applications stereovision is used. In spite of the fact that 

there are big problems in dealing with stereo images, stereovision is becoming one 

of the most important resources of knowing the world for a mobile robot. One of the 

reasons is that although imaging is very difficult to handle, it  provides much more 

information of the world than most other sensors. The other reason is that with 

recent improvements in the hardware, time consuming applications are becoming 

faster and easier. Moreover, if robots are deployed in populated environment, it 

makes sense to base the perceptional skills on vision as humans do [98]. 

There are some commercial products as been used in [61]. However these 

require special hardware. Since on-body real-time systems are required for mobile 

robotics, using only standard PC hardware and simple image capture card system 

instead of systems which require special hardware is preferred [42].  

Higher vertebrates like humans can perform navigation extending beyond 

sensory horizon. They can make short-cuts and can find other route to destination if 

the route they are following was blocked. This is called survey navigation and for 

such navigation some form of spatial representation is necessary. Higher vertebrates 

appear to construct representations (sometimes referred to as cognitive maps) which 

encode spatial relations between relevant locations in their environment. 

Hippocampus is known to be the place in the brain for such a representation. Many 

studies investigated hippocampus of rat brain and cognitive maps are modeled 

based on these physiological findings [49]. 

Real robotic applications are very complicated because besides the problems of 

finding how the robot should behave to complete the task at hand, the problems 
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faced while controlling the robot’s internal parameters bring high computational 

load. Thus, first working in a simulated environment in order to find the strategy to 

be followed by the robot and then applying this on real robotic applications is 

preferable. Especially intelligent way finding, path planning and mapping 

algorithms are developed in simulated environments [41, 80, 90, 97, 79, 49]. 

Biologically inspired active vision system is also implemented in such a virtual 

environment in [90].  

In this study we develop a multi-scale phase based disparity algorithm for the 

purpose of depth estimation which is very important for human navigation. Since 

dealing with stereovision and robot control at the same time is very hard, we also 

apply our stereovision algorithm in a simulated world with simulated cameras and 

objects where the goal is to construct three dimensional (3D) map of the 

environment. Then, in the future studies our algorithm can be applied on real robots. 

In robotic research various systems for map construction have been proposed. 

Some uses metric measurements to construct the map. Some only extracts the 

topology of the environment [88]. Although metric maps suffer from big size, due to 

accuracy embedded in such maps they provide better localization for the robot. 

Because of this reason we have chosen grid-based mapping which is also a metric 

mapping. Some studies prefer robot centered maps versus world centered maps. 

However, since world centered maps are easier to construct we choose world 

centered maps. But such maps suffer from movement errors due to slippery and 

odometry errors, since this kind of errors add up in time. But since we use stereo 

vision in our map construction algorithm we assume that ego-motion extraction and 

localization could be performed easily. Thus, world centered maps can be 

constructed without major error. In our future studies algorithms for ego-motion 

extraction and localization for stereo-vision will be developed for real robotic 

applications in natural environments. All these different mapping methods and 

problems coming with them are explained in Chapter 2. In this thesis we construct a 
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world centric, grid based cognitive map which is very important for higher 

vertebrate survey navigation.  

Our virtual world is a computer simulation of a very simple 3D environment. In 

this environment there is an agent which has a stereo imaging system modeled with 

the properties of human eye. There are also 3D objects each having two parts which 

are either sphere, ellipsoid, cylinder or cone of any size. Some of the 3D objects are 

as follows: a sphere on top of a cylinder is an apple tree, a cone on top of a small 

radius cylinder is a pine tree, a cone on top of a large radius cylinder is a cottage, 

etc. The agent uses only the stereo image pairs obtained form this virtual world and 

explores its environment based on some heuristics. It simultaneously builds up a 3D 

map and recognizes the objects it observes during exploration.  

The schema of the complete system is given in Figure 1.  Our system is 

composed of two main modules: 1) Simulation module (SM) where virtual 

environment exists, 2) Processor module (PM) where all kinds of control activities 

are achieved. Also, processor module is composed of two sub modules: 1) Map 

formation and object recognition sub-module, 2) Navigation and camera controller 

sub-module.  
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Figure 1 Modules of the whole system. 

The system works as follows: First, 2D stereo images are rendered from the 3D 

virtual world and passed to PM. Then, using our multi-scale phase based disparity 

algorithm, depth map is extracted for the current view and environmental map is 

updated. From the environmental map formed up to date, navigation destination is 

decided and cameras are controlled. Finally, new camera locations and parameters 

are passed to the SM. All these activities are recursively done in a continuous 

manner until all of the environment is explored. Each time a new depth estimate is 

calculated, environmental map is updated and each time all the information about a 

new object is fully extracted, object is recognized. Thus, map formation and object 

recognition sub-module and navigation and camera controller sub-module works in 

parallel. 

Our human-like stereo vision system does not require special hardware. Only a 

standard PC and a frame grabber would be enough for obtaining stereo images in 
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natural environments. We inspired from biological binocular cell models and use 

steerable filters to extract interest points, called feature points in this thesis. The 

feature used in order to match corresponding feature points is the multi-scale phase 

information. The flow chart which summarizes our stereo vision algorithm is shown 

in Figure 2. Using steerable filters, feature points are extracted from both of the 

stereo image pair. Using the oriented filters at different scales, we obtain multi-scale 

phase and magnitude information at each feature point. Then corresponding pairs 

are matched based on multi-scale phase similarity. Finally, depth and 3D location 

information are calculated from disparity with the help of known camera parameters 

and location information. 

1.2 Contr ibution 

In this study we propose a biological model for feature based disparity estimation 

and use this system in robotic applications. First of all a biological disparity 

estimation model is proposed. Then our disparity algorithm is modeled 

probabilistically. Finally our disparity algorithm is used on a virtual robot with 

stereo vision in a 3D virtual world in order to construct 3D map of the environment 

and recognize objects around. 

The usual method for feature point matching is to compare vector of filter 

responses at different scales and orientations which requires many operations since 

the compared vector could be very large [99, 40]. Later, Lüdtke, Wilson and 

Hancock uses population coding method in order to estimate a single orientation 

value for each feature point which would make the comparison easier. In their work 

they inspired from hyper-column structure of the visual cortex. When population 

coding is used to represent the convolution responses of the filter bank, the outputs 

of only a small number of filters need to be combined in order to achieve a 

considerable improvement of the precision of orientation estimation. However in 

their case, they use only a single scale in finding the feature points and estimating 

the orientation values. In this study we use steerable filters at three different scales 
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in finding our feature points and estimating orientations. When a small number of 

oriented filter responses are used to obtain responses at other orientations this is 

called steerable filtering. In this study we used the method of [26] in designing our 

steerable filters. Also, by using filters tuned at various frequencies, feature points 

having high information content at different local frequencies are selected. 

Although feature points extracted from image pairs are sparse, since they are the 

points of high contrast edges in various scales that define the bounding contours of 

objects, they still prove to be informative. 

Since phase is very sensitive to spatial differences and at the same time very 

stable to lighting, orientation and scale deformations, using phase information in 

order to find correspondences between feature points provides reliable solutions. 

Unfortunately, there are image locations where phase is singular and can not be 

reliably used [38-39]. Such points are the locations where local frequencies at these 

points are very different from the filter tuning. In this study, by selecting feature 

points using multi-scale analysis, performing phase comparisons at multiple scales 

and by using magnitude confidence information we overcome these difficulties. The 

confidence weighting is used to augment phase information with information 

concerning the magnitude of the steerable filtered image to improve the 

correspondence method.  

Using phase in correspondence matching is also biologically grounded. The 

reason for this is that simple binocular cells occur in pairs that are in quadrature 

phase. In physiological modeling of binocular cells, phase-based disparity methods 

are highly appreciated. Physiological phase-based models can be classified into 

two: 1. Disparity is estimated from local phase difference between left and right 

images based on Fourier theorem as been done in [84]. 2. Phase shift model of 

binocular cells: Receptive fields of binocular cells have phase differences and this is 

used in energy models [25, 76]. Both models have some limitations. Because, when 

phase is used, disparity estimation is reliable only for the disparity values less than 

half of the filter wavelength. Nature has a solution for this problem: In experimental 
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studies, it is observed that there are also binocular cells which have similar 

receptive fields but located at different positions [25]. There are biological cell 

models based on this finding and they are called position-shift models. In position 

shift models of binocular cells, receptive fields are similar but positioned at 

different locations. By this model a large range of disparities can be estimated. In 

[38-39] hybrid model which has both position shift and phase shift is proposed. 

However it also has same kind of limitation. In this study, two routes to locating 

feature-point correspondences are explored. Inspired from the position shift model, 

corresponding pairs are found by checking the phase vector similarity along 

epipolar line. Rough disparity values are obtained and a large range of disparities 

can be calculated, but to a limited accuracy. Inspired from the phase shift model, 

local phase difference is used in calculating subpixel disparity which has the 

accuracy less than one pixel. Fine tuning is performed without encountering the   

quarter cycle limit. This tuning scheme also allows a continuum of disparity 

estimates to be obtained.  

In [8] stability of phase for some deformations is investigated and in a later study 

[9] they applied their method to feature matching and conclude that in order to be 

sure for stability of phase through scale, multi-scaling should be included. The use 

of multiple scales is also biologically plausible. The reason for this is that binocular 

cells, which are encoding disparity, are sensitive to different spatial wavelengths. In 

all the studies given above, first disparities at different scales are computed and then 

the results are pooled in order to obtain a single disparity map. However in this 

study, we include multiple scaling at the beginning both in extracting features and 

in matching. Disparity is estimated only once using multi-scale phase directly in 

matching.  

In the probabilistic modeling of our matching algorithm, mixture of von Mises 

distributions is used. The distribution of phase differences between matched pairs at 

each scale for Venus stereo image pair is modeled and the models at all scales are 

tested on other stereo pairs. The important thing here is that although modeling is 
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done by using Venus stereo pair data only, it works fine for many other images. By 

this probabilistic model, we not only reach a higher success rate for many image 

pairs, but bring flexibility to the disparity search region. 

Finally, the disparity estimation is applied to map construction and object 

recognition in a virtual world. Other than the usually known 2D occupancy grid 

method, a 3D map is constructed in this study. Our heuristic exploration strategy 

uses the advantage of active vision property. The importance of using vision in 

robotic applications is also emphasized by including an object recognition task. In 

recognizing objects, first of all point cloud belonging to an object is considered. 

Then this point cloud is segmented into two parts by using proximity and color 

similarity. Then surfaces are fit to each part and finally object is recognized from 

the shape of the parts.  

1.3 Organization of the Thesis 

In Chapter 2 literature review of vision for mobile robot navigation, stereo vision 

for mobile robot, various disparity algorithms, biological and robotic navigation, 

robotic map formation, virtual environments and 3D reconstruction from multiple 

images are summarized. In Chapter 3 our biological disparity algorithm is given. 

Results are also presented in the same chapter. Our probabilistic model for disparity 

algorithm is also explained in Chapter 3. In Chapter 4 application of our 

stereovision to a virtual environment for the purpose of 3D cognitive map formation 

and object recognition is explained thoroughly. The related results are also given in 

this chapter. Chapter 5 is the conclusion chapter.  
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Figure 2 Flow chart of the stereo vision system. 
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CHAPTER 2 

LITERATURE REVIEW  

2.1 Vision for  Mobile Robots  

In this section, robot navigation in terms of vision researches is investigated. Robot 

navigation for which vision is used as sensors can be grouped into three classes 

[16]: 1. Map-based navigation which depends on user created models, e.g. CAD 

models, of the environment. 2. Mapless navigation where no map construction is 

required. 3. Map-building-based which uses sensors to construct a model of the 

environment.  

2.1.1 Map-based Navigation 

The robot is provided a model of the environment. These models may contain 

different degrees of detail. For example, occupancy map has the grid based 

information about the environment. It is easy to establish meaningful navigation 

goals for the robot. The human operator can use the internal map representation of a 

structured environment to conveniently specifying different destination points for 

the robot. 

In this kind of navigation problems the basic issue is localization. The system 

tries to identify the observed landmarks by searching in the database for possible 

matches according to some measurement criteria. Once a match is obtained, the 
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system needs to calculate its position as a function of the observed landmarks and 

their positions in the database.  

In probabilistic FINALE [60], the uncertainty in the position and orientation on 

the plane of the robot is represented by a Gaussian distribution and, thus, the 

uncertainty at each location of the robot is characterized by mean and covariance. In 

topological NEURONAV [58], a graph topologically representing a layout of the 

hallways is used for driving the vision process. Two modules, hallway follower and 

landmark detector are implemented using an ensemble of neural networks.  

Most of the earlier methods use a single camera and a range sensor. In [73] 

monocular, trinocular vision based and laser based robot localization are compared 

and comparable precision levels are attained. Since vision provides much more 

information it is preferred by many recent studies although vision poses more 

complex matching problems than laser. In [98] images are retrieved and a data base 

is formed and then Monte-Carlo localization is used to find the similarity between 

the current image and the data base. In [89] triclops camera system is used and ego 

motion of the robot is calculated from the scale invariant features detected and 

matched through successive frames. 

2.1.2 Map-less Navigation 

Navigation is achieved without any prior description of the environment. No maps 

are ever created. Most robotic systems are limited to essentially just roaming in 

mapless systems. In most cases the robot only has access to a few sequences of 

images that help it to get to its destination or a few predefined images of target 

goals that it can use to track and pursue. Navigation using optical flow, appearance 

based matching, object recognition are some examples.  

In navigation using optical flow, motion parallax is more useful and features 

such as “ time-to-crash”  are more relevant than distance when it is necessary to jump 

over an obstacle. In [65] N images of the same scene are obtained by N cameras  



 13 

each having a different focal length where focal length is categorized in 3 steps, i.e. 

far, medium, close. Cameras are positioned together such that they see the same 

perspective. The scene is divided into regions and the best focus for each region is 

found by computing sharpness (i.e. intensity differences between all horizontally 

neighboring pixels). Thus, each region is assigned far, medium or close. The robot 

moves using the farness or closeness information in the regions of the image. In 

[45] active vision based control is used for collision avoidance as well as 

maintenance of clearance in a priori unknown textured environments. Change in 

image quality measure, which is defined in their study, is used in a fuzzy logic 

control.  

In navigation using appearance based matching, memorizing the environment is 

done by storing images or templates of the environment and associating those 

images with commands or controls. In [30] the set of local views for a given 

panoramic image defines a “place”  in the environment. Each place is associated 

with a direction (azimuth) to the goal. Finally, a neural network is used to learn this 

association and during actual navigation, it provides the controls that take the robot 

to its final destination. In [55] after a sequence of images is stored, the robot is 

required to repeat the same trajectory. The system compares the currently observed 

image with the images in the sequence database using correlation. The displacement 

in pixels between the view image and the template image is then used for steering. 

In [66], the robot is manually driven in the obstacle free hallway and expectation 

maps are rendered from the hallway model at regular intervals. First, the robot 

renders an expectation image using its current best estimate of where its present 

location is. Next, the model edges extracted from the expectation image are 

compared and matched with the edges extracted from the camera image through an 

extended Kalman filter. The Kalman filter automatically then yields updated values 

for the location and the orientation of the robot. Obstacles are found from the 

difference of vertical edges in the camera image and the expectation map 

immediately after each exercise in self localization.  
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In navigation using object recognition, instead of using appearance based 

approaches to memorize and recall locations, a symbolic navigation approach such 

as “go to the door”  is used in [44]. In [5] vision based autonomous vehicle requires 

the ability to focus on the important features in an input scene. Task dependent 

emphasizing or deemphasizing is modeled by a neural network where hidden layer 

keeps important information for the task only.  

2.1.3 Map Building  

Automated or semi automated robots could explore their environment and build an 

internal representation of it. Occupancy grids are the basic methods. They allow 

measurements from multiple sensors to be incorporated. Even uncertainties can be 

embedded in the map. The extent to which the resulting geometry can be relied 

upon for subsequent navigation depends naturally on the accuracy of robot 

odometry and sensor uncertainties during map construction.  

Additionally for large scale and complex spaces, the resulting representations 

may not be computationally efficient for path planning, localization, etc. Instead 

topological representations of space can be used [23]. These representations often 

have local metrical information embedded for node recognition and to facilitate 

navigational decision making after a map is constructed. Various proposed 

approaches differ with respect to what constitutes a node in a graph-based 

description of the space, how a node may be distinguished from other neighboring 

nodes, the effect of sensor uncertainty, the compactness of the representation. Major 

difficulty is the recognition of nodes previously visited.  

In metrical approaches, on the other hand, if the odometry and the sensors are 

sufficiently accurate, the computed distances between the different features of space 

help in identifying places previously visited. The best of the occupancy grid based 

and topology based approaches are combined in [91] but using range sensors only. 

In [48] stereo camera system is used besides the laser range finder in map 

construction, object recognition and navigation. But the environment is a simple 
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indoor one and predefined special features are needed. In [42], on body depth 

generation system which requires only a PC and an image card is implemented.  

After the formation of the map, the next problem is the localization. In [70] a 

map similarity measure is formed using the probability distribution of the distance 

from each occupied cell in the local map that is computed at the current robot 

position to the closest occupied cell in a previously computed map of the 

environment. This probability distribution function is used in a likelihood function 

for each robot pose. Some recent studies perform simultaneous mapping and 

localization as in [89] and [14].   

2.2 Stereo Vision for  Mobile Robots 

Stereo cameras used in robotic applications are built to simulate the way human 

visual system works. Human visual system, having all its amazing powers, helps us 

to see the world, study the world and understand the world and is also very 

powerful in telling the depth of objects in the scene. Human visual system interprets 

depth in sensed images using both physiological and psychological cues. The 

physiological depth cues include accommodation, convergence, binocular parallax, 

and monocular movement parallax. The psychological cues are retinal image size, 

linear perspective, texture gradient, overlapping, aerial perspective, and shades and 

shadows. Among these cues, only convergence and binocular parallax are binocular 

depth cues (requiring both eyes to be open), while all others are monocular (one eye 

only). Detailed explanation of human depth perception can be found in Appendix A. 

Although stereo vision systems loses almost all the monocular cues as well as the 

binocular cue such as convergence and performs poorly so far compared to human 

visual system, stereo vision still becomes one of the most important resources of 

knowing the world for a mobile robot. One of the main reasons is that although it is 

very difficult to handle, imaging the world provides yet much more information of 

the world than most other sensors. Another reason is that as mobile robots are built 

to simulate or help human beings, it is important to make them look and work as 
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humans. With better and better stereo algorithms, advances in image processing, 

computer vision, artificial intelligence, etc., improvements in hardware, and with 

the belief that robot should act as human beings, we can anticipate that stereo vision 

will be one of the most widely used sensors for mobile robots. 

In a standard setting of stereo imaging used on a robot, two cameras are bound 

together with a certain displacement. These stereo cameras have parallel optical 

axes and most likely the same focal lengths. In most application scenarios, by 

calculating the disparity map between the two captured images, stereo vision helps 

recover depth information of the environment, which can then be used by mobile 

robots to avoid obstacles, construct map, localize itself and recognize visual 

commands.  

Stereo vision for mobile robots has some specific requirements. The first 

requirement is that the algorithm has to be real-time. The reason for this 

requirement can be miscellaneous, for example, to avoid obstacles or to recognize 

gestures. Second, mobile robots tend to move around and take pictures. This means 

the stereo algorithm needs to handle image sequences. This provides the algorithm a 

better chance to get the correct disparity map or refine it. Third, mobile robots are 

typically moving on a plane ground. To avoid obstacles on the ground, the disparity 

map can be calculated based on the plane ground (called horopter). Fourth, stereo is 

not the only sensor on a mobile robot. Fusion of multiple sensors needs to be 

studied to best estimate the environment the robot is in.  

Some robotic applications where stereo is used are listed as follows:  

Real time stereo processing and obstacle detection (horopter  based stereo): 

Many approaches can be used to do stereo in real time especially when accuracy is 

not very important. For example, a hierarchical pyramid of the two stereo pair can 

be built and the matching can be refined step-by-step from coarse to fine level. As 

fine level disparity can be initialized by the coarse level disparity, this can improve 

the speed greatly. Another way to speed up stereo is to down sample the images, as 

well as the disparity levels. For mobile robot, sometimes ignoring the details may 
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actually help increase the stability of the system, especially when the task of the 

stereo does not require a lot of accuracy.  

Localization, ego-motion and structure from motion: As the stereo cameras 

are mounted on the mobile robot and the robot is moving around, it is important to 

estimate the ego-motion and the structure at the same time. Although the ego 

motion can also be obtained from the motor meter, it might be very inaccurate. 

Stereo vision based approach can be a very good candidate for localization. In some 

studies the images of the landmarks are considered as feature points. When feature 

points between images can be well matched, the stereo matching algorithm will 

give a good estimation on the ego-motion of the robot [70, 89, 14]. 

Mapping and navigation: Instead of monocular or binocular cameras, the robot 

called Spinoza uses a trinocular stereo system for sensing in [61]. The trinocular 

cameras can normally achieve better results than a typical two camera stereo system 

because the second pair of cameras can resolve situations that are ambiguous to the 

first pair. In their study, Spinoza extracts the map of the environment. 

Simultaneous mapping and localization: A series of seminal studies 

introduced a powerful statistical framework for simultaneously solving the mapping 

problem and the induced problem of localizing the robot relative to its growing 

map.  Since then, robotic mapping has commonly been referred to as SLAM or 

CML, which is shortest form for simultaneous localization and mapping, and 

concurrent mapping and localization respectively. Some probabilistic approaches 

employ Kalman filters, expectation maximization (EM) algorithm etc. [91]. These 

approaches specifically address the correspondence problem in mapping, which is 

the problem of determining whether sensor measurement recorded at different 

points in time correspond to the same physical entity in the real world. A third 

family of probabilistic techniques seek to identify objects in the environment, which 

may correspond to ceilings, walls, doors that might be open or closed, of furniture 

and other objects that move. Usually such probabilistic algorithms are off-line and 
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can not be run in real time. In most recent studies map construction and localization 

and/or ego-motion extraction are simultaneously studied [89, 14]. 

2.3 Stereo Algor ithms  

2.3.1 Dense Stereo Algor ithms 

Recently there were some efforts by Scharstein and Szeliski [85] who tried to 

provide a common test bed for evaluating different stereo algorithms. In their work, 

they measure the performances of different algorithms based on known ground truth 

data. Four pairs of images were used in their system (Sawtooth, Tsukuba, Venus 

and Map). The two criteria they used were:  

RMS (root mean square) error (measured in disparity units) between the 

computed disparity map dC(x,y) and the ground truth map dT(x,y): 
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where δd is currently set to be 1.0. 

Stereo algorithms are compared on both accuracy and speed. Real time 

correlation based stereo is found to be the fastest one among all but also is the least 

accurate one. Sum of squared difference (SSD) and dynamic programming (DP) 
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take approximately one second for 384x288 Tsukuba stereo pair. However their 

percentage of bad matching pixel (PBMP) is less than the PBMP of real time 

algorithm. Graph cut (GC) takes around 23 seconds for the same image pair but its 

PBMP is nearly one third of SSD’s PBMP. Layered stereo algorithm is the best 

performing one but takes the longest. 

Here, some of the representative algorithms in the literature will be summarized.  

Sum of squared difference (SSD): This is the most widely used technique in 

real applications. The algorithm handles the stereo pair row by row. A rectangular 

window is placed on an image and the window in the other image of the stereo pair 

that gives the minimum SSD compared with the window in the reference image is 

searched. Obviously the SSD of the two windows in the two images are a function 

of the disparity d. The disparity at a certain pixel d0 is given by: 
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where I represents the image intensity, W is the comparing window. There are 

alternative criteria when searching for the best match such as sum of absolute 

difference (SAD) and normalized cross covariance.  

Dynamic Programming (DP): Stereo matching can have many constraints 

about what a valid matching should be, based on our assumption about the scene. 

These constraints include the ordering constraint, the uniqueness constraint, the 

disparity limit, and the disparity continuity constraint, to name a few. [12]’s 

approach of dynamic programming uses ordering constraint and makes an 

assumption that if two pixels are corresponding to each other, their intensity 

difference follows the Gaussian distribution. The overall cost function is defined 

through a maximum likelihood criterion. The cross-correlation for two 

corresponding epipolar lines is calculated for all pairs of lines. The optimal path is 

found by searching a path that gives the minimum cost function.  
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Graph cut (GC): A problem with the above two approaches is that each 

epipolar line is processed independently. The solutions obtained on consecutive 

epipolar lines can vary significantly and create artifacts across epipolar lines, 

especially affecting object boundaries that are perpendicular to the epipolar lines. 

Graph cut is a different approach that optimizes the solution globally. The ordering 

constraint is replaced by a more general local coherence constraint, which claims 

that disparities tend to be locally very similar in any and all directions. To achieve 

the above constraint, epipolar lines are stacked together and form a correlation cube. 

The goal is to find the best surface in the cube that minimizes the overall cost. This 

problem can be reformulated as a maximum-flow problem in a graph. If a source 

and a sink are added to the cost cube, and all the discrete points in the cube are 

considered as vertices of the graph, the maximum flow between the source and sink 

is the minimum cut of the graph, which will be effectively the disparity surface.  

Layered Stereo: [4]’s approach is very different from what have been discussed 

so far for the representation of the depth map. The scene is represented as a 

collection of approximately planar layers. Each layer consists of an explicit 3D 

plane equation, a colored image with per-pixel opacity (a sprite) and a per-pixel 

depth offset relative to the plane. The authors claim that using this kind of 

representation, the depth and color information can have high accuracy even in 

partially occluded regions, and the representation is very suitable for rendering and 

video parsing. The algorithm has two steps: initial estimate and layered refinement 

by re-synthesis. In the initial estimate state, with some manual interaction, the scene 

is segmented into different initial ‘ layers’ . Each layer is then fitted by a planar 

equation in the least square sense. The layer sprite on each layer is then synthesized 

by image blending. As a plane model may not be able to describe the scene very 

well, the residue of the disparity is calculated with any normal stereo algorithm. In 

the re-synthesis stage, the original stereo images are re-generated with the layered 

model. The prediction error between the re-produced images and the original 

images is minimized. The authors believe that this kind of representation may be 
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helpful for mobile robots as well. A simple scenario is to represent the world with 

progressive level of details. The planar model may be the very first level of details 

for the scene, when the object is still far from the robot. When the robot gets closer 

to the object, finer model by adding the residue will be used for the robot to avoid 

obstacles. 

Real-time correlation based stereo: For mobile robot, real time is more critical, 

as if the robot has obstacle avoidance algorithm that is based on stereo, better it can 

see the obstacle as early as it can. At early times, real-time performance was 

reached by using DSP board. Now that computers gets faster and faster, software 

based real-time stereo can be easily achieved.  

Phase based stereo: Jenkin and Jepson [37-39] and Sanger [84] describe 

promising methods based on the output phase behavior of band-pass Gabor filters.  

Fleet and Jepson [39] discuss further justification for such techniques based on the 

stability of band-pass phase behavior as a function of typical distortions that exist 

between left and right views. They show that phase signals are occasionally very 

sensitive to spatial position and variations in scale, in which cases incorrect 

measurements occur. With the aid of the local frequency of the filter output 

(provided by the phase derivative) and the local amplitude information, the regions 

of phase instability, which are called singularities, are detected so that potentially 

incorrect measurements can be identified. They also show how the local frequency 

can be used away from the singularity neighborhoods to improve the accuracy of 

the disparity estimates. Recently, Carneiro and Jenkin provide multi-scale phase-

based stable features [8, 9].  

2.3.2 Sparse Stereo Algor ithms 

In sparse stereo algorithms [33, 52, 56, 57, 82], distinctive features from the images 

are extracted and corresponding pairs are matched using some feature-based 

criteria. The advantage of these methods is that they produce accurate results. The 

disadvantage is that the results are rather sparse and textureless regions are left 
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unmatched. Since disparity is calculated only for the feature points in sparse 

algorithms, some post processing such as interpolation, surface fitting is necessary 

in order to extract the dense depth map. In [27] a probabilistic model is proposed to 

fill the gaps. 

Sparse stereo algorithms are usually used for estimating camera geometry [93]. 

Computations are concentrated on areas of the image where it is possible to get 

good correspondence and from these an initial estimate of camera geometry is 

made. This geometry is then used to guide correspondence in regions of the image 

where there is less information. Sparse stereo algorithms can also be used in robotic 

applications such as obstacle avoidance and mapping when a low precision is 

enough [14, 48, 61, 70, 89]. 

To be successful for stereo applications, local features must be robust to typical 

image deformations such as scale changes, noise, brightness changes, rotation and 

be highly distinctive to afford identity information. There are different types of 

features used both in stereo vision and object recognition field. Very early ones are 

zero crossings, peaks, simple definition of edges [56] and segments [57]. In recent 

years, informative edges, curves [82], corners [35], local extremes in the responses 

of difference of filters [50], auto-correlation function in order to determine locations 

where signal changes in two directions [86], contour detection [64], tangent fields 

[99, 51] are some other suggested local features and feature extraction algorithms 

for object recognition.  

After detecting the feature locations, they should be described in a way that they 

should provide strong information and be stable to small changes. Some of the 

descriptions at feature points are as follows: Sets of derivatives that is invariant to 

rotation [86], scale invariant feature transform features [50], phase and amplitude 

[8]. Carneiro and Jepson builds on previous work [21] in which it was shown that 

the phase information provided by steerable filters is often locally stable with 

respect to scale changes, noise and common brightness changes and show that it is 

also possible to achieve stability under rotation by selecting steerable filters [8]. 
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They deform a given image by changing the brightness, introducing non-uniform 

brightness variation, adding noise, changing scale and rotation and select interest 

points by Harris corner detector [35] on both the original and the deformed images. 

Then steerable quadrature filter pairs are used to obtain local amplitude and phase 

information. Since a pixel does not provide a distinctive response, they considered 

M sample points taken from a region around each interest point. At each spatial 

sample point (i.e. the interest point and the sample points taken from a region 

around it) the filters are steered to N equally spaced orientations starting from the 

main orientation of the pixel computed as described in [26]. The resulting phase-

based, complex feature vector has M*N individual components specified by the 

complex filter responses. Finally, they computed the similarity between local 

features between the original and the deformed images using normalized phase 

correlation since this is known to provide some stability to typical image 

deformations. The detection rate is defined to be the proportion of interest points 

such that there are some interest points in the transformed image which is both 

sufficiently close to the mapped point and which has a similar local feature vector. 

They compared their results with differential invariant features [86] and showed 

that phase-based feature displays consistently better results. 

In order to make the phase-based approach more comparable to the other 

approaches, Carneiro and Jepson also introduce a new form of multi-scale interest 

point detector [9]. Since Harris corner detector is not very robust to scale changes, 

they use an approach similar to [17], in which they check local spatial information 

to determine whether the current scale is appropriate. They calculate the local 

frequency of the response with the derivative of the phase signal and the interest 

points that have local frequency close to the mean frequency of all the interest 

points are selected to be locally stable. In order to achieve semi-invariance to scale 

changes, space is sampled at a discrete set of scales. Given a feature vector from a 

test image, they searched database for similar features, irrespective of the specific 

scales at which they were observed in the test and model images. Then the specific 
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scales belonging to the matched features provide some information about the 

relative scales of the target in the test and the database images. They conclude that 

although phase-based local feature performs better in terms of common illumination 

changes, 2D rotation and sub-pixel translation, for scale and large shear changes 

both shift invariant feature transformation and the differential invariants produce 

better results. However, they also suggest that the robustness of the phase-based 

feature to scale changes can be improved by using a denser sampling in the scale-

space. 

2.3.3 Biological Stereo Algor ithms 

In many recent studies, spatial filtering of the image pairs by Gabor filters is well 

accepted because Gabor filters are limited spatially and have finite bandwidth. 

Another attractive aspect of using Gabor filters is their orientation selectivity. The 

usage of Gabor filters is also supported by some physiological findings. A Gabor 

filter has a shape very similar to the receptive field profile of simple cells in primate 

visual cortex.  It is also found that adjacent simple cells have the same orientation 

and spatial frequency and are in quadrature pairs. This observation also leads the 

researchers to think that phase of a complex Gabor filter can be internally encoded 

by such a pair of neighboring simple cells.  

In their experimental studies, Freeman, Ohzawa and Anzai [25, 67, 68, 1-3] 

obtained monocular receptive fields and binocular interaction receptive fields for 

simple and complex cells in adult cats. And they showed that these cells could be 

modeled by Gabor-like functions. They also show experimentally that the receptive 

fields for the left and right eye can be similar in some cells, but are clearly different 

for the others and the degree of differences between receptive fields is quantified by 

using receptive field phase. This observation has lead to the use of Gabor filters to 

model the phase difference for the receptive fields to act as disparity decoders.  

Inspired from all these findings, Anzai et. al. [1-3] models disparity selective 

complex cells. In this feed forward model of disparity extraction, complex cells are 
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the actual disparity detecting elements, each of which receives input from four 

binocularly innervated simple cells, all with the same preferred contour orientation. 

For a given cell, the left and right eye receptive fields have matching spatial 

profiles. These four simple cells are grouped into two pairs, with members of a pair 

having receptive fields modeled by Gabor filters that differ in spatial phase by 90˚ 

(i.e. they are quadrature pairs). The outputs of these simple cells are squared and 

then summed by the complex cell.  Thus the complex cell response can be said to be 

the disparity energy and this energy becomes maximum when the disparity of the 

given stimulus is equal to the disparity between the receptive fields. In their model 

it is always zero. Although the model is promising, the phase selective complex 

cells just predict the zero disparity and they can not uniquely signal any given 

retinal disparity. Nor can they signal disparities beyond the quarter cycle limit of the 

input signals. Quarter cycle limit is the limit on disparity that can be found using 

Gabor filters at a specific spatial frequency. If a pattern of spatial frequency �  (i.e. 

period is 1/ �  ) is presented to the two eyes, left and right images of that pattern can 

be unambiguously matched so long as the disparity between the two images does 

not exceed one half the period of the grating, 1/ 2� . Qian [76-78] has improved the 

complex cell model so that it can uniquely signal definite disparities. 

Although studies of Anzai et. al. [1-3] clearly shows that phase differences do 

exist, their data do not rule out a contribution of position differences to disparity 

encoding. Besides phase shift model, position shift model is also available with the 

general receptive field structure of simple cells. In the position shift model, the 

receptive field profiles are assumed to have identical shape in the two eyes, but are 

centered at non-corresponding points on the retina. In the phase model, the range of 

disparities encoded by a population of neurons is inversely proportional to spatial 

frequency. This is because phase differences are limited to a range of 180˚ and 

because a particular phase difference corresponds to a large preferred disparity 

when the spatial frequency is low, but a small disparity when the spatial frequency 

is high. In contrast, for the position shift model, the range of disparities can be 
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encoded. Fleet et. al. [38-39] uses a hybrid model of disparity encoding cell which 

has its receptive field profiles differ by both an overall positional shift and a phase 

difference. In his model, when receptive fields are exactly the same, then the energy 

neuron is sensitive to zero disparity as in Ohzawa's model. If there is only a phase 

difference between receptive fields, then the energy neuron response reaches a 

maximum when the disparity is equal to the intraocular phase difference divided by 

the instantaneous frequency. If there is a position shift between the receptive fields, 

then the cell gives the maximum response when the disparity is equal to the position 

shift. In the hybrid model where receptive fields are shifted in position and also 

have phase shift, the binocular energy response of the neuron depends continuously 

on both the position shift and the phase shift. This hybrid model posits that the 

energy should be sampled at each spatial position, with several position shifts and 

with several different phase shifts. In Figure 3, three different types of disparity 

encoding cell models are shown. The leftmost drawing is for position shift model 

where the internal structure of the receptive fields is the same but cells are 

positioned at non-corresponding points on the retina. The middle drawing is for 

phase shift model where cells are positioned at corresponding points on the retina 

but have phase difference. The right most drawing is for the hybrid model where 

both cells are positioned at non-corresponding points and have phase difference. 

 

Figure 3 Different models for disparity encoding cells: a. Position shift model, b. Phase 

shift model, c. Hybrid model. (Picture is taken from [19]) 
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Using phase difference in complex Gabor filters to decode disparity is not 

limited to models of complex cells using phase differences only. But complex 

Gabor filters have also been used for finding disparity from the region-based  phase 

differences between the left and right images [84]. Sanger filters the stereo image 

pair with different oriented and sized complex Gabor filters and by checking the 

regional similarities of phase of complex Gabor filtered images finds the 

corresponding regions. 

Potential problems with the use of phase as disparity encoder have been 

identified by Jenkin and Jepson [37] and Jepson and Fleet [38, 39]. If the stereo 

images are subjected to affine image deformations such as scaling or shifting with 

respect to one-another, at certain locations phase may not be stable through scale. 

These locations are referred to as singular points and can be identified in one of the 

two ways [37]: either they posses a central frequency which was very different from 

the central frequency of the Gabor used to filter the image, or they lacked a 

relatively constant amplitude term. It is suggested that those singular points should 

be discarded in correspondence analysis and methods of doing so is given in [37]. 

Using Multi Scale in Biological Dispar ity Encoding 

Since extensive physiological and psychophysical evidence implicates spatial 

filtering by cortical receptive fields that are responsive to a limited range of spatial 

frequencies, with the peak frequency (i.e. the value yielding maximum response) 

varying among cells, many models incorporate spatial filters of multiple scale or 

size to model the shift in peak spatial frequency [7]. In these models, small 

receptive fields (high spatial frequency) process small disparities, while larger 

receptive fields (lower spatial frequency) process progressively larger disparities.  

Marr et. al. [52] argue for a coarse to fine search procedure. Estimates are first 

computed at coarse scales. Once obtained, they are used as initial guesses for finer 

scale matching. Pollard et. al. [74] refines stereo correspondences by checking their 

behavior through scale. If they are all relevant at different scales, they keep the pairs 
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as correct matches, otherwise they discard these matches.  Inspired from the 

knowledge that humans can not compare spatial phase between frequencies more 

than two octaves apart, Sanger [84] combines disparities at different scales 

separated by two octaves using a weighting method. In [76] a simple method which 

averages over different scales is used. In [22] the energy responses at different 

scales are simply summed. This pooling helps the large responses near the correct 

disparity sum to produce even larger peak.  Anzai et. al. [1-2] model a binocular 

disparity representation in which disparity information is encoded by a group of 

cells in terms of phase disparity at each size or spatial frequency scale. 

2.3.4 Probabilistic stereo algor ithms 

Experiences show that disparity estimations from local phase-differences as been 

done in [84] are reliable near edges but yield poor results between them. In [27] a 

probabilistic lattice structure is proposed to fill unreliable regions which result after 

phase-based disparity estimation by using a simple smoothness constraint in the 

spirit of Markov random fields. The probability of being a pair is modeled by an 

exponential function (Eq 4) where the parameter is the usual local phase difference 

divided by the filter wavelength, k0 (Eq 5). But in this case while the phase 

difference method as used in [84] is limited to only small disparities, with the help 

of exponential, longer shifts can also be considered in this case. 
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In many other probabilistic algorithms which estimate the disparity map between 

the stereo images, usually the starting point is to maximize the conditional 

probability of disparity given stereo images. The main problem is how to calculate 

the conditional probability given only stereo image set. In [46] Gibbs’  distribution 
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is used to transform energy into probability. What is special in this study is that they 

consider point wise energy based on Markov Random Fields theory where it is 

proved that it is possible to estimate the disparity of a position, if all of the joint 

probability distributions between neighborhood disparities are known in advance. 

Assuming that the disparities in the neighborhood of a pixel are independent one 

another, the joint probability can be rewritten as the product of marginal 

probabilities of each disparity in the neighborhood. Myers, Wilson and Hancock 

applied their graph edit distance method to uncalibrated stereo correspondence 

problem where corrupted relational graphs are compared and matched [63]. In [59] 

a probability distribution function for disparity gradient is proposed for windowing 

operation. They formulated the relation between the maximum search space in the 

second image with respect to the relative displacement of the continuous edges in 

the successive scan lines of the first image.  In [71] his previous work [70] on 

matching edge images for robot localization is generalized. Using a probabilistic 

framework, his method considers the distance from each pixel in the template to the 

closest matching pixel in the image. The joint probability density function is 

approximated as the product of each individual probability distribution function, 

assuming that the distance measurements are independent. This study is also a good 

example in order to show the close relation between stereo matching and robot 

localization. 

2.4 Reconstruction from Multiple Images 

3D point clouds obtained by image matching are intermediate results and should be 

integrated into a 3D surface model. Methods that manipulate or create surfaces in 

the object space can be listed as follows: 

Surface fitting to organized data points: Besides the coordinates of the points, 

connectivity information is also available for each view. Usual surface fitting 

algorithms can directly be applied. 
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Surface fitting to unorganized data points: Surfaces are fitted to unorganized 

point cloud in the object space. A given initial mesh can be deformed by energy 

minimization, planar surface patches can be fit to 3D points defined by 

segmentation of color images, points can be clustered into regions of similar surface 

orientation for surface fitting to unorganized data.  In [29] iterative re-weighted 

least-squares is used where the surface primitives are small disks in 3D called 

“oriented particles” . Lelo� lu and Halici fit growing planar surfaces to 3D points 

[47]. 

Minimizing re-projection error  by optimization: The surfaces in 3D are 

obtained with no need to a prior image matching phase. For the purpose of 

maximization of multi-image correlation by changing parameters of a surface, in 

[28] an objective function defined over multiple images is minimized by moving the 

vertexes of a triangular mesh. 

Volumetr ic methods: Surfaces are obtained without explicit matching. In the 

space carving method, part of the space that contains objects is divided into voxels 

and outermost voxels of the volume are removed if they are not justified by the 

images [62]. When the volume does not shrink any more, a surface covering the 

volume is generated. There is no explicit surface model until the volume is 

generated. 

2.5 Biological Navigation and Robotic Applications 

Navigation means directing a ship to its destination. This includes three steps: 1. 

The navigator determines the ship’s position on a chart as accurately as possible. 2. 

On the chart, he relates his position to the destination, reference points and possible 

hazards. 3. Based on this info, he sets the new course of the vessel. As a similar 

approach, the steps of navigation in robotics can be listed as follows: 1. The robot 

finds where it is. 2. The robot discovers where the other places are with respect to it. 

3. The robot plans how to get to other places from where it is. 
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Since no system which has the flexibility and navigation performance of animals 

such as bees, ants, has been reached yet, this motivated robotics researchers to look 

for biological navigation mechanisms that can be implemented on an autonomous 

mobile robot. Researches on animals show that “where am I?”  is not the first 

question to ask [24]. The most important question is “how do I reach the goal?” 

Thus a new definition for navigation can be done as follows: Navigation is the 

process of determining and maintaining a course or trajectory to a goal location. 

Navigation can be completed with two successive stages: Local navigation and 

way finding. Local navigation can be achieved with minimal internal state and the 

agent chooses its actions on the basis of current sensory or internal information 

without the need of representing any objects or places outside the current sensory 

horizon. Whereas way finding involves the recognition of several places and the 

representation of relations between places which may be outside the current range 

of perception. Way finding requires internal structures that encode at least some 

aspects of the agent’s past experience of its environment. In animal world, 

invertebrates do not appear to memorize the spatial layout of their environment, and 

as a consequence, their way finding behavior may be restricted to homing and 

retracing familiar routes [75]. In contrast, there is evidence that higher vertebrates 

do learn the spatial layout of their environments enabling them to generate and 

follow more efficient paths to distant targets [75].  

2.5.1 Local Navigation 

There are four different types of local navigation in terms of Franz’s classification 

[24]. In terms of increasing complexity they are listed as follows: 

Search: Locomotion and goal detection is enough for this kind of navigation. 

The goal can be found by chance if the agent hits it while moving around. It is not 

efficient in terms of time. 
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Direction following: The agent must be able to align its course with a locally 

available direction to find the goal. The goal does not need to be perceivable during 

approach. If the agent displaced from the trail, it will miss the goal. E.g. ship setting 

its course along a fixed compass direction. Inspired from flying insects which are 

able to centre their flight path in a corridor by balancing image motion in their two 

eyes [11], a robot equipped with a wide angle camera follows the walls in a corridor 

by balancing the maximal flow on both sides and centering its course between the 

nearest objects.  

Aiming: An agent has to orient its body axis such that the goal is in front of it. 

The goal must be perceivable during approach. E.g. ship navigating to a widely 

visible light house. In [36] a robot with motion detecting camera is used in the same 

manner as flies do. When an isolated object passes from front to back during flight, 

the fly compensates for the optic flow created by the object by counter rotating until 

the object is brought in front of the insect where it creates no image motion.  

Guidance: the agent can be guided by spatial configuration of the surrounding 

objects. Spatial information is the relation between the current location, goal and 

current perceivable environment: E.g. A ship that tries to reach a fixed position 

between several islands. In [10] bees and ants are inspired where they store a 

relatively unprocessed snapshot of the surrounding panorama as seen from the goal. 

A robot with omni directional camera is used where the landmarks in the view are 

black regions on white background. From the difference between the image 

positions in the snapshot and the current view, a movement direction was computed 

to reduce the perceived difference.  

2.5.2 Way Finding 

Way finding can also be classified into three [24]: 

Recognition tr iggered response: Starting location triggers the activation of 

local navigation method leading to the goal. This can be taken as the elementary 
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step for building routes. There is no planning involved, as knowledge is limited to 

the next action to perform. If one route is blocked, the agent has to resort to a search 

strategy until it reaches a known place again. In  [81] hippocampus is viewed as an 

auto associative memory which stores a scene representation consisting of bearings 

and distances of the surrounding landmarks and of a goal location inspired from the 

idea that place cells in rat hippocampus discriminate between different parts of an 

environment. Place recognition is achieved by feeding the current scene into the 

associator which activates the stored scene memory if it matches the current scene. 

The stored direction and distance of the goal are activated together with the scene 

memory and could be used to directly drive towards the goal. 

Topological navigation: If the two routes pass through the same place, they 

have to be merged in topological navigation and this process is called route 

integration. A collection of integrated routes thus becomes a topological 

representation of the environment and this representation is usually a graph. Any 

vertex can become the start or the goal of a route such that in case of obstacles, 

alternative intersecting routes may be found which is a planning. Topological 

navigation is the combination of planning and route integration but it can not 

generate novel routes over unvisited terrain. In [54] inspired form experiments on 

rat navigation, a robot with a ring of ultrasonic sensor and a compass is used. As 

long as sensory conditions remain the same (ultrasonic sensors sense a corridor 

leading into south) robot executes a single behavior. A new behavior is triggered by 

arriving at a distinctive place showing a qualitative change of the immediate 

environment such as a corner or a dead end.  

Survey navigation: It requires the embedding of all known places and of their 

spatial relations into a common frame of reference. Spatial representation must be 

manipulated and accessible as a whole. E.g. finding shortcuts in unknown terrain 

between unconnected routes. Survey navigation is limited to vertebrates. The 

complicated navigation behavior of vertebrates is still less understood so that most 

corresponding biomimetic approaches have to remain on a very abstract level. Some 
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exceptions are the models of the rat hippocampus that can draw on a large number 

of neurophysiological investigations where a cognitive map is thought to be stored 

in the hippocampus [24]. However still there are different views for the exact role 

of hippocampus in navigation. But the concept of cognitive map is highly 

appreciated. Since cognitive map construction is one of the main purpose of this 

thesis this subject will be investigated more in the following sub-section. 

2.5.3 Cognitive Maps 

Goal independent memories of spaces which are very important for topological and 

survey navigation can be used for many different routes and these goal independent 

memories of space are called cognitive maps. In cognitive map route description is 

in this manner: “ if you want to go to B, you should turn left” . Thus cognitive maps 

can be used as a route planning stage or short cut finding which are the abilities of 

higher vertebrates only. Hippocampus is known to be the place for cognitive maps 

and many physiological experiments have been done on rat hippocampus in order to 

get more information about cognitive map structure.  

In [31], starting from insect homing mechanism, higher vertebrate map 

construction and shortest path discovery is modeled by neural networks. In [49] 

physiological modeling of hippocampus is used for cognitive map modeling. A cell 

growing ability network is constructed where different type of cells and layers of 

these cells such as landmark cell layer, place cell layer are modeled. The creation of 

place cell requires that at least three landmarks are nearby and visible to the agent. 

Each place cell is laterally connected to some place cells neighboring to it. The 

place fields of all place cells cover and partition an explored environment. As the 

agent moves, it keeps track of the place where it is currently situated and the place it 

previously was. Route finding is based on the traveling experience that is coded in 

the weights of lateral connections between place cells. For finding the shortest path 

an activation spreading process is used. In [79] a learning procedure is added on the 

links of the cognitive map which enables to reinforce particular paths, and to forget 
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others, allowing for an adaptation to a changing perception of the environment, as it 

is gradually discovered by the animate. The map is also associated with a 

motivational system so that the most interesting places can be linked with the 

appropriate motivation. The learning rule includes the activity of the cells and the 

external reinforcement that appears when the animate enters or leaves a difficult or 

dangerous area. When a particular need has to be fulfilled, the associated motivation 

triggers the activation of the appropriate neuron in the cognitive map. The activity 

then diffuses along the route to be followed for reaching the goal.  

2.6 Robotic Mapping 

In this section, different models of cognitive maps used in robotic research and 

problems faced in robotic mapping algorithms are summarized. In the last sub-

section, simultaneous localization and mapping is explained. 

2.6.1 Taxonomy of robotic mapping 

Metr ic versus Topological Mapping 

Robotic mapping research has a long history. In the 1980s and early 1990s, the field 

of mapping was widely divided into metric and topological approaches. Metric 

maps capture the geometric properties of the environment, whereas topological 

maps describe the connectivity of different places. An early representative of the 

former approach was occupancy grid mapping algorithm which represents maps by 

fine-grained grids that model the occupied and free space of the environment. 

Topological maps represent environments as a list of significant places that are 

connected via arcs. Arcs are usually annotated with information on how to navigate 

from one place to another. Topological models may suit constrained environments 

of corridors and tunnels that are easy to segment into the vertices and edges of a 

graph representation but be less suited to open terrain.  

In animate artificial intelligence research on way finding, metric and topological 

maps are referred to as quantitative and qualitative spatial models respectively. 
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Qualitative models of spatial layout have an important advantage over route 

knowledge, in that they allow the agent to generate novel routes (using known path 

segments). However, such models do not allow the determination of ‘straight-line’  

routes or of short cuts that cross unexplored terrain –such skills require knowledge 

of the quantitative spatial relations, direction and distance, between locations. In 

view of the importance of effective way finding to autonomous agents this is a very 

significant point in favor of the use of quantitative spatial knowledge.  

One of the basic studies of topological mapping is Franz et. al.’s learning view 

graphs [23]. In their study, view graph approach from the mazes of Schölkopf and 

Mallot [88] is extended to open environments. Humans are able to navigate in 

unknown environments after presentation of sequences of connected views. This 

has led to the concept of a view graph. A view graph is defined as a topological 

representation consisting of local views and their spatial relations. Depending on the 

task, these relations can be, e.g., movement decisions connecting the views, or mere 

adjacencies. Since open environments do not impose a structure on the view graph, 

a set of views have to be selected and the connections between them have to be 

found. In their study the vertices of the acquired view graph are panoramic views of 

the environment and its edges are connections between views that can be traversed 

using a visual homing procedure. Since only visual information is used here, it must 

be guaranteed that the recorded views are sufficiently distinct. During exploration, 

the system constantly checks whether the current view becomes similar to the 

already recorded snapshots. This again is a view classifier as used for the selection 

of the snapshots. In a second step, the system checks whether the detected snapshot 

is not yet connected to the vertex from which the current exploration step started. 

Whenever these conditions hold, the system tries to home to the snapshot. If 

successful, an edge connecting the two vertices is included, and the exploration 

continues from the detected snapshot. In cases where the robot gets lost or bumps 

into obstacles, a non-edge is recorded between both vertices thus preventing the 

failed action from being repeated. During exploration, the infrared sensors of the 
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robot are continuously checked for the presence of nearby objects. If obstacles are 

detected at distances larger than 1cm, the robot tries to turn away without slowing 

down. Smaller distances are interpreted as collisions causing the robot to back up 

and turn away from the obstacle. 

In grid-based (metric) paradigm, environments are represented by evenly spaced 

grids [60]. Each grid cell may include the presence of an obstacle in the 

corresponding region of the environment. If the position of a mobile robot can be 

tracked accurately (however usually accumulated error exists), different positions 

for which sensor measurements look alike are naturally disambiguated. Nearby 

geometric places are recognized as such, even if the sensor measurements differ. 

Grid based approaches suffer from complexity especially when the resolution of a 

grid must be fine enough to capture every important detail of the world. 

In [91] grid-based map (discrete, 2D occupancy grids) is converted to a 

topological map. Each grid cell <x,y> in a map has attached a value of belief that 

this cell is occupied. Belief is defined as whether or not the center of the robot can 

be moved to the center of that cell. Occupancy values are determined based on 

sensor readings where sonar interpretations must be integrated over time to yield a 

single, consistent map. Using Bayesian approach and conditional independence 

approximation, integration over time for sonar sensors are obtained.  In the presence 

of odometric errors maps are usually less accurate. In their study, wheel encoders, 

map matching and wall orientation information are integrated in order to minimize 

position error. After obtaining the grid-based map the following algorithm is 

applied to convert it to a topological map: First each occupancy value in the 

occupancy grid is thresholded. Then Voronoi diagram is constructed and critical 

points on the Voronoi diagram, which are the points that minimize clearance 

locally, are found. Critical lines are obtained by connecting each critical point with 

its basis points. These critical lines partition the free-space into disjoint regions. 

Finally, the partitioning is mapped into an isomorphic graph. Each region 

corresponds to a node in the topological graph, and each critical line to an arc. 
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The distinction between metric and topological has always been fuzzy, since 

virtually all working topological approaches rely on geometric information. In 

practice, metric maps are finer grained than topological ones. Higher resolution 

comes at a computational price, but it helps to solve various hard problems, such as 

the correspondence. 

Many quantitative navigation systems seek to construct maximally accurate 

metric world models. Such an aim can justify the construction of a unified model, 

into which all available observations are integrated, as the most efficient way to 

minimize errors in estimates of spatial position. However, from the point of view of 

a navigator, accuracy may not be the key criterion for determining the adequacy of 

its spatial knowledge [75]. This is shown by recognizing that effective way finding 

rarely needs an accurate assessment of the position of a remote target – a navigator 

who begins with just a coarse estimate of the required heading can ‘home in’  on the 

distant goal by making successive corrections based on incoming perceptual data 

[75]. Rather than seeking to maximize accuracy, the animate artificial intelligence 

approach emphasizes strategies for coping with the inevitable error and uncertainty 

attached to acquired knowledge.  

World-centr ic Versus Robot-centr ic Mapping 

Historically, a second taxonomy of mapping algorithms is world-centric versus 

robot-centric. World-centric maps are represented in a global coordinate space. The 

entities in the map do not carry information about the sensor measurements that led 

to their discovery. Robot-centric maps, in contrast, are described in measurement 

space. They describe the sensor measurements a robot would receive at different 

locations. At first glance, robot-centric maps might appear easier to build, since no 

‘ translation’  of robot measurements into world coordinates is needed. However, 

robot-centric maps suffer two disadvantages. First, it is often difficult to extrapolate 

from individual measurements to measurements nearby, unexplored places –an 

extrapolation that is typically straightforward in world-centric approaches. Second, 
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if different places look alike, robot-centric approaches often face difficulties to 

disambiguate them, again due to the lack of an obvious geometry in measurement 

space. For these reasons, the dominant approaches to date generate world-centric 

maps. For example in [75], a quantitative model of environmental layout is 

achieved by integrating observations from different egocentric view-points into 

representations with respect to environment-centered co-ordinate frames.  

2.6.2 Problems in Robotic Mapping 

Sensor  Problems 

To acquire a map, robots must possess sensors that enable it to perceive the outside 

world. Sensors commonly brought to bear for this task include cameras, range 

finders using sonar, laser, and infrared technology, radar, tactile sensors, compasses, 

and GPS. However, all these sensors are subject to errors, often referred to as 

measurement noise. More importantly, most robot sensors are subject to strict range 

limitations. For example, light and sound cannot penetrate walls. These range 

limitations makes it necessary for a robot to navigate through its environment when 

building a map.  

The motion commands (controls) issued during environment exploration carry 

important information for building maps, since they convey information about the 

locations at which different sensor measurements were taken. Robot motion is also 

subject to errors, and the controls alone are therefore insufficient to determine a 

robot’s pose (location and orientation) relative to its environment. A key challenge 

in robotic mapping arises from the nature of the measurement noise.  

Modeling problems are usually relatively easy to solve if the noise in different 

measurements is statistically independent. If this were the case, a robot could 

simply take more and more measurements to cancel out the effects of the noise. 

Unfortunately, in robotic mapping, the measurement errors are statistically 

dependent. This is because errors in control accumulate over time, and they affect 
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the way future sensor measurements are interpreted. Accommodating such 

systematic errors is the key to building maps successfully, and it is also a key 

complicating factor in robotic mapping. Many existing mapping algorithms are 

therefore surprisingly complex, both from a mathematical and from an 

implementation point of view. 

Size Problem 

The second complicating aspect of the robot mapping problem arises from the high 

number of the entities that are being mapped. A detailed two-dimensional floor 

plan, which is an equally common representation of robotic maps, often requires 

millions of numbers.  

Correspondence Problem 

A third and possibly the hardest problem in robotic mapping is the correspondence 

problem also known as the data association problem. The correspondence problem 

is the problem of determining if sensor measurements taken at different points in 

time correspond to the same physical object in the world. The correspondence 

problem is difficult, since the number of possible hypotheses can grow 

exponentially over time. Although the correspondence problem was basically 

ignored in the robot mapping community, in recent years it has emerged. 

Dynamism Problem 

Fourth, environments change over time. Some changes may be relatively slow, such 

as the change of appearance of a tree across different seasons, or the structural 

changes that most office buildings are subjected to over time. Others are faster, such 

as the change of doors status or the location of furniture items, such as chairs. Even 

faster may be the change of location of other agents in the environment, such as cars 

or people. The dynamism of robot environments creates a big challenge, since it 

adds yet another way in which seemingly inconsistent sensor measurements can be 
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explained. To see, imagine a robot facing a closed door that previously was 

modeled as open.  

There are almost no mapping algorithms that can learn meaningful maps of 

dynamic environments. Instead, the predominant paradigm relies on a static world 

assumption, in which the robot is the only time-variant quantity (and everything 

else that moves is just noise). Consequently, most techniques are only applied in 

relatively short time windows, during which the respective environments are static. 

Exploration Problem 

A fifth and final challenge arises from the fact that robots must choose their way 

during mapping. The task of generating robot motion in the pursuit of building a 

map is commonly referred to as robotic exploration. While optimal robot motion is 

relatively well-understood in fully modeled environments, exploring robots have to 

cope with partial and incomplete models. Hence, any viable exploration strategy has 

to be able to accommodate contingencies and surprises that might arise during map 

acquisition. For this reason, exploration is a challenging planning problem, which is 

often solved sub-optimally via simple heuristics. When choosing where to move, 

various quantities have to be traded off: the expected gain in map information, the 

time and energy it takes to gain this information, the possible loss of pose 

information along the way, and so on. 

2.6.3 Simultaneous Localization and Mapping 

Since the 1990s, the field of robot mapping has been dominated by probabilistic 

techniques. A series of seminal studies introduced a powerful statistical framework 

for simultaneously solving the mapping problem and the induced problem of 

localizing the robot relative to its growing map.  Since then, robotic mapping has 

commonly been referred to as SLAM or CML, which is shortest form for 

simultaneous localization and mapping, and concurrent mapping and localization 

respectively.  
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Some probabilistic approaches employ Kalman filters, expectation maximization 

(EM) algorithm etc. [91]. These approaches specifically address the correspondence 

problem in mapping, which is the problem of determining whether sensor 

measurement recorded at different points in time correspond to the same physical 

entity in the real world. A third family of probabilistic techniques seek to identify 

objects in the environment, which may correspond to ceilings, walls, doors that 

might be open or closed, of furniture and other objects that move. Usually such 

probabilistic algorithms are off-line and can not be run in real time. A real time 

incremental EM in order to obtain map for cyclic environment is suggested in [92]. 

The mapping is formulated as a maximum likelihood estimation problem in the high 

sized space of all grid maps. The estimation is carried out using the expectation 

maximization algorithm. In their study the key feature is the forward modeling of 

the physical sensors. Forward models describe the physics of the environment, from 

causes (occupancy) to effects (measurement). In their study, the forward model is a 

mixture model specific to range finders, such as sonar sensors. The optimization 

begins with an entirely unoccupied map. EM then iterates two steps, an expectation 

step (E step) and a maximization step (M step), thereby gradually increasing the 

likelihood of the data until a local maximum is reached. The E step calculates the 

expected correspondences for a given map. These expectations are simply the 

probabilities for each of the possible “causes”  of the sensor measurements. The M 

step generates a new map for a fixed set of expectations by minimizing an energy 

function. In [89], first scale invariant features are detected from the images obtained 

by triclops camera system and their coordinates in 3D are found after matching 

corresponding pairs. Then successive frames are matched and displacements of 

these landmarks through time are found. Finally, ego-motion is calculated using 

least squares minimization. Also in [14] SLAM is implemented with stereo vision 

where repeatable long term localization is achieved using only naturally occurring, 

automatically detected features. 
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2.7 Vir tual Environment Applications 

Real robotic applications are very complicated because besides the problems of 

finding how the robot should behave to complete the task at hand, the problems 

faced while controlling the robot’s internal parameters brings high computational 

load. The problem to be solved is not only the navigation procedure but also to 

move the robot to the desired location by making the wheels turn or feet step in a 

balanced way.  Thus, first working in a simulated environment in order to find the 

strategy to be followed by the robot and then applying this on real robot for real 

applications is preferable. Thus, many studies prefer to work on simulations while 

producing their algorithm. After reaching a high level of performance, the 

algorithms could then be applied on real robots, of course, with necessary 

modifications.  

In Terzopoulos and Rabie [80,90] biologically inspired active vision system is 

implemented on artificial fishes in a virtual environment. Each eye of a fish is 

implemented as four coaxial virtual cameras to approximate the spatially 

nonuniform, foveal/peripheral imaging capabilities typical of biological eyes. The 

system consists of two modules: a foveation module and a stabilization module. 

These enable the artificial fish to stabilize the visual target in its field of view, 

foveate the target, and visually navigate towards the target. In Jerbic et. al. [41] the 

planning of intelligent robot behavior in simulated environment is investigated. 

Action plan and work space structure, are stored in a list and in a shadowed neural 

network respectively. In [87] simulation of the environment and a virtual camera 

taking snapshots from this environment are used to improve a real robot’s self-

localization where real camera snapshots are taken by an on-board camera. In [55] 

simulation of a corridor world is constructed. A real robot is run by an operator to 

obtain images. Real images are inserted into virtual corridors as texture. Then 

virtual and real robots are let to move. Robots compare what they see and what they 

memorized and then move accordingly. In [97], computer simulations are used to 

compare exploration efficiency in a 3D field with cognitive map, without cognitive 
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map and with random exploration. In Quoy et. al. [79] a learning procedure is added 

on the links of the cognitive map which enables to reinforce particular paths, and to 

forget others, allowing for an adaptation to a changing perception of the 

environment, as it is gradually discovered by the animate. In [69] a humanoid robot 

which has stereo vision system and a 3D environment are simulated as a computer 

program. The algorithm for the problem of vision based behavior consisting of local 

map generation, planning and navigation is developed in simulation and then it is 

applied on real robots. Image processing to obtain RGB color, depth and optical 

flow are present where the robot’s duty is to find and track a red ball.  
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CHAPTER 3  

BIOLOGICAL STEREO VISION WITH MULTI  SCALE 
PHASE BASED FEATURES 

3.1 Introduction and Motivation 

In this part of the thesis we propose a sparse disparity algorithm. Instead of corners 

which are very sparse, we prefer edges of high information as features to be 

matched. We inspired from the work of Ludke and Hancock [51] in finding our 

features. In their study, population coding of a bank of 8 complex Gabor filters of 

different orientation is used to extract features. The orientation selective complex 

cells found in a cortical hyper column are modeled by the response moduli of a 

bank of complex Gabor filters. The local maximum search in order to obtain 

distinctive points is performed and only points of high contrast and high certainty 

“survive” . These points are usually located at object boundaries. 

In our algorithm we used multi-scale phase information in order to match our 

sparse features. In doing this, we inspired from the biological disparity encoding 

cell models where phase is used to encode disparity. In the experimental studies of 

Anzai et. al. [1, 2, 3] phase shift model of binocular cell was proposed. In their 

model receptive fields of a binocular cell are at the same position in the two eyes 

but have phase differences. Their study also shows that besides phase shift model, 

position shift model is also available with the general receptive field structure of 

simple cells. In the position shift model, the receptive field profiles are assumed to 
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have identical shape in the two eyes, but are centered at non-corresponding points 

on the retina.  

Using phase difference in complex Gabor filters to decode disparity is not 

limited to models of complex cells using phase differences only. Jenkin and Jepson 

[37-39] and Sanger [84] describe promising methods based on the output phase 

behavior of band-pass Gabor filters.  Fleet, Jepson and Jenkin [39] discuss further 

justification for such techniques based on the stability of band-pass phase behavior 

as a function of typical distortions that exist between left and right views. Recently, 

Carneiro and Jenkin provide multi-scale phase-based stable features [8, 9].  

Our approach is as follows: We commence from feature points detected using 

steerable filtering method [26] as being done in [18]. With this method, we have 

feature points with orientation information. Next, phase at different scales are 

calculated and a phase vector is formed for each feature point. Then, 

correspondences are estimated using the similarity of phase at multiple scales where 

magnitude is used as weighting. In this way we avoid the singular points 

encountered in the method of Jenkin and Jepson [38-39]. After calculating disparity 

from the positional difference between corresponding points, fine-tuning in 

disparity is performed using the phase difference information. We also propose a 

probabilistic model for corresponding point matching. In the following sections, 

extraction of features using population coding by the method of Ludke [51], our 

feature extraction method using steerable filters, disparity estimation, fine tuning in 

disparity, depth calculation and our probabilistic model are explained in the given 

order. Also the flow chart of our stereo vision algorithm is given in Figure 2.  

3.2 Feature Extraction by Population Coding Method 

Gabor filters (Eqs 6,7) are well known models of orientation selective cells in striate 

cortex [13]: 
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 Eq 6 

  Eq 7 

Here xσ , yσ  express width of 2D Gaussian envelope along x and y direction 

which can be considered the radius of the receptive field, 0ω is the spatial frequency 

and θ  gives the orientation in space. 

Experiments show that adjacent simple cells have the same orientation and 

spatial frequency, but are in quadrature pairs (i.e. they differ in spatial phase by 90o) 

[15]. Thus a simple cell pair can be expressed by a complex Gabor filter which can 

encode phase: 
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Although it is clear that cortical neurons are capable of responding to a diversity 

of feature contrast patterns, orientations and scales, combinational models of how to 

combine these responses have also proved quite elusive. Gabor filter banks provide 

rather coarse estimates of feature orientation unless the full range of orientations is 

sampled with a large number of filters, which is obviously highly inefficient. 

Recently, however, there has been a suggestion that neuronal ensembles of the sort 

encountered in cortical hyper columns can be conveniently encoded using a 

population vector [32]. When population coding is used to represent the convolution 

responses of the filter bank, the outputs of only a small number of filters need to be 

combined in order to achieve a considerable improvement of the precision of 

orientation estimation. In fact, population coding has become an essential paradigm 
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in cognitive neuroscience over the past decade and is increasingly studied within the 

neural network community. In the vision domain, in [96] a model of population 

vector coding of visual stimulus orientation by striate cortical cells is examined. 

Based on the ensemble of broadly orientation-tuned units, the model explains the 

high accuracy of orientation discrimination in the mammalian visual system.  

Inspired from all these findings, the orientation selective complex cells found in 

a cortical hyper column are modeled by the response moduli of a bank of eight 

complex Gabor filters by Ludke and Hancock [51]. From the output of the filter-

bank, a population vector is computed as: 
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where (x,y) is  the position of the pixel in the image, n is the number of different 

orientation states, ),,,( 0 iyx θωG  is the complex response (energy) of a quadrature 

pair of  Gabor filters with orientation iθ  and ie  is the unit vector in the direction iθ . 

Here, the population vector is the vector sum of the n=8 filter response vectors and 

the resultant orientation is given by: 

[ ]),(/),(arctan),( yxpyxpyx xypop =θ    Eq 10 

It is very interesting that simple vectorial addition of the individual filter 

responses produces a population vector which accurately encodes the orientation 

response of the hyper columnar ensemble. Although each individual filter has very 

broad orientation tuning, the vectorial combination of the set of responses can yield 

a much better estimate of local stimulus orientation. Also a certainty measure, 

C(x,y),  is calculated which characterizes the reliability of the orientation 

measurement independent of contour contrast [51]. Certainty is defined as the 

angular variance of the response energy distribution. This allows distinguish 

contour points from noisy regions. The local maximum search in order to obtain 
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distinctive points, is performed on the product of certainty and response energy, 

),(),( yxCyxp . As a result only points of high contrast and high certainty 

“survive” . These points are usually located on object boundaries.  

In Figure 4 we show a stereo image pair and feature points obtained from these 

images using the method explained above. The estimated orientation for each 

feature is given in colors. 
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(a) (b) 

  

(c) (d) 

Figure 4 a,b. Stereo image pair (Blocks 1) taken from CMU database, c,d. Corresponding 

feature points with orientation given in color scale. In this case population coding method 
has been used. 

3.3 Feature Extraction Using Steerable Filters 

Keeping the same idea of orientation selective cells and hyper column structure in 

the visual cortex which was modeled in the population vector method given in the 

previous subsection, feature points used in our study are found by using steerable 

filters as been done in [18].  
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Steerable filters are template filters whose arbitrarily rotated versions can be 

synthesized by taking linear combinations of finite number of basis filters.  

Steerable filters are attractive as it allows one to work in continuum of orientations. 

All Gaussian derivatives are steerable and the orientation selectivity of the filter 

increases with the increasing derivative order m [26]. The analytic filter )(xh  

(Figure 5) to be used as the template filter is constructed from the filters provided in 

the appendix [26] as follows where x =(x,y) is the pixel location in the image I: 
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  Eq 11 

For the multi-scale framework used in this study, )(xg  is chosen to be 4th 

derivative of a Gaussian, which is a steerable filter and )(xq  is chosen to be a 

steerable approximation to the Hilbert Transform of )(xg . For an arbitrary 
�
, )(xθg  

can be synthesized using 5 basis filters of 0˚, 36˚, 72˚, 108˚, 144˚ as in Eq 12, and 

)(xθq  can be synthesized using 6 basis filters of 0˚, 30˚, 60˚, 90˚, 120˚, 150˚ as in 

Eq 13 where 
iθR is the rotation matrix. Scaling is done at three levels where the 

interval between the minimum scale and the maximum scale is divided linearly in 3 

intervals. In this study filter widths vary between six pixels and 18th pixels. 
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(a) 

 

(b) 

Figure 5 The template filter used in analysis. a. The real part which is the 4th derivative of 

Gaussian, b. The Imaginary part which is a steerable approximation to the Hilbert transform 
of the real part. 

After defining the filters, as the first step, the image is filtered with basis filters at 

three different scales and at each scale these are used to interpolate the filtered 

images of orientation between 0º to 180º with 10º degrees of interval by using 

equations 12 and 13. Then, the orientation estimation, )(
~

xθ , is done as follows:  

�
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=
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n
nr

1
, )(maxarg)(

~
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θ
θ     Eq 14 

where )(, xθnr  is the response of steerable filtering for scale n and orientation  
�
 

and S is the number of scales. At the final step, �
=

S

n
n

r
1

~
,

)(xθ  is thresholded and 

feature points are extracted. For the stereo pair given in Figure 4 the feature points 

are obtained and shown in Figure 6 with their orientation in color. 
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(a) (b) 

Figure 6 Feature points obtained by steerable filtering for the Blocks 1 stereo image pair 

given in Figure 4. The orientation is given in color scale. 

In population coding method [51] explained in the previous section, the images 

are filtered with 8 different oriented complex Gabor filters at a predefined 

wavelength. Since only one scale is considered this makes 16 times filtering. 

Population vector for each pixel location is calculated by summing the 8 different 

oriented complex filter responses. Also a certainty measure is calculated for each 

pixel. Feature points are selected to be the local maximum of the product of 

population vector magnitude and certainty. 

In steerable filtering method used in our study, 5 and 6 orientations are 

considered for the real and the imaginary part of the complex filter respectively. In 

this case any number of scaling is allowed and this makes (5+6)*n filtering where n 

is the number of scales allowed. In order to find the best representative orientation 

for each pixel, filter responses are calculated for each scale for the interval between 

0˚ and 180˚ with 10˚ steps using the already obtained filter responses.  The 

orientation of a pixel location is selected to be the orientation which gives the 
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maximum sum of responses over scales. Feature points are selected using global 

thresholding over the sum of responses at the estimated orientations.   

Both of these methods use very similar filters however the population vector 

method [51] is single scale but the steerable filter method used in our study is multi-

scale. In order to show the importance of using multi-scale in extracting features, 

we show feature points extracted using steerable filters with different number of 

scales in Figure 7. 
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(a) (b) 

  

(c) (d) 

Figure 7 Feature points extracted using filters at different number of scales. a. Single scale 

where width of the filter is 6 pixels, b. Single scale where width of the filter is 18 pixels, c. 
Three scales where filter widths are 6, 12 and 18 pixels, d. Five scales where filter widths 

are 6,10,14,18,22 pixels. 



 56 

3.4 Finding Corresponding Pairs Using Multi-scale Phase 

The main attributes used in this thesis for the corresponding pair matching of 

feature points are multi-scale phase and amplitude. While extracting the feature 

points as explained above we also obtain orientation information for each feature 

point. Using this orientation information we calculate phase at each feature point as 

follows:  
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Here, the quantity iφ  is the phase at feature point i, ))(( , inrreal xθ  and 

))(( , inrimag xθ  are real and imaginary parts of the filtered image respectively where 

ix  is the coordinate of feature point i, n and 
�
 are the scale and orientation of the 

filter applied at feature point i. We use the phase measurements for filters of 

different width, i.e. different scales, to locate correspondences. We use three filters 

where the width of the narrowest filter is six pixels and the largest filter is 18 pixels. 

Let [ ]T
i 321 φφφ=

�
 be a vector of phase estimates obtained using these filters. For 

each feature point at the left image, we search over a window for feature points of 

similar phase vector in the right image.  

We measure the similarity of phase vectors by taking the dot product of the 

phase vectors (Eq 16). The candidate ĵ  which has the largest weighted phase vector 

dot product with feature point i is the one that satisfies the condition. In Eq 16, •  is 

used for vector dot product and *  is used for element by element vector product. 

Weighting vector Cij (Eq 17) is constructed by using the method described in [84]. 

Each element n
ijc  shows how similar the magnitudes of feature points i and j at scale 

n (Eq 18). Hence, it is the confidence value of the pair i-j. 
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The matching algorithm explained above is cross checked for left to right 

correspondences and right to left correspondences. In this way, we may discard 

occluded feature points and unsafe matches. For the stereo pair shown in Figure 4 

we find correspondences for 537 out of 980 feature points in the right-hand image. 

3.5 Finding Dispar ity and Depth 

Once the cameras are calibrated, that is, the internal parameters of cameras like 

focal length and principle point, and the camera pose (the position and orientation 

of the camera in a given common coordinate system) are known, the 3D coordinate 

of a point can be found, if its projections on at least two images are available.  

Assuming that corresponding points are available, 3D location of the point P can 

be found by finding the intersection point of the lines passing through the camera 

center and the projection of P in the images. In Figure 8 the projection of point P on 

left and right images are denoted by P1 and P2. The lines starting from the projection 

points and passing through the camera lenses converge at point P.  In this case, 

cameras are assumed to be parallel thus epipolar lines are aligned and in the 

horizontal direction. Epipolar lines are the intersection of the image planes with the 

plane formed by the focal centers and the object point.  
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In rectified pairs, i.e. epipolarly aligned images, the difference between the 

projections of the point P on the image planes is known as the disparity, � , and is 

inversely proportional to the depth which is the distance of the object point to the 

reference camera. In our case depth can be calculated as follows: 

d=b*f/�      Eq 19 

where d is the depth of the point P in the space, i.e. the distance of point P from the 

plane of the lenses, b is the baseline, i.e. distance between the two lenses, f is the 

focal length of the lenses, i.e. the distance of the imaging plane (retina in the human 

eye) to the lenses, �  is the disparity of point P, i.e. the distance between the 

projection of point P on two image planes.  

 

Figure 8 Stereo camera projection system. 

In this study, we also work on stereo image pairs where parallel cameras are 

used. This means that the epipolar line is in the horizontal direction and the 

disparity is the horizontal pixel distance between corresponding feature point 
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locations, i.e. 
ji xx ˆ−=δ . This disparity calculation is also in parallel to the models 

of binocular disparity selective cells where there exists position shift between the 

receptive fields of binocular cells [15].  

The disparity values calculated for the stereo pair given in Figure 4 are displayed 

in Figure 9. Out of the 537 matched feature points only 62 are in error, hence the 

success rate is 90%. Most of the errors are for feature points having a population 

vector orientation in the disparity direction. 

 

Figure 9 Disparity estimated for the Blocks 1 image pair. 

In order to obtain sub pixel accuracy, we apply a fine tuning on the rough 

disparity values. In fine tuning, the phase shift model of binocular cell receptive 

fields is mimicked [15]. The amount of fine tuning ( δ∆ ) is calculated from the 

intraocular phase differences between corresponding points as follows:  
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πλφδ 2/* nn
ij=∆     Eq 20 

Here n
j

n
i

n
ij φφφ −=  is the measured phase difference at scale n between 

corresponding feature points where i and j are the corresponding feature point 

indenties and nλ  is the wavelength used at scale n. In this way, the rough disparity 

estimate expressed by integer number of pixels is tuned by the phase shift model 

and sub pixel disparity, D, is calculated as follows:  

δδ +∆=D      Eq 21 

In order to express the effect of fine tuning, the rough disparity and fine tuned 

sub pixel disparity calculated on the edge-segment shown by an arrow in Figure 9 

are shown in Figure 10. Here, x-axis of the plot is for the feature points on the edge 

where neighboring feature points are given successive numbers starting from one 

and y- axis is the disparity. The ground truth disparity changes from 13 pixels to 9 

pixels on this edge. The rough disparity for each feature point is given by ‘ * ’  and 

the fine tuned disparity is given by line. As can be seen on the figure, rough 

disparities are in integer numbers and have a stair shaped structure whereas fine 

tuned sub-pixel disparity varies smoothly. 

 

 

Figure 10 Fine tuning. Feature points are numbered starting from the left-most one through 

the right-most one and given in the x-axis of the plot. y-axis shows the disparity where 

rough disparity is given with (* ) and fine tuned disparity given with line.   
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Disparity results for other image pairs are shown in Figures 11-14. Also, the 

results are summarized in Table 1. Total number of feature points extracted from 

the right image of the stereo pair, the number of pairs matched, the number of 

wrong matches among matched pairs and the success rate over number of matched 

pairs, i.e. the percentage of correct matches over total number of matched pairs, are 

given in the successive columns of the table from left to right for each stereo pair. 

Although the image pairs have very different characteristics, the results are still 

satisfactory. Especially for textured locations in the images, features extracted and 

multi-scale phase are very informative so that success rate is high.  
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(a) (b) 

 

(c) 

Figure 11 a. Left image, b. Right image, c. Disparity. Stereo images (Blocks 2) are taken 

from CMU stereo database.  
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(a) (b) 

 

(c) 

 

(d) 

Figure 12 a Left image, b. Right image, c. Disparity. Stereo images (Venus stereo pair) are 

taken from Middlebury Stereo webpage.  
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(a) (b) 

 

(c) 

 

(d) 

Figure 13 a. Left image, b. Right image, c. Disparity. Stereo images (Sawtooth stereo pair) 

are taken from Middlebury Stereo webpage.  
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(a) (b) 

 

(c) 

 

(d) 

Figure 14 a. Left image, b. Right image, c. Disparity. Stereo images (Tsukuba stereo pair) 

are taken from Middlebury Stereo webpage. 
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Table 1 Success rate of the algorithm for different stereo pairs. 

Image pair Number of 
feature points 

extracted 

Number of 
pairs 

matched 

Number of 
mismatches  

Success rate (%) over 
number of matched pairs 

Blocks 2 3847 1265 340 73 

Venus 1884 1163 65 94 

Sawtooth 4288 2938 140 95 

Tsukuba 4088 2089 352 83 

 

In [95] some feature point matching strategies are compared. In their study they 

use corners detected by Plessey operator [34] as features and apply variance 

normalized correlation method for matching where the constraints of uniqueness 

and symmetry are considered also. They select correct matches manually and 

provide success rates for different stereo image pairs. The only stereo pair in their 

study which has horizontal as epipolar line is the Tsukuba image pair and they reach 

a success rate of 71.7% for it whereas we reach 83% success rate with our matching 

algorithm for the same stereo pair.  

Also in [93] corners are detected by Harris corner detector and features are 

matched based on proximity and similarity of their neighborhood. Matches for 

nearly 50% of the total features are estimated and RANSAC algorithm [20] is used 

in order to find the outliers where the success rate for the matching comes out to be 

50% for most of the images used in their study.  

Also, fine tuning result for some part on the edge shown by an arrow in Figure 

12.d is given in Figure 15. Here, x-axis of the plot is for the feature points on the 

edge where neighboring feature points are given successive numbers starting from 

one and y- axis is the disparity. The ground truth disparity changes from six pixels 

to seven pixels on this part of the edge. The rough disparity for each feature point is 
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given by ‘ * ’  and the fine tuned disparity is given by line. As can be seen on the 

figure, rough disparities of feature points are in integer numbers and same for all 

feature points although they are slanted and should have slightly different disparity 

values. Fine tuned sub-pixel disparity varies smoothly starting from just above six 

pixels and extends to seven pixels. 

 

Figure 15 Fine tuning. Feature points are numbered starting from the left-most one through 

the right-most one and given in the x-axis of the plot. y-axis shows the disparity where 
rough disparity is given with (* ) and fine tuned disparity given with line.   

In order to show the importance of using multi scale instead of single scale in 

matching, we present disparity maps obtained using a single scale and three scales 

in Figure 16. In both cases left to right and right to left double checking is 

performed in order to get only relevant results. In the top image of  Figure 16 result 

given is in the case when only a single scale phase is used in matching. In the 

bottom image results when multi-scale is used. Using multi-scale phase brings more 

reliable results with more number of points. 
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(a) 

 

(b) 

Figure 16 Disparity calculated for Sawtooth stereo pair using: a. Single scale where filter 

width is six pixels, b. Three scales where filter widths are 6, 12 and 18 pixels.  
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3.6 Complexity of the Algor ithm 

There are four main steps in the algorithm. These steps are filtering of the image 

with steerable filters at three scales, thresholding in order to select feature points, 

checking similarity in multi-scale phase in order to find corresponding pair and fine 

tuning. Each of these steps is summarized below. 

Filtering: 

for i=1:N, 
for j=1:N, 

for s=1:S, 
  for ir=real,imaginary, 
   for r=1:R, 

filter I(i,j) by nsxns window at orientation r) 
end 

end 
for rd=1:RD, 

calculate complex filter response for orientation od 
from real and imaginary filter responses obtained 
above  

end 
 
comparison for maximum response magnitude over RD for 
each (i,j) at each scale s  

  end 
end 

end 
 
Thresholding: 

for i=1:N, 
for j=1:N, 

if sum of responses over scales is greater than a threshold, pixel (i,j) 
is selected as a feature point 

end 
end 
 
Similarity Check: 

for i=1:N, 
for j=1:N, 

  for d=1:D, 
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find dot product of phase vector at pixel location (i,j) in one 
image and phase vector at (i,j+d) in the other image where 
vectors have dimension of 1xS 

end 
find disparity d for which the dot product is maximum 

end 
end 
 

Fine Tuning:  

for i=1:N, 
 for j=1:N, 

calculate phase difference between pairs and estimate subpixel 
disparity 

end 
end 
 

The parameters which are important for complexity computation, their definition 

and default values used in our program are given in the following table. 

Table 2 Parameters of the algorithm effective for complexity. 

Parameter Definition Default Value 
I Image  
N Image size 256 
S Total number of scale 3 
R Total number of main 

orietations 
5 

RD Total number of orientations 18 
ns Filter window size 12, 24, 48 for scales 1 to 3 
D Disparity search range 20 

 

After filtering and thresholding we obtain feature point locations and phase and 

magnitude values for each feature point location. This takes nearly 2 seconds in 

time which is normal since each pixel is filtered with S*2*O number of filters 

where S is for total number of scales, O is for total number of basic orientations and 
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2 is for real and imaginary parts of the complex filters. The matching step is 

completed in 63 milliseconds.  

The complexity of the system is calculated as follows: 

O ( �
=

S

s
snRN

1

22 )+O ( 2N )+O ( DSN 2 )+O ( 2N )   Eq 22 

where first term is for filtering step, second term is for thresholding step, third term 

is for checking similarity step and last term is for the fine tuning step. For single 

scale, the complexity is simplified to O( 22RnN ) and for multiple scales it comes 

out to be O( 22RSnN ) where n is assumed to be the width of the widest filter.  

3.7 Probabilistic Model of the Dispar ity Algor ithm 

After finding correspondences and computing the associated disparities, we model 

the distribution of phase differences between corresponding pairs. In order to model 

a phase distribution, a circular distribution would be appropriate because of the 

periodicity property of the phase. One of the circular distributions which is 

appropriate for this purpose is the von Mises distribution.  

The probabilistic modeling of the disparity algorithm is done as follows: First, 

von Mises distribution is fit to phase differences between corresponding feature 

points of Venus stereo pair. This is done once for each scale. Then, an equation for 

probability of being a pair is proposed. Finally, the model is tested for its 

performance on different images. Results show that although the model is based on 

Venus stereo pair only, it works fine for other images such as Blocks 2, Sawtooth 

and Tsukuba as well.  

3.7.1 Probability Density Estimation of Phase Differences by von Mises 

Model 

The general form of the von Mises distribution is given by the formula: 
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where kφ   , k=1.....K,  are the data points of finite number (here phase differences 

between pairs), µ is the mean and κ is the width of the distribution. Here I0 is the 

zeroth order Bessel function. 

Mixture model for the von Mises density is the linear combination of component 

density in the form given in Eq 23. Here W gives the total number of von Mises 

distributions used. P(w), κw, µw  are the adjustable parameters where κw, µw are the 

density function parameters and P(w) is called the mixing parameter. It can also be 

called the prior probability of the data point having been generated from component 

w of the mixture. These priors are chosen to satisfy the constraints 1)(
1

=�
=

W

w

wP  and 

1)(0 ≤≤ wP . Similarly, the component density functions are normalized so that 
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Having decided on a parametric form for density function, )( kp φ , mixture of von 

Mises in this case, the next stage is to use the data set to find values for the 

parameters. One of the principle approaches for the solution to this problem is 

maximum likelihood. Maximum likelihood seeks to find the optimum values for the 

parameters by maximizing a likelihood function (Eq 24) derived from the training 

set. In practice it is often convenient to consider the negative logarithm of the 

likelihood (Eq 25) which is minimized instead of maximization. 
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Using the mixture density of von Mises distribution, the log likelihood for the 

data set can be given by: 
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One of the methods to find the parameters P(w), κw, µw  is to take the derivative 

of E with respect to the parameter and solve by equalizing the result to zero. This 

way a direct method to calculate the parameters can not be provided. In fact highly 

non-linear coupled equations are represented. Thus, an iterative scheme would be 

better for finding the minimum of E. An iterative scheme could be as follows: First 

initial guesses for the parameters are made which are called ‘old’  values. Then the 

right hand sides of the derivatives explained above are solved and this gives a 

revised estimate for the parameters and these revised parameters are called as 

‘new’ . These parameter values are then become the ‘old’  values and the process is 

repeated. This way at each iteration the error function decreases until a local 

minimum is found. This is also a special case of a more general procedure known as 

the expectation-maximization (EM) algorithm. 

The change in error when we replace the old parameter values by the new values 

can be written as in Eq 27 where )( k
newp φ  denotes the probability density evaluated 

using the new values for the parameters while )( k
oldp φ  represents the density 

evaluated using the old parameter values. 
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Using the definition of mixture distribution given by Eq 23 it can be re-written as 

follows [6]:  
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where )|( wp kφ  is used instead of ),|( wwkp µκφ  and )|( kwP φ  is used instead 

of )|,( kwwP φµκ  for simplicity and the last term is simply the identity. Making use 

of the Jensen’s equality [6] the equation becomes: 
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We wish to minimize newE  with respect to the ‘new’  parameters. If we let Q be 

the right hand side in Eq 29 then we have QEE oldnew +≤  and so QE old +  

represents an upper bound on the value of newE . Thus minimizing Q  will 

necessarily lead to a decrease in the value of the newE   unless newE  is already at a 

local minimum. If we drop the terms which depend on the ‘old’  parameters, Q  is 

rephrased as follows where ‘n’  is used instead of ‘old’  and ‘n+1’  is used instead of 

‘new’  in order to emphasize the iterative process:  
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This function can be minimized with respect to the ‘new’  parameters at iteration 

‘n+1’ . For )1(,)1( ++ n
w

n
w µκ  this minimization is straight forward. The derivative of 

the function with respect to the parameter will be equalized to zero and the result 

will be solved for the parameter.  
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The update equation for )1( +n
wµ  is given in Eq 31. The solution is straight 

forward if the posterior probabilities and the Bayes’  theorem (Eq 32, 33) are 

inserted in Eq 31 then Eq 31 becomes as in Eq 34. The posterior probabilities also 

satisfy 1)|(
1

=�
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W

w
kwP φ .  
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For  )1( +n
wκ  the solution is not obtained directly but the R value is obtained as in 

Eq 35. For the solution of R, which is a value in the range [0-1], the posterior 

probabilities which are expressed using Bayes’  theorem as explained just above are 

also used.  
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In this case the inverse solution for )1( +n
wκ  is required and )1( +n

wκ  can be 

calculated as follows:  
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However, for the mixing parameter P(w) this minimization is not straight 

forward. For the solution we must take account of the constraint 1)(
1

=�
=

W

w

wP  [6]. 

This is done by introducing a LaGrange multiplier λ and minimizing the function in 

Eq 37. Setting the derivative of Eq 37 with respect to )()1( wP n+  to zero, Eq 38 is 

obtained. The value of λ can be found by multiplying both sides of Eq 38 by 

)()1( wP n+  and summing over w. Finally, the value of λ is computed as in Eq 38. 

Using the properties 1)(
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n wP φ , we obtain that λ=K. 

Then the update equation for the mixing parameter P(w) comes out to be as in 

Eq40. Inserting Eq 32 and Eq 33 into Eq 40, the solution is straight forward. 
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The results of fitting the von Mises mixture model to phase differences between 

Venus corresponding pairs at different scales are shown in Figure 17. In this case, J 

is taken to be five, i.e. total number of mixed von Mises distribution components is 

five. The five different components for each scale are given at the leftmost column 

of the figure (Figure 17 a,c,e). As can be seen on the plots, most components are 

exactly the same, thus J=5 is more than enough.  On the rightmost column, the final 

mixture models are shown on top of the phase difference histograms. Here, top row 

(Figure 17 a,b) is for scale one, i.e. when filter of width six pixels is used, middle 

row (Figure 17 c,d) is for scale two, i.e. when filter of width 12 pixels is used and 

the last row (Figure 17 e,f) is for scale three, i.e. when filter of width 18 pixels is 

used. 
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(c) (d) 

 
 

(e) (f) 

Figure 17 Mixture of von Mises models for the correct pair phase differences. a, c, e. 

Components of the mixture model for scale 1, 2 and 3 respectively, b, d, f. Mixture model 
and histogram of phase differences for scale 1, 2 and 3 respectively.  
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3.7.2 Probability of Being a Pair  

With the parameters of the mixture model to hand, we can estimate correspondence 

probabilities from the phase differences. The correspondence probabilities are taken 

to be a posteriori probability of the mixture with the smallest mean at convergence 

of the EM algorithm. Suppose that Eq 41 is the a posteriori correspondence 

probability for scale n where j is the index for candidate corresponding feature 

points for feature point i. The overall correspondence probability is the product of 

correspondence probabilities computed at the different scales as in Eq 42 assuming 

that they are independent. The correspondences are taken so as to maximize P(i=j) 

as in Eq 43. Applying the correspondences located in this way the computed 

disparities for Venus stereo pair are very similar to those found using the method 

described in Section 3.5. Both results are shown in Figure 18. 
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(a) 

 

(b) 

Figure 18 Results for Venus stereo pair. a. Disparity found by the method in Section 3.5, b. 

Disparity found by the probabilistic model described in Section 3.6. 
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3.7.3 Validation of the Probabilistic Model  

The same model is applied to Blocks, Sawtooth and Tsukuba stereo pairs and the 

results are given in Figures 19-21 respectively. The top image in each figure shows 

the disparity obtained by the method in Section 3.5. The bottom image in each 

figure shows the disparity estimated by the probabilistic method.  

The important thing here is that the probabilistic model obtained from Venus 

stereo pair is used in order to obtain disparity for Blocks, Sawtooth and Tsukuba 

image pairs as well and the results are still satisfactory.  

Also in Table 3 success rate of the probabilistic model is listed for different 

stereo pairs. Number of features extracted, number of pairs matched, number of 

wrong matches and success rate are given in successive columns from left to right 

for each stereo pair. In this case success rate is also calculated as the percentage of 

number of wrong matches over total number of matched pairs and found to be better 

than the numbers in the last column of Table 1 although the number of matched 

pairs is more in this case. Thus, by this model we obtain disparity values for more 

number of pairs with higher accuracy.   

Table 3 Success rate of the probabilistic model for different image pairs. 

Image pair Number of 
feature points 

extracted 

Number of 
pairs 

matched 

Number of 
mismatches  

Success rate (%) over 
number of matched pairs 

Blocks 2 3847 1505 206 86 

Venus 1884 1310 85 94 

Sawtooth 4288 3079 111 96 

Tsukuba 4088 2350 398 83 
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(a) 

 

(b) 

Figure 19 Results for Block stereo pair. a. Disparity found by the method in Section 3.5, b. 

Disparity found by the probabilistic model described in Section 3.6. 
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(a) 

 

(b) 

Figure 20 Results for Sawtooth stereo pair. a. Disparity found by the method in Section 3.5, 

b. Disparity found by the probabilistic model described in Section 3.6. 
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(a) 

 

(b) 

Figure 21 Results for Tsukuba stereo pair. a. Disparity found by the method in Section 3.5, 

b. Disparity found by the probabilistic model described in Section 3.6. 



 85 

3.8 Summary and Conclusion 

We have presented a stereo correspondence method which is motivated by 

biological information. We have modeled hyper column structure of the human 

visual cortex using steerable filters. Thus, instead of calculating disparities using 

oriented filters and pooling the results over different orientations, a single 

orientation for each feature is obtained prior to disparity computation. The steerable 

filter estimate of stimulus orientation found using this method   is very accurate 

given the small number of filters used.  

By using multi-scale filtering highly informative feature points are extracted 

even they are at different scales. The use of multiple scales is also biologically 

plausible. The reason for this is that disparity encoding binocular cells are sensitive 

to different spatial wavelengths. Although feature points extracted from image pairs 

are sparse, since they are the points of high contrast edges that define the bounding 

contours of objects, they still prove to be informative.  

Correspondences between feature points are located using multi-scale phase 

information. This idea is also biologically grounded. The reason for this is that 

simple binocular cells occur in pairs that are in quadrature phase. Also, phase is 

sensitive to spatial differences, and hence it provides fine image detail which is 

helpful in discriminating neighboring image regions. Phase is also robust to small 

scale differences. Unfortunately, there are image locations where phase is singular 

and can not be reliably used. Such points are the locations where local frequencies 

at these points are very different from the filter tuning. In this study, by performing 

phase comparisons at multiple scales and by using magnitude confidence 

information we overcome these difficulties. The confidence weighting is used to 

augment phase information with information concerning the magnitude of the 

steerable filtered image to improve the correspondence method.  

Two routes to locating feature-point correspondences are explored. Using the 

position shift model, rough disparity values are obtained and a   large range of 
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disparities can be calculated, but to a limited accuracy. Using the phase shift model, 

fine tuning is performed without encountering the   quarter cycle limit. This tuning 

scheme also allows a continuum of disparity estimates to be   obtained. Success rate 

for correct matches over total number of matches is quite high when compared to 

other studies in which similar type of stereo image pairs are considered. The 

smallest success rate is obtained for Blocks 2 stereo pair because nearly half of the 

total number of edges has orientation parallel to the epipolar line and due to the lack 

of texture, phase contents are very similar for neighboring edges. The next better 

success rate is for Tsukuba stereo pair. Tsukuba images are known to be a hard 

image pair for stereo algorithms because they have very complicated depth 

discontinuities and repeated patterns. The best success rate is obtained for Venus 

and Sawtooth stereo pairs. In these pairs both textured and textureless regions exist. 

Also slanted surfaces are present. Thus, they are good examples for matching 

algorithms.   

The complexity of our algorithm is calculated as O( 22SRnN ) where n is 

assumed to be the width of the widest filter, S is the total number of scales used and 

N is the image size where image is though to be square in size. The feature 

extraction step of our algorithm takes time where as matching and extraction of 

depth filed is real time. Although highly informative edges are selected as features 

by using multi-scale strategy, it is time consuming to filter the image pair with 

filters of various widths. However, with the recent development in hardware and 

software and with some parallel processing we are hoping to obtain our features in 

real time in the very near future. 

There are of course some problems occur because of using phase in matching 

since this algorithm gives results for textured regions and edges only. For texture-

less regions since there are no edges and features, no disparity value can be found. 

Thus some post processing such as surface fitting is needed in order to obtain dense 

disparity values. 
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There are some taxonomy papers for feature based matching however they are 

dated very late. One of the recent matching algorithms is given by [93] where 

feature matching is done for the purpose of camera calibration. Their feature points 

are corners and proximity and similarity of feature point intensity neighborhood are 

used for matching. Then RANSAC is used for computing homography. Finally 

matching is guided by the estimated homography. In their study, the average 

success rate over different image pairs is %50. The most recent taxonomy study for 

feature matching is performed by Vincent and Laganiere [95]. They followed the 

same steps as [93]. But they used variance normalized correlation between feature 

points for matching. In their study Tsukuba image pair is also used in order to show 

the results and they reach %67.8 success rate. Than they do left to right and right to 

left symmetry check and increase their success rate to %71.7 with the number of 

good matches being 195. When we apply our matching algorithm to the same 

Tsukuba image pair, although the number of feature points are high in our case, we 

reach a success rate of  %83. 

In this part of the thesis, a probabilistic algorithm for correspondence matching is 

also proposed. Mixture of von Mises distributions are used to model probabilistic 

matching algorithm using phase differences obtained for a stereo image pair and the 

model is verified on other stereo pairs. The model provides not only better results 

especially for Block 2 stereo pair but also flexibility in search region in matching. 

The important thing here is that although modeling is done by Venus stereo pair 

data only, it works fine for many other images. Another important thing is that von 

Mises being a circular distribution has been used in EM algorithm for the first time. 
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CHAPTER 4  

APPLICATION OF OUR ACTIVE STEREO VISION 
ALGORITHM ON A VIRTUAL ROBOT FOR 

COGNITIVE MAP FORMATION AND OBJECT 
RECOGNITION IN A VIRTUAL ENVIRONMENT   

4.1 Introduction 

In the previous chapter, we explained our disparity algorithm which is based on 

human vision. In this chapter we will apply it on a virtual robot for the purpose of 

environmental map construction. Our disparity algorithm is a sparse algorithm and 

is appropriate for such an application.  

The reason why we select such an application is that we want to use our method 

in a navigation activity which is achieved by humans. Humans can manage a high 

level of navigation which is called survey navigation by constructing an 

environmental map in the hippocampus region of the brain. The task of generating 

robot motion in the pursuit of building a map is commonly referred to as robotic 

exploration. While optimal robot motion is relatively well-understood in fully 

modeled environments, exploring robots have to cope with partial and incomplete 

models. Hence, any viable exploration strategy has to be able to accommodate 

contingencies and surprises that might arise during map acquisition. For this reason, 

exploration is a challenging planning problem, which is often solved sub-optimally 

via simple heuristics. In this study, we also suggest a heuristic for environmental 

map construction strategy using our disparity algorithm only.  
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Humans can perform many different activities simultaneously. While they are 

walking, they can recognize objects that they observe around their pathways. Thus a 

vision model should be such that it could be used for as many purposes as possible 

such as obstacle avoidance, map construction and object recognition . The best way 

of doing this is to construct a vision model which is as close to the human visual 

system as possible. Our model is also good for other visual activities such as 

obstacle avoidance and object recognition as well as environmental map 

construction. In this chapter we also give a recognition algorithm for simple shaped 

objects.  

We apply our algorithm in a 3D virtual environment. There is a virtual agent in 

this environment and this agent has stereo cameras which are modeled based on 

human eye properties. The cameras are positioned at a height above the ground 

level with six cm distance between each other just as the eyes of humans. The 

cameras are controlled in the way human eyes can be. Given a target location, both 

eyes look at the same target point with similar parameters such as focal length. 

There are also 3D objects from the set { apple tree, pine tree, cottage}  with different 

shapes, sizes, textures and colors in this virtual world. These 3D objects are made 

up of two basic shapes from the set { sphere, ellipsoid, cylinder, cone} . For 

example, a big radius cone on top of a big radius cylinder is a cottage, whereas a 

small radius cone on top of a small radius cylinder is a pine tree. Also, a sphere on 

top of a cylinder is for an apple tree. The objects can be placed anywhere on the 

ground in the virtual world and the agent can move anywhere around them.  

We explained our physiological model of disparity extraction in the previous 

chapter. For each stereo image pair that the agent obtains from the virtual 

environment, disparity is extracted and depth for the current view is calculated. In 

doing this we assume that the camera parameters are known by the agent just like 

the eye parameters such as focal length are known by the humans. When looking at 

a distant location the eye muscles activate such that the view is as clear as possible 

and this is coordinated between the visual cortex and eye muscles which is 
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obviously showing that human brain is aware of the eye parameters for depth 

calculation. 

The map is constructed using the location information extracted from the current 

view in a way that each grid value is increased by one if something is observed at 

the location covered by that grid. This means that the belief of that grid being 

occupied is as large as the value of that grid. Also, color information is kept for 

each grid. In this study we used world centered, grid based cognitive map structure 

due to its applicability, differentiability, simplicity and fine grained structure. 

World-centric maps are represented in a global coordinate space. Since 

disambiguation of similar but different places is hard and extrapolation from 

individual measurements to measurements nearby is very difficult for robot-centric 

approaches, dominant approaches to date generate world-centric maps. Occupancy 

grid map is a metric map that represents the environment by fine grained grids and 

models the occupied and free space of the environment whereas topological maps 

only give the relative position of the things in the environment. Since metric maps 

are finer grained than topological ones, places that look alike can be disambiguated 

more easily. Although this high resolution comes at a computational price, it helps 

to solve various hard problems. In this study, unlike the common 2D grid-based 

maps, we construct 3D map of the environment. 

While the agent is exploring the environment, new objects seen around are 

investigated in detail. Using the location and color information, the shape of the 

object parts are estimated and the whole object is classified to be either one from 

the set: { apple tree, pine tree, cottage} .  

Further details for virtual world construction software, map construction 

algorithm and object recognition are given in the following sections. 
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4.2 Design and Implementation Details of the Simulation 
Software 

The simulation software is developed using C++ programming language and 

OpenGL graphics library on the Microsoft (MS) Windows operating system (OS) 

[94]. As the user interface of the software is depicted in Figure 22, it is composed of 

four panes showing the scene from different view points. The two panes above are 

views from the left camera (eye) and right camera, respectively. The bottom panes 

render the scene from the top viewpoint, and front viewpoint. Below of the bottom 

panes, there are tab based (so called) dialog boxes which allow entering/adjustment 

of the parameters used throughout algorithm implementations. 

A multi-purpose user interface for displaying the calculated feature point 

information is shown in Figure 23. You can either see only the rendered stereo 

images or both stereo images and extracted feature points simultaneously by 

selecting “Show Feature Point”  option button shown under each image. By 

selecting a channel from the pull-down menu called “Channel”  various kinds of 

information can be seen for each feature point on the screen. For example, in this 

specific study, Channel 0 to Channel 2 are used to keep world coordinates of the 

feature points, i.e. x,y,z locations respectively. Channel 3 is used for disparity and 

Channel 4 is for agent centered depth. Any information can be arranged to be 

printed on the screen with minor changes in the software. Moreover, by clicking on 

a feature point by mouse, all the information about that feature point, i.e. 

information of all channels, is seen in the dialog box called “Point Info” .  In Figure 

23, the image shown on the left side is the left camera view and the black dots on 

the image show feature point locations for this current view. The image on the right 

side is the right camera view and Channel 3 is selected to be shown on the feature 

points thus the disparity values for the right feature points are shown in colors.  
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Figure 22 A screen shot from the virtual environment. A farm cottage and different type of 

trees are seen. In the upper left and right panes left and right eye views are shown 

respectively. In the lower left and right panes top and front views are shown respectively. 
Below of the bottom panes, there are tab based dialog boxes. 
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Figure 23 Interface for displaying feature point information. Locations of feature points for 

the cottage are shown on the left camera view as black dots and disparities found are shown 
on the right camera view in colors.  

Basically, the software should fulfill the following requirements in order to be 

used in our study: 

1. It should allow specifying and rendering arbitrary geometric shapes and 

these shapes should be placed somewhere in the virtual environment. 

2. We should locate the agent at any point on the ground of our virtual world. 

3. Images rendered for the current snapshots viewed by the camera(s) (left and 

right) should be exported to a specified image file for future processing. 

4. We should modify the camera parameters whenever we would like. Those 

modifications should be observed at interactive frame. 
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5. The software should support some kind of plug-in mechanism to be loaded 

(and linked) dynamically into the application at run-time. This plug-in should 

access internal structure of the scene data and image(s) rendered, so that this plug-in 

would control the navigation in the scene by locating the camera. The method or 

methods used by this plug-in(s) to navigate through the scene is up to the internals 

and goals of the plug-in. In this study, the navigation algorithm for the purpose of 

environmental map formation and object recognition will be the camera controller 

plug-in. 

Some assumptions made in this study are as follows: 

1. Objects in the environment are made up of two parts and these parts have 

one of the following basic shapes: { sphere, ellipsoid, cylinder, cone} . The shapes 

can be of any size, color and texture. The final objects are either one from the set 

{ apple tree, pine tree, cottage} .  

2. The objects constructed from these basic shapes can be located anywhere in 

the world. 

3. The objects are clearly separable. 

4. The agent is aware of its initial position in the world and initial orientation 

with respect to global north.  

5. The agent is aware of its internal camera parameters.  

6. The agent is aware of its external camera parameters such as position and 

gaze direction. 

7. The cameras can see up to a predefined distance. 

8. There is no error in agent movement, i.e. agent goes to its target with 

success. 

According to these requirements and assumptions the software is designed and 

implemented as follows: 
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1. Specifying the geometric shapes is done via loading the shape and texture 

data from a disk file. The format of the geometry file is given in Appendix B. The 

geometric shapes are easily handled using object oriented techniques. Some 

primitive shapes such as ellipsoid, cylinder and cone are used in order to form other 

complex shapes such as trees, cottages, etc. The shapes can have different sizes. For 

example, a pine tree is constructed from a cone on top of a cylinder, whereas a 

cottage is constructed from a cone on top of a large radius cylinder. 

2. The requirement of locating the camera anywhere in 3D space is fulfilled in 

three ways. First, at the bottom panes (top view and front view),  the user can 

change the position of the camera and its target by dragging the camera and target 

symbols within the views, as shown in Figure 24. Second, the user can enter the 

camera parameters numerically in dialog box named "Camera Settings" at the 

bottom tabbed control. Third, the camera parameters can be controlled 

automatically via the plug-in. 

3. The rendered images on the left and right camera views can be exported by 

entering the menu (pop-up menu) by clicking the right-mouse button within the 

views, and selecting ‘Export Frame’ . Also rendering could be done via the plug-in 

automatically. 

4. The plug-in mechanism to load a camera controller is done by using 

dynamic-link libraries (DLL). A sample camera controller source is listed in 

Appendix C. The camera controller source used in this study will be explained in 

the following section. The camera controller DLL controls the stereo cameras (i.e. 

the agent) through the virtual world in an intelligent way in order to extract the 

environmental cognitive map and recognize the objects. 
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Figure 24 Top-view with camera and target controls 

4.3 Camera Controller  

The camera controller used in this study controls the camera internal parameters, 

positions and orientations, renders the stereo images, processes these images and 

extracts depth information in order to construct a world-centered, grid based 

cognitive map and recognize the objects in the view.  

The following basic activities are performed by our camera controller dll: 

1. Gaze direction, focal length, field of view, base (pupil) distance between the 

cameras are the main camera parameters which could be modified whenever 

desired. This is done either by entering the camera parameters numerically in dialog 

box named "Camera Settings" at the bottom tabbed control or by automatically 

setting in the plug-in. 

2. Stereo images are rendered. 

Target 

Left Camera 

Right camera 

Pupil distance 
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3. Depth information is extracted from the stereo image pair. 

4. Cognitive map is updated for the current view using depth and color 

information. 

5. Next position of the agent is decided according to the purposes. If the agent 

needs to explore the environment more, first of all it turns around itself to see if 

there is something new close to it. If the agent sees a new object and wants to be 

sure if it is a real thing or noise, the next target is selected so that the agent gets 

close to the object leaving some clearance between the object and itself. If the agent 

is sure that it is a new object, going around it in order to recognize it is the next 

movement and this is done in a controlled manner keeping a clearance between the 

object and the agent. If the agent doesn’ t see anything new around then it goes to 

the most unexplored region. 

6. Object recognition is achieved after the agent fulfills a complete turn around 

a new object.  

4.4 Active Vision and Cognitive Map Construction  

In this study, world centered, grid based 3D map of the environment is extracted 

and each grid codes a 1x1x1 unit cube of world unit. The cognitive map is 

constructed from the depth information obtained via the disparity algorithm.  

Feature extraction for the current view, estimation of the disparity and 

calculation of the agent centered depth information are obtained as explained in 

Chapter 3. The maximum allowed disparity is set to a value at the beginning and is 

kept the same all through the processes. The depth information also provides a sort 

of obstacle location information in the field of view. This agent centered location 

information is converted to world centered location information by Eq 44  where R 

is the rotation and translation matrix which converts the camera coordinates 

),,( cccC zyxz =  to world coordinates ),,( wwwW zyxz = .   

CW zz R=      Eq 45 
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The state space structure of the system is as given in Figure 25. Also in Figure 26 

the flow chart is given. Based on this structure, the following recursive active vision 

and exploration strategy is followed for the purpose of cognitive map construction: 

1. Initially, cognitive map grid values are set to zero, agent is located and 

oriented in the world and the cameras take the first stereo view, i.e. images are 

rendered. 

2. The disparity and depth are calculated as in Chapter 3 and the world 

coordinates of the feature points are calculated as in Eq 44. The resulting values for 

feature points could be observed by the interface as in Figure 23 if desired.  

3. For the current view, map is updated. World centric location information for 

each feature point is used to fill the cognitive map such that if a feature point 

belongs to a grid on the map, that grid’s value is increased by 1. So each grid will 

keep a number which shows something like the belief of that grid being full. The 

belief of being full is as high as the number.  

4. If something new is observed in the view, the agent is moved in front of the 

nearest object to take a sharper view and steps 2 and 3 are repeated. If it is really an 

object not a noise, then the agent starts to turn around that object by looking at the 

object all the time and keeping a distance between the object in the view and itself. 

For each move while turning around the object, steps 2 and 3 are repeated. If 

turning around the object is fulfilled with success then process continues from step 

6. 

5. If nothing new is observed, the agent makes a 90˚ counter-clock wise turn 

around itself and repeats 2 and 3. If a new object is observed then and steps starting 

from 2 are repeated. The agent continues to make 90˚ counter-clock wise turns 

around itself until it makes a full turn or a new object is seen. If nothing is observed 

until the agent makes a full turn around itself then the agent moves to a different 

location. In this move, the already constructed cognitive map is checked and the 

closest unexplored direction is selected and the agent starts to move in that direction 
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until a new object is seen or until the borders of the world are reached. If a new 

object is seen during this time, steps starting from 2 are repeated. If nothing is 

observed then  the agent starts to turn around itself and step 5 is repeated. 

6. If turning around an object is fulfilled with success then object recognition is 

performed. The object recognition algorithm will be explained in the next 

subsection. While turning around the object, if some other objects are seen 

somewhere then the nearest one is selected to be the next target after object 

recognition step is completed. The agent is moved to that target and stereo images 

are rendered and steps starting from 2 are repeated  

7. During all these movements the 3D cognitive map is updated gradually. In 

the end the 3D cognitive map of the environment is obtained. The grid points which 

have high numbers, i.e. high belief of being full, are selected to be full. 

The 3D cognitive map for the environment given in Figure 22 is shown in Figure 

27.  
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Figure 25 States of camera controller DLL. 
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Figure 26 Flowchart of the map construction system. 
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Figure 27 3D cognitive map. x- and z- axis are the width and depth of the environment 

respectively and y-axis is for height above the ground. Only the grids for which the belief 
of being occupied are high are shown here. Others are given zero values i.e. not occupied. 

4.5 Object Recognition  

While exploring the environment for the purpose of map construction, whenever a 

new object is seen, the agent gets close to that object and turns around it keeping a 

clearance between the object and itself and gets the 3D feature point locations of 

that object. These locations are (x,y,z) triples..  

While filling the cognitive map, the RGB color information is also saved for 

each grid. This is done by following a few steps: First the averages of the RGB 

values for each feature point are calculated. This is done by averaging the RGB 

values of the pixels falling into a window centered at a feature point selected on the 

right image of the stereo pair. Then the averages of the RGB values of the feature 

points falling on the same grid are calculated.  Finally the RGB averages for each 
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grid are calculated through time. This means that at each update of the cognitive 

map, the color averages stored at each grid are also updated.  

After completing a full turn around the object, the 3D location information in 

terms of grid locations and RGB color information for each grid are obtained. In 

order to classify the object being observed, only the grids which have high belief of 

being occupied are used and the following steps are followed: First, the RGB color 

information is converted to HSV using the C++ script given in Appendix D. 

Second, assuming that the top and body parts of the objects have different color 

content, the 3D object is segmented into two parts. In doing this, the following basic 

ideas are used: 1. The color content of all the grids belonging to a segment of the 

object should be similar. 2. The grids containing similar color information should be 

connected. In this study, only the hue channel is found to be enough for 

segmentation.  The neighboring grid points which have similar Hue values are 

clustered together. In the top images of Figure 28 and Figure 29, the Hue values for 

the apple tree and pine tree are given respectively. In the bottom images of the same 

figures the segmented object parts are seen. For the apple tree segmented parts are a 

spherical and a cylindrical shape. For the pine tree the segmented parts are a conical 

and a cylindrical shape. In the third step, the shapes of the segmented parts are 

estimated by fitting the quadratic surface equation of three parameters. As the last 

step, the object is recognized from the shapes of its parts. 
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(a) 

 
(b)      (c) 

Figure 28 a. Location and color information stored in each grid for an apple tree in the 

cognitive map, b. Cognitive map grids for the top of the apple tree, c. Cognitive map grids 
for the body of the apple tree. 
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(a) 

 
(b)      (c) 

 

Figure 29 a. Location and color information stored in each grid for a pine tree in the 

cognitive map, b. Cognitive map grids for the top of the pine tree, c. Cognitive map grids 

for the body of the pine tree. 

In order to extract the shape information for a part of the object, these steps are  

followed: First, triples (x,y,z) belonging to the part are used in Eq 45. This equation 

is called the general quadratic equation in three variables [43, 83]. Then, the 

parameters { A,B,C,D,E,F,G,H,K,L}  are found. In this study, we assume that the 
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parameter A in Eq 45 is non-zero, since the shapes in our environment is either 

sphere, cylinder or cone. Reorganizing Eq 45 we obtained Eq 46 and the unknown 

equation parameters P={ B’ ,C’ ,D’ ,E’ ,F’ ,G’ ,H’ ,K’ ,L’ }  can be solved as in Eq 47  

where V
�

 is the pseudo inverse of V (Eq 48) and X is the vector of x-coordinates 

(Eq 49). Here N is the total number of (x,y,z) triples. Finally, form these parameters 

we can comment on the shape [43, 83].  

0222222222 =+++++++++ LKzHyGxFyzExzDxyCzByAx  Eq 46 
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In order to comment on the shape, first of all an S matrix (Eq 50) and Q vector 

(Eq 51) are formed from the parameters. This S matrix is a non-zero real symmetric 

matrix [43, 83] and has real characteristic values, i.e. real eigenvalues � 1, � 2, � 3 , 

where at least one of them is different than zero. Since we deal with 3 basic shapes 

of sphere, cone and cylinder, we can say that all three are different than zero. Thus, 

there exists an orthogonal matrix R such that Eq 52 holds. Considering the change 

of coordinates xx TR=  where ),,( zyx=x , Eq 45 can be rewritten as Eq 53 where 

',',' KHG  are calculated as in Eq 54. Here, u1, u2, u3 are the eigenvectors of S. 

Knowing that all three of the eigenvalues are non-zero, we can translate x system to 

x~  system by 
1
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in Eq 55 where k is calculated as in Eq 56. 
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In order to comment about the shape of the object part, Eq 55 can be transformed 

into Eq 57 using the relations 
1λ

ka = , 
2λ

kb = , 
3λ

kc =  where all a,b,c are 

nonzero.  
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If the shape is a sphere (for example the top of the apple tree) then these numbers 

are equal or very close to each other, i.e. a=b=c, and the average could give us the 

radius of the sphere. If the shape is a cylinder (for example the body of the trees) 

then two of these numbers are equal or similar and the other one is very different 

and bigger than the other two. The similar ones give the radius of the cylinder. If the 

shape is a cone (for example the roof of the cottage) then one of these numbers is 

imaginary (i.e. square of the number is less than zero) and the other two are greater 

than zero.  
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After finding the shape for both of the object parts, the object is recognized using 

the following logic:  

*  If there is a sphere on a small radius cylinder, this is an apple tree. 

*  If there is a cone on a small radius cylinder, this is a pine tree. 

*  If there a cone is on a big cylinder, this is a cottage. 

After going around the environment and recognizing all the objects seen, we 

finally have the location information for all the objects and label for each of them.  

In Figure 30 the 2D occupancy map and estimated labels for the objects are shown. 

2D map is calculated by summing the grid values of 3D map in y-axis which gives 

us the usual 2D environmental map.  

 

Figure 30 Labeled occupancy. 
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4.6 Results and Conclusion 

Some other virtual environments and the resultant 3D map and 2D occupancy 

information are given in the following figures. In Figure 31 the environment is 

constructed such that there is one from each object class and each of them is placed 

very far away from the others. In  Figure 32 the environment consists of three apple 

trees which have different sizes. In all cases, map construction and object 

recognition are successfully completed. 

 

 
 

(a) 

Figure 31 a. Virtual environment with three different object very far away from each other, 

b. Computed 3D map, c. Occupancy (top view of 3D map) with labeled objects. 
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(b) 
 

 
 

(c)  
Figure 31 continued. 
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(a) 
 

 
 

(b) 

Figure 32 a. Virtual environment with three objects of the same type, b. Computed 3D map, 

c. Occupancy (top view of 3D map) with labeled objects. 
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(c) 
 

Figure 32 continued 
 
 

The parameters used in our program are listed in the following table. Parameter 

names, purposes and default values are listed in the successive columns from left to 

right.  These parameters are kept the same in all cases of map construction. A global 

world coordinate system is assumed and the virtual world is centered at the center 

of the world coordinate system. Virtual world is divided into grids of size GridSize 

in world units in each dimension. The size of the stereo images rendered from the 

virtual world is ImWidth by ImHeight pixels and kept the same through out the 

process of map construction. Distance between stereo camera pairs (BaseLine in 

world units), focal length of the cameras (FocalLength in world units), field of view 

(FOV degrees), the nearest distance cameras can see (Near in world units) and the 
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farthest distance (Far in world units) are the camera parameters initialized at the 

beginning of each map construction. MaxDisparity, MinDisparity and 

RowPermission all in pixels are the limits of search space for disparity.  

While the agent explores the environment, it keeps a distance of ObjectClearance 

in world unit between the closest object in the view and itself. Also the same 

distance is kept while turning around an object. The agent turns around the object 

with ObjectTurnAngle degrees at each step of turn, and turns around itself with 

RobotTurnAngle degrees at each step of turn. 

After completing a full turn around an object, the point cloud belonging to the 

object is thresholded by CountThreshold and the grids which have higher values are 

selected and considered for the recognition step. Object is segmented into two 

partsin terms of proximity and color similarity, where hue channel similarity is 

enough in most cases and the ColorThreshold_Hue is the similarity threshold used.  
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Table 4 Parameters used in the program. 

Name of the parameter  Purpose Default 
value 

ImWidth Image width 256 
ImHeight Image height 256 
WorldX  Size of the virtual world in x 

direction 
200 

WorldY Size of the virtual world in y 
direction 

200 

WorldZ Size of the virtual world in z 
direction 

30 

GridSize  
   

Size of a single world grid in terms 
of world meters 

1 

BaseLine Distance between stereo cameras 0.3 
FocalLength Focal length of the cameras 0.1 
FOV Field of View 80º 
Far The farthest distance seen by the 

cameras 
100 

Near The nearest distance seen by the 
cameras 

0.1 

MaxDisparity Maximum disparity search limit in 
epipolar direction 

20 

MinDisparity Minimum disparity search limit in 
epipolar direction 

-10 

RowPermission Search limit in the direction vertical 
to epipolar direction 

1 

CountThreshold  The grid value threshold in order to 
be considered as occupied  

5 

ColorThreshold_Hue Hue similarity threshold 7.0 
ColorThreshold_saturation Saturation similarity threshold 0.15 
ColorThreshold_value Value similarity threshold 0.15 
ObjectTurnAngle Amount of turn around the object at 

each step 
40º 

RobotTurnAngle Amount of turn around the robot 
itself at each step 

45º 

ObjectClearance Distance kept between the robot 
and the object 

10 
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CHAPTER 5 

CONCLUSION 

In this study a human-like disparity estimation algorithm for the purpose of depth 

extraction is developed. Then this stereo vision system is applied to construct a 

world centric, grid based cognitive map which is very important for higher 

vertebrate survey navigation. This is done in a 3D virtual environment by moving a 

virtual robot around the 3D objects of this virtual world. The future study is to apply 

the algorithm on a real robot in a natural environment.  

Navigation could not be achieved unless distance information is obtained. The 

most informative, natural and cheapest sensors for depth extraction are stereo or 

multiple cameras. With some processing on the images obtained by cameras, not 

only distance but other information such as color, texture, shape, motion, etc. can be 

obtained as well. And this brings the effort to include cameras as sensors to recent 

robotic applications although extraction of information from multiple images is very 

hard. By this way, a robot can simultaneously navigate, avoid obstacles, recognize 

objects around, perform some very special tasks just like humans do when at least a 

stereo camera pair is used as sensors. The final goal of many studies is to come up 

with a system which functions as humans do. Thus a vision model which is similar 

to human vision system would be very appropriate in order to perform many tasks 

simultaneously in a parallel manner.  

In this study, a disparity algorithm which is based on multi-scale phase similarity 

of edges between corresponding feature points is developed. Sparse algorithms are 
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very important because before a dense analysis, at least in order to calibrate 

cameras, sparse feature matching is needed. Also, for 3D reconstruction and many 

robotic applications feature based methods work very well. In this study, features 

and their orientation information are extracted from stereo image pairs by steerable 

filters inspired from biological model of human cortical hyper-column structure 

where responses to filters at various orientations are stored. Thus, instead of 

calculating disparities using oriented filters and pooling the results over different 

orientations, a single orientation for each feature is obtained prior to disparity 

computation. The steerable filter estimate of stimulus orientation found using this 

method   is very accurate given the small number of filters used. 

Although the feature points are sparse, since features are extracted using a multi-

scale strategy and they are the points of high contrast edges that define the bounding 

contours of objects, they prove to be highly informative. Correspondences between 

feature points are located using multi-scale phase information. This idea is 

biologically grounded. The reason for this is that simple binocular cells occur in 

pairs that are in quadrature phase. Besides, phase is very sensitive to position 

differences hence it provides fine image detail which is helpful in discriminating 

neighboring image regions and also is stable to geometric, lighting and very small 

scale deformations. However phase may not be stable for large scale deformations. 

There are image locations where phase is singular and can not be reliably used. 

Such points are the locations where local frequencies are very different from the 

filter tuning. Using multi-scale and including magnitude in matching algorithms 

bring good results in matching images with scale deformations. In this study, phase 

comparison is done at multiple scales and confidence weighting is used to augment 

phase information with information concerning the magnitude of the steerable 

filtered image to improve the correspondence method. Since phase-based stereo 

methods are not good in textureless regions but only good at boundaries, using 

multi-scale phase information at sparse feature points and using magnitude as 

confidence provide a highly trustable disparity information at feature points only. 
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Two routes to locating feature-point correspondences are explored. Using the 

position shift model, rough disparity values are obtained and a large range of 

disparities can be calculated, but to a limited accuracy. Using the phase shift model, 

fine tuning is performed without encountering the quarter cycle limit. This tuning 

scheme also allows a continuum of disparity estimates to be   obtained.  

In the future studies, post processing will be performed on the disparity values in 

order to get rid of spikes and discontinuities. Also, surface fitting will be applied to 

sparse disparity results in order to obtain dense disparity. This will provide a tool 

for image segmentation when color and disparity are used together.  

Also, a probabilistic algorithm for correspondence matching is proposed. 

Mixture of von Mises distributions are used to model probabilistic matching 

algorithm using phase differences obtained for a stereo image pair and the model is 

verified on other stereo pairs. Thus, it can be concluded that multi-scale phase 

similarity is a good measure for sparse feature matching problems. In the future 

studies, more number of stereo pairs will be used as training set in modeling our 

algorithm probabilistically which will increase the success rate. 

Finally, our stereo vision algorithm is applied in a simulated world. In this world 

there is a virtual robot (agent) which has a stereo imaging system modeled with the 

properties of human eye. There are also 3D objects which are made of simple 

shapes such as sphere, cone, cylinder, etc. In our study, the agent explores its 

environment based on some heuristics and simultaneously builds a 3D map and 

recognizes the objects it observes during exploration. The task of generating robot 

motion in the pursuit of building a map is commonly referred to as robotic 

exploration. While optimal robot motion is relatively well-understood in fully 

modeled environments, exploring robots have to cope with partial and incomplete 

models. Hence, any viable exploration strategy has to be able to accommodate 

contingencies and surprises that might arise during map acquisition. For this reason, 

exploration is a challenging planning problem, which is often solved sub-optimally 

via simple heuristics. In future studies, more complex objects will be used in our 
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virtual world and our virtual world will include natural effects such as lighting, 

background, shadow ect. 

In the future studies, our exploration strategy will be expanded and our complete 

system will be applied on real robots. In that case simultaneous localization and 

mapping, ego-motion extraction problems will also be studied. All these problems 

are very closely related to stereo matching and with some slight changes on our 

algorithm we would be able to provide results for these problems also. Our final 

goal is to have a system where obstacle avoidance, map construction, localization, 

ego-motion extraction, object recognition and 3D reconstruction are done 

simultaneously. Also auto focusing which is very important for calibration and 

deciding on search space will be investigated.  

In our study we only used world-centric coordinate system. However, human can 

prefer ego-centric or world-centric coordinate system with respect to the task 

performed. Thus, using ego-centric and world-centric together according to task is 

an other future study. 
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APPENDIX A  

DEPTH PERCEPTION IN HUMAN VISUAL SYSTEM 

The visual system makes use of a variety of cues to help judge the distance of 

objects. These cues can be classified mainly into two groups: 

 • Monocular (pictorial) cues 

 • Binocular cues 

A.1 Pictor ial Depth Cues 

Our perception of the relative depth, or distance from the viewpoint, of the various 

objects in a static, two-dimensional image of a three-dimensional scene may be 

influenced to various extents by several different factors, which are sometimes 

referred to as pictorial cues to depth because of their use by artists to convey a 

greater sense of depth in a flat medium. 

A.1.1 Occlusion (Interposition) 

Probably the most important of the pictorial depth cues is occlusion, the obscuration 

of a portion of a more distant object’s surface by another surface that is closer to the 

viewpoint. There is evidence that our visual system makes fundamental use of 

occlusion information to encode the relative depths of superimposed surfaces at a 

relatively early stage in visual processing, and that the occlusion boundaries are the 
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key elements in conveying the depth relationships. See Figure 33 for a illustration 

of occlusion. 

 

 

Figure 33 An illustration showing the effect of occlusion 

A.1.2 L inear Perspective 

When we look through our eyes at the world, the three-dimensional information in 

the scene gets projected onto the two-dimensional surface of our retina. 

Mathematically, this transformation can be described by a perspective projection, a 

3D-to-2D mapping that has several important features. The first of these is what is 

often referred to in the literature as “ linear perspective”  or the observation that lines 

which are parallel in the three-dimensional model will appear in the projected image 

to converge toward a single vanishing point as they recede into the distance. This 

phenomenon is illustrated in Figure 34. In general, the effect will be most 

pronounced when the lines originate close to the viewpoint and extend a 

considerable distance away. 
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Figure 34 An illustration showing linear perspective 

 

Parallel lines are obviously not the only lines whose relative orientations are 

“ remapped”  by a perspective projection, but the effects of perspective convergence 

may be most clearly represented by them. It becomes increasingly difficult to 

appreciate the “distortion”  due to perspective projection when the represented 

objects are more distant from the viewpoint, have a more limited extent in depth, 

and are smoothly curving or of irregular or unfamiliar shape. 

A perspective projection is clearly not the only possible 3D-to-2D mapping, and in 

some instances it has been argued that, for the purposes of representing certain 

types of information about a three-dimensional model, it is not necessarily the best 

type of mapping to use. A common alternative is to employ an orthographic 

projection, in which parallel lines remain parallel. Such projections can be 

somewhat easier to construct manually and interpret intellectually, and certain 

algorithms for generating images from three-dimensional models derive their 

computational efficiency from relying on the regularities inherent in this approach. 
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We are not constrained, when constructing a computer-generated image, to 

represent the data exactly as it would appear if it sat before us as a physical entity; 

however, it is important to consider both the advantages and disadvantages of 

stylizing the display. 

A.1.3 Relative familiar  size 

A second consequence of perspective (but not orthographic) projection is that as an 

object moves farther away from the viewpoint it will subtend a smaller visual angle 

on the retina. This means that more distant objects will have relatively smaller 

projected sizes, and this is the basic premise behind the pictorial depth cue referred 

to as “ relative familiar size” . Size is an ambiguous cue unless the physical size of 

the object is known.  

 

 

Figure 35 Relative size as a cue. Which one of the balloons looks closer? 
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A.1.4 Focus, Depth of Field and Accommodation 

When we perceive objects in our everyday experience, we are rarely conscious of 

anything appearing to be “out of focus” . Under ordinary circumstances, when we 

direct our attention to an object we fixate it in our fovea and automatically adjust 

the lens of our eye to bring the object into focus. Because of the great disparity 

between the depth of field attainable by our visual system and the depth of field 

available with a camera, however, it is not at all uncommon to observe photographs 

in which some part of the image is blurred due to its distance in depth from the 

focal point. 

Accommodation refers to the ability of the eye to change focus from distant to 

near objects. 

 

 

 

Figure 36 Accommodation. Blurred image. 
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Figure 37 Accommodation. Focused image. 

 

Experimental evidence substantiating the usefulness of focus as a depth cue was 

provided by [72], who performed experiments verifying that people perceived a 

greater separation in depth between overlapping objects in images in which there 

was a larger gradient of focus between them. Further support for the perceptual 

significance of focal differences can be drawn from experiments by other 

researchers, who found that when the separate parts of an ambiguously organized 

image were filled with sine wave gratings of two different spatial frequencies but 

equivalent contrasts, the region filled with the higher spatial frequency pattern was 

seen as figure (rather than ground) a significantly greater percentage of the time. 

Although there is generally not enough information available in a limited-depth-of-

field image of two non-overlapping surfaces to determine the sign of the depth 

distance between them purely on the basis of focus information, [53] described how 

it should be theoretically possible for observers to disambiguate the depth order of 

overlapping textured surface on the basis of the amount of blur along the occluding 

edge, and conducted experiments verifying this hypothesis. (About half of the 

subjects in these experiments consistently judged the blurred half-plane to be closer 

when the occluding edge was blurred and the focused half-plane to be closer when 

the occluding edge was sharp; for the other half of the subjects this trend, while 

detectable, was fairly modest.) 
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A.2 Binocular  dispar ity (Stereopsis) 

When we look at a particular point in space with both of our eyes (which is the 

normal case in vision), the views perceived by each individual eye will be slightly 

different, because of their spatial separation in the head. The focal point will fall on 

corresponding locations in the retinal images of each eye, as will all other points 

that are equidistant from the viewpoint (defining a plane, called the horopter, of 

points in space that have zero retinal disparity in that view), but points that are 

closer or farther from the viewpoint than the fixation point will be mapped onto 

disparate locations in the two retinal images. Objects that are closer to the viewpoint 

(in front of the horopter) are seen in crossed disparity, while objects that are farther 

away are seen in uncrossed disparity. Our visual system is able to interpret the 

relative depths between two points in space from the amount of retinal disparity in 

their projections to each eye and to determine the depth order of these points from 

the sign (crossed or uncrossed) of this disparity, Figure 38 and Figure 39. Exactly 

how the two flat views are united in the brain to yield a unified perception of three-

dimensional space has been a topic of considerable investigation. 

 

 

Figure 38 Uncrossed disparity 
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Figure 39 Crossed disparity 
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APPENDIX B 

GEOMETRY FILE FORMAT 

A sample geometry file listing with a few primitives is given below. The fields are 

self-explanatory as seen from the comment lines. 

 
 
 
# Shader count 
3 
 
# Texture count 
9 
 
# Visual count 
13 
 
################################################################################ 
# SHADER 0 
################################################################################ 
 
# Ambient color 
1.0 1.0 1.0 1.0 
# Diffuse color 
1.0 0.0 0.0 0.0 
# Specular color 
1.0 0.0 1.0 0.0 
# Emissive color 
0.0 0.0 0.0 0.0 
# Shininess [0,128] 
50 
 
################################################################################ 
# SHADER 1 
################################################################################ 
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# Ambient color 
0.0 0.0 1.0 1.0 
# Diffuse color 
0.0 0.0 1.0 0.0 
# Specular color 
1.0 1.0 1.0 1.0 
# Emissive color 
0.0 0.0 0.0 0.0 
# Shininess [0,128] 
50 
 
################################################################################ 
# SHADER 2 
################################################################################ 
 
# Ambient color 
0.0 1.0 1.0 0.0 
# Diffuse color 
1.0 0.0 1.0 0.0 
# Specular color 
1.0 1.0 0.0 0.0 
# Emissive color 
0.0 0.0 0.0 0.0 
# Shininess [0,128] 
50 
 
################################################################################ 
# TEXTURE 0 
################################################################################ 
 
textures/checker.tga 
textures/wood.tga 
textures/brick.tga 
textures/grass.tga 
textures/roof.tga 
textures/sky.tga 
textures/earth.tga 
textures/cobra.tga 
textures/bubinga.tga 
 
 
################################################################################ 
# VISUAL 0 - SPHERE TREE TOP - APPLE 
################################################################################ 
 
# Visual type 
SPHERE 
 
# Center 
10 12 20 
 
# Radius 
4 
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# Shader index 
-1 
 
# Texture index 
3 
 
################################################################################ 
# VISUAL 1 - TREE BODY - APPLE 
################################################################################ 
 
# Visual type 
CYLINDER 
 
# RadiusBase 
2 
 
# RadiusTop 
2 
 
# Height 
8 
 
# Slices 
50 
 
# Stacks 
30 
 
# Translation [x,y,z] 
10 8 20 
 
# Rotation [x,y,z] 
1 0 0 
 
# Shader index 
-1 
 
# Texture index 
1 
 
 
 
################################################################################ 
# VISUAL 2 - HAUSE  
################################################################################ 
 
# Visual type 
CYLINDER 
 
# RadiusBase 
7 
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# RadiusTop 
7 
 
# Height 
7 
 
# Slices 
70 
 
# Stacks 
80 
 
# Translation [x,y,z] 
20 7 -5 
 
# Rotation [x,y,z] 
1 0 0 
 
# Shader index 
-1 
 
# Texture index 
2 
 
################################################################################ 
# VISUAL 3 - ROOF  
################################################################################ 
 
# Visual type 
CYLINDER 
 
# RadiusBase 
1 
 
# RadiusTop 
7 
 
# Height 
4 
 
# Slices 
36 
 
# Stacks 
50 
 
# Translation [x,y,z] 
20 11 -5 
 
# Rotation [x,y,z] 
1 0 0 
 
# Shader index 
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-1 
 
# Texture index 
4 
 
 
 
 
################################################################################ 
# VISUAL 4 - SPHERE TREE TOP - APPLE 
################################################################################ 
 
# Visual type 
SPHERE 
 
# Center 
-10 12 -30 
 
# Radius 
4 
 
# Shader index 
-1 
 
# Texture index 
3 
 
################################################################################ 
# VISUAL 5 - TREE BODY - APPLE 
################################################################################ 
 
# Visual type 
CYLINDER 
 
# RadiusBase 
2 
 
# RadiusTop 
2 
 
# Height 
8 
 
# Slices 
50 
 
# Stacks 
30 
 
# Translation [x,y,z] 
-10 8 -30 
 
# Rotation [x,y,z] 
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1 0 0 
 
# Shader index 
-1 
 
# Texture index 
1 
 
 
 
################################################################################ 
# VISUAL 6 - TREE TOP - PINE 
################################################################################ 
 
# Visual type 
CYLINDER 
 
# RadiusBase 
1 
 
# RadiusTop 
8 
 
# Height 
8 
 
# Slices 
36 
 
# Stacks 
20 
 
# Translation [x,y,z] 
-10 16 -5 
 
# Rotation [x,y,z] 
1 0 0 
 
# Shader index 
-1 
 
# Texture index 
3 
 
################################################################################ 
# VISUAL 7 - TREE BODY  - PINE 
################################################################################ 
 
# Visual type 
CYLINDER 
 
# RadiusBase 
2 
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# RadiusTop 
2 
 
# Height 
8 
 
# Slices 
36 
 
# Stacks 
20 
 
# Translation [x,y,z] 
-10 8 -5 
 
# Rotation [x,y,z] 
1 0 0 
 
# Shader index 
-1 
 
# Texture index 
1 
 
 
################################################################################ 
# VISUAL 8 - TREE TOP - PINE 
################################################################################ 
 
# Visual type 
CYLINDER 
 
# RadiusBase 
1 
 
# RadiusTop 
8 
 
# Height 
8 
 
# Slices 
36 
 
# Stacks 
20 
 
# Translation [x,y,z] 
-40 16 -30 
 
# Rotation [x,y,z] 
1 0 0 
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# Shader index 
-1 
 
# Texture index 
3 
 
################################################################################ 
# VISUAL 9 - TREE BODY  - PINE 
################################################################################ 
 
# Visual type 
CYLINDER 
 
# RadiusBase 
2 
 
# RadiusTop 
2 
 
# Height 
8 
 
# Slices 
36 
 
# Stacks 
20 
 
# Translation [x,y,z] 
-40 8 -30 
 
# Rotation [x,y,z] 
1 0 0 
 
# Shader index 
-1 
 
# Texture index 
1 
 
################################################################################ 
# VISUAL 10 - SPHERE TREE TOP - APPLE 
################################################################################ 
 
# Visual type 
SPHERE 
 
# Center 
-40 12 5 
 
# Radius 
4 
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# Shader index 
-1 
 
# Texture index 
3 
 
################################################################################ 
# VISUAL 11 - TREE BODY - APPLE 
################################################################################ 
 
# Visual type 
CYLINDER 
 
# RadiusBase 
2 
 
# RadiusTop 
2 
 
# Height 
8 
 
# Slices 
50 
 
# Stacks 
30 
 
# Translation [x,y,z] 
-40 8 5 
 
# Rotation [x,y,z] 
1 0 0 
 
# Shader index 
-1 
 
# Texture index 
1 
 
################################################################################ 
# VISUAL 12 - GROUND 
################################################################################ 
 
# Visual type 
POLYGON 
 
# Enable back face culling 
1 
 
# Shader index 
1 
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# Texture index 
-1 
 
# Vertex count 
4 
 
# Vertex data 
# x y z r g b a tu tv 
-500 0 -500    0.5 0.5 0.0 0.0      0 0 
-500 0 500     0.5 0.5 0.0 0.0      3 0 
500 0 500    0.5 0.5 0.0 0.0      3 3 
500 0 -500   0.5 0.5 0.0 0.0      0 3 
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APPENDIX C 

A SAMPLE CAMERACONTROLLER PLUGIN 

CameraController .h 

#ifndef __CAMERACONTROLLER_H 
#define __CAMERACONTROLLER_H 
 
#include "Simulation.h" 
 
class CCameraController 
{  
 
public: 
 
    virtual ~CCameraController() { }  
 
    virtual char *GetInfo() {  return "Default Camera Controller"; }  
    virtual char *GetResult() {  return "Default result"; }  
 
    virtual void Tick() = 0; 
    virtual void SetSimulation( CSimulation *pSimulation ) = NULL; 
} ; 
 
#endif 
 
BasicCameraController .cpp 
 
#include "../CameraController.h" 
 
#define _PLUGIN_EXPORT __declspec( dllexport ) 
 
//////////////////////////////////////////////////////////////////////////////// 
 
class CBasicCameraController : public CCameraController 
{  
 
public: 
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    CSimulation *m_pSimulation; 
 
    float m_fTime; 
 
public: 
 
    CBasicCameraController() 
    {  
        m_pSimulation = NULL; 
        m_fTime = 0.0f; 
    }  
 
    virtual char *GetInfo() {  return "Basic Camera Controller\x0d\x0aWritten by Fahri Tuncer"; }  
    virtual char *GetResult() {  return "No result"; }  
 
    virtual void Tick(); 
 
    virtual void SetSimulation( CSimulation *pSimulation ) 
    {  
        m_pSimulation = pSimulation; 
    }  
} ; 
 
//////////////////////////////////////////////////////////////////////////////// 
 
// extern "C" __declspec (dllexport) void* __stdcall CreateInstance() 
extern "C" __declspec (dllexport) void *CreateInstance() 
{  
    return new CBasicCameraController(); 
}  
 
//////////////////////////////////////////////////////////////////////////////// 
 
void CBasicCameraController::Tick() 
{  
    float campos[3] = {  3.0f, 1.0f, 3.0f } ; 
 
    campos[0] = 3.0f * cosf( m_fTime ); 
    campos[1] = 2.0f * cosf( m_fTime ); 
    campos[2] = 3.0f * sinf( m_fTime ); 
 
    m_pSimulation->SetCameraPos( campos ); 
 
    m_fTime += 0.1f; 
}  
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APPENDIX D 

C++ SCRIPT FOR RGB TO HSV CONVERSION 

// r,g,b values are from 0 to 1 
// h = [0,360], s = [0,1], v = [0,1] 
//if s == 0, then h = -1 (undefined) 
void RGBtoHSV( float r, float g, float b, float *h, float *s, float *v ) 
{  
 float min, max, delta; 
 min = MIN( r, g, b ); 
 max = MAX( r, g, b ); 
 *v = max;    // v 
 delta = max - min; 
 if( max != 0 ) 
  *s = delta / max;  // s 
 else {  
  // r = g = b = 0  // s = 0, v is undefined 
  *s = 0; 
  *h = -1; 
  return; 
 }  
 if( r == max ) 
  *h = ( g - b ) / delta;  // between yellow & magenta 
 else if( g == max ) 
  *h = 2 + ( b - r ) / delta; // between cyan & yellow 
 else 
  *h = 4 + ( r - g ) / delta; // between magenta & cyan 
 *h *= 60;    // degrees 
 if( *h < 0 ) 
  *h += 360; 
}  
 


