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ABSTRACT 

 

INTERNET MULTICAST CONGESTION CONTROL 

 

Önal, Kerem 

M.S., Department of Electrical and Electronics Engineering 

Supervisor: Asst. Prof. Dr. Cüneyt F. Bazlamaçcı 

February 2004, 80 pages 

 

Congestion control is among the fundamental problems of Internet multicast. It is 

an active research area with many challenges. In this study, an introduction to 

Internet congestion control and a brief literature survey of current multicast 

congestion control protocols is presented. Then two recently proposed “single-

rate, end-to-end, rate based” class of protocols, namely LESBCC and TFMCC are 

evaluated with respect to their intersession fairness (TCP-friendliness), 

smoothness and responsiveness criteria. Throughout the experiments, which are 

conducted using a widely accepted network simulation tool ‘ns’, different 

topologies have been employed.  

Keywords:  Multicast, Congestion Control, Simulation, LESBCC, TFMCC 
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ÖZ 

 

İNTERNET ÇOKLU YAYIN TIKANIKLIK KONTROLÜ  

 

Önal, Kerem 

Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Y. Doç. Dr. Cüneyt F. Bazlamaçcı 

Şubat 2004, 80 sayfa 

 

Tıkanıklık kontrolü internet çoklu yayındaki en temel sorunlardan biridir. Bu 

konu halen birçok zorluklar içeren aktif bir çalışma alanıdır. Bu çalışma 

içerisinde, internet tıkanıklık kontrolü için bir ön bilgi ve halihazır çoklu yayın 

tıkanıklık kontrol protokolleri sunulmuştur. Daha sonra, yakın zamanda önerilmiş 

bulunan “tek hızlı, uçtan uca, hız temelli” protocol sınıfından iki tanesi, yani 

LESBCC ve TFMCC, oturum arası denkserlik kriterleri (TCP-uyumluluk), 

akıcılık ve tepki hızları yönlerinden görgül olarak değerlendirilmişlerdir. Geniş 

olarak kabul görmüş bir ağ benzetim programı olan ‘ns’ kullanılan deneylerde 

değişik topolojiler denenmiştir.  

Anahtar Kelimeler: Çoklu Yayın, Tıkanıklık Kontrolü, Benzetim, LESBCC, 

TFMCC 
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CHAPTER 1 

INTRODUCTION 

 

Multicasting allows information exchange among multiple senders and receivers. 

Nowadays many applications require multipoint delivery in the Internet such as 

audio/video conferencing, Internet games, one-to-many and many-to-many file 

distribution, distance learning and web cache updating. Therefore, Internet 

multicast is an emerging need for the development of the Internet and this must 

be done in a scalable and efficient way. 

 

IP Multicast is used widely on the network layer for routing. It delivers source 

traffic to multiple receivers without adding any additional burden on the source or 

the receivers. There exist protocols to multicast in an efficient way such as 

Internet Group Management Protocol (IGMP) [Deering 1989], [Fenner 1997], 

[Cain 2002] which is used to build up and manage the multicast groups and 

Protocol Independent Multicast (PIM) [Adams 2002], [Fenner 2002], Distance 

Vector Multicast Routing Protocol (DVMRP) [Waitzman 1988] and Border 

Gateway Multicast Protocol (BGMP) [Kumar 1998] which is used to route the 

data packets. 
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On transport layer there is still no standard protocol released and accepted 

widely. UDP seems to be the easiest and the cheapest way. These kinds of 

approaches leave a massive work to be done to the application layer. As UDP 

serves no feedback from receivers to the senders, there is no knowledge about the 

reliability of data packets.  

 

Pragmatic General Multicast (PGM) [Speakman 2000], Real-time transport 

protocol (RTP) [Schulzrinne 1996] and many other multicast transport layer 

protocols do not cover the congestion control part; or due to the needs of the 

protocol, they are not fair to the other users on the network. In fact, lack of 

attention to the congestion control issue results in severe service degradation or 

"Internet meltdown". This phenomenon was first reported in mid 1980s [Nagle 

1984] and is technically called "congestion collapse".  

 

Congestion collapse in today’s Internet is prevented only by the congestion 

control mechanisms in TCP. Therefore the success of the Internet can be 

continued only if we use protocols that respond to network congestion by 

reducing the load presented to the network. 

 

In this thesis, internet multicast congestion control is studied. The challenges and 

the approaches used to solve them are presented. Two of the recently proposed 

protocols are studied in detail using simulations. One of these protocols, namely 
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TFMCC, is in the state of an internet draft. The other one, i.e. LESBCC, is 

proposed more recently. The thesis aims two things: one is the implementation of 

the LESBCC protocol and its addition to the NS protocol stack and the second 

being the evaluation and detailed comparison of LESBCC with a widely accepted 

multicast protocol, TFMCC. 

 

The thesis is organized as follows: Chapter 2 presents a literature survey on 

internet multicast congestion control. Unicast and multicast environments are 

separated and the major challenges in controlling the congestion in a multicast 

environment are discussed.  

 

In Chapter 3, the existing approaches are classified and two of the more recently 

proposed protocols, namely LESBCC [Thapliyal 2002] and TFMCC [Widmer 

2001], which are simulated in this study, are introduced and briefly overviewed. 

 

In Chapter 4, LESBCC and TFMCC are investigated mainly in three parts. The 

results of the simulation experiments are presented in this chapter. The two 

protocols are compared empirically with respect to their intersession fairness 

criterion, protocol overhead, deployment issues and responsiveness to changes in 

network conditions. 
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Chapter 4 concludes the study and states some possible future work. Appendices 

give the C++ and OTcl code written to perform the simulations with NS. 
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CHAPTER 2 

INTERNET CONGESTION CONTROL 

 

2.1 Introduction 

 

The Internet protocol architecture is based on a connectionless end to-end packet 

service using the IP protocol. IP protocol is flexible and robust, and the 

advantages of its connectionless design are widely accepted. Nevertheless, a good 

service is not expected under heavy load. Careless design of congestion control at 

transport layer can result in severe service degradation or Internet meltdown.  

 

 The original specification of TCP already included a window-based flow control. 

It was needed for those receivers which had lower data receiving speeds than 

their senders sending speeds. So, by this flow control, an overflow of the 

receiver’s data buffer space available for that connection was prevented. 

Segments could have been lost either due to errors or to network congestion, but 

they had no effect on the flow-control window. In other words, the senders did 
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not respond, by any means, to congestion on the network in the original 

specification. 

 

Congestion control mechanisms, which fix the Internet meltdown, were first 

provided by Van Jacobson [Jacobson 1988]. Now, congestion control 

mechanisms are required in any TCP implementation. During congestion, these 

mechanisms cause a TCP sender to reduce its data sending rate. In this case, TCP 

flows are responsive to congestion signals (i.e., dropped packets) from the 

network. This is the main idea that lies behind the TCP congestion control 

mechanisms, which prevent the congestion collapse of today’s Internet. 

 

2.2 Unicast 

 

Since TCP is widely used, many research efforts are carried out to improve it. 

Many small improvements have been done. TCP is very useful and applicable for 

a wide range of applications that run fine with best effort flows. Despite all the 

improvements, however, TCP still does not work well with audio/video 

applications. Because of its additive-increase-multiplicative-decrease (AIMD) 

module, a short-term congestion in a path halves the data sending rate, which 

may not be acceptable for the users. Hence, UDP is widely used for streaming 

applications, which, on the other hand, incorporates unfair sessions on the 

Internet [RFC 2914]. 
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One of the improvements on TCP’s congestion control mechanism is presented 

by Yang and Lam [Yang 2000]. In TCP’s AIMD mechanism, in congestion 

avoidance state, the window size is increased by α per window of packets 

acknowledged and it is decreased to β of the current value when there is 

congestion indication. TCP implementations uses α = 1 and β = 1/2. Instead of 

these values, in GAIMD, α = 0.31 and β = 7/8. According to the authors, this 

implementation is highly TCP-friendly and these GAIMD flows have reduced 

rate fluctuations compared to TCP flows. 

 

Another solution is presented by TFRC [RFC 3448]. TFRC is a rate-based TCP-

friendly congestion control protocol. It uses a TCP-friendly formula which 

imitates the long term throughput of TCP’s windows-based approach. TFRC is 

also less aggressive than TCP so its long term rate behavior is more stable than 

TCP’s saw-tooth like behavior.  

 

TFRC briefly works as follows: the receiver measures packet loss rate P and 

sends feedback packet to the sender to report P. The sender receives this report 

and measures the RTT for this receiver. Now the sender has RTT and P and it 

already knows the packet size from the beginning. Then, it calculates the TCP-

friendly sending rate based on the TCP throughput equation and sets its rate to 

this calculated value. 
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2.3 Multicast 

 

UDP is the dominant protocol in today's multicast traffic. It does not have a 

congestion control mechanism and allows multicast traffic to use more bandwidth 

than other responsive traffic. This leads to serious problems such as unfair usage 

of the network resources and the congestion collapse, which occurs when the 

sources keep sending packets that are surely going to be dropped later by the 

network. 

 

One way to avoid congestion is to use QoS schemes in the network layer. This 

way, there occurs no congestion in the network since enough resources are 

guaranteed to users. However, QoS requirements are likely to be supported only 

by a small fraction of Internet. 

 

The other way, which will be the focus in this thesis, is to use transport layer 

mechanisms for multicast congestion control. The three major challenges in 

controlling the congestion in a multicast environment are scalability, 

heterogeneity and fairness. 

 

2.3.1 Scalability 
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Scalability is a challenge for congestion control when the number of receivers is 

large. The scalability of the multicast congestion control protocol is achievable 

only by controlling the feedback messages efficiently. There must be a 

suppression mechanism to filter some of the feedback messages. For this purpose 

it is often helpful to distinguish between shared loss and independent loss. Figure 

1 illustrates the two types of losses. 

A

C D E

B

X

A

C D E

B

X X

 

Figure 1: Independent and Shared Loss 

(a) Independent losses. The two losses at links BC and BE are independent.  

 (b) Shared loss. The loss occurred at link AB. Nodes C, D and E all observe the same loss. 

 

In fact, it is not clearly defined which loss is shared and which is independent. 

However, independent loss can be thought to occur on a less common link and 

hence affect a small number of receivers (Figure 1.a). All such losses should not 

be reported to the sender and perceived as an indication of congestion in the 

network. The "Drop-to-zero" problem [Rhee 1999] occurs when the sender 

overreacts to every packet loss on the links and transmits data at a very low rate 
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due to unnecessary retransmissions. Today, probabilistic schemes, representative 

based schemes and the filtering mechanisms [Bhattacharyya 1999] are all used to 

avoid this problem. 

 

Shared losses occur on very common links, especially near the sender, in the 

multicast distribution tree and hence all the downstream receivers observe the 

losses and possibly report these (Figure 1.b). This time the "feedback implosion" 

problem occurs, which means that the sender receives much more feedback 

packets than it can handle. Feedback suppression techniques using a hierarchical 

structure or timer-based mechanisms can be used to overcome this problem. The 

probabilistic and the representative-based schemes mentioned in the previous 

paragraph can also help to avoid feedback implosion. 

 

As a result, scalability increases as the system deals with smaller number of 

feedback information packets which decreases the computational power needed. 

Scalability also increases as the computational load and memory requirements 

decreases during the evaluation process of these feedback messages. If is often 

preferred to share this computational load both at the sender and the receiver side. 

Some or all of this computation can be done in the routers, but this clearly 

decreases the deployability of the scheme, which is not recommended for most 

cases. 
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2.3.2 Heterogeneity and interreceiver fairness 

 

In a multicast group, receiver connections can vary from a dialup link to 100 

Mbps LAN. Each receiver naturally wants to have a transmission rate that 

matches its receiving rate. As a result, heterogeneity of group members and 

network capacities is another major challenge for multicast congestion control. 

This leads to the interreceiver fairness, which requires that the transmission rate 

of a multicast group should satisfy the faster receivers in the group while not 

overwhelming the slower ones at the same time.  

 

In single-rate protocols, the offered rate is dictated by the receiver with the worst 

performance so the throughput cannot exceed the slowest receiver’s receiving 

capability. Therefore, the closer the offered throughput to the slowest receiver’s 

receiving capability, the better the interreceiver fairness is. 

 

2.3.3 Intersession fairness 

 

A most basic and necessary requirement for end-to-end multicast congestion 

control is fairness among multicast and unicast sessions. A multicast flow must 

be responsive in a best effort network and should not use very high or low 

bandwidths compared to other traffic.  
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The definition of "intersession fairness" is the subject of a current debate and 

different definitions are possible. In the multicast congestion control literature, it 

is widely accepted that a proposed protocol must be TCP-friendly. The definition 

of TCP-friendliness is first given as TCP-compatible in [RFC 2309]: 

“We introduce the term "TCP-compatible" for a flow that behaves under   

congestion like a flow produced by a conformant TCP.  A TCP-compatible flow is 

responsive to congestion notification, and in steady-state it uses no more 

bandwidth than a conformant TCP running under comparable conditions” 

As the definition is not quantitative it is not clear how to test whether a flow is 

TCP-friendly or not. And also there are numerous TCP implementations which 

have different throughputs under the same conditions. First test is done in an 

award-winning paper [Floyd 1999]: 

“The test of TCP-friendliness does not attempt to verify that a flow responds to 

each and every packet drop exactly as would a conformant TCP flow. It does 

however assume a flow should not use more bandwidth than would the most 

aggressive conformant TCP implementation in the same circumstances” 

 

In [Floyd 1999], main purpose is to stop unfairness between unresponsive flows 

and TCP using a control scheme in routers. Continuing to analyze [Floyd 1999], 

we see that the most aggressive TCP throughput in steady-state is defined as Eqn 

1: 
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1.22*
*

BT
R p

≤  
Eqn. 1 

 

where T is the maximum data sending rate in bytes/seconds, B is the packet size 

in bytes, assuming a fairly constant round trip time, R in seconds, and loss rate, p. 

And it is accepted, with some overhead, that a flow is TCP-friendly if its 

throughput, holds for the inequality below in Eqn 2: 

1.45*
*

BT
R p

≤  
Eqn. 2 

 

The TCP-friendliness ratio (F) is defined as Eqn 3 [Padhye 2000][Widmer 2000]: 

 

M

TCP

TF
T

=  Eqn. 3 

 

where TM is the throughput of multicast session and TTCP is the throughput of 

TCP session on the bottleneck link. In the ideal case, F equals to 1 showing the 

absolute fairness. Using the ratio between Eqn. 1 and Eqn. 2, we can conclude 

that (Eqn 4): 

 

1.45 1.19
1.22

M

TCP

TF
T

= ≤ ≅  Eqn. 4 
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is the uppermost limit defining TCP-friendliness. 

 

As can be seen, F does not have a lower bound. A multicast flow is TCP-friendly 

even if its throughput is 5 times lower than TCP. This is actually related to 

performance, not TCP-friendliness. It is obvious that a multicast flow should not 

starve itself for the sake of TCP-friendliness. It should force TCP to be multicast-

friendly. Therefore P, the inverse of F, can be used as a performance metric as in 

Eqn. 5. We are not satisfied with a multicast flow’s performance if its P value is 

more than 1.19.  

1.19TCP

M

TP
T

= ≤  Eqn. 5 

In most of the papers that presents a new multicast congestion control protocol, 

TCP-friendliness is the only fairness criteria, which is then proven only by 

simulations without any quantitative detail. None of the protocols are accepted 

yet as a standard by IETF. To quote [Wang 1998]: 

“First of all, there is no consensus on the fairness issue between multicast and 

unicast traffic, let alone a useful quantitative definition … we believe that a 

consensus on the definition of the relative fairness between multicast and unicast 

traffic is achievable once an algorithm shown to be “reasonably fair” to TCP is 

accepted by the Internet community” 

 

The reason why TFMCC is chosen to be tested in this thesis is closely related to 

the above definition. TFMCC is at a status of internet draft and it is probably the 
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most widely accepted multicast congestion control algorithm. It uses the same 

TCP-friendly equation used in a unicast congestion control protocol, TFRC, 

which is a proposed standard by IETF.  

 

In this thesis, the TCP-friendliness of LESBCC and TFMCC are both analyzed 

according to F. In cases where both protocols are unfair, LESBCC is compared to 

TFMCC. 

 

On the other side of the coin, there are some claims that TCP-friendliness should 

not be mandatory for the multicast sessions. It can also be seen that it is not 

defined yet how well to test this approach. To quote [Wang 1998]: 

“Should a multicast session be treated as a single session, which deserves no 

more bandwidth than a single TCP session, when they share network resources? 

Or should the multicast session be given more bandwidth than TCP connections 

because it is intended to serve more receivers? If the latter argument is creditable 

how much bandwidth should be given to the multicast session and how do we 

define “fairness” in this case?” 
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2.4 Classification of Schemes 

 

The proposed multicast congestion control schemes can be broadly categorized 

according to whether they are single-rate or multirate, end-to-end or network-

supported and window-based or rate-based. 

 

2.4.1 Single-rate 

 

In a single-rate scheme, all receivers of a multicast session observe the same data 

rate. In general the slowest receiver in the session determines the sending rate. 

The difference between the data sending rate and the maximum receiving rate of 

the slowest receiver must be as small as possible. The goal is to achieve the 

maximum value of a predefined interreceiver fairness [Jiang 1998]. The single-

rate schemes usually cannot achieve good interreceiver fairness because of the 

high heterogeneity among network paths and receivers. However, the advantage 

of this scheme is that it is easier to implement and to deploy and the support from 

intermediate nodes is not mandatory. 
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2.4.2 Multirate 

 

In multirate schemes, source sends data at multiple rates to receivers with 

different capabilities. The primitive way is "simulcasting" [Cheung 1996], [Jiang 

2000] in which the same original data is encoded into a number of streams with 

different rates. The better way is layered multicast [Legout 2000], [Byers 2001], 

which divides the data into several layers. Different multicast groups receive 

different layers. There is an order among the layers in the cumulative layering, 

and no such ordering exists in the non-cumulative layering schemes. Multi-rate 

transmission can also be achieved by router filtering [Luby 1999], transcoding 

[Assuncao 1996], and store-and-forward approaches.  

 

Despite the numerous technical advances and significant effort, a suitable 

multirate multicast congestion control scheme is still not deployed for wide area. 

It is often extremely complex to test and validate such schemes and 

implementations require a great deal of effort. If store-and-forward mechanism is 

used, this scheme may also require excessive storage at routers. Figure 2 shows 

the classification according to single-rate or multirate. 
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Singlerate

Replication

Multirate
Layered multicast

Other approaches

Cumulative layering

Non-cumulative layering

Router filtering

Transcoding

Store-and-forward

Figure 2: Classification of multicast schemes according to rate type. 

 

 

2.4.3 End-to-end 

 

End-to-end schemes do not require network support beyond multicast delivery. 

Most of the multicast congestion control protocols fit in this category because 

implementation and deployment is easier. All congestion control functionality is 

provided by the senders and receivers. End-to-end schemes can be divided into 

sender-based, receiver-based and hybrid schemes. In a sender-based scheme, the 

sender adjusts the transmission rate using the feedback from receivers. In receiver 

based schemes receivers calculate and report the desired transmission rate to the 

sender. Sender decides the appropriate transmission rate. Receiver-driven 

schemes are more scalable but also are more complex and harder to deploy. A 

hybrid scheme is receiver-driven but the sender also adjusts sending rates. 
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2.4.4 Network-supported 

 

These kinds of schemes perform better by adopting additional functionality, such 

as feedback aggregation and router filtering, in the network. But they highly 

increase the complexity in the network. It is much harder to implement and 

deploy than end-to-end protocols. Figure 3 shows the classification of multicast 

schemes according to network support availability. 

 

End-to-End

Network
Supported

Sender based

Receiver based

Hybrid schemes

 

Figure 3: Classification of multicast schemes according to network support availability. 

2.4.5 Window-based 

 

In a window-based scheme, either the sender or receivers maintain a congestion 

window like the TCP. The congestion window represents the amount of data 

which may be sent in one RTT. The window size decreases when congestion is 

detected and increases with some timeout mechanism when there is no detected 

congestion. The sending rate is adjusted by this window size. The windows can 

be common for all receivers of a multicast group or distinct for some specific 
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group or even for each receiver. Since the common window is usually set 

according to the slowest receiver, this approach worsens the interreceiver fairness 

principle and restricts the throughput of the multicast session to a value that is 

much lower than the value allowed in the network [Golestani 1999].  

 

2.4.6 Rate-based 

 

In a rate-based scheme, the transmission rate is adjusted directly, through a 

probing or equation-based approach. In the probing approach, the transmission 

rate is decreased when congestion is detected and increased when there is no 

congestion. In the equation-based approach, using measured loss probability and 

RTT values, the proper transmission rate is calculated using the TCP throughput 

models [Padhye 1998]. Figure 4 shows the classification of multicast schemes 

according to being rate or window based. 
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Figure 4: Classification of multicast schemes according to being rate or window based. 
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CHAPTER 3 

MULTICAST CONGESTION CONTROL 

PROTOCOLS 

3.1 Introduction 

 

In this section, we briefly describe the mechanisms of some multicast congestion 

control protocols and give a detailed description of two multicast congestion 

control protocols, which are investigated in next chapter. Both are chosen to be 

single-rate and end to end schemes in order to be able to compare the 

performances on a common ground. 

  

3.2 NCA 

 

Nominee Congestion Avoidance [Kasera 2000] is a single-rate TCP-friendly 

multicast congestion control protocol. It consists of two parts: a nomination 

algorithm and a rate adjustment algorithm.  
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The purpose of the nomination algorithm is to dynamically select a nominee 

representing the worst path. Each receiver periodically sends the estimated loss 

probability and RTT to its upstream active server. An active server identifies the 

worst performing receiver among its children based on a TCP-friendly formula 

and reports that information upstream. Eventually, the sender will identify the 

worst performing receiver of the entire group as the nominee and ask it to send an 

ACK for every packet it receives. The rate adjustment algorithm operates in a 

similar way as TCP NewReno [Floyd 1999] using ACKs from the nominee. The 

main difference between them is that the algorithm does not retransmit packets on 

detecting losses, since NCA is a congestion control protocol decoupled from the 

error control functionality.  

 

3.3 PGMCC 

 

PGMCC [Rizzo 2001] is very similar to NCA. It is again a single-rate TCP-

friendly multicast congestion control protocol.  

 

The sender continuously monitors receiver reports embedded into NACKs 

coming from receivers. Then it selects the group representative, the acker, as the 

receiver with the worst throughput according to the control scheme being used. A 

window-based congestion control scheme similar to TCP congestion control is 
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run between the sender and the acker, which then sends positive ACKs for each 

data packet. 

 

The critical part in this protocol is to select the right acker timely. PGMCC does 

not use any TCP-friendly equation. As can be seen, the main idea is the same 

with NCA but the acker or nominee selection mechanism is somewhat different. 

 

3.4 MTCP 

 

Multicast TCP (MTCP) [Rhee 1999] is a hierarchical network-supported 

window-based protocol for multicast flow and congestion control as well as error 

control. The hierarchy includes the sender as the root, receivers as leaves and 

Sender Agents (SA) in between. 

 

The sender and each SA maintain a congestion window (cwnd) and a transmit 

window (twnd). The cwnd estimates the congestion level of the network and is 

maintained using congestion control mechanisms similar to TCP Vegas. The 

twnd indicates outstanding packets at the sender or an SA, which is increased 

when a packet arrives at the SA (or the sender) and decreased when the packet is 

acknowledged by all the children of the SA (or the sender). Each SA sends to its 

upstream SA (or the sender) congestion summaries, which include a minimum 

congestion window (minCwnd) and a maximum transmit window (maxTwnd). 

 24



The minCwnd is the minimum value of the SA’s own cwnd and the cwnds 

reported by its immediate downstream children. The maxTwnd is the maximum 

value of the SA’s own twnd and the twnds reported by its immediate downstream 

children. SAs whose children are leaf nodes just include their own cwnd and 

twnd in the congestion summary.  

 

Congestion summaries are piggybacked on ACKs and NACKs or sent 

periodically when ACKs and NACKs are lacking to prevent protocol deadlocks. 

Each receiver also sends an advertised window (awnd) upstream indicating the 

number of available buffers. The awnds are aggregated along the hierarchy. 

Defining a current window (curwnd) at the sender as the difference between its 

minCwnd and maxTwnd and the sender’s awnd as the minimum value reported 

by its children, the number of packets sent each time should be no more than 

min(curwnd, awnd).  

 

3.5 LESBCC 

 

The LESBCC [Thapliyal 2002] fits into the class of single-rate, end-to-end, rate-

based probing schemes. It is purely sender-based. The only work done by each 

receiver is to send a one bit loss indicator (NACK) per packet loss observed by 

that receiver. Sender leverages a set of filters and an RTT estimator is used to 

form an input to a rate-based AIMD module. 
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RTT
Estimator

LI2LE max LPRF

ATF AIMD Module
loss indication

loss event

Figure 5: Cascaded filter model of LESBCC 

 

 

The filters address all the main pieces of the single-rate multicast congestion 

control problem. Figure 5 illustrates the outline of the building blocks of the 

scheme implemented at the multicast source. The modules work as follows:  

 

3.5.1 RTT Estimation 

 

All filters and the AIMD module need an RTT estimate. It works very similar to 

the TCP timeout procedure, i.e., it calculates a smoothed RTT (SRTT) and a 

mean deviation which approximates the standard deviation σ by the following 

method. 

 

There is no ACK in LESBCC’s mechanism. Sender records the time when it 

sends a packet. If a NACK for that packet comes from a receiver, the difference 
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between the current time and the recorded time gives us an RTT sample, CRTT. 

Otherwise no RTT value can be calculated. So, only a packet which is not 

received by at least one of the receivers affects the SRTT value. The absolute 

value of the difference between SRTT and CRTT is the current deviation, δ . 

SRTT and σ are calculated using these two samples, CRTT and δ  as in Eqn. 6 

and Eqn 7. 

 

0.875* 0.125*SRTT SRTT CRTT= +  Eqn. 6 

0.875* 0.125*σ σ δ= +  Eqn. 7 

3.5.2 LI2LE Filter 

 

When a receiver detects a packet loss it sends a NACK to the sender. NACK is 

named as loss indication (LI) in LESBCC. In this filter for every receiver LIs are 

converted to loss events (LE). An LE is a per-receiver binary number which is 1 

or 0. If one or more LIs are generated per (SRTT + 2σ) per-receiver LE is 1 and 

and it is 0 otherwise. When an LI is converted to an LE, the time is recorded at 

the sender for that receiver’s last pass (TLastPassed). If, in a period of SRTT + 2σ 

duration, a new LI arrives from that receiver then it is filtered. Otherwise it passes 

as an LE and the timestamp TLastPassed is updated to the current time.  
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3.5.3 Max-LPR Filter 

 

The goal of this filter is to pass the number of LEs corresponding to what the 

source would have received from the worst case receiver on the average. This 

filter is an extension of Bhattacharya et al’s Linear Proportional Response Filter 

(LPRF) [Bhattacharya 2001].  

 

Sender saves the number of LE’s of every receiver in an array. LEmax is the 

greatest value throughout the array and LEall is the total number of LE’s received 

from all of the receivers. This filter passes an LE to the next filter with a 

probability of LEmax/ LEall. 

 

If most of the packet drops within the system are shared losses then sender 

receives N LIs for every packet drop. The probability decreases to 1/N, where N 

is the number of receivers. On the other hand, if most of the packet drops are 

independent then the probability increases with respect to the shared loss case 

accordingly. 

 

In addition, LE count of each receiver is decreased by 10% every 100 SRTT. This 

is to respond actively to the recent changes in the network conditions.  
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3.5.4 Adaptive Time Filter 

 

This filter simply drops excess LEs passed by Max-LPRF in any RTT to enforce 

at most one rate reduction per SRTT + 4σ. In addition, the filter also imposes a 

“silence period” of 0.5(SRTT + 4σ) when no packets are sent. The goal is to 

reduce the probability of losing any control traffic or retransmissions during this 

phase as suggested in [Natu 2001].  

 

3.5.5 AIMD Module 

 

The AIMD module works to imitate the behavior of the AIMD module of TCP. 

LESBCC is rate-based. If an LI passes all filters then the data sending rate is 

halved. Every SRTT+2σ, rate is increased by B/(SRTT+2σ) where B is the packet 

size. Hence the sending rate is increased by 1/(SRTT+2σ) in terms of packets per 

seconds. This corresponds to an increase in the window size by one packet every 

SRTT+2σ in TCP. The following table explains the behavior. Initially, assume 

that the data sending rate is R packets per second. Third column is equal to the 

rate times SRTT+2σ. 
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Time(s) 

 

Rate (pkts/s) 

Number of 
packets sent in 

SRTT+2σ (pkts) 

0 R R*( SRTT+2σ) 

SRTT+2σ R+1/ (SRTT+2σ) R*( SRTT+2σ)+1 

2(SRTT+2σ) R+2/ (SRTT+2σ) R*( SRTT+2σ)+2 
 

Figure 6: Additive increase behavior of LESBCC 

 

3.5.6 Extension to AIMD Module 

 

AIMD module used in TCP is not designed for smooth data delivery. All AIMD 

modules use two constants. TCP increases the congestion window bye one packet 

when there is no congestion so the additive constant is 1. It halves the data 

sending rate, which dramatically disrupts the smoothness, in response to single 

packet drop, so the multiplicative constant is 0.5. In other words, TCP uses 

AIMD(1,1/2). In order to be TCP-friendly LESBCC uses the same logic at the 

cost of loosing its smoothness. 

In its original paper, a solution has already been proposed to increase the 

smoothness of the LESBCC. The approach uses the TFRC equation as used in 

TFMCC. It is an optional citation in the paper and it is not fully tested in various 

conditions. In TFMCC, the calculation of this equation is done at the receivers to 

reduce the computational load on the source. The aim is to increase the 

scalability. LESBCC is a sender-based multicast congestion control protocol. The 
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calculation of this equation brings an additional computational complexity to the 

O(N) state requirements of both LI2LE and maxLPR filter. Also there is a need to 

calculate the packet loss in the system, which is used in the TFRC equation. 

 

As a result we prefer to use a much simpler extension to LESBCC only by 

changing the constants of its AIMD module. In [Floyd 2000], AIMD(1/5,7/8) or 

AIMD(2/5,7/8) has already been suggested for the smooth delivery of data while 

being TCP-friendly at the same time. In [Yang 2000], AIMD(0.31,7/8) is defined 

as GAIMD and it is claimed that GAIMD is also TCP-friendly. In the next 

chapter, we implement these schemes in LESBCC and observe satisfactory 

results. 

 

3.6 TFMCC 

 

TFMCC [Widmer 2001] is a single-rate multicast congestion control protocol 

designed to provide smooth rate change over time. TFMCC extends the basic 

equation-based control mechanisms of TFRC into the multicast domain. The 

fundamental idea is to have each receiver evaluate a control equation Eqn. 8 

derived from the model of TCP’s long-term throughput. And then use this to 

directly control the sender’s transmission rate.  
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Eqn. 8 

 

where, 

TTCP is transmission rate in bits/sec, 

S is the packet size in bytes, 

RTT is the round trip time in seconds, 

p is the steady state loss event rate, between 0 and 1. 

 

An overview of TFMCC functionality is as follows: 

• Each receiver measures the packet loss rate. 

• The receiver measures or estimates the round-trip time to the sender. 

• The receiver uses the control equation to derive an acceptable 

transmission rate from the measured loss rate and round-trip time. 

• The receiver sends the calculated transmission rate to the sender. 

• A feedback suppression scheme is used to prevent feedback implosion 

while ensuring that feedback from the slowest receiver always reaches the 

sender.  

• The sender adjusts the sending rate from the feedback information.  

In TFMCC, the receiver that the sender believes to have the current lowest 

expected throughput of the group is selected as the current limiting receiver 

(CLR). The CLR sends continuous, immediate feedback to the sender without 
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any suppression, so the sender can use the CLR’s feedback to adjust the 

transmission rate. In addition, any receiver whose expected throughput is lower 

than the sender’s current rate sends a feedback message, and to avoid feedback 

implosion, biased feedback timers in favor of receivers with lower rates are used. 

 

3.6.1 Measuring the Loss Event Rate  

 

In TFMCC, a receiver aggregates the packet losses into loss events, defined as 

one or more packets lost during a round-trip time. The number of packets 

between consecutive loss events is called a loss interval. As in Eqn. 9, the 

average loss interval size can be computed as the weighted average of the m most 

recent loss intervals l k,…, lk-m+1: 
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Eqn. 9 

 

The weights wi are chosen so that very recent loss intervals receive the same high 

weights, while the weights gradually decrease to 0 for older loss intervals. The 

loss event rate p used as an input for the TCP model is then taken to be the 

inverse of lavg. A more through discussion of this loss measurement mechanism 

can be seen in the original TFMCC paper [Widmer 2001]. 
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3.6.2 Round-trip Time Measurements  

 

Each receiver starts with an initial RTT estimate that is used until a real 

measurement is made. A receiver measures the RTT by sending a timestamped 

feedback to the sender, which then echoes the timestamp and receiver ID in the 

header of a data packet. An exponentially weighted moving average (Eqn. 10) is 

used to prevent a single large RTT measurement from greatly impacting the 

sending rate. 

 

(1 )inst
RTT RTT RTTt tβ β= ⋅ + − ⋅ t  Eqn. 10 

 

 

The recommended value of β for the CLR is 0.05 while all other receivers are 

recommended to use β = 0.5 due to their less infrequent RTT measurements. 
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CHAPTER 4 

SIMULATION WORK 

4.1 Validation of the code of LESBCC for NS 

 

To the best knowledge of the author, a well-defined, fully stated and reproducible 

simulation experiment does not exist in the congestion control protocol literature 

encountered so far. Most experiments lack the necessary details and some that are 

mandatory for reproduction. Unfortunately, the experiments conducted in the 

original LESBCC paper are also of this type. Figure 8 is a graph taken from this 

original source and its corresponding experiment is conducted using the LESBCC 

code written in this thesis. 

 

The topology is presented in Figure 7. Packet size is 560 bytes. Link delays are 

all 10 ms. Queue sizes of all routers are 125 packets. Droptail policy is used in 

queues. Each link from the senders to router 1 has a bandwidth size of 6 Mbps. 

The link between routers has a bandwidth of 6 Mbps for each flow (totally 102 

Mbps). Each link from router 2 to the receivers has a bandwidth size of 5 Mbps. 

“Main Source” is the LESBCC source that sends data to all four receivers. Set i 

has four TCP sources that sends data to Receiver i for i = 1,2,3,4. 
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Figure 7: Validation experiment topology 

 

The corresponding experiment is chosen for validation purposes because it is the 

one in the paper with the most details and parameter information. In this setup, 

there exist some TCP and LESBCC parameters that can affect the behavior 

illustrated on the corresponding graph. Some of these parameters, such as the 

initial SRTT and the initial sending rate, may affect the transient behavior and 

some others, such as the TCP window size and the receivers’ random backoff 
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time used as a delay before sending a feedback to the source, may effect the 

steady state behavior. However, these are lacking parameters. 

 

In this verification step, we assume that the TCP receiver window size is large 

enough and does not limit the TCP’s behavior. For some experiments in the 

LESBCC paper, multicast receivers delayed the feedback up to 20% of the initial 

RTT. In our experiments, none of the receivers use a delayed feedback.  

 

The result of the verification run is presented in Figure 9. We believe that the 

results are similar comparing the general characteristics and given the lack of 

various parameters the written code can be accepted as valid to a certain degree.  

 

Our NS implementation is given in Appendix A whereas the algorithm of 

LESBCC is given in Appendix: Pseudo code in the original paper [Thapliyal 

2002] for further comparisons. 
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Figure 8: Average Throughput of LESBCC vs. TCP 
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Figure 9: Average Throughput of TFMCC vs. TCP 
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4.2 Experiments 

 

The purpose of the experiments in this chapter is to empirically evaluate the 

performances of LESBCC and TFMCC and to compare them with each other 

using the simulation tool, NS-2. In each experiment, we analyze the TCP-

friendliness, smoothness and responsiveness of the corresponding protocols. 

 

A framework has already been proposed for the simulation and testing of 

multicast congestion control schemes [Handley 2000]. In the design of our 

experiments and in the choice of the topologies, this framework is used to the 

greatest possible extent. The source model used in the simulations is the File 

Transfer Protocol (FTP) with a packet size of 1400 bytes. Unless otherwise 

specified, all links are lossless, each link has a propagation delay of 1ms and a 

bandwidth of 10 Mbps. The TCP version used in the experiments is Reno since it 

is the most widely deployed version. Droptail queues are used at the routers to 

mimic the behavior of the current Internet. The TCP window size is set to 1000 

packets so that it is large enough not to impact its own congestion control 

mechanisms. The clock granularity of TCP is set to 10ms.  

 

Correct queue sizing is an important issue for all the experiments. Queue sizes on 

the non-bottleneck links are not important since there will be no buffering. 

However there is no consensus on how to determine the bottleneck queue size 
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before the experiments. TCP needs the network to buffer an RTT worth of data to 

use the full capacity and hence the aim is to allow the TCP to fill the pipeline 

from source to destination and use the link efficiently. As a rule of thumb, the 

queue size is recommended as at least 4*BW*RTT (in bits or packets) where BW 

is the bandwidth size of the bottleneck (in bps or pkt/s) and RTT is the fixed 

round trip time (in seconds) including only the link delays [Handley 2000].  

 

4.2.1 Experiment 1: Shared Loss 

 

The topology shown in Figure 10 is used in the first experiment. We have a TCP 

session competing with a multicast session over a bottleneck link. The bottleneck 

link A, between routers, has a propagation delay of 50 ms and its bandwidth is 

500 Kbps. The multicast session has one sender and three identical receivers.  

router routerA

TCP
Sender

Multicast
Sender

TCP
Receiver

Multicast
Receiver

Multicast
Receiver

Multicast
Receiver

 

Figure 10: Multicast session competing with TCP over a bottleneck link 
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According to the rule of thumb, the queue that feeds link A should have a size of 

at least 19 packets and a queue size of 30 packets is selected for this experiment 

with some safety margin.  

 

In Figure 11, the throughputs of both LESBCC and TCP are observed to be very 

close to each other. F is at most 1.14 throughout the experiment so LESBCC can 

be said to be TCP-friendly. As was mentioned in Chapter 2: Intersession Fairness, 

the TCP-friendliness constant F=TM/TTCP should be less than 1.19, where TM is 

the throughput of the multicast session, TTCP is the throughput of the TCP session 

on the bottleneck link. All packet drops are due to the congested link so in 

multicast session they are of type “shared loss” for all the multicast receivers. 

Hence, the sender receives 3 NACKs for each packet drop but the LESBCC 

multicast sender seems to filter the excessive NACKs successfully.  

 

In Figure 11, TFMCC is also observed to be TCP-friendly and F is at most 1. 

Actually, it is perfectly TCP-friendly. Therefore both approaches are suitable to 

be used in the existence of bottleneck links from TCP fairness point of view.  

 

TCP-friendliness definition does not cover the performance issues. As was 

discussed earlier, the inverse of F can be used for the performance criteria. 

TFMCC cannot get a fair share bandwidth, i.e., TCP’s throughput is more than 

1.19 times TFMCC’s throughput for 400 seconds. LESBCC converges 
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approximately three times faster than TFMCC. This is an expected result because 

LESBCC’s additive constant of AIMD module is 1. According to [Floyd 2000] 

TFMCC is designed to increase its rate at most 0.28 packets per RTT to achieve 

the desired smoothness. In general, the smoother a congestion control algorithm, 

the less responsive it is.  
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Figure 11: Average Throughput of LESBCC vs. TCP 

 42



0
10000

20000
30000

40000
50000

60000
70000

80000
90000

100000

0 500 1000 1500 2000 2500 3000

Time(s)

Av
er

ag
e 

Th
ro

ug
hp

ut
(B

ps
)

TFMCC
TCP

Figure 12: Average Throughput of TFMCC vs. TCP 

For short duration connections, a TFMCC multicast stream, although it is TCP-

friendly, cannot get a fair share of the bandwidth and its throughput is observed 

to be much less than the TCP. It catches the TCP performance level only in the 

long run. 

 

Figure 13 shows the instantaneous throughput comparison of LESBCC vs. TCP 

for the last 500 seconds of the simulation. It shows that LESBCC eliminates the 

drop-to-zero problem. LESBCC increases its rate at those times that TCP Reno 

decreases its rate to zero but this transient behavior does not lead to unfairness. 

This transient behavior is inherent to TCP Reno. Most TCP implementations 

decrease their window size to the initial value in case of a timeout. This initial 

value is changing according to the implementation but it is approximately 1 or 2 

packets which is a very low value. However, TCP Reno also has to wait for a 
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timeout to recover from the multiple losses per window. This disadvantage makes 

TCP Reno drop to zero more than necessary. Different TCP versions such as 

NewReno, SACK, Vegas are proposed to overcome this problem. As they are not 

widely deployed however, the simulations on congestion control world are still 

recommended to be performed using TCP Reno [Rizzo 2001] [Widmer 2001]. 

  

In Figure 14, it is observed that TFMCC keeps its rate even more stable than 

LESBCC. It does not drop to zero either. This is an expected result because one 

of the main goals of TFMCC is to keep the rate change low to be suitable for 

applications such as audio/video traffic. Observe that TCP is also smoother in 

Figure 14 than in Figure 13. This can be explained by comparing the burstiness. 

The nature of LESBCC traffic is more aggressive, responsive and bursty than 

TFMCC traffic, which also affects TCP to be bursty. 
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Figure 13: Instantaneous throughput comparison of LESBCC and TCP  
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Figure 14: Instantaneous throughput comparison of TFMCC and TCP 
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4.2.2 Experiment 2: Independent Loss 

 

It is worth noting that in the previous experiment all NACKs are generated 

almost at the same time. In experiment 2, the topology given in Figure 15 is used 

so that the loss generation times are independent from each other. One multicast 

session is competing with two TCP sessions. For Link A and Link B, the 

propagation delays are 50 ms and the bandwidths are 500 Kbps. 

 

In this experiment losses occur near the receivers and effect only the 

corresponding receiver which is called independent loss in the multicast 

literature. Queue size is set to 30 packets for the bottleneck links for Figure 16 

and Figure 17. 
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Figure 15: Multicast session competing with TCP where losses are independent. 
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Figure 16: Throughput of LESBCC vs. two TCP sessions (queue size=30pkts) 

0
10000

20000
30000

40000
50000

60000
70000

80000
90000

100000

0 500 1000 1500 2000 2500 3000 3500

Time(s)

Av
er

ag
e 

Th
ro

ug
pu

t(B
ps

)

TFMCC
TCP 1
TCP 2

 

Figure 17: Throughput of TFMCC vs. two TCP sessions (queue size=30pkts) 

 LESBCC is starving TCP as time passes in Figure 16. Also in Figure 17 TFMCC 

receives much more bandwidth than TCP. F is around 1.5 for the last 500 

seconds. Before making comments on these results, we repeat this experiment 
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when queue sizes are equal to 50 packets and we observe the results in Figure 18 

and Figure 19.  
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Figure 18: Throughput of LESBCC vs. two TCP sessions (queue size=50pkts) 
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Figure 19: Throughput of TFMCC vs. two TCP sessions (queue size=50pkts) 
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Both LESBCC and TFMCC becomes TCP-friendly when we increase the 

bottleneck queue size. The reason for this lies in the spacing of the data packets 

and buffer requirements: Both TFMCC and LESBCC spaces out the data packets, 

while TCP sends them back-to-back if it can send multiple packets making TCP 

more sensitive to nearly-full queues [Widmer 2001]. A queue size of 30 packets 

is not enough for three sources hence we need more buffer space in this case. 

Multiple losses per window decrease the robustness in TCP Reno [Handley 

2000]. Selecting queue sizes larger decreases the multiple losses per window and 

increases the TCP throughput. 

 

Nevertheless, end users cannot determine the queue sizes on routers. Both 

protocols should be TCP-friendly in small queue sizes too. In the current 

experiment, we can say that, both protocols starve TCP in small queue sizes and 

TFMCC is more sensitive to small queues for the TCP-friendliness metric but is 

more TCP-friendly with an appropriate queue size. 

 

For the performance issue, LESBCC’s performance metric P is larger than the 

desired value, 1.19, throughout the experiment. But TFMCC reaches this value 

only after 1000 seconds. This also shows that LESBCC can use the available 

bandwidth more efficiently and timely than TFMCC. 
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Comparing the last 500 seconds instantaneous throughput graphs given in Figure 

20 and Figure 21, comparable data sending rates are observed for both protocols. 
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Figure 20: Instantaneous throughput of LESBCC vs. two TCP sessions (queue size=50pkts) 
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Figure 21: Instantaneous throughput of TFMCC vs. two TCP sessions (queue size=50pkts) 
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4.2.3 Experiment 3: Different Bandwidths 

 

In this experiment, the topology in Figure 15 is used again but link B has a 

bandwidth of 1 Mbps this time. So TCP session 2 throughput is expected to be 

twice that of TCP 1. In this case, the multicast flow should not increase its rate 

while observing free bandwidth in link A. Queue size is 50 for link A as usual 

and 100 for link B as its bandwidth-delay product is twice that of link A. 

 

Analyzing Figure 22 and Figure 23, running the experiment for 2000 seconds is 

enough to see that both multicast protocols are TCP–friendly. Their transmission 

speeds are successfully determined by the slowest receiver. Again LESBCC 

responds much faster than TFMCC as in the previous experiments. 
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Figure 22: Throughput of LESBCC vs. two TCP sessions on different bandwidths 
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Figure 23: Throughput of TFMCC vs. two TCP sessions on different bandwidths 

 

Inspecting the instantaneous throughputs in the last 500 seconds, we observe that 

the bandwidth difference between the receivers does not affect the behaviors of 

the protocols. 
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Figure 24: Instantaneous throughputs of LESBCC vs. two TCP sessions  
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Figure 25: Instantaneous throughputs of TFMCC vs. two TCP sessions 
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4.2.4 Experiment 4: One far receiver 

 

For the previous experiments, all receivers have the same propagation delay to 

the sender. In experiment 4, we use the topology given in Figure 26. Link A has a 

bandwidth of 500 Kbps and propagation delay of 10 ms. Link B has a bandwidth 

of 10 Mbps and propagation delay of 50 ms. As the bottleneck is nearer to the 

sender than the receivers, losses are all shared. But the sender receives the 

NACKs from the third receiver later than the other receivers for the same packet 

drop. This phase effect should not change the behavior of a multicast congestion 

control protocol. 
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Figure 26: Multicast session having receivers with different RTTs. 

 

 

There are two senders as in Experiment 1. From the given topology, a queue size 

of 30 packets should again be sufficient. When the experiment is carried out with 
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a queue size of 30 packets, both multicast protocols are observed to perform 

twice as fast as TCP. To understand the situation, post simulation RTT values are 

analyzed. Figure 27 shows the SRTT value calculated by the TCP sender. SRTT 

is 0.42 seconds for the steady state and CRTT is at most 0.57 seconds. Bottleneck 

bandwidth is 500Kbps. So BW*RTT is 20 packets at steady state and is at most 

25 packets throughout the experiment for a healthy TCP connection. Therefore, 

we can say that the RTT estimation module in both protocols does not work well 

in this case.  In other words, receivers nearer to the sender affect the RTT 

estimations of the protocols and cause the sender send faster than the required 

rate. 
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Figure 27: CRTT and SRTT value calculated by TCP (queue size=30packets) 

 

The same experiment is then repeated using a queue size of 50 packets. Both 

protocols estimation modules perform better in this case, i.e. when the queue size 
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is larger. In Figure 28, the experiment is extended to run for 4000 seconds to see 

that TFMCC is increasing its sate slowly but in a stable manner. At the end of the 

simulation, F is 1.26 and increasing. 

 

In Figure 27, LESBCC becomes 1.27 times that of TCP around 1600th second. 

End of the simulation, the F value observed is 1.24 and it never falls below 1.19. 

 

For the estimation module in LESBCC, if RTT sample has a value less than c 

times the calculated SRTT value it is not included in the calculation of SRTT “to 

bias the average RTT higher” [Tahpliyal 2002], (i.e. if RTT<c*SRTT then 

ignore). This constant is 0.5 in the original paper. And for the TFMCC, the β 

constants (0.5 and 0.05 in the original paper), mentioned in Chapter 3 TFMCC 

section, can be adjusted. The adjustment of these two values is an empirical 

approach and they need to be adjusted carefully in a wide range of topologies. 
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Figure 28: Throughput of LESBCC vs. two TCP sessions 
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Figure 29: Throughput of TFMCC vs. two TCP sessions 
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4.2.5 Experiment 5: Smooth LESBCC (sLESBCC) 

 

LESBCC has an AIMD module that is not designed for smooth delivery. It 

imitates the behavior of the AIMD module in TCP. It increases the sending rate 

by one packet size per RTT when there is no congestion. In case of congestion it 

halves the data sending rate. This is called AIMD(1,1/2). As was mentioned in 

Chapter 3: Extension to AIMD module in LEBSCC, there are different AIMD 

schemes, which are claimed to be smoother while being TCP-friendly. It is 

recommended to use 1/5, 2/5 and 0.31 instead of 1 for the additive constant and 

7/8 instead of 1/2 for the multiplicative constant. All three options have been tried 

in our simulations and it is observed that AIMD(1/5,7/8) is the best choice for 

LESBCC.  

 

Figure 30 shows the result of experiment 1 carried out with sLESBCC. It 

responds slower similar to TFMCC. Its TCP-friendliness and performance 

characteristics are similar to LESBCC, i.e., between the required bounds. F does 

not exceed 1.17 throughout the experiment. 

 

However, sLESBCC responds much slower than TFMCC. This can be explained 

as follows: TFMCC can change its rate increase speed between 0.14 and 0.28 

packets per RTT according to the network conditions [Floyd 2000]. LESBCC can 

increase its speed 0.2 per RTT when there is no congestion. TFMCC is expected 

 58



to respond approximately one and half times faster than sLESBCC, which is also 

proven by our simulations. But TCP-friendliness and performances are very 

similar on steady state conditions. Testing sLESBCC with AIMD(0.31,7/8) 

responds as TFMCC but it is TCP-friendliness is not satisfying. We prefer a 

slower but a TCP-friendly version, which is maybe the most important 

requirement from a multicast congestion control protocol point of view. To quote 

[RFC 2357]: 

“…congestion control mechanisms that operate on the network more 

aggressively than TCP will face a great burden of proof that they don't threaten 

network stability.” 

 

More for the performance and TCP-friendliness debate can be summarized as 

follows: performance needs can change according to the needs of the end-users 

but TCP friendliness is a factor that threatens the network stability. 

 

Figure 31 proves our previous statements. Smooth LESBCC is really smoother 

than LESBCC. Also TCP flow running with sLESBCC is smoother as the 

burstiness of the system decreases. Smooth LESBCC does not drop to zero either.  
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Figure 30: Experiment 1 using smooth LESBCC 
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Figure 31: Experiment 1 using smooth LESBCC 

 

For experiment 2, sLESBCC is again TCP-friendly (Figure 32 and Figure 33). Its 

performance is in the acceptable bounds. P is 1.1 at the end of the simulation. 
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Figure 32: Experiment 2 using smooth LESBCC 
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Figure 33: Experiment 2 using smooth LESBCC 

In experiment 3, sLESBCC performs well. Its rate is successfully determined by 

the slowest receiver. It is much smoother than LESBCC. It has all the desired 

properties for this case (Figure 34 and Figure 35). 
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Figure 34: Experiment 3 using smooth LESBCC 
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Figure 35: Experiment 3 using smooth LESBCC 
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Repeating experiment 4 with sLESBCC gives an expected result. In the RTT 

estimation module there is no difference with LESBCC. sLESBCC starves TCP 

in this topology as TFMCC and LESBCC (Figure 36). The better adjustment of 

the constants gives better results in LESBCC and sLESBCC. As a last word for 

this experiment; even if none of the protocols are TCP-friendly well enough, they 

respond to congestion. Using any of them will be a much better choice for the 

network than using an unresponsive flow such as UDP. 
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Figure 36: Experiment 4 using smooth LESBCC 
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CHAPTER 5 

CONCLUSION 

 

Multicast is slowly developing from experimental areas to a service on the 

Internet. A new network layer protocol is needed to achieve a scalable and 

effective multicast. There exist many standard protocols in use for the routing and 

the management of a multicast session. Unfortunately, UDP is used at the 

transport layer, which causes the multicast session not to be friendly to other 

sessions. These kinds of approaches are not responsive to variations in the 

network conditions. Still, there is not any standard protocol deployed at the 

transport layer for multicast that behaves fairly to other sessions while meeting 

the needs of the application layer at the same time. As a result, congestion control 

remains to be one of the fundamental and challenging problems of Internet 

multicast. 

 

In this thesis, first, the congestion control problem is defined. Its history and the 

main approach to control the congestion for unicast sessions is given. The 

challenges are listed and then a literature survey is given to overview the current 

solutions to the congestion control problem in the multicast domain. 
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Then two of the recent solutions are focused on and detailed simulations are 

carried out to verify their fairness characteristics and to compare their relative 

performances. Both protocols are applicable as a remedy for the urgent need in 

this area.  

The contributions of the thesis are twofold. One is the implementation of the 

LESBCC protocol and its addition to the NS protocol stack and the second being 

the evaluation and detailed comparison of LESBCC with the existing multicast 

protocol TFMCC. 

 

TFMCC is widely accepted as a multicast congestion control protocol. It belongs 

to the “single-rate, end-to-end, rate based” class of protocols. LESBCC is 

proposed later but the question whether it is a successful alternative to TFMCC or 

not remained to be open. The present work tests and compares LESBCC in detail 

with TFMCC with respect to their TCP-friendliness, smoothness and 

responsiveness criteria.  

 

In this study it is observed and concluded that long-term throughput of TFMCC 

exceeds TCP in a topology, where the distance of the receivers to the source vary 

considerably.  

 

Simulation study reveals the relative performance of LESBCC compared to 

TFMCC. It is concluded that LESBCC is TCP-friendly and its transient period is 
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three times shorter than TFMCC in many cases. Hence, LESBCC should be used 

instead of TFMCC for those cases where the smoothness of the data delivery is 

not important. Main drawback of LESBCC is its AIMD module that behaves 

similar to TCP. Therefore, those applications performing badly with TCP cannot 

run satisfactorily using LESBCC either. 

 

There are already some recommended adjustments for the AIMD module in TCP 

to make it smoother. In this study, we observed that AIMD(1/5, 7/8) is the most 

appropriate choice for LESBCC. When implemented, LESBCC changes its 

throughput smoothly similar to TFMCC and this smoothed scheme does not 

affect the TCP-friendliness, which was already proven analytically in [Floyd 

2000] for unicast. With these new AIMD parameters, LESBCC transient period 

becomes worse and approximately 1.5 times longer than TFMCC.  

 

As future work, more protocols can be studied. Especially, the multicast multirate 

solutions should also be investigated since they are more scalable and fairer to the 

receivers but of course at the cost of complexity. 
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Appendix A: C++ Code 

 

NS is a discrete event simulator targeted at networking research. NS provides 

substantial support for simulation of TCP, routing, and multicast protocols over 

wired and wireless (local and satellite) networks. It is an event driven simulator 

with an extendible background engine written in C++ and uses Otcl as command 

and configuration interface. 

 

The NS version used in this study is 2.1b9. Original TFMCC code written for NS 

is used. The code of LESBCC can not be found, and so, are written for the 

simulation. An overview but not the exact code is presented below. 

 

The function “start” initializes all the components needed and starts the sender to 

send data and also starts the rate increase timer. 

 
void Sender::start() 
{ 
  srtt=0.1; 
  dev=0;  
 
  for(int j=0;j<50;j++) 
    timeLastPass[j]=0; 
 
  silenceFlag=0; 
  congestionFlag=0; 
 
  for(int j=0;j<50;j++) 
    LEcount[j]=0; 
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  LEcountAll=0; 
  LEcountMax=0; 
 
  statsLI2LE=0; 
  statsMaxLPRF=0; 
  statsATF=0; 
  statsRateReduction=0; 
 
  mss = pktSize_; 
  interval = mss/rate_; 
 
  rateIncreaseTimer.resched(srtt+2*dev); 
  progressTimer.resched(5); 
  sendmsg(pktSize_); 
} 
 
The function “estimateRTT” calculates a value, which depends on the round trip 

times of all packets send, in order to be used by filters. 

 
void Sender::estimateRTT(double timeSent){ 
  double crtt = Scheduler::instance().clock() - timeSent; 
  if(crtt<srtt/2) 
 return; 
  double timeDiff = crtt – srtt; 
  srtt = srtt + 0.125*timeDiff; 
  timeDiff = (timeDiff<0) ? -timeDiff : timeDiff; 
  dev += 0.125*(timeDiff-dev); 
} 
 
The three functions below implements the filters defined in the LESBCC 

protocol. By these filters, the multicast tree appears to be a unicast path for the 

sender.  

 
int Sender::LI2LEFilter(int receiverID){ 
  statsLI2LE++; 
  double timeNow = Scheduler::instance().clock(); 
  if((timeNow-timeLastPass[receiverID])<=(srtt + 2*dev)){ 
    return 0;//filter LI 
  } 
  //update last pass for this receiver 
  timeLastPass[receiverID] = timeNow; 
  return 1;//pass LI as LE 
} 
 
int Sender::maxLPRFilter(int receiverID){ 
  statsMaxLPRF++; 
  LEcount[receiverID]++; 
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  LEcountMax = 
(LEcountMax<LEcount[receiverID])?LEcount[receiverID]:LEcountMax; 
  LEcountAll++; 
  double pAccept = (double)LEcountMax / (double)LEcountAll; 
//a random number between 0 and 1 
  double randomNumber = Random::uniform(); 
  if(pAccept>randomNumber){ 
    return 1; 
  } 
  return 0; 
} 
 
int Sender::ATFilter(){ 
  statsATF++; 
  if(congestionFlag){ 
    return 0; 
  } 
 
  silenceFlag = 1; 
  double silencePeriodTime = srtt/2+2*dev; 
  silencePeriodTimer.resched(silencePeriodTime); 
  odataTimer.resched(silencePeriodTime); 
 
  congestionFlag = 1; 
  double congestionEpochTime = silencePeriodTime + srtt + 4*dev; 
  congestionEpochTimer.resched(congestionEpochTime); 
  rateIncreaseTimer.resched(congestionEpochTime); 
  return 1; 
} 
 
The function “timeout” is the code that is called when a timer expires. 

void Sender::timeout(int type, void *data) 
{ 
  switch(type) { 
 
  case TIMER_ODATA: 
    sendmsg(pktSize_); 
    break; 
 
  case TIMER_SILENCE_PERIOD: 
    silenceFlag = 0; 
    break; 
 
  case TIMER_CONGESTION_EPOCH: 
    congestionFlag = 0; 
    break; 
 
  case TIMER_RATE_INCREASE: 
    noOfRateInc++; 
    if(noOfRateInc%100==0){ 
      LEcountAll*=0.9; 
      LEcountMax*=0.9; 
      for(int i=0;i<25;i++) 
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        LEcount[i]*=0.9; 
    } 
    if(!congestionFlag){ 

//AIMD additive increase part 
//a is 1 for LESBCC and 0.2 for sLESBCC 

      rate_ += a*mss/(srtt+2*dev); 
      interval = mss/rate_; 
    } 
    rateIncreaseTimer.resched(srtt+2*dev); 
    break; 
  } 
 
} 
 
The function “sendmsg” build up the data packet to be sent and sends it. It also 

sets the timer of the next packet sending time. 

 
void Sender::sendmsg(int nbytes, const char *flags = 0) 
{ 
  odata_seqno_++; 
   
  // Create a packet 
  Packet *pkt = allocpkt(); 
 
  hdr_cmn *hc = HDR_CMN(pkt); 
  hc->size_ = nbytes; 
 
  hdr_pgm *hp = HDR_PGM(pkt);  
  hp->seqno_ = odata_seqno_; 
 
  timeSent[odata_seqno_] = Scheduler::instance().clock(); 
 
  // Send out the packet. 
  send(pkt, 0); 
  odataTimer.resched(interval); 
} 
 
 
When an LI is received by the sender from any receivers, the function 

“handle_nak” is called. It updates the statistics used by the filters but the main 

task is to decide if the rate will be halved or not. 

 
void Sender::handle_nak(Packet *pkt){ 
 
  hdr_pgm *hp = HDR_PGM(pkt); 
  hdr_ip *hip = HDR_IP(pkt); 
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  stats_.num_naks_received_++; 
 
  estimateRTT(timeSent[hp->seqno_]); 
  int receiverID = (int)hip->saddr(); 
  if(LI2LEFilter(receiverID)) 
     if(maxLPRFilter(receiverID)) 
        if(ATFilter()) { 
          statsRateReduction++; 

    //AIMD multiplicative decrease part 
          //b is 0.5 for LESBCC and 0.875 for sLESBCC 
          rate_ /= b; 
          interval *= b; 
        } 
} 
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Appendix B: OTcl Script 

 

In Otcl side of NS, mainly, the network topologies are designed. Otcl is a script 

so it does not need any compilation. The main idea is: implement your protocol in 

C++ then run your simulations with different topologies without changing the 

C++ part. The code below is a simple topology design to compare the 

performances of TCP and LESBCC. 

  

set ns [new Simulator -multicast on] 
 
# 
# Create multicast group 
# 
set group [Node allocaddr] 
puts "Group addr: $group" 
 
for {set k 0} {$k < 8} {incr k} { 
  set n($k) [$ns node] 
} 
 
proc makelinks { bw delay queueSize pairs } { 
        global ns n 
        foreach p $pairs { 
                set src $n([lindex $p 0]) 
                set dst $n([lindex $p 1]) 
                $ns duplex-link $src $dst $bw $delay DropTail 
                $ns queue-limit $src $dst $queueSize 
        } 
} 
 
makelinks 0.5Mb 50ms 30 {{ 2 3 }} 
makelinks 10Mb 1ms 30 { 
{ 0 2 } 
{ 1 2 } 
{ 3 4 } 
{ 3 5 } 
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{ 3 6 } 
{ 3 7 } 
} 
# 
#Set routing protocol 
# 
set mproto DM 
set mrthandle [$ns mrtproto $mproto {}] 
 
# 
#Setup a TCP connection 
# 
set tcpSrc [new Agent/TCP/Reno] 
$tcpSrc set packetSize_ 1400 
$ns attach-agent $n(0) $tcpSrc 
 
 
set sink [new Agent/TCPSink] 
$ns attach-agent $n(4) $sink 
$ns connect $tcpSrc $sink 
 
#Setup a FTP over TCP connection 
set ftp [new Application/FTP] 
$ftp attach-agent $tcpSrc 
 
# 
# Create Sender 
# 
set src [new Agent/PGM/Sender] 
$ns attach-agent $n(1) $src 
$src set dst_addr_ $group 
$src set dst_port_ 0 
$src set packetSize_ 1400 
$src set rate_ 1440 
 
# 
# Create receivers 
# 
for {set k 5} {$k < 8} {incr k} { 
  set rcv($k) [new Agent/PGM/Receiver] 
  $ns attach-agent $n($k) $rcv($k) 
  $ns at 0.01 "$n($k) join-group $rcv($k) $group" 
} 
 
set timeEnd 3000 
$ns at 0.1 "$tcpSrc openOutputFile case1.tcp.txt" 
$ns at 0.1 "$src start case1.lesbcc.txt" 
$ns at 0.1 "$ftp start" 
$ns at $timeEnd "$ftp stop" 
$ns at $timeEnd "$src stop" 
$ns at $timeEnd "$tcpSrc closeOutputFile" 
$ns at $timeEnd "exit 0" 
 
$ns run 
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