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ABSTRACT

MOLECULAR-DYNAMICS INVESTIGATION OF THE DYNAMIC PROPERTIES
OF Pd AND Al METALS, AND THEIR ALLOYS

CORUH, Al
Ph. D., Department of Physics

Supervisor: Prof. Dr. Mehmet Tomak

December 2003, 93 pages.

The dynamic properties of Palladium (Pd) and Aluminum (Al) metals and their
alloys are investigated by means of Molecular Dynamics using the Quantum
Sutton-Chen force field in five different concentrations. Calculations have been
carried out for liquid structures. Although this study is done for liquid struc-
tures, basic solid state properties are also investigated to prove the validity of
potential parameters. Results are compared with each other and with experi-
mental, theoretical and simulated results. Liquid state transferability of Quantum
Sutton-Chen parameters have been investigated and discussed. High temperature
properties, which are not easy to work experimentally, are simulated and high

temperature behavior of Pd-Al alloy is investigated.

Keywords: Molecular-Dynamics Simulation, Alloys, Palladium, Aluminum, Ther-

mal and Mechanical Properties, Liquid Metals, Dynamical properties.
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PALLADYUM VE ALUMINYUM METALLERININ VE ALASIMLARININ
DINAMIK OZELLIKLERININ MOLEKULER-DINAMIK INCELEMESI

CORUH, Ali
Doktora, Fizik Bolimii
Tez Yoneticisi: Prof. Dr. Mehmet Tomak

Aralik 2003, 93 sayfa.

Palladyum (Pd) ve Aluminyum (Al) metallerinin ve Pd-Al metal alagiminin di-
namik 6zellikleri, Quantum Sutton-Chen kuvvet alani kullanilarak molekiiler di-
namik (MD) y6ntemi ile incelendi. Hesaplamalar, sivi yapilarinda yapildi. Bu
caligma esas olarak sivi metaller ve metal alagiminin incelenmesi i¢in yapilmig
olmasina ragmen, potansiyel parametrelerinin gecerliligini gostermek icin temel
kat1 ozellikleri de calisildi. Sonuclar birbiri ile ve yayimlanmig deneysel, teorik
ve modelleme verilerle kargilagtirildi. Quantum Sutton-Chen parametrelerinin
sivi metaller veya metal alagimina da uygulanabilirligi tartigildi. Deneysel olarak
caligilmasi kolay olmayan, yiiksek teknoloji gerektiren ozellikler modellenerek in-

celendi ve palladyumun yiiksek sicaklik tavri izlendi.

Anahtar Kelimeler: Molekiiler-Dinamik modelleme, Alagimlar, Palladyum, Alu-

minyum, Termal ve Mekanik ©zellikler, S1vi Metaller, Dinamik Ozellikler.
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CHAPTER 1

INTRODUCTION

1.1 Physical properties of Palladium and Aluminum

Palladium and aluminum are very important materials both technologically
and scientifically. Many experimental, theoretical, and computational studies
have been performed on these materials. Both elements have important physical

properties.

Palladium [1] is in group VIII (subgroup C) of period V in the periodic table.
Its atomic weight is 106.7 amu, and its atomic volume is 8.37 ¢crn®/g — atom under

normal conditions.

The position of palladium in the last column of group VIII between rhodium
and silver horizontally, and between nickel and platinum vertically, determines

its mean physico-chemical properties in the group of noble and base metals.

Palladium is a monomorphic metal, with a face centered cubic (fcc) structure.
The lattice parameter a = 3.8830 A, atomic diameter = 2.7448 A, inter-atomic
distances = 2.74554, ion diameter = 1.28 A, density at 20 °C is 12.02 g/cm?, and
10.7 g/cm? in the molten state at melting point. The melting point of palladium

is 1827.15 K [1].

Palladium, like all of the platinum group noble elements, has comparatively

1



low electrical resistivity and high temperature coefficient of resistance. Both of
these characteristics are extremely sensitive to metal purity [2].

Palladium has the lowest elastic characteristics among the platinum metals,
comparatively low strength, and high reduction of area and percentage of elon-
gation characteristics [1].

Palladium dissolves in aqua regia and nitric acid, but resist cold sulfuric acid
and hydrochloric acids. Hydrofluoric acids, fused alkalis, and soda do not react
with palladium [1]. It is used in jewelry industry because of this property.

Palladium is a good hydrogen trap. Palladium and hydrogen form two limited
solid solutions: an « solid solution containing about 30 volumes hydrogen per
volume palladium and S-solid solution contains 1023 — 1300 volumes of hydrogen
per volume of Pd [1].

Palladium is an important transition metal because of its wide usage in medicine,
nano-technology, electronic, semiconductor, energy and chemistry technologies,
plating and jewelry, automotive and space industry.

Palladium isotopes are being used directly as a component or as a catalyzer
for medical drugs because of its high chemical interest to hydrogen. For example,
palladium is widely used as a hydrogenation catalysis of lung cancer drugs in the
medicine technology [4], cell differentiation, and homeostasis [5, 6, 7]. Another
important usage of palladium isotopes is the radioactive prostate cancer treatment
8, 9, 10].

Using nanotechnology, researchers have developed the world’s fastest and most

energy-efficient hydrogen detector. The detector consists of an array of hundreds



of ultra thin metal Pd wires that become less resistant when exposed to whiffs of
hydrogen. In the future, it should become a key component of motors fueled by
hydrogen.

Palladium is widely used in hydrogen purifying devices. As a result, many
studies are done on the hydrogen purifying properties of palladium. Membrane
processes exploit the selective transmission characteristics of the membrane ma-
terial for different molecules, but the most effective membranes are also the most
expensive (palladium membrane). These membranes are nowadays used to some
extent for highest purity in the chemical and microelectronics industries. Pal-
ladium based membranes are used to build high performance hydrogen purifier
technology [11]-[16],

Palladium is used to build conducting nano-wires in electronics industry. Be-
cause good conductors (i.e., Au, Cu or Al) are not available for doping nano-wires
(carbon or silicon nano-wire), they form separate clusters, and to prevent this un-
wanted result, palladium alloys of these materials are doped on nano-tubes [17].
Palladium is also used to build chemical processors [18, 19, 20, 21] and in plating
and jewelry industry and space industries. These properties increase the impor-
tance of this rare element. Pd is investigated experimentally in many works with
respect to its hydrogen synthesis behavior [15, 22, 24], environmental pollution
[25], electronic properties [26], surface properties [27, 28], nano properties [29]
and bulk properties [30, 31, 32].

Aluminum [3] is a group III element. It is in the same group with Na. The
radius of Al atom is 1.42885 A at 25 °C its atomic weight is 26,981 amu under

3



normal conditions.

Aluminum crystallizes with a face-centered cubic (fcc) lattice structure. The
lattice constant of fcc aluminum is 4.0414 A at 25 °C. Thus the smallest distance
between two adjacent aluminum atoms will be 2.8577 A at 25 °C. Solid state
density of aluminum is 2.702 g/cm? at 20 °C and liquid state density of aluminum
is 2.380 g/cm? at 933 K. The melting point of aluminum is 933 K.

Aluminum is used widely in industry. Plating and automotive technology are
some of the many areas of usage of aluminum. Aluminum dissolves in aqua but
can not resist the acidic interactions.

Besides a number of experimental studies, palladium and palladium alloys
have been also investigated theoretically and computationally by using various
simulation techniques [22]-[36]. The first simulation was carried out by Metropo-
lis [37, 38] at Los Alamos laboratory in 1953. This program formed the base of
Monte-Carlo simulation (MC) method by Metropolis [38, 39]. Rahman solved
the equations of motion for a set of Lennard-Jones particles and established
the Molecular Dynamics (MD) method [40]. Car-Parinello included electron-
ion interaction and developed MD method to a more realistic first-principles level
[41, 42].

Since Molecular Dynamics (MD) simulation method became one of the most
powerful simulation methods, it is used in this work to investigate the physical
properties of Pd, Al and their alloys in solid and liquid states. Many researchers
used MD method to analyze the physical properties of metals, metal alloys, and
composite molecules (i.e., melting point estimation, elastic constants calculation,

4



trajectories, stress dependent properties) by using various potentials [43]-[47]. It
is also used to calculate advanced properties of metals, metal alloys and composite
materials [48]-[55]. Detailed information about MD is given in the next chapter.

Two-body potentials are the first potentials used to describe the interaction
between atoms. The class of materials which can be realistically modeled using
this approach is in practice limited to rare gases, where no electrons are available
for bonding and atoms are attracted toward each other only through the weak
van der Waals forces [56]. Systems of more practical interest such as metals and
semiconductors cannot be modeled with pairwise forces. Lennard-Jones (LJ) or
Morse type potentials, which are probably the most commonly used ones, are
derived originally for inert gases.

The second chapter includes a historical background of MD simulation method.
The effect of number of atoms on the length of trajectory files is the first subject.
It is continued by Hamilton dynamics which is the mathematical base of MD
simulation[57]. Next, MD simulation at constant pressure and temperature is
discussed. Extended Hamilton formalism MD at constant external stress (HPN
ensemble)[58] is given under this headline. The next ensemble identified in the
second section is Molecular dynamics at constant external temperature (TPN
formalism) [59, 60]. MD simulation is explained in detail by molecular dynamics
algorithms and Gear’s predictor-corrector algorithm. Periodic boundary condi-
tions and minimum image convention with cut-off radius is one of the solutions
to simulate the system without using large amount of computational storage.

Third chapter includes a detailed information about force fields (FF) used in

5



this study. Finnis-Sinclair (FS) empirical many-body potential model is proposed
to overcome the problems that arise in pair potentials [61]. This potential pro-
duces reasonable elastic constants for cubic metals, but in the long range limit
FS potential is not enough [62]. To overcome this problem Sutton and Chen
(SC) proposed a new form of FS potential, with a van der Waals tail [62]. The
Sutton-Chen potential is explained in detail in the third section. SC potential
is parametrized for pure and alloy case of fcc metals by Rafii-Tabar and Sutton
[63] and it is used to calculate the physical properties of metal alloys with this
parametrization. Kimura et al.[64, 65, 66] modified SC to include quantum cor-
rections (e.g., zero-point energy) in comparing properties to experiment, leading
to quantum Sutton-Chen (Q-SC) force field. Some other parametrizations of SC

potential are published for some metals and metal alloys [67].

In the fourth chapter, results for solid state are discussed. Enthalpy, density
and elastic constants of both metals are calculated for lower temperatures. Mis-
cibility property of Pd and Al metals and validity of optimized parameters for

solid state are discussed.

In the fifth chapter, liquid state and melting process of Pd and Al liquid met-
als and Pd-Al liquid metal alloys are discussed. Liquid phase properties, such as
the pair distribution functions and static structure factors [57, 68, 69] are given
in the fifth chapter. Liquid phase transport properties such as viscosity and dif-
fusivity [44, 71, 72|, intermediate scattering function and dynamical structure
factor [57] are also given in the fifth chapter. Hydrodynamic limit properties
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of intermediate scattering function and dynamical structure factor are investi-
gated and compared to static structure factor. Additionally, bulk modulus and
compressibility are calculated from elastic constants and initial time, long wave
limit results of intermediate scattering functions. Dynamic structure factors of
Pd, Al and Pd-Al alloys are also investigated. It is seen that, dynamic structure
factors have high first peaks. Some additional peaks [73] are observed in the
hydrodynamic limit.

Conclusions are given in Chapter 6. Melting point estimation for both Pd
and Al metals and PdygAlya, PdygAlys, PdysAlyg, and PdyoAlyg alloys are
discussed. Experimental and simulated pair distribution functions and structure
factors of Pd and Al liquid metals and metal alloys are discussed. Transport prop-
erties are analysed and compared with experimental results and other theoretical
studies. Hydrodynamic limit properties of intermediate scattering function and
dynamical structure factor are investigated and the small g region of the structure
factor results are compared.

In Chapter 4, it is concluded that, the enthalpy of mixing for Pd-Al alloy
coincides well with experimental data given by Hultgren [74] at 300 K. Both
experimental and simulated enthalpies are observed to be negative, which implies
that Pd-Al alloy has miscible character. Elastic constants are calculated between
0 K — 300 K temperature range and are found to fit very well for Pd metal and
comparably well for Al metal compared with experimental elastic constants [75].
Densities are simulated between 0 K — 300 K temperatures and compared with
experimental densities taken from Simmons [75]. It is observed that densities fit

7



very well to experimental results for both Pd and Al

In Chapter 5, the melting point for Pd is simulated as 1820 £+ 5 K which
coincides with the experimental melting point. Melting point for Al is simulated
as 520 K. This result deviates from the experimental result as 44.5%. Melting
temperature of Pd-Al alloy for four different concentrations are calculated and
compared with experimental data taken from Hultgren [74]. The difference be-
tween simulation and experimental results reduces as Pd concentration in Pd-Al
alloy increases. Pair distributions are calculated and plotted together with ex-
perimental values taken from Waseda [68]. Simulation results fit very well to
experimental values for Pd. Depending on the melting point difference, there are
some differences with the experimental pair distribution function for Al. Similar

results observed for static structure factors of Pd and Al.

Diffusion coefficients and shear viscosity are simulated in Chapter 5, and they
are found to be in agreement with previously published experimental, theoreti-
cal and simulated data for Pd [44] and Al [72, 76, 77]. Intermediate scattering
functions and dynamic structure factors for Pd and Al and Pd-Al alloys in five
different concentrations are simulated. They agree well with the dynamic struc-
ture factor of Al calculated by Ebbsjé [77]. To the best of our knowledge, no data
has been published dynamic structure factor or intermediate scattering function

for Pd.

Free particle limit calculations of intermediate scattering function and dy-
namic structure factor implies that Pd and Al have strong self correlation. Bulk

8



modulus and compressibility are calculated both from hydrodynamic limit of in-
termediate scattering function and elastic constants. It is concluded that the
bulk modulus and compressibility results which are calculated from simulated
elastic constants show better agreement with previously published experimental
and simulated data [44, 75, 77]. Hydrodynamic limit investigation of dynamic
structure factor show that the additional peaks observed in the hydrodynamic
limit agree with the “fast sound” modes which are discussed in detail in the

paper by Anento and Padré [78].



CHAPTER 2

SIMULATION METHODS

In a physical system, the key information we would like to know is the motion of
particles. Therefore, computer simulations are produced by solving the equations

of motion of a many particle system under certain physical conditions.
Some of the advantages of simulation can be listed as follows:

i— A wide variety of physical properties can be “measured”. For example,
full information about the positions and velocities of all particles in a simulated
system is obtained and any desired microscopic physical quantities are derived,
such as the mean square displacements, velocity auto-correlations, and density of

states. These quantities can not be measured directly in an experiment.

ii— Some extreme conditions, which is hard or expensive to create in a labora-
tory (e.g., very low or very high temperatures, very high pressures or very rapid

cooling rates), can be realized by simulation.

iii— Input conditions are precisely under control, as a result, cause and effect

between input and output data can be investigated and compared unambiguously.

The simulation method is also free from the restrictions employed in purely
theoretical approaches to a problem. Firstly, theoretical approaches are always
simplified as much as possible, but computer simulation approach does not need

10



to, because complexity of a case does not introduce a problem. Secondly, com-
puter simulations are intended to be used to calculate the exact solutions, not

the approximated results.

2.1 Molecular Dynamics

The molecular dynamics (MD) computes phase-space trajectories of molecules
which individually obey Newton’s laws, i.e., trajectories (r;, v;) are calculated by
using Newton’s laws. The description of a system can be expressed by Newton’s
equations, a Hamiltonian or a Lagrangian. MD method solves the equation of
motion numerically on a computer and obtains the static or dynamic properties
of the system. For this reason, it is necessary to prepare equations for numeri-
cal calculation by appropriate modifications. As a consequence of the nature of
computational methods, some errors will be introduced depending on the math-
ematical calculation of differential operators with discrete variables and finite

difference operators.

The molecular dynamics method contains two general forms: one for a system
at equilibrium and another for a system away from equilibrium. For example, in
the microcanonical ensemble (EVN), equilibrium molecular dynamics is typically
applied to an isolated system defined by a fixed number of molecules, N, in a
fixed volume, V' [79]. Because the system is isolated, the total energy, F, is also

constant. Thus the variables N, V and E determine the thermodynamic state.

N

In EVN-molecular dynamics, atomic positions r~ are obtained by solving
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Newton’s equation of motion:

Fi(t) = mii(t) =~ 20, 1)

where F; is the force on 7 th atom, caused by the N-1 other atoms, the dots
indicate total derivatives, and m is the atomic mass. The first integration of the
equation (2.1) yields the atomic momentum, and the second integration produces
the atomic positions. Continuous first and second integration for N atoms pro-
duces individual atomic trajectories from which time averages of the macroscopic

properties can be computed as.

1 flo+t
<A>=lim — A(T)dr. (2.2)
t—oo to

At equilibrium this average cannot depend on the initial time t,. Since positions
are obtained, the time average (2.2) represents both static properties and dynamic
properties. Dynamic modeling problem can be divided into two main tasks:
Developing a suitable model for the problem and applying molecular dynamics
to that model. The simulation method can be investigated as two great tasks:
solving the equations of motion to generate trajectories and then analyzing these
trajectories to evaluate desired properties.

Non-equilibrium molecular dynamics methods, which have first appeared in
the early 1970’s [80, 81], are used for computing transport coefficients. In these
methods an external force is applied to the system to establish the non equilibrium
situation of interest, and response of the the system to the force is then deter-
mined from the simulation. Non-equilibrium molecular dynamics has been used
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to obtain the shear viscosity, bulk viscosity, thermal conductivity, and diffusion
coeflicients [82].

MD simulation has its own computational limitations. One of the main lim-
itations is the computer speed and storage constraints for MD simulation. De-
pending on the computer limitations MD simulations are usually done on systems
containing 100-1000 particles, whereas calculations involving as many as 10° par-
ticles have been performed [83] as well. Simulations are confined to the systems
of particles that interact with relatively short-range forces depending on the size
limitations; that is, inter-molecular forces should be small when molecules are
separated by a distance equal to half of the smallest overall dimension of the
system. Because of the speed limitation, simulations are confined to studies of
relatively short-lived phenomena (i.e., less than 100-1000 ps). It is necessary to
satisfy the condition that the characteristic relaxation time of the phenomenon
under investigation must be small enough so that one simulation generates several
relaxation times.

Molecular dynamics simulation produces thousands of data during a simula-
tion process. For example, for 100 atoms molecular dynamics simulation produces
600 values of positions and momenta in each integration step. Considering that
the integration proceeds for thousands of steps, it is not easy to compute and
store such a huge amount of data.

The phase-space trajectories are the first products of MD simulations. The
trajectory is analyzed by appealing to kinetic theory, statistical mechanics and
sampling theory. The trajectory is tested by probing constraints established by
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periodic boundary conditions and by conservation principles. All together these

tools form the foundation of molecular dynamics simulation.

2.2 Hamiltonian Dynamics

It is a fact that the molecular forces and positions change in time but the
functional form of Newton’s second law is time independent. As a consequence,
we expect there is a function of positions and velocities whose value is constant

in time, this function is called the Hamiltonian H [57]:

H(rn,pn) = E = constant. (2.3)

Here the momentum of molecule 7 is

dI'Z'
;= m— 2.4
P =m— (2.4)
For an isolated system total energy can be identified by the Hamiltonian;
1 2
H(en, ) = 5 - 5 pF + Ulrw), (25)

where the potential energy U results from intermolecular interactions. Equation

of motion can be obtained in the Hamiltonian formalism as follows:

dH oH . oH . oH
E —;a—pipﬁ—;gri+ﬁ. (26)

]
Since ‘H has no explicit time dependence(2.3), then the rightmost term of (2.6)

vanishes and on the left term is equal to zero. So we get,

87{ Pi .
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and

oH oU
= ) 2.
8ri 81‘i ( 8)
Since each velocity is independent of others
oH
= —p;. 2.9

For each molecule, equations (2.7) and (2.9) are Hamilton’s equations of mo-
tion. These two equations represent 6N first order differential equations, equiv-
alent to Newton’s 3N second-order equations (2.1), for a system of N particles.

To demonstrate this, it is enough to eliminate p; from equation (2.9):

= —mi;. (2.10)

Using (2.8) in (2.10) and comparing with Newton’s second law (2.1) gives the

following result:

OH ou
Fi= =g = 5 (2.11)

This is the expression of the fact that, any conservative (non dissipative) force
can be written as the negative gradient of some function U.

The above equation emphasizes the difference between Newtonian and Hamil-
tonian dynamics. Motion is a response to an applied force in the Newtonian view
but forces do not appear explicitly, they occur in such a way as to preserve the
Hamiltonian function in the Hamiltonian view.

A summary of the assumptions used above in obtaining Hamilton’s equation
of motion are given as follows;
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1. An isolated system considered in which if the system interacts with its
surroundings, the Hamiltonian should contain additional terms. In such a
case that H would not represent the system’s total energy, which means H

would still be conserved, but E would not.

2. The momenta and velocities are related by (2.4).

3. The Hamiltonian was not allowed to contain any explicit time dependence.

Otherwise, H would not be a conserved quantity.

Some new parameters, e.g., constant pressure (P) or constant temperature
(T) can be added to the parameters which define the degrees of freedom besides

the parameters energy (E), volume (V) and number of particles (N).

2.2.1 MD Simulation at Constant Pressure and Temperature

The molecular dynamics methods discussed so far are limited to the study
of systems characterized by fixed values of N, V and E (the total energy). In
certain applications, it would be useful to have the temperature and pressure
included among the fixed parameters of the calculation. Several schemes have
been developed for this purpose, most of which have their inspiration in a paper
by Andersen [58]. The work of Andersen, and a following work by Nosé [59] are
based on the concepts of an “extended” system consisting of the physical system
of interest and the external reservoir. The coupling to the reservoir holds the
system at constant pressure or temperature (or both) by suitable modification of
the equations of motion of the particles in the system of interest.
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2.2.2 Microcanonical ensemble molecular dynamics

The central method in investigation and analysis of isolated system molecular
dynamics trajectories is microcanonical ensemble. In this work, we consider an
isolated system with the total number of molecules N, system volume V, and
total energy E are constants, for a pure substance. These variables are sufficient
to fix the thermodynamics state. For any dynamical quantity F(r",p"), the

microcanonical ensemble average is given by the following expression [57],

(F) = m [ i ap® N, pY) 8B ~ H) (2.12)

2.2.3 Molecular dynamics at constant external stress (HPN ensemble)

We used HPN ensemble to thermalize and equilibrate the system. Extended
Hamiltonian formalism in Molecular Dynamics was originated from the work by
Andersen [58] which became the origin of the most MD simulation methods.
Andersen introduced a new dynamical variable, volume, into constant pressure
simulation method as a new additional degree of freedom. The change of volume
is driven by a difference between an internal pressure and external pressure. The
internal pressure has been expressed as the average of the kinetic energy and
the virial and includes the interaction between particles. The external pressure,
equilibrating the internal pressure changes, has been controlled by a piston mass
parameter introduced externally. As a result, a feedback mechanism controls
the pressure at a constant value. The internal pressure is controlled to fluctuate
around the external pressure such as, when the internal pressure becomes larger
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than external pressure, the volume expands and the internal pressure decreases.
When the internal pressure becomes smaller, the volume shrinks and the internal
pressure increases. This balance of microscopically determined volume-pressure
relation is a natural way to realize a constant pressure condition.

Parinello and Rahman [86, 87| extended constant pressure method to include
the shape changes of a basic MD unit cell. With the aid of this extension, di-
rect simulation of structure changes in a solid are made to be possible. This
extension was formulated so that the particles choose a stable condition them-
selves. Since only changes in the volume of MD cell were possible but not in its
shape in Andersen’s formalism [58], this extension define the developments on
that formalism.

In this ensemble, the system still consists of N particles in a cell that is
periodically repeated to fill all space, but in this ensemble the cell can have
arbitrary shape and volume. a, b, and ¢ vectors, that span the edges, completely
describe the MD cell. The tree vectors a, b, and ¢ can have different lengths and
arbitrary mutual orientations. The vectors are arranged as h={a, b, ¢} to form

a 3 X 3 matrix. As a result the volume is given by,

Q=|h|=a-(bxc). (2.13)

In the case when only hydrostatic pressure is applied, the variability in the
shape and size of MD cell was obtained by Parinello and Rahman [86] as follows:
the usual set of 3N dynamical variables, that describe the positions of the N
particles, was increased by the 9 components of h. The time evolution of the
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3N + 9 variables was then obtained from the Lagrangian [87],

L£L=1/2 imis;(;s,- - i i ¢(ri;) +1/2W Tr[h'h] — PQ, (2.14)
=1

i=1 j>i
where P is the hydrostatic pressure that we intended to impose on the system

and W is the piston mass, and G is the metric tensor, G = h’ h. The position

r; of particle 7 is written in terms of h and components &;, n;, and (; as,
r; = hs; = &a + b + (e (2.15)

The Hamiltonian can be constructed from Eq. (2.14), following the usual
rules of the mechanics [87]. Since the system is not subjected to time dependent

external forces, the Hamiltonian can be written as;

N N N
H=>1/2m~v? + >3 ¢(ryj) + 1/2WTr[h'h] + pQQ. (2.16)
=1

i=1 j>i

In equilibrium, the constant of motion H gives the Enthalpy, H,
H = FE + pQ, (2.17)

where

E = i 1/2mgv? + i i B(ri;). (2.18)

i=1 j>i

As a result, the Lagrangian in Eq. 2.14 defines a HPN dynamics. Detailed
information can be extracted from related studies of Andersen [58] and Parinello

[87], and Uludogan [88].

2.2.4 Molecular dynamics at constant temperature (TPN ensemble)

TPN ensemble, which is added to MD simulation by Nosé [59, 60], is used to
perform production runs in this work. Nosé introduced a new degree of freedom,
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related to constant temperature, to the physical system. This freedom corre-
sponds to a thermal reservoir and extends the Andersen [58] TVN ensemble MD
method. Since the system is in contact with a thermal reservoir, energy flows
dynamically from the reservoir to the system and back. The volume of sample
is controlled by using a piston. The extra degree of freedom is denoted by “s”
which acts as an external system. In the TPN ensemble, the virtual variables
(ds,Pi, S, V, t') are related to the real variables (q';,p';, s, V, t') via scaling of the

coordinates by V'/% and scaling of time by s (V, the volume of a MD cell) [60],

d; =V"aq; (2.19)
Pi
I —
P = i (2.20)
t
po [f9 (2.21)
S

where q; components are limited to the range of 0 to 1. The Hamiltonian [60] of

the extended system is

2 2 2
W= —P Ly + Ly gkT In s+ L

2m;V2/352 20Q 2W T FeV, (2:22)

i
where p, is the conjugate momentum of V', W is a mass for the motion of volume,
and P,, is the external pressure.

For virtual time display with g = 3N +1, the equilibrium distribution function
is
p(p',d', V) = exp[—(Ho(p', d') + PecV)/ETY, (2.23)
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and the averages of any function calculated from trajectories, p’,q’, V, are iden-

tical with those in the TPN ensemble;

N 1/3. 1/1/3 _ 1/3. 1/1/3
lim Fp/V72s,V°q,V)dt = ((p/V7°s,V/°q,V)) (2.24)
0

to—o0 tO
= (F(p',d,V))

= FTPN(Na PexaT)'

Detailed information is given in the paper by Nosé [60].

2.2.5 Molecular Dynamics Algorithms

In most MD simulations most of the computation time is used to computing
interactions, and every effort is made to ensure that this is done as efficiently as
possible. Instead of a direct evaluation, interactions can be computed by using a
simple method mostly accompanied by interpolation for additional accuracy.

There are number of different numerical methods for integrating the equations
of motion. Most of these methods can be ignored for the simple reason that the
hardest component of the computation is the force evaluation, and any integra-
tion method requiring more than one such calculation per time-step is wasteful,
unless it can deliver a proportionate increase in the size of time-step At while
maintaining the same accuracy. It is neither a realistic nor a practical goal to
obtain a high degree of accuracy in the trajectories [93]. The sharply repulsive
potentials result in trajectories for which even the most minute numerical errors
grow exponentially with time. This is not merely a mathematical curiosity, it
also corresponds to what happens in nature, and the accuracy of several average
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collision times is not a meaningful issue. As a result, the criteria for choosing a
numerical method relies on energy conservation and on the ability to reproduce

certain time and space-dependent correlations for a sufficient degree of accuracy.

Predictor-corrector algorithms, which is one of the most well known numerical
methods, e.g., Verlet algorithms or Gear’s Predictor-corrector algorithms, were
first used in molecular dynamics by Rahman [40, 90]. in this study, we used

Gear’s predictor-corrector algorithm [90, 91] which has the following steps:

a- Predict positions of atoms in crystal r; at time ¢ + §t using a fifth-order
Taylor series based on positions and their derivatives at time ¢. The derivatives
;, Fp, v, riV; and r¥; are needed at each step. These are also predicted at time

t + ot by applying Taylor expansion at time .

ri(t+6t) = ri(t) +7(t)ot + 7 (2) (5215!)2 Fotr” (t)(55—t!)5,
(8t = 7i(t) + ()0t + i (lt)(%)2 + oty (t)(%)ll’
F(t+0t) = () + o ()ot + (t)g +ri" (1) (5;!)3, (2.25)

- 5t)?
R4 51) = () + ) )5t 4@ (1) O
7, (@) (t+6t) = r,; (v (t) + rgv) (t)dt,

rt+6t) = ).

b- Evaluate the inter-molecular force F; on each molecule at time ¢ + 6t using the
predicted positions. For continuous potential energy functions u(r;;) that acts
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between atoms ¢ and j, the force on each molecule is given by

ou(rs;
iz Orij
Apply Newton’s third law:

to decrease the amount of computation by a factor of two.

c- Correct the predicted positions and their derivatives using the discrepancy
07; between the predicted acceleration and that given by the evaluated force F;.
With the forces at t + §t obtained from (2.26), Newtons second law can be used
to determine the accelerations ¥(t + 0t).

Hoover [82, 89], Haile [90], Allen and Tildesley [92], Rapaport [93], and Evans
and Morris [94] explained the applications of equilibrium and non-equilibrium
MD simulation on fluids. Some other applications are contained in the collection

edited by Ciccotti and Hoover [95].

2.2.6 Periodic boundary conditions (PBC)

Depending on the memory and time restrictions, size of sample is extremely
small in a simulation process. Number of atoms, N, is of order 10® or less in
a typical study. In order to minimize surface effects and by the means of that
to simulate more closely the behavior of an infinite system, it is customary to
use periodic boundary conditions. The particles of interest lie in the central cell
and this basic unit is surrounded on all sides by periodically repeated images of
itself. Each image cell contains N particles in the same relative positions as in
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the central cell. When a particle enters or leaves through one wall of a cell, the
replacement is balanced by an image of that particle leaving or entering through
the opposite wall respectively. The choice of N and the shape of the cells mostly
supply advantage in such a way that the PBC generates a perfect lattice suitable
to the physical system when the particles in the central cell are arranged in a
proper manner. Pd and Al crystallize in a face-centered cubic structure and it is
natural to use a cubic cell and take N = 4n?, where n is an integer. Consequently
the number of widespread use of samples contains N = 32,108,256, 500, 864, ...

particles. We used N = 864 particles in this study [57, 96].

2.2.7 Minimum image convention and cutoff radius

One of the most critical point of MD simulation is the calculation of the forces,
acting on all molecules, and the potential energy for a particularly determined
configuration. The system is thought as a sum of pairwise interactions. Pairwise
interactions are calculated in particular but there are many interactions in be-
tween, such as if molecule 1 is chosen as a reference, pairwise additivity with other
7 molecules surrounding molecule 1 must be calculated. Then similar procedure
continues for molecule 2 and so on for N — 1 molecule. This procedure requires a
large number of calculations which is practically impossible. The summation has
to be restricted by making a proper approximation for a short range potential
energy function to solve this problem. Consider molecule 1 to be at rest in the
center of an interaction region, which has the same size and shape as the basic
simulation box. The molecule will interact with all molecules whose centers lie
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in the same region. This interaction is restricted with the closest ones of other
(N-1) molecules. If the interaction region extends beyond the basic simulation
box, the molecules that fall into the interaction region in neighboring boxes are
included as well. This is called minimum image convention.

There are still problems with the number of calculations despite the decrease
due to use of minimum image convention. The calculation of the potential energy
due to pairwise additive interaction involves N(N — 1) terms in the minimum
image convention. This means a large number of calculations for a system of, say,
1000 particles. The problem is solved by using a cutoff radius approximation.
When using cutoff radius R¢, only the neighbors inside the sphere with radius
R¢ concentrated on particle ¢ contribute to the total force acting on this particle.

The cutoff radius must satisfy the condition Rs < %, where L is the smallest
length of L,,L, and L,. In the consideration of the number of particles in the
cutoff region one has to make sure that every particle, interacting with ¢ th

particle is located in the simulation cell.
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CHAPTER 3

INTER-ATOMIC POTENTIALS

3.1 Finnis-Sinclair potential

Pair potentials are used to describe the energy related properties of metals
for many years. They were the only way to simulate defects such as dislocations,
grain boundaries and cracks. Despite the absence of its theoretical foundation,
the pair potential is useful for generating qualitative information, such as possible
local configurations of atoms [97]. In practice, pair-potential model have some
problems in the calculation of basic physical properties of matter. For example,
pair potentials can not satisfy the Cauchy relation (C1o = Cy4) in a cubic crystal
[61]. Finnis and Sinclair [61] solved this problem by applying an external pressure
to balance the “Cauchy pressure”, %(C’lz — Cy4). This pressure is a fictitious
external pressure which was produced by volume dependent term of total energy.
However, the introduction of the macroscopic volume as a variable in the total
energy leads to some paradox that the bulk modulus calculated by the method
of long waves (constant volume) differs from its value calculated by homogeneous
deformation, unless the volume-dependent term is linear in volume. This problem
arises especially when the simulation of internal cavities or cracks in a metal is
taken into consideration.
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The pair-potential description is also inadequate in the calculation of vacancy
formation energy, which is found to be nearly equal to the cohesive energy. Ex-
perimentally it is found to be about one-third of the cohesive energy [61].

Finnis-Sinclair (FS) proposed a solution to incorporate in a simple model the
essential band character of metallic cohesion. The simplest expression of band
structure is in the second moment-approximation to the tight-binding model (for
detailed information see the Section 9 of the book by Sutton [98, 99]).

The total energy of an assembly of atoms at positions {R;} is written as
Uot = Un + Up, (3.1)

where Uy is the N-body term and Up is a conventional central pair-potential
summation. Uy is an empirical cohesive function summed over all atoms as

follows:
Uy = =AY (o), (32
where
pi = EJ: o(Rij), (3.3)
Rij = [Ry| = |R; — Ril, (3.4)

and A is anticipated as a positive constant.

The main differences between the approach of Daw-Baskes and Finnis-Sinclair
is the derivation and interpretation of p, and the embedding function f. Finnis-
Sinclair chose f(p) to be ,/p and identified p with the second moment of the
density of states from the tight-binding theory [100] and ¢(R) was interpreted
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as a sum of squares of overlap integrals [101]. Daw and Baskes specified p as an
atomic charge density obtained from Hartree-Fock calculations for the free atom.
They obtained an embedding function f(p) by empirical fitting. Finnis-Sinclair

expressed the second term of total energy of assembly of atoms as follows:

Up = %ZV(RU). (3.5)

Uy represents the band energy (bonding energy) and Up is a repulsive core-core
interaction in the Finnis-Sinclair tight-binding interpretation.

Finnis and Sinclair parametrized the functions ¢ and V' by fitting to cohesive
energy, equilibrium volume and all three elastic moduli for the bce transition
metal.

Finnis and Sinclair adopt for the cohesive energy ¢ a parabolic form,

(R—-d)? R<d,
o(R) = (3.6)
0, R > d.

The range d is a disposable parameter which is assumed to lie between the second

and third neighbors, thus
a<d<2a,

where a is the lattice constant.
The pair-potential defined by Finnis and Sinclair in the quadratic polynomial
is,
(R—¢)*(co + c1R+ c2R?), R <c,

V(R) = (3.7)
0, R>c.
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c is assumed to lie between second and third neighbors. ¢y, ¢; and ¢y are the
parameters free for fitting experimental data. To ease the fitting conditions Finnis
and Sinclair considered that all the physical quantities are linear in cg, ¢; and ¢y,

in addition to a.

3.1.1 Sutton-Chen (SC) potential

In this study, Sutton-Chen potential [62] with Quantum Sutton-Chen po-
tential parameters [64, 65, 66] is used for pure metal simulations. Sutton and
Chen interested in long-range Finnis-Sinclair empirical potentials to perform bet-
ter computer simulations. They modeled the mechanical interactions between
clusters of atoms. Pethica and Sutton [102] have already modeled interactions
between clusters of atoms by using Lennard-Jones pair potential and they stated
that there exists a mechanical instability when two slabs of material are brought
into contact. They discovered that interaction between slabs is critically depen-
dent on the range of the potential. Pethica and Sutton have chosen the Lennard-
Jones pair potential because the potential correctly described the long-range van
der Waals interactions between the slabs. This is not seen performable by using
Finnis-Sinclair potential, which extends typically up to third neighbors in fcc and
bee crystals and does not have a 1/r® van der Waals tail. Nevertheless, Lennard-
Jones potential gives poor description of surface relaxation in metals. Sutton and
Chen developed the Finnis-Sinclair potential with along-range interaction.

E = Z %;%V (rij) — ¢ 26“\/@ ; (3.8)
i J#] i
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where
Vi(rij) = <—) 5 (3.9)
and

pi=3 (ﬂ) " (3.10)

i#j \ i

Here V(r) is a pair potential accounting for repulsion between the i and j
atomic cores and p; is a local density accounting for cohesion associated with
atom 4. r;; is the distance between atoms ¢ and 7, « is a length scaling parameter
(leading to dimensionless V and p), ¢ is a dimensionless parameter scaling attrac-
tive terms, € sets the overall energy scale, and n and m are integer parameters

such that n > m satisfying the elastic stability conditions.

The combination rules for alloys are given by the following relations.

1
my = g (mi+my),
ij 1
n? = 3 (ni +n;),
1 .
Ai; = 5 (CLZ + CI,]) s
gy = (& el)z (3.11)

The exponents (n,m), ¢ are determined by the element of central atom ¢ and j at
equilibrium for each component of alloy. ¢;; is determined by the total cohesive
energy (FE,op.) for each component of alloy. Sutton and Chen restricted m to be
greater than 6.
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3.1.2 Rafii-Tabar and Sutton development for fcc binary metal alloys

The Rafii-Tabar and Sutton [63] introduced a new formalism for alloy sim-
ulations. They extended Sutton-Chen potential for fcc binary metal alloys by
constructing long-range Finnis-Sinclair type potential. They modeled both long-
and short-range atomic interactions between unlike metallic species. They did
not fit any new parameters for the alloy potential but instead they used a set
parametrization rules. They generalized Eq. 3.9 and Eq. 3.10 to describe binary

A-B alloys by expressing the Hamiltonian in the following Finnis-Sinclair form.

[E Y pip VA (ry) + (1= p) (1 — ;) VPP (ryy)

(]
+[pi(1 — ;) + p;(1 - ﬁi)]VBB(Tij)]

—a*4 ZPZ [Z pjo TZJ +(1 - ﬁj)¢AB(Tij)]

( 1#£]

N[

—d"? Z(l — bi) [Z(l — p;)o"P (ri;) +ﬁj¢AB(7‘z’j)] ;o (3.12)

i#j

where p; is the site occupancy term which is defined as follows:

R 1, if site ¢ is occupied by an A atom,
Di = (3.13)

0, if site ¢ is occupied by an B atom.

VAA VBB yAB pAA pBB and ¢pAB functions are defined as follows:

AA

gAAT"
VAA(r) = et [—] etc., (3.14)

r

mAA
" aAA
o (r) = l—] etc., (3.15)
r

The constants d44 and dB? are defined as;

d* = e and dPP = BBCBB, (3.16)
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where 44, A4 44 mA4 and n44 are equivalent to the parameters ¢, ¢, o, m

and n parameters of pure A metal as seen in Eqgs. 3.8-3.10. Similar procedure is

valid for B8, ¢BB, aBB mPBB and nP® and ¢, ¢, a, m and n parameters of pure

AB _AB AB

B metal but the other four parameters, 42, a4 mA® and n4B

, remain to be

determined. Assuming that the functions V4? and ¢*# may be expressed as;
VA (VAAvBB)% and ¢AB (¢AA¢BB)%, (317)

Rafii-Tabar and Sutton changed the lattice parameter, a, combination rule of SC

form as,

aB = (aAA + aBB)% . (3.18)

3.1.3 Quantum Sutton-Chen parametrization (Q-SC)

The empirical many-body force fields (FF) of the SC type used in this study
are re-parametrized by Kimura et al.[64, 65] for the fcc metals, by fitting to exper-
imental properties such as density, cohesive energy, moduli and phonon frequen-
cies including the zero-point energy effects, and named as Quantum Sutton-Chen
parametrization (Q-SC). The parameters for the metals studied in this work are
listed in the Table 3.1.

SC potential is based only on the experimental lattice parameter, cohesive
energy and bulk modulus [104]. Kimura et al. studied the properties involv-
ing defects, surfaces, and interfaces which are not adequately described by the
SC potential with the original parametrization. They introduced the quantum
corrections to take into account zero-point energy. This gives the potential the
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ability of better calculation of temperature dependent properties of crystals. The
phonon frequencies (at the X point), vacancy formation energies, and surface en-
ergies have been taken into account in this formalism [64, 65]. These additional
values produced more powerful parametrization for SC potential, especially in
the defect, surface and elastic properties.

Sutton and Chen restricted m to be greater than 6 and used the integral
power indices giving the closest agreement with the bulk modulus (B) and elastic
constants.

Kimura et al. studied the ¢, ¢, n and m parameters of SC potential, given by
Eq. (3.8) in Section 3.1.1. Relaxing the condition that n and m be integral, the
B and the Cauchy discrepancy or pressure (P, = C1o — Cy4) can be exactly fit to

the following analytical solutions;

=(5.) G )
"= Ecoh. 2Pc ’

(3.19)

where () is the volume per atom.

Kimura and colleagues proceed through the following steps to determine the
g, ¢, n and m parameters of the SC potential [64]:

i— a was set to be the experimental lattice parameter at 0K (Sutton and Chen
set a as the lattice parameter at room temperature). The parameter c is chosen
to obtain U,y = —Feop., where E.,,. is the experimental cohesive energy at 0K.

ii— Bulk modulus (B) and elastic constants (c11, ¢12, c44) at 0K are fit to
experimental values.
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iii— Phonon frequencies (w!wl) at the point X in the Brillouin zone are

fitted by using experimental lattice spacing at room temperature to calculate the
phonon dispersion curves.

iv— Previous steps were carried out for a wide range of the exponents (n, m),
and several candidate sets were selected that lead to good agreement between
calculation and experiment.

v— For each set of (¢, €, n, m) from step iv, vacancy formation energy, surface
energy and equation of state were evaluated and final properties agree best when
these parameters were selected.

vi— The parameter a is chosen as the experimental lattice parameter at 0K.

vii— The phonon modes were calculated at the lattice parameters for 0K and
total zero point energy obtained by summing over the brillouin zone. Parameters

¢ and ¢ were optimized so that

FOK = _Ecoh.a (320)

simultaneously with the quantum zero-pressure equilibrium conditions;

viii— The phonon dispersion curve were calculated by using the room tem-
perature lattice parameter to compare with experiment as in step iii.

ix— Vacancy formation energy, surface energy, equation of state, thermal
expansion, and specific heat as a function of temperature were calculated by
using the phonon correction from previous last step.

x— The best set, predicting the properties, of parameters were chosen. Ta-
ble. 3.1 represents the Q-SC parameters for Pd and Al metals.
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Table 3.1: Parameters for Q-SC force-field [64, 65]

metal | n | m | e(eV) c o
Pd 12 | 6 | 3.2864E-3 | 148.205 | 3.8813
Al 7 1 6 | 3.3307E-3 | 16.4600 | 4.0490

3.1.4 Details of Simulation

In this study, the borders of the simulation box extends up to sixth nearest
neighbor atom. Thus a cubic system consists of 864 atoms randomly distributed
on a fcc lattice. In the HPN (constant enthalpy-constant pressure) runs, the
system is slowly heated from 0.1K to the target temperature by 1K/step. This
procedure is followed by equilibrium (strict velocity scaling) runs which are 5000
steps. Here the temperature is constant for every target temperature. TPN
type of runs are based on the equilibrium runs of HPN ones. TPN runs are
constructed as 20000 steps in this study and the aim is to calculate the volume,
density and enthalpy of system for each concentration. The resulting zero strain
average matrix < hg > is used in calculating pressure dependent properties of the
system over 50000 steps of EVN dynamics. Fifth order Gear predictor-corrector
algorithm is used in At = 0.0020 ps interval. Parinello-Rahman piston mass
parameter is chosen as W=400 and for TPN runs the Nosé-Hoover parameter is

set to Q=100.
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CHAPTER 4

SOLID STATE PROPERTIES

Although dynamical properties of liquid metal and alloys are studied in this
work, it is also found necessary to investigate some crucial solid properties of
Pd and Al, Pd-Al alloys, because Q-SC potential parameters have been fit to
0K properties of fcc metals. Q-SC simulation results are compared with available
experimental data to show the validity of Q-SC parameters for these given metals.
Unfortunately, we could not find any experimental data for high temperatures to

compare with our findings.

4.1 Enthalpy of mixing

Enthalpy of mixing gives information about the miscibility of two different
species and it is of great interest. Hultgren[74] performed calorimetric experi-
ments and determined the enthalpy of mixing, AH. Q-SC potential gives reason-
able results for enthalpy of mixing when applied to Pd-Al alloy system as seen in
Fig. 4.1. Q-SC simulation and experimental results [74] both have same negative
sign at T= 300 K. These results imply that Pd and Al have high miscibility.
On the other hand, the difference between the sizes of Pd and Al supports these
results.

Although both Q-SC simulation and experimental results seem to agree well,
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Figure 4.1: Enthalpy of mixing for Pd-Al alloys produced by TPN-MD simulation
and Q-SC potential parameters at 300 K

there are also some differences. These differences mostly originate from potential
parameters and combination rules. The parameters were fitted to pure metals
but it is not exactly known whether these parameters define the alloy behavior

of Pd and Al.

4.2 FElastic constants

We produced elastic constants as a result of EVN MD simulation. Comparison
between experimental and calculated elastic constants shows that Q-SC potential
produces very satisfactory results for Pd and Al. Elastic constants are the com-

ponents of bulk modulus B = 3 (c11 + 2¢12) [75]. Fig. 4.2, Fig. 4.3 and Fig. 4.4

1
3
illustrate the elastic constants for Pd and Al.

Fig. 4.2 and Fig. 4.3 include c;; and c44 elastic constants and Fig. 4.4 includes
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Figure 4.2: Experimental and simulated elastic constants for Pd produced by
EVN-MD simulation and Q-SC potential.
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Figure 4.3: Experimental and simulated elastic constants for Al produced by
EVN-MD simulation and Q-SC potential.
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Figure 4.4: Experimental and simulated elastic constants for Pd and Al produced
by EVN-MD simulation and Q-SC potential.

c12 elastic constants for both Pd and Al. Experimental and calculated values have
some differences, but these differences are in acceptable limits (about 5% for Pd
and 10-15% for Al metals in ¢;; and ¢y elastic constants). ¢ elastic constants

for Al fit very well.

4.3 Density

The correct simulation of density has a great importance for computer sim-
ulation results. Simulation of density is also important for the investigation of
scientific and industrial properties of material. Q-SC potential is very satisfactory
at the density simulation for solid state densities of Pd and Al. Table 4.1 and
4.2 show the experimental and simulated densities of Pd and Al, respectively at

relavant temperatures, experimental data are taken from Simmons [75].
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Table 4.1: Experimental and simulated densities of Pd with respect to tempera-
ture.

EXP.  Q-SC
T (K) p (g/cm?)

0 12.0690 12.1560
a0 12.0675 12.1251
100 | 12.0650 12.0916
160 | 12.0569 12.0578
200 | 12.0515 12.0238
260 | 12.0434 11.9893

Table 4.2: Experimental and simulated densities of Al with respect to tempera-
ture.

EXP.  Q-SC
T(K)| p(g/em?)

0 2.7333  2.6992
63 2.7311 2.6840

100 2.6648
143 | 2.7233 2.6435
200 2.6288

213 | 2.7105 2.6275
293 | 2.6976 2.6189
300 2.5903
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CHAPTER 5

DYNAMICAL PROPERTIES

5.1 Introduction

Because complete trajectories are available, it is not difficult to measure time-
dependent properties, both in and out of equilibrium. It is not difficult to measure
thermodynamic and structural properties, such as pair distribution function and
structure factor at equilibrium. Here, we also concentrate on properties defined
in terms of time-dependent correlation functions at the atomic level, the dynamic

structure factor, and transport coefficients such as diffusion and the shear viscos-

ity.

5.2  Melting Points

When simulations are performed at points near the melting curve or whenever
a simulation is started from a lattice structure, there is an interest whether the
system has melted or not. Melting temperatures are determined from the con-
tinuity in mean square displacement, discontinuity in enthalpy, and magnitude
change in diffusion coefficient, D, which increases gradually for liquids. The re-
gion during the heating process where all of these three physical properties are
satisfied together is accepted as the melting point of a material. The continuity
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in mean square displacement is shown in the Fig. 5.1 and Fig. 5.2 for Pd and Al

metals, respectively.

0.08 T T T T
T =1800K ——

T=1820K
0.06 | PR
liquid

0.04 -

0.02 | _

mean square displacement

solid'
0 2 4 6 8 10
t(ps)

Figure 5.1: Positional mean square displacement of Pd about simulated melting
point. The upper line represents the liquid state at 7" = 1820K while the lower
line represents the solid state at 7' = 1800K.

TPN MD method is used to calculate the continuity in mean square dis-
placement. On the other hand, enthalpy is calculated from EVN MD method.
Enthalpy of a system, H, carries information about the melting region. H-T
graph has a linear-like shape but it changes between the solid and liquid states.
The slight difference between the solid and liquid state values of H-T graph is
apparent in Fig. 5.3. Enthalpy of a system shows the melting point in +£5 % error
region.

The melting points of Pd-Al alloys are calculated by using the formalism
stated by Rafii-Tabar and Sutton [63]. Rafii-Tabar and Sutton [63] modified
the potential for alloy case, but they did not perform a new parametrization for
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Figure 5.2: Positional mean square displacement of Al about simulated melting
point. The upper line represents the liquid state at 7" = 520K while the lower
line represents the solid state at 7' = 510K.

alloys. in this work, we used the parameters produced for pure metals by Kimura
et al. [64, 65]. The calculated and experimental melting points of Pd and Al
and Pd-Al alloys in four different concentrations are given in the Table 5.1 and
Fig. 5.4. Experimental melting points are predicted from Pd-Al phase diagram
given in the book by Hultgren [74].

The determination of melting point is one of the challenges of MD simulation.
The melting point of Al is found to be about 400 K lower than the experimental
melting point of Al. But, on the other hand, the melting point of Pd is found
to have nearly the same melting point as published experimental results [1]. The
difference of experimental and simulated melting points is not an obstacle to study
the dynamic properties of Al. On the other hand, the agreement of experimental
and simulated melting points for Pd is a great success.

43



-240 T T T T
—+— Al Metal

-%-  Pd Metal

1

DO

D

ja]
I

1

DO

(@]

ja)
I

1

[J%]

(]

(]
1

-320 -

Enthalpy (kJ/mol)

-340 X7 .

-360 - = -

-380 ] ] ] ]
0 200 1000 1500 2000 2500

T (K)

Figure 5.3: Enthalpy of Pd and Al with respect to temperature. The upper line
represents the enthalpy of Al while the lower line represents the enthalpy of Pd.

5.3 Pair distribution function

Pair distribution function, g(r), is the probability of finding another atom at
a distance r from the atom at the origin (r = 0) and it supplies an essential
knowledge in the liquid state investigations. Pair distribution function is calcu-
lated directly from position trajectories produced by simulation. It is given by
the following expression;
P Vv
g(r)=p <ZZ(5(ri)5(rj—r)> = F<ZZ(5(1‘—1‘U)>. (5.1)
T j# (A E
The experimental data is available for pure metals but not available for alloy
case. Fig. 5.5 and Fig. 5.6 show the experimental (experimental values are taken
from the book by Waseda [68]) and simulated g(r) functions of Pd and Al at
1853 K and at 943K, respectively.
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Figure 5.5: Experimental and simulated pair distribution functions for Pd (7 =
1853 K).
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Table 5.1: The melting temperatures of Pd-Al alloy calculated by SC potential
and Q-SC potential parameters as a function of Pd concentration in Al. Experi-
mental data is taken from Hultgren [74].

Concentration T(K) T(K)
of Pd in Al Experiment | Simulation
(Q-SC)
0.00 933 520 £ 5
0.20 1128 735+ 5
0.40 1323 990 + 5
0.60 1625 1285 £+ 5
0.80 1700 1590 + 5
1.00 1825 1820 £ 5

As it is seen in Fig. 5.5, simulated pair distribution function for Pd is in
good agreement with the experimental data [68] and the position of first peak
agrees well with the lattice parameter a for Pd. Unfortunately, it is not possible
to say the same for simulated and experimental [68] pair distribution functions
for Al in Fig. 5.6, because the simulated melting point is lower. The position
of first peak agrees with the experimental first peak of Al. The normalized pair
distribution functions of PdygAly2 and PdyoAly g are given in Fig. 5.7 and Fig. 5.8

at T'=1700 K and T = 1100 K, respectively.

Solid, liquid and sub-melted (amorphous) phases are illustrated by the pair
distribution functions, g(r), of Pd and Al in Fig. 5.9 and Fig. 5.10 respectively.
Apparent differences are observed between liquid, solid and amorphous state g(r)
functions.
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Figure 5.6: Experimental and simulated pair distribution functions for Al (7' =
943 K).

0.6 0.8 1
r(nm)

Figure 5.7: Simulated pair distribution functions for PdygAlye alloy (T
1700 K).
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Figure 5.8: Simulated pair distribution functions for PdgyAlgg alloy (T =
1100 K).
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Figure 5.9: Pair distribution function of Pd in solid, liquid and sub-melted states.
Solid line displays solid phase at 7" = 1600K, dashed line displays sub-melted
phase (amorphous phase) at T = 1800K, and dotted line displays the liquid
phase at T' = 1820K.
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Figure 5.10: Pair distribution function of Al in solid, liquid and sub-melted states.
Solid line displays solid phase at 7' = 300K, dashed line displays sub-melted phase
(amorphous phase) at T = 510K, and dotted line displays the liquid phase at
T =520K.

5.4 Static Structure factor

Pair distribution is related to the structure factor S(q) by the well known

Fourier transformation of g(r) [57, 69, 92|

sin(qr)
q

S(q) =1+ 4mp /OOO r [g(r) — 1]dr. (5.2)

where ¢ = |q| and 7 = |r|. Static structure factor, S(g), is an important quan-
tity because: (a) experimental scattering profiles of liquids are system-oriented
functions of S(g), (b) key length-scales in liquid systems are easier to investi-
gate from S(g) than that from g(r) and many analytic properties and transport
coefficients are conveniently represented as functions of S(g) rather than g(r).
Fig. 5.11 and Fig. 5.12 displays the simulated and experimental S(q) values taken
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Figure 5.11: Experimental and simulated static structure factor for Pd at T =
1853 K.

from Waseda [68] at T = 1853 K and T = 943 K respectively.

Fig. 5.11 displays the static structure factor of Pd. Experimental results
are taken from Waseda [68]. Compared to experiment, Q-SC S(g) results fit to
experimental S(g) very well. In Fig. 5.12, such agreement is not observed for
Al. Fig. 5.13 and Fig. 5.14 illustrate the static structure factor of PdggAlj.s
liquid alloy at 7" = 1700 K and the static structure factor of Pdy,Aly g alloy at
T = 1100 K, respectively. To the best of our knowledge, there is no published

experimental data for Pd-Al alloy to compare with our findings.

Since the normalization factor for distinct species, Pd-Al is zero in Eq. (5.2),
S(q) oscillates around zero, but S(g) oscillates around one for self species, Pd-Pd
or Al-Al, in Fig. 5.13 and Fig. 5.14, respectively. Pd-Pd correlations are stronger
than Al-Al correlations, but Pd-Al correlations are the strongest in Fig. 5.13.
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Table 5.2: Experimental and simulated structure factor values of Pd at the ex-
tremum points of S(q).

T = 1853 (K)

q S(q) S(q)
(A7) | Q—SC | EXP.
1.00 [ 0.041 0.067
2.80 || 2.662 2.451
3.90 | 0.654 0.646
5.20 || 1.255 1.236
6.40 | 0.883 0.878
7.80 | 1.096 1.083
7.80 | 0.952 0.951
9.00 | 0.952 0.951

Table 5.3: Experimental and simulated structure factor values of Al at the ex-
tremum points of S(q).

T = 943(K) T = 1323 (K)

q S(q) S(e) |« S(q) S(q)

(A | Q—-SC | EXP. || (A7) | Q- SC | EXP.
0.450 [ 0.0234 [3.7234 [ 1.00 |0.051 [0.123
2.70 || 2.475 | 1.9108 | 2.70 | 1.934 | 1.649
3.70 | 0.559 | 0.760 | 3.70 |0.729 | 0.831

490 | 1.286 | 1.114 | 500 |1.178 |1.106
6.20 | 0.851 |0.929 | 6.20 |0.940 | 0.963
7.40 |[1.093 |1.03 | 7.40 |1.032 |1.019
8.40 | 0.940 |0.995 | 860 |0.980 |0.994
9.60 | 1.036 |0.995 | 9.60 |1.017 |0.997
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Figure 5.12: Experimental and simulated static structure factor for Al at T =
943 K.

Table 5.2 and Table 5.3 are selected from the extrema of Fig.5.11 and Fig. 5.12,
respectively, for a comparison between Q-SC MD simulation and experiment. As
it is seen from Table 5.2 the S(g) data obtained from simulated g(r) data by
Fourier transform agrees well with experimental S(q) for Pd. But depending on
the pair distribution function, we can not say the same about S(g) for Al as can

be seen in Table 5.3.

5.5 Diffusion Coefficients

Transport coefficients describe the material properties of a fluid in terms of
fluid dynamics. Fluid dynamics is a continuum framework medium, so discrete
atoms play no role in the continuum picture, but this does not limit the range of
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Figure 5.13: Simulated static structure factor of PdggAlys liquid alloy at T =
1700 K.

practical applications of the continuum approach. In many problems the trans-
port coefficients are assumed to be experimentally determined constants, depend-
ing only on the temperature and density of fluid, but in more complex situations,
transport coefficients can depend only on local behavior, an example being the
dependence of shear viscosity on the velocity gradient [93]. Some of the most
familiar transport properties are diffusion coefficients and shear viscosity, and

dynamic structure factor for more advanced studies.

Diffusion is the name of the phenomenon in which molecules move from one
part of a system to another through a process depending on the force occurring
from the imbalance between different parts of the system [69]. Diffusion coef-
ficient, D, is defined by Fick’s law relating mass flow to density gradient in a
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Figure 5.14: Simulated static structure factor of Pdy5Alyg alloy at T'= 1100 K.

Table 5.4: Diffusion coefficients at different temperatures. Values, which are
given in the columns headed by “Refs.” | are taken from experimental or first
principle calculations of corresponding authors.

T Dpy D4 Dpg—ai
(K) (em?s~1) x 1073 (em?s~1) x 1078 (em?s~1) x 1073
Q-SC Refs. Q-SC Refs. PdogAly.a PdoeAlo.a Pdo.aAlps Pdo.2Alo.s
943 15.579  7.476[72]
985 16.077  4.16[77]
1000 6.217 (1—1)
9.441 (2—2)
1023 17.878  9.230[72] 7.793 (1—1)
11.462 (2 — 2)
1200 0.37 5.285 8.641 (1—1)
7.537 13.102 (2— 2)
1400 28.518 5.134 7.719 11.991 (1 —1)
6.609 10.423 17.882 (2 2)
1600 35.155 4.654 6.706 10.181 14.823 (1 —1)
5.290 9.138 14.081 22.052 (2 —2)
1800 43.422 6.501 8.615 12.973 18.364 (1 — 1)
7.371 11.701 18.302 27.572 (2 — 2)
1853 | 5.020  4.037[44]
2000 6.192 51.430 8.155 11.162 15.117 21.956 (1 —1)
9.461 15.213 21.642 33.252 (2 — 2)
2200 7.683 60.32 10.183 11.402 18.296 26.051 (1 — 1)
11.846 17.524 25.932 38.642 (2 — 2)
2500 10.424 70.310 13.213 17.013 23.081 31.892 (1 — 1)
15.494 21.333 33.155 48.304 (1 — 1)
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Figure 5.15: Diffusion coefficients from Alemany’s [44] work at (p(T = 1853K) =

10496.78 kg.m™3) and our simulated results by Q-SC potential (p(7" = 1000K) =
9664.06 kg.m™3).
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Figure 5.16: Experimental and simulated diffusion coefficients of liquid Al a-
EMD data (p(T = 1000K) = 2268 kgm™2) [72], b- Stokes-Einstein [105], c-
Sutherland-Einstein [105], d-Universal Scaling Law [106], e- Alfe et al.(p =
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2208.81 kg.m?).
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continuous system [71]. For large ¢ we have the Einstein expression [71].
1 N
D= Jim g (Sl - mOF). 653
The diffusion coefficients obtained from Einstein expression (5.3) are given in
Table 5.4 for Pd and Al liquid metals, and Fig. 5.15 and Fig. 5.16 display the
diffusion coefficients calculated by MD method with Q-SC potential.

The experimental data is hard to find for diffusivity of Pd. But our results
agree with the MD data calculated by Green-Kubo and Einstein relations with
20% error percentage [44] as seen in Fig. 5.15. There is a range of diffusion
coefficients found experimentally, theoretically, and by simulation in Fig. 5.16.
Depending on the aluminum parametrization, diffusion coefficients are low com-
pared with the published experimental results [72, 76], but they have reliable
values. The comparison shows the success of Q-SC potential parameters.

Diffusion coefficients have been calculated for Pd and Al and PdggAlgo, PdggAlp 4,
Pdg4Alye, and PdyoAlgg alloys in different temperatures. The results are exhib-
ited in Table 5.4. Additionally, available results obtained by experiment or theory,
or first-principles simulation are given in the Table 5.4. We are able to find exper-
imental and theoretical data published on self diffusion of Al, and self diffusion
of Pd, but to the best of our knowledge, there is no experimental or calculated
data on diffusion of Pd-Al alloys. Because of lack of the experimental or calcu-
lated data, we list our simulated self diffusion data on Pd-Al alloy without any
comparison in Table 5.4.

In Table 5.4; the rows shown as (1 — 1) include Pd-Pd species of Pd-Al alloy
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and (2 — 2) include the Al-Al species. The data given for pure Al, in the “Refs.”
column have been taken from Cherne [72] and they are theoretical calculation
results. Similarly, the data given for pure Pd in the “Refs.” column have been

taken from Alemany [44] and they are also theoretical results.

5.6 Shear Viscosity

| | |
Pd at 1853K ——
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&
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t (ps)

Figure 5.17: Viscosity integral of stress auto correlation function for liquid Pd
(T = 1853 K). Reference data is taken from Alemany [44].

Viscosity is defined as a measurement of resistance to flow [69]. Two adjacent
layers slip past each other, each exerts a frictional resistive force on the other,
and this internal friction gives rise to viscosity. The shear viscosity n is defined by
the Navier-Stokes theorem [71], which defines shear viscosity and bulk viscosity
together.

There are two expressions mostly used in the calculation of shear viscosity
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Figure 5.18: Viscosity integral of stress auto correlation function for liquid Al
(T =943 K).

of fluids. The expression which is analogous to the Einstein relation (EC. 5.3)

71, 108] is;

= tliglo m <Z [Z ;T (1) vy;(t) — Xj:mjrwj(o)vyj(o)] > ) (5.4)

<y 7

where denotes a sum over the three pairs of distinct vector components

z<y
(xy, yz, and zx) and it is used to improve the statistics. This expression can not
be used with periodic boundary conditions because they violate the invariance
assumed in the derivation [109]. An alternative relation is given by the Green-

Kubo expression which is based on the integrated auto-correlation function of the

pressure tensor[71],

n = SIZT /0 - <az<ﬁ Paﬂ(t)Paﬂ(0)> dt, (5.5)

where a8 = zy,yz,zz, and <Ea<g Paﬂ(t)Palg(O)> is the stress auto-correlation
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function,
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Figure 5.19: Shear viscosities for liquid Al as a function of temperature. (1,2,3,4
and 5 corresponds experimental data from Ref. [76] where 1,2,3,4 and 5 corre-
spond to Refs. [110]-[114], 6- is calculated from NEMD, and 7- is calculated from
equilibrium MD simulations) [72, 76].

Egs. (5.4) and (5.5) are completely identical. Components of pressure tensor,
P,p, have already been calculated during our simulations, so we used Eq. (5.5)
to calculate the shear viscosities of both metals. Fig. 5.17 and Fig. 5.18 display
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the viscosity integrand for Pd (7" = 943 K) and Al (7 = 1853 K), respectively.

Table 5.5: Shear viscosities at different temperatures. Experimental values, in-
cluded column titled by “Refs.” are taken from experimental or first principle
calculations [44, 72].

T npa(mPa.s) nai(mPa.s) npdgai(mPa.s)

(K) Q-SC  Refs. Q-SC  Refs. Pdg.gAlg.2 PdggAlop.a Pdo.4Alps Pdo2Alpg
943 0.47  1.20[72]

1000 042  0.87[72]

1200 0.37  0.67[72]

1400 0.33

1600 0.31 2.52 1.60 1.02 0.50
1800 0.28 1.93 1.33 0.89 0.49
1853 | 2.69  2.30[44]

1900 | 2.57 1.63

2000 | 2.50 0.27 1.55 1.21 0.78 0.47
2200 | 1.93 0.26 1.25 1.08 0.74 0.46
2500 | 1.68 0.24 0.92 0.60 0.43

We have calculated the shear viscosities of Pd and Al and Pd-Al alloys in
different concentrations. There are a few calculations published for Pd [44] but
many for Al. The experimental and simulated results are shown on Fig. 5.19, so
we do not insert this data into the Table 5.5. To the best of our knowledge, there

is no experimental or theoretical datum on the shear viscosities of Pd-Al.

The data given for pure Al in the “Refs.” columns of Table 5.5 have been
taken from Cherne [72] and it is a theoretical result. Similarly, the data given
for pure Pd in the “Refs.” columns have been taken from Alemany [44] and it
is also a theoretical result. There is a range of experimental viscosities for Al in
the paper by Cherne [72] and the results show that MD simulation is successful
for viscosity of Pd and Al.
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Figure 5.20: Intermediate scattering function of liquid Pd (p = 9680.7 kg.m™3).

5.7 Intermediate Scattering Function

Intermediate scattering function F(q, t), which is a density-density correlation
function, is the time dependent picture of a material in q space. MD simulation of
F(q,t) by using Q — SC potential gives good results in agreement with published

data for Al[77].

We analyzed the molecular dynamics results for the intermediate scattering

function, which is given by [57, 92, 115],

F(q,t) = /drexp(—iqr)

1

- N < p-q(t)-pa >, (5.7)

where pq(t) is the time-dependent Fourier component of the density of the system,
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Figure 5.21: Partial intermediate scattering function for Pd-Pd species of liquid
PdgsAly, alloy (p = 8114.5 kg.m™3).

given by the following relation:

pr;t) = 3 exp(~iq.r;(1)). (5.8)

Periodic boundary conditions with minimum image method satisfy the time de-
pendent continuity of F(q,t). Because of the periodic boundary conditions only

certain wave vectors are allowed

2T

q= f(nlan%n?})’ (59)

where n; are integers and each wave vector with n; > ny > ng, contributes to all
possible symmetries of q values. Since our system is an isotropic system, F(q,?)
depends only on the magnitude of k and not on its direction. Thus, F'(q,?) is a
function only of the wavenumber ¢ = |q| and t.

F(q,t) has been averaged over 500 time origins. Although trajectory file has
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Figure 5.22: Partial intermediate scattering function for Pd-Pd species of liquid
Pdg»Aly g alloy (p = 3675.8 kg.m™3).

5000 time origins, each 10 of the original time points has been used as a time
origin. At = 0.002 ps have been selected as the time increment. As a result,
calculations have been made on 1 ps time scale. The ¢ values have been selected
from the extremum points of S(gq) curve of the selected metal or alloy at the given

temperatures. These points are given in Table 5.6 for the relevant temperatures.

In Table 5.6, g values of the extremum points are given by corresponding S(q)
values of Pd and Al. Extremum points of alloys are selected from total structure
factors of PdggAlgs and PdgsAlyg alloys, but we have calculated four different
structure factors for each alloy depending on the number of components of alloy.
These are the structure factors for Pd-Pd and Al-Al self species, structure factors
for Pd-Al distinct species, and structure factors for Pd-Al in which both species
interacting randomly (total structure factors).
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Figure 5.23: Intermediate scattering function of liquid Al (p = 2232.7 kg.m™3).

Fig. 5.20 and Fig. 5.23 represent the time dependent behavior of intermediate
scattering functions of Pd and Al pure metals. Figures 5.21, 5.22 represent the
time dependent behavior of intermediate scattering functions of Pd-Pd correla-
tion for PdggAlys and PdgoAlgg alloys and Figs. 5.24, 5.25 represent the time
dependent behavior of intermediate scattering functions of Al-Al interaction for
PdggAlgs and PdgoAlgg alloys, respectively. As it is seen from Fig 5.20 and
Fig. 5.23, intermediate scattering functions of Pd and Al have a smooth time de-
pendent shape approaching to zero as in all transport correlations. We compared
the behavior of Pd-Pd and Al-Al self components of PdggAlg. and PdgoAlgs
alloys with Pd and Al to see the behavior of atoms in alloy.

In Fig. 5.22 the starting point of F'(g, t) has smaller values due to decreasing Pd
concentration. This is an expected result, because of the decreasing probability
of finding a Pd atom around origin at time zero. In the pure metal and PdggAlj.
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Figure 5.24: Partial intermediate scattering function for Al-Al species of liquid
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Figure 5.25: Partial intermediate scattering function for Al-Al species of liquid
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Table 5.6: Selected g values of Pd and Al and PdygAlys and PdgoAlyg alloys at
the extremum points of S(g). ¢ values of Pd and Al are given by the S(¢) and
extremum points of alloys are selected from their total structure factor.

Pd Al PdygAlyo PdyoAlys
(1853 K) (943 K) (1700 K) (1100 K)
q S(a) | ¢ S(g) | ¢ S(a) | ¢ S(q)

(A™H (A™h (A7h (A™h

273 2448 | 2.67 1.885|2.714 230 | 2.662 2.11
3.79 0631|382 0.745 | 3.776 0.64 | 3.781 0.71
5.10  1.246 | 5.16  1.175| 5.074 1.24 | 5.001 1.18
6.28 0.875 631 0917 |6.255 0.87 | 6.221 0.90
878 0938 | 7.65 1.0561 | 7.553 1.08 | 7.441 1.05
9.67 1.027 | 8.89  0.987 | 8.733 0.94 | 8.661 0.96

and Pdy2Aly g alloy cases both Pd and Al species have strong correlations at time
t = 0, but this F(g,t) correlations decrease to zero in time. The small oscillations
in the tails of curves are noises. These noises can be reduced by increasing the
number of atoms in the simulation.

When we compare the intermediate scattering function behavior of Pd and
Al, we can say that Pd atoms have stronger correlations. These correlations are

also much more long lasting than Al atoms’ correlations.

5.8 Bulk modulus

Bulk modulus values, in different concentrations and temperatures, have been
calculated both from elastic constants and F'(g,t) functions. Bulk modulus has
a special importance for discussing the efficiency of simulation. Although Ebbsjo
et al. [77] claimed that the bulk modulus calculated from S(0) value is not reli-
able, we see that bulk modulus calculated from F'(g,t) functions in the smallest
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Figure 5.26: Experimental and simulated bulk modulus of Al.

hyrodynamics limit (¢ = 0.266 A~") is reliable. The reason for Ebbsjd’s [77] claim
is that the exact estimation of S(q) in the ¢ — 0 limit is not possible from MD
simulations, because S(q) has some elusive behavior in the smallest hyrodynam-
ics limit, but F'(g,t) does not have this disadvantage. Fig. 5.26, Fig. 5.27 and
Fig. 5.28 illustrate the bulk modulus of Pd, Al, and PdygAlg 4 alloys, respectively.

Initial value of intermediate scattering function, F'(g,0), is used to calculate
compressibility of Pd and Al elements and Pd-Al alloy at the hydrodynamic limit

(¢ <1, t—0) by using following expression,

F(q,0)
pk‘BT ’

(5.10)

KT =

In Fig. 5.26, bulk modulus values calculated from elastic constants seem closer
to the experimental data [116] compared to that of the values calculated from
F(q,0) functions. As it is discussed in the third chapter, bulk modulus is one
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Figure 5.29: Experimental and simulated compressibility of Al.

of the properties which is used in the optimization of potential. This explains
why the bulk modulus is found closer to experimental value rather than the value

found by using F(q,0) functions.

5.9 Compressibility

Compressibility is the inverse of bulk modulus. Compressibility is calculated
from elastic constants and F'(g,t) functions in the hydrodynamic limit. There
are some differences between them and these differences explain the behavior of
potential. Fig. 5.29, Fig. 5.30 and Fig. 5.31 illustrate the compressibility of Pd,
Al, and PdggAly 4 alloys, respectively.

As seen from Fig. 5.30 the compressibility calculated from elastic constants
is closer to experimental data [116] compared to that of the data obtained from
F(q,t) function. The reason for this can be explained by the fitting method used,
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Figure 5.30: Compressibility of Pd calculated from elastic constants and F'(q, t)
function.

as has already been mentioned in the previous section.

5.10 Dynamic structure factor

Determining the dynamic structure factor of a liquid metal is one of the most
expensive and time consuming tasks since the working temperature is very high
and thus measurement equipment needs very high technology. On the other hand
the dynamic structure factor has a significant importance because of its relation to
a very well known experiment, “inelastic scattering”, and supplies very important
information. The inelastic scattering is explained in detail by Hansen [57].

Dynamic structure factor, S(q,w) is a spatial Fourier transform of F'(q,t) and

it is given by the following equation.

S(q,w) = % | Flat)explitt, (5.11)
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Figure 5.31: Compressibility of PdygAly 4 alloy calculated from elastic constants
and F'(q,t) function.

where F'(q,t) is the intermediate scattering function and is given by Eq. (5.7).

In alloy systems, dynamic structure factor can be defined to describe self and
distinct species. It is given for two component liquid alloys by the following
expression [57, 90].

1 e’}

Sap(aw) = 5- [  Fupla,) exp (iwt)dt, (5.12)

where o« and f represent components of the alloy. F,s(q,t) is given as

1
Fos(q,t) = N <P (t)-pye > - (5.13)

S(q,w) has been calculated directly from trajectory data, which are products of
EVN ensemble MD calculations.

Because of isotropy of our system, S(q,w) depends only on the magnitude
of k and not on its direction. Thus, S(q,w) is a function of the wavenumber
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Figure 5.32: Dynamic structure factor for Pd-Pd species of liquid Pd (p =
8114.5 kg.m™3).

g = |q| and w. In the limit (r, ¢ — 0), the particles in liquid move as if they
were free, with a constant velocity u. These conditions correspond to the limit
(g, w — o), where S(g,w) behaves in the manner appropriate to an ideal gas.
For a two component ideal gas the limiting form of S(g,w) is easily derived. Since
positions of different particles, represented by « and [, are uncorrelated in ideal
gas (Sap(q,w)), the calculation of S(g, w) is therefore equivalent to the calculation

of self species Syq (g, w) and Spp(g,w).

Fig. 5.32 and Fig. 5.35 give the dynamical structure factor of liquid Pd and Al,
respectively, in the large q region, namely in the free particle limit. Fig. 5.33 and
Fig. 5.34 display the dynamical structure factor for Pd-Pd species of PdggAlgo
and Pdg,Algg alloys, respectively, and the dynamic structure factor for Al-Al
species of PdggAljyo and Pdg2Alg g alloys are shown in the Fig. 5.36 and Fig. 5.37,
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Figure 5.33: Partial dynamic structure factor for Pd-Pd species of liquid Pdg gAlg o
alloy (p = 8114.5 kg.m™3).
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Figure 5.34: Partial dynamic structure factor for Pd-Pd species of liquid Pdg 2Alg g
alloy (p = 3675.8 kg.m™3).

74



0.8 — T T T T I

| T,
q=267 A7 —
0.7 F g=516 A7t ----- -
q="1.65 Aj -
0.6 - Al —metal  1=1023 A7 ==~
05k Al - Al corr. |
3 -
o4 (T=943 K) i
N

w (ps™)

Figure 5.35: Dynamic structure factor for Al-Al species of liquid Al (p =
2232.7 kg.m™3).

respectively.

Dynamic structure factor has an apparent tail with a clear starting point. In
the free particle limit of, (¢, w — 00), S(¢,w) has a smooth tail that approaches
zero while w increases. The decrease of S(g,w) for Pd is faster than that for Al.
The same is observed for Pd-Pd and Al-Al species in the PdggAlgo and PdgoAlg g

liquid alloys.

5.11 Hydrodynamic limit of F(q,t)

Hydrodynamic limit of intermediate scattering function offers important in-
formation. Fig. 5.38 illustrates the comparison between F(g,t) values, at t — 0,
and S(q) (for ¢ = 0 — 1 A~! range) in the hydrodynamic limit. Tt is expected
that they would be nearly the same because F(¢,0) = S(q) at the proper q value,
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theoretically. But the differences, especially for alloy cases, are caused by the
numerical errors. Fig. 5.39 displays F'(q, t) function which shows the time depen-
dent structure of liquid Pd and Al and, Pd-Al alloys (7" = 1853 K). F(g,t) has

an oscillatory behavior in both Pd and Al.

5.12 Hydrodynamic limit of S(q,w)

It is seen that, analogous to previous studies [115, 78, 73|, intermediate scat-
tering function and dynamic structure factor for alloy system have a high value
at the origin which shows that there are strong correlations between self species
in the alloy system [78]. The magnitude of Al-Al dynamic structure factors are
much greater than the magnitude of Pd-Pd dynamic structure factors as seen in
the Fig. 5.40.
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alloy (p = 3675.8 kg.m™3).

Some noticeable peaks are observed in the hydrodynamic limit investigation
of dynamic structure factor of Pd and Al. Although they are not as noticeable
as in the metallic case, similar peaks are seen on the dynamic structure factor
of PdggAlys and PdgoAlgg alloys for both Pd-Pd and Al-Al correlations. These
peaks damp strongly at shorter wavelengths as in Fig. 5.40 and the high-frequency
structures disappear, leaving only single-Lorentzian central peaks. The width of
the central peaks first increase with ¢, but then show marked decreases at wave
numbers close to the main peaks. This effect is called “de Gennes narrowing”
[117] and corresponds to a dramatic slowing down in the decay of the density-
density auto-correlation function F'(g,t) and has its origins in the strong spatial
correlations.
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These kinds of peaks were first observed by Bosse et al. [73] from MD simula-
tion of the liquid LipgPbgo alloy. Campa and Cohen [118] justified the existence
of “fast sound” modes in binary mixtures of disparate-mass particles according
to the kinetic theory. Neutron-scattering experiments of LiggPbgo and LiggTly o
alloys reflected the existence of these kinds of modes too. Anento and Padré
[78, 119] studied the behavior of these peaks in detail. They noted that these
w%(q) peaks corresponds the propagating sound modes with velocity of sound
in metal, ¢,[78]. w%(q) modes are seen in Fig. 5.41. The w"(q) could only be
observed for the 0.2 —0.65 A~! values of the ¢ vector. w¥(q) values are evaluated

for both Pd and Al.
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Figure 5.40: (a) Pd-Pd partial dynamic structure factors of liquid Pd, and
PdysAlg2 and Pdg2Aly g alloys, from top to bottom respectively, (b) Al-Al partial
dynamic structure factors of liquid Al, PdygAlys and PdgAly g alloys, from top
to bottom respectively, 7' = 1850 K.
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CHAPTER 6

CONCLUSION

Liquid Pd and Al metals and Pd-Al alloys in different concentrations are investi-
gated in this work, by using MD simulation method. Sutton-Chen potential [62]
is employed as inter-atomic potential with Q-SC parameters [64]. Rafii-Tabar
and Sutton [63] formalism is employed for the alloy case.

In this work, a detailed investigation is carried out about dynamical properties
of liquid Pd and Al, and their alloys in different concentrations. It is observed
that, during the study of melting process, Q-SC parameters simulate well the Pd.
Experimental melting point of Pd is 1827 K [1], and the simulated melting point
of Pd is 1820+ 5 K by using three reliable measures; namely, the difference in the
pair distribution functions, discontinuity in enthalpy, and magnitude of diffusion
coefficients.

Structure factor simulations show that there is agreement between the experi-
mental [68] and simulated structure factors of Pd as shown in Table. 5.2. We can
say that Q-SC parameters describe Pd well. Resulting from low melting temper-
ature, simulated structure factors of Al show some differences from experimental
ones at T' =943 K and T = 1323 K, as can be seen in Table. 5.3. The expected
point of the first peak in the experimental structure factor is obtained correctly,
and this implies that the lattice parameter fit of Q-SC potential agrees well in
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the liquid phase also.

Our results for diffusion coefficients agree with the results of Alemany’s cal-
culations as it can be seen in Table. 5.4. There are several theoretical and MD
simulation studies about diffusion coefficients of liquid Al. Theoretical results
varies widely over a range. As it can be observed from Table. 5.4, Q-SC potential
produces well the behavior of Al diffusion. Our findings are in agreement with
previous MD data, but with the values higher than expected ones. Table. 5.4
lists self diffusion coefficients of Pd in Al. Diffusion coefficient is in the expected
order. There is neither experimental nor simulated or theoretical data for Pd-Al
alloy diffusion coefficients. However, the data produced in this work, can be a
guiding criteria for future studies.

The viscosities have been calculated for liquid Pd and Al near their melt-
ing points by using Q-SC potential in the micro canonical ensemble (EVN). The
present results for liquid Pd and Al given in Table. 5.5. The results illustrate that
the computation of these transport properties are feasible and reliable. To the
best of our knowledge, there is no experimental data about viscosity of Pd but
there are a few simulation results or theoretical calculations [44]. Our calculations
agree well with the calculation of Alemany [44]. For aluminum, experimental data
for viscosity is scattered and our calculations are in the lower end of experimen-
tal or first-principle simulation results. The viscosities of PdggAlgo, PdggAlg.4,
Pdy4Alye, and Pdy2Aly s alloys have also been calculated in the present work. It
is clearly seen that the viscosity of the alloy is increasing for increasing amounts
of Pd in the Al
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The calculation of the intermediate scattering function is performed for two
different limiting cases: the free particle limit which gives a Lorentzian shape for
F(q,t) functions, the other is the hydrodynamic limit. Hydrodynamic limit calcu-
lations lead to bulk modulus and compressibility calculations by using Eq. (5.10).
Intermediate scattering function is a time-space correlation function, and it in-
cludes small exponential or sinusoidal terms which need to be calculated inten-
sively. Bulk modulus is usually obtained by differentiating the pressure [77]. A
comparison is given between S(0) and F(k,t — 0) values in the hydrodynamic
limit. There are some differences especially for the alloy case.

The dynamic structure factor calculations are performed for two different lim-
iting cases. The free particle limit (¢ > 1.0 A~') simulations show that Pd-Pd
correlation is much stronger than Al-Al correlation in both metallic and alloy
cases. The hydrodynamic limit simulations show that, to the contrary, Al-Al cor-
relation is stronger than Pd-Pd correlation especially in the alloy case. The peaks
next to the central Rayleigh peaks are observed. The positions of these peaks
define the w(q) dispersion relations, namely the “fast-sound” modes [57, 77, 78].
These modes quickly disappear as the wave vector increases. Detailed information
on this subject is given by Anento et al. [78, 119].

The present work is challenging as the first study of liquid Pd-Al alloy in
literature. It can be said that MD simulation is an efficient way to investi-
gate the material properties of matter. Although First-Principles techniques are
more informative, Sutton-Chen many-body interaction model is still useful in
the calculations but needs some improvements. We have seen in our study that
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Sutton-Chen many-body interaction potential works well for liquid Pd but needs
re-parametrization for liquid Al. Present properties of SC potential with Q-SC
parameters show great promise to investigate liquid state properties but recent
studies [85] show that Rafii-Tabar and Sutton’s alloy case modification of Sutton-
Chen potential needs new parametrization for the liquid alloy case studies. Pure

metal parameters do not seem to be enough for studying alloys.
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