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ABSTRACT 

 
 

THE RISE VELOCITY OF AN AIR BUBBLE IN COARSE POROUS 
MEDIA: THEORETICAL STUDIES 

                             
 

Cihan, Abdullah 
 

M.S., Department of Geological Engineering 
 

Supervisor: Prof. Dr. M. Yavuz ÇORAPÇIOĞLU 
 
 

January 2004, 54 pages 
 
 
 

The rise velocity of injected air phase from the injection point toward the 

vadose zone is a critical factor in in-situ air sparging operations. It has been 

reported in the literature that air injected into saturated gravel rises as discrete air 

bubbles in bubbly flow of air phase. The objective of this study is to develop a 

quantitative technique to estimate the rise velocity of an air bubble in coarse 

porous media. The model is based on the macroscopic balance equation for forces 

acting on a bubble rising in a porous medium. The governing equation 

incorporates inertial force, added mass force, buoyant force, surface tension and 

drag force that results from the momentum transfer between the phases. The 

momentum transfer terms take into account the viscous as well as the kinetic 

energy losses at high velocities. Analytical solutions are obtained for steady, 

quasi-steady, and accelerated bubble rise velocities. Results show that air bubbles 

moving up through a porous medium equilibrate after a short travel time and very 
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short distances of rise. It is determined that the terminal rise velocity of a single 

air bubble in an otherwise water saturated porous medium cannot exceed 18.5 

cm/sec. The theoretical model results compared favorably with the experimental 

data reported in the literature. A dimensional analysis conducted to study the 

effect of individual forces indicates that the buoyant force is largely balanced by 

the drag force for bubbles with an equivalent radius of 0.2-0.5 cm. With 

increasing bubble radius, the dimensionless number representing the effect of the 

surface tension force decreases rapidly. Since the total inertial force is quite small, 

the accelerated bubble rise velocity can be approximated by the terminal velocity. 

 

Keywords: Air bubble, bubbly flow, granular media, discrete airflow. 
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ÖZ 

 
 

ÇAKILLI ORTAMLARDA BİR HAVA KABARCIĞININ YÜKSELİM 
HIZI: TEORİK ÇALIŞMALAR 

 
 

Cihan, Abdullah 
 

Yüksek Lisans, Jeoloji Mühendisliği Bölümü 
 

Tez Yöneticisi: Prof. Dr. M. Yavuz ÇORAPÇIOĞLU 
 
 

Ocak 2004, 54 sayfa 
    
    
 

Yerinde hava enjeksiyonu çalışmalarında, enjekte edilen hava fazın 

enjeksiyon noktasından vadoz zona doğru olan yükselim hızı önemli bir etkendir. 

Literatürde, hava fazın kabarcıklı akımında, doygun çakıllı ortamlar içerisine 

enjekte edilen havanın ayrı hava kabarcıkları olarak yükseldiği belirtilmiştir. Bu 

çalışmanın amacı, gözenekli ortamlarda bir hava kabarcığının yükselim hızını 

belirlemek için niceliksel bir yöntem geliştirmektir. Geliştirilen bu model 

gözenekli bir ortamda yükselen bir hava kabarcığı üzerine etki eden kuvvetler için 

makroskobik korunum eşitliğine dayanır. Elde edilen korunum eşitliği fazlar 

arasındaki momentum transferinden oluşan sürtünme kuvvetleri, yüzey gerilimi, 

kaldırma kuvveti, katma kütle ve hareket ettirici kuvvetleri içerir. Momentum 

transfer terimleri yüksek hızlardaki kinetik ve viskoz enerji kayıplarını hasaba 

katar. Analitik çözümler kararlı, yarı-kararlı ve kararsız durum hava kabarcığı 

yükselim hızları için elde edilmiştir. Elde edilen sonuçlara göre, çakıllı bir 
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ortamda yükselen bir hava kabarcığı çok kısa bir yükselim süresi ve uzaklığından 

sonra dengeye ulaşır. Suya doygun çakıllı bir ortamda bir hava kabarcığının 

yükselim hızının 18.5 cm/s’den fazla olamayacağı belirlenmiştir. Teorik model 

sonuçları literatürdeki benzer bir ortamda elde edilen deneysel verilerle 

karşılaştırılmış ve uyumlu olduğu gözlenmiştir. Her bir kuvvetin etkisini 

belirlemek için yapılan boyut analizi eşdeğer yarıçapı 0.2-0.5 cm olan hava 

kabarcıkları için, kaldırma kuvvetinin büyük ölçüde sürtünme kuvveti ile 

dengelendiğini göstermiştir. Yüzey gerilimini belirten boyutsuz sayının 

büyüklüğü, azalan kabarcık yarıçapı ile artar. Toplam hareket ettirici kuvvet 

oldukça küçük olduğu için, hava kabarcığının terminal hız ile yükseldiği kabul 

edilebilir. 

 

Anahtar sözcükler: Hava kabarcığı, kabarcıklı akım, taneli ortamlar, ayrı hava 

akımı. 
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CHAPTER 1 

 

INTRODUCTION 

 
 

The migration of air bubbles in porous media has been the subject matter 

of a wide variety of studies in the literature, such as air sparging, bioslurping, 

trench aeration, and up-flow operation of filter beds are among the applications 

reported. 

The mode of transport of air in granular porous media can take place either 

in the form of discrete air channels or discrete air bubbles. Transition from 

channel to bubble flow occurs with increasing grain size at about 1-2 mm 

diameter [Brooks et al., 1996]. A qualitative study of airflow patterns through a 

water-saturated porous medium was conducted by Ji et al. [1993]. Laboratory 

visualization experiments were performed in a Plexiglass tank using glass beads 

as the porous medium. The sizes of the beads were 4, 2, 0.75, 0.4, 0.3, and 0.2 

mm in diameter, which represent a range from fine gravels to fine sands. The 

injection of air into the 4-mm beads resulted in bubbly flow, discrete air bubbles 

migrating upward through the porous medium. A dual airflow pattern of bubbles 

and channels occurred in the 2-mm beads. Ji et al. [1993] noted that distorted 

plume shapes are observed when the medium has a heterogeneous pattern.  

Wehrle [1990] found air rising as bubbles in soils that were reported as fine gravel 

with particle diameter 3 mm and medium gravel with particle diameter 6 mm. 
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Semer et al. [1998] reported that injected air in saturated fine gravel traveled in 

discrete bubble form free of preferential pathways. Gvirtzman and Gorelick 

[1992] and Pankow et al. [1993] have discussed aeration techniques in open wells 

or trenches backfilled with coarse gravels or pebbles.  

Roosevelt and Corapcioglu [1998] presented an experimental technique to 

study the rise of air bubbles through a granular porous medium by using video 

photography. Compressed air is injected into the base of a glass column filled 

with 4-mm glass beads and the resulting bubble motion is recorded by a 

camcorder and still frames are captured and enhanced with an image analyzer. 

Roosevelt and Corapcioglu's [1998] work is the first study to measure the 

terminal velocity of an air bubble rising in a porous medium. 

Methods for quantifying the discrete air phase migration are important to 

optimize and design in-situ air sparging and trench aeration systems to remediate 

groundwater contaminated with volatile organic compounds. The limitations in 

modeling the air sparging process made this technique dependent on empirically 

based methodology for the engineering design of in-situ systems. Realistic air 

sparging models must include discrete air movement in coarse gravel and pebble 

formations. The objective of this study is to present an analysis to quantify the rise 

velocity of an air bubble in an otherwise water-saturated porous medium. We take 

into consideration the spatial and transient nature of the rise velocity as well as the 

forces acting on the bubble. We compare the results of the model with 

experimental data of Roosevelt and Corapcioglu [1998] in terms of rise velocities 

and bubble radii. 
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CHAPTER 2 

 

FORCES ACTING ON A BUBBLE IN POROUS MEDIA 

 
 

The starting point in the formulation will be the balance equation for forces 

acting on a rising bubble 

 

( )bgb u
Dt
DF ρ∀=∑                                               (2.1) 

 

where F∑  is the sum of forces acting on an air bubble, b∀  is the volume of the 

bubble, t is the time, gρ  is the density of air and bu  is the bubble rise velocity. 

Assuming that the stationary porous medium is homogeneous, isotropic, fully 

saturated with water, and the fluids (water and gas) are incompressible, equation 

(2.1) can be rewritten in the vertical x-direction as  

 

34
3

b b
b g b

u uF R u
t x

π ρ
⎛ ⎞∂ ∂

= +∑ ⎜ ⎟∂ ∂⎝ ⎠
                                     (2.2) 

 

The first term within the parentheses in (2.2) is the local acceleration. The second 

term is the convective component of the acceleration. In (2.2), Rb is the bubble 

radius defined as the equivalent radius of a sphere with a volume equal to that of a 

bubble. However, as an air bubble rises in a porous medium, it stretches, squeezes 
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and takes a non-spherical shape to pass through the pores of different sizes as 

shown in Figure 2.1a. As a bubble rises through a porous medium, a part of its 

surface area is in contact with solids and the rest is in contact with the liquid phase 

filling the pore spaces. However, since a thin film of water between the bubble 

and solid grains is always present, we assume that the bubble is completely 

surrounded by water. In this study, we neglect pore-level bubble generation 

mechanisms such as snap-off and division due to consideration of a single air 

bubble. The interplay of bubble generation and coalescence mechanisms can be 

quite important when a group of bubbles migrate in series as bubble trains. It is 

assumed that as a single bubble moves through the pore space that constantly 

contracts and expands, the energy used to stretch the bubble through the 

expanding pores is completely recovered as the bubble squeezes through the pore 

throats [Kovscek and Radke, 1994].    

In this study, we assume that gas in an air bubble is an incompressible fluid. 

The incompressibility of gas flow is hard to achieve because gas density varies 

with pressure and the nonzero flux on the surface results in a "slip flow" known as 

the Klinkenberg effect. However, there are some cases when the incompressibility 

of gas flow can be achieved. This happens when the flow inducing pressure 

difference is 20% or less. The Klinkenberg effect can be neglected when the solid 

phase of the porous medium consists of silts, sands, and gravels [Massmann, 

1989].  
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Figure 2.1. (a) A non-spherical bubble rising through the pore space, (b) Idealized 

schematic diagram of a bubble in a porous medium with orthorhombic packing 

arrangement, and (c) Force balance on a bubble at equilibrium. 
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The external forces acting on a bubble rising in an otherwise saturated 

porous medium result from gravitational effects (buoyancy), surface tension 

effects and drag forces. The expressions of individual mechanisms can be 

determined by either functional relations obtained through theoretical 

considerations or phenomenological equations. The Basset history force that 

results from the viscous effects generated by the acceleration of a particle relative 

to a fluid under the creeping flow conditions is neglected due to high bubble 

velocities [Zhang and Fan, 2003]. Due to irrotational flow conditions, we can also 

neglect the lift force acting on a bubble [Soubiran and Sherwood, 2000].   

Density difference between the air and water results in upward buoyant 

force acting on an air bubble rising in water. The expression for the buoyant force, 

Fb is given by 

 

( ) 34
3b f g bF g Rρ ρ π= −                                                  (2.3) 

 

where fρ  is the density of water. 

The surface tension force results due to the difference between the inward 

attraction of the molecules inside the bubble and those at the contact surface of the 

bubble. In the vertical direction, it is expressed by 

 

2 'stF R Sinπ σ θ=                                                         (2.4) 
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where σ  is the surface tension, θ  is the contact angle assumed to be constant 

during the bubble rise [Loubiere and Hebrard, 2003] and 'R  is the equivalent 

radius of a pore throat through which a bubble can pass in a particular 

arrangement of grains as shown in Figure 2.1b. Considering the equilibrium 

between the phases in a column of glass beads, θ  is taken as 30° [Ortiz-Arroyo et 

al., 2003]. Figure 2.1b shows the schematic diagram of a bubble in a porous 

medium with orthorhombic packing arrangement. 

Since we plan to employ the data obtained by Roosevelt and Corapcioglu 

[1998] to test the validity of our mathematical model, we calculate 'R  based on a 

particular packing arrangement of spheres. Roosevelt and Corapcioglu [1998] 

used 4-mm glass beads in their column experiments. Ideal models based on 

uniform spheres are analogies of real porous media, which are very complex. 

Idealized glass bead models can be used to understand the various mechanisms 

and to investigate the forms of the governing equations as in our case. The 

relationship between 'R  and the particle diameter pd  can be calculated as 

' (2 3 3) / 6pR d= −  for an orthorhombic arrangement. 

One of the difficulties in modeling the flow through porous media is the 

expression of the momentum transfer terms that lead to drag forces. They require 

the characterization and solution of pore-scale equations. Assuming a simple 

periodic microstructure usually does this. After solving the pore-scale equations, 

the solutions are related to the macroscopic variables. An alternative approach is 

the use of empirical relations. In this study, due to the complexity of the pore-

scale problem, we can approximate the interaction terms by assuming the validity 

of Darcy's law or similar expressions. If the theory formulated were for low 
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velocity problems, the assumption of laminar flow expressed by Darcy's law 

would be a reasonable one. However, for high velocity flow problems such as 

bubble rise, this may not be a valid assumption. Instead, the momentum transfer 

between the phases is due to kinetic as well as viscous energy losses. Since it 

incorporates both, the drag force acting on a bubble rising in a porous medium can 

be expressed by the modified Ergun (1952) equation. In Ergun’s equation, the 

viscous energy losses are expressed by the Kozeny equation for laminar flow, 

proportional to the first power of the velocity, while the kinetic ones are expressed 

by the Burke-Plummer equation for turbulent flow, proportional to the product of 

density with the second power of the velocity. Then, 

 

( ) 22
3

2 3 3
1.751150 (1 ) 4

3
g bb b

d b
pp

unu nF A R
dd n n

ρµ π
⎡ ⎤− −⎢ ⎥= +
⎢ ⎥⎣ ⎦

                           (2.5) 

 

where bµ  is the effective dynamic viscosity of the bubble, n is the porosity, pd  is 

the mean particle diameter, and A is the correction factor to incorporate the 

medium-specific surface properties as well as the partial contact of the bubble 

with solids as seen in Figure 2.1a. The effective dynamic viscosity of the bubble 

bµ  is expressed by Kovscek and Radke [1994] as c
bg ubn αµ + , where gµ  is 

the dynamic viscosity of air, α  is the proportionality constant, bn  is the number 

of bubbles per unit volume of air, and c is an empirical constant. For a single 

bubble i.e., bn =1, we find that gb µµ ≈ . Typical values of the model parameters 

are given in Table 2.1. The porosity of identical size randomly packed spheres 
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depends on the method of packing. The porosity of an orthorhombic arrangement 

as shown in Figure 2.1b is 0.3954 [Graton and Fraser, 1935]. This value of 

porosity is a typical one for gravel with spherical particles.  

 

Table 2.1. Model parameters used 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When a particle accelerates relative to the surrounding fluid, it creates a flow 

field possessing kinetic energy. Therefore an additional inertial force is needed to 

move the particle. Thus, the particle behaves as if it has an additional apparent 

mass equal to a ratio of the fluid mass that it displaces [Wallis, 1969]. The effect 

of additional “added mass” is an increase in the particular mass by ( gfMC ρρ / ) 

where the added mass coefficient, MC =11/16 for a sphere moving in a fluid 

Parameters Units Values 

µg N.s/m2 1.8 x 10-5 

µf N.s/m2 1 x 10-3 

ρg kg/m3 1.23 

ρf kg/m3 997.3 

σ N/m 7.2 x 10-2 

g m/s2 9.81 

n % 39.54 

pd  m 0.004 

α Nm7/3s2/3 4 x 10-38/3 

c  1/3 
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normal to the wall [Loubiere and Hebrard, 2003]. Although this value of MC  is 

not a precise one for non-spherical bubbles; it was used in this study due to the 

lack of any other information available. For an ideal case of a sphere in an 

unbounded inviscid fluid MC = 1/2 [Wallis, 1969]. The additional unit mass 

introduces an additional inertial unit force equal to DtDuC bfM ρ . 

Then, the force balance equation (2.2) is expressed as    

   

( ) ( ) ( )22
3 3

2 3 3

3

1.75 1150 14 4 
3 3

42 '
3

g bb b
f g b b

p p

b b
d g b b

u nu n
g R A R

d n d n

u uR Sin A R u
t x

ρµ
ρ ρ π π

π σ θ ρ π

⎡ ⎤−−
⎢ ⎥− − + −
⎢ ⎥⎣ ⎦

⎛ ⎞∂ ∂
= +⎜ ⎟∂ ∂⎝ ⎠

                    

(2.6) 

 

where dA = gfMC ρρ /1+ .  

In order to determine the solution of this equation in terms of bubble rise 

velocity, we will rearrange this equation to lump the terms with the same 

exponent of bu .  

 

      ( )2
1 2 3

b b
b b b

u uC u C u C u
t x

∂ ∂
− + + = +

∂ ∂
                                           (2.7)  

 

where C1, C2, and C3 are constant coefficients expressed by 
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        ( )
dp And

nAC
31
175.1 −

=                                                  (2.8) 

( )
dgp

b

And

nA
C

ρ

µ
32

2

2
1150 −

=                                            (2.9) 

( )
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
−−= g

R

SR
A

C gf
bdg

ρρθσ
ρ 33

in '
2
3 1                         (2.10) 

 

Equation (2.6) provides a general equation for an air bubble rising in an 

otherwise water saturated porous medium. Based on this equation, three different 

models describing the rise velocity of the bubble can be obtained: 

1) Steady state motion in which the bubble rise velocity bu  does not 

explicitly change with time, that is D bu /Dt = 0 in (2.1), and dA =1 in 

(2.8)- (2.10). 

2) Quasi-steady state motion in which the bubble rise velocity change with 

time is small i.e., D bu /Dt ≅ bu ∂ bu /∂x,  

3) Unsteady state motion in which the bubble rise velocity changes with time. 

The following sections present the analytical solutions of the balance equation for 

steady, quasi-steady, and for two forms of accelerated flow (unsteady state with 

local acceleration only and unsteady state including the convective component of 

the acceleration).  
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CHAPTER 3 

 

STEADY STATE (TERMINAL) BUBBLE RISE VELOCITY 

 
 

The steady state force balance equation of an air bubble in a porous medium 

is expressed by taking the right hand side of (2.6) equal to zero. 

 

( ) ( )

( )

2
3

2 3

2
3

3

150 14  
3

1 75 1 4 2 0
3

b b
f g b

p

g b
b

p

u n
g R A

d n

. u n
R R' Sin

d n

µ
ρ ρ π

ρ
π π σ θ

⎡ −
⎢− − +
⎢⎣

⎤−
⎥ − =
⎥⎦

                       (3.1) 

 

Then, the terminal bubble rise velocity is obtained as 

 

[

]
3 3

2 3 3

(1 )        42.86  

0.57 3 '             1836.74  ( )
2(1 )

b
b

g p

g p
f g

b b

nu
d

d n R Sin g
A n R

µ
ρ

ρ
σ θ ρ ρ

µ

−
= − ±

⎛ ⎞⎛ ⎞
⎜ ⎟− − −⎜ ⎟⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠

        (3.2) 

 

where A is the medium specific parameter determined as 26.8 by matching the 

experimental data. Traditionally, the equation (11) is solved inversely by using the 

experimental bubble velocities and then the correction factor A was obtained as an 

average value for corresponding bubble radii. 
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Only the solution in (3.2) with a positive sign represents the terminal bubble 

rise velocity. As seen in Figure 3.1, the comparison of the theoretical terminal 

bubble rise velocities given by (3.2) with the experimental data of Roosevelt and 

Corapcioglu [1998] shows a very favorable match for bubbles bR ≥ 0.2 cm. By 

employing the parameters given in Table 2.1, we can calculate from (3.2) that the 

terminal rise velocity of a single air bubble in an otherwise water saturated porous 

medium cannot exceed 18.5 cm/sec even when the effect of surface tension is 

neglected. Similarly, Levich [1962] has determined that the rise velocity of a 

single air bubble in a stationary water phase cannot exceed 30 cm/sec. 

The experimental study conducted by Roosevelt and Corapcioglu [1998] 

observed that single bubbles might become stuck in a randomly packed 

homogeneous medium due to the changes in pore throat size. Nevertheless, 

Roosevelt and Corapcioglu [1998] obtained single bubbles traveling alone and 

free from any significant interactions with entrapped air. When the surface tension 

force is equal to the driving buoyant force, the bubble is trapped among the beads. 

Then the limiting pore throat radius can be calculated as 

 

( ) 32
'

3
f g bgR

R
Sin

ρ ρ

σ θ

−
=  

 

Roosevelt and Corapcioglu [1998] has noted in their experiments that the terminal 

travel distance of single bubble is quite short. Single bubbles often becomes stuck, 

trapped among the beads, and do not reach the top of the 1-m column. 

Occasionally, a single bubble will split into two bubbles because of collisions 
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with the porous medium. A rising bubble does, at times, move significantly in a 

lateral direction if the immediate vertical path is either blocked or too small. It 

may even move from one side of the column to the other. Nevertheless, Roosevelt 

and Corapcioglu [1998] found this type of motion to have a minimal effect on the 

average rise velocity. 

 

Figure 3.1. Comparison of theoretical rise velocities with the experimental data of 

Roosevelt and Corapcioglu [1998] 
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CHAPTER 4 

 

QUASI-STEADY STATE BUBBLE RISE VELOCITY 

 

Since the quasi-steady state includes only the convective term of the total 

acceleration, the balance equation (2.7) in a quasi-steady state is expressed by 

 

dx
du

uCuCuC b
bbb −=++ 32

2
1                                        (4.1) 

     

The solution of this equation can be obtained by employing the boundary 

condition at the base of the column i.e., bu = 0 at x = 0. In this case, the column is 

a semi-infinite one. Then, the solution of the balance equation (4.1) is expressed 

by 
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The graphical representation of the solution (4.2) for different bubble radii with 

and without the effect of added mass is given in Figures 4.1 and 4.2. It can be seen 
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from the Figures that as the bubble radius increases, so does the rise velocity. 

Since the rise velocity approaches the steady state over a very short distance of 

rise, the convective component of the total acceleration can be neglected for 

practical purposes.  

Another representation of the solution normalized by a reference, i.e., 

respective terminal velocities, ( )ref bu R , which is the demonstration of the 

inclusion of the added mass force, is shown in Figure 4.3. As seen in Figure 4.3, 

the effect of added mass force is quite significant. Due to the high-density ratio of 

water to air, the bubble rise is retarded by an order of 500 gfMd CA ρρ /1( += = 

558) when the effect of added mass force is taken into consideration. For 

example, by neglecting the effect of added mass (i.e., MC =0), we calculate that a 

bubble with bR = 0.2 cm reaches the terminal rise velocity at 0.0056 cm while the 

inclusion of added mass force increases the distance needed to reach the terminal 

velocity to 2.79 cm. Therefore dA  can be characterized as the “terminal velocity 

delay index” for bubble motion. In general, we can conclude that a distance of few 

bubble radii is needed to reach the terminal rise velocity. Garrettson [1973] 

obtained similar results for bubbles in the upper ocean. 
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Figure 4.1. Quasi-steady bubble rise velocities as a function of column depth 

without the added mass force 
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Figure 4.2. Quasi-steady bubble rise velocities as a function of column depth with 

the added mass force 
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Figure 4.3. Normalized rise velocities at Quasi-steady state with and without the 

added mass force (AM) 
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CHAPTER 5 

 

ACCELERATED BUBBLE RISE VELOCITY 

 

The accelerated motion of an air bubble rising through a column of porous 

medium under unsteady state flow conditions can be expressed in two different 

forms: unsteady state with local term of acceleration only and unsteady state 

including the convective term in addition to the local acceleration. For both cases, 

the bubble is initially assumed to be a sphere with an equivalent radius Rb starting 

to rise at rest i.e., bu = 0 at t=0 at the base of a column (x=0) as in the experiments 

of Roosevelt and Corapcioglu [1998].  

 

5.1. Solution with the Local Acceleration Only  

As defined earlier, in this type of unsteady state motion, the bubble rise 

velocity changes with time only. In this case, the velocity changes minimally with 

space i.e., the convective term of total acceleration is negligible. Then, the balance 

equation (2.7) is expressed as 

 

dt
du

CuCuC b
bb −=++ 32

2
1                                       (5.1)                             

         

where C1, C2 and C3 are given by (2.8)-(2.10), respectively. Then, the solution of 

(5.1) subject to the initial condition bu =0 at t=0 is 
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The solution given by (5.2) is plotted in Figures 5.1 and 5.2 without and with 

incorporating the effect of added mass force, respectively. Both Figures show that 

larger bubbles have higher rise velocities. As seen in Figure 5.2, time to terminal 

velocity is delayed due to the effect of added mass force. In addition, it is seen 

from Figure 5.1 and 5.2 that the terminal velocity difference among the bubbles 

Rb>0.2 tends to decrease. Terminal velocity of a bubble does not exceed 18.5 

cm/sec however larger Rb becomes, which is the same result obtained in Chapter 

3. 
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Figure 5.1. Variation of bubble rise velocities with time at locally unsteady state 

without the added mass force  
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Figure 5.2. Variation of bubble rise velocities with time at locally unsteady state 

with the added mass force  
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5.2. Solution Including the Convective Component of the Acceleration  

When the spatial variation of the rise velocity is taken into account as well 

as the temporal variation, then the solution of (2.7) can be obtained by applying 

the method of characteristics. Then, 

 

)( 32
2

1 CuCuC

du
u
dxdt

bb

b

b ++
−==                                         (5.3)       

 

Equation (5.3) shows that the general solution of equation (2.7) is 

bu (x,t)=f(x- bu t) where the differentiable arbitrary function f(x) is determined by 

the initial condition. From equation (5.3), we obtain two characteristics. The first 

characteristic x( bu ), which is actually the quasi-steady state solution given by 

(4.2), expresses the variation of the bubble rise velocity along the column. The 

second characteristic, t( bu ) is obtained by solving (2.7) subject to the initial 

condition bu =0 at t=0. The characteristic t( bu ) is obtained as 
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The characteristic t( bu ) presents the temporal variation of the rise velocity. 

The solution of equation (2.7) is obtained by finding the intersection of the 

characteristics presented by equations (4.2) and (5.4) as 
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Demonstration of the solution (5.5) for all bubble radii is given in Figures 

5.3-5.6. Figures show that the rise velocity of the bubbles with the equivalent 

radius Rb=0.2-0.4 cm arrives at the steady state after a short travel time and short 

distances of rise. Although the general trend of the solution seems to be similar 

for all bubbles, both time and distance to reach the terminal velocity is retarded 

when the added mass force is taken into account (Figures 5.3b, 5.4b, 5.5b, 5.6b).   

The graphical representation of both (5.2) and (5.5) normalized by a 

reference rise velocity i.e., terminal velocity, )( bref Ru  were plotted in Figure 5.7 

as functions of a dimensionless time variable (t* = t uref / Rb). A comparison of 

(5.2) and (5.5) shows that there is practically no difference between these two 

solutions when the convective component of the acceleration is included. In 

another words, the temporal variations of the rise velocities are almost identical 

with both solutions. For example, at a distance of x=0.00001 cm, a bubble with 

Rb=0.2 cm reaches the terminal rise velocity at t=0.00035 sec with the local 

acceleration term only while the time to reach equilibrium increases to t=0.0004 
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sec when the convective component of acceleration is included in the total 

acceleration term. This is a difference that can be neglected for all practical 

purposes. However, the travel times to equilibrate shows an approximately 500-

fold increase i.e., t=0.2 sec with the convective component of the acceleration 

when the effect of added mass is included in the formulation, a result similar to 

the one obtained under quasi-steady state conditions. The velocity lag caused by 

the added mass force is proportional to dA . 
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Figure 5.3. General trend of the unsteady state solution for Rb=0.2 cm (a) w/o 

added mass, (b) with added mass  
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Figure 5.4. General trend of the unsteady state solution for Rb=0.3 cm (a) w/o 

added mass, (b) with added mass  
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Figure 5.5. General trend of the unsteady state solution for Rb=0.4 cm (a) w/o 

added mass, (b) with added mass  
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Figure 5.6. General trend of the unsteady state solution for Rb=0.5 cm (a) w/o 

added mass, (b) with added mass  

 

ub 
(cm/s) 

3 
6

12 

18
15 

9

10
     8 

     6 
      4 

      2 
4

2

10
8 

6 
x (cm . 102) t (s . 105)  

ub 
(cm/s) 

3 
6

12 

18
15 

9

10
     8 

     6 
      4 

      2 
4

2

10 
8 

6
x (cm) t (s . 102) 

a) 

b) 



 31   
 
 

 
 
 
 
 

 

Figure 5.7. Normalized rise velocities at locally unsteady and unsteady flow 

conditions with and without the added mass force (AM) 
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CHAPTER 6 

 

QUANTIFICATION OF FORCES 

 

As noted earlier, the external forces acting on a bubble rising in a porous 

medium are the gravitational force, drag force, and surface tension. Since these 

forces are functions of the bubble radius as expressed by (2.3)-(2.5), they can be 

plotted varying with Rb as shown in Figure 6.1. The forces shown in the figure are 

calculated under steady state flow conditions. As seen in Figure 6.1, the total drag 

force takes up about 79 percent of the gravitational force for a bubble with Rb=0.2 

cm. The rest is balanced by the surface tension. However, the contribution of the 

drag force increases with increasing bubble radius, and at about Rb=0.3 cm, the 

effect of surface tension on the total resistance force is negligible i.e., 6 % of the 

gravitational force. As seen in Figure 6.1, the contribution of kinetic energy losses 

to the total resistance force is almost equal to that of the viscous drag forces. 

As explained earlier, the bubble’s inertial force is supplemented when it 

moves relative to the surrounding liquid. The additional inertial force is to drag a 

mass of surrounding liquid with a volume equal to ( gfMC ρρ / ) percent of the 

bubble volume. The high density ratio of the surrounding liquid to the bubble gas 

makes the contribution of the added mass force quite significant at very early 

times of the bubble motion. Figures 6.2 and 6.3 illustrate the effect of “added 

mass” force compared to other forces on a rising bubble. In Figures 6.2 and 6.3, 
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all forces were normalized by the gravitational force shown in Figure 6.1. During 

the bubble’s accelerated motion, the total drag force dominates the total resistance 

force for all bubbles. Initially, the contribution of the added mass force to the total 

resistance force constitutes 99 percent of the total resistance force for larger 

bubbles (Rb=0.5 cm) while this reduces to 79 percent for smaller bubbles (Rb=0.2 

cm).  The contribution of the added mass force declines very rapidly for bubbles 

of all sizes as the rise velocity reaches to the terminal velocity i.e., Dub / Dt → 0 at 

around t=0.20 sec. At that time, the effect of surface tension reduces to 1 percent 

for larger bubbles down from 21 percent for smaller bubbles.   
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Figure 6.1. External forces at steady state 
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Figure 6.2. Temporal variation of force ratios for (a) Rb=0.2 cm and (b) Rb=0.3 

cm 
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Figure 6.3. Temporal variation of force ratios for (a) Rb=0.4 cm and (b) Rb=0.5 

cm 
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CHAPTER 7 

 

DIMENSIONAL ANALYSIS 

 

A dimensional analysis of the phenomenon can be conducted to provide a 

more generalized methodology to evaluate the effect of individual forces acting on 

an air bubble. Log-log scale plots, especially, reveal the functional dependence of 

one dimensionless group in response to orders of magnitude changes in another 

dimensionless group. The dimensional analysis is accomplished by substituting 

the dimensionless variables as x* =x/Rb, t*=turef  /Rb, and u* = ub / uref in equation 

(2.6) and rearranging, 

  

( )2 2 1
2 2 3 1

* ** * ( * )
* *d

u uD u D u D D A u
t t

∂ ∂
− − − − = +

∂ ∂
                       (7.1)                             

 

The dimensionless coefficients D1, D2
1, D2

2, and D3 are functions of the bubble 

radius and the terminal rise velocity. Since in this study, we are comparing 

bubbles of different sizes rising in a specific porous medium (i.e., dp = 4 mm), the 

bubble radius is taken as the characteristic length in dimensionless numbers.  

The dimensionless coefficient D1 is the ratio of gravitational (buoyancy) to 

inertial forces and is inversely proportional to the square of the Froude number.  
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The Froude number, Fr represents the ratio of inertial to gravitational forces. As 

shown in Figure 7.1, D1 increases almost linearly with the bubble radius. For all 

values of Rb, gravitational forces dominate the inertial forces heavily.  

The second dimensionless coefficient D2 represents the ratio of drag forces 

to inertial forces. 
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1 2

2 2 2 2 3 3
4020 1 46.9 1b b b
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n R n R
D D D
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ρ

− −
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The coefficient D2 consists of two terms: the first component, D2
1, 

incorporates the linear viscous drag and the second component, D2
2, represents the 

kinetic effect of the bubble rise. As seen in Figure 7.1, a linear relation between 

D2 and the bubble radius, Rb is very similar to the one obtained for D1. This 

clearly indicates that for bubbles with radii larger than 0.3 cm, the gravitational 

forces are balanced almost entirely by the drag forces. For bubbles with Rb < 0.3 

cm, the surface tension has some contribution to balance the gravitational forces.  

Then, we plot the ratio D1/D2 which describes the bubble rise when the 

density difference (buoyancy) provides the major driving force against the drag 

force, as a function of the bubble Reynolds number defined by 

Re 2 /b b f fu R ρ µ= . The ratio of D1/D2 is actually another representation of the 

ratio of the gravitational to viscous forces. On a log-log scale, Figure 7.3 shows 
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that for all bubbles, the relationship between the gravitational and inertial forces is 

a linear one. 

The dimensionless coefficient D3 is expressed by 

 

3 2 2
3 '  3 ' 1
2 2 bb g ref

R Sin RD
R WeR u

σ θ
ρ

= =                                           (7.4) 

 

D3 is the ratio of surface tension to inertial force and is inversely proportional to 

the Weber number, which is the ratio of the inertial force to surface tension forces. 

Figure 7.1 shows that D3 decreases with the bubble radius rapidly up to Rb = 0.3 

cm and then the change in D3 is quite small. Since the Weber number increases 

with bubble radius, it follows that the inertial forces are dominant for larger 

bubbles while surface tension characterize the motion of smaller ones. A plot of 

1/D3 as a function of Re in Figure 7.3 reveals a linear relationship between these 

two dimensionless numbers characterizing the surface tension and the flow 

conditions, respectively. 

In order to determine the relationship between the buoyancy and surface 

tension as a function of the bubble Reynolds number, we express D1/D3 as 

 

( )
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R
R

Sin

R

D
D bgfb

'3
2

 3R'

g2 3

3

1 =
−

=
θσ

ρρ
                                             (7.5) 

 

Bo is the Bond number [ ]θσρρ SingRBo gfb  /)(2 −= , which presents the ratio 

of gravitational to surface tension forces. As expected, D1/D3 would increase very 
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rapidly with the bubble radius. Since the Bond number also increases with the 

bubble radius, the gravitational forces dominate more than the surface tension for 

larger bubbles. 

A plot of D2
1/D3 can achieve a comparison of the ratio of the viscous drag 

force to surface tension. As discussed earlier, the Ergun equation we employed in 

this study to express the drag forces incorporates the kinetic energy losses as well 

as the viscous ones. Therefore, an analysis of D2
1/D3 rather than D2/D3 would 

separate the effect of viscous drag from that of the kinetic one.  Then, 

 

2 3 2 31
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                      (7.6) 

 

where Ca is the capillary number which expresses the relative magnitude of 

viscous and capillary forces. As seen in Table 7.1, at larger velocities, the effect of 

viscous and kinetic losses are of an equivalent magnitude i.e., D2
1 vs. D2

2 while 

the effect of surface tension vanishing. However, for smaller bubbles, the effect of 

surface tension is almost equal to 50 percent of the viscous drag i.e., D3 vs. D2
1. 

As noted earlier, Rb= 0.3 cm is the threshold value for the bubble radii to neglect 

the effect of surface tension on the total resistance force.  
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Table 7.1. Results of dimensional analysis 
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Figure 7.1. Dimensionless numbers as functions of the equivalent bubble radius 
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1/D3 as functions of 

the bubble Reynolds number, Re  
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CHAPTER 8 

 

SUMMARY AND CONCLUDING REMARKS 

 
 

The airflow in coarse porous media can be observed in the form of discrete 

air bubbles. The objective of this study is to present a theoretical framework to 

analyze the rise velocity of a single air bubble in otherwise water saturated porous 

medium. The results of a dimensional analysis presented in Table 7.1 and Figures 

7.1-7.3 show that for larger bubbles, the total drag force more than by any other 

force balances the buoyant force while the surface tension has some effect for 

smaller bubbles. Results show that air bubbles rising in a porous medium 

equilibrate after a short travel time and very short distances of rise. Since the 

value of the total inertial force for all bubble velocities is negligible i.e., 

0*/* ≈DtDuAd , the motion of an air bubble rising in a porous medium can be 

assumed as a steady state flow. The model developed here is subject to various 

assumptions including the assumption of gas incompressibility. Roosevelt and 

Corapcioglu [1998] have calculated that in a 1-m water saturated porous medium, 

bubble radii can increase by 5 % due to gas expansion. Another assumption is the 

negligibility of the local water flow around a bubble rising in a stagnant water 

phase. However, if the water phase has a pressure gradient that is not negligible, 

equations (2.6) and (2.5) should incorporate the bubble velocity relative to that of 

the water phase. 
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APPENDIX A 

 

NOTATION 

 
 
 

F∑  Sum of external forces acting on a single air bubble, N 

b∀  Volume of a bubble, m3 

D
Dt

 
Material derivative, t-1 

t  Time, s 

x  Depth in the vertical direction, m 

bu  Bubble rise velocity, m/s 

refu  Terminal bubble velocity, m/s 

bR  Equivalent bubble radius, m 

bF  Buoyancy (gravitational) force, N 

dF  Drag force, N 

stF  Surface tension force, N 

g  Gravity acceleration, m/s2 

n  Porosity 

pd  Grain diameter, m 

'R  Radius of a pore throat, m 
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bn  Number of bubbles per unit volume of air, 1/m3 

A  Correction factor, dimensionless 

 
 dA  Terminal velocity delay index, dimensionless 

MC  Added mass coefficient, dimensionless 

c  Empirical constant, dimensionless 

*t  Dimensionless time 

*x  Dimensionless depth 

*u  Dimensionless bubble rise velocity 

 
Greek Letters 

gρ  Density of air, kg/m3 

fρ  Density of fluid (water), kg/m3  

σ  Surface tension, N/m 

θ  Contact angle, o 

bµ  Effective bubble dynamic viscosity, N.s/m2 

gµ  Dynamic viscosity of air, N.s/m2 

fµ  Dynamic viscosity of fluid (water), N.s/m2 

α  Proportionality constant, N.m7/3/s2/3 

  

Dimensionless Numbers 

1D   The ratio of gravitational force to inertial force 

2D   The ratio of drag force to inertial force 
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1
2D  The ratio of linear viscous drag force to inertial force 

2
2D  The ratio of kinetic drag force to inertial force 

3D  The ratio of surface tension force to inertial force 

 
Fr  Froude number b

b

u
gR

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

, the ratio of inertial force to gravitational force 

 
Re  Reynolds number 

2 b b f

f

R u ρ
µ

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

, the ratio of inertial force to viscous force 

 
We  Weber number 

2
b f bu R

Sin
ρ

σ θ

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

, the ratio of inertial force to surface tension 

force 
 

Bo  Bond number 
( )2

b f ggR

Sin

ρ ρ

σ θ

⎡ ⎤−
⎢ ⎥
⎢ ⎥
⎣ ⎦

, the ratio of gravitational force to surface 

tension  
 

Ca  Capillary number b refu
Sin

µ
σ θ
⎡ ⎤
⎢ ⎥
⎣ ⎦

, the ratio of viscous force to surface tension 

force 
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APPENDIX B 

 

TERMINAL VELOCITY MEASUREMENT OF AN AIR BUBBLE IN 

COARSE POROUS MEDIA 

 
 

In the experimental work conducted by Roosevelt and Corapcioglu [1998] 

of which the results were compared with the theoretical ones obtained in this 

study, a vertically mounted cylindrical glass column filled with transparent 4-mm 

glass beads and fully saturated with distilled water simulated a coarse granular 

porous medium (Figure B1). The cylindrical column was filled with ~90 cm of 

beads which are covered by an additional 10 cm of water. A random packing 

procedure was used to deposit the 4-mm beads and average porosity of 0.39 was 

found by measuring the volumes of the total sample and of the solid matrix when 

the beads were added to the water-filled 3.9-cm-diameter column.  

Two different air injection methods were employed in the experimental 

work of Roosevelt and Corapcioglu [1998]. In the first method as shown in Figure 

B1a, compressed air was injected into the base of the larger column through the 

use of an electronically controlled solenoid valve. A WavetekeTM sweep generator 

sends a single voltage pulse of preset length through a series of relay circuits to 

open the normally closed solenoid valve and thus allow a single air bubble to 

enter a tube leading to the column. The second method for introducing bubbles 

was depicted in Figure B1b. Air was injected by hand into the base of the smaller 
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column with a 19-gauge hypodermic needle and a 3-cc (cubic centimeters) 

syringe. The needle was inserted into the beads through a septum at the top of an 

8-mm-inner-diameter orifice. This technique yielded smaller individual bubbles in 

the porous medium than the first method.  

In both methods the bubbles were injected along the column axis. 

Measurements were made at room temperature (~24oC), and the column has open 

tops. To provide contrast between the air bubble and water, McCormickTM blue 

food dye has been added to most of the experiments to make the visualization of 

the bubble in the porous medium with the image analyzer easier.  

To aid in the visualization of the bubble, the column was lit from behind by 

a vertical fluorescent light source situated ~100 cm away. The bubble motion 

through the column was recorded by two JVCTM Videomovie VHSC camcorders. 

The rise of a bubble was timed by an Atec, Inc.TM timing device with a neon 

plasma display, which is independent of room lighting. In order for the time to be 

visible on the videotape to an accuracy of 0.1 s, a magnifying glass was placed in 

front of the timer. To obtain an image of a rising bubble in the porous medium, a 

still frame from the videotape was captured and enhanced with an image analyzer. 

The images were viewed on a Sony Trinitrone color video monitor, and the 

analysis was performed using Image-Pro Pluse software.  

The rate of vertical rise of the bubbles was determined by measuring the 

displacement of the center of a bubble from the top of the porous medium in the 

enhanced images [see Roosevelt and Corapcioglu, 1998]. These displacements 

were plotted against time and displayed a linear dependence. The rise velocity was 

then computed by applying a linear best fit to these data. The bubble radius is the 
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equivalent radius of the bubble just after it exits the porous medium. It was 

determined using the main camcorder by capturing still frames of the bubble in 

the water above the beads.  

 

 
Figure B1. Experimental apparatus (after Roosevelt and Corapcioglu, 1998) 

a) 

b) 


