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ABSTRACT 
 
 

AN IMPROVED FINITE GRID SOLUTION FOR PLATES ON 

GENERALIZED FOUNDATIONS 
 
 

KARAŞİN Abdulhalim 

Ph.D., Department of Civil Engineering 

Supervisor: Prof. Dr. Polat GÜLKAN 

Co-Supervisor: Prof. Dr. Mehmet UTKU 
 

January 2004, 167 pages 
 

In many engineering structures transmission of vertical or horizontal forces to 

the foundation is a major challenge. As a first approach to model it may be assumed 

that the foundation behaves elastically. For generalized foundations the model 

assumes that at the point of contact between plate and foundation there is not only 

pressure but also moments caused by interaction between the springs.  In this study, 

the exact stiffness, geometric stiffness and consistent mass matrices of the beam 

element on two-parameter elastic foundation are extended to solve plate problems. 

Some examples of circular and rectangular plates on two-parameter elastic 

foundation including bending, buckling and free vibration problems were solved by 

the finite grid solution. Comparison with known analytical solutions and other 

numerical solutions yields accurate results. 

 
 

Keywords: Winkler Foundation, Plates on Generalized Foundation, Bending, Free 

Vibration, Buckling, Finite Grid Solution 
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ÖZ 
 
 

GENELLEŞTİRİLMİŞ TEMELLER ÜZERİNE OTURAN 

PLAKLAR İÇİN GELİŞTİRİLEN  BİR SONLU IZGARA 

ÇÖZÜMÜ 
 
 

KARAŞİN Abdulhalim 

Doktora, İnşaat Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Polat GÜLKAN 

Ortak Tez Yöneticisi: Prof. Dr. Mehmet UTKU 
 

Ocak 2004, 167 sayfa 
 

Birçok mühendislik yapılarında yatay ve dikey yüklerin zemine aktarılması 

önemli bir problem olarak karşımıza çıkmaktadır. Genelleştirilmiş zemin 

modellerinde plak ve zemin arasındaki temas noktasında sadece basınç degil aynı 

zamanda yayılı momentlerin de oldugu göz önüne alınmaktadır. Bu çalışmada iki 

parametreli elastik zeminlerle taşınan kiriş elemanları için bulunan rijitlik matrisleri 

geliştirilerek plakların ızgara şeklinde modellenmesi sağlanmıştır. Bu modelleme ile 

iki parametreli zeminlere oturan plaklar için bir sonlu ızgara çözümü geliştirilmiştir. 

Bu sayısal metot ile zeminin süreksiz ve gelişigüzel değişimi gibi parametrik 

değişimlerin bulunması halinde de uygulanabilir olması önemli bir avantajdır. Bu 

metot kulanılarak çeşitli sınır ve yükleme tiplerine sahip, eğilme, burkulma ve 

serbest titreşim dahil dairesel ve dikdörtgen plak problemleri çözümlerinde makul 

sonuçlar elde edilmiştir. 

 
Anahtar Kelimeler: Winkler Zemini, Genelleştirilmiş Zeminde Plak problemleri, 

Dairesel Plak, Dikdörtgen Plak, Eğilme, Burkulma, Serbest 

Titreşim, Sonlu Izgara Çözümü  
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CHAPTER 1 
 
 

INTRODUCTION 
 

1.1 INTRODUCTION 

 

Treatment of soil and structure as a whole is a major concern of many 

engineering applications. In many engineering structures rational estimation of the 

manner for transmission of vertical or horizontal forces to the foundation is an 

important and frequently recurring problem. Foundations very often represent a 

complex medium. It is often difficult to find suitable analytical models for 

foundation problems. An acceptable analysis must include behavior of foundation 

properly. By using certain assumptions there exist some simplified models to 

represent the behavior of foundations. One of the most elementary models is based 

on the assumption that the foundation behaves elastically. This implies not only that 

the foundation elements return to their original position after removing loads, but it is 

also accepted that their resistance is proportional to the deformation they experience. 

This assumption can be acceptable if displacement and pressure underneath 

foundation are small and approximately linearly related to each other. For 

“generalized” foundations the model assumes that at the point of contact between 

plate and foundation there is not only pressure but also distributed moments caused 

by the interaction between linear springs. In a generalized sense, translational and 

rotational deformations of the beam invoke reactions from the supporting foundation. 

The moments are assumed to be proportional to the slope of the elastic curve and a 

second parameter for foundation is then necessary for defining its response.  This 

point will be utilized in the derivation of the corresponding equations in Chapter 2. 
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1.2 REVIEW OF PAST WORK 

  

1.2.1 Studies of Models for the Supporting Medium 

 

Plates on elastic foundations have received considerable attention due to their 

wide applicability in civil engineering. Since the interaction between structural 

foundations and supporting soil has a great importance in many engineering 

applications, a considerable amount of research has been conducted on plates on 

elastic foundations. Much research has been conducted to deal with bending, 

buckling and vibration problems of beam and plates on elastic foundation. The aim 

of most of these is to solve some real engineering problem such as structural 

foundation analysis of buildings, pavements of highways, water tanks, airport 

runways and buried pipelines, etc. Because the intent of this subsection is to give a 

synoptic overview of research accomplishments to date, it is necessarily brief.   

 

Many studies have been done to find a convenient representation of physical 

behaviour of a real structural component supported on a foundation. The usual 

approach in formulating problems of beams, plates, and shells continuously 

supported by elastic media is based on the inclusion of the foundation reaction in the 

corresponding differential equation of the beam, plate, or shell.  

 

In order to include behaviour of foundation properly into the mathematically 

simple representation it is necessary to make some assumptions. One of the most 

useful simplified models known as the Winkler model assumes the foundation 

behaves elastically, and that the vertical displacement and pressure underneath it are 

linearly related to each other. That is, it is assumed that the supporting medium is 

isotropic, homogeneous and linearly elastic, provided that the displacements are 

“small”. This simplest simulation of an elastic foundation is considered to provide 

vertical reaction by a composition of closely spaced independent vertical linearly 
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elastic springs. Thus the relation between the pressure and deflection of the 

foundation can be written as: 

 
p( x,y )=k1 w( x,y ) (1.1) 

 
where: 

p( x,y ) : distributed reaction from the foundation due to applied  load at  

point yx,  

k1  : Winkler parameter 

w( x,y ) : vertical deflection at point yx,  

  

The governing differential equation or Lagrange’s equation of a plate 

subjected to lateral loads may be derived as: 
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where: 

D = E t3 / (12 (1- v2 )) : flexural rigidity of the plate 

t    : thickness of the plate 

v    : Poisson’s ratio 

E    : modulus of elasticity of the plate 

q( x,y )    : external loads on the plate 

 
In most cases, as a concentrated load applied to the surface of a linearly 

elastic layer it must not deflect only under the load, but it also must deflect with 

displacements diminishing with distance in the areas adjacent to the load. In contrast, 

Winkler model assumes that only the loaded points can settle while the adjacent 

areas remains unchanged. That is, the one – parameter way of modelling the soil 

underneath plates (the Winkler model) leads to a discontinuity of the deformation 

along the plate boundary.  Therefore, in order to provide a continuity of vertical 

displacements there must be a relationship between the closely spaced spring 
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elements. For satisfying the continuity, Hetényi (1967) suggested to use an elastic 

plate at the top of the independent spring elements to improve an interaction between 

them. So, the response function for this model is to modify Equation (1.2) by re-

defining the external load acting in lateral direction as the difference between the 

surface load of the plate and the reaction of the elastic foundation given in Equation 

(1.1) can be derived in a general form as: 
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There are several more realistic foundation models as well as their proper 

mathematical formulations, e.g. Selvadurai (1979) and Scott (1981). Representing 

the soil response underneath plates by two independent elastic parameters is a more 

refined model of having an inter-connected continuum.  The main advantage of the 

two-parameter elastic foundation model is to provide a mechanical interaction 

between the individual spring elements. To have a relationship between the springs 

eliminates the discontinuous behaviour of Winkler model. Such physical models of 

soil behaviour have been suggested by a number of authors. A second foundation 

parameter defined by Filonenko-Boroditch (1940), Pasternak (1954) and Kerr (1964) 

ensures in effect that the tops of Winkler springs are inter-linked by a thin elastic 

membrane, a layer of compressible vertical element and rotational springs, 

respectively. The two-parameter models can be summarized as follows: 

  

First, Filonenko-Boroditch introduced a model that indicated to connect the 

individual springs as the representation of the soil in Winkler model by a thin 

stretched elastic membrane under a constant tension T that provides the continuity. 

Then the reaction of soil in Equation (1.1) can be modified as: 
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The soil behaviour model suggested by Pasternak assumes that insertion of 

shear interaction between the spring elements to satisfy continuity. The model 

implies the end of spring elements are connected by a layer of incompressible 

vertical elements, G, that only deform in transverse shear.   
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The next model introduced by Kerr, known also as generalized foundation 

model, assumes that at the end of each spring element resisting pressure as in the 

Winkler model, there must be also a rotational spring to produce a reaction moment 

(kθ) proportional to the local angle of rotation at that point. This model implies that 

the soil reaction in Equation (1.1) can be written as: 
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Equations (1.3), (1.4) and (1.5) are all similar to each other except in the 

interpretation of the second parameter. Since the second parameters are constant the 

properties of the equations are same. Therefore, the second parameters of Filonenko-

Boroditch model (T), Pasternak model (G) and Kerr model (kθ) can be replaced by a 

single second parameter as (k2).  For two-parameter foundation models the soil 

reaction in Equation (1.1) can be redefined in a general form as: 
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The two-parameter elastic foundation model that provides a mechanical 

interaction between the individual spring elements shows a more realistic behaviour 

of the soil reaction. By using the soil reaction, Equation (1.3) derived by Hetényi’s 

suggestion can be modified in a more general form as: 
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This equation is applicable to all types of plates resting on two-parameter 

elastic foundation problems.  

 

1.2.2 Studies on the Solution Methods 

 

The solution of plate problems with classical methods that provide 

mathematically exact solutions are available for a limited number of limited cases. 

There are a few load and boundary conditions that permit Equations (1.2) and (1.3) 

to be solved exactly. For arbitrary load and boundary conditions, there is no exact 

solution of Equation (1.8) for plates resting on two-parameter elastic foundation 

problems because it is too complex,. In another words the two-parameter elastic 

foundation soil model underneath plate boundary problems cannot be solved 

analytically in readily understood format for all load and boundary conditions 

(Sladek et al. 2002).   

 

Currently, there exist approximate and numerical methods to solve the 

governing differential equations of plates resting on one-parameter and two-

parameter elastic foundation for transverse displacement w. Many studies have been 

done related to such problems. Before embarking on a review of these results, it is 

useful to examine where we stand in relation to one-dimensional elements supported 

by generalized foundations.  

 

Introducing the finite element method in 1960s and the developments in 

computers have had a great importance for the developments in applied mechanics. 

A broad range of the engineering problems has been solved by computer-based 

methods such as finite element, boundary elements methods, etc.    
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In the case of the beam analysis, the formulations based on interpolation 

(shape) functions have been used in solution by finite element method. In 1980’s 

some authors have derived exact stiffness matrices such as Wang (1983) and 

Eisenberger (1985a) for beams on Winkler foundations and Cook and Zhaohua 

(1983) and Eisenberger (1987a) for two parameter foundations. 

 

Razaqpur and Shah (1991) derived a new finite element to eliminate the 

limitations of the solution, such as the necessities of certain combinations of beam 

and foundation parameters, for beams on a two-parameter elastic foundation. They 

concluded that the derivation of explicit element stiffness matrix and nodal load 

vector makes the proposed element efficient and obviates the need for dividing the 

beam into many elements between the points of loading. They presented the 

complete solution of the governing equation corresponding to the most common 

types of load. 

 

Gülkan and Alemdar (1999) reported an analytical solution for the shape 

functions of a beam segment supported on a generalized two-parameter elastic 

foundation. In that study it is pointed out that the exact shape functions can be 

utilized to derive exact analytic expressions for the coefficients of the element 

stiffness matrix, work equivalent nodal forces for arbitrary transverse loads and 

coefficients of the consistent mass and geometrical stiffness matrices.  

 

When plates are considered, the solutions must become more sophisticated, 

and mathematically less familiar for most engineering applications. 

  

Zafrany and Fadhill (1996) derived boundary integral equations with three 

degrees-of-freedom per boundary node, thus avoiding the generation of unknown 

corner terms for plates with non-smooth boundaries. For thin plates resting on a two-

parameter elastic foundation, based on a modified Kirchhoff theory in which the 

transverse normal stress is considered. The explicit expressions of kernel functions 

are provided in terms of complex Bessel functions. Additional boundary element 
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derivations for plates with free-edge conditions are presented, and reduction of 

loading domain integral terms for cases with concentrated loads and moments, and 

uniformly- or linearly-distributed loading is included. They concluded that the three 

degrees-of-freedom approach has led to very accurate results for plates with corners 

and the transverse normal stress has a minor effect on plate deflection, but it has 

some effect on stresses and moments, which increases with the thickness of the plate. 

 

Wang, et al. (1997) presented relationships between the buckling loads 

determined using classical Kirchhoff plate theory and shear deformable plate theories 

on Pasternak foundation. The relationships of Kirchhoff, Mindlin and Reddy 

polygonal plates resting on a Pasternak foundation obtained are exact for isotropic, 

simply supported under an isotropic in-plane load. The relationships are also 

applicable for the Winkler foundation as this foundation model is a special case of 

the Pasternak foundation. 

  

Tameroğlu (1996) studied a different solution technique for free vibrations of 

rectangular plates with clamped boundaries resting on elastic foundations and 

subjected to uniform and constant compressive, unidirectional forces in the mid-

plane. The method is based on the use of a non-orthogonal series expansion 

consisting of some specially chosen trigonometric functions for the deflection 

surface w of the plate. The orthogonalization of the series and other calculations are 

performed using Fourier expansion of Bernoulli polynomials under some realistic 

approximations for the limiting values of the boundary conditions. It is concluded 

that by this method one need not use the solution of the differential equation of the 

problem. The results obtained for the problem are consistent with the well-known 

solutions. 

 

Saha, et al. (1997) studied the dynamic stability of a rectangular plate on non-

homogeneous foundation, subjected to uniform compressive in-plane bi-axial 

dynamic loads and supported on completely elastically restrained boundaries. In that 

study, non-homogeneous foundation consists of two regions having different 

 8



stiffness but symmetric about the centre lines of the plate. They derived the equation 

governing the small amplitude motion of the system by a variational method. They 

also studied the effects of stiffness and geometry of the foundation, boundary 

conditions, static load factor, in-plane load ratio and aspect ratio on the stability 

boundaries of the plate for first- and second-order simple and combination 

resonance.  

 

Ramesh, et al. (1997) analyzed the behavior of flexible rectangular plates 

resting on tensionless elastic foundations using finite-element method (FEM) 

techniques. They adopted a nine-noded Mindlin element for modeling the plate to 

account for transverse shear effects. The model can be effectively used to analyze 

plates on tensionless elastic foundations with any type of common boundary 

conditions and loading combinations. The model also accounts for realistic design 

conditions, namely, the tensionless nature of the foundations, transverse shear 

effects, and effects of attachment. They concluded that in case the plate dimension to 

thickness ratios are very small, the shear effect dominates, and deflections are highly 

underestimated if the problem is analyzed assuming thin plate behavior. The 

contacting region is only dependent on the relative stiffness and plate thickness. 

  

Omurtag and Kadıoğlu (1997) studied a functional and a plate element 

capable of modelling the Kirchhoff type orthotropic plate resting on Winkler / 

Pasternak (isotropic/orthotropic) elastic foundation are given and numerical results of 

a free vibration analysis is performed by using the Gateaux Differential Method 

(GDM) that successfully applied to various structural problems such as space bars, 

plates and shells by Omurtag and Aköz (1997). Their PLTEOR4 element has four 

nodes with 4 x 4 DOF. Natural angular frequency results of the orthotropic plate are 

justified by the analytical expressions present in the literature and some new 

problems for orthotropic plates on elastic foundation (Winkler and Pasternak type 

foundation) are solved. The Pasternak foundation, as a special case, converges to 

Winkler type foundation if shear layer is neglected. Results that they report are quite 

satisfactory. They concluded that when the results of the foundation models Winkler 
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and Pasternak are compared, it is observed that natural angular frequency results 

obtained by Pasternak type foundation modelling are higher than Winkler model for 

a constant k in each case. 

 

Kocatürk (1997) presented an elastoplastic analysis of rotationally symmetric 

reinforced concrete plates resting on elastoplastic subgrade under column load. The 

analysis is simplified by the assumption that any plate element is either entirely 

elastic or entirely plastic. This assumption is practically fulfilled for a sandwich 

plate. Differential equations that describe the behaviour of plastic zones during the 

deformation process are derived and solved in closed form. Interaction between the 

plate and the foundation is investigated for dimensionless load-moment relations.  

 

Trifunac (1997) investigated stiff structures with large plan dimensions, on 

soft soil and supported by columns on separate foundations. Differential motion of 

the column foundations may lead to large moments and shear forces in the first-story 

columns, during near field moderate and large earthquakes. These forces will 

augment the effects of the concurrently occurring dynamic response, causing larger 

than expected ductility, larger inter-story drift, and thus larger and more dangerous 

participation of vertical acceleration. When the design conditions call for the 

connecting beams and slabs between individual column foundations, some 

components of motion of the first-story columns may be reduced. He concluded that 

the foundation should be designed to withstand the forces created by deformation of 

soil. He presented approximate criteria for estimating the relative significance of 

these additional effects. 

 

Chung at al. (2000) investigated finite strip method for the free vibration and 

buckling analysis of plates with abrupt changes in thickness and complex support 

conditions. The free vibration problem of a stepped plate is modelled by finite strip 

method supported on non-homogeneous Winkler elastic foundation with elastically 

mounted masses is formulated based on Hamilton's principle. The method is further 
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extended to the buckling analysis of rectangular stepped plates. Numerical results 

also show that the method is versatile, efficient and accurate. 

 

In the study of Huang and Thambiratnam (2001) a procedure incorporating 

the finite strip method together with spring systems is proposed for treating plates on 

elastic supports. The spring systems can simulate different elastic supports, such as 

elastic foundation, line and point elastic supports, and also mixed boundary 

conditions. As a numerical example a three-span simply supported plate is first 

considered and the effects of support stiffness on the static and free vibration 

responses and on the critical buckling stress are discussed. A plate resting on a 

Winkler foundation is studied next, and the effects of dimension ratio on the static 

and free vibration responses are discussed. Numerical results show that the spring 

system can successfully simulate different kinds of elastic supports. 

 

 

1.3 OBJECTS AND SCOPE OF THIS STUDY  

 

The aim of this proposed research is to investigate an improved finite grid 

solution of plates on a two-parameter elastic foundation.  This is an extension of the 

so-called discrete parameter approach where the physical continuous domain is 

broken down into discrete sub-domains, each endowed with a response suitable for 

the purpose of mimicking problem at hand. Conceptually, it is similar to the finite 

element method, except that each discrete element utilized is equipped with an exact 

solution. Therefore, errors are attributable only to the effects of discretization. 

  

The governing equation for plates resting on two-parameter elastic foundation 

problems is quite complicated. Hence, an analytical solution is not feasible or easily 

formulated. Therefore, it is necessary to get an accurate and efficient numerical 

method for general applications. In order to simplify the problem it is possible to use 

a grid of beam elements to model plates. After all, within limitations of simplified 

formulation as Wilson (2000) indicated, plate bending is an extension of beam 
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theory. In this dissertation, plates on generalized foundations will be represented by 

grillages of beams that resemble the original plates such as rectangular, circular or 

annular plates when they are assembled. No limits are placed on the geometrical 

properties of the plate boundaries, or on their displacement boundary conditions. 

Because the plate is discretized, discontinuous foundation, abrupt changes in plate 

thickness and other types of irregularities are easily accommodated.  

 

1.4 ORGANIZATION OF THE STUDY  

 

There are six chapters in this dissertation. A general discussion and overview 

of the study, a review of past studies and objectives of this study are presented in 

Chapter 1.   

 

In Chapter 2 analytical solutions of the discrete beam element resting on one- 

or two-parameter elastic foundation are obtained. These analytic solutions include 

derivation of the governing differential equations and exact shape functions. Then 

the exact shape functions are used to form element stiffness matrices and work 

equivalent load vectors for finite element applications. Some graphical comparisons 

have been done to observe the influences of foundation parameters on the work 

equivalent nodal loads, stiffness terms and the shape functions 

 

In Chapter 3 the problem is extended to the solution of stability and vibration 

problems. The geometric stiffness matrices and consistent mass matrices of the 

discrete beam element on one- or two-parameter elastic foundation are derived. The 

influences of foundation parameters are portrayed graphically for geometric stiffness 

and consistent mass terms.  

 

In Chapter 4 a general description of the representation of rectangular and 

circular plates by beam elements is given. A proper transformation matrix is used for 

assembling the discretized plate element. Then the system stiffness, consistent mass 
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and the geometric stiffness matrices are generated to solve the plate bending, 

buckling and vibration problems. 

 

Chapter 5 contains the solution of the bending, buckling and vibration 

problems of rectangular and circular plates resting on one- or two-parameter elastic 

foundation. The results are compared with the well known analytical and the other 

numerical solutions. 

 

Chapter 6 presents the conclusions and the suggestions for further studies 

 

In the Appendix explicit forms of the element based consistent mass and 

consistent geometric stiffness matrices are presented. 
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CHAPTER 2 
 
 

FORMULATION OF THE PROBLEM 
 

2.1 INTRODUCTION  

 

 A differential part of a plate supported by a generalized foundation, which 

terminates at the ends of the plate is shown in Figure 2.1. In this Figure the first of 

these parameters is representative of the foundation's resistance to transverse 

translations, and is called the Winkler parameter k1 in force per unit length per unit 

area (e.g. kN/m/m2= kN/m3 units). In the Winkler formulation each translational 

spring can deflect independently of springs immediately adjacent to it. In this model 

it is assumed that there is both pressure and moment at the points of contact between 

plate and foundation. These moments are assumed to be proportional to the angle of 

rotation, so that the second foundation parameter is representative of the foundation's 

resistance to rotational deformations, and is denoted by kθ.  
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By a generalized foundation modelling, influence of moment reaction of 

foundation will be inserted into the formulation by a distributed rotational spring 

element (kθ) in addition to the vertical spring element (k1). For all types of plates 

resting on two-parameter elastic foundations related to Figure 2.1 the governing 

differential equation derived in Section 1.2 can be rewritten as: 
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 (2.1) 

 
With most elements developed to date, there exist no rigorous solution for 

this equation except in the form of infinite Fourier series for a Levy-type solution. 

The series solutions are valid for very limited cases such as when the second 

parameter has been eliminated, and simple loading and boundary conditions exist.  

 
As an alternative for different types of loading and boundary conditions it is 

possible to extend the exact solution for a beam supported on a one- or two-

parameter elastic foundation to plates on generalized foundations when the plate is 

represented by a discrete number of intersecting beams. 

 
In the following sections finite element based matrix methods will be used to 

determine the exact shape, fixed end forces and stiffness matrices of beam elements 

resting on elastic foundations. These individual element matrices will be used to 

form the system exact load and stiffness matrices for plates. 

    
 

 
2.2 PROPERTIES OF BEAM ELEMENTS RESTING ON ONE-

PARAMETER ELASTIC FOUNDATION 

 

The solution of plate problems cannot be solved analytically for all load and 

boundary condition combinations. Instead, grillages of beam elements that have no 
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such limitations can represent the plates. The properties of beam elements resting on 

elastic foundations will be a very useful tool to solve such complicate problems. A 

representation of the foundation with independent closely linear springs underlying a 

beam element is shown in Figure 2.2 
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Figure 2.2: Representation of the Beam Element Resting on One-Parameter 

(Winkler) Foundation 
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The analysis bending of beam elements resting on an elastic foundation is 

developed, by the Winkler assumption that the reaction forces of the foundation are 

proportional at every point to the deflection of the beam at that point.  

 

2.2.1 Derivation of the Differential Equation  

 

Consider the straight beam supported along its entire length by an elastic 

medium and subjected to uniform distributed load as shown in Figure 2.2. The 

reaction forces will be assumed to be acting opposing to the vertical deflection of the 

beam due to distributed load and this will cause compression in the supporting 

medium. Assuming the medium’s material follows Hooke’s law let us the 

fundamental assumption that the reaction force intensity (p) at any point is 

proportional to the deflection (w) of the beam at that point: 

 

)()( 1 xwkxp =  (2.2) 
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The constant for supporting medium, which is known as modulus of 

foundation (k0), has a dimension of force per unit displacement per unit area. Since 

beam elements have no second dimension, its width must be taken into consideration 

to determine the Winkler parameter. 

k1 = k0  for plate elements  with F/L3 dimensions. 

k1 = b×k0 for beam elements  with F/L2 dimensions. 

 

For the derivation of the differential equation let us take an infinitesimal 

element as in Figure 2.2. The forces exerted on such an element are shown in Figure 

2.3. Considering the equilibrium of the element by the summation of the forces in 

vertical direction gives:  
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By ignoring infinitesimal quantities and taking moments about O: 
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dx
dMV =  (2.5) 

 

is obtained. Using the differential equation of a beam in bending  
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where EI is the flexural rigidity and differentiating Equation  (2.6) twice to obtain: 

2

2
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=  (2.7) 

By substituting Equations (2.6) and (2.7) into Equation (2.4) the differential 

equation of a beam element resting on one-parameter foundation is obtained as: 
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2.2.2 Derivation of Exact Shape Functions of the Beam Elements  

 

By equating =0; the homogeneous form of Equation (2.8) is: )(xq
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Let us rewrite Equation (2.9) as: 
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By the operator method using n
n

n

D
dx
d

=  then the characteristic Equation (2.11) can 

be written as: 
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The roots of the characteristic equation are 
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where i is the imaginary number. Using Equation (2.14), the closed form solution of 

Equation (2.11) is  
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using hyperbolic functions  
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Substituting the above hyperbolic functions and rearranging Equation (2.15) 

with defining the new constants, the closed form solution of Equation (2.11) is 

obtained as: 
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By neglecting foundation effects, a linear description of the angular 

displacement at any point along the element can be expressed as Ø(x)= a1+a2x. 

Inserting the angular displacements due to torsional effects, Equation (2.18) that had 

been derived by Alemdar and Gülkan (1997) can be rearranged as follows: 
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Then, the closed form equation can be expressed in matrix form as: 

 

CBw T=  (2.19) 

where 

{ [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] }xxCosxxCosxxxSinxxSinBT λλλλλλλλ sinhcoshsinhcosh1=

    

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

=

6

5

4

3

2

1

c
c
c
c
c
c

C  

 

The arbitrary constants c2, c3, c5 and c6 subscript of the vector C can be 

determined by relating them to the end displacements which forms boundary 

conditions shown in Figure 2.4. In this figure: 

 

{ } { }222111 ,,,,, wwd T θφθφ=  (2.20) 

{ } { }222111 ,,,,, VMTVMTF T =  (2.21) 
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Figure 2.4: A Finite Element of a Beam (a) Generalized Displacements  (b) Loads 

Applied to Nodes  
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Vectors { d } and { F } represent the generalized displacements and the loads 

applied to the nodes, respectively. In order to relate the rotational elements of the 

displacement vector to the constant vector, it is necessary to differentiate the bending 

part of Equation (2.18) with respect to x. 

 

=
dx
xdw )(

[ ] [ ] [ ] [ ]( )
[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ])(

)(
)(

5

6

2

3

xCoshxSinxCosxSinhc
xSinhxSinxCoshxCosc
xCoshxCosxSinhxSinc
xCosxSinhxCoshxSinc

λλλλλλ
λλλλλλ
λλλλλλ
λλλλλλ

−
+−
++
++

 (2.22) 

 

The generalized displacement vector given in Equation (2.20) can be 

determined with x= 0 and x= L values of Equations (2.18) and (2.22) in terms of the 

constants as follows, 

 
Bending case: 

 

λλθ 621)0( ccx
dx
dw

+===  

51)0( cwxw −===  

== )( Lx
dx
dw

[ ] [ ] [ ] [ ]( )
[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ])(

)(
)(

5

6

2

3

LCoshLSinLCosLSinhc
LSinhLSinLCoshLCosc
LCoshLCosLSinhLSinc
LCosLSinhLCoshLSinc

λλλλλλ
λλλλλλ
λλλλλλ
λλλλλλ

−
+−
++
++

 (2.23a) 

 

=== 2)( wLxw
[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ])
(

56

23

LCoshLCoscLSinhLCosc
LCoshLSincLSinhLSinc

λλλλ
λλλλ

+
++−

    

 

Torsional case: 

 

xccx 41)( +=φ  

11)0( cx === φφ  (2.23b) 

LccLx 412)( +=== φφ  
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Equation (2.23) can be rewritten in matrix form, 

 

=

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

2

2

2

1

1

1

w

w

θ
φ

θ
φ

[ ]

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

⋅

6

5

4

3

2

1

c
c
c
c
c
c

H  (2.24) 

 
or 

 
[ ] [ ] [ ]CHd ⋅=  (2.25) 

 
where [H] is a 6x6 matrix from Equation (2.23). The arbitrary constant vector C can 

be defined as: 

 
[ ] [ ] [ ]dHC ⋅= −1  (2.26) 

 
Substitute Equation (2.26) into Equation (2.18) then the closed form solution 

of the differential equation can be written in matrix form as: 

 
[ ] [ ] [ ] [ ]dHBw T ⋅⋅= −1  (2.27)   

Equation (2.27) can be redefined by introducing matrix N that includes four shape 

functions and the generalized displacements defined in Figure 2.4 as follows,  

[ ] [ ]

⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪

⎨

⎧

=

=

=
=

=

=

⋅=

)(

)(

)(
)0(

)0(

)0(

Lxw

Lx
dx
dw

Lx
xw

x
dx
dw
x

Nw
φ

φ

 (2.28)  

After performing the necessary symbolic calculations, the shape functions are 

obtained. Each shape (interpolation) function defines the elastic curve equation of the 
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beam elements for a unit displacement applied to the element in one of the 

generalized displacement direction as the others are set equal to zero. The elements 

of the shape functions matrix N are: 

 

⎟
⎠
⎞

⎜
⎝
⎛ −=

L
x11ψ  (2.29a) 

 

[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]

[ ] [ ]
⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

++−
−−

+−−

=
LL

xxxxL
xxxLx

λλλ
λλλλ
λλλλ

ψ
2cosh2cos2(

sinhcossinh)2(cos
sincosh)2(coshsin

2  (2.29b) 

 

[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]
[ ] [ ]

[ ] [ ]

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+−
−

−−+
−−+−

=
)2cosh2(cos2

)2(sinsinh
)2(sinhsincoshcos2

)2(coscosh)2(coshcos

3 LL
xLx

xLxxx
xLxxLx

λλ
λλ

λλλλ
λλλλ

ψ  (2.29c)  

 

⎟
⎠
⎞

⎜
⎝
⎛=
L
x

4ψ  (2.29d) 

 

[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [

[ ] [ ]
]

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

++−
−+−−−

+−+−−−

=
LL

xLxLxLxL
xLxLxLxL

λλλ
λλλλ
λλλλ

ψ
2cosh2cos2(

)(sinh)(cos)(sinh)(cos
)(sin(cosh)(cosh)(sin

5  (2.29e) 

 

[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]
[ ] [ ]

[ ] [ ]

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+−
+−

++−−+−
++−+−−−

=
)2cosh2(cos2

)(sinh(sin
)(sin(sinh)(cosh(cos

)(cos(cosh)(cosh(cos2

6 LL
xLxL

xLxLxLxL
xLxLxLxL

λλ
λλ

λλλλ
λλλλ

ψ  (2.29f) 
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The bending shape functions are directly affected by the foundation 

parameter. It is possible to redefine them in non-dimensional forms for comparing 

the functions with the corresponding Hermitian polynomials. To have non-

dimensional forms, let us insert the following relations into Equation (2.29).   

L
x

=ξ   for Lx ≤≤0  (2.30) 

and 

4 1

4
L

EI
kLp == λ  (2.31) 

where L is the length of the beam. Note that both p and ξ are non-dimensional 

quantities. Since the torsional shape functions are not affected, then only the non-

dimensional forms of the bending shape functions will be considered as follows: 

 

[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]

[ ] [ ]
⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

++−
−−

+−−

=
ppp

pppp
pppp

L 2cosh2cos2(
sinhcossinh)2(cos

sincosh)2(coshsin

2 ξξξξ
ξξξξ

ψ  (2.32a) 

[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]
[ ] [ ]

[ ] [ ]

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+−
−

−−+
−−+−

=
)2cosh2(cos2

)2(sinsinh
)2(sinhsincoshcos2

)2(coscosh)2(coshcos

3 pp
pp

pppp
pppp

ξξ
ξξξξ

ξξξξ

ψ  (2.32b) 

[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]

[ ] [ ]
⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

++−
−+−−−

+−+−−−

=
ppp

pppp
pppp

L 2cosh2cos2(
)1(sinh)1(cos)1(sinh)1(cos
)1(sin)1(cosh)1(cosh)1(sin

5 ξξξξ
ξξξξ

ψ  (2.32c) 

[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]
[ ] [ ]

[ ] [ ]

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+−
+−

++−−+−
++−+−−−

=
)2cosh2(cos2

)1(sinh)1(sin
)1(sin)1(sinh)1(cosh)1(cos

)1(cos)1(cosh)1(cosh)1(cos2

6 pp
pp

pppp
pppp

ξξ
ξξξξ

ξξξξ

ψ  (2.32d) 

 25



 On the other hand, the shape functions for flexure of uniform beam element 

without any foundation, that is the limits of Equation (2.29) as k1 tends to zero, are:  
2

2 1 ⎟
⎠
⎞

⎜
⎝
⎛ −=

L
xxψ  (2.33a) 

123
32

3 −⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛=

L
x

L
xψ  (2.33b) 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛=

L
x

L
xx

2

5ψ  (2.33c) 

23

6 32 ⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛=

L
x

L
xψ  (2.33d) 

 

Substitute Equation (2.30) into Equation (2.33) to find out the non-

dimensional forms of the shape functions as Hermitian polynomials. 

 

322 2 ξξξ
ψ

+−=
L

 (2.34a) 

123 32
3 −−= ξξψ  (2.34b) 

235 ξξ
ψ

+=
L

 (2.34c) 

23
6 32 ξξψ −=  (2.34d) 

 

In order to observe the foundation parameter effects, the expressions in 

Equations (2.32) and (2.34) are portrayed graphically in Figures 2.5 to 2.8 for 

comparison.  
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Figure 2.5: Effects of One-Parameter Foundation on the Shape Function ψ2  

 
 
 

 
Figure 2.6: Effects of One-Parameter Foundation on the Shape Function ψ3
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Figure 2.7: Effects of One-Parameter Foundation on the Shape Function ψ5

 

 

 

 
Figure 2.8: Effects of One-Parameter Foundation on the Shape Function ψ6
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2.2.3 Derivation of the Element Stiffness Matrix  

 

The element stiffness matrix relates the nodal forces to the nodal 

displacements. Once the displacement function has been determined as in previous 

section for beam elements resting on one parameter elastic foundation, it is possible 

to formulate the stiffness matrix. The element stiffness matrix for the prismatic beam 

element shown in Figure 2.4 can be obtained from the minimization of strain energy 

functional U as follows: 

 

The governing differential equation for beam elements on one-parameter 

elastic foundation Equation (2.8) can be rewritten as:  

 

0)()()(
14

4

=−+ xqxwk
xd
xwdEI  (2.35) 

 

Let Equation (2.35) be multiplied by a test or weighting function, ν(x) which 

is a continuous function over the domain of the problem. The test function ν(x) 

viewed as a variation in w must be consistent with the boundary conditions. The 

variation in w as a virtual change vanishes at points where w is specified, and it is an 

arbitrary elsewhere.  

 

First step is to integrate the product over the domain, 

 

∫ =⎥
⎦

⎤
⎢
⎣

⎡
−+

L

dxxqxwk
dx
xwdEIx

0
14

4

0)()()()(ν  (2.36a) 

∫ =
L

dxxex
0

0)()(ν  (2.36b) 

 

The purpose of the ν(x) is to minimize the function e(x), the residual of the 

differential equation, in weighted integral sense. Equation (2.36) is the weighted 
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residual statement equivalent to the original differential equation. Then it can be 

rewritten as: 

 

∫ ∫∫ =−+
L LL

dxxqxdxxwkxdx
dx
xwdxEI

0 00
14

4

0)()()()()()( ννν  (2.37) 

 

The first part of the Equation (2.37) can be transferred from dependent 

variable w(x) to the weight function v(x) by integration by parts as follows: 

 

4

4

3

3

3

3 )()()()()()(
dx
xwdx

dx
xwd

dx
xd

dx
xwdx

dx
d ννν +=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
 

3

3

3

3

4

4 )()()()()()(
dx
xwd

dx
xd

dx
xwdx

dx
d

dx
xwdx ννν −⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=  

3

3

2

2

2

2

2

2 )()()()()()(
dx
xwd

dx
xd

dx
xwd

dx
xd

dx
xwd

dx
xd

dx
d ννν

+=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 

2

2

2

2

2

2

3

3 )()()()()()(
dx
xwd

dx
xd

dx
xwd

dx
xd

dx
d

dx
xwd

dx
xd ννν

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=  

∫ ∫ ⎥
⎦

⎤
⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

L L

dx
dx
xwd

dx
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dx
xwd

dx
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dx
d

dx
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dx
dEIdx

dx
xwdxEI

0 0
2

2

2

2

2

2

3

3

4

4 )()()()()()()()( νννν
 

∫ ∫+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

L L
LL

dx
dx
xwd

dx
xdEI

dx
xwd

dx
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dx
dEI

dx
xwdxEIdx

dx
xwdxEI

0 0
2

2

2

2

0

2
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3
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4
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since v(x) is the variation in w(x), it has to satisfy homogeneous form of the essential 

boundary condition: 

1

0

)( wxw
x

=
=

 → 0)(
0

=
=x

xν  (2.38a) 

1

0

)( θ=
=x

dx
xdw  → 0)(

0

=
=x

dx
xdν  (2.38b) 

2)( wxw
Lx

=
=

 → 0)( =
=Lx

xν  (2.38c) 

2
)( θ=

=Lx
dx
xdw  → 0)(

=
=Lx

dx
xdν  (2.38d) 

0)()(
0

3

3

=

L

dx
xwdxν  → 0)()(

0

2

2

=

L

dx
xwd

dx
xdν

 (2.38e) 

 

Then, Equation (2.36) takes the form of only twice differentiable in contrast 

to Equation (2.35), which is in fourth order differential equation, as follows:  

 

∫ ∫∫

∫

=−+

=⎥
⎦

⎤
⎢
⎣

⎡
−+

L L

L

dxxqxdxxwxkdx
dx
xwd

dx
xdEI

dxxqxwk
dx
xwdEIx

0 00
12

2

2

2

14

4

0

0)()()()()()(

)()()()(

ννν

ν

L
 (2.39) 

 

Equation (2.39) is called the weak, generalized or variational equation 

associated with Equation (2.35). The variational solution is not differentiable enough 

to satisfy the original differential equation. However it is differentiable enough to 

satisfy the variational equation equivalent to Equation (2.35). In order to obtain the 

stiffness matrix, the displacement fields can be defined as follows:   
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i

j
jj

x

wxw

ψν

ψ

=

= ∑
=

)(

)(
6

1  (2.40) 

 

Substituting them into Equation (2.39) 

 

{ }{ } { }eje

L

ij

L L

ji
ji

L L

i

L

jjij
ji

FwK

dxxqwdxkdx
dx
d

dx
d

EI

dxxqdxwkdxw
dx
d

dx
d

EI

=

=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+

=−+

∫∫ ∫

∫ ∫∫

)(

0)(

00 0
12

2

2

2

0 00
12

2

2

2

ψψψ
ψψ

ψψψ
ψψ

 (2.41) 

 

The shape functions, ψ1, ψ2, ψ3, ψ4, ψ5 and ψ6, are already known from 

Equation (2.29). The nodal displacements are { } { }222111 ,,,,,, www T
j θφθφ=  referring 

to sign convention in Figure 2.4. After performing the necessary symbolic 

calculations, the stiffness terms are obtained as: 

 

⎟
⎠
⎞

⎜
⎝
⎛=
L
GJk11  (2.42a) 

⎟
⎠
⎞

⎜
⎝
⎛−=

L
GJk14  (2.42b) 

[ ] [ ]
[ ] [ ] ⎟⎟⎠

⎞
⎜⎜
⎝

⎛
++−
−

=
λλ
λλλ
LL
LLEIk

2cos2cosh2
)2sin2(sinh2

22  (2.42c) 

[ ] [ ]
[ ] [ ] ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++−
−

=
λλ
λλλ
LL
LLEIk

2cos2cosh2
)2cosh2(cos2 2

23  (2.42d) 

[ ] [ ] [ ] [ ]
[ ] [ ] ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++−
−

=
λλ

λλλλλ
LL

LLLLEIk
2cos2cosh2

)sinhcossin(cosh4
25  (2.42e) 
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[ ] [ ]
[ ] [ ]⎟⎟⎠

⎞
⎜⎜
⎝

⎛
++−

=
λλ

λλλ
LL

LLEIk
2cos2cosh2

sinsinh8 2

26  (2.42f)  

[ ] [ ]
[ ] [ ] ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++−
−

=
λλ
λλλ
LL
LLEIk

2cos2cosh2
)2cosh2(cos2 2

32  (2.42g) 

[ ] [ ]
[ ] [ ] ⎟⎟⎠

⎞
⎜⎜
⎝

⎛
++−
+

=
λλ
λλλ
LL
LLEIk

2cos2cosh2
)2sinh2(sin4 3

33  (2.42h) 

[ ] [ ]
[ ] [ ]⎟

⎟
⎠

⎞
⎜⎜
⎝

⎛
++−

−
=

λλ
λλλ
LL
LLEIk
2cos2cosh2

sinhsin8 2

35  (2.42i)  

04645434216151312 ======== kkkkkkkk  (2.42j) 

1441 kk =  (2.42k) 

1144 kk =  (2.42l) 

2552 kk =  (2.42m) 

3553 kk =  (2.42n) 

2255 kk =  (2.42o) 

2656 kk =  (2.42p) 

2662 kk =  (2.42r) 

3663 kk =  (2.42s) 

5665 kk =  (2.42t) 

3366 kk =  (2.42u) 

 

It is obvious that when foundation parameter k1 tends to zero (or λ→0 ), the 

terms in Equation (2.42) must reduce to the conventional beam stiffness terms 

obtained by Hermitian functions. As a measure of the correctness of the terms in 

Equation (2.42), it is verified that the terms reduces to the following conventional 

terms in matrix form. 
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⎥
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⎥
⎥
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L
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L
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L
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L
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L
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L
GJ
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k
Lim  (2.43) 

 

the unequal  terms of the matrix are 

L
EIkLim

k

4
22

01
=

→

 (2.44a) 

223
01

6
L
EIkLim

k
−=

→

 (2.44b) 

L
EIkLim

k

2
25

01
=

→

 (2.44c) 

226
01

6
L
EIkLim

k
=

→

 (2.44d) 

333
01

12
L
EIkLim

k
=

→

 (2.44e) 

336
01

12
L
EIkLim

k
−=

→

 (2.44f) 

 

The effect of the foundation parameter k1 on the stiffness terms given in 

Equation (2.44) and corresponding terms of Equation (2.44) is portrayed in Figures 

2.9 to 2.14. 
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Figure 2.9: Influence of One-Parameter Foundation on the Normalized Stiffness 

term k22
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Figure 2.10: Influence of One-Parameter Foundation on the Normalized Stiffness 

term k23
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Figure 2.11: Influence of One-Parameter Foundation on the Normalized Stiffness 

term k25
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Figure 2.12: Influence of One-Parameter Foundation on the Normalized Stiffness 

term k26
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Figure 2.13: Influence of One-Parameter Foundation on the Normalized Stiffness 
term k33
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Figure 2.14: Influence of One-Parameter Foundation on the Normalized Stiffness 

term k36
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2.2.4 Derivation of Work Equivalent Nodal Loads  

 

Fixed end moments and forces obtained with conventional cases are not valid 

for beam elements resting on elastic foundations. As seen in Figure 2.15, it is 

obvious that the foundation reaction will affect the fixed end bending moments and 

forces.  In some cases influence of foundation has a great importance.  
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Figure 2.15:  Nodal Forces due to Uniform Loading of a Beam Element Resting on 

One-Parameter (Winkler) Foundation. 
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The nodal load vector corresponding to the loading function, q(x), acting on 

the span L shown in Figure 2.15a is given by 

{ } [ ]∫=
L

dxxqNP
0

)(  (2.45) 

 where [ N ] is the shape functions for beam elements resting on one-

parameter elastic foundation.  

 

For a distributed moment m(x) acting along the element as shown in Figure 

2.15b, the load vector can be rewritten as: 

 

{ } [ ]
∫=
L

dxxm
dx
NdP

0

)(  (2.46) 

The above equations can be used to determine the load vectors for many 

common loading types. As stated earlier the plate will be represented in this study by 

a discrete number of intersecting beams. Since beam elements can be accepted as 

infinitesimal elements of plates, many types of loading can be represented with 

uniformly distributed loads or point loads applied at the nodes. Therefore, the nodal 

load vector will be derived only for ( q(x) = q0 ) uniformly distributed loading of the 

beam elements.    

 

Referring to Figure 2.15a for uniform distributed loading, q0, the equivalent 

nodal loads can be obtained by rewriting Equation (2.45) as: 

 

{ } dx

N
N
N
N

q

M
F
M
F

P
L

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧
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⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

= ∫
6

5

3

2

0
0

2

2

1

1

 (2.47) 

Inserting the corresponding shape functions from Equation (2.29) into 

Equation (2.47), the nodal loads obtained as: 
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[ ] [ ]
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It is obvious that when foundation parameter k1 tends to zero, the terms in 

Equations (2.48a) and (2.48b) must reduce to the conventional beam fixed end forces 

obtained by Hermitian functions. The well known terms are obtained as: 

 

[ ] [ ]
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2
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λλ
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 (2.49b) 

 

In order to compare the influence of the foundation parameter k1 on fixed end 

forces, the normalized terms of Equation (2.48) with those of Equation (2.49) are 

portrayed in Figures 2.16 and Figure 2.17. 
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Figure 2.16:  Normalized Nodal Force F1 due to Continuous Loading of a Beam 

Element Resting on One-Parameter (Winkler) Foundation. 
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Figure 2.17:  Normalized Nodal Force M1 due to Continuous Loading for a Beam 

Element Resting on One-Parameter (Winkler) Foundation. 

 41



2.3 PROPERTIES OF BEAM ELEMENTS RESTING ON TWO-

PARAMETER ELASTIC FOUNDATION 

 

 The main advantage of the two-parameter elastic foundation model is to 

provide a mechanical interaction between the individual spring elements. This 

relationship between the springs that shows a more realistic behaviour of the soil 

reaction eliminates the discontinuous behaviour of Winkler model.  
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Figure 2.18: Representation of the Beam Element Resting on Two-Parameter 

(Generalized) Foundation 

 

 

The generalized foundation as a representation of two-parameter model 

implies that at the end of each translational spring element there must be also a 

rotational spring to produce a reaction moment ( ) proportional to the local slope at 

that point. A representation of the foundation with closely linear translational and 

rotational springs underlying a beam element is shown in Figure 2.18. 

θk
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2.3.1 Derivation of the Differential Equation of the Elastic Line  

 

For generalized foundations the model assumes that at the point of contact 

between plate and foundation there is not only pressure but also distributed moments 

caused by the interaction between linear springs. These moments are assumed to be 

proportional to the slope of the elastic curve by a second parameter for foundation. 

That is, the reaction force intensity (p) at any point for generalized foundation can be 

rewritten for beam elements as: 

 

2

2

1
)()()(

dx
xwdkxwkxp θ−=  (2.50) 

To determine the basic differential equation of the beam elements, the same 

procedures used for plate elements in Section 1.2 will be re-examined.  However, the 

equation of the elastic curve derived for a beam element resting on a two-parameter 

elastic foundation from the equilibrium equations of an infinitesimal segment of the 

structural member in as: 

 

)()()()(
2

2

14

4

xq
dx
xwdkxwk

dx
xwdEI =−+ θ  (2.51) 

 

As defined in previous section for beam elements k1 is the Winkler parameter 

with the unit of force per unit length/per length and kθ is the second parameter that is 

defined as the reaction moment proportional to the local angle of rotation in 

generalized foundation model with unit of moment per unit length.  

  

2.3.2 Derivation of the Exact Shape Functions 

 

For a beam element resting on two-parameter elastic foundation, the 

homogeneous form of Equation (2.51) is obtained by equating =0. )(xq
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4

4

=+− xwk
dx
xwdk

dx
xwdEI θ  (2.52) 

 
to solve the above equation firstly let us introduce  

 

EI
kA θ=   and  

EI
kB 1=  (2.53) 

Equation (2.52) can then be rearranged as: 

 

0)()()(
2

2

4

4

=+− xBw
dx
xwdA

dx
xwd  (2.54) 

Let  n
n

n

D
dx
d

=  then the characteristic Equation (2.54) can be written as: 

0)()( 24 =+− xwBADD  (2.55) 

The roots of the characteristic equation are 
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 (2.56) 

 There are three possible combinations of parameters A and B that must be 

considered to define Equation (2.56). The cases are 

 

BA

BA

BA

2

2

2

>

=

<

 (2.57) 
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Since the case BA 2= (or EIkk 14=θ ) is a very special one it is not 

necessary to obtain solution of the equation for this case. It is possible to obtain an 

accurate solution by increasing kθ a very small amount that let to use the solution for 

BA 2>  case. Therefore, solution of the differential equation would be obtained for 

the other possible cases. 

 

2.3.2.1  The Shape Functions for the Case BA 2<   

 

 For this case Equation (2.56) yields  
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 (2.58) 

 

 Utilizing Equation (2.12) for the first parameter and a new auxiliary quantity 

for the second parameter as 

 

EI
kA

EI
kB

44

44
4 14

θδ

λ

==

==
 (2.59) 

 

then the first root can be expressed in the following way: 
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by defining new quantities to simplify the term 
 

δλβ

δλα
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2

22 βαδ −
=→  (2.61) 

 

 Both α  and β  have dimension of 1/L. Then substitute the new quantities 

into Equation (2.60), the first root can be written in simplified form as:  
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The other roots also can be found by the same procedures. Then the roots are: 
 

βα
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 (2.62) 

 

Considering the above roots solution of Equation (2.52) is: 

  

=)(xw
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[ ] [ ]( ) [ ] [ ]( )xxeaxxea

xxeaxxea
xx

xx

ββββ

ββββ
αα

αα

sincossincos

sincossincos

43

21

++−

+−++
−

−

 (2.63) 
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 Using hyperbolic functions 
  

[ ] [ ]
[ ] [ xSinhxCoshe

xSinhxCoshe
x
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αα

αα
α

α

−=

+=
− ]

 (2.64) 

 

Substituting the above hyperbolic functions and rearrange Equation (2.63) 

with defining the new constants, the closed form of the solution in terms of 

hyperbolic and trigonometric functions is obtained as: 

 

=)(xw
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 (2.65) 

 

By neglecting foundation effects for torsional degree of freedoms, a linear 

description of the angular displacement at any point along the element can be 

expressed as Ø(x)= a1+a2x. Inserting the angular displacements due to torsional 

effects, Equation (2.65) can be rearranged as follows: 
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then, the closed form equation can be expressed in matrix form as: 

 

CBw T=  (2.67) 
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The generalized displacement vector which forms boundary conditions shown 

in Figure 2.4 is obtained with x= 0 and x= L as in Section 2.2.2. Then the arbitrary 

constant elements of the vector C can be related to the end displacements in matrix 

form as follows: 
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or 

[ ] [ ] [ ]CHd ⋅=  (2.69) 

The arbitrary constant vector C can be defined by 

 

[ ] [ ] [ ]dHC ⋅= −1  (2.70) 

 

Here [H] is a 6x6 matrix. Substituting Equation (2.70) into Equation (2.67) 

leads to the closed form solution of the differential equation that can be written in 

matrix form as: 

 

[ ] [ ] [ ] [ ]dHBw T ⋅⋅= −1  (2.71)   

 

Equation (2.71) can be redefined by introducing vector N that includes six 

shape functions. Then the closed form of the solution in terms of shape functions and 

the generalized displacements defined in Figure 2.4 is 
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or 
 

[ ] [ ] [ ]dNw ⋅=  (2.72b) 

 

where 

 

[ ] [ ] [ ] 1−⋅= HBN T  (2.73) 

 

For BA 2<  the shape functions can be obtained by the same procedures 

followed for one-parameter case. After the necessary evaluations the shape functions 

determined as follows:  
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2.3.2.2  The Shape Functions for the Case BA 2>   

 

For BA 2>  the roots of Equation (2.56) are definite. Therefore, by 

substituting the auxiliary parameters defined in Equation (2.59) into Equation (2.56) 

the first root can be expressed in the following way: 
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 Redefining the β term of Equation (2.61) to simplify the above equation: 
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 Both α  and β  as previously mentioned have dimension of 1/L. substituting 

the quantities into Equation (2.75), the first root can be written as:   
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The other roots also can be found by the same procedures. Then the full set is  
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and the solution of Equation (2.52) for BA 2>  is 
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Substituting the hyperbolic functions and inserting the angular displacements 

due to torsional effects, the closed form solution can be rearranged as follows: 
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After the necessary evaluations as previously done the shape functions for the 

case BA 2>  determined as follows:  
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For both BA 2<  and BA 2>  cases, when foundation parameter k1 and 

kθ tends to zero (dependently λ→0, δ→0, α→0, β→0), the terms in Equation (2.74) 

and Equation (2.81) must reduce to Hermitian functions. 
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To observe the influence of the foundation parameters, it is necessary to 

compare the expressions in Equations (2.67) and (2.81) with the Hermitian 

polynomials in Equation (2.82). For clarifying the comparison let Equations (2.61) 

and (2.76) be rearranged as follows: 
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 The effect of the foundation parameters k1 and kθ on the shape function terms 

given in Equation (2.74) for BA 2<  and Equation (2.81) for BA 2> with 

corresponding terms of Equation (2.82) is portrayed in Figure 2.19 to Figure 2.30. 
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Figure 2.19: Variation of the Shape Function ψ2, for P=0.1 
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Figure 2.20: Variation of the Shape Function ψ2, for P=1 
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Figure 2.21: Variation of the Shape Function ψ2, for P=5 
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Figure 2.22: Variation of the Shape Function ψ3, for P=0.1 
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Figure 2.23: Variation of the Shape Function ψ3, for P=1 
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Figure 2.24: Variation of the Shape Function ψ3, for P=5
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Figure 2.25: Variation of the Shape Function ψ5, for P=0.1 
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Figure 2.26: Variation of the Shape Function ψ5, for P=1 
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Figure 2.27: Variation of the Shape Function ψ5, for P=5 
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Figure 2.28: Variation of the Shape Function ψ6, for P=0.1
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Figure 2.29: Variation of the Shape Function ψ6, for P=1 
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Figure 2.30: Variation of the Shape Function ψ6, for P=5
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2.3.3 Derivation of the Element Stiffness Matrix 

 
 

The element stiffness matrix of a beam element, which relates the nodal 

forces to the nodal displacements resting on two-parameter elastic foundation can be 

obtained by the same procedures as in Section 2.2.3. As a summary, the stiffness 

matrix, [Ke], for the prismatic beam element shown in Figure 2.18 can be obtained 

from the minimization of strain energy functional U as follows: 
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Substituting w(x) and its derivatives from Equation (2.72) into Equation 

(2.85), the stiffness matrix can be written in the following form 
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where N is, a 6x1 matrix of the exact shape functions, given in Equation (2.74) for 

BA 2<  and Equation (2.81) for BA 2> . Their first and second derivatives in 

matrix forms are 
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Substituting N from Equations (2.74) and (2.81) and their derivatives, using 

Equations (2.88a) and (2.88b), into Equation (2.87) and carrying out the necessary 

integrals and procedures the stiffness terms are obtained for the cases: 
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the other terms of the stiffness matrix for both cases are 

L
GJkkkk =−=−== 41144411  (2.91.a) 

04645434216151312 ======== kkkkkkkk  (2.91.b) 

23533532 kkkk ===  (2.91.c) 

26626556 kkkk ===  (2.91.d) 

2552 kk =  (2.91.e) 

2255 kk =  (2.91.f) 

3663 kk =  (2.91.g) 

3366 kk =  (2.91.h) 

 
For cases BA 2<  and BA 2> , the terms in Equations (2.89) and (2.90) 

must reduce to the conventional stiffness terms when foundation parameter k1 and kθ 

tends to zero (λ→0 and δ→0 or α→0 and β→0).  They are verified for the both 

cases:  
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 (2.92.f) 

 

The normalized terms as the ratio of the Equations (2.89) and (2.90) to    

Equation (2.92) are plotted in three-dimensional view to observe the influence of the 

foundation parameters. The p and t terms given in Figures 2.31 to 2.36 represents 

dominant effects of the first and the second foundation parameters respectively. Note 

that as t sets to zero the same curves of the Figures 2.9 - 2.14 obtained. 
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Figure 2.31: Normalized k22 Term for Two-Parameter Elastic Foundation
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Figure 2.32: Normalized k23 Term for Two-Parameter Elastic Foundation 
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Figure 2.33: Normalized k25 Term for Two-Parameter Elastic Foundation 
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Figure 2.34: Normalized k26 Term for Two-Parameter Elastic Foundation 
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Figure 2.35: Normalized k33 Term for Two-Parameter Elastic Foundation 
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Figure 2.36: Normalized k36 Term for Two-Parameter Elastic Foundation 
 
 

 

2.3.4 Derivation of the Work Equivalent Nodal Load Vector 

 

The work equivalent nodal loads of a beam element resting on generalized 

foundation as shown in Figure 2.87a can be represented by Figure 2.87b. The fixed 

end forces are formed by shape functions. Since the shape functions are vary by 

foundation parameters the conventional cases are not valid for beam elements resting 

on elastic foundations. That is, foundation reactions will affect the equivalent nodal 

loads. 
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Figure 2.37: (a) Continuous Loading of a Beam Element Resting on Two-Parameter 

(Generalized) Foundation (b) Nodal Forces due to the Loading. 

 

 

In this study, as mentioned in Section 2.3.4, the plate will be represented by a 

discrete number of intersecting beams. Since beam elements can be accepted as 

infinitesimal elements of plates, many types of loading can be represented with 

uniformly distributed loads or point loads applied at the nodes. Therefore, the nodal 

load vector will be derived only for ( q(x) = q0 ) uniformly distributed loading of the 

beam elements.    
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The equivalent nodal loads referring to Figure 2.37 for uniform distributed 

loading, q0, can be obtained by rewriting Equation (2.45) as: 
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where [ N ] is the shape functions for either region BA 2<  or BA 2>  for beam 

elements resting on two-parameter elastic foundation.  

 

Inserting the corresponding shape functions from Equation (2.74) into 

Equation (2.93), the nodal loads yields, for BA 2<   
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In the second region, inserting the corresponding shape functions from 

Equation (2.81) into Equation (2.93), the nodal loads yields, for BA 2>   
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For both BA 2<  and BA 2>  cases, when both of the foundation 

parameters k1 and kθ tend to zero, the terms in Equations (2.94) and (2.95) will 

reduce to the conventional beam fixed end forces obtained by Hermitian functions. 

That is 

2
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Normalizing Equation (2.94) for BA 2<  and Equation (2.95) for BA 2>  

with conventional terms of Equation (2.96) can be used to observe the effect of the 

foundation parameters, k1 and kθ, on the nodal forces. For clarifying the comparison 

let foundation parameters be rewritten as:  
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The normalized terms with respect to indirectly foundation parameters are shown in 

Figures 2.37 and 2.38. 
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Figure 2.38: Normalized F1 Term for Uniform Distributed Loaded Beam Elements 

Resting on Two-Parameter Elastic Foundation 
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Figure 2.39: Normalized M1 Term for Uniform Distributed Loaded Beam Elements 

Resting on Two-Parameter Elastic Foundation     
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CHAPTER 3 
 
 

EXTENSION TO VIBRATION AND STABILITY 

PROBLEMS 
 

3.1 INTRODUCTION  

 

Since response of structures frequently involves a dynamic process or 

stability, in some cases it will be more realistic to extend the formulation in Chapter 

2 to enable buckling and stability solutions. Therefore, in engineering practice, 

beside static case often one or both of the stability and dynamic effects must be taken 

into consideration to the plate analysis and design problems. It will be necessary to 

describe the governing equation of motion of plates in a general mathematical form 

for such cases. This can be achieved by inserting both of the inertia force due to the 

lateral translation and in-plane loading simultaneously, in an appropriate way, into 

the governing differential equation for static case. Referring to Figure 3.1, the 

governing equation for plates resting on generalized foundation under the combined 

action of transverse load and biaxial in-plane loading can be obtained by rearranging 

Equation (2.1) as: 
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 (3.1) 

 
where is the transverse deflection of the plate, is 

the plate flexural rigidity,  

),,( tyxww = )1(12/ 23 ν−= EhD

m   is the mass of the plate per unit area, Nx and Ny are in-
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plane loads in x and y directions respectively, and k1, kθ are the foundation 

parameters defined in the previous chapter. 
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Figure 3.1: The Representation of a Modal Plates Resting on 

Foundation Under the Combined Action of Transverse Load and Bia

Loads. 
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Equation (3.1) is a linear fourth-order partial differential equation for the 

unknown displacement function ),,( tyxww = .  If there are no any loads other than 

the in-plane loads the equation will define an eigenvalue problem which allows us to 

find out the critical buckling loads. However if the in-plane and the transverse loads 

are set to zero then it will be again an eigenvalue problem that describes the case of a 

freely vibrating plate. Accordingly the governing differential equation of the plates 

under static buckling of plates is: 
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 (3.2) 

 

On the other hand, the governing differential equation of the freely vibrating plate is: 
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Bazant (1989) has stated that buckling of plates is analogous to buckling of 

columns and frames. The similarities are bifurcation type of buckling with similar 

critical load and the possibility of solving the critical loads from linear eigenvalue 

problem. Dynamic problems of the plates with arbitrary contours and arbitrary 

boundary condition are very difficult or often impossible to solve in closed form by 

the classical methods based on Equations (3.1) to (3.3). In some respects dynamic 

behaviour of plates resembles that of beams. Therefore plates can be modeled as an 

assemblage of individual beam elements interconnected at their neighboring joints as 

represented in Figures 3.2 and 3.3. By representing the plate with assemblage of 

individual beam elements interconnected at their neighboring joints, the system 

cannot truly be equal to the continuous structure, however sufficient accuracy can be 

obtained similar to the static case. By representing the plate shown in Figure 3.1 with 
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individual beam elements the problem will be reduced to one-dimensional one. Then 

Equations (3.2) and (3.3) can be rewritten for one-dimensional beam elements as: 
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The main advantage of the reduction is that both of the exact geometric 

stiffness matrix and consisting mass matrix can be determined for the beam elements. 

These matrices will be used as a basis in Chapter 4 for assembling the plate problems 

in a proper way. Then dynamic problems of the plates resting on two-parameter 

foundation with arbitrary loading and boundary conditions could be solved 

approximately.  

 

3.2 CONSISTENT MASS MATRIX 

 

It is possible to evaluate mass influence coefficients of a structural element 

with the procedures similar to that obtaining the element stiffness matrix by making 

the use of finite element concept (Clough and Penzien, 1993). The consistent mass 

matrix of beam elements resting on elastic foundations can also be evaluated by the 

same procedures. 

 

The degrees of freedom of the element are the torsion, rotation and translation 

at each end. Since the angular displacements are obtained from the pure torsion 

member, the torsional DOF’s are independent. Then it can be assumed that the 

displacements within the span are defined again by the same interpolation functions 

those already derived in Chapter 2 for obtaining the element stiffness matrices. 
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Consider the beam element shown in Figure 3.2 having a mass distribution 

m(x). If it were subjected to a unit angular acceleration at point a, the acceleration 

would be developed along its length as follow:  

 

22 )()( wxxw &&&& ψ=  (3.6) 

 

By d’Alembert’s principle, the inertial force due to this acceleration is: 
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Figure 3.2: The Representation of a Beam Element Subjected to a Unit Real 

Acceleration and Virtual Translation at the Left Side. 
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 By the principle of virtual displacements the mass influence coefficients 

associated with this acceleration as the nodal inertial forces can be evaluated from 

Equation (3.7). As an example, it is possible to evaluate the vertical force pa, 

equating work done by the external force due to virtual displacement, to the work 

done on the distributed inertial forces f I (x). That is 

 

∫=
L

Ia dxxwxfwp
0

3 )()( δδ  (3.8) 

Substituting the vertical virtual displacement in terms of the shape functions into 

Equation (3.7) then, 

∫=
L

dxxxxmm
0

3223 )()()( ψψ  (3.9) 

By this analogy, Equation (3.9) can be extended to evaluate for the other degrees of 

freedoms such as: 

 

∫=
L

jiij dxxxxmm
0

)()()( ψψ  (3.10) 

 

By using the proper shape functions for conventional beam or beam element 

resting on one or two parameter elastic foundations, Equation (3.10) enables us to 

evaluate all of the mass matrix terms. Computing the mass coefficients by the same 

shape functions with same procedures as done for determining the stiffness matrices 

is called consistent-mass matrices. 

 

3.2.1  Consistent Mass Matrix for One-Parameter Foundation 

 

Recalling the corresponding shape functions given in Equation (2.29) and 

substitute them into Equation (3.10) leads us to evaluate the consistent mass matrix 

for the beam elements resting on one-parameter elastic foundations. After evaluating 

the necessary integrations and introducing the constant mass distribution m(x)= µ as 

uniform mass per unit length, the mass matrix terms will be 
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where µ is mass per unit length and L
EI
kLp 4 1

4
== λ  

 

When foundation parameter k1 tends to zero (or p→0 ), the terms in Equation 

(3.11) must reduce to the conventional beam consistent mass terms obtained by 
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Hermitian functions. The correctness of the terms is verified that the terms reduce to 

the following conventional terms in matrix form. 
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The normalized terms represent the influence of the foundation parameter k1 

on the mass matrix terms given in Equation (3.11) and corresponding terms of the 

matrix given in Equation (3.12) is portrayed in Figures 3.3 to 3.8. 
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Figure 3.3: Influence of One-Parameter Foundation on the Normalized Consistent 

Mass Term m22 
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Figure 3.4: Influence of One-Parameter Foundation on the Normalized Consistent 

Mass Term m23
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Figure 3.5: Influence of One-Parameter Foundation on the Normalized Consistent 

Mass Term m25

 
 
 

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

p

m
26

/(-
13

m
L^

2/
42

0)
)

 
Figure 3.6: Influence of One-Parameter Foundation on the Normalized Consistent 

Mass Term m26
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Figure 3.7: Influence of One-Parameter Foundation on the Normalized Consistent 

Mass Term m33
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Figure 3.8: Influence of One-Parameter Foundation on the Normalized Consistent 

Mass Term m36
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3.2.2 Consistent Mass Matrix for Two-Parameter Foundation 

 
When we substitute the proper shape functions for the beam elements resting 

on two-parameter for both BA 2<  and BA 2>  cases given in Equations (2.74) 

and (2.81) respectively, into Equation (3.10) it leads us to evaluate the terms of 

consistent mass matrices. Since the terms of the mass matrix for the two-parameter 

cases are too complex and extremely long functions, they are presented in Appendix 

A. However, for purposes of confidence in the result, by letting both of the 

foundation parameters tend to zero, the correctness of the terms is checked. The same 

conventional beam consistent mass terms are again obtained as given in Equation 

3.12 

    
The influence of the foundation parameters k1 and kθ on the consistent mass 

terms for BA 2<  with corresponding terms of Equation (3.13) can be normalized 

as shown in Figures 3.9 to 3.14. Note that, as the second parameter tends to zero (i.e. 

t →0) the same two-dimensional curves of one-parameter case given in Figures 3.3 –

3.8 are obtained. Note that the p and t values given in the following figures are 

defined in Equations (2.97) and (2.98). 
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Figure 3.9: The Normalized Consistent Mass Term m22 fo

on Two-Parameter Foundation.  

 

 

 

 

 

 

 

 

 

 

 

 

  

p
 
Figure 3.10: The Normalized Consistent Mass Term m25 fo

on Two-Parameter Foundation.  
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Figure 3.11: The Normalized Consistent Mass Term m26

on Two-Parameter Foundation.  
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Figure 3.12: The Normalized Consistent Mass Term m33

on Two-Parameter Foundation.  
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Figure 3.13: The Normalized Consistent Mass Term m36 for Beam Elements Resting 

on Two-Parameter Foundation.  
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Figure 3.14: The Normalized Consistent Mass Term m56

on Two-Parameter Foundation.  
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3.3 CONSISTENT GEOMETRIC STIFFNESS MATRIX 

 

As an compressive axial force applied to a beam element, it is obvious that its 

stiffness will reduce. The axial force influences can be included to the problem by 

the consistent geometric stiffness terms. It is possible to evaluate the terms, similar to 

the case of obtaining the consistent mass matrices, without introducing any terms due 

to axial force into the governing differential equation .  
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Figure 3.15: The Deformed Shape of a Simply Supported Axially Loaded Beam 

Element.

 

 

Consider a simply supported beam subjected to compressive axial load as 

shown in Figure 3.15. Due to the load the element will deformed, the change in 

length of the element  can be obtained by the difference of the arc length and the 

horizontal length. From the Figure the arc length is 
2
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The series solution is 
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Work done by the axial force N,  the strain energy stored in the system, is 
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In this equation w can be defined as  

{ } { }wNxw T=)(  (3.18) 

where  is the joint displacement vector and { }w { }N  is the shape functions matrix of 

the beam element resting on one or two-parameter elastic foundation. For constant 

axial load, Equation (3.17) can be rewritten as: 
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In Equation (3.19) [  is  represents consistent geometric 

stiffness matrix of the beam element. Using this equation, each terms of the matrix in 

general form can be evaluated by: 
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By Equation (3.20) the consistent geometric stiffness using the proper shape 

functions terms for conventional beam or beam element resting on one or two 

parameter elastic foundations can be evaluated.  

 

3.3.1  Consistent Geometric Stiffness Matrix for One-Parameter Foundation 

 

The same procedures can be followed as done for determining the consistent-

mass matrices to obtain the geometric stiffness terms. That is, the corresponding 

shape functions given in the Equations (2.29), for the beam elements resting on one-

parameter elastic foundation can be substituted into Equation (3.20) to evaluate the 

geometric stiffness terms. After evaluating the necessary integrations, the terms will 

be obtained as: 
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where N is constant axial compressive force and L
EI
kLp 4 1

4
== λ  

 
When foundation parameter k1 tends to zero (or p→0 ), the terms in Equation 

(3.21) must reduce to the conventional beam consistent mass terms obtained by 

Hermitian functions. The correctness of the terms is verified that the terms reduce to 

the following conventional terms in matrix form.  
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The normalized terms represent the influence of the foundation parameter k1 

on the geometric stiffness terms given in Equation (3.21) and corresponding terms of 

the matrix given in Equation (3.22) are portrayed in Figures 3.16 to 3.21. 
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Figure 3.16: The Normalized Consistent Geometric Stiffness Term kG22 for Beam 

Elements Resting on One-Parameter Foundation.  
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Figure 3.17: The Normalized Consistent Geometric Stiffness Term kG23 for Beam 

Elements Resting on One-Parameter Foundation.  
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Figure 3.18: The Normalized Consistent Geometric Stiffness Term kG25 for Beam 

Elements Resting on One-Parameter Foundation 
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Figure 3.19: The Normalized Consistent Geometric Stiffness Term kG26 for Beam 

Elements Resting on One-Parameter Foundation 
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Figure 3.20: The Normalized Consistent Geometric Stiffness Term kG33 for Beam 

Elements Resting on One-Parameter Foundation 
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Figure 3.21: The Normalized Consistent Geometric Stiffness Term kG36 for Beam 

Elements Resting on One-Parameter Foundation. 
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3.3.2  Consistent Geometric Stiffness Matrix for Two-Parameter Foundation 

 
To obtain the geometric stiffness terms, it is necessary to reuse the same 

shape functions with same procedures again. That is, the corresponding shape 

functions given in the Equations (2.74) and (2.81) for the beam elements resting on 

two-parameter elastic foundation can be substituted into Equation (3.20) to evaluate 

the geometric stiffness terms. After evaluating the necessary integrations, the terms 

are obtained. Because of long expressions of the terms for the two-parameter cases, 

they are presented in Appendix B. The terms are verified by letting both of the 

foundation parameters tend to zero. The same conventional beam geometric stiffness 

terms are again obtained as given in Equation 3.22. 

 

  

The influence of the foundation parameters k1 and kθ on the consistent mass 

terms for BA 2<  with corresponding terms of Equation (3.13) can be normalized 

as shown in Figures 3.22 to 3.27. Note that, as the second parameter tends to zero (t 

→0) the same two-dimensional curves of one-parameter case given in Figures 3.16 –

3.21 are obtained. The p and t values given in the following figures, represents the 

influence of the foundation parameters, are defined in Equations (2.97) and (2.98). 
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Figure 3.22: The Normalized Consistent Stiffness T

Resting on Two-Parameter Foundation  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 3.23: The Normalized Consistent Stiffness T

Resting on Two-Parameter Foundation  
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Figure 3.24: The Normalized Consistent Stiffness Term kG26 for Beam Elements 

Resting on Two-Parameter Foundation 
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Figure 3.25: The Normalized Consistent Stiffness Term kG33 for Beam Elements 
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Figure 3.27: The Normalized Consistent Stiffness T

Resting on Two-Parameter Foundation  
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CHAPTER 4 
 
 

DISCRETIZED PLATES ON GENERALIZED 

FOUNDATIONS 
 

4.1 INTRODUCTION 

 

Since the structural behavior of a beam resembles that of a strip in a plate 

(Wilson, 2000), the framework method that replaces a continuous surface by an 

idealized discrete system can represent a two-dimensional plate. The representation 

of a plate through the lattice analogy at which the discrete elements are connected at 

finite nodal points is shown in Figure (4.1). The phrase “lattice analogy” has been 

used among others for this representation. The plate is modeled as an assemblage of 

individual beam elements interconnected at their neighboring joints. Therefore the 

exact fixed end forces and stiffness matrices obtained in Chapter 2 and the exact 

consistent mass and geometric stiffness matrices derived in Chapter 3 for 

conventional beam elements and beam elements resting on one or two parameter 

foundation are valuable tools to solve general plate vibration, buckling and bending 

problems.    

 

By this representation, the plate problems including buckling and free 

vibration, which have non-uniform thickness and foundation properties, arbitrary 

boundary and loading conditions and discontinuous surfaces, can be solved in a 

general form. Of course as Hrennikof (1949) stated the system cannot truly be equal 

to the continuous structure. However apart from errors associated with torsional and 

discretization effects sufficient accuracy can be obtained.     
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4.2 REPRESENTATION OF PLATES BY BEAM ELEMENTS 

 

In order to simplify the problem a rectangular plate can be represented by two 

sets of intersecting beam elements as a simple version of three dimensional structure 

connected at finite nodal points as shown in Figure 4.1. It is not necessary to have the 

elements intersect at right angles. That is the replacement implies that there are rigid 

intersection joints between all sets of beam elements, ensuring slope continuity. 

Because of plane rigid intersection, the elements can resist torsion as well as bending 

moment and shear. Therefore the idealized discrete element as shown in Figure 4.2 

can be replaced with a beam element that has 3 DOF at each node.  
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Figure 4.1: Idealized Discrete System at Which the Elements Are Connected at 

Finite Nodal Points of a Rectangular Thin Plate  
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Figure 4.2: Local Coordinates for a Grid Element 

 

 

The main advantage of this method is that plate problems

complex loading and boundary conditions, can be represented as

individual beam elements. If suitable stiffness coefficients can

accuracy of the method will be high. Since the element stiffne

discrete beam element resting on one or two parameter elastic

already been determined in Chapter 2, the method can be extended

resting on generalized foundation problems.  

 

4.3 ASSEMBLY OF DISCRETIZED PLATE ELEMENTS 

  

In gridwork systems two or three elements are connected

internal peripheries. At interior nodes four typical discrete individ

as shown in Figure 4.2 intersect. Matrix displacement method b

matrix approach is a very useful tool to solve gridworks with 

boundary conditions. It can be defined as a horizontal frame st

joints whose members and joints lie in a common plane. The 

usually normal to the plane of the structure as limited by the d

directions as shown in Figures 4.3 and 4.4.  
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Figure 4.3: Typical Numbering of Nodes, DOF’s and Elements of a Rectangular 

Plate  

 
 
 

Consider a typical member from a structural grid as shown in Figure 4.4 with 

the ends of the member denoted by i and j . The local axes of the member are x, y, z 

and the global axes (previously defined in Figure 4.3) are X, Y, Z. The possible end 

deformations of the element are a joint translation in z-direction and the torsional and 

bending rotations, respectively about x- and y- axes. That is, the degrees of freedoms 

(possible end deformations) of the element at i are two rotations, 1 and 2, and one 

translation, 3, at j they are similarly 4 and 5 for rotations and 6 for translation. 

 100



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BB  ttaanngg

LL    rraaddiiaall  

BB  rraaddiiaall  

Degree of 
Freedoms 

44

44 00 

5566,,5577,,5588 
θθ 

11 
22,,33,,44 

1177,,1188,,1199 

7711,,7722,,7733 

11 22 

77 

Node 
Numbers 

33 00 

2255 

22 44
 

4444 

LL  ttaannggeennttiiaall  

YY  Element 
Numbers 

XX  

 
Figure 4.4: Typical Numbering of Nodes, DOF’s and E

Circular Plate  

 
 

By using a proper numbering scheme to collec

nodal point in a convenient sequence the stiffness ma

Figures 4.3 for circular grids and Figure 4.4 for rectangu

follows: 
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where i is the individual element number, NE is the n

individual transformation matrix, ki is the proper ele

conventional beam element as given by Equation (2.43

on one-parameter elastic foundation as given by Equati
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ment stiffness matrix for a 

), for a beam element resting 

on (2.42) and two-parameter 



elastic foundation as given by Equations (2.89) and (2.89) and ksys is the stiffness 

matrix of the total structure.  
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Figure 4.5: Transformation of the Degrees of Freedom of a Typical Plane Element 

from Local (x, y, z) Coordinates to the Global (X, Y, Z) Coordinates 

 
 
Since the local positive direction of the beam elements have been defined 

previously, from Figure 4.5 the transformation matrix of an arbitrary plane element 

will be  
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 (4.2) 

 
where C = Cos(θ) and S = Sin(θ) 

Similar to determining the system stiffness matrix, for buckling problems the 

system geometric stiffness matrix can be obtained as follows: 

 

iGii

NE

i
akak T

1
Gsys ∑

=

=  (4.3) 
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where kGi is the proper element geometric stiffness matrix. For a conventional beam 

element this is given by Equation (3.22), and for a beam element resting on one-

parameter elastic foundation Equation (3.21) and two-parameter elastic foundation is 

given in Appendix B and kGsys is the geometric stiffness matrix of the total structure.  

 

The compressive axial loads decrease the effective stiffness of the structure. 

The critical load P, from the well-known equation of eigenvalue analysis must be 

found from 

 

0)kk( Gsyssys =− wλ  (4.4) 

 
The set of λ values that satisfy the above equation to be zero are called the 

eigenvalues of the problem, while the corresponding displacement vector w 

expresses the corresponding shapes of the buckling system known as the 

eigenvectors or mode shapes. The lowest eigenvalue can be defined as the first 

buckling load. For vibration problems the system consistent mass matrix is 

 

iii

NE

i
aMaM T

1
sys ∑

=

=  (4.5) 

 
where Mi is the proper element consistent mass matrix for a beam. Depending on the 

number of foundation parameters, it is given by Equation 3.12, 3.11, or Appendix A. 

Msys is the consistent mass matrix for the system. 

 

The equations of motion for a system in a free vibration as an eigenvalue 

problem may be written 

 
0)Mk( sys

2
sys =− wω  (4.6) 

where the quantities ω2 are the eigenvalues indicting the square of free vibration 

frequencies that satisfy the above Equation, while the corresponding displacement 

vector w express the fitting shapes of the vibrating system as the eigenvectors of 

mode shapes.  
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CHAPTER 5 

 
CASE STUDIES 

 
 

5.1    INTRODUCTION 

 

In order to check the validity of the solution techniques an example of a plane 

grid that consist of rigid attached mutually perpendicular beams without any 

foundation in a horizontal plane will be shown. After verifying the method widely 

different plate problems will be examined.   

 

 There are examples of a wide range of plates (such as; plate analysis, grid 

analysis, plates on one-parameter elastic foundation and plates on two- parameter   

elastic foundation) were solved by the finite grid solution. Comparison with known 

analytical and other numerical solutions yields accurate results as an approximate 

method. In addition the method developed for plates (extend beam elements to the 

plates) on generalized foundation is also applicable to slabs, girders and mat 

foundations in bridge and building structures. 

 

5.2 SAMPLE PROBLEM FOR PLANE GRID SUBJECTED TO    

TRANSVERSE LOADS 

 

 The first study is to analyze the plane-grid system solved by Wang (1970) 

shown in Figure 5.1. The system is a monolithic reinforced-concrete plate simply 

supported on four columns at A, B, C and D. the values of flexural and torsional 

rigidities for all elements are EI=288000 kip-ft2 and GJ=79142.4 kip-ft2 respectively. 
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Two loading conditions are to be investigated: 1) a 10-kip concentrated load applied 

at H and (LC1) and 2) a uniform load of 3 klf on the element BF (LC2). 
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Figure 5.1: The Given Grid System 

 
 
There are 8 nodes, 11 elements and 20 degrees of freedoms in the Figure. The 

element internal forces and the displacements values of the reference for both 

loading conditions are compared with the Finite Grid Solution and they are tabulated 

in Tables 5.1 and 5.2, respectively.  
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Table 5.1: The Comparison of the End Forces for the Present Study, Finite Grid 

Method (FGM) with Wang (1970) 

 
COMPARISON OF INTERNAL FORCES 

LC1 LC2 El. 
No   L. End M. R. End M. Tors. M. L. End M. R. End M. Tors. M.

Ref. 0.2245 20.1033 0.4221 0.6877 26.6887 3.53761 
FGM 0.22432 20.1 0.42159 0.68671 26.67 3.5349
Ref. -19.7902 0.753 -0.1456 -33.3826 -0.4439 6.66472 
FGM -19.785 0.75496 -0.14548 -33.357 -0.43532 6.6642
Ref. 2.761 23.1228 -1.2437 6.0058 -8.286 -0.82493 
FGM 2.7607 23.128 -1.2435 6.0043 -8.2632 -0.82376
Ref. -23.4002 0.3811 0.2419 16.4602 24.026 10.21514 
FGM -23.408 0.38659 0.24008 16.424 24 10.206
Ref. -2.9855 1.2746 -2.528 -6.6936 -49.4419 -9.91665 
FGM -2.985 1.2754 -2.522 -6.691 -49.436 -9.9123
Ref. -0.4221 11.8008 0.22432 -3.5376 6.2845 0.686716 
FGM -0.42159 11.802 0.22432 -3.5349 6.2884 0.68671
Ref. -10.557 2.5228 2.985 -5.4596 9.9166 6.6917 
FGM -10.558 2.522 2.985 -5.4646 9.9123 6.691
Ref. 0.5677 28.9562 0.31442 -3.1271 49.0296 -6.68718 
FGM 0.56707 28.948 0.31442 -3.1293 48.992 -6.6871
Ref. -30.4418 -4.9497 0.034322 -60.0696 43.5324 1.47419 
FGM -30.432 -4.9445 0.034322 -60.022 43.554 1.4741
Ref. 0.2966 22.6675 0.70886 5.2992 92.2964 -4.058810 
FGM 0.29773 22.663 0.70886 5.3034 92.266 -4.0588
Ref. -22.6776 2.7461 0.25402 -174.4697 32.9234 10.24911 
FGM -22.678 2.7422 0.25402 -174.46 32.909 10.249

 
 

 

 

From Table 5.1, apart from errors that may be associated by rounding the 

input numbers, error of the forces is less than 0.05% and from Tables 5.2 the 

displacements are exact. The results obtained are almost the same as the reference 

values. The results those can be accepted as exact are valuable for checking the 

correctness of the method. 
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Table 5.2: The Comparison of the Displacements for the Present Study, Finite Grid 

Method (FGM) with Wang (1970) 

 
COMPARISON OF THE DISPLACEMENTS 

LC1 LC2 DOF 
NO: Reference FGM Reference FGM 

1 -2.5330E-04 -2.5331E-04 -2.2107E-04 -2.2107E-04 
2 5.5371E-04 5.5371E-04 7.8485E-04 7.8485E-04 
3 -3.3854E-04 -3.3854E-04 -9.3573E-04 -9.3573E-04 
4 1.6224E-06 1.6224E-06 6.3081E-05 6.3081E-05 
5 -5.9481E-03 -5.9481E-03 -8.8099E-03 -8.8099E-03 
6 -3.0913E-04 -3.0913E-04 -2.2830E-03 -2.2830E-03 
7 -5.6894E-04 -5.6894E-04 -8.5142E-04 -8.5142E-04 
8 1.3421E-06 1.3421E-06 -1.6423E-05 -1.6423E-05 
9 5.1970E-04 5.1970E-04 6.8072E-04 6.8072E-04 
10 -1.9860E-03 -1.9860E-03 -1.5397E-03 -1.5397E-03 
11 2.5274E-04 2.5274E-04 1.5012E-04 1.5012E-04 
12 -4.6053E-05 -4.6053E-05 1.0770E-03 1.0770E-03 
13 -7.6928E-03 -7.6928E-03 -1.5435E-02 -1.5435E-02 
14 2.2847E-04 2.2847E-04 -8.8162E-04 -8.8162E-04 
15 -3.6579E-04 -3.6579E-04 9.7183E-04 9.7183E-04 
16 -5.6048E-03 -5.6048E-03 -2.4379E-02 -2.4379E-02 
17 2.7385E-04 2.7385E-04 3.0393E-04 3.0393E-04 
18 6.7087E-05 6.7087E-05 -3.3383E-04 -3.3383E-04 
19 7.8373E-04 7.8373E-04 2.3079E-03 2.3079E-03 
20 -5.1258E-05 -5.1258E-05 8.5352E-04 8.5352E-04 

 

 

 

5.3     SAMPLE BENDING PROBLEMS FOR RECTANGULAR PLATES  

 

5.3.1 Comparison with Boundary Element Method for Simply Supported 

Rectangular Plate on Two-Parameter Foundation  

A rectangular plate with uniform thickness, h = 0.05 m, and sides of length   

A = 1 m, B = 0.5 m, was solved first with a concentrated central loading F= 3000 kN, 

and then with a uniformly-distributed loading of intensity q = 6000 kN/m2. The 
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material properties are: E = 2.1x108 kN/m2, v = 0.3, and the foundation parameters 

are: k1 = 6.48 x 104 kN/m3, kθ = 2250.0 kN/m. The results were evaluated at internal 

nodes on the longer central line of the rectangle, and non-dimensional parameters 

w/w0 were defined such that, for concentrated loading w0=FAB/D; and for 

distributed loading w0=q(AB)2/D.  

 

The distributions of non-dimensional parameter: w/w0 and Mx/M0 for the two 

cases of loading are plotted against the corresponding boundary element solutions 

solved by EI-Zafrany (1996), as shown in Figures 5.2 - 5.4. However, the three-

dimensional view of deflections for concentrated loading at the centre and uniform 

distributed loading are plotted in Figures 5.5 and 5.8, respectively. 
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Figure 5.2: Comparison of FGM to BEM for Deflection along the Centerline of the 
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Figure 5.3: Comparison of FGM to BEM for Moment Mx Along the Centerline of 

the Simple Supported Rectangular Plate on Two-Parameter Elastic Foundation under 

Uniform Distributed Load 
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x y, z,( )  
Figure 5.5: Three Dimensional Deflection View of the Simple Supported 

Rectangular Plate on Two-Parameter Elastic Foundation Subjected to the Uniform 

Distributed Load  

 
 

x y, z,( )  
Figure 5.6: Three Dimensional View of Moment Mx Values in the Simple 

Supported Rectangular Plate on Two-Parameter Elastic Foundation Subjected to the 

Uniform Distributed Load 
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x y, z,( )  
Figure 5.7: Three Dimensional Deflection View of the Simple Supported 

Rectangular Plate on Two-Parameter Elastic Foundation Subjected to a Concentrated 

Load at the Center  

 
 

x y, z,( )  
Figure 5.8: Three Dimensional View of Moment Mx Values in the Simple 

Supported Rectangular Plate on Two-Parameter Elastic Foundation Subjected to a 

Concentrated Load at the Center  
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5.3.2 Comparison with Meshless Local Boundary Integral Equation Method 

for Simply Supported and Clamped Square Plates on Two-Parameter 

Foundation  

 

 A simply supported and a clamped square plate subjected to a uniformly 

distributed load will be considered. In the reference (Sladek et al., 2002), the side 

length a, the flexural rigidity D and Poisson ration v were chosen as 8 m, 1000 Nm 

and 0.3 respectively. The uniformly distributed load q was taken as 1N/mm2. 

 

 Firstly for the simple supported case, Winkler and Pasternak foundations is 

considered. The comparison of the FGM results with the local boundary integral 

equation method (LBIE) on the centreline of the plate for three different Winkler 

coefficients is given in Table 5.3. From the table one can see that the maximum 

relative error for deflections of points located on the axis passing through the centre 

of the plate is about less than 1%. This reflects a high degree of accuracy. The 

deflection of the centreline of the plate for three different Winkler coefficients is 

shown in Figure 5.9. 

 

 

Table 5.3: The Comparison of the Deflections at the Centreline for a Simply 

Supported Plate Resting on a Winkler Foundation with the LBIE 

 

k1=100 N/m3 k1=300 N/m3 k1=500 N/m3

coordinate 
(m) 

LBIE 
(mm) 

FGM 
(mm) 

Relative 
Error %

LBIE 
(mm)

FGM 
(mm)

Relative 
Error %

LBIE 
(mm) 

FGM 
(mm) 

Relative 
Error % 

0 7.925 7.933 0.25 3.751 3.719 0.84 2.399 2.373 1.08 

0.8 7.596 7.6138 0.12 3.622 3.596 0.73 2.331 2.309 0.94 

1.6 6.604 6.62 0.28 3.211 3.202 0.30 2.103 2.092 0.50 

2.4 4.95 4.99 0.80 2.472 2.481 0.36 1.657 1.66 0.19 

3.2 2.683 2.727 1.64 1.376 1.392 1.14 0.944 0.952 0.89 

4 0 0 - 0 0 - 0 0 - 
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Figure 5.9: Comparison of Deflections at the Centreline of the Simple Supported 

Square Plate on Winkler Foundation with the LBIE results 

 

 

One the other hand for the two-parameter foundation case, the numerical 

results of the maximum deflection wmax are given in Tables 5.4. The relative error is 

also less than 1 % as for the Winkler foundation. Then the accuracy is high and 

comparable with that for Winkler model. The influence of the variation of foundation 

parameters on the maximum deflections is shown in Figure 5.10. 

 
 
 
Table 5.4: The Comparison of the Maximum Deflections for a Simply Supported 

Plate Resting on the Two-Parameter Foundation with the LBIE 

 

coefficients 

k1(N/m3) k2 (N/m) 

 
LBIE (mm) 

 
FGM (mm) 

 
Relative Error 

% 

100 100 6.8147 6.7913 0.34 

300 300 3.0276 3.0034 0.80 

500 500 1.911 1.8941 0.88 

k1=500 N/m3

k1=300 N/m3
ssss 
20x20 
a=8  m. 
t=0.1 m.

a

a

 

k1=100 N/m3
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5.3.3 Comparison with Conical Exact Solution for Levy 

Parameter Elastic Foundation  

A parametric study for uniformly loaded SSSS (all edge

simple supported), SCSC (opposite two edges are simple suppor

clamped) and SFSF (opposite two edges are simple supported th

square plates on two-parameter foundation was studied by Lam (20

for Levy plates by using Green’s functions a solution method na

solutions have been derived. It is denoted that this solutions c

benchmark results to check the convergence, validity and accu

solutions.  We will make further use of this article in the following

For checking the validity of the finite grid method (FG

study was carried out for plates resting on two-parameter foundati

loaded square SSSS, SCSC and SFSF plates with different values
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dimensional foundation parameters, the central deflection and bending moment 

values have been compared with the benchmark results. For convenience and 

generality the following parameters have been introduced: 

k1 D
ak 4

1=   

k2 D
ak 2

2=  

w 3
4

)5.0,5.0( 10
qa

wD aa=         (5.1) 

Mx
2

2
)5.0,5.0( 10

qa
M aaxx=  
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qa

M
aayy

=  

where a is the length of the square plate, k1 and k2 are the Winkler and the second 

foundation parameters, D is the flexural rigidity of the plate, t is the thickness of  

plate, q is the uniform distributed load and w(0.5a,0.5a),. Mxx(0.5a,0.5a)  and Myy(0.5a,0.5a)  are 

deflection, moment about x-direction and moment about y-direction at the centre of 

the plate respectively . 

The comparison of non-dimensional parameters of the central deflections and 

bending moments w, Mx and My for the three cases of boundary conditions are 

plotted against the corresponding the conical exact solutions by Lam (2000), as 

shown in Figures 5.12 - 5.17 
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Figure 5.17b: Comparison of Bending Moment Mxx Ratios with Lam et al. (2002) at 

Midpoint of (SFSF) Rectangular Plate under Uniformly Distributed Load for t=.05m 
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5.4 BENDING PROBLEMS OF CIRCULAR AND ANNULAR PLATES  

 

5.4.1 Simple Support Annular Plate Under Distributed Loading On One-

Parameter Elastic Foundation 

 

The annular plate shown in Figure 5.18 is supported on an elastic foundation 

with Winkler parameter, k1 = 10000 kN/m3, has a uniform thickness, h = 0.25 m, and 

radiuses a = 2.5 m., b = 5 m., was attempted a uniformly distributed loading of 

intensity q = 200 kN/m2. The material properties are: E = 2.7x10E7 kN/m2 and          

v = 0.2.  

 

 

 

 

 

 

 

 

 

 

 

a=2.5m 

b=5m 

Figure 5.18: Uniformly Distributed Loaded Annular Plate Resting on Elastic 

Foundation  
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The plate, with simple support boundary conditions, results was evaluated at 

span of the plate. The comparison of the FGM solution with the reference ( Utku and 

İnceleme, 2000 ) is shown in Table 5.6 and Figure 5.19. The results with respect to 

the reference can be accepted as accurate. 

 
Table 5.6: The Comparison of the Deflections in Radial Direction and Maximum 

Moment for a Simply Supported Annular Plate Resting on Winkler Foundation with 

the Reference Values 

 
Radius 2750 3000 3250 3500 3750 4000 4250 4500 4750 Mmax
REF. (mm) 0.81 1.51 2.04 2.35 2.43 2.28 1.92 1.39 0.73 134.5
FGM (mm) 0.85 1.59 2.16 2.49 2.58 2.43 2.05 1.49 0.78 140.5
Relative Error % 4.35 4.98 5.42 5.75 6 6.21 6.4 6.59 6.79 4.291
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Figure 5.19: Comparison of the Results with Utku (2000) for an Annular Plate on 

Elastic Foundation under Uniform Distributed Loading Condition  
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5.4.2 Ring Foundation on One-Parameter Elastic Foundation 

 
The ring foundation example solved by Bowles (1996) is shown in Figure 

5.20. From the Figure there are three equally spaced (120o) concentreted loads of 675 

kN applied at points A,B and C and a 200 kNm tangential moment applied at A.  
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P P 
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B C 
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P P MxxP 

Figure 5.20: The Representation of the Forces Applied at the Ring Foundation 
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The plate properties, modulus of elastisity E, Poisson ratio v, and thickness t are 

given as 22400 Mpa,0.15 and 0.76 m. respectivelly and the foundation parameter is 

given as 13600 kN/m3. The results are tabulated in Table 5.6. The maximum relative 

error for deflections is obtained about 1.5 %. This reflects a high degree of accuracy 

with respect to the reference. The deflections along the ring are shown in Figure 

5.21. 

 
 
 

Table 5.7: The Comparison of the Deflections along the Ring Foundation with the 

Reference Values 

 

Locations in 
Degrees Reference 

(mm) 
FGM     
(mm) 

Relative 
Error % 

0 7.93 7.995 0.82 
18 5.95 5.960 0.16 
36 2.92 2.913 0.23 
54 1.27 1.252 1.45 
72 1.64 1.638 0.13 
90 3.85 3.857 0.18 
108 6.66 6.623 0.56 
126 7.38 7.316 0.87 
144 4.91 4.920 0.19 
162 2.26 2.285 1.09 
180 1.24 1.259 1.55 
198 2.26 2.285 1.09 
216 4.91 4.920 0.19 
234 7.38 7.316 0.87 
252 6.66 6.623 0.56 
270 3.85 3.857 0.18 
288 1.64 1.638 0.13 
306 1.27 1.252 1.45 
324 2.92 2.913 0.23 
342 5.95 5.960 0.16 
360 7.93 7.995 0.82 
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Figure 5.21: Comparison of the Results with Bowles (1996) for the Ring Foundation  

 
 

5.4.3 Circular Plate with Variable Thickness under Non-Uniform Loading 

Conditions on One-Parameter Elastic Foundation 

 

An industrial tower footing with various thickness and loading condition on 

elastic foundation with free end boundary conditions is considered. Wind moments 

of the tower idealized to puling and pushing vertical forces applied at convenient 

nodes as shown Figure 5.22. The details of the problem can be found in Bowles 

(1996).  
 
 

The deflections along the diameter of the footing compared with the  

reference values can be seen in Figure 5.23.   
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Figure 5.22: Wind Moments of the Refining Vessel Idealized to Puling and Pushing 

Vertical Forces Applied at Convenient Nodes 
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Figure 5.23: Comparison of Deflection Results along A to B Direction with Bowles 

(1996)  

 

 

5.4.4 Clamped Circular Plate Under Concentrated Loading on Two-

Parameter Foundation. 

 

A solid circular plate with a uniform thickness 0.05 m and an outer radius 

R0=0.5 m, subjected to a concentrated force F = 3000 kN at its centre is considered. 

The plate is resting on a two-parameter elastic foundation, and its material and 

foundation properties are 

 

k1 = 6.48 x 104 kN/m3

kθ = 2250.0 kN/m 

E = 2.1x108 kN/m2 and v = 0.3 

  

The parameter wo employed for disc cases is w0 = F(R0)2/D. The radial 

distributions of the non-dimensional parameter w/w0 is plotted against the 
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corresponding boundary element solutions ( EI-Zafrany and Fadhil, 1996 ), as shown 

in Figure 5.24. Also the three-dimensional view of deflection (w) is plotted in 

Figures 5.25.  
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Figure 5.24: Comparison of the Finite Grid Solution to The Boundary Element 

Solution for Deflection of Clamped Circular Plates under Concentrated Loading on 

2-Parameter Elastic Foundation 
 

 

S

Figure 5.25: Three-Dimensional View of Deflection of Clamped Circular Plates 

under Concentrated Loading on 2-Parameter Elastic Foundation 
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5.5 BUCKLING AND FREE VIBRATION PROBLEMS  

 

 

5.5.1 Plates with Abrupt Changes in Thickness  

 

Chung et al. (2000) studied a bi-directionally stepped square plate with 

simply supported edges shown in Figure 5.26. In this study, the variation of free 

vibration and buckling loads with the thickness ratio h2/h1 will be compared. the 

fundamental angular frequencies and the critical buckling loads are compared. The 

results are portrayed graphically in Figures 5.27 and 5.28.  
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Figure 5.26: Bi-Directionally Stepped Square Plate with all Edges Simply Supported 

(a) Plan; (b) Section 
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Figure 5.27: Comparison of Fundamental Frequencies with Chung (2000) for Bi-

Directionally Stepped and Simply Supported (SSSS) Square Plate  
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Figure 5.28: Comparison of Buckling Loads with Chung (2000) for Bi-Directionally 

Stepped and Simply Supported (SSSS) Square Plate under Uniaxial Compression  
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5.5.2 Uniform Plates on Non-Homogeneous Foundation 

 

In this case another study of Chung et al. (2000), a uniform square plate 

resting on a non-homogeneous foundation shown in Figure 5.28 is considered. The 

plate is supported on elastic foundation of modulus K2 within the central square 

region of size 1.2ax1.2a, and elsewhere the foundation modulus is K1. The 

fundamental angular frequencies are compared for all of the edges simple supported 

(SSSS) and clamped (CCCC) boundary conditions. The results for both simple 

supported and clamped edges are portrayed graphically in Figures 5.29 and 5.30 

respectively.  
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Figure 5.29: A Uniform Square Plate on Non-Homogeneous Elastic Foundation      

(a) Plan, (b) Section 
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Figure 5.30: Fundamental Frequency Coefficients of Square Plate on Non-

Homogeneous Elastic Foundation (SSSS) 
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Figure 5.31: Fundamental Frequency Coefficients of Square Plate on Non-

Homogeneous Elastic Foundation (CCCC) 
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5.5.3 Free Vibration Problems of Levy Plates on Two-Parameter Elastic 

Foundation 

 

Free vibration analysis of SSSS (all edges of the plate are simple supported), 

SCSC (opposite two edges are simple supported, the others are clamped) and SFSF 

(opposite two edges are simple supported the others are free) square plates on two-

parameter foundation was studied by Lam (2000). In this study, for Levy plates 

conical exact solutions have been derived by Green’s functions. It is denoted that 

these solutions can be accepted as benchmark results to check the convergence, 

validity and accuracy of numerical solutions.   

For checking the validity of the finite grid method (FGM), a comparison 

study was carried out for plates resting on two-parameter foundations. For the square 

plates with different values of k1 and k2 non-dimensional foundation parameters 

defined in Equation 5.1, the fundamental frequency values have been compared with 

the reference results. The results for SSSS and SCSC cases are tabulated in Table 

5.7. The comparisons of Fundamental frequencies for the two cases of boundary 

conditions are plotted against the corresponding the conical exact solutions by Lam 

(2000), as shown in Figures 5.31 and 5.32. 

 

 

Table 5.8: Comparison of the Finite Grid Solution with the Conical Exact Solutions 

for Fundamental Frequencies of the S.S.S.S Square Plate in Case of Different 

Foundation Parameters 

 

H=0.01, D=1, (10x10) SSSS SCSC 

Case k1 k2 FGM REF Err % FGM REF Err % 
1 0 0 20.761 19.74 5.2 27.182 28.95 6.1 
2 0 100 48.275 48.62 0.7 49.875 54.68 8.8 
3 100 0 23.252 22.13 5.1 28.702 30.63 6.3 
4 100 100 49.109 49.63 1.0 50.567 55.59 9.0 
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5.5.4 Buckling Problems of Levy Plates on Two-Parameters Elastic 

Foundation 

 

For the square plates which is defined in Section 5.4 with different values of 

k1 and k2 the buckling load parameters (Nc) have been compared with the 

benchmark (Lam et al., 2000) values. Tables 5.7, 5.8 and 5.9 represent the non-

dimensional buckling load parameters due to uniaxial and biaxial inplane loads for 

SSSS, SCSC and SFSF square plates on two-parameter elastic foundations. For each 

case of boundary conditions and inplane loads the results are plotted against the 

corresponding the conical exact solutions by Lam (2000), as shown in Figures 5.33 - 

5.41.  

 

 
 

Table 5.9: Comparison of the Finite Grid Solution with the Exact Solutions for 

Buckling Load Cases of the SSSS Square Plate in Case of Different Foundation 

Parameters 

 

ssss (Nc/π2) a=1,h=.01.D=1 
E=10920000  Nx=1,Ny=0  Nx=0,Ny=1  Nx=1,Ny=1  

Case k1 k2 FG Ref. Error % FG Ref. Error % FG Ref. Error %

1 0 0 3.855 4 3.63 3.855 4 3.63 1.924 2 3.8 

2 100 0 4.87 5.027 3.12 4.87 5.027 3.12 2.436 2.513 3.06 

3 0 100 18.51 18.92 2.18 18.51 18.92 2.18 12.06 12.13 0.6 

4 100 100 18.76 19.17 2.12 18.76 19.17 2.12 12.57 12.65 0.7 
 

 

 

 

 

 

 137



 

 

 

 

 

 

 

 

 

 

 

0.
0.98 

0.96 

Pcr(FGM)/ Pcr (REF.) 0.97 
 

     100 

  0 

1000 

k1

k2

N
N

 
Figure 5.34: Comparison of the Finite Grid Solution with

Solutions for Buckling Load of a Square (SSSS) Plate under U

Loading (Nx=1, Ny=0) on Two-Parameter Foundation  
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Figure 5.35: Comparison of the Finite Grid Solution with

Solutions for Buckling Load of a Square (SSSS) Plate under B

Loading (Nx=1, Ny=1) on Two-Parameter Foundation  
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Table 5.10: Comparison of the Finite Grid Solution with the Conical Exact Solutions 

for Buckling Load Cases of the SCSC Square Plate in Case of Different Foundation 

Parameters 
 

SCSC (Nc/π2) a=1,h=.01.D=1 
E=10920000  Nx=1,Ny=0  Nx=0,Ny=1  Nx=1,Ny=1  

  k1 k2 FG Ref. Error % FG Ref. Error % FG Ref. Error %

1 0 0 7.4147 7.691 3.59 6.5548 4 63.87 3.7219 3.83 2.82 

2 100 0 7.6712 7.948 3.48 7.304 7.491 2.50 4.1715 4.28 2.54 

3 0 100 20.446 20.74 1.42 21.893 18.81 16.39 13.861 13.96 0.71 

4 100 100 20.701 20.99 1.38 22.219 19.11 16.27 14.308 14.41 0.71 
 

 
 

The error percentage for k1=0 and k2=0 values shown in Table 5.10 and 

Figure 5.37 suggests that this may have been a printing error in Lam et al. (2000).  
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Figure 5.36: Comparison of the Finite Grid Solution with the Conical Exact 

Solutions for Buckling Load of a Square (SCSC) Plate under Uniaxial Compressive 

Loading (Nx=1, Ny=0) on Two-Parameter Foundation  
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Table 5.11: Comparison of the Finite Grid Solution with the Conical Exact Solutions 

for Buckling Load Cases of the SFSF Square Plate in Case of Different Foundation 

Parameters 

 

SFSF (Nc/π2) a=1,h=.01.D=1 
E=10920000  Nx=1,Ny=0  Nx=0,Ny=1  Nx=1,Ny=1  

Case k1 k2 FG Ref. Error % FG Ref. Error % FG Ref. Error %
1 0 0 0.9098 0.952 4.43 2.9702 2.593 14.55 0.9098 0.93 2.38 
2 100 0 1.9362 1.979 2.16 3.454 2.82 22.48 1.9362 1.63 19.08 
3 0 100 11.043 14.07 21.51 15.291 15.28 0.07 11.795 11.06 6.65 
4 100 100 12.068 14.33 15.79 15.459 15.4 0.38 12.068 11.76 2.62 
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Figure 5.40: Comparison of the Finite Grid Solution with the Conical Exact 

Solutions for Buckling Load of a Square (SFSF) Plate under Uniaxial Compressive 

Loading (Nx=0, Ny=1) on Two-Parameter Foundation  
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Figure 5.41: Comparison of the Finite Grid Solution with the Conical Exact 

Solutions for Buckling Load of a Square (SFSF) Plate under Biaxial Compressive 

Loading (Nx=1, Ny=1) on Two-Parameter Foundation 

 142



 

 

CHAPTER 6 
 
 

CONCLUSIONS 
 

6.1   SUMMARY 

 

Research on easily understood engineering approaches for analysis of plates 

resting on elastic foundations has not been covered sufficiently in the literature. For 

particular plate problems, closed form solutions have been obtained. However, even 

for conventional plate analysis these solutions can only be applied to the problems 

with simple geometry, load and boundary conditions. Of course for the two-

parameter elastic foundation soil model underneath plate problems the solution will 

be too much complex and there is no analytical solution other than simple cases. 

Therefore the objective of the present study has been to develop a quite general 

numerical solution for plates on elastic foundations.  

 

In this study a combination of finite element method, Lattice analogy and 

matrix displacement analysis of gridworks used to obtain a finite grid solution. In 

this method the plate is modeled as an assemblage of individual beam elements 

interconnected at their neighboring joints. Therefore the exact fixed end forces and 

the exact stiffness, consistent mass and geometric stiffness matrices for conventional 

beam elements and beam elements resting on one or two parameter foundation are 

valuable tools to solve plate vibration, buckling and bending problems. By this 

representation, also the plate problems which have non-uniform thickness and 

foundation properties, arbitrary boundary and loading conditions and discontinuous 

surfaces, can be solved in a general form.  
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The first aim has been to review the governing differential equations of beam 

elements. After obtaining solutions of the governing differential equations, exact 

shape functions (interpolation functions) have been derived by imposing boundary 

conditions. This study is extended to derive exact stiffness matrix, consistent mass 

and geometric stiffness matrices and work equivalent load vectors by finite element 

method. Then the discretized plate element reassembled by the matrix displacement 

method. That is, the stiffness, consistent mass and geometric stiffness matrices of the 

total structure is generated by using a proper numbering shame to collect all 

displacements for each nodal point in a convenient sequence.  

 

A wide range of complicated circular, annular and rectangular plate problems 

(such as; plate analysis, plates on one-parameter elastic foundation and plates on 

two- parameter elastic foundation) were solved by this solution technique called 

finite grid solution. It has been verified the validity of our solution with a broad 

range of applications such as bending, buckling and free vibration analysis of plates 

on either one or two parameter elastic foundation. In addition the method is also 

applicable to slabs, girders and mat foundations of structures. 

 

6.2 DISCUSSION OF RESULTS AND CONCLUSIONS 

 

From the derivations and applications of this dissertation some general points 

can be underlined as follows: 

 

The shape functions related to beams on elastic foundations are very sensitive 

to variation of foundation parameters after some limits. There are significant 

differences between fixed end loads obtained from Hermitian polynomials rather 

than exact shape functions. Comparisons between the two cases have been shown 

graphically. It can be recommended that for consistency one must use fixed end 

loads to represent load vector by using the results obtained from exact shape 

functions. 
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A different solution method has been proposed by researchers for the problem 

of beams resting on Winkler type foundation. They have inserted Hermitian 

polynomials into strain energy functional that has been derived in this study. In order 

to converge to the exact solution, the beam needs to be divided into smaller 

segments. The solution method is acceptable from two points of view. First, they use 

the same strain energy functional that is a correct treatment. In the second point, they 

divide the beam into smaller elements. Shape functions converge towards Hermitian 

polynomials when the parameter λL becomes smaller. This trend is portrayed 

graphically in Chapter 2. Therefore the solution is acceptable only at the expense of 

additional calculation. 

 

In this dissertation the response of plates underlain by a Winkler foundation 

and two-parameter foundation for the same problem was compared in many 

applications. From these results, it is inferred that presence of second foundation 

parameter kθ in the analysis is remarkably dominant. For instance, it gives smaller 

displacements so that smaller internal stresses, larger buckling loads and larger free 

vibration frequencies This might have been anticipated because strain energy density 

functional includes one more term in the case of two parameter foundation than in 

the case of the Winkler foundation. 

 

It is observed that the buckling load parameters increase as the foundation 

parameters increase. However the second foundation parameter exerts a greater 

influence on buckling loads and the fundamental frequencies when compared to the 

first foundation parameter. 

 

 

6.3 SUGGESTED FURTHER STUDIES 

  

 Some assumptions have been used throughout the present study. Under these 

assumptions, our solution strategy can be extended to many applications. The 
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following assumptions are drawn. Violation of these assumptions can lead other 

researches to continue the studies in this subject: 

 

1. In this solution, nonlinear effects of both plate and foundation are not 

included. One can apply the solutions to analyze plates with elastic 

foundation only if displacement field consists of small deflections. 

 

2. Depth effect of foundation is ignored in response. Since properties of 

continuum may change significantly at a considerable depth, depth effect 

may be needed for certain types of problems. 

 

3. Friction, shear deformation and torsional changes due to foundation 

parameters are not included. 

 

4. The foundation parameters are assumed to be constant and equal in 

compression and tension. In the general case, the foundation behaves 

differently, cannot take any tension. An iterative technique can be adapted 

to this solution for plates on tensionless foundations. 

 

5. In this study, the foundation parameters are assumed to be constants and 

their properties are not considered. Both experimental and theoretical 

studies must be performed. 

 

6. The solution technique presented in this study could be extended to three-

dimensional structures by discretizing vertical elements such as columns 

and shear walls.  
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APPENDIX A 
 

 

 Geometric stiffness terms of beam elements resting on two - parameter elastic 
foundation: 
 
a) For A<2*Sqrt(B) 
 
where A= kθ/(E*I) and B= k1/(E*I) see page 44   
 
XL=L 
p=λ∗XL 
λ= (k1/(4*E*I))**0.25 
δ= kθ/(4*E*I) 
t =δ/λ∗∗2

t1=(1-t)**(0.5) 
       t2=(1+t)**(0.5) 
  z1=t1 
  z2=t2 
 z=t 
C 
     D=(p**2*(-2 + Cos(2*p*z1) + z*Cos(2*p* z1) + 
     Cosh(2*p*z2) - z*Cosh(2*p*z2)))/XL**2 
C 
kG33=  kG66 =  (p*(-16*p*z1*z*z2 +8*p*z1*z2*Cos(2*p*z1) + 
       8*p*z1*z*z2*Cos(2*p*z1) -8*p*z1*z2*Cosh(2*p*z2) + 
       8*p*z1*z*z2*Cosh(2*p*z2) -4*z2*Sin(2*p*z1) + 
       12*z*z2*Sin(2*p*z1) +6*z2*Cosh(2*p*z2)*Sin(2*p*z1) - 
       8*z*z2*Cosh(2*p*z2)*Sin(2*p*z1) +2*z**2*z2*Cosh(2*p*z2)* 
       Sin(2*p*z1) -z2*Sin(4*p*z1) -2*z*z2*Sin(4*p*z1) - 
       z**2*z2*Sin(4*p*z1) +4*z1*Sinh(2*p*z2) + 
       12*z1*z*Sinh(2*p*z2) -6*z1*Cos(2*p*z1)*Sinh(2*p*z2) - 
       8*z1*z*Cos(2*p*z1)*Sinh(2*p*z2) -2*z1*z**2*Cos(2*p*z1)* 
       Sinh(2*p*z2) -8*p*Sin(2*p*z1)*Sinh(2*p*z2) + 
       8*p*z**2*Sin(2*p*z1)*Sinh(2*p*z2) + 
       z1*Sinh(4*p*z2) -2*z1*z*Sinh(4*p*z2) +z1*z**2*Sinh(4*p*z2)))/ 
       (4*XL*z1*z2*(-2 + Cos(2*p*z1) + z*Cos(2*p*z1) + 
        Cosh(2*p*z2) - z*Cosh(2*p*z2))**2) 
C 
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kG22= kG55 =  (p**3*(8*p*z1*z2 +8*p*z1*z**2*z2 -8*p*z1*z2*Cos(2*p*z1) - 
       8*p*z1*z*z2*Cos(2*p*z1) -8*p*z1*z2*Cosh(2*p*z2) + 
       8*p*z1*z*z2*Cosh(2*p*z2) +8*p*z1*z2*Cos(2*p*z1)* 
       Cosh(2*p*z2) -8*p*z1*z**2*z2*Cos(2*p*z1)* 
       Cosh(2*p*z2) + 4*z2*Sin(2*p*z1) -12*z*z2*Sin(2*p*z1) - 
       6*z2*Cosh(2*p*z2)*Sin(2*p*z1) +8*z*z2*Cosh(2*p*z2)* 
       Sin(2*p*z1) -2*z**2*z2*Cosh(2*p*z2)*Sin(2*p*z1) + 
       z2*Sin(4*p*z1) +2*z*z2*Sin(4*p*z1) +z**2*z2*Sin(4*p*z1) + 
       4*z1*Sinh(2*p*z2) +12*z1*z*Sinh(2*p*z2) - 
       6*z1*Cos(2*p*z1)*Sinh(2*p*z2) - 
       8*z1*z*Cos(2*p*z1)*Sinh(2*p*z2) - 
       2*z1*z**2*Cos(2*p*z1)*Sinh(2*p*z2) - 
       8*p*z*Sin(2*p*z1)*Sinh(2*p*z2) + 
       8*p*z**3*Sin(2*p*z1)*Sinh(2*p*z2) + 
       z1*Sinh(4*p*z2) -2*z1*z*Sinh(4*p*z2) + 
       z1*z**2*Sinh(4*p*z2)))/(8*D**2*XL**3*z1*z2) 
C 
kG32= kG23 =  -(-4*p**4*Sin(p*z1)*Sinh(p*z2)*(p*z2*Cosh(p*z2)*Sin(p*z1)- 
       p*z*z2*Cosh(p*z2)*Sin(p*z1) +p*z1*Cos(p*z1)*Sinh(p*z2) + 
       p*z1*z*Cos(p*z1)*Sinh(p*z2) -2*Sin(p*z1)*Sinh(p*z2)))/ 
       (D**2*XL**4) 
C 
kG56= kG65 =  (-4*p**4*Sin(p*z1)*Sinh(p*z2)*(p*z2*Cosh(p*z2)*Sin(p*z1)- 
       p*z*z2*Cosh(p*z2)*Sin(p*z1) +p*z1*Cos(p*z1)*Sinh(p*z2) + 
       p*z1*z*Cos(p*z1)*Sinh(p*z2) -2*Sin(p*z1)*Sinh(p*z2)))/ 
       (D**2*XL**4) 
C 
kG52= kG25=  (p**3*(-4*p*z1*z**2*z2*Cos(p*z1)*Cosh(p*z2) + 
       2*p*z1*z*z2*Cos(3*p*z1)*Cosh(p*z2) + 
       2*p*z1*z**2*z2*Cos(3*p*z1)*Cosh(p*z2) - 
       2*p*z1*z*z2*Cos(p*z1)*Cosh(3*p*z2) +2*p*z1*z**2*z2*Cos(p*z1)* 
       Cosh(3*p*z2) +10*z*z2*Cosh(p*z2)*Sin(p*z1) + 
       2*z**2*z2*Cosh(p*z2)*Sin(p*z1) +3*z2*Cosh(3*p*z2)*Sin(p*z1) - 
       4*z*z2*Cosh(3*p*z2)*Sin(p*z1) +z**2*z2*Cosh(3*p*z2)* 
       Sin(p*z1) -z2*Cosh(p*z2)*Sin(3*p*z1) - 
       2*z*z2*Cosh(p*z2)*Sin(3*p*z1)-z**2*z2*Cosh(p*z2)*Sin(3*p*z1) - 
       10*z1*z*Cos(p*z1)*Sinh(p*z2)+2*z1*z**2*Cos(p*z1)*Sinh(p*z2) + 
       3*z1*Cos(3*p*z1)*Sinh(p*z2)+4*z1*z*Cos(3*p*z1)*Sinh(p*z2) + 
       z1*z**2*Cos(3*p*z1)*Sinh(p*z2)+4*p*z*Sin(p*z1)*Sinh(p*z2) - 
       4*p*z**3*Sin(p*z1)*Sinh(p*z2)+2*p*Sin(3*p*z1)*Sinh(p*z2) + 
       2*p*z*Sin(3*p*z1)*Sinh(p*z2)-2*p*z**2*Sin(3*p*z1)*Sinh(p*z2) - 
       2*p*z**3*Sin(3*p*z1)*Sinh(p*z2)-z1*Cos(p*z1)*Sinh(3*p*z2) + 
       2*z1*z*Cos(p*z1)*Sinh(3*p*z2)-z1*z**2*Cos(p*z1)*Sinh(3*p*z2) - 
       2*p*Sin(p*z1)*Sinh(3*p*z2)+2*p*z*Sin(p*z1)*Sinh(3*p*z2) + 
       2*p*z**2*Sin(p*z1)*Sinh(3*p*z2) - 
       2*p*z**3*Sin(p*z1)*Sinh(3*p*z2)))/(4*D**2*XL**3*z1*z2) 
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C 
kG35= kG53=  -(p**4*(-2*z + Cos(2*p*z1) + z*Cos(2*p*z1) - 
       Cosh(2*p*z2) + z*Cosh(2*p*z2))* 
       (p*z2*Cosh(p*z2)*Sin(p*z1) - 
       p*z*z2*Cosh(p*z2)*Sin(p*z1) + 
        p*z1*Cos(p*z1)*Sinh(p*z2) + 
       p*z1*z*Cos(p*z1)*Sinh(p*z2) - 
       2*Sin(p*z1)*Sinh(p*z2)))/(D**2*XL**4*z1*z2) 
C 
kG26=  kG62 =(p**4*(-2*z + Cos(2*p*z1) + z*Cos(2*p*z1) - 
       Cosh(2*p*z2) + z*Cosh(2*p*z2))* 
       (p*z2*Cosh(p*z2)*Sin(p*z1) - 
       p*z*z2*Cosh(p*z2)*Sin(p*z1) + 
        p*z1*Cos(p*z1)*Sinh(p*z2) + 
       p*z1*z*Cos(p*z1)*Sinh(p*z2) - 
       2*Sin(p*z1)*Sinh(p*z2)))/(D**2*XL**4*z1*z2) 
 
 
kG36=kG63=  (p**5*(4*p*z1*z*z2*Cos(p*z1)* 
        Cosh(p*z2) -2*p*z1*z2*Cos(3*p*z1)*Cosh(p*z2) - 
        2*p*z1*z*z2*Cos(3*p*z1)*Cosh(p*z2) + 
        2*p*z1*z2*Cos(p*z1)*Cosh(3*p*z2) - 
        2*p*z1*z*z2*Cos(p*z1)*Cosh(3*p*z2) - 
        10*z*z2*Cosh(p*z2)*Sin(p*z1)-2*z**2*z2*Cosh(p*z2)*Sin(p*z1) - 
        3*z2*Cosh(3*p*z2)*Sin(p*z1)+4*z*z2*Cosh(3*p*z2)*Sin(p*z1) - 
        z**2*z2*Cosh(3*p*z2)*Sin(p*z1) + 
        z2*Cosh(p*z2)*Sin(3*p*z1)+2*z*z2*Cosh(p*z2)*Sin(3*p*z1) + 
        z**2*z2*Cosh(p*z2)*Sin(3*p*z1)-10*z1*z*Cos(p*z1)*Sinh(p*z2) + 
        2*z1*z**2*Cos(p*z1)*Sinh(p*z2) + 
        3*z1*Cos(3*p*z1)*Sinh(p*z2)+4*z1*z*Cos(3*p*z1)*Sinh(p*z2) + 
        z1*z**2*Cos(3*p*z1)*Sinh(p*z2) + 
       16*p*Sin(p*z1)*Sinh(p*z2)-16*p*z**2*Sin(p*z1)*Sinh(p*z2) - 
       z1*Cos(p*z1)*Sinh(3*p*z2)+2*z1*z*Cos(p*z1)*Sinh(3*p*z2) - 
       z1*z**2*Cos(p*z1)*Sinh(3*p*z2)))/(2*D**2*XL**5*z1*z2) 
C 
kG11= kG44=1 
kG14= kG41= -1 
kG12= kG13 =kG15= kG16 =kG42= kG43 =k45= kG46=0 
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b) For A>2*Sqrt(B) 
 
 
Geometric stiffness terms of beam elements resting on two - parameter elastic 
foundation in exponential form; 
 
where A= kθ/(E*I) and B= k1/(E*I) see page 44. 
 

XL=L 
λ= (k1/(4*E*I))**0.25 
δ= kθ/(4*E*I) 

C 
      a=sqrt(λ**2+δ) 
      b=sqrt(δ-λ**2) 
C 
      y1=Exp(2*b*XL) 
      y2=Exp(2*a*XL) 
      y3=Exp((a-b)*XL) 
      y4=Exp((a+b)*XL) 
      y5=Exp((-a+b)*XL) 
      y6=Exp(2*(a-b)*XL) 
      y7=Exp(2*(a+b)*XL) 
      y8=8*a**2-8*b**2-(4*a**2)/y1-4*a**2*y1+(4*b**2)/y2+4*b**2*y2 
      y9=2*(-a+b)*(-a-b+a*y1+b*y2) 
      y10=b+a*y2-b*y2-a*y1*y2 
      y11=-a+a*y1-b*y1+b*y1*y2 
      y12=-(b*y1)-a*y2+a*y1*y2+b*y1*y2 
      y13=2*(b**2*y1-a**2*y2+2*a**2*y1*y2- 
              2*b**2*y1*y2-a**2*(y1)**2*y2+b**2*y1*(y2)**2) 
      y14=2*a+2*b-2*a*y1-(2*b)/y2 
      y15=2*a-2*b-(2*a)/y1+(2*b)/y2 
      y16=2*(-a+b+a*y1-b*y2) 
      y17=-2*a-2*b+(2*a)/y1+2*b*y2 
      y18=-a-b+b*y3*y4+a*y4*y5 
      y19=b-a*y2-b*y2+a*y6 
      y20=b+a*y2-b*y2-a*y7 
      y21=-a+a*y1-b*y1+b*y7 
      y22=-2*a*y3-2*b*y3+(2*b)/y4+2*a*y4 
      y23=2*(a*y3-a*y4+b*y4-b*y5) 
      y24=(-2*a)/y4-2*b*y4+2*a*y5+2*b*y5 
      y25=a-b+b*y3*y4-a*y4*y5 
C 
kG33= kG66=-((a-b)**2*(a+b)*y12**2)/(2*y13**2)+ 
       (a-b)**2*(a+b)*Exp(2*(a+b)*XL)*y12**2/(2*y13**2)+ 
       Exp((a+b)*XL)*(-2*(-(a**2)+b**2)**2*Exp((-a+b)*XL)*y11*y12/ 
       (b*y1*y13*y8)+2*(a**2-b**2)**2*y10*y12/ 
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       (a*Exp((-a+b)*XL)*y13*y2*y8))- 
       2*(-a+b)*(a+b)**2*y11**2/(y1**2*y8**2)+ 
       2*(-a+b)*(a+b)**2*Exp(2*(-a+b)*XL)*y11**2/(y1**2*y8**2)- 
       2*(a-b)*(a+b)**2*y10**2/(y2**2*y8**2)+ 
       2*(a-b)*(a+b)**2*y10**2/(Exp(2*(-a+b)*XL)*y2**2*y8**2)+ 
       2*(-(a**2)+b**2)**2*y11*y12/(b*y1*y13*y8)- 
       2*(a**2-b**2)**2*y10*y12/(a*y13*y2*y8)- 
       2*(-a+b)*(a+b)**2*y11*y9/(a*y1*y8**2)- 
       2*(a-b)*(a+b)**2*y10*y9/(b*y2*y8**2)+(a+b)*y9**2/(2*y8**2)- 
       (a+b)*y9**2/(2*Exp(2*(a+b)*XL)*y8**2)+ 
       (2*(-a+b)*(a+b)**2*Exp((-a+b)*XL)*y11*y9/(a*y1*y8**2)+ 
       2*(a-b)*(a+b)**2*y10*y9/(b*Exp((-a+b)*XL)*y2*y8**2))/ 
       Exp((a+b)*XL)+2*(-a+b)*(a+b)**2*XL* 
       (4*a*y10*y11*y13-4*b*y10*y11*y13+y1*y12*y2*y8*y9)/ 
       (y1*y13*y2*y8**2) 
C 
      TKG122=((a-b)*(a+b)*y10*y14/(y2*y8**2)+ 
       a**2*(a+b)*y10*y16/(b*Exp(2*a*XL)*y2*y8**2))/Exp(2*(-a+b)*XL)- 
       2*(-a+b)**2*(a+b)*XL*y11*y14/(y1*y8**2)- 
       (-a+b)*(a+b)**2*y11*y15/(b*y1*y8**2)+ 
       (-a+b)*(a+b)**2*Exp(2*b*XL)*y11*y15/(b*y1*y8**2)- 
       (-a+b)*(a+b)**2*y11*y16/(a*y1*y8**2)+ 
       (-a+b)*(a+b)**2*y11*y16/(a*Exp(2*a*XL)*y1*y8**2)- 
       (-a+b)*(a+b)*y11*y17/(y1*y8**2)+ 
       (-a+b)*(a+b)*Exp(2*(-a+b)*XL)*y11*y17/(y1*y8**2)- 
       (a-b)*(a+b)*y10*y14/(y2*y8**2)- 
       (a-b)*(a+b)**2*y10*y15/(a*y2*y8**2)+ 
       (a-b)*(a+b)**2*Exp(2*a*XL)*y10*y15/(a*y2*y8**2)- 
       a**2*(a+b)*y10*y16/(b*y2*y8**2)+b*(a+b)*y10*y16/(y2*y8**2)- 
       b*(a+b)*y10*y16/(Exp(2*b*XL)*y2*y8**2)- 
       (a-b)**2*(a+b)*y12*y14/(2*a*y13*y8)+ 
       (a-b)**2*(a+b)*Exp(2*a*XL)*y12*y14/(2*a*y13*y8)- 
       (a-b)*(a+b)*y12*y15/(2*y13*y8) 
kG56= kG65= -kG23= -kG32= TKG122+ 
       (a-b)*(a+b)*Exp(2*a*XL+2*b*XL)*y12*y15/(2*y13*y8)+ 
       (-a+b)**2*(a+b)*y12*y17/(2*b*y13*y8)- 
       (-a+b)**2*(a+b)*Exp(2*b*XL)*y12*y17/(2*b*y13*y8)+ 
       XL*(-2*a**3*y10*y13*y17+2*a**2*b*y10*y13*y17+ 
       2*a*b**2*y10*y13*y17- 
       2*b**3*y10*y13*y17-a**3*y12*y16*y2*y8-a**2*b*y12*y16*y2*y8+ 
       a*b**2*y12*y16*y2*y8)/(y13*y2*y8**2)- 
       (a**2-b**2)*y14*y9/(2*b*y8**2)+ 
       (a**2-b**2)*y14*y9/(2*b*Exp(2*b*XL)*y8**2)+ 
       (a+b)*y16*y9/(2*y8**2)- 
       (-(a**2)+b**2)*y17*y9/(2*a*y8**2)+ 
       XL*(b**3*y12*y16*y8-a**2*y13*y15*y9-2*a*b*y13*y15*y9- 
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       b**2*y13*y15*y9)/(y13*y8**2)+ 
       (-((a+b)*y16*y9)/(2*y8**2)+ 
       (-(a**2)+b**2)*Exp(2*b*XL)*y17*y9/(2*a*y8**2))/Exp(2*(a+b)*XL) 
C      
      w1=(a+b) 
      w2=(a-b) 
      w3=(-a+b) 
C 
      TKG133=-2*(a**2-b**2)**2*Exp(w3*XL)*y11*y19/(a*y1*y8**2)+ 
       2*(a**2-b**2)**2*Exp(-2*a*XL+w3*XL)*y11*y19/(a*y1*y8**2)+ 
       2*(-(a**2)+b**2)**2*Exp(w3*XL)*y10*y19/(b*y2*y8**2)- 
       2*(-(a**2)+b**2)**2*Exp(-2*b*XL+w3*XL)*y10*y19/(b*y2*y8**2)- 
       2*b**4*y11*y20/(w3*Exp(w1*XL)*y1*y8**2)- 
       2*a**2*(-(a**2)+2*b**2)*y11*y20/(w2*Exp(w1*XL)*y1*y8**2)+ 
       2*b**4*Exp(2*w3*XL-w1*XL)*y11*y20/(w3*y1*y8**2)+ 
       2*a**2*(-(a**2)+2*b**2)*Exp(2*w3*XL-w1*XL)*y11*y20/ 
       (w2*y1*y8**2)+2*b**4*y10*y21/(w3*Exp(w1*XL)*y2*y8**2)- 
       2*a**2*(-(a**2)+2*b**2)*y10*y21/(w3*Exp(w1*XL)*y2*y8**2)- 
       2*b**4*Exp(2*w2*XL-w1*XL)*y10*y21/(w3*y2*y8**2)+ 
       2*a**2*(-(a**2)+2*b**2)*Exp(-2*w3*XL-w1*XL)*y10*y21/ 
       (w3*y2*y8**2)-4*(a**2-b**2)**2*XL*(y1*y10*y20+y11*y2*y21)/ 
       (Exp(w1*XL)*y1*y2*y8**2)+2*(a**2-b**2)**2*y10*y18/ 
       (a*y2*y4*y8**2)-2*(a**2-b**2)**2*Exp(2*a*XL)*y10*y18/ 
       (a*y2*y4*y8**2)+2*(a**2-b**2)**2*Exp(-(a*XL)+b*XL)*XL*y12*y19/ 
       (y13*y8)-(a**2-b**2)**2*y12*y21/(a*Exp(w1*XL)*y13*y8) 
kG36=kG63=TKG133+(a**2-b**2)**2*Exp(2*a*XL-w1*XL)*y12*y21/(a*y13*y8)+ 
       w2**2*w1*y12*y18/(y13*y4*y8)-w2**2*w1*Exp(2*w1*XL)*y12*y18/ 
       (y13*y4*y8)-(-(a**2)+b**2)**2*(2*y11*y13*y18-y1*y12* 
       y20*y4*y8/Exp(w1*XL))/(b*y1*y13*y4*y8**2)+(-(a**2)+b**2)**2* 
       Exp(2*b*XL)*(2*y11*y13*y18-y1*y12*y20*y4*y8/Exp(w1*XL))/ 
       (b*y1*y13*y4*y8**2)-w2*w1*Exp(w3*XL)*y19*y9/y8**2+ 
       w2*w1*Exp(w3*XL-2*w1*XL)*y19*y9/y8**2-w3*w1**2*y20*y9/ 
       (a*Exp(w1*XL)*y8**2)+w3*w1**2*Exp(-2*a*XL-w1*XL)*y20*y9/ 
       (a*y8**2)-w2*w1**2*y21*y9/(b*Exp(w1*XL)*y8**2)+ 
       w2*w1**2*Exp(-2*b*XL-w1*XL)*y21*y9/(b*y8**2)+ 
       2*w2*w1**2*XL*y18*y9/(y4*y8**2) 
C 
      TKG144=Exp(2*b*XL)*(w2*b*y12*y22/(2*y13*y8)+w2*w1*Exp(2*a*XL)* 
       y12*y25/(y13*y4*y8))-w3*w1*y11*y22/(y1*y8**2)+w3*w1* 
       Exp(2*w3*XL)*y11*y22/(y1*y8**2)-2*w3**2*w1*XL*y10*y22/ 
       (y2*y8**2)-w3*w1**2*y11*y23/(a*y1*y8**2)+w3*w1**2*y11*y23/ 
       (a*Exp(2*a*XL)*y1*y8**2)-a**2*w1*y10*y23/(b*y2*y8**2)+ 
       b*w1*y10*y23/(y2*y8**2)-b*w1*y10*y23/(Exp(2*b*XL)*y2*y8**2)+ 
       a**2*w1*Exp(-2*a*XL-2*w3*XL)*y10*y23/(b*y2*y8**2)- 
       2*w3**2*w1*XL*y11*y24/(y1*y8**2)-w2*w1*y10*y24/(y2*y8**2)+ 
       w2*w1*Exp(2*w2*XL)*y10*y24/(y2*y8**2)-2*w2*w1**2*y10*y25/ 
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       (a*y2*y4*y8**2)-w2*b*y12*y22/(2*y13*y8)+w3*w1**2*XL*y12*y23/ 
       (y13*y8)-w2**2*w1*y12*y24/(2*a*y13*y8)+w2**2*w1*Exp(2*a*XL)* 
       y12*y24/(2*a*y13*y8)-w2*w1*y12*y25/(y13*y4*y8)-w3*(4*a**2*y11* 
       y13*y25+8*a*b*y11*y13*y25+4*b**2*y11*y13*y25+a**2*y1*y12*y22* 
       y4*y8)/(2*b*y1*y13*y4*y8**2)+Exp(2*b*XL)*(2*w2*w1**2* 
       Exp(2*w2*XL)*y10*y25/(a*y2*y4*y8**2)+w3* 
       (4*a**2*y11*y13*y25+8*a*b*y11*y13*y25+4*b**2*y11*y13*y25+ 
       a**2*y1*y12*y22*y4*y8)/(2*b*y1*y13*y4*y8**2)) 
kG26= kG62= -kG35= -kG53=  TKG144-(-(a**2)+b**2)*y22*y9/(2*a*y8**2)+ 
       (-(a**2)+b**2)*y22*y9/(2*a*Exp(2*a*XL)*y8**2)+ 
       w1*y23*y9/(2*y8**2)-a**2*y24*y9/(2*b*y8**2)+ 
       b*y24*y9/(2*y8**2)-b*y24*y9/(2*Exp(2*b*XL)*y8**2)- 
       2*w1**2*XL*y25*y9/(y4*y8**2)+(-(w1*y23*y9)/ 
       (2*Exp(2*a*XL)*y8**2)+ 
       a**2*y24*y9/(2*b*y8**2))/Exp(2*b*XL) 
C 
kG22= kG55= Exp(w1*XL)*((a**2-b**2)*Exp(w2*XL)*y14*y15/(a*y8**2)+ 
       (-(a**2)+b**2)*y15*y17/(b*Exp(w2*XL)*y8**2))+ 
       ((a**2-b**2)*Exp(w2*XL)*y14*y16/(b*y8**2)+ 
       (-(a**2)+b**2)*y16*y17/(a*Exp(w2*XL)*y8**2))/Exp(w1*XL)- 
       w2*y14**2/(2*y8**2)+w2*Exp(2*w2*XL)*y14**2/(2*y8**2)- 
       (a**2-b**2)*y14*y15/(a*y8**2)-w1*y15**2/(2*y8**2)+ 
       w1*Exp(2*w1*XL)*y15**2/(2*y8**2)- 
       (a**2-b**2)*y14*y16/(b*y8**2)+w1*y16**2/(2*y8**2)- 
       w1*y16**2/(2*Exp(2*w1*XL)*y8**2)- 
       (-(a**2)+b**2)*y15*y17/(b*y8**2)- 
       (-(a**2)+b**2)*y16*y17/(a*y8**2)- 
       w3*y17**2/(2*y8**2)+w3*y17**2/ 
       (2*Exp(2*w2*XL)*y8**2)+ 
       2*XL*(-(a**2*y15*y16)-2*a*b*y15*y16-b**2*y15*y16-a**2*y14*y17+ 
       2*a*b*y14*y17-b**2*y14*y17)/y8**2 
C 
kG25= kG52= ((-(a**2)+b**2)*(y16*y22+y17*y23)/ 
       (2*a*Exp(w2*XL)*y8**2)+(a**2-b**2)*Exp(w2*XL)*(y14*y23+y16*y24)/ 
       (2*b*y8**2))/Exp(w1*XL)+Exp(w1*XL)*((-(a**2)+b**2)*(2*y17*y25+ 
       y15*y22*y4)/(2*b*Exp(w2*XL)*y4*y8**2)+(a**2-b**2)*Exp(w2*XL)* 
       (2*y14*y25+y15*y24*y4)/(2*a*y4*y8**2))-w3*y17*y22/(2*y8**2)+ 
       w3*y17*y22/(2*Exp(2*w2*XL)*y8**2)+w1*y16*y23/(2*y8**2)- 
       w1*y16*y23/(2*Exp(2*w1*XL)*y8**2)- 
       (-(a**2)+b**2)*(y16*y22+y17*y23)/(2*a*y8**2)- 
       w2*y14*y24/(2*y8**2)+w2*Exp(2*w2*XL)*y14*y24/(2*y8**2)- 
       (a**2-b**2)*(y14*y23+y16*y24)/(2*b*y8**2)-w1*y15*y25/(y4*y8**2)+ 
       w1*Exp(2*w1*XL)*y15*y25/(y4*y8**2)-(-(a**2)+b**2)* 
       (2*y17*y25+y15*y22*y4)/(2*b*y4*y8**2)-(a**2-b**2)* 
       (2*y14*y25+y15*y24*y4)/(2*a*y4*y8**2)+XL* 
       (-2*a**2*y16*y25-4*a*b*y16*y25-2*b**2*y16*y25-a**2*y14*y22*y4+ 
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       2*a*b*y14*y22*y4-b**2*y14*y22*y4-a**2*y15*y23*y4- 
       2*a*b*y15*y23*y4-b**2*y15*y23*y4-a**2*y17*y24*y4+ 
       2*a*b*y17*y24*y4-b**2*y17*y24*y4)/(y4*y8**2) 
kG11= kG44=1 
kG14= kG41= -1 
kG12= kG13 =kG15= kG16 =kG42= kG43 =kG45= kG46=0 
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APPENDIX B 
 
Consistent mass matrix terms of beam elements resting on two - parameter elastic 
foundation; 
 
a) For A<2*Sqrt(B) 
 
where A= kθ/(E*I) and B= k1/(E*I) see page 44 
 
XL=L 
p=λ∗XL 
λ= (k1/(4*E*I))**0.25 
δ= kθ/(4*E*I) 
t =δ/λ∗∗2

t1=(1-t)**(0.5) 
       t2=(1+t)**(0.5) 
  z1=t1 
   z2=t2 
  z =t 
C 

m33= m66= (XL*(8*p*z1*z2 +8*p*z1*z**2*z2 -8*p*z1*z2*Cos(2*p*z1) - 

      8*p*z1*z*z2*Cos(2*p*z1) -8*p*z1*z2*Cosh(2*p*z2) + 
      8*p*z1*z*z2*Cosh(2*p*z2) +8*p*z1*z2*Cos(2*p*z1)* 
      Cosh(2*p*z2) -8*p*z1*z**2*z2*Cos(2*p*z1)*Cosh(2*p*z2) - 
      12*z2*Sin(2*p*z1) +4*z*z2*Sin(2*p*z1) +6*z2*Cosh(2*p*z2)* 
      Sin(2*p*z1) -12*z*z2*Cosh(2*p*z2)*Sin(2*p*z1) +2*z**2*z2* 
      Cosh(2*p*z2)*Sin(2*p*z1) +4*z**3*z2*Cosh(2*p*z2)*Sin(2*p*z1) + 
      3*z2*Sin(4*p*z1) +4*z*z2*Sin(4*p*z1) -z**2*z2*Sin(4*p*z1) - 
      2*z**3*z2*Sin(4*p*z1) -12*z1*Sinh(2*p*z2) -4*z1*z*Sinh(2*p*z2) + 
      6*z1*Cos(2*p*z1)*Sinh(2*p*z2) +12*z1*z*Cos(2*p*z1)*Sinh(2*p*z2) + 
      2*z1*z**2*Cos(2*p*z1)*Sinh(2*p*z2) -4*z1*z**3*Cos(2*p*z1)* 
      Sinh(2*p*z2) +8*p*z*Sin(2*p*z1)*Sinh(2*p*z2) -8*p*z**3* 
      Sin(2*p*z1)*Sinh(2*p*z2) +3*z1*Sinh(4*p*z2) -4*z1*z*Sinh(4*p*z2) - 
      z1*z**2*Sinh(4*p*z2) +2*z1*z**3*Sinh(4*p*z2)))/(8*p*z1*z2* 
      (-2 + Cos(2*p*z1) + z*Cos(2*p*z1) + 
      Cosh(2*p*z2) - z*Cosh(2*p*z2))**2) 
C 
m56= m65= -m23= -m32= (XL**2*(-4*z + 4*Cos(2*p*z1) + 4*z**2*Cos(2*p*z1) - 
      Cos(4*p*z1)-2*z*Cos(4*p*z1)-z**2*Cos(4*p*z1)-4*Cosh(2*p*z2)- 
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      4*z**2*Cosh(2*p*z2) +8*z*Cos(2*p*z1)*Cosh(2*p*z2) + 
      Cosh(4*p*z2) - 2*z*Cosh(4*p*z2) +z**2*Cosh(4*p*z2) - 
      4*p*z1*Sin(2*p*z1) -4*p*z1*z*Sin(2*p*z1) + 
      4*p*z1*Cosh(2*p*z2)*Sin(2*p*z1)+ 
      4*p*z1*z*Cosh(2*p*z2)*Sin(2*p*z1) -4*p*z2*Sinh(2*p*z2) + 
      4*p*z*z2*Sinh(2*p*z2) +4*p*z2*Cos(2*p*z1)*Sinh(2*p*z2) - 
      4*p*z*z2*Cos(2*p*z1)*Sinh(2*p*z2)))/ 
      (8*p**2*(-2 + Cos(2*p*z1) + z*Cos(2*p*z1) + 
      Cosh(2*p*z2) - z*Cosh(2*p*z2))**2) 
C 
C 
m26= m62= -m35= -m53= 
      (XL**2*(-2*p*z2*Cosh(p*z2)*Sin(p*z1)-2*p*z*z2*Cosh(p*z2)* 
      Sin(p*z1)+4*p*z**2*z2*Cosh(p*z2)*Sin(p*z1)-p*z2*Cosh(3*p*z2)* 
      Sin(p*z1)+2*p*z*z2*Cosh(3*p*z2)*Sin(p*z1)-p*z**2*z2*Cosh(3*p*z2)* 
      Sin(p*z1)+p*z2*Cosh(p*z2)*Sin(3*p*z1)-p*z**2*z2*Cosh(p*z2)* 
      Sin(3*p*z1)-2*p*z1*Cos(p*z1)*Sinh(p*z2)+2*p*z1*z*Cos(p*z1)* 
      Sinh(p*z2)+4*p*z1*z**2*Cos(p*z1)*Sinh(p*z2)-p*z1*Cos(3*p*z1)* 
      Sinh(p*z2)-2*p*z1*z*Cos(3*p*z1)*Sinh(p*z2)-p*z1*z**2*Cos(3*p*z1)* 
      Sinh(p*z2)-12*Sin(p*z1)*Sinh(p*z2)+2*Sin(3*p*z1)* 
      Sinh(p*z2)+4*z*Sin(3*p*z1)*Sinh(p*z2)-2*z**3* 
      Sin(3*p*z1)*Sinh(p*z2)+ p*z1* 
      Cos(p*z1)*Sinh(3*p*z2)-p*z1*z**2*Cos(p*z1)*Sinh(3*p*z2)+ 
      2*Sin(p*z1)*Sinh(3*p*z2)-4*z*Sin(p*z1)*Sinh(3*p*z2)+2*z**3* 
      Sin(p*z1)*Sinh(3*p*z2)))/(4*p**2*z1*z2*(-2+Cos(2*p*z1)+z* 
      Cos(2*p*z1) +Cosh(2*p*z2) - z*Cosh(2*p*z2))**2) 
C 
      m22= m55= (XL**3*(4*p*(1 - z)**(2.5)*z2 - 4*p*z1*(1+z)**(2.5) + 
      4*p*(1 - z)**(1.5)*(1 + z)**(1.5)*Cos(2*p*z1)+4*p*z1* 
      (1 + z)**(2.5)*Cos(2*p*z1)-4*p*(1-z)**(2.5)*z2*Cosh(2*p*z2) - 
      4*p*(1 - z)**(1.5)*(1 + z)**(1.5)*Cosh(2*p*z2) + 
      4*z2*Sin(2*p*z1) -8*z*z2*Sin(2*p*z1) +4*z**2*z2*Sin(2*p*z1) - 
      2*(1 + z)**(1.5)*Sin(2*p*z1) +2*z*(1 + z)**(1.5)*Sin(2*p*z1) + 
      2*(1 + z)**(2.5)*Sin(2*p*z1) -4*z2*Cosh(2*p*z2)*Sin(2*p*z1) + 
      8*z*z2*Cosh(2*p*z2)*Sin(2*p*z1) -4*z**2*z2*Cosh(2*p*z2)* 
      Sin(2*p*z1) +2*(1 + z)**(1.5)*Cosh(2*p*z2)*Sin(2*p*z1) - 
      2*z*(1 + z)**(1.5)*Cosh(2*p*z2)*Sin(2*p*z1)-(1 + z)**(2.5)* 
      Sin(4*p*z1) -4*z1*Sinh(2*p*z2) +2*(1 - z)**(1.5)*Sinh(2*p*z2) - 
      2*(1 - z)**(2.5)*Sinh(2*p*z2) -8*z1*z*Sinh(2*p*z2) + 
      2*(1 - z)**(1.5)*z*Sinh(2*p*z2) -4*z1*z**2*Sinh(2*p*z2) + 
      4*z1*Cos(2*p*z1)*Sinh(2*p*z2)-2*(1-z)**(1.5)*Cos(2*p*z1)* 
      Sinh(2*p*z2)+8*z1*z*Cos(2*p*z1)*Sinh(2*p*z2) -2*(1 - z)**(1.5)*z* 
      Cos(2*p*z1)*Sinh(2*p*z2) +4*z1*z**2*Cos(2*p*z1)*Sinh(2*p*z2) + 
      8*p*Sin(2*p*z1)*Sinh(2*p*z2)-8*p*z**2*Sin(2*p*z1)*Sinh(2*p*z2) + 
      (1 - z)**(2.5)*Sinh(4*p*z2)))/(16*p**3*z1*z2*(-2 + Cos(2*p*z1) + 
      z*Cos(2*p*z1) +Cosh(2*p*z2) - z*Cosh(2*p*z2))**2) 
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C 
      W1=Cos(p*z1) 
      W2=Cosh(p*z2) 
      W3=Cos(3*p*z1) 
      W4=Cosh(3*p*z2) 
C 
      W5=Sin(p*z1) 
      W6=Sinh(p*z2) 
      W7=Sin(3*p*z1) 
      W8=Sinh(3*p*z2) 
C 
      W9=Cos(2*p*z1) 
      W10=Cosh(2*p*z2) 
      Y1=(1+z) 
      Y2=(1-z) 
C 
      TM133 = -(p*(Y2)**(3.5)*z2*W1*W2)+p*(Y2)**(2.5)*(Y1)**(1.5)* 
      W1*W2+p*(Y2)**(1.5)*(Y1)**(2.5)*W1*W2-p*z1*(Y1)**(3.5)*W1*W2-p* 
      (Y2)**(2.5)*(Y1)**(1.5)*W3*W2+p*z1*(Y1)**(3.5)*W3*W2+p* 
      (Y2)**(3.5)*z2*W1*W4-p*(Y2)**(1.5)*(Y1)**(2.5)*W1*W4+2*z2*W2* 
      W5-6*z*z2*W2*W5+6*z**2*z2*W2*W5-                        
2*z**3*z2*W2*W5+5*(Y1)**(1.5)*W2* 
      W5-10*z*(Y1)**(1.5)*W2*W5+5*z**2*(Y1)**(1.5)*W2*W5+14* 
      (Y1)**(2.5)*W2*W5-14*z*(Y1)**(2.5)*W2*W5+3*(Y1)**(3.5)*W2*W5-2* 
      z2*W4*W5+6*z*z2*W4*W5-6*z**2*z2*W4*W5+2*z**3*z2*W4*W5-5* 
      (Y1)**(1.5)*W4*W5+10*z*(Y1)**(1.5)*W4*W5-5*z**2*(Y1)**(1.5)*W4* 
      W5+(Y1)**(2.5)*W4*W5-z*(Y1)**(2.5)*W4*W5 -5*(Y1)**(2.5)*W2*W7+5* 
      z*(Y1)**(2.5)*W2*W7-(Y1)**(3.5)*W2*W7 +2*z1*W1*W6+5*(Y2)**(1.5)* 
 W1*W6+14*(Y2)**(2.5)*W1*W6+3*(Y2)**(3.5)*W1*W6+6*z1*z*W1*W6+10* 
      (Y2)**(1.5)*z*W1*W6+14*(Y2)**(2.5)*z*W1*W6+6*z1*z**2*W1*W6+5* 
      (Y2)**(1.5)*z**2*W1*W6+2*z1*z**3*W1*W6-2*z1*W3*W6-
5*(Y2)**(1.5)* 
      W3*W6+(Y2)**(2.5)*W3*W6-6*z1*z*W3*W6-10*(Y2)**(1.5)*z*W3*W6 
      TM134=(TM133+(Y2)**(2.5)*z*W3*W6-6*z1*z**2*W3*W6- 
      5*(Y2)**(1.5)*z**2*W3*W6-2* 
      z1*z**3*W3*W6-8*p*z*W5*W6+8*p*z**3*W5*W6-4*p*W7*W6-4*p*z* 
      W7*W6+4*p*z**2*W7*W6+4*p*z**3*W7*W6-5*(Y2)**(2.5)*W1*W8 - 
      (Y2)**(3.5)*W1*W8-5*(Y2)**(2.5)*z*W1*W8+4*p*W5*W8-4*p*z*W5* 
      W8-4*p*z**2*W5*W8+4*p*z**3*W5*W8) 
m36= m63=XL*TM134/(8*p*z1*z2*(-2+W9+z*W9+W10-z*W10)**2) 
C 
m25= m52= (XL**3*(-(p*(Y2)**(2.5)*z2*W1*W2) +p*z1*(Y1)**(2.5)*W1* 
      W2-p*(Y2)**(1.5)*(Y1)**(1.5)*W3*W2-p*z1*(Y1)**(2.5)*W3*W2 + 
      p*(Y2)**(2.5)*z2*W1*W4+p*(Y2)**(1.5)*(Y1)**(1.5)*W1*W4-2*z2* 
      W2*W5+4*z*z2*W2*W5-2*z**2*z2*W2*W5+(Y1)**(1.5)*W2*W5-z* 

 161



      (Y1)**(1.5)*W2*W5-3*(Y1)**(2.5)*W2*W5+2*z2*W4*W5-
4*z*z2*W4*W5+ 
      2*z**2*z2*W4*W5-(Y1)**(1.5)*W4*W5+z*(Y1)**(1.5)*W4*W5+ 
      (Y1)**(2.5)*W2*W7+2*z1*W1*W6-(Y2)**(1.5)*W1*W6+3*(Y2)**(2.5)* 
      W1*W6+4*z1*z*W1*W6-(Y2)**(1.5)*z*W1*W6+2*z1*z**2*W1*W6 - 
      2*z1*W3*W6+(Y2)**(1.5)*W3*W6-4*z1*z*W3*W6+(Y2)**(1.5)*z*W3*W6- 
      2*z1*z**2*W3*W6-16*p*W5*W6+16*p*z**2*W5*W6- 
      (Y2)**(2.5)*W1*W8))/(8*p**3*z1*z2*(-2+W9+z*W9+W10-z*W10)**2) 
C 
 
C 
m11= m44= 1/3 
m14= m41= 1/6 
m2= m13 =m15= m16 =m42= m43 =m45= m46=0 
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b) For A>2*Sqrt(B) 
 
Consistent mass matrix terms of beam elements resting on two - parameter elastic 
foundation in exponential form; 
 
where A= kθ/(E*I) and B= k1/(E*I) see page 44 
XL=L 
p=λ∗XL 
λ= (k1/(4*E*I))**0.25 
δ= kθ/(4*E*I) 
      a=sqrt(λ**2+δ) 
      b=sqrt(δ-λ**2) 
C 
      y1=Exp(2*b*XL) 
      y2=Exp(2*a*XL) 
      y3=Exp((a-b)*XL) 
      y4=Exp((a+b)*XL) 
      y5=Exp((-a+b)*XL) 
      y6=Exp(2*(a-b)*XL) 
      y7=Exp(2*(a+b)*XL) 
      y8=8*a**2-8*b**2-(4*a**2)/y1-4*a**2*y1+(4*b**2)/y2+4*b**2*y2 
      y9=2*(-a+b)*(-a-b+a*y1+b*y2) 
      y10=b+a*y2-b*y2-a*y1*y2 
      y11=-a+a*y1-b*y1+b*y1*y2 
      y12=-(b*y1)-a*y2+a*y1*y2+b*y1*y2 
      y13=2*(b**2*y1-a**2*y2+2*a**2*y1*y2- 
       2*b**2*y1*y2-a**2*(y1)**2*y2+b**2*y1*(y2)**2) 
      y14=2*a+2*b-2*a*y1-(2*b)/y2 
      y15=2*a-2*b-(2*a)/y1+(2*b)/y2 
      y16=2*(-a+b+a*y1-b*y2) 
      y17=-2*a-2*b+(2*a)/y1+2*b*y2 
      y18=-a-b+b*y3*y4+a*y4*y5 
      y19=b-a*y2-b*y2+a*y6 
      y20=b+a*y2-b*y2-a*y7 
      y21=-a+a*y1-b*y1+b*y7 
      y22=-2*a*y3-2*b*y3+(2*b)/y4+2*a*y4 
      y23=2*(a*y3-a*y4+b*y4-b*y5) 
      y24=(-2*a)/y4-2*b*y4+2*a*y5+2*b*y5 
      y25=a-b+b*y3*y4-a*y4*y5 
C 
m33= m66=-((a-b)**2*y12**2)/(2*(a+b)*y13**2)+ 
       (a-b)**2*Exp(2*(a+b)*XL)*y12**2/(2*(a+b)*y13**2)+ 
       Exp((a+b)*XL)*(2*(a**2-b**2)*Exp((-a+b)*XL)*y11*y12/ 
       (b*y1*y13*y8)+2*(a**2-b**2)*y10*y12/(a*Exp((-a+b)*XL)* 
       y13*y2*y8))+2*(a+b)**2*y11**2/((a-b)*y1**2*y8**2)- 
       2*(a+b)**2*Exp(2*(-a+b)*XL)*y11**2/((a-b)*y1**2*y8**2)- 
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       2*(a+b)**2*y10**2/((a-b)*y2**2*y8**2)+ 
       2*(a+b)**2*y10**2/((a-b)*Exp(2*(-a+b)*XL)*y2**2*y8**2)- 
       2*(a**2-b**2)*y11*y12/(b*y1*y13*y8)- 
       2*(a**2-b**2)*y10*y12/(a*y13*y2*y8)+ 
       2*(a+b)*y11*y9/(a*y1*y8**2)+ 
       2*(a+b)*y10*y9/(b*y2*y8**2)+y9**2/(2*(a+b)*y8**2)- 
       y9**2/(2*(a+b)*Exp(2*(a+b)*XL)*y8**2)+ 
       (-2*(a+b)*Exp((-a+b)*XL)*y11*y9/(a*y1*y8**2)- 
       2*(a+b)*y10*y9/(b*Exp((-a+b)*XL)*y2*y8**2))/Exp((a+b)*XL)+ 
       2*XL*(4*a**2*y10*y11*y13+8*a*b*y10*y11*y13+4*b**2*y10*y11*y13+ 
       a*y1*y12*y2*y8*y9-b*y1*y12*y2*y8*y9)/(y1*y13*y2*y8**2) 
C 
      TM122=2*(a+b)*XL*y11*y14/(y1*y8**2)-(a+b)*y11*y15/(b*y1*y8**2)+ 
       (a+b)*Exp(2*b*XL)*y11*y15/(b*y1*y8**2)+(a+b)* 
       y11*y16/(a*y1*y8**2)- 
       (a+b)*y11*y16/(a*Exp(2*a*XL)*y1*y8**2)+ 
       (a+b)*y11*y17/((a-b)*y1*y8**2)- 
       (a+b)*Exp(2*(-a+b)*XL)*y11*y17/((a-b)*y1*y8**2)- 
       (a+b)*y10*y14/((a-b)*y2*y8**2)+ 
       (a+b)*y10*y14/((a-b)*Exp(2*(-a+b)*XL)*y2*y8**2)+ 
       (a+b)*y10*y16/(b*y2*y8**2)-(a+b)*y10*y16/ 
       (b*Exp(2*b*XL)*y2*y8**2)+ 
       2*(a+b)*XL*y10*y17/(y2*y8**2)-(a-b)*y12*y15/(2*(a+b)*y13*y8)+ 
       (a-b)*Exp(2*(a+b)*XL)*y12*y15/(2*(a+b)*y13*y8)+ 
       (a-b)*XL*y12*y16/(y13*y8)-(a-b)*y12*y17/(2*b*y13*y8)+ 
       (a-b)*Exp(2*b*XL)*y12*y17/(2*b*y13*y8) 
m56= m65= -m23= -m32=TM122- 
      (2*a*y10*y13*y15+2*b*y10*y13*y15+a*y12*y14*y2*y8- 
       b*y12*y14*y2*y8)/(2*a*y13*y2*y8**2)+Exp(2*a*XL)* 
       (2*a*y10*y13*y15+2*b*y10*y13*y15+a*y12*y14*y2*y8- 
       b*y12*y14*y2*y8)/(2*a*y13*y2*y8**2)+y14*y9/(2*b*y8**2)- 
       y14*y9/(2*b*Exp(2*b*XL)*y8**2)+ 
       XL*y15*y9/y8**2+y16*y9/(2*(a+b)*y8**2)- 
       y16*y9/(2*(a+b)*Exp(2*(a+b)*XL)*y8**2)+y17*y9/(2*a*y8**2)- 
       y17*y9/(2*a*Exp(2*a*XL)*y8**2) 
C 
      TM133=-2*(a**2-b**2)*Exp((-a+b)*XL)*y11*y19/(a*y1*y8**2)+ 
       2*(a**2-b**2)*Exp(-2*a*XL+(-a+b)*XL)*y11*y19/(a*y1*y8**2)- 
       2*(a**2-b**2)*Exp((-a+b)*XL)*y10*y19/(b*y2*y8**2)+ 
       2*(a**2-b**2)*Exp(-2*b*XL+(-a+b)*XL)*y10*y19/(b*y2*y8**2)+ 
       2*a**2*y11*y20/((a-b)*Exp((a+b)*XL)*y1*y8**2)- 
       2*b*(2*a+b)*y11*y20/((-a+b)*Exp((a+b)*XL)*y1*y8**2)- 
       2*a**2*Exp(2*(-a+b)*XL-(a+b)*XL)*y11*y20/((a-b)*y1*y8**2)+ 
       2*b*(2*a+b)*Exp(2*(-a+b)*XL- 
       (a+b)*XL)*y11*y20/((-a+b)*y1*y8**2)- 
       2*(a+b)**2*y10*y21/((a-b)*Exp((a+b)*XL)*y2*y8**2)+ 
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       2*(a+b)**2*Exp(2*(a-b)*XL-(a+b)*XL)*y10*y21/((a-b)*y2*y8**2)+ 
       4*(a+b)**2*XL*(y1*y10*y20+y11*y2*y21)/ 
       (Exp((a+b)*XL)*y1*y2*y8**2)- 
       2*(-(a**2)+b**2)*y11*y18/(b*y1*y4*y8**2)+ 
       2*(-(a**2)+b**2)*Exp(2*b*XL)*y11*y18/(b*y1*y4*y8**2)- 
       2*(-(a**2)+b**2)*y10*y18/(a*y2*y4*y8**2)+ 
       2*(-(a**2)+b**2)*Exp(2*a*XL)*y10*y18/(a*y2*y4*y8**2) 
m36= m63=TM133-2*a**2*Exp(-(a*XL)+b*XL)*XL*y12*y19/(y13*y8)+ 
       2*(2*a-b)*b*Exp(-(a*XL)+b*XL)*XL*y12*y19/(y13*y8)- 
       (a**2-b**2)*y12*y20/(b*Exp((a+b)*XL)*y13*y8)+ 
       (a**2-b**2)*Exp(2*b*XL-(a+b)*XL)*y12*y20/(b*y13*y8)- 
       (a**2-b**2)*y12*y21/(a*Exp((a+b)*XL)*y13*y8)+ 
       (a**2-b**2)*Exp(2*a*XL-(a+b)*XL)*y12*y21/(a*y13*y8)+ 
       a**2*y12*y18/((a+b)*y13*y4*y8)- 
       (2*a-b)*b*y12*y18/((a+b)*y13*y4*y8)- 
       a**2*Exp(2*(a+b)*XL)*y12*y18/((a+b)*y13*y4*y8)+ 
       (2*a-b)*b*Exp(2*(a+b)*XL)*y12*y18/((a+b)*y13*y4*y8)- 
       (a-b)*Exp((-a+b)*XL)*y19*y9/((a+b)*y8**2)+ 
       (a-b)*Exp((-a+b)*XL-2*(a+b)*XL)*y19*y9/((a+b)*y8**2)+ 
       (a+b)*y20*y9/(a*Exp((a+b)*XL)*y8**2)- 
       (a+b)*Exp(-2*a*XL-(a+b)*XL)*y20*y9/(a*y8**2)+ 
       (a+b)*y21*y9/(b*Exp((a+b)*XL)*y8**2)- 
       (a+b)*Exp(-2*b*XL-(a+b)*XL)*y21*y9/(b*y8**2)+ 
       2*(-a+b)*XL*y18*y9/(y4*y8**2) 
C 
      TM144=(-((a+b)*y10*y23/(b*Exp(2*a*XL)*y2*y8**2))+ 
       a*y10*y24/((a-b)*y2*y8**2))/Exp(2*(-a+b)*XL)+ 
       (a+b)*y11*y22/((a-b)*y1*y8**2)- 
       (a+b)*Exp(2*(-a+b)*XL)*y11*y22/((a-b)*y1*y8**2)+ 
       (a+b)*y11*y23/(a*y1*y8**2)-(a+b)*y11*y23/ 
       (a*Exp(2*a*XL)*y1*y8**2)+ 
       (a+b)*y10*y23/(b*y2*y8**2)-a*y10*y24/((a-b)*y2*y8**2)+ 
       b*y10*y24/((-a+b)*y2*y8**2)+ 
       2*(a+b)*XL*(y1*y10*y22+y11*y2*y24)/(y1*y2*y8**2)+ 
       (a-b)*XL*y12*y23/(y13*y8)-(a-b)*y12*y25/((a+b)*y13*y4*y8)+ 
       (a-b)*Exp(2*(a+b)*XL)*y12*y25/((a+b)*y13*y4*y8)- 
       (4*a*y11*y13*y25+4*b*y11*y13*y25+a*y1*y12*y22*y4*y8- 
       b*y1*y12*y22*y4*y8)/(2*b*y1*y13*y4*y8**2)+ 
       Exp(2*b*XL)*(4*a*y11*y13*y25+4*b*y11*y13*y25+ 
       a*y1*y12*y22*y4*y8- 
       b*y1*y12*y22*y4*y8)/(2*b*y1*y13*y4*y8**2) 
m26= m62= -m35= -m53=TM144- 
      (4*a*y10*y13*y25+4*b*y10*y13*y25+a*y12*y2*y24*y4*y8- 
       b*y12*y2*y24*y4*y8)/(2*a*y13*y2*y4*y8**2)+ 
       Exp(2*(a-b)*XL)*(-(b*y10*y24/((-a+b)*y2*y8**2))+ 
       Exp(2*b*XL)*(4*a*y10*y13*y25+4*b*y10*y13*y25+ 
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       a*y12*y2*y24*y4*y8- 
       b*y12*y2*y24*y4*y8)/(2*a*y13*y2*y4*y8**2))+y22*y9/(2*a*y8**2)- 
       y22*y9/(2*a*Exp(2*a*XL)*y8**2)+y23*y9/(2*(a+b)*y8**2)+ 
       y24*y9/(2*b*y8**2)+2*XL*y25*y9/(y4*y8**2)+ 
       (-(y23*y9)/(2*(a+b)*y8**2)-Exp(2*a*XL)*y24*y9/(2*b*y8**2))/ 
       Exp(2*(a+b)*XL) 
C 
      M22= m55=Exp((a+b)*XL)*(Exp((a-b)*XL)*y14*y15/(a*y8**2)+ 
       y15*y17/(b*Exp((a-b)*XL)*y8**2))+ 
       (-(Exp((a-b)*XL)*y14*y16/(b*y8**2))-y16*y17/ 
       (a*Exp((a-b)*XL)*y8**2))/ 
       Exp((a+b)*XL)-y14**2/(2*(a-b)*y8**2)+ 
       Exp(2*(a-b)*XL)*y14**2/(2*(a-b)*y8**2)-y14*y15/(a*y8**2)- 
       y15**2/(2*(a+b)*y8**2)+Exp(2*(a+b)*XL)*y15**2/(2*(a+b)*y8**2)+ 
       y14*y16/(b*y8**2)+y16**2/(2*(a+b)*y8**2)- 
       y16**2/(2*(a+b)*Exp(2*(a+b)*XL)*y8**2)-y15*y17/(b*y8**2)+ 
       y16*y17/(a*y8**2)+y17**2/(2*(a-b)*y8**2)- 
       y17**2/(2*(a-b)*Exp(2*(a-b)*XL)*y8**2)+ 
       2*XL*(y15*y16+y14*y17)/y8**2 
C 
m25= m52=(-(y16*y22+y17*y23)/(2*a*Exp((a-b)*XL)*y8**2)- 
       Exp((a-b)*XL)*(y14*y23+y16*y24)/(2*b*y8**2))/Exp((a+b)*XL)+ 
       Exp((a+b)*XL)*((2*y17*y25+y15*y22*y4)/ 
       (2*b*Exp((a-b)*XL)*y4*y8**2)+ 
       Exp((a-b)*XL)*(2*y14*y25+y15*y24*y4)/(2*a*y4*y8**2))+ 
       y17*y22/(2*(a-b)*y8**2)-y17*y22/(2*(a-b)* 
       Exp(2*(a-b)*XL)*y8**2)+ 
       y16*y23/(2*(a+b)*y8**2)-y16*y23/(2*(a+b)* 
       Exp(2*(a+b)*XL)*y8**2)+ 
       (y16*y22+y17*y23)/(2*a*y8**2)-y14*y24/(2*(a-b)*y8**2)+ 
       Exp(2*(a-b)*XL)*y14*y24/(2*(a-b)*y8**2)+ 
       (y14*y23+y16*y24)/(2*b*y8**2)-y15*y25/((a+b)*y4*y8**2)+ 
       Exp(2*(a+b)*XL)*y15*y25/((a+b)*y4*y8**2)- 
       (2*y17*y25+y15*y22*y4)/(2*b*y4*y8**2)- 
       (2*y14*y25+y15*y24*y4)/(2*a*y4*y8**2)+ 
       XL*(2*y16*y25+y14*y22*y4+y15*y23*y4+y17*y24*y4)/(y4*y8**2) 
C 
m11= m44= 1/3 
m14= m41= 1/6 
m2= m13 =m15= m16 =m42= m43 =m45= m46=0 
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