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ABSTRACT

AN IMPROVED FINITE GRID SOLUTION FOR PLATES ON
GENERALIZED FOUNDATIONS

KARASIN Abdulhalim
Ph.D., Department of Civil Engineering
Supervisor: Prof. Dr. Polat GULKAN
Co-Supervisor: Prof. Dr. Mehmet UTKU

January 2004, 167 pages

In many engineering structures transmission of vertical or horizontal forces to
the foundation is a major challenge. As a first approach to model it may be assumed
that the foundation behaves elastically. For generalized foundations the model
assumes that at the point of contact between plate and foundation there is not only
pressure but also moments caused by interaction between the springs. In this study,
the exact stiffness, geometric stiffness and consistent mass matrices of the beam
element on two-parameter elastic foundation are extended to solve plate problems.
Some examples of circular and rectangular plates on two-parameter elastic
foundation including bending, buckling and free vibration problems were solved by
the finite grid solution. Comparison with known analytical solutions and other

numerical solutions yields accurate results.

Keywords: Winkler Foundation, Plates on Generalized Foundation, Bending, Free

Vibration, Buckling, Finite Grid Solution
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GENELLESTIRILMiS TEMELLER UZERINE OTURAN
PLAKLAR ICIN GELISTIRILEN BIR SONLU IZGARA
CcCOzZUMU

KARASIN Abdulhalim
Doktora, Insaat Miihendisligi Boliimii
Tez Yéneticisi: Prof. Dr. Polat GULKAN
Ortak Tez Yoneticisi: Prof. Dr. Mehmet UTKU

Ocak 2004, 167 sayfa

Bir¢ok miihendislik yapilarinda yatay ve dikey yiiklerin zemine aktarilmasi
Oonemli bir problem olarak karsimiza c¢ikmaktadir. Genellestirilmis zemin
modellerinde plak ve zemin arasindaki temas noktasinda sadece basing degil ayni
zamanda yayili momentlerin de oldugu goz Oniine alinmaktadir. Bu caligmada iki
parametreli elastik zeminlerle taginan kiris elemanlari i¢in bulunan rijitlik matrisleri
gelistirilerek plaklarin 1zgara seklinde modellenmesi saglanmistir. Bu modelleme ile
iki parametreli zeminlere oturan plaklar i¢in bir sonlu 1zgara ¢éziimii gelistirilmistir.
Bu sayisal metot ile zeminin silireksiz ve gelisiglizel degisimi gibi parametrik
degisimlerin bulunmasi halinde de uygulanabilir olmas1 énemli bir avantajdir. Bu
metot kulanilarak cesitli sinir ve yiikleme tiplerine sahip, egilme, burkulma ve
serbest titresim dahil dairesel ve dikdortgen plak problemleri ¢oziimlerinde makul

sonuclar elde edilmistir.

Anahtar Kelimeler: Winkler Zemini, Genellestirilmis Zeminde Plak problemleri,
Dairesel Plak, Dikdortgen Plak, Egilme, Burkulma, Serbest

Titresim, Sonlu Izgara Coziimii
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CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

Treatment of soil and structure as a whole is a major concern of many
engineering applications. In many engineering structures rational estimation of the
manner for transmission of vertical or horizontal forces to the foundation is an
important and frequently recurring problem. Foundations very often represent a
complex medium. It is often difficult to find suitable analytical models for
foundation problems. An acceptable analysis must include behavior of foundation
properly. By using certain assumptions there exist some simplified models to
represent the behavior of foundations. One of the most elementary models is based
on the assumption that the foundation behaves elastically. This implies not only that
the foundation elements return to their original position after removing loads, but it is
also accepted that their resistance is proportional to the deformation they experience.
This assumption can be acceptable if displacement and pressure underneath
foundation are small and approximately linearly related to each other. For
“generalized” foundations the model assumes that at the point of contact between
plate and foundation there is not only pressure but also distributed moments caused
by the interaction between linear springs. In a generalized sense, translational and
rotational deformations of the beam invoke reactions from the supporting foundation.
The moments are assumed to be proportional to the slope of the elastic curve and a
second parameter for foundation is then necessary for defining its response. This

point will be utilized in the derivation of the corresponding equations in Chapter 2.



1.2 REVIEW OF PAST WORK

1.2.1 Studies of Models for the Supporting Medium

Plates on elastic foundations have received considerable attention due to their
wide applicability in civil engineering. Since the interaction between structural
foundations and supporting soil has a great importance in many engineering
applications, a considerable amount of research has been conducted on plates on
elastic foundations. Much research has been conducted to deal with bending,
buckling and vibration problems of beam and plates on elastic foundation. The aim
of most of these is to solve some real engineering problem such as structural
foundation analysis of buildings, pavements of highways, water tanks, airport
runways and buried pipelines, etc. Because the intent of this subsection is to give a

synoptic overview of research accomplishments to date, it is necessarily brief.

Many studies have been done to find a convenient representation of physical
behaviour of a real structural component supported on a foundation. The usual
approach in formulating problems of beams, plates, and shells continuously
supported by elastic media is based on the inclusion of the foundation reaction in the

corresponding differential equation of the beam, plate, or shell.

In order to include behaviour of foundation properly into the mathematically
simple representation it is necessary to make some assumptions. One of the most
useful simplified models known as the Winkler model assumes the foundation
behaves elastically, and that the vertical displacement and pressure underneath it are
linearly related to each other. That is, it is assumed that the supporting medium is
isotropic, homogeneous and linearly elastic, provided that the displacements are
“small”. This simplest simulation of an elastic foundation is considered to provide

vertical reaction by a composition of closely spaced independent vertical linearly



elastic springs. Thus the relation between the pressure and deflection of the

foundation can be written as:

P( XY )=ki W( Xy ) (1.1)
where:
p(Xxy) : distributed reaction from the foundation due to applied load at
point X,y
ki : Winkler parameter
W( X,y ) : vertical deflection at point X, y

The governing differential equation or Lagrange’s equation of a plate

subjected to lateral loads may be derived as:

D * (—64\';::’ o 6;3%’/3/) + 84\';;):’ )= a(x.y) (1.2)
where:

D=Et3/(12 (1-V2))  flexural rigidity of the plate

t : thickness of the plate

% : Poisson’s ratio

E : modulus of elasticity of the plate

a( x,y) : external loads on the plate

In most cases, as a concentrated load applied to the surface of a linearly
elastic layer it must not deflect only under the load, but it also must deflect with
displacements diminishing with distance in the areas adjacent to the load. In contrast,
Winkler model assumes that only the loaded points can settle while the adjacent
areas remains unchanged. That is, the one — parameter way of modelling the soil
underneath plates (the Winkler model) leads to a discontinuity of the deformation
along the plate boundary. Therefore, in order to provide a continuity of vertical

displacements there must be a relationship between the closely spaced spring



elements. For satisfying the continuity, Hetényi (1967) suggested to use an elastic
plate at the top of the independent spring elements to improve an interaction between
them. So, the response function for this model is to modify Equation (1.2) by re-
defining the external load acting in lateral direction as the difference between the
surface load of the plate and the reaction of the elastic foundation given in Equation

(1.1) can be derived in a general form as:

4 4 4 _
g W(’j’ Y) 50 vvz(x,zy) L9 W(>:, y) _a(%.¥) =~ p(X,y) (1.3)
OX oX-oy oy D

There are several more realistic foundation models as well as their proper
mathematical formulations, e.g. Selvadurai (1979) and Scott (1981). Representing
the soil response underneath plates by two independent elastic parameters is a more
refined model of having an inter-connected continuum. The main advantage of the
two-parameter elastic foundation model is to provide a mechanical interaction
between the individual spring elements. To have a relationship between the springs
eliminates the discontinuous behaviour of Winkler model. Such physical models of
soil behaviour have been suggested by a number of authors. A second foundation
parameter defined by Filonenko-Boroditch (1940), Pasternak (1954) and Kerr (1964)
ensures in effect that the tops of Winkler springs are inter-linked by a thin elastic
membrane, a layer of compressible vertical element and rotational springs,

respectively. The two-parameter models can be summarized as follows:

First, Filonenko-Boroditch introduced a model that indicated to connect the
individual springs as the representation of the soil in Winkler model by a thin
stretched elastic membrane under a constant tension T that provides the continuity.

Then the reaction of soil in Equation (1.1) can be modified as:

O*W(X,Y) , O*W(X,Y)
aXZ 6y2

PO Y) = kw(x, y) = T( ) (1.4)



The soil behaviour model suggested by Pasternak assumes that insertion of
shear interaction between the spring elements to satisfy continuity. The model
implies the end of spring elements are connected by a layer of incompressible

vertical elements, G, that only deform in transverse shear.

0’ W(X y)  O°W(Xy)

k G
P(X y) = kw(x, y) - G( Y

) (1.5)

The next model introduced by Kerr, known also as generalized foundation
model, assumes that at the end of each spring element resisting pressure as in the
Winkler model, there must be also a rotational spring to produce a reaction moment
(ko) proportional to the local angle of rotation at that point. This model implies that

the soil reaction in Equation (1.1) can be written as:

o’ W(X y) WX y)
ay2

P(X, y) = kWX, y) =K, ( ) (1.6)

Equations (1.3), (1.4) and (1.5) are all similar to each other except in the
interpretation of the second parameter. Since the second parameters are constant the
properties of the equations are same. Therefore, the second parameters of Filonenko-
Boroditch model (T), Pasternak model (G) and Kerr model (ky) can be replaced by a
single second parameter as (k;). For two-parameter foundation models the soil

reaction in Equation (1.1) can be redefined in a general form as:

8zw(x y) 82\/;()2( y)) (1.7)
y

P(X, Y) =K WX, y) -k, (

The two-parameter elastic foundation model that provides a mechanical
interaction between the individual spring elements shows a more realistic behaviour
of the soil reaction. By using the soil reaction, Equation (1.3) derived by Hetényi’s

suggestion can be modified in a more general form as:



D(54WKX,V)+_254WKX,Y)4_54WKX,Y))

ox’ ox’oy’ oy*
O*W(x,y) | 9°W(X,y) 49
+ kIW(X, y) - kz( 8X2’ + ay; ) = q(Xa y)

This equation is applicable to all types of plates resting on two-parameter

elastic foundation problems.

1.2.2 Studies on the Solution Methods

The solution of plate problems with classical methods that provide
mathematically exact solutions are available for a limited number of limited cases.
There are a few load and boundary conditions that permit Equations (1.2) and (1.3)
to be solved exactly. For arbitrary load and boundary conditions, there is no exact
solution of Equation (1.8) for plates resting on two-parameter elastic foundation
problems because it is too complex,. In another words the two-parameter elastic
foundation soil model underneath plate boundary problems cannot be solved
analytically in readily understood format for all load and boundary conditions

(Sladek et al. 2002).

Currently, there exist approximate and numerical methods to solve the
governing differential equations of plates resting on one-parameter and two-
parameter elastic foundation for transverse displacement w. Many studies have been
done related to such problems. Before embarking on a review of these results, it is
useful to examine where we stand in relation to one-dimensional elements supported

by generalized foundations.

Introducing the finite element method in 1960s and the developments in
computers have had a great importance for the developments in applied mechanics.
A broad range of the engineering problems has been solved by computer-based

methods such as finite element, boundary elements methods, etc.



In the case of the beam analysis, the formulations based on interpolation
(shape) functions have been used in solution by finite element method. In 1980’s
some authors have derived exact stiffness matrices such as Wang (1983) and
Eisenberger (1985a) for beams on Winkler foundations and Cook and Zhaohua
(1983) and Eisenberger (1987a) for two parameter foundations.

Razagpur and Shah (1991) derived a new finite element to eliminate the
limitations of the solution, such as the necessities of certain combinations of beam
and foundation parameters, for beams on a two-parameter elastic foundation. They
concluded that the derivation of explicit element stiffness matrix and nodal load
vector makes the proposed element efficient and obviates the need for dividing the
beam into many elements between the points of loading. They presented the
complete solution of the governing equation corresponding to the most common

types of load.

Giilkan and Alemdar (1999) reported an analytical solution for the shape
functions of a beam segment supported on a generalized two-parameter elastic
foundation. In that study it is pointed out that the exact shape functions can be
utilized to derive exact analytic expressions for the coefficients of the element
stiffness matrix, work equivalent nodal forces for arbitrary transverse loads and

coefficients of the consistent mass and geometrical stiffness matrices.

When plates are considered, the solutions must become more sophisticated,

and mathematically less familiar for most engineering applications.

Zafrany and Fadhill (1996) derived boundary integral equations with three
degrees-of-freedom per boundary node, thus avoiding the generation of unknown
corner terms for plates with non-smooth boundaries. For thin plates resting on a two-
parameter elastic foundation, based on a modified Kirchhoff theory in which the
transverse normal stress is considered. The explicit expressions of kernel functions

are provided in terms of complex Bessel functions. Additional boundary element



derivations for plates with free-edge conditions are presented, and reduction of
loading domain integral terms for cases with concentrated loads and moments, and
uniformly- or linearly-distributed loading is included. They concluded that the three
degrees-of-freedom approach has led to very accurate results for plates with corners
and the transverse normal stress has a minor effect on plate deflection, but it has

some effect on stresses and moments, which increases with the thickness of the plate.

Wang, et al. (1997) presented relationships between the buckling loads
determined using classical Kirchhoff plate theory and shear deformable plate theories
on Pasternak foundation. The relationships of Kirchhoff, Mindlin and Reddy
polygonal plates resting on a Pasternak foundation obtained are exact for isotropic,
simply supported under an isotropic in-plane load. The relationships are also
applicable for the Winkler foundation as this foundation model is a special case of

the Pasternak foundation.

Tameroglu (1996) studied a different solution technique for free vibrations of
rectangular plates with clamped boundaries resting on elastic foundations and
subjected to uniform and constant compressive, unidirectional forces in the mid-
plane. The method is based on the use of a non-orthogonal series expansion
consisting of some specially chosen trigonometric functions for the deflection
surface w of the plate. The orthogonalization of the series and other calculations are
performed using Fourier expansion of Bernoulli polynomials under some realistic
approximations for the limiting values of the boundary conditions. It is concluded
that by this method one need not use the solution of the differential equation of the
problem. The results obtained for the problem are consistent with the well-known

solutions.

Saha, et al. (1997) studied the dynamic stability of a rectangular plate on non-
homogeneous foundation, subjected to uniform compressive in-plane bi-axial
dynamic loads and supported on completely elastically restrained boundaries. In that

study, non-homogeneous foundation consists of two regions having different



stiffness but symmetric about the centre lines of the plate. They derived the equation
governing the small amplitude motion of the system by a variational method. They
also studied the effects of stiffness and geometry of the foundation, boundary
conditions, static load factor, in-plane load ratio and aspect ratio on the stability
boundaries of the plate for first- and second-order simple and combination

resonance.

Ramesh, et al. (1997) analyzed the behavior of flexible rectangular plates
resting on tensionless elastic foundations using finite-element method (FEM)
techniques. They adopted a nine-noded Mindlin element for modeling the plate to
account for transverse shear effects. The model can be effectively used to analyze
plates on tensionless elastic foundations with any type of common boundary
conditions and loading combinations. The model also accounts for realistic design
conditions, namely, the tensionless nature of the foundations, transverse shear
effects, and effects of attachment. They concluded that in case the plate dimension to
thickness ratios are very small, the shear effect dominates, and deflections are highly
underestimated if the problem is analyzed assuming thin plate behavior. The

contacting region is only dependent on the relative stiffness and plate thickness.

Omurtag and Kadioglu (1997) studied a functional and a plate element
capable of modelling the Kirchhoff type orthotropic plate resting on Winkler /
Pasternak (isotropic/orthotropic) elastic foundation are given and numerical results of
a free vibration analysis is performed by using the Gateaux Differential Method
(GDM) that successfully applied to various structural problems such as space bars,
plates and shells by Omurtag and Akoz (1997). Their PLTEOR4 element has four
nodes with 4 x 4 DOF. Natural angular frequency results of the orthotropic plate are
justified by the analytical expressions present in the literature and some new
problems for orthotropic plates on elastic foundation (Winkler and Pasternak type
foundation) are solved. The Pasternak foundation, as a special case, converges to
Winkler type foundation if shear layer is neglected. Results that they report are quite

satisfactory. They concluded that when the results of the foundation models Winkler



and Pasternak are compared, it is observed that natural angular frequency results
obtained by Pasternak type foundation modelling are higher than Winkler model for

a constant k in each case.

Kocatiirk (1997) presented an elastoplastic analysis of rotationally symmetric
reinforced concrete plates resting on elastoplastic subgrade under column load. The
analysis is simplified by the assumption that any plate element is either entirely
elastic or entirely plastic. This assumption is practically fulfilled for a sandwich
plate. Differential equations that describe the behaviour of plastic zones during the
deformation process are derived and solved in closed form. Interaction between the

plate and the foundation is investigated for dimensionless load-moment relations.

Trifunac (1997) investigated stiff structures with large plan dimensions, on
soft soil and supported by columns on separate foundations. Differential motion of
the column foundations may lead to large moments and shear forces in the first-story
columns, during near field moderate and large earthquakes. These forces will
augment the effects of the concurrently occurring dynamic response, causing larger
than expected ductility, larger inter-story drift, and thus larger and more dangerous
participation of vertical acceleration. When the design conditions call for the
connecting beams and slabs between individual column foundations, some
components of motion of the first-story columns may be reduced. He concluded that
the foundation should be designed to withstand the forces created by deformation of
soil. He presented approximate criteria for estimating the relative significance of

these additional effects.

Chung at al. (2000) investigated finite strip method for the free vibration and
buckling analysis of plates with abrupt changes in thickness and complex support
conditions. The free vibration problem of a stepped plate is modelled by finite strip
method supported on non-homogeneous Winkler elastic foundation with elastically

mounted masses is formulated based on Hamilton's principle. The method is further
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extended to the buckling analysis of rectangular stepped plates. Numerical results

also show that the method is versatile, efficient and accurate.

In the study of Huang and Thambiratnam (2001) a procedure incorporating
the finite strip method together with spring systems is proposed for treating plates on
elastic supports. The spring systems can simulate different elastic supports, such as
elastic foundation, line and point elastic supports, and also mixed boundary
conditions. As a numerical example a three-span simply supported plate is first
considered and the effects of support stiffness on the static and free vibration
responses and on the critical buckling stress are discussed. A plate resting on a
Winkler foundation is studied next, and the effects of dimension ratio on the static
and free vibration responses are discussed. Numerical results show that the spring

system can successfully simulate different kinds of elastic supports.

1.3 OBJECTS AND SCOPE OF THIS STUDY

The aim of this proposed research is to investigate an improved finite grid
solution of plates on a two-parameter elastic foundation. This is an extension of the
so-called discrete parameter approach where the physical continuous domain is
broken down into discrete sub-domains, each endowed with a response suitable for
the purpose of mimicking problem at hand. Conceptually, it is similar to the finite
element method, except that each discrete element utilized is equipped with an exact

solution. Therefore, errors are attributable only to the effects of discretization.

The governing equation for plates resting on two-parameter elastic foundation
problems is quite complicated. Hence, an analytical solution is not feasible or easily
formulated. Therefore, it is necessary to get an accurate and efficient numerical
method for general applications. In order to simplify the problem it is possible to use
a grid of beam elements to model plates. After all, within limitations of simplified

formulation as Wilson (2000) indicated, plate bending is an extension of beam
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theory. In this dissertation, plates on generalized foundations will be represented by
grillages of beams that resemble the original plates such as rectangular, circular or
annular plates when they are assembled. No limits are placed on the geometrical
properties of the plate boundaries, or on their displacement boundary conditions.
Because the plate is discretized, discontinuous foundation, abrupt changes in plate

thickness and other types of irregularities are easily accommodated.

1.4  ORGANIZATION OF THE STUDY

There are six chapters in this dissertation. A general discussion and overview
of the study, a review of past studies and objectives of this study are presented in

Chapter 1.

In Chapter 2 analytical solutions of the discrete beam element resting on one-
or two-parameter elastic foundation are obtained. These analytic solutions include
derivation of the governing differential equations and exact shape functions. Then
the exact shape functions are used to form element stiffness matrices and work
equivalent load vectors for finite element applications. Some graphical comparisons
have been done to observe the influences of foundation parameters on the work

equivalent nodal loads, stiffness terms and the shape functions

In Chapter 3 the problem is extended to the solution of stability and vibration
problems. The geometric stiffness matrices and consistent mass matrices of the
discrete beam element on one- or two-parameter elastic foundation are derived. The
influences of foundation parameters are portrayed graphically for geometric stiffness

and consistent mass terms.
In Chapter 4 a general description of the representation of rectangular and

circular plates by beam elements is given. A proper transformation matrix is used for

assembling the discretized plate element. Then the system stiffness, consistent mass

12



and the geometric stiffness matrices are generated to solve the plate bending,

buckling and vibration problems.

Chapter 5 contains the solution of the bending, buckling and vibration
problems of rectangular and circular plates resting on one- or two-parameter elastic
foundation. The results are compared with the well known analytical and the other
numerical solutions.

Chapter 6 presents the conclusions and the suggestions for further studies

In the Appendix explicit forms of the element based consistent mass and

consistent geometric stiffness matrices are presented.
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CHAPTER 2

FORMULATION OF THE PROBLEM

2.1 INTRODUCTION

A differential part of a plate supported by a generalized foundation, which
terminates at the ends of the plate is shown in Figure 2.1. In this Figure the first of
these parameters is representative of the foundation's resistance to transverse
translations, and is called the Winkler parameter k; in force per unit length per unit
area (e.g. kN/m/m’= kN/m’ units). In the Winkler formulation each translational
spring can deflect independently of springs immediately adjacent to it. In this model
it is assumed that there is both pressure and moment at the points of contact between
plate and foundation. These moments are assumed to be proportional to the angle of
rotation, so that the second foundation parameter is representative of the foundation's

resistance to rotational deformations, and is denoted by kp.

1 Iq(x,y) ax.y)
vYVY

4—
4+—
4+H—
<

(a) (b)
Figure 2.1: Plate and Model Foundation Representation by (a) Consistent Springs,

(a) Lumped Springs
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By a generalized foundation modelling, influence of moment reaction of
foundation will be inserted into the formulation by a distributed rotational spring
element (ko) in addition to the vertical spring element (k;). For all types of plates
resting on two-parameter elastic foundations related to Figure 2.1 the governing

differential equation derived in Section 1.2 can be rewritten as:

o*w(x, 0t w(x, o w(x,
D( (4y)Jr2 2( 2y)+ (4y))
ox Ox 0y oy o1
o w(x, 0 w(x, .
() — k(S TN ()
ox oy

With most elements developed to date, there exist no rigorous solution for
this equation except in the form of infinite Fourier series for a Levy-type solution.
The series solutions are valid for very limited cases such as when the second

parameter has been eliminated, and simple loading and boundary conditions exist.

As an alternative for different types of loading and boundary conditions it is
possible to extend the exact solution for a beam supported on a one- or two-
parameter elastic foundation to plates on generalized foundations when the plate is

represented by a discrete number of intersecting beams.

In the following sections finite element based matrix methods will be used to
determine the exact shape, fixed end forces and stiffness matrices of beam elements
resting on elastic foundations. These individual element matrices will be used to

form the system exact load and stiffness matrices for plates.

2.2 PROPERTIES OF BEAM ELEMENTS RESTING ON ONE-
PARAMETER ELASTIC FOUNDATION

The solution of plate problems cannot be solved analytically for all load and

boundary condition combinations. Instead, grillages of beam elements that have no
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such limitations can represent the plates. The properties of beam elements resting on
elastic foundations will be a very useful tool to solve such complicate problems. A
representation of the foundation with independent closely linear springs underlying a

beam element is shown in Figure 2.2

q(x)

~
~|< -
- -

B R S e S R T Elastic curve
k

zZ, W
Figure 2.2: Representation of the Beam Element Resting on One-Parameter

(Winkler) Foundation

The analysis bending of beam elements resting on an elastic foundation is
developed, by the Winkler assumption that the reaction forces of the foundation are

proportional at every point to the deflection of the beam at that point.
2.2.1 Derivation of the Differential Equation

Consider the straight beam supported along its entire length by an elastic
medium and subjected to uniform distributed load as shown in Figure 2.2. The
reaction forces will be assumed to be acting opposing to the vertical deflection of the
beam due to distributed load and this will cause compression in the supporting
medium. Assuming the medium’s material follows Hooke’s law let us the
fundamental assumption that the reaction force intensity (p) at any point is

proportional to the deflection (w) of the beam at that point:

p(x) = kw(x) (2.2)
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The constant for supporting medium, which is known as modulus of
foundation (ko), has a dimension of force per unit displacement per unit area. Since
beam elements have no second dimension, its width must be taken into consideration
to determine the Winkler parameter.

ki = ko for plate elements with F/L® dimensions.

ki =bxky for beam elements with F/L* dimensions.
For the derivation of the differential equation let us take an infinitesimal
element as in Figure 2.2. The forces exerted on such an element are shown in Figure

2.3. Considering the equilibrium of the element by the summation of the forces in

vertical direction gives:
V' +dV)=V +q(x)dx —kw(x)dx =0 (2.3)

d—V+q(x)—k1w(x) =0 (2.4)
dx

By ignoring infinitesimal quantities and taking moments about O:

a(x)

WAL o

mmmwmm\54

p = kiw(x)

<

M N

dx

Y Z,W
Figure 2.3: Forces Exerted on an Infinitesimal Element of the Beam Element

Resting on One-Parameter (Winkler) Foundation.
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_aM

V=— 2.5
- (2.5)
is obtained. Using the differential equation of a beam in bending
2
M=—Er2 f(x) (2.6)
d"x

where EI is the flexural rigidity and differentiating Equation (2.6) twice to obtain:
v _ M
dx dx?

By substituting Equations (2.6) and (2.7) into Equation (2.4) the differential

2.7)

equation of a beam element resting on one-parameter foundation is obtained as:

d*w(x)

d*x

EI

+ k,w(x) = q(x) (2.8)

2.2.2 Derivation of Exact Shape Functions of the Beam Elements

By equating ¢(x)=0; the homogeneous form of Equation (2.8) is:

d*w(x)

dx*

EI

+kw(x)=0 (2.9)

Let us rewrite Equation (2.9) as:

d*w(x) k,
+ — =0 2.10
dx* EI w(x) (.10
d*w(x)
o +41'w(x) =0 (2.11)
X
where

| k
A =4/ 2.12
4EI 2.12)
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n

By the operator method using

= D" then the characteristic Equation (2.11) can

n

be written as:

(D* + 41 )w(x) =0 (2.13)

The roots of the characteristic equation are

D, =A+id
D, =-A+ik
. (2.14)
D, =-1-iA
D, =1-il

where 1 is the imaginary number. Using Equation (2.14), the closed form solution of
Equation (2.11) is
w(x) = a,e”™ (Cos[ x|+ Sin[ Ax]) + a,e ™ (Cos[Ax]+ Sin[ Ax))

2.15
+a,e”™ (Cos[Ax] - Sin[Ax]) + a,e™ (Cos[ /x| - Sin[Ax)) 219
using hyperbolic functions
e™ = Cosh[Ax]+ Sinh[Ax]

(2.16)

e™ = Cosh[Jx] - Sinh[Ax]

Substituting the above hyperbolic functions and rearranging Equation (2.15)
with defining the new constants, the closed form solution of Equation (2.11) is

obtained as:

B ¢, Sin[Ax|Sinh[ x|+ ¢, Sin[ Ax|Cosh[ Ax]+

) = ¢,Cos[Ax|Sinh| Ax]+ ¢, Cos[ x]|Cosh| Ax]

(2.18a)

By neglecting foundation effects, a linear description of the angular
displacement at any point along the element can be expressed as O(x)= a;+ax.
Inserting the angular displacements due to torsional effects, Equation (2.18) that had
been derived by Alemdar and Giilkan (1997) can be rearranged as follows:
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¢, +¢,Sin[Ax]cosh[Ax]+ ¢, Sin[Ax]sinh[Ax] +

w(x) = 2.18b
) ¢, x + ¢;Cos[ Ax]cosh[Ax]+ ¢, Cos[ Ax]sinh[ Ax] ( )
Then, the closed form equation can be expressed in matrix form as:
w=B'C (2.19)
where

B" ={1 Sin[ix]cosh[ix] Sin[Ax]sinh[ix] x Cos[ix]cosh[ix] Cos[Ax]sinh[ix] }

@)
I

The arbitrary constants c;, c3, ¢s and c¢ subscript of the vector C can be
determined by relating them to the end displacements which forms boundary

conditions shown in Figure 2.4. In this figure:

{Q}T = {¢1,91,W1,¢2,92,W2} (2.20)
{E}T={TI,M1,VI,T2,M2,V2} (2.21)
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Figure 2.4: A Finite Element of a Beam (a) Generalized Displacements (b) Loads
Applied to Nodes
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Vectors { d } and { F } represent the generalized displacements and the loads
applied to the nodes, respectively. In order to relate the rotational elements of the
displacement vector to the constant vector, it is necessary to differentiate the bending

part of Equation (2.18) with respect to x.

¢, (ASin[Ax]Cosh[ Ax]+ ASinh[Ax|Cos[Ax]) +
dw(x) ¢, (ASin[Ax]Sinh[x]+ ACos[Ax]Cosh[Ax]) +
Cdx ¢ (ACos[Ax|Cosh[Ax]— ASin[Ax]Sinh[Ax]) +

¢ (ASinh[Ax|Cos[Ax] - ASin[ Ax]Cosh[ Ax])

(2.22)

The generalized displacement vector given in Equation (2.20) can be
determined with x= 0 and x= L values of Equations (2.18) and (2.22) in terms of the

constants as follows,

Bending case:

c;—j:(x =0)=6, =c,A+c A

wx=0)=w, =—c;

¢, (ASin[AL|Cosh[AL]+ ASinh[AL|Cos[AL]) +
dw ¢, (ASin[AL]Sinh[AL]+ ACos[AL]Cosh[AL]) +
——(x=L)=
dx ¢, (ACos[AL|Cosh[AL] - ASin[AL]Sinh[AL]) +

¢, (ASinh[AL|Cos[AL]— ASin[AL|Cosh[AL))

(2.23a)

- (¢3Sin[AL|Sinh[AL]+ ¢, Sin[AL]Cosh[AL] +
- ¢, Cos[AL|Sinh[AL]+ c,Cos[AL]Cosh[AL])

wx=L)=w,

Torsional case:

d(x)=c, +c,x
px=0)=¢ =¢ (2.23b)
px=L)=¢, =c, +c,L
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Equation (2.23) can be rewritten in matrix form,

¢, ¢

0, ¢,

Ml ] (2.24)
b, |G

0, Cs

W, Cs

or

[d]=[]-[c] (2.25)

where [H] is a 6x6 matrix from Equation (2.23). The arbitrary constant vector C can
be defined as:

[c]=[a]"[4] (2.26)

Substitute Equation (2.26) into Equation (2.18) then the closed form solution

of the differential equation can be written in matrix form as:

Ll=[8]" - [&]" - [d] (2.27)

Equation (2.27) can be redefined by introducing matrix N that includes four shape

functions and the generalized displacements defined in Figure 2.4 as follows,

$(x = 0)
X =0

[w]=[N]- ;V((:g; (2.28)
X=1)
w(x=1L)

After performing the necessary symbolic calculations, the shape functions are

obtained. Each shape (interpolation) function defines the elastic curve equation of the
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beam elements for a unit displacement applied to the element in one of the

generalized displacement direction as the others are set equal to zero. The elements

of the shape functions matrix N are:

sin[Ax]cosh[A(2L — x)]— cosh[Ax]sin[Ax] +
| cos[A(2L - x)]sinh[Ax] - cos[Ax]sinh[ Ax]

? A2+ cos[2lL] + cosh[2/1L]

cos[Ax]cosh[A(2L — x) ]+ cosh[Ax]cos[A(2L — x) |-
2 cos|Ax]cosh[Ax]+ sin[Ax]sinh[2(2L — x)] -
sinh[Ax]sin[A(2L —x)]

2— (cos[ZiL] + cosh[2/’tL])

sin[/1(L - x)]cosh[/i(L - x)] - cosh[ﬂ(L + x]sin[/i(L - x)] +
| cos|A(L - x)]sinh[A(L — x)]~ cos[A(L + x)]sinh[A(L — x)]
S (=2 + cos[2AL]+ cosh[2AL]

—2cos[A(L — x]cosh[A(L — x)]+ cosh[A(L — x]cos[A(L + x)] +
cos[A(L — x]cosh[A(L + x)] - sinh[A(L — x]sin[A(L + x) ]+
sin[A(L — xsinh[A(L + x)]

Ve 2 —(cos[2AL]+ cosh[2AL))
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The bending shape functions are directly affected by the foundation
parameter. It is possible to redefine them in non-dimensional forms for comparing
the functions with the corresponding Hermitian polynomials. To have non-
dimensional forms, let us insert the following relations into Equation (2.29).

X

&= i for 0<x<L (2.30)

and

k
S AL =4 231
b 4EI 23D

where L is the length of the beam. Note that both p and & are non-dimensional

quantities. Since the torsional shape functions are not affected, then only the non-

dimensional forms of the bending shape functions will be considered as follows:

sin[pé‘]cosh[p(Z - 5)] - COSh[psZ]Sin[P‘f] +
v, | cos[p(2—&)]sinh[p&]- cos[pé]sinh[p£] (2.32a)

L p(=2+ cos[2p] + cosh[Zp]

cos[pf]cosh[p@ - §)] + cosh[p§]cos[p(2 — §)] -
2cos[p&]cosh[p&]+sin[p&]sinh[p(2 - &)] -
sinh[p&]sin[p(2 - £)] (2.32b)

Vi = 2 —(cos[2 p]+ cosh[2 p))
sin[p(1 - &)]cosh[p(1 - &)] - cosh[ p(1 + &)]sin[p(1 - &)]+
s _| cos|p(1=&)]sinh[p(1 - &)] - cos[p(1 + &) sinh[p(1 )] (2.320)
L p(=2+ cos[2p] + cosh[Zp] '
—2cos[p(1—&)]cosh[p(1 - &)]+ cosh[p(1 - &)]cos[p(1 + &)]+
cos|p(1 - &)]cosh[p(1 + &)] - sinh[p(1 - &)]sin[ p(1 + &) ]+
v, - sin[p(1 - &)]sinh[p(1 + &)] (2.32d)

2 —(cos[2p]+ cosh[2p))
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On the other hand, the shape functions for flexure of uniform beam element

without any foundation, that is the limits of Equation (2.29) as k; tends to zero, are:

v, = x(l —%jz (2.33a)
v, =3 %)2 —2[% 3 -1 (2.33b)
v, = x(%jz —(% } (2.33¢)
W, =2 %}3 —3(% 2 (2.33d)

Substitute Equation (2.30) into Equation (2.33) to find out the non-

dimensional forms of the shape functions as Hermitian polynomials.

%z 28+ & (2.34a)
wy =387 —2&° —1 (2.34b)
%:53 L& (2.34¢)
W, = 28> 3¢ (2.34d)

In order to observe the foundation parameter effects, the expressions in

Equations (2.32) and (2.34) are portrayed graphically in Figures 2.5 to 2.8 for

comparison.
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2.2.3 Derivation of the Element Stiffness Matrix

The element stiffness matrix relates the nodal forces to the nodal
displacements. Once the displacement function has been determined as in previous
section for beam elements resting on one parameter elastic foundation, it is possible
to formulate the stiffness matrix. The element stiffness matrix for the prismatic beam
element shown in Figure 2.4 can be obtained from the minimization of strain energy

functional U as follows:

The governing differential equation for beam elements on one-parameter

elastic foundation Equation (2.8) can be rewritten as:

d*w(x)

4
X

EI

+kw(x)—q(x) =0 (2.35)

Let Equation (2.35) be multiplied by a test or weighting function, v(x) which
is a continuous function over the domain of the problem. The test function v(x)
viewed as a variation in w must be consistent with the boundary conditions. The
variation in w as a virtual change vanishes at points where w is specified, and it is an

arbitrary elsewhere.

First step is to integrate the product over the domain,

jv(x){E[ d;W(x) + &, w(x) — g(x) |dx =0 (2.36a)
X

4
0

j v(x)e(x)dx =0 (2.36b)

The purpose of the v(x) is to minimize the function e(x), the residual of the

differential equation, in weighted integral sense. Equation (2.36) is the weighted
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residual statement equivalent to the original differential equation. Then it can be

rewritten as:

[ Envix) d;WEX) dx + [ v(x)k,w(@)dx — [ V(x)g(x)dx =0 (2.37)
X 0 0

The first part of the Equation (2.37) can be transferred from dependent

variable w(x) to the weight function v(x) by integration by parts as follows:

( Vix )d w(x)} dl;(x) d* ng) (x)d ng)
X dx dx

Vo) d*w(x) _d [V(x) d3w(x)J dv(x) dw(x)

dx’ dx dx’® dx  dx®

d [dv(x) d>w(x) B d*v(x) d*w(x) N dv(x) d’w(x)
dx\ dx  dx’ dx’ dx’ dx  dx’

dv(x) d’w(x) _d [dv(x) d*w(x) B d*v(x) d*w(x)
dc  dx’  de\ dx  dx’ dx® dx’

jEl " )d (x)d _Elj{ ( VRC) w(x)j g(d‘;ix)ddvsgx)}ddz(zx)ddv:gx)}dx

L

d’ w(x) d 2V(x) d’ w(x)

( ) = Elv(x)————

+El j

2

dx dx? dx? dx

0 0

X

_E]i(dv(x) dzw(x)J
dx
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since v(x) is the variation in w(x), it has to satisfy homogeneous form of the essential

boundary condition:

wx) | =w, - v(x) |=0 (2.38a)
=0 x=0
dw(x) ‘ _p, . dv(x) ‘ ~0 (2.38b)
dx B dx -
wx) | =w, - v(x) |=0 (2.38¢)
x=L x=L
dw(x) ‘ _o, . dv(x) ‘ ~0 (2.38d)
dx N dx .
3 t 2 L
Vo) d ng) 0 dv(x) d ng) ~0 (2.38¢)
dx dx dx
0 0

Then, Equation (2.36) takes the form of only twice differentiable in contrast

to Equation (2.35), which is in fourth order differential equation, as follows:

j v(x)| EI d;ng) + ke, w(x) — g(x) |dx =
' L ;2 2x L L (2'39)
EI ! dd;(f) d djﬁ” dx+k, { V() w(x)dx — { V(x)g(x)dx = 0

Equation (2.39) is called the weak, generalized or variational equation
associated with Equation (2.35). The variational solution is not differentiable enough
to satisfy the original differential equation. However it is differentiable enough to
satisfy the variational equation equivalent to Equation (2.35). In order to obtain the

stiffness matrix, the displacement fields can be defined as follows:
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6
w(x) =D y,w,
=

(2.40)
v(x) =y,
Substituting them into Equation (2.39)
L dzl//» dzl//A L L
EI ’ Lw dx + k wow.dx — |v.q(x)dx =0
J(: dx2 dx2 J lj;l//zl/// Jj V([l//zq( )
L dz . dZ ) L L
{EII VZ’ l//z" dx + kIJ.l//il//jdx w; = J.l//iq(x)dx (2.41)
v dx dx 7 7

& M |- 7.}

The shape functions, i, W2, W3, Wa s and e are already known from

Equation (2.29). The nodal displacements are {w_l.}r ={¢,.6,,w,,8,,,6,,w, } referring

to sign convention in Figure 2.4. After performing the necessary symbolic

calculations, the stiffness terms are obtained as:

GJ
k- Tj (2.42a)
GJ
[ Tj (2.42b)
= 2EIA(sinh[2L1]—sin[2LA]) (2.42¢)
—2+cosh[2L1]+ cos[2LA]
2
ey, = 2EIA (cos[2L/1] - cosh[2L/1]) (2.424)
—2+cosh[2LA]+ cos[2LA]
k,, = 4E1/1(cosh[L/1]sin[L/1] - cos[Lﬂ]sinh[Lﬂ]) (2.42¢)
-2+ cosh[2L/1] + cos[2L/1]
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8EIA* sinh[LA]sin[LA]
kys = (2.42f)
—2+cosh[2LA]+ cos[2LA]
2EIA? (cos[2LA]—cosh[2LA))
ks, = (2.42g)
—2+cosh[2LA]+ cos[2LA]
4ELX (sin[2LA ]+ sinh[2LA4])
ks, = (2.42h)
—2+cosh[2LA]+ cos[ZLl
_ 2
k. = 8EIX sin L/”L smh (2.420)
—2+cosh[2LA]+ cos2
ky,=ks=ks=ks=k, =k =0 (2.42))
ky =k, (2.42k)
ky =k, (2.421)
ks, = ks (2.42m)
kg, = ki (2.42n)
ks =k, (2.420)
kss = kg (2.42p)
ke, = kg (2.42r)
ke, = ks (2.42s)
kes = kg (2.42t)
kes = ks (2.42u)

It is obvious that when foundation parameter k; tends to zero (or A—0 ), the
terms in Equation (2.42) must reduce to the conventional beam stiffness terms
obtained by Hermitian functions. As a measure of the correctness of the terms in
Equation (2.42), it is verified that the terms reduces to the following conventional

terms in matrix form.
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Limlk.]=

k1 —0

[T
L
0 4FE]
L
EI
0 - 6L2
G,
L
0 2EI
L
0 6le;[

6El
— L2
12E1
L3
0
_6EI

the unequal terms of the matrix are

. 4E]
Limks, = T
k1—0
. 6EIl
Limk,; = _7
k10
. 2FT
le ks = T
k1—0
. 6E]
Lim kys = 7
k10
. 12E1
Limks = T
k10
. 12E1
le ks = _T
k1-0

2EI

_6EI

4EI

6E1

(2.43)

(2.442)

(2.44b)

(2.44c¢)

(2.44d)

(2.44¢)

(2.44f)

The effect of the foundation parameter k; on the stiffness terms given in

Equation (2.44) and corresponding terms of Equation (2.44) is portrayed in Figures

2910 2.14.
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2.2.4 Derivation of Work Equivalent Nodal Loads

Fixed end moments and forces obtained with conventional cases are not valid
for beam elements resting on elastic foundations. As seen in Figure 2.15, it is
obvious that the foundation reaction will affect the fixed end bending moments and

forces. In some cases influence of foundation has a great importance.

a(x)

WL

FAEREERERRARAIRARAREY

p=ki*w(x)

M,

\% Fy

F>

M ¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢

p=Ky*w(x)

Fl
0 }—X.
(b)

Figure 2.15: Nodal Forces due to Uniform Loading of a Beam Element Resting on

F

One-Parameter (Winkler) Foundation.
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The nodal load vector corresponding to the loading function, q(x), acting on

the span L shown in Figure 2.15a is given by
L

{P}=[[Nlg(x)ax (2.45)
0

where [ N ] is the shape functions for beam elements resting on one-

parameter elastic foundation.

For a distributed moment m(x) acting along the element as shown in Figure

2.15b, the load vector can be rewritten as:

{P}= Idd—[g]M(X)dx (2.46)

The above equations can be used to determine the load vectors for many
common loading types. As stated earlier the plate will be represented in this study by
a discrete number of intersecting beams. Since beam elements can be accepted as
infinitesimal elements of plates, many types of loading can be represented with
uniformly distributed loads or point loads applied at the nodes. Therefore, the nodal
load vector will be derived only for ( q(x) = q, ) uniformly distributed loading of the

beam elements.

Referring to Figure 2.15a for uniform distributed loading, qo the equivalent

nodal loads can be obtained by rewriting Equation (2.45) as:

F N,
M| LN,

{P}= v =£qo N (2.47)
M2 N6

Inserting the corresponding shape functions from Equation (2.29) into

Equation (2.47), the nodal loads obtained as:
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o ¢, (cosh[AL] - cos[AL])
hi=r _[ A(sin[AL]+ sinh[AL]) (2.482)

M o——M. = qo(sinh[ﬁL]—sin[ﬁL])
VT T 222 sinfAL ]+ sinh[AL))

(2.48b)

It is obvious that when foundation parameter k; tends to zero, the terms in
Equations (2.48a) and (2.48b) must reduce to the conventional beam fixed end forces

obtained by Hermitian functions. The well known terms are obtained as:

. ¢, (cosh[AL] - cos[AL]) gL

fi=h= L]J;”[ A(sin[AL]+ sinh[AL) )~ 2 (2.492)
. [ g,(sinh[AL]=sin[AL) | q,L’

My=-M, = L}JZ{M (sin[AL]+sinh[AL]) )~ 12 (2.49)

In order to compare the influence of the foundation parameter k; on fixed end
forces, the normalized terms of Equation (2.48) with those of Equation (2.49) are

portrayed in Figures 2.16 and Figure 2.17.
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Figure 2.16: Normalized Nodal Force F; due to Continuous Loading of a Beam
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Figure 2.17: Normalized Nodal Force M; due to Continuous Loading for a Beam

Element Resting on One-Parameter (Winkler) Foundation.
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2.3  PROPERTIES OF BEAM ELEMENTS RESTING ON TWO-
PARAMETER ELASTIC FOUNDATION

The main advantage of the two-parameter elastic foundation model is to
provide a mechanical interaction between the individual spring elements. This
relationship between the springs that shows a more realistic behaviour of the soil

reaction eliminates the discontinuous behaviour of Winkler model.

a(x)

rd

119 > s cure

ki

Figure 2.18: Representation of the Beam FElement Resting on Two-Parameter

(Generalized) Foundation

The generalized foundation as a representation of two-parameter model
implies that at the end of each translational spring element there must be also a
rotational spring to produce a reaction moment ( k, ) proportional to the local slope at

that point. A representation of the foundation with closely linear translational and

rotational springs underlying a beam element is shown in Figure 2.18.
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2.3.1 Derivation of the Differential Equation of the Elastic Line

For generalized foundations the model assumes that at the point of contact
between plate and foundation there is not only pressure but also distributed moments
caused by the interaction between linear springs. These moments are assumed to be
proportional to the slope of the elastic curve by a second parameter for foundation.
That is, the reaction force intensity (p) at any point for generalized foundation can be

rewritten for beam elements as:

P(x) = k() — , 40 (2.50)
dx

To determine the basic differential equation of the beam elements, the same
procedures used for plate elements in Section 1.2 will be re-examined. However, the
equation of the elastic curve derived for a beam element resting on a two-parameter
elastic foundation from the equilibrium equations of an infinitesimal segment of the

structural member in as:

EI _d4WEX) +hkw(x) -k, deEX) =q(x) @31)
dx dx

As defined in previous section for beam elements k; is the Winkler parameter
with the unit of force per unit length/per length and kg is the second parameter that is
defined as the reaction moment proportional to the local angle of rotation in
generalized foundation model with unit of moment per unit length.

2.3.2 Derivation of the Exact Shape Functions

For a beam element resting on two-parameter elastic foundation, the

homogeneous form of Equation (2.51) is obtained by equating ¢(x) =0.
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d*w(x) 3
dx’

d’w(x)

EI e +kw(x)=0 (2.52)

ky

to solve the above equation firstly let us introduce

A= 2—3 and B = g—} (2.53)

Equation (2.52) can then be rearranged as:

d*w(x) d*w(x)
-4 + Bw(x)=0 2.54
dx* dx? () ( )
Let —= D" then the characteristic Equation (2.54) can be written as:

dx
(D* — AD” + B)w(x) =0 (2.55)

The roots of the characteristic equation are

JA+(4* —4B)
D, =
ND)
- Jas o —am)
o V2

JA—J(4* —4B)
V2

\/A — (4> —4B)
N

There are three possible combinations of parameters A and B that must be

D,

(2.56)

D, =

D, =-

considered to define Equation (2.56). The cases are

A< 2B
A= 2B (2.57)
A> 2B
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Since the case 4 = 2B (or k, =./4kEl) is a very special one it is not

necessary to obtain solution of the equation for this case. It is possible to obtain an

accurate solution by increasing kg a very small amount that let to use the solution for

A> 2B case. Therefore, solution of the differential equation would be obtained for

the other possible cases.

2.3.2.1 The Shape Functions for the Case 4 < 2B

For this case Equation (2.56) yields

\/A+i1/(4B—A2)
D, =
2
J-A-iJ(aB— A7)
D, =
V2
\/A—iq/(4B—A2)
D, =
2
~ \/—A+z\/(4B—A2)
) 2

(2.58)

D,

Utilizing Equation (2.12) for the first parameter and a new auxiliary quantity

for the second parameter as
i JE _y K
4 4E1 (2.59)
5 = é = kg
4 4EI

then the first root can be expressed in the following way:
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V45 + /(162" —165%)
D, = =

i 25 +i(A - 5% 60
s .

=2 S +i P 52 +6%)

by defining new quantities to simplify the term

i

a =
. : (2.61)

Both o and g have dimension of 1/L. Then substitute the new quantities

into Equation (2.60), the first root can be written in simplified form as:

D, =\(a* - B*)+2iap
=\ (a+ip)’

=a+if

The other roots also can be found by the same procedures. Then the roots are:

D =a+ip

Dy =-a-ip 2.62)
D, =a-if '
D, =-a+if

Considering the above roots solution of Equation (2.52) is:

e™ (cos| A ]+ sin[Ax]) + a,e = (cos[ fx] - sin[ Ac]) +
e (cos[ ] sin[Ax]) + a,e ™ (cos[ fx] + sin[ Ax))

w(x) =

(2.63)
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Using hyperbolic functions

e™ = Cosh|ox]+ Sinh|ox]

(2.64)

e™™ = Cosh|ax] - Sinh|ox]
Substituting the above hyperbolic functions and rearrange Equation (2.63)

with defining the new constants, the closed form of the solution in terms of

hyperbolic and trigonometric functions is obtained as:

c cos[ﬂx]cosh[ax]+ c, cos[ﬂx]sinh[ax]Jr

w(x) = . sin[ ,Bx]cosh[ax]+ c, sin[ﬁx]sinh[ax]

(2.65)

By neglecting foundation effects for torsional degree of freedoms, a linear
description of the angular displacement at any point along the element can be
expressed as Q(x)= a;taxx. Inserting the angular displacements due to torsional

effects, Equation (2.65) can be rearranged as follows:

¢, + ¢, cos| Ax]coshax]+ ¢, cos[Ax]sinh[ex]+

= 2.66
W) c,x+ ¢ sin[ﬁ’x]cosh[ax] +c sin[ﬂx]sinh[ax] (2.66)
then, the closed form equation can be expressed in matrix form as:
w=B'C (2.67)

where
B’ z{l cos|Ax]cosh[ax] cos[fr]sinh[ex] x sin[fx]cosh|ax] sin[ﬂx]sinh[ax]}

and

@)
I
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The generalized displacement vector which forms boundary conditions shown
in Figure 2.4 is obtained with x= 0 and x= L as in Section 2.2.2. Then the arbitrary
constant elements of the vector C can be related to the end displacements in matrix

form as follows:

é G
o, c,
c
M=) (2.68)
9, %
92 CS
w, Co
or

[d]=[a]-[c] (2.69)

[]=[x]"[4] (2.70)

Here [H] is a 6x6 matrix. Substituting Equation (2.70) into Equation (2.67)
leads to the closed form solution of the differential equation that can be written in

matrix form as:

Ll=[8]" - [&]" - [d] 2.71)

Equation (2.71) can be redefined by introducing vector N that includes six
shape functions. Then the closed form of the solution in terms of shape functions and

the generalized displacements defined in Figure 2.4 is
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P(x=0)
dw
E(x = 0)
vl w(x =0)
[w] =[] JormI) (2.72a)
dw
E(x =L)
w(x=1L)
or
[w]=[N]-[4] (2.72b)
where

[N]=[B] - [H]" (2.73)

For A<2B the shape functions can be obtained by the same procedures
followed for one-parameter case. After the necessary evaluations the shape functions

determined as follows:

X
v, = I—ZJ (2.74a)

S cosh|ax]sin[Ac]— Bsin|[fx]cosh[a(2L — x)]-
asinh[ox]cos[ (2L — x)]+ a sinh[eoc|cos| Ax]

Ve s (@® + g —a? cos|2AL] - 7 cosh[2aL]) (2.745)
a? cos[fix]cosh[ax]+ B cos[Ax]cosh[ax] -
B cos| fx]cosh[a(2L — x)]— @ cosh[ax]cos| B(2L — x)]-

v, = aff sin[ﬂx]sinh[a@L - x)] +af sinh[ax]sin[ﬂ(2L - x)] (2.74¢)

(az + % —a’cos2pL]- p? cosh[ZaL])
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v, = (ﬁJ (2.74d)

Bcosh|a(L + x)]sin[ (L — x)]- B cosh|a(L — x)]sin[ B(L — x)]-

asinh|a(L — x)]cos[ S(L — x)]+ asinh[a(L — x)]cos[ B(L + x)]
W = > — > (2.74¢)
(a + % —a’ cos|28L]- B cosh[2aL])

a? cosh[a(L - x)]cos[ (L — x)|+ B2 cos[B(L — x)]cosh[a(L - x)] -
a’ cosh[a(L - x)]cos[,B(L + x)]— V' cos[ﬂ(L - x)]cosh[a(L + x)]+

| aBsin[B(L + x)]sinh[a(L - x)]|- efsinh[a(L + x)|sin[ f(L - x)] (2.749)
(a2 + B -a’ cos[2ﬂL]—ﬂ2 cosh[ZaL]) -

2.3.2.2 The Shape Functions for the Case 4 > 2B

For A>2\B the roots of Equation (2.56) are definite. Therefore, by
substituting the auxiliary parameters defined in Equation (2.59) into Equation (2.56)

the first root can be expressed in the following way:

45+ /(1657 —164")
D, =
V2
- 25+(6" - 2') 2.75)
V2
Z\/E\/5+(\/5—/12)(\/5+/12)

Redefining the B term of Equation (2.61) to simplify the above equation:

=2 +0 P p

a
ey : (2.76)
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Both o and £ as previously mentioned have dimension of 1/L. substituting

the quantities into Equation (2.75), the first root can be written as:

D, =\/§W{#+aﬂ

=\’ + B +20p (2.77)
=a+f

The other roots also can be found by the same procedures. Then the full set is

D =a+p
D, =-a-
? p (2.78)
Dy=a-p
D, =-a+p
and the solution of Equation (2.52) for 4 > 2VB s
w(x) = ale(‘”ﬁ)x + aze’(‘”ﬁ)x + a3e(“’ﬂ)x + a4e("“ﬂ)x (2.79)

Substituting the hyperbolic functions and inserting the angular displacements

due to torsional effects, the closed form solution can be rearranged as follows:

¢, + ¢, cos| Ax]cosh|oox] + ¢, cos| Ax]sinh[co] +

w(x) = (2.80)

¢, x + ¢, sin[ fix]cosh[ax ]|+ ¢, sin[ Ax[sinh|[ox]

After the necessary evaluations as previously done the shape functions for the

case 4 > 2\/§ determined as follows:

v, :(1_£j (2.81a)
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V=

Vs

Vs

a sinh[(a - ﬂ)x] + B sinh[(a - ,B)x] +a sinh[(a + ﬂ)x] -
Bsinh[(a + B)x]- Bsinh[2aL — ax — fr]+ asinh[2 AL — ox — fx] -
asinh[2 L + ax — fx]+ fsinh[2al — ax + ]

2(a2 -B+p cosh[2ozL]—oc2 cosh[ZﬁL])

cosh[ax]cosh[ ] - 7 cosh[Ax]sinh[2aL ] - & sinh[ex]sinh[2 AL ]
(a3 cosh[ax]sinh[2ad |+ e sinh[2 AL |sinh[ Ax]) +
a,B(cosh[Z ﬁL]sinh[aL]sinh[ax]sinh[ﬂx] - cosh[ZaL])

(a2 —-p*+ p? cosh[2c¢L]—052 cosh[2,BL])

—asinh[(a +ﬁ’)(L—x)]+ ﬂsinh[(a +ﬁ’)(L—x)]+
asinh[al — AL — ox — fx]— Bsinh[al + AL + ax — fx]—
asinh[aL — L - ox + fix]— fsinh[al — AL - ox + fx]+
asinh|aL + fL —ax + fix]+ fsinh|aL — AL + ox + fix]

2(a2 -B+p cosh[2aL]—a2 cosh[ZﬁL])

2 cosh[ﬂx](ﬂ 2 cosh[ AL ]sinh[aL |+ o cosh[aL]sinh[,BL]sinh[ooc])—
2 cosh[ax](aﬁ cosh[ﬂL]sinh[aL] +a’ cosh[aL]sinh[,BL]sinh[ﬁx])+
2(a® - B*)(cosh[aL Jsinh[ AL |sinh|[cex |sinh[ Ax])

(a2 — % + g cosh[2aL]- a? cosh[2ﬂL])
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2.81b)

(2.81c)

(2. 81d)

(2. 81e)

(2. 81f)



For both 4 < 2\/§ and 4> 2\/§ cases, when foundation parameter k; and
kg tends to zero (dependently A—0, 3—0, a—0, f—0), the terms in Equation (2.74)

and Equation (2.81) must reduce to Hermitian functions.

2
. . X

LimLimv- %x(l—zj (2.82a)
a—0 S0

X ? X ’
Lim Lim(v:)—3 Zj —2(2 -1 (2.82b)
a—0 S—0

I X ? X
Lim Lim(vs)— x (Zj —[z } (2.82¢)
a—0 £—0 L

X ’ X ?
Lim Limv,)—2 Z) —3(2 (2.82d)
a—0 S—0

To observe the influence of the foundation parameters, it is necessary to
compare the expressions in Equations (2.67) and (2.81) with the Hermitian
polynomials in Equation (2.82). For clarifying the comparison let Equations (2.61)

and (2.76) be rearranged as follows:

a=\2+5 =1+t

For A< 2B (2.83a)
L=NA =6 =J1—t
and
=VA +35 = A1+t
For A>2B “ (2.83b)
B=A6-1 =1
where t is dimensionless
ké’
S _ 4EI
f=— =122 2.84
e k (2.84)
4E]
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The effect of the foundation parameters k; and kg on the shape function terms

given in Bquation (2.74) for A < 2+/B and Equation (2.81) for 4 > 2+/B with

corresponding terms of Equation (2.82) is portrayed in Figure 2.19 to Figure 2.30.
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2.3.3 Derivation of the Element Stiffness Matrix

The element stiffness matrix of a beam element, which relates the nodal
forces to the nodal displacements resting on two-parameter elastic foundation can be
obtained by the same procedures as in Section 2.2.3. As a summary, the stiffness
matrix, [Kc], for the prismatic beam element shown in Figure 2.18 can be obtained

from the minimization of strain energy functional U as follows:

oU
[Ke]—@ (2.85)
where
_ELrdPwx) dPw(x) k| k[ dw(x) dw(x)
U=- ! e L ! WO — = ! o (2.86)

Substituting w(x) and its derivatives from Equation (2.72) into Equation

(2.85), the stiffness matrix can be written in the following form

e J- s (LR -

0 (2.87)

where N is, a 6x1 matrix of the exact shape functions, given in Equation (2.74) for

A< 2B and Equation (2.81) for 4> 24/B . Their first and second derivatives in

matrix forms are

{M} “u] {@} (2.882)

dx

{M} ~[u" T{L{F‘} (2.88b)

dx? dx?
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Substituting N from Equations (2.74) and (2.81) and their derivatives, using
Equations (2.88a) and (2.88b), into Equation (2.87) and carrying out the necessary

integrals and procedures the stiffness terms are obtained for the cases:

A<2B
P 2Elaf(fsinh[2al |- asin[24L])

2 a? cos|28L]+ B cosh[2aL]-a® - 52 (2.89.a)
i = El(a’® + ﬂz)(ﬂ2 —a® +a’ cos|2pL]- p? cosh[ZaL])

5o a’ cos[2AL)+ B2 cosh[2aL]-a? - B? (2.89.b)
b 4E1aﬂ(ﬂ cos[ﬁL]sinh[aL] —-a cosh[aL]sin[ﬁL])

= (2.89.c)

o’ cos[2ﬂL]+ V' cosh[ZOzL]—O!2 - p

P - 4Elaﬂ(a2 + B’ Xsin[ﬂL]sinh[aL])

*\a* cos[2 L]+ A cosh2aL]-a” - B (2.89.d)
b - 2Elaﬂ(a2 + ,BZXa sin[2,6’L]+ ,b’sinh[2aL])

¥l a?cos[2fL]+ B2 cosh[2al]-a® - B (2.89.¢)
e -[- 4Elapla’ + B N coshlaL]sin[AL]+ f cos[ AL]sinh[aL) (2.89.)

6 a’ cos[2 L]+ 7 cosh[2aL]-a® - B
A4>2JB
k., = 2Elap(p sinh[aLJcosh[aL] -« sir_lh[ﬂL]_cosh[,BL]) (2.90.2)

V'a sinh[(azL)2 J— a’ sinhl(ﬂL)zj
3 ) 2\ a’p? (cosh(ozL)2 s_inh(,B{;)2 - coshg,BL)2 §inh(aL)2)
s = EI((a +h )+ V' sinh[(ozL)2 J— a’ sinh[(ﬂL)ZJ (2.0.6)
ke, = 2Elaf(a sinh[ﬂLJcosh[aL]— ﬂsir_lh[aL]_cosh[ﬂL]) (2.90.c)
B’ sinh[(ocL)2 J— a’ sinhl(ﬂL)ZJ
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2EIaﬁ'(a2 - ,Bz)sinh[aL]sinh[ﬂL]
ks = — T 5 T 7] (2.90.d)
p s1nhl(aL) J—a smhl(,BL) J
Elapla® - B> \asinh[24L]+ Bsinh[2aL])
kyy = T (2.90.¢)
B smhl(aL) J—a s1nh[(ﬂL) J
b = —2Elaﬂ(a2 - ,BZXa co_sh[aL_]sinh[ﬂL]J_r ﬂco§h[ﬂL]Sinh[aL]) (2.90.9)
¥ S’ sinh[(aL)ZJ— a’ sinhl(ﬁ'L)ZJ o
the other terms of the stiffness matrix for both cases are
GJ
ki =ky=-k,=~k,=— (2.91.a)
ki =k =kis =k =ky, =k =kys = ke = (2.91.b)
kyy = kys = kg3 = ky (2.91.c)
ksg =kgs =k, = ko (2.91.d)
52 = s (2.91.e)
kss =k (2.91.f)
ks = fesg 2.91.g)
ks = ez (2.91.h)

For cases A<2+/B and A4>2vB , the terms in Equations (2.89) and (2.90)

must reduce to the conventional stiffness terms when foundation parameter k; and ko

tends to zero (A—0 and d—0 or a—0 and p—0). They are verified for the both

casces:

) ) 4EI
LimLimk» — -

a—0 S0

) . 6EI
Lim Limk,; — - IE

a—0 £—0

) ) 2EI
LimLimks - -

a—0 L0

(2.92.2)

(2.92.b)

(2.92.c)
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L 6EI
Lim Limkx — o (2.92.d)

a—0 S0

o 12EI
Luon Lﬁz;g@ ks > =5 (2.92.¢)
o 12E7
Lszﬂzmkss > (2.92.9)
a—0 —0

The normalized terms as the ratio of the Equations (2.89) and (2.90) to
Equation (2.92) are plotted in three-dimensional view to observe the influence of the
foundation parameters. The p and t terms given in Figures 2.31 to 2.36 represents
dominant effects of the first and the second foundation parameters respectively. Note

that as t sets to zero the same curves of the Figures 2.9 - 2.14 obtained.

kao/(4EI/L)

Twro-paratheter foundation effects on the stiffness terms (K20

(%.¥.2)

Figure 2.31: Normalized k,; Term for Two-Parameter Elastic Foundation
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Figure 2.33

Normalized kys Term for Two-Parameter Elastic Foundation
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Normalized ks; Term for Two-Parameter Elastic Foundation

.
.

65



ks¢/(-12EI/LY)

Twro-parameter foundation effects on the stiffhess terms (K38)

(zd,vd, =)

Figure 2.36: Normalized k3 Term for Two-Parameter Elastic Foundation

2.3.4 Derivation of the Work Equivalent Nodal Load Vector

The work equivalent nodal loads of a beam element resting on generalized
foundation as shown in Figure 2.87a can be represented by Figure 2.87b. The fixed
end forces are formed by shape functions. Since the shape functions are vary by
foundation parameters the conventional cases are not valid for beam elements resting
on elastic foundations. That is, foundation reactions will affect the equivalent nodal

loads.
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a(x)
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k] kl

(a)

(b)

Figure 2.37: (a) Continuous Loading of a Beam Element Resting on Two-Parameter

(Generalized) Foundation (b) Nodal Forces due to the Loading.

In this study, as mentioned in Section 2.3.4, the plate will be represented by a
discrete number of intersecting beams. Since beam elements can be accepted as
infinitesimal elements of plates, many types of loading can be represented with
uniformly distributed loads or point loads applied at the nodes. Therefore, the nodal
load vector will be derived only for ( q(x) = qo ) uniformly distributed loading of the

beam elements.
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The equivalent nodal loads referring to Figure 2.37 for uniform distributed

loading, qo, can be obtained by rewriting Equation (2.45) as:

{P}= jqo [V ]ax (2.93a)

N,
N

[o%)

L
1
=|gq dx (2.93b)
1w,
N,

where [ N ] is the shape functions for either region 4 < 2v/B or A>2+/B for beam
elements resting on two-parameter elastic foundation.

Inserting the corresponding shape functions from Equation (2.74) into

Equation (2.93), the nodal loads yields, for 4 < 2B

F=F, = ( 2q,af(cosh|al] - cos[ AL)) (2.942)

o’ + B2\ Bsinh[aL ]+ asin[AL])

M =—M. = q,(B Sinh[aL]— asin[ﬂL])
o (0!2 +ﬂ2)(,6’sinh[aL]+asin[,b’L])

(2.94b)

In the second region, inserting the corresponding shape functions from

Equation (2.81) into Equation (2.93), the nodal loads yields, for 4 > 2B

2q,0B(S sinh[(a - ﬂ)L] -p sinh[2La] -a sinh[(a - ,B)L] -

asinh[2 AL]+ asinh|(a + B)L]+ fsinh|(a + B)L])
F =F = (2.95a)
(052 - ,6’2)(,82 —a® - f* cosh[2al]+ a* cosh[2 L))
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q,(a* + B* = B* cosh[2alL |- 2ap cosh[(a - B)L]-
—a? cosh[2 BL]+ 2a8 cosh[(a + B)L])
(052 -pB’ )(ﬂ2 —a? - f? cosh[2aL]+ & cosh[2 L))

(2.95b)

For both A<2\/§ and A>2\/§ cases, when both of the foundation
parameters k; and kg tend to zero, the terms in Equations (2.94) and (2.95) will

reduce to the conventional beam fixed end forces obtained by Hermitian functions.

That is

L
F =F,=LimLim [Equation(2.94a or 2.95a)) - q; (2.96a)
a—0 L0
. . , q,L°
M, =-M, = [ im Lim| Equation(2.94b or 2.95D) —)7 (2.96b)
a—0 S—0

Normalizing Equation (2.94) for 4 < 2B and Equation (2.95) for 4 > N
with conventional terms of Equation (2.96) can be used to observe the effect of the
foundation parameters, k; and kg on the nodal forces. For clarifying the comparison

let foundation parameters be rewritten as:

a=NA+6 = A1+t

For A< 2B (2.97a)
B=~N21—-6=2/1-t
and
VA +6 = A1+t
For 4> 2B “ (2.97b)
B=NS-A =t-1
Ky
where t= iz = AEL  anq p=AL (2.98)
ys k,
AEI

The normalized terms with respect to indirectly foundation parameters are shown in

Figures 2.37 and 2.38.
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CHAPTER 3

EXTENSION TO VIBRATION AND STABILITY
PROBLEMS

3.1 INTRODUCTION

Since response of structures frequently involves a dynamic process or
stability, in some cases it will be more realistic to extend the formulation in Chapter
2 to enable buckling and stability solutions. Therefore, in engineering practice,
beside static case often one or both of the stability and dynamic effects must be taken
into consideration to the plate analysis and design problems. It will be necessary to
describe the governing equation of motion of plates in a general mathematical form
for such cases. This can be achieved by inserting both of the inertia force due to the
lateral translation and in-plane loading simultaneously, in an appropriate way, into
the governing differential equation for static case. Referring to Figure 3.1, the
governing equation for plates resting on generalized foundation under the combined
action of transverse load and biaxial in-plane loading can be obtained by rearranging

Equation (2.1) as:

4 4 4
D(a \:V+ 82W2+8 \:V)+klw—
OX ox oy~ oy G.1)
o*w  o°w o*w o*w o*w '
k,(—-+ + N + N -m =q(X,
9(8x2 ayz) X gy> Y ox> ot? ac.y)

where W= W(X, y,t)is the transverse deflection of the plate, D = Eh’ /12(1—v?)is

the plate flexural rigidity, M is the mass of the plate per unit area, Ny and Ny are in-
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plane loads in x and y directions respectively, and k;, k¢ are the foundation

parameters defined in the previous chapter.

LLLLLLLLLLL LU

Z

q(x,y)

(LA RARRR RN

o

TARTRRTCRRIY

(ANARRARRRRRN RN

LU,

Figure 3.1: The Representation of a Modal Plates Resting on Generalized
Foundation Under the Combined Action of Transverse Load and Biaxial In-Plane

Loads.
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Equation (3.1) is a linear fourth-order partial differential equation for the

unknown displacement function w=w(X, Y,t). If there are no any loads other than

the in-plane loads the equation will define an eigenvalue problem which allows us to
find out the critical buckling loads. However if the in-plane and the transverse loads
are set to zero then it will be again an eigenvalue problem that describes the case of a
freely vibrating plate. Accordingly the governing differential equation of the plates

under static buckling of plates is:

otw o'w  o'w o’w  o*w
D(—+ 5+ —) KWK, (—5+—5) +
OX OX“ 0y y OX oy (3.2)
o°w 0°w '
o5 T Ny =
oy OX

On the other hand, the governing differential equation of the freely vibrating plate is:

2
)—maat‘z"’zo (3.3)

0w o'w  o'w o*w  o*w
7 5+ 4)+klw—k,9( —+——
oX ox°oy- oy ox" oy

Bazant (1989) has stated that buckling of plates is analogous to buckling of
columns and frames. The similarities are bifurcation type of buckling with similar
critical load and the possibility of solving the critical loads from linear eigenvalue
problem. Dynamic problems of the plates with arbitrary contours and arbitrary
boundary condition are very difficult or often impossible to solve in closed form by
the classical methods based on Equations (3.1) to (3.3). In some respects dynamic
behaviour of plates resembles that of beams. Therefore plates can be modeled as an
assemblage of individual beam elements interconnected at their neighboring joints as
represented in Figures 3.2 and 3.3. By representing the plate with assemblage of
individual beam elements interconnected at their neighboring joints, the system
cannot truly be equal to the continuous structure, however sufficient accuracy can be

obtained similar to the static case. By representing the plate shown in Figure 3.1 with
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individual beam elements the problem will be reduced to one-dimensional one. Then

Equations (3.2) and (3.3) can be rewritten for one-dimensional beam elements as:

4 2 2

DIV kw—k, IV NIV (3.4)
dx dx dy
d*w d’w _d’w

D7+klw—kgd7+m dt2 :0 (35)

The main advantage of the reduction is that both of the exact geometric
stiffness matrix and consisting mass matrix can be determined for the beam elements.
These matrices will be used as a basis in Chapter 4 for assembling the plate problems
in a proper way. Then dynamic problems of the plates resting on two-parameter
foundation with arbitrary loading and boundary conditions could be solved

approximately.

3.2  CONSISTENT MASS MATRIX

It is possible to evaluate mass influence coefficients of a structural element
with the procedures similar to that obtaining the element stiffness matrix by making
the use of finite element concept (Clough and Penzien, 1993). The consistent mass
matrix of beam elements resting on elastic foundations can also be evaluated by the

same procedures.

The degrees of freedom of the element are the torsion, rotation and translation
at each end. Since the angular displacements are obtained from the pure torsion
member, the torsional DOF’s are independent. Then it can be assumed that the
displacements within the span are defined again by the same interpolation functions

those already derived in Chapter 2 for obtaining the element stiffness matrices.
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Consider the beam element shown in Figure 3.2 having a mass distribution
m(x). If it were subjected to a unit angular acceleration at point a, the acceleration

would be developed along its length as follow:

WEX) = 7, (X (3.6)

By d’Alembert’s principle, the inertial force due to this acceleration is:

f (%) = MO)OMEX) = M(X)y, (X)8& (3.7)

\Z m(x)

L
I
g %O &G & @
l &, (3) W& (6) l

OW(X)= y3(Xx)OowW3

OW3= - OW,

&2 :@a

inertia force fi(x)

Figure 3.2: The Representation of a Beam Element Subjected to a Unit Real

Acceleration and Virtual Translation at the Left Side.
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By the principle of virtual displacements the mass influence coefficients
associated with this acceleration as the nodal inertial forces can be evaluated from
Equation (3.7). As an example, it is possible to evaluate the vertical force p,,
equating work done by the external force due to virtual displacement, to the work

done on the distributed inertial forces f(x). That is

p.ow; = [ f, ()Iw(x)dx (3.8)

Substituting the vertical virtual displacement in terms of the shape functions into

Equation (3.7) then,

L

My, = [ MOy, (X () (3.9)

0
By this analogy, Equation (3.9) can be extended to evaluate for the other degrees of

freedoms such as:
L

m, = [ MOy, (X, (X)dx (3.10)
0

By using the proper shape functions for conventional beam or beam element
resting on one or two parameter elastic foundations, Equation (3.10) enables us to
evaluate all of the mass matrix terms. Computing the mass coefficients by the same
shape functions with same procedures as done for determining the stiffness matrices

is called consistent-mass matrices.
3.2.1 Consistent Mass Matrix for One-Parameter Foundation

Recalling the corresponding shape functions given in Equation (2.29) and
substitute them into Equation (3.10) leads us to evaluate the consistent mass matrix
for the beam elements resting on one-parameter elastic foundations. After evaluating
the necessary integrations and introducing the constant mass distribution m(x)= p as

uniform mass per unit length, the mass matrix terms will be
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m, =~— and ml4=%|' (3.11a)
8 p(cos[2 p]— cosh[2 p])+ 4sin[2 p] - sin[4 p]
uL*| —2cosh[2 p]sin[2 p] - 4sinh[2 p]+ 2 cos[2 p]sinh[2 p]
+8 psinh[2 p]sin[2 p] + sinh[4 p]
16 p*(cosh[2 p]+ cos[2 p] - 2)°

(3.11b)

E (4 +cos[4 p|—4(1 - cosh[2 p])1 - psin[2 p])— 4 cos|2 p]}
- cosh[4 p] +4 psinh[2 p](l - cos[?_ p])
8p?(cosh[2 p]+ cos[2 p]-2)*
2 p(cos| p]cosh[3 p]— cosh[ p]cos[3 p]) - 4 cosh| p]sin[ p]
4| + cosh[3 p]sin[ p]+ cosh[ p]sin[3 p]+ 4sinh[ p]cos[ p]
— cos[3 p]sinh[ p]—16 psinh[ p]sin[ p]— cos| p]sinh[3 p]
8p’(cosh[2 p]+ cos[2 p]-2)’

m,, = (3.11¢)

(3.11d)

pcosh| p](sin[3 p]— 2sin[p])— pcosh(3 p]sin[p]
uL?| + psinh[p)(2 cos| p] - cos[3 p]) — 12 sinh[ p]sin[ p]
+2sinh[3 p)(sin[3 p] + sin[ p]) + pcos| p]sinh[3 p]
4p*(cosh[2 p]+ cos[2 p]-2)°
8 p(1—cosh[2 p])1 - cos[2 p]) + 3sin[4 p]
uL| +6sin[2 p]cosh[2 p]+ 6sinh[2 p]cos[2 p]
—12(sin[2 p]+ sinh[2 p]) + 3sinh[4 p]
8 p(cosh[2 p]+ cos[2 p] -2’

(3.11e)

m,, =

(3.119)

3 =

12sin[ p]cosh[ p]—3sin[ p]cosh[3 p] - 3sin[3 p]cosh[ p]
uL| +12sinh[p]cos[p]—3sinh[ p]cos[3 p]- 2 psin[3 p]sinh[ p]
+2 psinh[3 plsin[ p] - 3sinh[3 p]cos[ p]
4p(cosh[2 p]+ cos[2 p]-2)*

my, = (3.11g)

where 1 is mass per unit length and p = AL = 4] 4kEl| L

When foundation parameter k; tends to zero (or p—0 ), the terms in Equation

(3.11) must reduce to the conventional beam consistent mass terms obtained by
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Hermitian functions. The correctness of the terms is verified that the terms reduce to

the following conventional terms in matrix form.

140 0 0 70 0 0
0 4L -22L 0 -3 -13L
: L]0 —22L 156 0 13L 54
LpL';n[M]:%o 70 0 0 700 0
-3 13L 0 4L° 22L
—13L 54 0 22L 156

(3.12)

The normalized terms represent the influence of the foundation parameter k;
on the mass matrix terms given in Equation (3.11) and corresponding terms of the

matrix given in Equation (3.12) is portrayed in Figures 3.3 to 3.8.
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3.2.2 Consistent Mass Matrix for Two-Parameter Foundation

When we substitute the proper shape functions for the beam elements resting

on two-parameter for both A< 24/B and A>2vB cases given in Equations (2.74)
and (2.81) respectively, into Equation (3.10) it leads us to evaluate the terms of
consistent mass matrices. Since the terms of the mass matrix for the two-parameter
cases are too complex and extremely long functions, they are presented in Appendix
A. However, for purposes of confidence in the result, by letting both of the
foundation parameters tend to zero, the correctness of the terms is checked. The same
conventional beam consistent mass terms are again obtained as given in Equation

3.12

The influence of the foundation parameters k; and kg on the consistent mass

terms for A< 2+/B with corresponding terms of Equation (3.13) can be normalized
as shown in Figures 3.9 to 3.14. Note that, as the second parameter tends to zero (i.e.
t —0) the same two-dimensional curves of one-parameter case given in Figures 3.3 —
3.8 are obtained. Note that the p and t values given in the following figures are

defined in Equations (2.97) and (2.98).
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Figure 3.10: The Normalized Consistent Mass Term m;s for Beam Elements Resting

on Two-Parameter Foundation.
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on Two-Parameter Foundation.
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3.3 CONSISTENT GEOMETRIC STIFFNESS MATRIX

As an compressive axial force applied to a beam element, it is obvious that its

stiffness will reduce. The axial force influences can be included to the problem by

the consistent geometric stiffness terms. It is possible to evaluate the terms, similar to

the case of obtaining the consistent mass matrices, without introducing any terms due

to axial force into the governing differential equation .

dx

N - N x

,} SR
w......u...... ...-...-.-...-'_"_:';"_"_" __________ > Elastlc
L Curve

X \ dx
7. W
ds dw

Figure 3.15: The Deformed Shape of a Simply Supported Axially Loaded Beam

Element.

Consider a simply supported beam subjected to compressive axial load as

shown in Figure 3.15. Due to the load the element will deformed, the change in

length of the element can be obtained by the difference of the arc length and the

horizontal length. From the Figure the arc length is

2
ds =+/dx* +dw? = 1+(2—Wj

X

The series solution is
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ds—dx(1+ (d""] —l(d—wj o J (3.14)
dx 4\ dx

Neglecting smaller terms

ds_dx(1+ [dW)J (3.15)
dx

Then
2
A=ds-dx = liﬁj dx (3.16)
2 dx
Work done by the axial force N, the strain energy stored in the system, is
N A= jN (d""j dx (3.17)
dx

In this equation w can be defined as
w(x) = {N}' {w} (3.18)
where {w} is the joint displacement vector and {N} is the shape functions matrix of

the beam element resting on one or two-parameter elastic foundation. For constant

axial load, Equation (3.17) can be rewritten as:

IN%[dWTdX dew(x) awe o

& dx dx

WH NN {N"}dx {w} (3.19)

In Equation (3.19) [ks] is [{N'}" N {N’}dx represents consistent geometric

S ey

stiffness matrix of the beam element. Using this equation, each terms of the matrix in

general form can be evaluated by:

dy

dx 3.20
o (3.20)

. —Njw, y'idx = dew'
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By Equation (3.20) the consistent geometric stiffness using the proper shape

functions terms for conventional beam or beam element resting on one or two

parameter elastic foundations can be evaluated.

3.3.1 Consistent Geometric Stiffness Matrix for One-Parameter Foundation

The same procedures can be followed as done for determining the consistent-

mass matrices to obtain the geometric stiffness terms. That is, the corresponding

shape functions given in the Equations (2.29), for the beam elements resting on one-

parameter elastic foundation can be substituted into Equation (3.20) to evaluate the

geometric stiffness terms. After evaluating the necessary integrations, the terms will

be obtained as:

szz =N

k(323 =
szs =N
kGZé =N

8p(1 —cos(2 p)(1 —cosh(2 p)+4sin(2p) —
6 cosh(2 p)sin(2 p) + sin(4 p) + 4sinh(2 p) —
6 cos(2 p)sinh(2 p) + sinh(4 p)

8 p(cos(2 p) + cosh(2p) —2)*

4sin(p)sinh(p)(pcosh(p)sin(p) +
pcos(p)sinh(p) - 2sin(p)sinh(p)

(cos(2p) + cosh(2p) —2)°

3sin(p)cosh(3p) - cosh(p)sin(3p) + 3cos(3p)sinh(p)
+ 2psin(3p)sinh(p) - cos(p)sinh(3p) - 2psin(p)sinh(3p)

4p(cos(2p) + cosh(2p) —2)*

- 4psin(p)sinh(p)cosh(p)sin(p) +
pcos(p)sinh(p) - 2sin(p)sinh(p)

(cos(2p) + cosh(2p)—2)°
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pP(8 p(cos(2 p) — cosh(2 p)) + 6 cosh(2 p)sin(2 p)
+ 4sinh(2 p) — 6 cos(2 p) sinh(2 p) + sinh(4 p)
— 8 psin(2 p)sinh(2 p) — 4sin(2 p) —sin(4 p))

Kes; =N
G33 4(cos(2 p) + cosh(2 p) - 2)°

(3.21¢)

p(2p(cos(p)cosh(3p) - cosh(p)cos(3p)) -
3cosh(3p)sin(p) + sin(3p)cosh(p) - cos(p)sinh(3p)
+ 3cos(3p)sinh(p) + 16psin(p)sinh(p))

Keie =N
6% 2(cos(2 p) + cosh(2 p) —2)*

(3.216)

where N is constant axial compressive force and p = AL = 4/ 4kEl| L

When foundation parameter k; tends to zero (or p—0 ), the terms in Equation
(3.21) must reduce to the conventional beam consistent mass terms obtained by
Hermitian functions. The correctness of the terms is verified that the terms reduce to

the following conventional terms in matrix form.

0 0 0 0 0 0 |
0 4> -3L 0 -L* 3L
) N[O -3L 36 0 -3L -36
ko |= 2 3.22
Hmb]mLoo 0 00 0 (3.22)
0 —L* —-3L 0 4L* 3L
0 3L -36 0 3L 36 |

The normalized terms represent the influence of the foundation parameter k;
on the geometric stiffness terms given in Equation (3.21) and corresponding terms of

the matrix given in Equation (3.22) are portrayed in Figures 3.16 to 3.21.
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Figure 3.16: The Normalized Consistent Geometric Stiffness Term kg, for Beam

Elements Resting on One-Parameter Foundation.

=

o
(o]
|

kG23/(-3NL/30L)

0.6

0.4

0.2

Figure 3.17: The Normalized Consistent Geometric Stiffness Term Kkg,3 for Beam

Elements Resting on One-Parameter Foundation.
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Figure 3.19: The Normalized Consistent Geometric Stiffness Term kg6 for Beam

Elements Resting on One-Parameter Foundation
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Figure 3.21: The Normalized Consistent Geometric Stiffness Term kgs¢ for Beam

Elements Resting on One-Parameter Foundation.
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3.3.2 Consistent Geometric Stiffness Matrix for Two-Parameter Foundation

To obtain the geometric stiffness terms, it is necessary to reuse the same
shape functions with same procedures again. That is, the corresponding shape
functions given in the Equations (2.74) and (2.81) for the beam elements resting on
two-parameter elastic foundation can be substituted into Equation (3.20) to evaluate
the geometric stiffness terms. After evaluating the necessary integrations, the terms
are obtained. Because of long expressions of the terms for the two-parameter cases,
they are presented in Appendix B. The terms are verified by letting both of the
foundation parameters tend to zero. The same conventional beam geometric stiffness

terms are again obtained as given in Equation 3.22.

The influence of the foundation parameters k; and kg on the consistent mass

terms for A< 2+/B with corresponding terms of Equation (3.13) can be normalized
as shown in Figures 3.22 to 3.27. Note that, as the second parameter tends to zero (t
—0) the same two-dimensional curves of one-parameter case given in Figures 3.16 —
3.21 are obtained. The p and t values given in the following figures, represents the

influence of the foundation parameters, are defined in Equations (2.97) and (2.98).
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Resting on Two-Parameter Foundation
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Figure 3.24: The Normalized Consistent Stiffness Term kg6 for Beam Elements

Resting on Two-Parameter Foundation
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Figure 3.25: The Normalized Consistent Stiffness Term kgs; for Beam Elements

Resting on Two-Parameter Foundation
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Figure 3.27: The Normalized Consistent Stiffness Term kgss for Beam Elements

Resting on Two-Parameter Foundation
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CHAPTER 4

DISCRETIZED PLATES ON GENERALIZED
FOUNDATIONS

41 INTRODUCTION

Since the structural behavior of a beam resembles that of a strip in a plate
(Wilson, 2000), the framework method that replaces a continuous surface by an
idealized discrete system can represent a two-dimensional plate. The representation
of a plate through the lattice analogy at which the discrete elements are connected at
finite nodal points is shown in Figure (4.1). The phrase “lattice analogy” has been
used among others for this representation. The plate is modeled as an assemblage of
individual beam elements interconnected at their neighboring joints. Therefore the
exact fixed end forces and stiffness matrices obtained in Chapter 2 and the exact
consistent mass and geometric stiffness matrices derived in Chapter 3 for
conventional beam elements and beam elements resting on one or two parameter
foundation are valuable tools to solve general plate vibration, buckling and bending

problems.

By this representation, the plate problems including buckling and free
vibration, which have non-uniform thickness and foundation properties, arbitrary
boundary and loading conditions and discontinuous surfaces, can be solved in a
general form. Of course as Hrennikof (1949) stated the system cannot truly be equal
to the continuous structure. However apart from errors associated with torsional and

discretization effects sufficient accuracy can be obtained.
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42 REPRESENTATION OF PLATES BY BEAM ELEMENTS

In order to simplify the problem a rectangular plate can be represented by two
sets of intersecting beam elements as a simple version of three dimensional structure
connected at finite nodal points as shown in Figure 4.1. It is not necessary to have the
elements intersect at right angles. That is the replacement implies that there are rigid
intersection joints between all sets of beam elements, ensuring slope continuity.
Because of plane rigid intersection, the elements can resist torsion as well as bending
moment and shear. Therefore the idealized discrete element as shown in Figure 4.2

can be replaced with a beam element that has 3 DOF at each node.

, ; VLA Pt
.
.
w

A 4 , , 7
, ’ ////
I 7’ < 7’
7 7
| . ‘. ’
2 1, b e
| s __ e
7 7 . e
1 , , , ,
’ ’ ’ ’
, , , ,

e

Figure 4.1: Idealized Discrete System at Which the Elements Are Connected at

Finite Nodal Points of a Rectangular Thin Plate
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Figure 4.2: Local Coordinates for a Grid Element

The main advantage of this method is that plate problems, which may have
complex loading and boundary conditions, can be represented as assemblies of the
individual beam elements. If suitable stiffness coefficients can be provided, the
accuracy of the method will be high. Since the element stiffness matrices of the
discrete beam element resting on one or two parameter elastic foundations have
already been determined in Chapter 2, the method can be extended to solve the plates

resting on generalized foundation problems.

43  ASSEMBLY OF DISCRETIZED PLATE ELEMENTS

In gridwork systems two or three elements are connected along external or
internal peripheries. At interior nodes four typical discrete individual beam elements
as shown in Figure 4.2 intersect. Matrix displacement method based on stiffness-
matrix approach is a very useful tool to solve gridworks with arbitrary load and
boundary conditions. It can be defined as a horizontal frame structure with rigid
joints whose members and joints lie in a common plane. The applied loads are
usually normal to the plane of the structure as limited by the degrees of freedom

directions as shown in Figures 4.3 and 4.4.
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Figure 4.3: Typical Numbering of Nodes, DOF’s and Elements of a Rectangular
Plate

Consider a typical member from a structural grid as shown in Figure 4.4 with
the ends of the member denoted by i1 and j . The local axes of the member are x, y, z
and the global axes (previously defined in Figure 4.3) are X, Y, Z. The possible end
deformations of the element are a joint translation in z-direction and the torsional and
bending rotations, respectively about x- and y- axes. That is, the degrees of freedoms
(possible end deformations) of the element at 1 are two rotations, 1 and 2, and one

translation, 3, at j they are similarly 4 and 5 for rotations and 6 for translation.
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Figure 4.4: Typical Numbering of Nodes, DOF’s and Elements of a Quarter of a

Circular Plate

By using a proper numbering scheme to collect all displacements for each
nodal point in a convenient sequence the stiffness matrix of the system shown in
Figures 4.3 for circular grids and Figure 4.4 for rectangular grids can be generated as

follows:

NE
ksys :Z giTlii gi (41)
i=1

where 1 is the individual element number, NE is the number of elements, a; is the
individual transformation matrix, k; is the proper element stiffness matrix for a
conventional beam element as given by Equation (2.43), for a beam element resting

on one-parameter elastic foundation as given by Equation (2.42) and two-parameter
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elastic foundation as given by Equations (2.89) and (2.89) and kys is the stiffness

matrix of the total structure.

Y
1
/’ Local
' 2 > Coordinates
RN Global _______________
Coordinates y
i X

Figure 4.5: Transformation of the Degrees of Freedom of a Typical Plane Element
from Local (x, y, z) Coordinates to the Global (X, Y, Z) Coordinates

Since the local positive direction of the beam elements have been defined

previously, from Figure 4.5 the transformation matrix of an arbitrary plane element

will be

[C S 0 0 0 0]
S -c 0 0 0 0
0O 0 -1 0 0 0
a; = (4.2)
0O 0 0 C S 0
0O 0 0 S -C 0
0 0 0 0 0 -1]

where C = Cos(0) and S = Sin(0)

Similar to determining the system stiffness matrix, for buckling problems the

system geometric stiffness matrix can be obtained as follows:

NE

stys =Z giTkGi a; (43)

i=l
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where kg; is the proper element geometric stiffness matrix. For a conventional beam
element this is given by Equation (3.22), and for a beam element resting on one-
parameter elastic foundation Equation (3.21) and two-parameter elastic foundation is

given in Appendix B and Kkgsys is the geometric stiffness matrix of the total structure.

The compressive axial loads decrease the effective stiffness of the structure.
The critical load P, from the well-known equation of eigenvalue analysis must be

found from

(ksys - 2’ 1_(Gsys)V_V: 0 (44)

The set of A values that satisfy the above equation to be zero are called the
eigenvalues of the problem, while the corresponding displacement vector w
expresses the corresponding shapes of the buckling system known as the
eigenvectors or mode shapes. The lowest eigenvalue can be defined as the first

buckling load. For vibration problems the system consistent mass matrix is
NE

Msys = z giTMi a; (45)
i=l

where M; is the proper element consistent mass matrix for a beam. Depending on the
number of foundation parameters, it is given by Equation 3.12, 3.11, or Appendix A.

M,y 1s the consistent mass matrix for the system.

The equations of motion for a system in a free vibration as an eigenvalue
problem may be written
(ky, —@" M )W=0 (4.6)
where the quantities o” are the eigenvalues indicting the square of free vibration
frequencies that satisfy the above Equation, while the corresponding displacement
vector W express the fitting shapes of the vibrating system as the eigenvectors of

mode shapes.
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CHAPTER 5

CASE STUDIES

5.1 INTRODUCTION

In order to check the validity of the solution techniques an example of a plane
grid that consist of rigid attached mutually perpendicular beams without any
foundation in a horizontal plane will be shown. After verifying the method widely

different plate problems will be examined.

There are examples of a wide range of plates (such as; plate analysis, grid
analysis, plates on one-parameter elastic foundation and plates on two- parameter
elastic foundation) were solved by the finite grid solution. Comparison with known
analytical and other numerical solutions yields accurate results as an approximate
method. In addition the method developed for plates (extend beam elements to the
plates) on generalized foundation is also applicable to slabs, girders and mat

foundations in bridge and building structures.

5.2SAMPLE PROBLEM FOR PLANE GRID SUBJECTED TO
TRANSVERSE LOADS

The first study is to analyze the plane-grid system solved by Wang (1970)
shown in Figure 5.1. The system is a monolithic reinforced-concrete plate simply
supported on four columns at A, B, C and D. the values of flexural and torsional

rigidities for all elements are EI=288000 kip-ft* and GJ=79142.4 kip-ft* respectively.
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Two loading conditions are to be investigated: 1) a 10-kip concentrated load applied

at H and (LC1) and 2) a uniform load of 3 klf on the element BF (LC2).

418 4 20

—_
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—_
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12 fi =

E
(e
12 f © o S
2 4 7
o, | 1 s, . o
D G C
16 ft 16 ft

Figure 5.1: The Given Grid System

There are 8 nodes, 11 elements and 20 degrees of freedoms in the Figure. The
element internal forces and the displacements values of the reference for both
loading conditions are compared with the Finite Grid Solution and they are tabulated

in Tables 5.1 and 5.2, respectively.
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Table 5.1: The Comparison of the End Forces for the Present Study, Finite Grid
Method (FGM) with Wang (1970)

COMPARISON OF INTERNAL FORCES

EL LC1 LC2

No L. End M. | R. End M. | Tors. M. | L. End M. | R. End M. | Tors. M.

| [Ref. 0.2245]  20.1033| 0.4221 0.6877] 26.6887| 3.5376
FGM 0.22432 20.1] 0.42159] 0.68671 26.67] 3.5349

5 [Ref. -19.7902 0.753] -0.1456| -33.3826| -0.4439] 6.6647

FGM -19.785]  0.75496| -0.14548 -33.357]  -0.43532] 6.6642

Ref. 2.761 23.1228| -1.2437 6.0058 -8.286] -0.8249
FGM 2.7607 23.128] -1.2435 6.0043 -8.2632| -0.82376

Ref. -23.4002 0.3811 0.2419] 16.4602 24.026/ 10.2151

! FGM -23.408]  0.38659] 0.24008 16.424 24 10.206
5 Ref. -2.9855 1.2746 -2.528 -6.6936]  -49.4419] -9.9166
FGM -2.985 1.2754 -2.522 -6.691 -49.436/ -9.9123
6 Ref. -0.4221 11.8008] 0.22432 -3.5376 6.2845 0.68671
FGM | -0.42159 11.802] 0.22432 -3.5349 6.2884| 0.68671
7 Ref. -10.557 2.5228 2.985 -5.4596 9.9166 6.691
FGM -10.558 2.522 2.985 -5.4646 9.9123 6.691
] Ref. 0.5677]  28.9562] 0.31442 -3.1271 49.0296| -6.6871

FGM 0.56707 28.948] 0.31442 -3.1293 48.992] -6.6871

Ref. -30.4418 -4.9497| 0.034322] -60.0696] 43.5324] 14741
FGM -30.432 -4.9445| 0.034322 -60.022 43.554] 14741

Ref. 0.2966]  22.6675| 0.70886 5.2992] 92.2964] -4.0588
FGM 0.29773 22.663] 0.70886 5.3034 92.266] -4.0588

10

Ref. -22.6776 2.7461] 0.25402| -174.4697| 32.9234] 10.249
FGM -22.678 2.7422]  0.25402 -174.46 32.909] 10.249

11

From Table 5.1, apart from errors that may be associated by rounding the
input numbers, error of the forces is less than 0.05% and from Tables 5.2 the
displacements are exact. The results obtained are almost the same as the reference
values. The results those can be accepted as exact are valuable for checking the

correctness of the method.
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Table 5.2: The Comparison of the Displacements for the Present Study, Finite Grid

Method (FGM) with Wang (1970)

COMPARISON OF THE DISPLACEMENTS
DOF LCl1 LC2
NO: | Reference FGM Reference FGM

1 -2.5330E-04| -2.5331E-04| -2.2107E-04| -2.2107E-04
2 5.5371E-04| 5.5371E-04| 7.8485E-04| 7.8485E-04
3 -3.3854E-04| -3.3854E-04| -9.3573E-04| -9.3573E-04
4 1.6224E-06 1.6224E-06| 6.3081E-05| 6.3081E-05
5 -5.9481E-03| -5.9481E-03| -8.8099E-03| -8.8099E-03
6 -3.0913E-04| -3.0913E-04| -2.2830E-03| -2.2830E-03
7 -5.6894E-04| -5.6894E-04| -8.5142E-04| -8.5142E-04
8 1.3421E-06 1.3421E-06| -1.6423E-05| -1.6423E-05
9 5.1970E-04| 5.1970E-04| 6.8072E-04] 6.8072E-04
10 -1.9860E-03| -1.9860E-03| -1.5397E-03| -1.5397E-03
11 2.5274E-04| 2.5274E-04 1.5012E-04 1.5012E-04
12 -4.6053E-05| -4.6053E-05 1.0770E-03 1.0770E-03
13 -7.6928E-03| -7.6928E-03| -1.5435E-02| -1.5435E-02
14 2.2847E-04) 2.2847E-04| -8.8162E-04| -8.8162E-04
15 -3.6579E-04| -3.6579E-04| 9.7183E-04| 9.7183E-04
16 -5.6048E-03| -5.6048E-03| -2.4379E-02| -2.4379E-02
17 2.7385E-04| 2.7385E-04| 3.0393E-04| 3.0393E-04
18 6.7087E-05| 6.7087E-05| -3.3383E-04| -3.3383E-04
19 7.8373E-04| 7.8373E-04| 2.3079E-03| 2.3079E-03
20 -5.1258E-05| -5.1258E-05| 8.5352E-04| 8.5352E-04

5.3 SAMPLE BENDING PROBLEMS FOR RECTANGULAR PLATES

5.3.1 Comparison with Boundary Element Method for Simply Supported

Rectangular Plate on Two-Parameter Foundation

A rectangular plate with uniform thickness, h = 0.05 m, and sides of length
A =1m, B=0.5m, was solved first with a concentrated central loading F= 3000 kN,
and then with a uniformly-distributed loading of intensity q = 6000 kN/m”. The
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material properties are: E = 2.1x10° kN/m?, v = 0.3, and the foundation parameters
are: k; = 6.48 x 10" kKN/m’>, ko = 2250.0 kN/m. The results were evaluated at internal
nodes on the longer central line of the rectangle, and non-dimensional parameters
w/wo were defined such that, for concentrated loading w¢=FAB/D; and for

distributed loading we=q(AB)*/D.

The distributions of non-dimensional parameter: w/w, and My/M, for the two
cases of loading are plotted against the corresponding boundary element solutions
solved by El-Zafrany (1996), as shown in Figures 5.2 - 5.4. However, the three-
dimensional view of deflections for concentrated loading at the centre and uniform

distributed loading are plotted in Figures 5.5 and 5.8, respectively.

w/wx100

0.15 A

0.1 1

0.05 A

O T T T T
0.5 0.6 0.7 0.8 09 XA

Figure 5.2: Comparison of FGM to BEM for Deflection along the Centerline of the
Simple Supported Rectangular Plate on Two-Parameter Elastic Foundation under

Uniform Distributed Load
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Figure 5.3: Comparison of FGM to BEM for Moment Mx Along the Centerline of
the Simple Supported Rectangular Plate on Two-Parameter Elastic Foundation under

Uniform Distributed Load
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Figure 5.4: Comparison of FGM to BEM for Deflection Along the Centerline of the
Simple Supported Rectangular Plate on Two-Parameter Elastic Foundation Subjected

to a Concentrated Load at the Center
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Figure 5.5: Three Dimensional Deflection View of the Simple Supported

Rectangular Plate on Two-Parameter Elastic Foundation Subjected to the Uniform

Distributed Load
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Figure 5.6: Three Dimensional View of Moment Mx Values in the Simple

Supported Rectangular Plate on Two-Parameter Elastic Foundation Subjected to the

Uniform Distributed Load
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Figure 5.7: Three Dimensional Deflection View of the Simple Supported

Rectangular Plate on Two-Parameter Elastic Foundation Subjected to a Concentrated

Load at the Center
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Figure 5.8: Three Dimensional View of Moment Mx Values in the Simple

Supported Rectangular Plate on Two-Parameter Elastic Foundation Subjected to a

Concentrated Load at the Center
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5.3.2 Comparison with Meshless Local Boundary Integral Equation Method
for Simply Supported and Clamped Square Plates on Two-Parameter
Foundation

A simply supported and a clamped square plate subjected to a uniformly
distributed load will be considered. In the reference (Sladek et al., 2002), the side
length a, the flexural rigidity D and Poisson ration vV were chosen as 8 m, 1000 Nm

and 0.3 respectively. The uniformly distributed load q was taken as 1N/mm?2.

Firstly for the simple supported case, Winkler and Pasternak foundations is
considered. The comparison of the FGM results with the local boundary integral
equation method (LBIE) on the centreline of the plate for three different Winkler
coefficients is given in Table 5.3. From the table one can see that the maximum
relative error for deflections of points located on the axis passing through the centre
of the plate is about less than 1%. This reflects a high degree of accuracy. The
deflection of the centreline of the plate for three different Winkler coefficients is

shown in Figure 5.9.

Table 5.3: The Comparison of the Deflections at the Centreline for a Simply
Supported Plate Resting on a Winkler Foundation with the LBIE

, k;=100 N/m’ k;=300 N/m’ k;=500 N/m’
coordinate T BTE [ FGM |Relative| LBIE | FGM [Relative| LBIE | FGM | Relative
(m) (mm) | (mm) |Error %| (mm) | (mm) |Error %| (mm) | (mm) | Error %

0 7.92517.933 ] 0.25 [3.751[3.719| 0.84 |2.399]2.373 1.08
0.8 7.596 7.6138] 0.12 [3.6223.596| 0.73 |2.331[2.309 0.94
1.6 6.604| 6.62 | 0.28 [3.211[3.202| 0.30 |2.103]2.092 0.50
24 495 1499 | 0.80 247212481 | 0.36 |1.657| 1.66 0.19
3.2 2.68312.727| 1.64 [1.376]1.392| 1.14 [0.944]0.952 0.89
4 0 0 - 0 0 - 0 0 -
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Figure 5.9: Comparison of Deflections at the Centreline of the Simple Supported
Square Plate on Winkler Foundation with the LBIE results

One the other hand for the two-parameter foundation case, the numerical
results of the maximum deflection Wy, are given in Tables 5.4. The relative error is
also less than 1 % as for the Winkler foundation. Then the accuracy is high and
comparable with that for Winkler model. The influence of the variation of foundation

parameters on the maximum deflections is shown in Figure 5.10.

Table 5.4: The Comparison of the Maximum Deflections for a Simply Supported
Plate Resting on the Two-Parameter Foundation with the LBIE

coefficients LBIE (mm) FGM (mm) |Relative Error
ki (N/m*) ky (N/m) %
100 100 6.8147 6.7913 0.34
300 300 3.0276 3.0034 0.80
500 500 1911 1.8941 0.88
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Figure 5.10: Comparison of Maximum Deflections of Simple Supported Plate for
the Variation of Foundation Parameters under Uniformly Distributed Load with the

LBIE Results

For the clamped case, the plate under the uniformly distributed load is
considered to rest on Winkler foundation. The geometric and the material properties
are the same as in the simple supported case. The comparison of the FGM results
with the local boundary integral equation method (LBIE) at the centre of the plate for
three different Winkler coefficients is given in Table 5.5. From the table it can be

seen that the maximum relative error of the central deflections is less than 3%.

Table 5.5: The Comparison of the Maximum Deflections for a Clamped Plate
Resting on a Winkler Foundation with the LBIE

coefficients LBIE (mm) FGM (mm) |Relative Error %
ki (N/m’)
100 3.872 3.9696 2.52
300 2.5518 2.5826 1.21
500 1.8787 1.8904 0.62
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Figure 5.11: Comparison of Maximum Deflections of the Clamped Plate on Winkler
Foundation under Uniformly Distributed Load with the LBIE Results

5.3.3 Comparison with Conical Exact Solution for Levy Plates on Two-

Parameter Elastic Foundation

A parametric study for uniformly loaded SSSS (all edges of the plate are
simple supported), SCSC (opposite two edges are simple supported, the others are
clamped) and SFSF (opposite two edges are simple supported the others are free)
square plates on two-parameter foundation was studied by Lam (2000). In that study,
for Levy plates by using Green’s functions a solution method named conical exact
solutions have been derived. It is denoted that this solutions can be accepted as
benchmark results to check the convergence, validity and accuracy of numerical

solutions. We will make further use of this article in the following sections.

For checking the validity of the finite grid method (FGM), a comparison

study was carried out for plates resting on two-parameter foundations. For uniformly

loaded square SSSS, SCSC and SFSF plates with different values of kj and Kk, non-

115



dimensional foundation parameters, the central deflection and bending moment
values have been compared with the benchmark results. For convenience and

generality the following parameters have been introduced:

4
k, = k.a
D
k,a’
k,=-2
D
D w
W= ——2228 10 (5.1)
ga

Mx: M XX(O.S;,O.Sa) 102
ga

M _ M YY(0.5a,0.5a) 102
y— 2
ga
where a is the length of the square plate, k; and k; are the Winkler and the second
foundation parameters, D is the flexural rigidity of the plate, t is the thickness of
plate, q is the uniform distributed load and W s.050,- Mxx050059 and Myyosa0se are
deflection, moment about x-direction and moment about y-direction at the centre of

the plate respectively .

The comparison of non-dimensional parameters of the central deflections and
bending moments W, My and My for the three cases of boundary conditions are

plotted against the corresponding the conical exact solutions by Lam (2000), as

shown in Figures 5.12 - 5.17
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Figure 5.12a: Comparison of Deflection Ratios with Lam et al. (2002) at Midpoint
of (SSSS) Rectangular Plate under Uniformly Distributed Load for t=0.025 m
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Figure 5.12b: Comparison of Deflection Ratios with Lam et al. (2002) at Midpoint
of (SSSS) Rectangular Plate under Uniformly Distributed Load for t=0.05 m
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Figure 5.13a: Comparison of Bending Moment M, Ratios with Lam et al. (2002) at
Midpoint of (SSSS) Rectangular Plate under Uniformly Distributed Load for t=0.1 m
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Figure 5.13b: Comparison of Bending Moment My, Ratios with Lam et al. (2002) at
Midpoint of (SSSS) Rectangular Plate under Uniformly Distributed Load for t=.05m
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Figure 5.14a: Comparison of Deflection Ratios with Lam et al. (2002) at Midpoint
of (SCSC) Rectangular Plate under Uniformly Distributed Load for t=0.05 m
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Figure 5.14b: Comparison of Deflection Ratios with Lam et al. (2002) at Midpoint
of (SCSC) Rectangular Plate under Uniformly Distributed Load for t=0.1 m
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Figure 5.15a: Comparison of Bending Moment My, Ratios with Lam et al. (2002) at
Midpoint of (SCSC) Rectangular Plate under Uniformly Distributed Load for t=.1 m
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Figure 5.15b: Comparison of Bending Moment M,y Ratios with Lam et al. (2002) at
Midpoint of (SCSC) Rectangular Plate under Uniformly Distributed Load for t=.05m
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Figure 5.16a: Comparison of Deflection Ratios with Lam et al. (2002) at Midpoint
of (SFSF) Rectangular Plate under Uniformly Distributed Load for t=0.05 m
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Figure 5.16b: Comparison of Deflection Ratios with Lam et al. (2002) at Midpoint
of (SFSF) Rectangular Plate under Uniformly Distributed Load for t=0.1 m
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Figure 5.17a: Comparison of Bending Moment M, Ratios with Lam et al. (2002) at
Midpoint of (SFSF) Rectangular Plate under Uniformly Distributed Load for t=.1 m
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Figure 5.17b: Comparison of Bending Moment My, Ratios with Lam et al. (2002) at
Midpoint of (SFSF) Rectangular Plate under Uniformly Distributed Load for t=.05m
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5.4 BENDING PROBLEMS OF CIRCULAR AND ANNULAR PLATES

5.4.1 Simple Support Annular Plate Under Distributed Loading On One-
Parameter Elastic Foundation

The annular plate shown in Figure 5.18 is supported on an elastic foundation
with Winkler parameter, k; = 10000 kN/m3, has a uniform thickness, h = 0.25 m, and
radiuses a = 2.5 m., b = 5 m., was attempted a uniformly distributed loading of
intensity q = 200 kN/m”. The material properties are: E = 2.7x10E7 kN/m* and
v=0.2.

Figure 5.18: Uniformly Distributed Loaded Annular Plate Resting on Elastic

Foundation
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The plate, with simple support boundary conditions, results was evaluated at

span of the plate. The comparison of the FGM solution with the reference ( Utku and

Inceleme, 2000 ) is shown in Table 5.6 and Figure 5.19. The results with respect to

the reference can be accepted as accurate.

Table 5.6: The Comparison of the Deflections in Radial Direction and Maximum

Moment for a Simply Supported Annular Plate Resting on Winkler Foundation with

the Reference Values

Radius 2750|3000|3250{3500|3750|4000|4250{4500|4750 Mmax
REF. (mm) 0.811.51]2.04]2.35]243|228[192[1.39]0.73|134.5
FGM (mm) 0.85/1.59[2.16]2.492.58|2.43]2.05|1.49]0.78 | 140.5
Relative Error % | 4.35 498 (542 |575| 6 [621] 6.4 [6.596.79 [4.291

I
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Figure 5.19: Comparison of the Results with Utku (2000) for an Annular Plate on

Elastic Foundation under Uniform Distributed Loading Condition
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5.4.2 Ring Foundation on One-Parameter Elastic Foundation

The ring foundation example solved by Bowles (1996) is shown in Figure
5.20. From the Figure there are three equally spaced (120°) concentreted loads of 675
kN applied at points A,B and C and a 200 kNm tangential moment applied at A.

.................... = I

Figure 5.20: The Representation of the Forces Applied at the Ring Foundation
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The plate properties, modulus of elastisity E, Poisson ratio v, and thickness t are
given as 22400 Mpa,0.15 and 0.76 m. respectivelly and the foundation parameter is
given as 13600 kN/m’. The results are tabulated in Table 5.6. The maximum relative
error for deflections is obtained about 1.5 %. This reflects a high degree of accuracy
with respect to the reference. The deflections along the ring are shown in Figure

5.21.

Table 5.7: The Comparison of the Deflections along the Ring Foundation with the

Reference Values

Logztlf;ss "M Reference| FGM Relative
& (mm) (mm) Error %
0 7.93 7.995 0.82
18 5.95 5.960 0.16
36 2.92 2.913 0.23
54 1.27 1.252 1.45
72 1.64 1.638 0.13
90 3.85 3.857 0.18
108 6.66 6.623 0.56
126 7.38 7.316 0.87
144 491 4.920 0.19
162 2.26 2.285 1.09
180 1.24 1.259 1.55
198 2.26 2.285 1.09

216 491 4.920 0.19
234 7.38 7.316 0.87
252 6.66 6.623 0.56
270 3.85 3.857 0.18
288 1.64 1.638 0.13
306 1.27 1.252 1.45
324 2.92 2.913 0.23
342 5.95 5.960 0.16
360 7.93 7.995 0.82
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Figure 5.21: Comparison of the Results with Bowles (1996) for the Ring Foundation

5.4.3 Circular Plate with Variable Thickness under Non-Uniform Loading

Conditions on One-Parameter Elastic Foundation

An industrial tower footing with various thickness and loading condition on

elastic foundation with free end boundary conditions is considered. Wind moments

of the tower idealized to puling and pushing vertical forces applied at convenient

nodes as shown Figure 5.22. The details of the problem can be found in Bowles

(1996).

The deflections along the diameter of the footing compared with the

reference values can be seen in Figure 5.23.
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Figure 5.22: Wind Moments of the Refining Vessel Idealized to Puling and Pushing

Vertical Forces Applied at Convenient Nodes
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Figure 5.23: Comparison of Deflection Results along A to B Direction with Bowles
(1996)

5.4.4 Clamped Circular Plate Under Concentrated Loading on Two-
Parameter Foundation.

A solid circular plate with a uniform thickness 0.05 m and an outer radius
R¢=0.5 m, subjected to a concentrated force F = 3000 kN at its centre is considered.
The plate is resting on a two-parameter elastic foundation, and its material and

foundation properties are

k; = 6.48 x 10* kKN/m®
ko = 2250.0 kN/m
E=2.1x10° kKN/m? and v= 0.3

The parameter w, employed for disc cases is wo = F(Ro)*/D. The radial

distributions of the non-dimensional parameter w/wy is plotted against the
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corresponding boundary element solutions ( EI-Zafrany and Fadhil, 1996 ), as shown
in Figure 5.24. Also the three-dimensional view of deflection (w) is plotted in

Figures 5.25.
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Figure 5.24: Comparison of the Finite Grid Solution to The Boundary Element
Solution for Deflection of Clamped Circular Plates under Concentrated Loading on

2-Parameter Elastic Foundation

Figure 5.25: Three-Dimensional View of Deflection of Clamped Circular Plates

under Concentrated Loading on 2-Parameter Elastic Foundation
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5.5 BUCKLING AND FREE VIBRATION PROBLEMS

5.5.1 Plates with Abrupt Changes in Thickness

Chung et al. (2000) studied a bi-directionally stepped square plate with
simply supported edges shown in Figure 5.26. In this study, the variation of free
vibration and buckling loads with the thickness ratio hy/h; will be compared. the
fundamental angular frequencies and the critical buckling loads are compared. The

results are portrayed graphically in Figures 5.27 and 5.28.

h, h; h,
t ), A A
0.25a 0.5a 0.25a
<>

(@) (b)

Figure 5.26: Bi-Directionally Stepped Square Plate with all Edges Simply Supported
(a) Plan; (b) Section
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Figure 5.27: Comparison of Fundamental Frequencies with Chung (2000) for Bi-
Directionally Stepped and Simply Supported (SSSS) Square Plate
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Figure 5.28: Comparison of Buckling Loads with Chung (2000) for Bi-Directionally
Stepped and Simply Supported (SSSS) Square Plate under Uniaxial Compression
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5.5.2 Uniform Plates on Non-Homogeneous Foundation

In this case another study of Chung et al. (2000), a uniform square plate
resting on a non-homogeneous foundation shown in Figure 5.28 is considered. The
plate is supported on elastic foundation of modulus K2 within the central square
region of size 1.2ax1.2a, and elsewhere the foundation modulus is K1. The
fundamental angular frequencies are compared for all of the edges simple supported
(SSSS) and clamped (CCCC) boundary conditions. The results for both simple
supported and clamped edges are portrayed graphically in Figures 5.29 and 5.30

respectively.

__________ T TR

Figure 5.29: A Uniform Square Plate on Non-Homogeneous Elastic Foundation
(a) Plan, (b) Section
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Figure 5.30: Fundamental Frequency Coefficients of Square Plate on Non-

Homogeneous Elastic Foundation (SSSS)
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Figure 5.31: Fundamental Frequency Coefficients of Square Plate on Non-

Homogeneous Elastic Foundation (CCCC)
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5.5.3 Free Vibration Problems of Levy Plates on Two-Parameter Elastic
Foundation

Free vibration analysis of SSSS (all edges of the plate are simple supported),
SCSC (opposite two edges are simple supported, the others are clamped) and SFSF
(opposite two edges are simple supported the others are free) square plates on two-
parameter foundation was studied by Lam (2000). In this study, for Levy plates
conical exact solutions have been derived by Green’s functions. It is denoted that
these solutions can be accepted as benchmark results to check the convergence,

validity and accuracy of numerical solutions.

For checking the validity of the finite grid method (FGM), a comparison
study was carried out for plates resting on two-parameter foundations. For the square
plates with different values of k; and Kk, non-dimensional foundation parameters
defined in Equation 5.1, the fundamental frequency values have been compared with
the reference results. The results for SSSS and SCSC cases are tabulated in Table
5.7. The comparisons of Fundamental frequencies for the two cases of boundary

conditions are plotted against the corresponding the conical exact solutions by Lam

(2000), as shown in Figures 5.31 and 5.32.

Table 5.8: Comparison of the Finite Grid Solution with the Conical Exact Solutions
for Fundamental Frequencies of the S.S.S.S Square Plate in Case of Different

Foundation Parameters

H=0.01, D=1, (10x10) SSSS SCSC

Case k; k, FGM | REF | Err% | FGM | REF | Err%
1 0 0 20.761 | 19.74 | 5.2 27.182 | 2895 | 6.1
2 0 100 | 48275 | 48.62 | 0.7 49.875 | 54.68 | 8.8
3 100 0 23.252 | 22.13 | 5.1 28.702 | 30.63 | 6.3
4 100 | 100 | 49.109 | 49.63 1.0 50.567 | 55.59 | 9.0
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Figure 5.32: Comparison of the Finite Grid Solution with the Conical Exact
Solutions for Fundamental Frequencies of the SSSS Square Plate for Different

Foundation Parameters
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Figure 5.33: Comparison of the Finite Grid Solution with the Conical Exact
Solutions for Fundamental Frequencies of the SCSC Square Plate for Different

Foundation Parameters
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5.5.4 Buckling Problems of Levy Plates on Two-Parameters Elastic

Foundation

For the square plates which is defined in Section 5.4 with different values of
k; and k, the buckling load parameters (Nc) have been compared with the
benchmark (Lam et al., 2000) values. Tables 5.7, 5.8 and 5.9 represent the non-
dimensional buckling load parameters due to uniaxial and biaxial inplane loads for
SSSS, SCSC and SFSF square plates on two-parameter elastic foundations. For each
case of boundary conditions and inplane loads the results are plotted against the

corresponding the conical exact solutions by Lam (2000), as shown in Figures 5.33 -

5.41.

Table 5.9: Comparison of the Finite Grid Solution with the Exact Solutions for
Buckling Load Cases of the SSSS Square Plate in Case of Different Foundation

Parameters

a=1,h=.01.D=1 ssss (Nc/)

E=10920000 Nx=1,Ny=0 Nx=0,Ny=1 Nx=1,Ny=1
Case| k; | ko | FG | Ref. | Error % | FG | Ref. | Error % | FG | Ref. | Error %
1 0 | 0 |3.855| 4 3.63 |3.855| 4 3.63 [1.924| 2 3.8
2 100 O |4.87|5.027| 3.12 |4.87|5.027| 3.12 |2.436|2.513| 3.06
3 0 |100|18.51|18.92| 2.18 |18.51|18.92] 2.18 |12.06]12.13] 0.6
4 1100|{100(18.76(19.17| 2.12 |18.76(19.17| 2.12 |12.57|12.65| 0.7
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Figure 5.34: Comparison of the Finite Grid Solution with the Conical Exact
Solutions for Buckling Load of a Square (SSSS) Plate under Uniaxial Compressive
Loading (Nx=1, Ny=0) on Two-Parameter Foundation

Pcr(FGM)/ Per (REF) 0.97
096 P 555
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Figure 5.35: Comparison of the Finite Grid Solution with the Conical Exact
Solutions for Buckling Load of a Square (SSSS) Plate under Biaxial Compressive

Loading (Nx=1, Ny=1) on Two-Parameter Foundation
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Table 5.10: Comparison of the Finite Grid Solution with the Conical Exact Solutions
for Buckling Load Cases of the SCSC Square Plate in Case of Different Foundation

Parameters

a=1,h=.01.D=1 SCSC (Ne/n?)

£=10920000 Nx=1,Ny=0 Nx=0,Ny=1 Nx=1,Ny=1

k1 k2 FG | Ref. |Error %| FG | Ref. |Error %| FG | Ref. |Error %
1] 0 | 0 |7.4147|7.691| 3.59 |6.5548| 4 | 63.87 [3.7219/3.83 | 2.82
100 | 0 [7.6712]7.948] 3.48 |7.304 |7.491| 2.50 |4.1715|4.28 | 2.54
100 |20.446/20.74| 1.42 |21.893|18.81| 16.39 |13.861[13.96] 0.71
100 | 100 |20.701]20.99| 1.38 [22.219]19.11| 16.27 |14.308/|14.41| 0.71

E>NEN LS I \S]
(=)

The error percentage for k;=0 and k,=0 values shown in Table 5.10 and

Figure 5.37 suggests that this may have been a printing error in Lam et al. (2000).

Per(FGM)/ Per (REF) 0.99 sese
0.96 N Grid:10x10
a=1 m.
N % : g t=0.01 m.
| | N
0.97 0
N
0
k;
Y
100
N 100

TY

Figure 5.36: Comparison of the Finite Grid Solution with the Conical Exact
Solutions for Buckling Load of a Square (SCSC) Plate under Uniaxial Compressive
Loading (Nx=1, Ny=0) on Two-Parameter Foundation
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Figure 5.37: Comparison of the Finite Grid Solution with the Conical Exact
Solutions for Buckling Load of a Square (SCSC) Plate under Uniaxial Compressive

Loading (Nx=0, Ny=1) on Two-Parameter Foundation
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Figure 5.38: Comparison of the Finite Grid Solution with the Conical Exact
Solutions for Buckling Load of a Square (SCSC) Plate under Biaxial Compressive

Loading (Nx=1, Ny=1) on Two-Parameter Foundation
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Table 5.11: Comparison of the Finite Grid Solution with the Conical Exact Solutions
for Buckling Load Cases of the SFSF Square Plate in Case of Different Foundation

Parameters

a=1,h=.01.D=1 SFSF (Nc/n?)
E=10920000

Nx=1,Ny=0 Nx=0,Ny=1 Nx=1,Ny=1

Case| k1 | k2 | FG | Ref. [Error %| FG | Ref. |Error %| FG | Ref. |Error %
1 0 | 0 [0.9098(0.952| 4.43 |2.9702|2.593| 14.55 [0.9098| 0.93 | 2.38

2 |100] 0 [1.9362]/1.979| 2.16 |3.454|2.82| 22.48 [1.9362(1.63 | 19.08

3 0 {100(11.043(14.07| 21.51 |15.291|15.28| 0.07 [11.795|11.06| 6.65

4 (100{100(12.068(14.33| 15.79 |15.459| 154 | 0.38 [12.068[11.76| 2.62

P (FGM)/ Py (REF.) sfsf
KL 0.96 0.79 Grid:10x10
,_._-h 3 ] a=1 m.
N § A= =0.01 m.
0.98 0.84
@ N
O \._._.—-
k;
100 kL_f 700

0 k,

Figure 5.39: Comparison of the Finite Grid Solution with the Conical Exact
Solutions for Buckling Load of a Square (SFSF) Plate under Uniaxial Compressive
Loading (Nx=1, Ny=0) on Two-Parameter Foundation
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Figure 5.40: Comparison of the Finite Grid Solution with the Conical Exact
Solutions for Buckling Load of a Square (SFSF) Plate under Uniaxial Compressive

Loading (Nx=0, Ny=1) on Two-Parameter Foundation
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Figure 5.41: Comparison of the Finite Grid Solution with the Conical Exact
Solutions for Buckling Load of a Square (SFSF) Plate under Biaxial Compressive

Loading (Nx=1, Ny=1) on Two-Parameter Foundation
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CHAPTER 6

CONCLUSIONS

6.1 SUMMARY

Research on easily understood engineering approaches for analysis of plates
resting on elastic foundations has not been covered sufficiently in the literature. For
particular plate problems, closed form solutions have been obtained. However, even
for conventional plate analysis these solutions can only be applied to the problems
with simple geometry, load and boundary conditions. Of course for the two-
parameter elastic foundation soil model underneath plate problems the solution will
be too much complex and there is no analytical solution other than simple cases.
Therefore the objective of the present study has been to develop a quite general

numerical solution for plates on elastic foundations.

In this study a combination of finite element method, Lattice analogy and
matrix displacement analysis of gridworks used to obtain a finite grid solution. In
this method the plate is modeled as an assemblage of individual beam elements
interconnected at their neighboring joints. Therefore the exact fixed end forces and
the exact stiffness, consistent mass and geometric stiffness matrices for conventional
beam elements and beam elements resting on one or two parameter foundation are
valuable tools to solve plate vibration, buckling and bending problems. By this
representation, also the plate problems which have non-uniform thickness and
foundation properties, arbitrary boundary and loading conditions and discontinuous

surfaces, can be solved in a general form.
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The first aim has been to review the governing differential equations of beam
elements. After obtaining solutions of the governing differential equations, exact
shape functions (interpolation functions) have been derived by imposing boundary
conditions. This study is extended to derive exact stiffness matrix, consistent mass
and geometric stiffness matrices and work equivalent load vectors by finite element
method. Then the discretized plate element reassembled by the matrix displacement
method. That is, the stiffness, consistent mass and geometric stiffness matrices of the
total structure is generated by using a proper numbering shame to collect all

displacements for each nodal point in a convenient sequence.

A wide range of complicated circular, annular and rectangular plate problems
(such as; plate analysis, plates on one-parameter elastic foundation and plates on
two- parameter elastic foundation) were solved by this solution technique called
finite grid solution. It has been verified the validity of our solution with a broad
range of applications such as bending, buckling and free vibration analysis of plates
on either one or two parameter elastic foundation. In addition the method is also

applicable to slabs, girders and mat foundations of structures.

6.2 DISCUSSION OF RESULTS AND CONCLUSIONS

From the derivations and applications of this dissertation some general points

can be underlined as follows:

The shape functions related to beams on elastic foundations are very sensitive
to variation of foundation parameters after some limits. There are significant
differences between fixed end loads obtained from Hermitian polynomials rather
than exact shape functions. Comparisons between the two cases have been shown
graphically. It can be recommended that for consistency one must use fixed end
loads to represent load vector by using the results obtained from exact shape

functions.
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A different solution method has been proposed by researchers for the problem
of beams resting on Winkler type foundation. They have inserted Hermitian
polynomials into strain energy functional that has been derived in this study. In order
to converge to the exact solution, the beam needs to be divided into smaller
segments. The solution method is acceptable from two points of view. First, they use
the same strain energy functional that is a correct treatment. In the second point, they
divide the beam into smaller elements. Shape functions converge towards Hermitian
polynomials when the parameter AL becomes smaller. This trend is portrayed
graphically in Chapter 2. Therefore the solution is acceptable only at the expense of

additional calculation.

In this dissertation the response of plates underlain by a Winkler foundation
and two-parameter foundation for the same problem was compared in many
applications. From these results, it is inferred that presence of second foundation
parameter kg in the analysis is remarkably dominant. For instance, it gives smaller
displacements so that smaller internal stresses, larger buckling loads and larger free
vibration frequencies This might have been anticipated because strain energy density
functional includes one more term in the case of two parameter foundation than in

the case of the Winkler foundation.

It is observed that the buckling load parameters increase as the foundation
parameters increase. However the second foundation parameter exerts a greater
influence on buckling loads and the fundamental frequencies when compared to the

first foundation parameter.

6.3 SUGGESTED FURTHER STUDIES

Some assumptions have been used throughout the present study. Under these

assumptions, our solution strategy can be extended to many applications. The
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following assumptions are drawn. Violation of these assumptions can lead other

researches to continue the studies in this subject:

1. In this solution, nonlinear effects of both plate and foundation are not
included. One can apply the solutions to analyze plates with elastic

foundation only if displacement field consists of small deflections.

2. Depth effect of foundation is ignored in response. Since properties of
continuum may change significantly at a considerable depth, depth effect

may be needed for certain types of problems.

3. Friction, shear deformation and torsional changes due to foundation

parameters are not included.

4. The foundation parameters are assumed to be constant and equal in
compression and tension. In the general case, the foundation behaves
differently, cannot take any tension. An iterative technique can be adapted

to this solution for plates on tensionless foundations.

5. In this study, the foundation parameters are assumed to be constants and
their properties are not considered. Both experimental and theoretical

studies must be performed.
6. The solution technique presented in this study could be extended to three-

dimensional structures by discretizing vertical elements such as columns

and shear walls.
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APPENDIX A

Geometric stiffness terms of beam elements resting on two - parameter elastic
foundation:

a) For A<2*Sqrt(B)
where A= Kko/(E*I) and B= ki/(E*1) see page 44

XL=L
p=A*XL
A= (Ki/(4*E*1))**0.25
o= ko/(4*E*I)
t =8/A#*2
t1=(1-t)**(0.5)
t2=(1+t)**(0.5)
z1=tl
z2=12
z=t
C
D=(p**2*(-2 + Cos(2*p*z1) + z*Cos(2*p* z1) +
Cosh(2*p*z2) - z*Cosh(2*p*z2)))/XL**2
C
Kcss= Kges = (p*(-16*p*z1*z*z2 +8*p*z1*z2*Cos(2*p*zl) +
8*p*z1*z*z2*Cos(2*p*z1) -8*p*z1*z2*Cosh(2*p*z2) +
8*p*z1*z*z2*Cosh(2*p*z2) -4*z2*Sin(2*p*z1) +
12*7*z2*Sin(2*p*z1) +6*z2*Cosh(2*p*z2)*Sin(2*p*z1) -
8*z*z2*Cosh(2*p*z2)*Sin(2*p*z1) +2*z**2*z2*Cosh(2*p*z2)*
Sin(2*p*z1) -z2*Sin(4*p*z1) -2*z*z2*Sin(4*p*z1) -
Z2**2*72*Sin(4*p*z1) +4*z1*Sinh(2*p*z2) +
12*z1*z*Sinh(2*p*z2) -6*z1*Cos(2*p*z1)*Sinh(2*p*z2) -
8*z1*z*Cos(2*p*z1)*Sinh(2*p*z2) -2*z1*z**2*Cos(2*p*z1)*
Sinh(2*p*z2) -8*p*Sin(2*p*z1)*Sinh(2*p*z2) +
8*p*z**2*Sin(2*p*z1)*Sinh(2*p*z2) +
z1*Sinh(4*p*z2) -2*z1*z*Sinh(4*p*z2) +z1*z**2*Sinh(4*p*z2)))/
(4*XL*z1*z2*(-2 + Cos(2*p*z1) + z*Cos(2*p*z1) +
Cosh(2*p*z2) - z*Cosh(2*p*z2))**2)
C
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Ke2o= Kgss =  (p**3*(8*p*z1*z2 +8*p*z1*z**2*z2 -8*p*z1*22*Cos(2*p*z1l) -
8*p*z1*z*z2*Cos(2*p*z1) -8*p*z1*z2*Cosh(2*p*z2) +
8*p*z1*z*z2*Cosh(2*p*z2) +8*p*z1*z2*Cos(2*p*z1)*
Cosh(2*p*z2) -8*p*z1*z**2*z2*Cos(2*p*z1)*

Cosh(2*p*z2) + 4*z2*Sin(2*p*z1) -12*z*z2*Sin(2*p*z1) -
6*z2*Cosh(2*p*z2)*Sin(2*p*z1) +8*z*z2*Cosh(2*p*z2)*
Sin(2*p*zl) -2*z**2*z2*Cosh(2*p*z2)*Sin(2*p*z1) +
z2*Sin(4*p*z1) +2*z*z2*Sin(4*p*z1) +z**2*z2*Sin(4*p*z1) +
4*z1*Sinh(2*p*z2) +12*z1*z*Sinh(2*p*z2) -
6*z1*Cos(2*p*z1)*Sinh(2*p*z2) -
8*z1*z*Cos(2*p*z1)*Sinh(2*p*z2) -
2*71*7**2*Cos(2*p*z1)*Sinh(2*p*z2) -
8*p*z*Sin(2*p*z1)*Sinh(2*p*z2) +
8*p*z**3*Sin(2*p*z1)*Sinh(2*p*z2) +

z1*Sinh(4*p*z2) -2*z1*z*Sinh(4*p*z2) +
z1*z**2*Sinh(4*p*z2)))/(8*D**2*XL**3*z1*22)

C

Keso= Koz = -(-4*p**4*Sin(p*z1)*Sinh(p*z2)*(p*z2*Cosh(p*z2)*Sin(p*z1)-
p*z*z2*Cosh(p*z2)*Sin(p*z1) +p*z1*Cos(p*z1)*Sinh(p*z2) +
p*z1*z*Cos(p*z1)*Sinh(p*z2) -2*Sin(p*z1)*Sinh(p*z2)))/
(D**2*XL**4)

C

Kess= Kges =  (-4*p**4*Sin(p*z1)*Sinh(p*z2)*(p*z2*Cosh(p*z2)*Sin(p*z1)-
p*z*z2*Cosh(p*z2)*Sin(p*z1) +p*z1*Cos(p*z1)*Sinh(p*z2) +
p*z1*z*Cos(p*z1)*Sinh(p*z2) -2*Sin(p*z1)*Sinh(p*z2)))/
(D**2*XL**4)

C

Keso= Keas=  (p**3*(-4*p*z1*z**2*z2*Cos(p*z1)*Cosh(p*z2) +
2*p*z1*z*z2*Cos(3*p*z1)*Cosh(p*z2) +
2*p*z1*z**2*72*Cos(3*p*z1)*Cosh(p*z2) -
2*p*z1*z*22*Cos(p*z1)*Cosh(3*p*z2) +2*p*z1*z**2*z2*Cos(p*z1)*
Cosh(3*p*z2) +10*z*z2*Cosh(p*z2)*Sin(p*z1) +
2*z**2*72*Cosh(p*z2)*Sin(p*z1) +3*z2*Cosh(3*p*z2)*Sin(p*z1) -
4*z*z2*Cosh(3*p*z2)*Sin(p*z1) +z**2*z2*Cosh(3*p*z2)*
Sin(p*z1) -z2*Cosh(p*z2)*Sin(3*p*z1) -
2*7*72*Cosh(p*z2)*Sin(3*p*z1)-z**2*z2*Cosh(p*z2)*Sin(3*p*z1) -
10*z1*z*Cos(p*z1)*Sinh(p*z2)+2*z1*z**2*Cos(p*z1)*Sinh(p*z2) +
3*z1*Cos(3*p*z1)*Sinh(p*z2)+4*z1*z*Cos(3*p*z1)*Sinh(p*z2) +
z1*z**2*Cos(3*p*z1)*Sinh(p*z2)+4*p*z*Sin(p*z1)*Sinh(p*z2) -
4*p*z**3*Sin(p*z1)*Sinh(p*z2)+2*p*Sin(3*p*z1)*Sinh(p*z2) +
2*p*z*Sin(3*p*z1)*Sinh(p*z2)-2*p*z**2*Sin(3*p*z1)*Sinh(p*z2) -
2*p*z**3*Sin(3*p*z1)*Sinh(p*z2)-z1*Cos(p*z1)*Sinh(3*p*z2) +
2*z1*7*Cos(p*z1)*Sinh(3*p*z2)-z1*z**2*Cos(p*z1)*Sinh(3*p*z2) -
2*p*Sin(p*z1)*Sinh(3*p*z2)+2*p*z*Sin(p*z1)*Sinh(3*p*z2) +
2*p*z**2*Sin(p*z1)*Sinh(3*p*z2) -
2*p*z**3*Sin(p*z1)*Sinh(3*p*z2)))/(4*D**2*XL**3*z1*72)
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C

Keas= Kgsa=  -(p**4*(-2*z + Cos(2*p*z1) + z*Cos(2*p*z1) -
Cosh(2*p*z2) + z*Cosh(2*p*z2))*
(p*z2*Cosh(p*z2)*Sin(p*z1) -
p*z*z2*Cosh(p*z2)*Sin(p*z1) +
p*z1*Cos(p*z1)*Sinh(p*z2) +
p*z1*z*Cos(p*z1)*Sinh(p*z2) -
2*Sin(p*z1)*Sinh(p*z2)))/(D**2*XL**4*z1*z22)

C

Keas= Koz =(p**4*(-2*z + Cos(2*p*z1) + z*Cos(2*p*z1) -
Cosh(2*p*z2) + z*Cosh(2*p*z2))*
(p*z2*Cosh(p*z2)*Sin(p*z1) -
p*z*z2*Cosh(p*z2)*Sin(p*z1) +
p*z1*Cos(p*z1)*Sinh(p*z2) +
p*z1*z*Cos(p*z1)*Sinh(p*z2) -
2*Sin(p*z1)*Sinh(p*z2)))/(D**2*XL**4*z1*z22)

k(336:k(363: (p**5*(4*p*21*2*22*(:05([)*21)*
Cosh(p*z2) -2*p*z1*z2*Cos(3*p*z1)*Cosh(p*z2) -
2*p*z1*z*z2*Cos(3*p*z1)*Cosh(p*z2) +
2*p*z1*z2*Cos(p*z1)*Cosh(3*p*z2) -
2*p*z1*z*z2*Cos(p*z1)*Cosh(3*p*z2) -
10*z*z2*Cosh(p*z2)*Sin(p*z1)-2*z**2*z2*Cosh(p*z2)*Sin(p*z1) -
3*z2*Cosh(3*p*z2)*Sin(p*z1)+4*z*z2*Cosh(3*p*z2)*Sin(p*z1) -
z7**2*72*Cosh(3*p*z2)*Sin(p*zl) +
z2*Cosh(p*z2)*Sin(3*p*z1)+2*z*z2*Cosh(p*z2)*Sin(3*p*z1) +
z**2*z2*Cosh(p*z2)*Sin(3*p*z1)-10*z1*z*Cos(p*z1)*Sinh(p*z2) +
2*z1*7**2*Cos(p*z1)*Sinh(p*z2) +
3*z1*Cos(3*p*z1)*Sinh(p*z2)+4*z1*z*Cos(3*p*z1)*Sinh(p*z2) +
z1*z**2*Cos(3*p*z1)*Sinh(p*z2) +
16*p*Sin(p*z1)*Sinh(p*z2)-16*p*z**2*Sin(p*z1)*Sinh(p*z2) -
z1*Cos(p*z1)*Sinh(3*p*z2)+2*z1*z*Cos(p*z1)*Sinh(3*p*z2) -
z1*7**2*Cos(p*z1)*Sinh(3*p*z2)))/(2*D**2*XL**5*z1*22)

C

ke11= Keas=1

Ke14= Kga1= -1

Kc12= Ke13 =Kgi15= Kai1s =Kea2= Kaaz =Kas= Kaas=0
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b) For A>2*Sqrt(B)

Geometric stiffness terms of beam elements resting on two - parameter elastic
foundation in exponential form;

where A= ko/(E*I) and B= ki/(E*I) see page 44.

XL=L
A= (Ko/(4*E*1))**0.25
8= Kol (4*E*1)

a=sqrt(A**2+3)
b=sqrt(5-1**2)

y1=Exp(2*b*XL)
y2=Exp(2*a*XL)
y3=Exp((a-b)*XL)
yA=Exp((a+b)*XL)
y5=Exp((-a+b)*XL)
y6=Exp(2*(a-b)*XL)
y7=Exp(2*(a+b)*XL)
y8=8*a**2-8*p**2-(4*a**2)/yl-4*a**2*y1+(4*b**2)/y2+4*h**2*y?2
y9=2*(-a+b)*(-a-b+a*yl+b*y2)
y10=b+a*y2-b*y2-a*yl*y2
yll=-a+a*yl-b*yl+b*yl*y2
y12=-(b*yl)-a*y2+a*yl*y2+b*yl*y2
y13=2*(b**2*yl-a**2*y2+2*a**2*y1*y2-
2*b**2*y1*y2-a**2*(yl)**2*y2+b**2*yl*(y2)**2)
y14=2*a+2*b-2*a*y1-(2*b)/y2
y15=2*a-2*pb-(2*a)/y1+(2*b)/y2
y16=2*(-atb+a*yl-b*y2)
y17=-2*a-2*b+(2*a)/ly1l+2*b*y2
y18=-a-b+b*y3*y4+a*y4*y5
y19=b-a*y2-b*y2+a*y6
y20=b+a*y2-b*y2-a*y7
y21=-at+a*yl-b*yl+b*y7
y22=-2*a*y3-2*b*y3+(2*b)/y4+2*a*y4
y23=2*(a*y3-a*y4+b*y4-b*yb)
y24=(-2*a)ly4-2*b*y4+2*a*y5+2*b*y5
y25=a-b+b*y3*y4-a*y4*y5
C
Kess= Kees=-((a-b)**2*(a+b)*y12**2)/(2*y13**2)+
(a-b)**2*(a+b)*Exp(2*(at+b)*XL)*y12**2/(2*y13**2)+
Exp((atb)*XL)*(-2*(-(a**2)+b**2)**2*Exp((-a+b)*XL)*y11*y12/
(b*y1*y13*y8)+2*(a**2-b**2)**2*y10*y12/
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C

(@*Exp((-a+b)*XL)*y13*y2*y8))-
2*(-a+b)*(atb)**2*y11**2/(y1**2*y8**2)+
2*(-a+b)*(a+b)**2*Exp(2*(-a+b)*XL)*y11**2/(y1**2*y8**2)-
2*(a-b)*(at+b)**2*y10**2/(y2**2*y8**2)+
2*(a-b)*(at+b)**2*y10**2/(Exp(2*(-a+b)*XL)*y2**2*y8**2)+
2*(-(a**2)+b**2)**2*y11*y12/(b*y1*y13*y8)-
2*(a**2-b**2)**2*y10*y12/(a*y13*y2*y8)-
2*(-a+b)*(at+b)**2*y11*y9/(a*y1*y8**2)-
2*(a-b)*(at+b)**2*y10*y9/(b*y2*y8**2)+(a+h)*y9**2/(2*y8**2)-
(a+b)*y9**2/(2*Exp(2*(a+b)*XL)*y8**2)+
(2*(-atb)*(at+b)**2*Exp((-a+b)*XL)*y11*y9/(a*y1*y8**2)+
2*(a-b)*(at+b)**2*y10*y9/(b*Exp((-a+b)*XL)*y2*y8**2))/
Exp((a+h)*XL)+2*(-a+b)*(a+b)**2*XL*
(4*a*y10*y11*y13-4*b*y10*y11*y13+yl*y12*y2*y8*y9)/
(y1*y13*y2*y8**2)

TKG122=((a-b)*(a+h)*y10*y14/(y2*y8**2)+
a**2*(a+b)*y10*y16/(b*Exp(2*a*XL)*y2*y8**2))/Exp(2*(-a+b)*XL)-
2*(-at+b)**2*(a+b)*XL*y11*y14/(y1*y8**2)-
(-at+b)*(at+b)**2*y11*y15/(b*y1*y8**2)+
(-a+b)*(a+b)**2*Exp(2*b*XL)*y11*y15/(b*yl*y8**2)-
(-atb)*(a+b)**2*y11*y16/(a*y1*y8**2)+
(-at+b)*(at+b)**2*y11*y16/(a*Exp(2*a*XL)*yl*y8**2)-
(-atb)*(a+b)*yl1*y17/(yl*y8**2)+
(-a+b)*(a+b)*Exp(2*(-a+b)*XL)*y11*y17/(y1*y8**2)-
(a-b)*(a+b)*y10*y14/(y2*y8**2)-
(a-b)*(at+b)**2*y10*y15/(a*y2*y8**2)+
(a-b)*(a+b)**2*Exp(2*a*XL)*y10*y15/(a*y2*y8**2)-
a**2*(a+b)*y10*y16/(b*y2*y8**2)+b*(a+b)*y10*y16/(y2*y8**2)-
b*(a+b)*y10*y16/(Exp(2*b*XL)*y2*y8**2)-
(a-b)**2*(at+b)*y12*y14/(2*a*y13*y8)+
(a-b)**2*(a+b)*Exp(2*a*XL)*y12*y14/(2*a*y13*y8)-
(a-b)*(at+b)*y12*y15/(2*y13*y8)

Kase= Kees= -Kga3= -Kgz= TKG122+

(a-b)*(a+b)*Exp(2*a*XL+2*b*XL)*y12*y15/(2*y13*y8)+
(-at+b)**2*(a+b)*y12*y17/(2*b*y13*y8)-
(-a+b)**2*(a+b)*Exp(2*b*XL)*y12*y17/(2*b*y13*y8)+
XL*(-2*a**3*y10*y13*y17+2*a**2*h*y10*y13*y17+

2% a*h**2*y10*y13*y17-
2*b**3*y10*y13*yl7-a**3*y12*y16*y2*y8-a**2*b*y12*y16*y2*y8+
a*b**2*y12*y16*y2*y8)/(y13*y2*y8**2)-
(@**2-b**2)*y14*y9/(2*b*y8**2)+
(@**2-b**2)*y14*y9/(2*b*Exp(2*b*XL)*y8**2)+
(a+b)*y16*y9/(2*y8**2)-
(-(@**2)+b**2)*y17*y9/(2*a*y8**2)+
XL*(b**3*y12*y16*y8-a**2*y13*y15*y9-2*a*b*y13*y15*y9-
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C

b**2%y13%y15*y9)/(y13*y8**2)+
(-((a+b)*y16*y9)/(2*y8**2)+
(-(a%*2)+b**2)*Exp(2*b*X L) *y17*y9/(2*a*y8**2))/Exp(2*(a+b)*XL)

wl=(a+b)
w2=(a-b)
w3=(-a+b)

TKG133=-2*(a**2-b**2)**2*Exp(w3*XL)*y11*y19/(a*y1*y8**2)+
2*(a**2-b**2)**2*Exp(-2*a*XL+w3*XL)*y11*y19/(a*y1*y8**2)+
2*(-(a**2)+b**2)**2*Exp(w3*XL)*y10*y19/(b*y2*y8**2)-
2*(-(a**2)+b**2)**2*Exp(-2*b*XL+w3*XL)*y10*y19/(b*y2*y8**2)-
2*b**4*y11*y20/(W3*Exp(w1*XL)*yl*y8**2)-
2*a**2*(-(a**2)+2*b**2)*y11*y20/(W2*Exp(w1l*XL)*yl*y8**2)+
2*b**4*Exp(2*w3*XL-w1*XL)*y11*y20/(w3*yl*y8**2)+
2*a**2*(-(a**2)+2*b**2)*Exp(2*w3*XL-w1*XL)*y11*y20/
(W2*y1*y8**2)+2*b**4*y10*y21/(W3*Exp(w1*XL)*y2*y8**2)-

2% a**2*(-(a**2)+2*b**2)*y10*y21/(W3*Exp(wl*XL)*y2*y8**2)-
2*b**4*Exp(2*w2* XL-w1*XL)*y10*y21/(w3*y2*y8**2)+

2% a**2*(-(a**2)+2*b**2)*Exp(-2*w3*XL-w1*XL)*y10*y21/
(W3*y2*y8**2)-4*(a**2-b**2)**2*XL*(y1*y10*y20+y11*y2*y21)/
(EXp(w1*XL)*yl*y2*y8**2)+2*(a**2-b**2)**2*y10*y18/
(a*y2*y4*y8**2)-2*(a**2-b**2)**2*Exp(2*a*XL)*y10*y18/
(a*y2*yd*y8**2)+2*(a**2-b**2)**2*Exp(-(a*XL)+b*XL)*XL*y12*y19/
(y13*y8)-(a**2-b**2)**2*y12*y21/(a*Exp(w1l*XL)*y13*y8)

Keas=Kees=TKG133+(a**2-b**2)**2*Exp(2*a*XL-w1*XL)*y12*y21/(a*y13*y8)+

C

W2**2*wW1*y12*y18/(y13*y4*y8)-w2**2*w1*Exp(2*wl*XL)*y12*y18/
(y13*y4*y8)-(-(a**2)+b**2)**2*(2*y11*y13*y18-y1*y12*
y20*y4*y8/Exp(w1*XL))/(b*yl*y13*yd*y8**2)+(-(a**2)+hb**2)**2*
Exp(2*b*XL)*(2*y11*y13*y18-y1*y12*y20*y4*y8/Exp(wl*XL))/
(b*y1*y13*y4*y8**2)-w2*wW1*Exp(w3*XL)*y19*y9/y8**2+
W2*W1*Exp(w3*XL-2*w1*XL)*y19*y9/y8**2-w3*w1**2*y20*y9/
(@*Exp(w1*XL)*y8**2)+w3*wl**2*Exp(-2*a*XL-w1*XL)*y20*y9/
(a*y8**2)-w2*w1**2*y21*y9/(b*Exp(w1*XL)*y8**2)+
W2*W1**2*Exp(-2*b*XL-w1*XL)*y21*y9/(b*y8**2)+
2*W2*wW1**2*XL*y18*y9/(y4*y8**2)

TKG144=Exp(2*b*XL)*(w2*b*y12*y22/(2*y13*y8)+w2*w1*Exp(2*a*XL)*
y12*y25/(y13*y4*y8))-w3*wil*y11*y22/(y1*y8**2)+w3*wl*
Exp(2*w3*XL)*y11*y22/(y1*y8**2)-2*w3**2*w1*XL*y10*y22/
(y2*y8**2)-w3*wl**2*y11*y23/(a*y1*y8**2)+w3*wl**2*y11*y23/
(@*Exp(2*a*XL)*yl*y8**2)-a**2*wl*y10*y23/(b*y2*y8**2)+
b*w1*y10*y23/(y2*y8**2)-b*wl*y10*y23/(Exp(2*b*XL)*y2*y8**2)+
a**2*wl*Exp(-2*a*XL-2*w3*XL)*y10*y23/(b*y2*y8**2)-
2*wW3**2*W1*XL*y11*y24/(y1*y8**2)-w2*w1*y10*y24/(y2*y8**2)+
W2*W1*Exp(2*w2*XL)*y10*y24/(y2*y8**2)-2*w2*w1**2*y10*y25/
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(a*y2*yd*y8**2)-w2*b*y12*y22/(2*y13*y8)+w3*w1**2* XL *y12*y23/
(y13*y8)-w2**2*wl*y12*y24/(2*a*y13*y8)+w2**2*wl*Exp(2*a*XL)*
y12*y24/(2*a*y13*y8)-w2*wl*y12*y25/(y13*y4*y8)-w3*(4*a**2*y11*
y13*y25+8*a*hb*y11*y13*y25+4*p**2*y11*y13*y25+a**2*y1*y12*y22*
ya*y8)/(2*b*y1*y13*yA*y8**2)+Exp(2*b*XL)*(2*w2*w1**2*
Exp(2*w2*XL)*y10*y25/(a*y2*y4*y8**2)+w3*
(4*a**2*y11*y13*y25+8*a*b*y11*y13*y25+4*p**2*y11*y13*y25+
ax*2*y1*y12*y22*yA*y8)/(2*b*yl*y13*yd*y8**2))

Ka26= Kee2= -Kgss= -Kgss= TKG144-(-(a**2)+b**2)*y22*y9/(2*a*y8**2)+

C

(-(a%*2)+b**2)*y22%y9/(2*a*EXp(2*a* X L) *y8**2)+
WL*y23*y0/(2%y8**2)-a** 2%y 24*y0/(2*h*y8**2) +
b*y24%y9/(2*y8**2)-b*y24*y9/(2*EXp(2*h*X L) *y8**2)-
DRWLR*2*X | *y25%y0/(yA*y8**2)+(-(Wl*y23*y9)/
(2*Exp(2*a*XL)*y8**2)+
ax*2*y24%y9/(2*b*y8**2))[Exp(2*b*XL)

Kozo= Koss=  EXPWLRXL)*((@**2-**2) "EXp(W2*XL)*y14*y15/(a*y8**2)+

C

(-(a%*2)+b**2)*y15%y 1 7/(0*Exp(W2*XL)*y8**2))+
((@**2-b**2)*Exp(w2*XL)*y14*y16/(b*y8**2)+
(-(a**2)+b**2)*y16*y17/(a*Exp(W2*X L) *y8**2)) Exp(w1*XL)-
W2rY 4%/ (2%y8**2)-FW2*EXP(2*W2* X L) ¥y 14**2/(2%y8**2)-
(a**2-b**2)*y14*y15/(a*y8**2)-wl*y15+*2/(2*y8**2)+
WLAEXP(2*WL*XL)*y15%*2/(2%y8**2)-
(@**2-0**2)*y14*y16/(*y8**2)+W1*y16%*2/(2*y8**2)-
WL*Y16%*2/(2*EXp(2*W1*XL)*y8**2)-
(-(a**2)+b**2)*y15%y17/(b*y8**2)-
(-(a**2)+b**2)*y16*y17/(a*y8**2)-
W3*Y17%%2/(2%y8**2)+W3*y17**2/

(2*Exp(2*W2*XL)*y8**2)+

2*X L*(-(a**2*y15%y16)-2*a*h*y15%y16-h**2*y15%y16-a**2*y14*y17+
2*a*hry14*y17-h**2%y14%y17)/y8**2

Koos= Keso=  ((-(a**2)+b**2)*(y16*y22+y17*y23)/

(2*a*Exp(w2*XL)*y8**2)+(a**2-b**2)*Exp(w2*XL)*(y14*y23+y16*y24)/
(2*b*y8**2))/Exp(W1*XL)+Exp(wl*XL)*((-(a**2)+b**2)*(2*y17*y25+
y15*y22*y4)/(2*b*Exp(w2* XL)*y4*y8**2)+(a**2-b**2)*Exp(w2*XL)*
(2*y14*y25+y15*y24*y4)[(2*a*y4*y8**2))-w3*y17*y22/(2*y8**2)+
W3*y17*y22/(2*Exp(2*w2*XL)*y8**2)+wl*y16*y23/(2*y8**2)-
wl*y16*y23/(2*Exp(2*w1*XL)*y8**2)-
(-(@**2)+b**2)*(y16*y22+y17*y23)/(2*a*y8**2)-
W2*y14*y24/(2*y8**2)+W2*EXp(2*w2*XL)*y14*y24/(2*y8**2)-
(@**2-b**2)*(y14*y23+y16*y24)/(2*b*y8**2)-wl*y15*y25/(y4*y8**2)+
W1*Exp(2*wl1*XL)*y15*y25/(y4*y8**2)-(-(a**2)+b**2)*
(2*y17*y25+y15*y22*y4)/(2*b*y4*y8**2)-(a**2-b**2)*
(2*y14*y25+y15*y24*y4)/(2*a*y4*y8**2)+XL*
(-2*a**2*y16*y25-4*a*b*y16*y25-2*p**2*y16*y25-a**2*y14*y22*y4+
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2*a*h*yl14*y22*y4-h**2*y14*y22*yA-a**2*y15*y23*y4-
2*a*b*y15*y23*y4-b**2*y15*y23*y4-a**2*y17*y24*y4+
2*a**y17*y24*yA-b**2*y17*y24*y4)/(y4*y8**2)

ke11= Keas=1

Ke14= Kga1= -1

kc1o= K1z =kc15= Keis =Kgao= Keas =Kgas= Kgas=0
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APPENDIX B

Consistent mass matrix terms of beam elements resting on two - parameter elastic
foundation;

a) For A<2*Sqrt(B)
where A= k¢/(E*1) and B= ki/(E*I) see page 44

XL=L

p=A*XL

A= (Ki/(4*E*1))**0.25

0= Ko/ (4*E*I)

t =8/A*x%2
t1=(1-t)**(0.5)
t2=(1+t)**(0.5)
z1=tl

72=t2
Z=t
C

M33= Mgeg=  (XL*(8*p*z1*z2 +8*p*z1*z**2*z2 -8*p*z1*22*Cos(2*p*z1) -

8*p*z1*z*z2*Cos(2*p*z1) -8*p*z1*z2*Cosh(2*p*z2) +
8*p*z1*z*z2*Cosh(2*p*z2) +8*p*z1*z2*Cos(2*p*z1)*
Cosh(2*p*z2) -8*p*z1*z**2*z2*Cos(2*p*z1)*Cosh(2*p*z2) -
12*z2*Sin(2*p*z1) +4*z*z2*Sin(2*p*z1) +6*z2*Cosh(2*p*z2)*
Sin(2*p*z1) -12*z*z2*Cosh(2*p*z2)*Sin(2*p*z1) +2*z**2*z2*
Cosh(2*p*z2)*Sin(2*p*z1) +4*z**3*z2*Cosh(2*p*z2)*Sin(2*p*z1) +
3*z2*Sin(4*p*z1) +4*z*z2*Sin(4*p*z1) -z**2*z2*Sin(4*p*z1) -
2*7**3*72*Sin(4*p*z1) -12*z1*Sinh(2*p*z2) -4*z1*z*Sinh(2*p*z2) +
6*z1*Cos(2*p*z1)*Sinh(2*p*z2) +12*z1*z*Cos(2*p*z1)*Sinh(2*p*z2) +
2*71*7**2*Cos(2*p*z1)*Sinh(2*p*z2) -4*z1*z**3*Cos(2*p*z1)*
Sinh(2*p*z2) +8*p*z*Sin(2*p*z1)*Sinh(2*p*z2) -8*p*z**3*
Sin(2*p*z1)*Sinh(2*p*z2) +3*z1*Sinh(4*p*z2) -4*z1*z*Sinh(4*p*z2) -
21*z2**2*Sinh(4*p*z2) +2*z1*2**3*Sinh(4*p*z2)))/(8*p*z1*z2*
(-2 + Cos(2*p*z1) + z*Cos(2*p*z1) +
Cosh(2*p*z2) - z*Cosh(2*p*z2))**2)

C

Mse= Mgs= -My3= -M3p= (XL**2*(-4*z + 4*Cos(2*p*z1) + 4*z**2*Cos(2*p*z1) -
Cos(4*p*z1)-2*z*Cos(4*p*z1)-z**2*Cos(4*p*z1)-4*Cosh(2*p*z2)-
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4*7**2*Cosh(2*p*z2) +8*z*Cos(2*p*z1)*Cosh(2*p*z2) +
Cosh(4*p*z2) - 2*z*Cosh(4*p*z2) +z**2*Cosh(4*p*z2) -
4*p*z1*Sin(2*p*z1) -4*p*z1*z*Sin(2*p*z1) +
4*p*z1*Cosh(2*p*z2)*Sin(2*p*z1)+
4*p*z1*z*Cosh(2*p*z2)*Sin(2*p*z1) -4*p*z2*Sinh(2*p*z2) +
4*p*z*z2*Sinh(2*p*z2) +4*p*z2*Cos(2*p*z1)*Sinh(2*p*z2) -
4*p*z*z2*Cos(2*p*z1)*Sinh(2*p*z2)))/
(8*p**2*(-2 + Cos(2*p*z1) + z*Cos(2*p*z1) +
Cosh(2*p*z2) - z*Cosh(2*p*z2))**2)

C

C

M26= Meg2= -M3z5= -Ms53=
(XL**2*(-2*p*z2*Cosh(p*z2)*Sin(p*z1)-2*p*z*z2*Cosh(p*z2)*
Sin(p*zl)+4*p*z**2*z2*Cosh(p*z2)*Sin(p*z1)-p*z2*Cosh(3*p*z2)*
Sin(p*z1)+2*p*z*z2*Cosh(3*p*z2)*Sin(p*z1)-p*z**2*z2*Cosh(3*p*z2)*
Sin(p*z1)+p*z2*Cosh(p*z2)*Sin(3*p*z1)-p*z**2*z2*Cosh(p*z2)*
Sin(3*p*z1)-2*p*z1*Cos(p*z1)*Sinh(p*z2)+2*p*z1*z*Cos(p*z1)*
Sinh(p*z2)+4*p*z1*z**2*Cos(p*z1)*Sinh(p*z2)-p*z1*Cos(3*p*z1)*
Sinh(p*z2)-2*p*z1*z*Cos(3*p*z1)*Sinh(p*z2)-p*z1*z**2*Cos(3*p*z1)*
Sinh(p*z2)-12*Sin(p*z1)*Sinh(p*z2)+2*Sin(3*p*z1)*
Sinh(p*z2)+4*z*Sin(3*p*z1)*Sinh(p*z2)-2*z**3*
Sin(3*p*z1)*Sinh(p*z2)+ p*z1*
Cos(p*z1)*Sinh(3*p*z2)-p*z1*z**2*Cos(p*z1)*Sinh(3*p*z2)+
2*Sin(p*z1)*Sinh(3*p*z2)-4*z*Sin(p*z1)*Sinh(3*p*z2)+2*z**3*
Sin(p*z1)*Sinh(3*p*z2)))/(4*p**2*z1*z2*(-2+Cos(2*p*z1)+z*
Cos(2*p*z1) +Cosh(2*p*z2) - z*Cosh(2*p*z2))**2)

C
M= Mss= (XL**3*(4*p*(1 - 2)**(2.5)*z2 - 4*p*z1*(1+2)**(2.5) +
4*p*(1 - 2)**(1.5)*(1 + 2)**(1.5)*Cos(2*p*z1)+4*p*z1*
(1 + 2)**(2.5)*Cos(2*p*z1)-4*p*(1-2)**(2.5)*z2*Cosh(2*p*z2) -
4*p*(1 - 2)**(1.5)*(1 + z)**(1.5)*Cosh(2*p*z2) +
4*72*Sin(2*p*z1) -8*z*z2*Sin(2*p*z1) +4*z**2*z2*Sin(2*p*z1) -
2*(1 + 2)**(1.5)*Sin(2*p*z1) +2*z*(1 + z)**(1.5)*Sin(2*p*z1) +
2*(1 + 2)**(2.5)*Sin(2*p*z1) -4*z2*Cosh(2*p*z2)*Sin(2*p*z1) +
8*z*z2*Cosh(2*p*z2)*Sin(2*p*z1) -4*z**2*z2*Cosh(2*p*z2)*
Sin(2*p*z1) +2*(1 + z)**(1.5)*Cosh(2*p*z2)*Sin(2*p*z1) -
2*z*(1 + 2)**(1.5)*Cosh(2*p*z2)*Sin(2*p*z1)-(1 + z)**(2.5)*
Sin(4*p*z1) -4*z1*Sinh(2*p*z2) +2*(1 - 2)**(1.5)*Sinh(2*p*z2) -
2*(1 - 2)**(2.5)*Sinh(2*p*z2) -8*z1*z*Sinh(2*p*z2) +
2*(1 - 2)**(1.5)*z*Sinh(2*p*z2) -4*z1*z**2*Sinh(2*p*z2) +
4*z21*Cos(2*p*z1)*Sinh(2*p*z2)-2*(1-z)**(1.5)*Cos(2*p*z1)*
Sinh(2*p*z2)+8*z1*z*Cos(2*p*z1)*Sinh(2*p*z2) -2*(1 - z)**(1.5)*z*
Cos(2*p*z1)*Sinh(2*p*z2) +4*z1*z**2*Cos(2*p*z1)*Sinh(2*p*z2) +
8*p*Sin(2*p*z1)*Sinh(2*p*z2)-8*p*z**2*Sin(2*p*z1)*Sinh(2*p*z2) +
(1 - 2)**(2.5)*Sinh(4*p*z2)))/(16*p**3*z1*z2*(-2 + Cos(2*p*zl) +
z*Cos(2*p*z1) +Cosh(2*p*z2) - z*Cosh(2*p*z2))**2)

160



W1=Cos(p*z1)
W2=Cosh(p*z2)
W3=Cos(3*p*z1)
W4=Cosh(3*p*z2)

W5=Sin(p*z1)
W6=Sinh(p*z2)
W7=Sin(3*p*z1)
W8=Sinh(3*p*z2)

W9=Cos(2*p*z1)
W10=Cosh(2*p*z2)
Y1=(1+z)

Y2=(1-z)

TM133 = -(p*(Y 2)**(3.5)*22*W1*W2)+p*(Y 2)**(2.5)*(Y 1)**(L.5)*
WLFW2+p*(Y2)**(1.5)*(Y 1)**(2.5)*W1*W2-p*z1*(Y 1)**(3.5)*W1*W2-p*
(Y2)**(2.5)*(Y 1)**(1.5)*W3*W2+p*zL1*(Y 1)**(3.5)*W3*W2+p*
(Y2)**(3.5)*22*W1*W4-p*(Y 2)**(1.5)* (Y 1)**(2.5) *W1*W4+2*Zz2*W2*
W5-6*Z2*Z22 W2 W5+6%Z**2% 72X\ 2*\W/5-

2*Z**I*Z RN 2*XWE+E*(Y 1)**(1.5)*W2*
W5-10%Z2*(Y 1)**(1.5)*W2*W5+5%7%*2% (Y 1)**(1.5)*W2*W5+14*
(Y1)**(2.5)*W2*W5-14*2*(Y 1)**(2.5)*W2*W5+3*(Y 1)**(3.5)*W2*W5-2%
Z2F AW +6*Z* 22 \WARWS-6% 2% * 2% 72X\ AW+ 2% 7%* 3% 22X WARW5-5*
(Y 1)**(L1.5)*WAXWS+10%*2* (Y 1)**(1.5)*WA*WS-5*7**2% (Y 1)**(1.5)*W4*
W5+(Y1)**(2. 5)*WASW5-2%(Y 1)**(2.5)*WA*WS5 -5*(Y 1)**(2.5)*W2*\W7+5*
Z%(Y 1)**(2.5)*W2*W7-(Y 1)**(3.5)*W2*W7 +2*Z1*W1*W6+5%(Y2)**(1.5)*

WIHWE+14%(Y 2)**(2.5)*W1*W6+3*(Y 2)**(3.5)*W1*W6+6*21*2*W1*W6+10*
(Y2)**(1.5)*Z*W1*W6+14* (Y 2)**(2.5)*Z*W1*W6+6*21*2**2X\W 1 *W6-+5*
(Y 2)**(1.5)*Z**2*\W 1 *W6+2* 21 *2**3*W1*\W6-2*Z21*W3*W6-

5*(Y2)**(1.5)*
W3*W6E+(Y 2)**(2.5)*W3*WB-6*21*z7*W3*W6-10*(Y 2)**(1.5)*2*W3*W6
TM134=(TM133+(Y2)**(2.5)*2*W3*W6-6*21*7**2*W3*W6-
5% (Y 2)**(L.5)*Z**2*W3*W6-2*
Z1*7**3XWIHWB-8*p*Z*WE*W6+8*p* 2> *3*WE*WE-4*p*WT*W6-4*p*z*
WTHWE+4%p* 2% * 2R THWB+4*p* 2% * W TFWB-5* (Y 2)**(2.5)*W1*W8 -
(Y2)**(3.5)*W1*WB8-5*(Y 2)**(2.5)*Z*W1*W8+4*p*W5*W8-4*p*z*\W5*
WB-4*p*z**2¥\WE*\WB+4*p*z**3*\W5*\\/8)

Mag= Mes=XL*TM134/(8*p*z1*22*(-2+W9+z*W9+W10-z*W10)**2)

C

Mas= Mep= (XL**3%(-(p*(Y2)**(2.5)*22*W1*W2) +p*z1*(Y1)**(2.5)*W1*
W2-p* (Y 2)%*(1.5)* (Y 1)**(1.5)*W3*W2-p*z1*(Y 1)**(2.5)*W3*W2 +
p*(Y 2)**(2.5)*22*W1*Wa+p*(Y 2)**(1.5)*(Y 1)**(1.5)*W1*W4-2*72*
W2HW5+4*7%72 W 2*W5-2%7%* 2% 725\ 2*W5-+(Y 1)** (1.5)*W2*W5-7*
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(Y 1)**(1.5)*W2*W5-3*(Y 1)**(2.5)*W2*W5+2*22*WA*W5-

4% 7*22*WA*W5+
2% Z**2xZ 2FWARWSE-(Y 1)**(1.5)*WAXW5+2*(Y 1)**(1.5)*WA*W5+
(Y 1)**(2.5)*W2W7+2*Z1*\W1*WB-(Y 2)**(1.5)*WL*W6+3*(Y 2)**(2.5)*
WL*WE+4*Z1*Z*W1*W6-(Y 2)**(1.5)*Z*W1*W6E+2*Z21*2**2*\W1*W6 -
2%Z1*W3*WB-+(Y 2)**(L.5)*W3*WB-4*21*7*W3*W6+(Y 2)**(1.5)*2*W3*W6-
2%71*7**2*\W3*W6-16*p*W5*WB+16*p*Z2**2*W5*\W6-
(Y 2)**(2.5)*W1*WB8))/(8*p**3*z1*22*(-2+W9+Z*WO+W10-z*W10)**2)

C

C

M11= Myy= 1/3

M= My1= 1/6

M2= M3 =M15= M1s =Ma2= Myz =Ma5= M46=0
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b) For A>2*Sqrt(B)

Consistent mass matrix terms of beam elements resting on two - parameter elastic
foundation in exponential form;

where A= ko/(E*1) and B= ki/(E*I) see page 44
XL=L
p=A*XL
A= (ki/(4*E*1))**0.25
8= ko/(4*E*I)
a=sqrt(A**2+3)
b=sqrt(3-A**2)

y1=Exp(2*b*XL)
y2=Exp(2*a*XL)
y3=Exp((a-b)*XL)
yA=Exp((a+b)*XL)
y5=Exp((-a+b)*XL)
y6=Exp(2*(a-b)*XL)
y7=Exp(2*(a+b)*XL)
y8=8*a**2-8*b**2-(4*a**2)/yl-4*a**2*y1+(4*b**2)/y2+4*b**2*y?2
y9=2*(-a+b)*(-a-b+a*yl+b*y2)
y10=b+a*y2-b*y2-a*yl*y2
yll=-a+a*yl-b*yl+b*yl*y2
y12=-(b*yl)-a*y2+a*yl*y2+b*yl*y2
y13=2*(b**2*yl-a**2*y2+2*a**2*y1*y2-
2*b**2*y1*y2-a**2*(yl)**2*y2+b**2*y1*(y2)**2)
yl4=2*a+2*b-2*a*yl-(2*b)/y2
y15=2*a-2*b-(2*a)/y1+(2*b)/y2
y16=2*(-a+b+a*yl-b*y2)
y17=-2*a-2*b+(2*a)/ly1l+2*b*y?2
y18=-a-b+b*y3*y4+a*y4*y5
y19=b-a*y2-b*y2+a*y6
y20=b+a*y2-b*y2-a*y7
y21=-a+a*yl-b*yl+b*y7
y22=-2*a*y3-2*b*y3+(2*b)/y4+2*a*y4
y23=2*(a*y3-a*y4+b*y4-b*y5)
y24=(-2*a)ly4-2*b*y4+2*a*y5+2*b*y5
y25=a-b+b*y3*y4-a*y4*y5

C

M33= Mee=-((a-b)**2*y12**2)/(2*(a+b)*y13**2)+
(a-b)**2*Exp(2*(a+b)*XL)*y12**2/(2*(a+b)*y13**2)+
Exp((atb)*XL)*(2*(a**2-b**2)*Exp((-a+b)*XL)*y11*y12/
(b*y1*y13*y8)+2*(a**2-b**2)*y10*y12/(a*Exp((-a+b)*XL)*
y13*y2*y8))+2*(a+h)**2*y11**2/((a-b)*yl**2*y8**2)-
2*(at+b)**2*Exp(2*(-a+h)*XL)*y11**2/((a-b)*y1**2*y8**2)-
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C

2*(ath)**2*y10**2/((a-b)*y2**2*y8**2)+
2*(ath)**2*y10**2/((a-b)*Exp(2*(-atb)*XL)*y2**2*y8**2)-
2*(a**2-b**2)*y11*y12/(b*yl*y13*y8)-
2*(a**2-b**2)*y10*y12/(a*y13*y2*y8)+
2*(at+b)*yl11*y9/(a*yl*y8**2)+
2*(ath)*y10*y9/(b*y2*y8**2)+y9**2/(2*(a+bh)*y8**2)-
y9**2/(2*(a+b)*Exp(2*(a+b)*XL)*y8**2)+
(-2*(a+b)*Exp((-a+b)*XL)*y11*y9/(a*yl*y8**2)-
2*(a+h)*y10*y9/(b*Exp((-a+b)*XL)*y2*y8**2))/Exp((a+b)*XL)+
2*XL*(4*a**2*y10*y11*y13+8*a*b*y10*y11*y13+4*p**2*y10*y11*y13+
a*yl*yl12*y2*y8*y9-b*yl*y12*y2*y8*y9)/(y1l*y13*y2*y8**2)

TM122=2*(a+b)*XL*y11*y14/(y1*y8**2)-(a+h)*y11*y15/(b*y1*y8**2)+
(a+b)*Exp(2*b*XL)*y11*y15/(b*y1*y8**2)+(a+h)*
y11*y16/(a*yl*y8**2)-
(at+b)*y11*y16/(a*Exp(2*a*XL)*yl*y8**2)+
(at+b)*yl11*y17/((a-b)*yl*y8**2)-
(at+b)*Exp(2*(-a+b)*XL)*y11*y17/((a-b)*y1*y8**2)-
(atb)*y10*y14/((a-b)*y2*y8**2)+
(a+b)*y10*y14/((a-b)*Exp(2*(-a+b)*XL)*y2*y8**2)+
(at+b)*y10*y16/(b*y2*y8**2)-(a+b)*y10*y16/
(b*Exp(2*b*XL)*y2*y8**2)+
2*(a+b)*XL*y10*y17/(y2*y8**2)-(a-b)*y12*y15/(2*(a+b)*y13*y8)+
(a-b)*Exp(2*(a+b)*XL)*y12*y15/(2*(a+b)*y13*y8)+
(a-b)*XL*y12*y16/(y13*y8)-(a-b)*y12*y17/(2*b*y13*y8)+
(a-b)*Exp(2*b*XL)*y12*y17/(2*b*y13*y8)

Mse= Mgs= -My3= -M3=TM122-

C

(2*a*y10*y13*y15+2*b*y10*y13*y15+a*y12*y14*y2*y8-
b*y12*y14*y2*y8)/(2*a*y13*y2*y8**2)+Exp(2*a*XL)*
(2*a*y10*y13*y15+2*b*y10*y13*y15+a*y12*y14*y2*y8-
b*y12*y14*y2*y8)/(2*a*y13*y2*y8**2)+y14*y9/(2*b*y8**2)-
y14*y9/(2*b*Exp(2*b*XL)*y8**2)+
XL*y15*y9/y8**2+y16*y9/(2*(a+h)*y8**2)-
y16*y9/(2*(a+b)*Exp(2*(a+b)*XL)*y8**2)+y17*y9/(2*a*y8**2)-
y17*y9/(2*a*Exp(2*a*XL)*y8**2)

TM133=-2*(a**2-b**2)*Exp((-a+b)*XL)*y11*y19/(a*y1*y8**2)+
2% (a**2-0**2)*Exp(-2%a* X L+(-a+b)*X L) *y11*y19/(a*y1*y8**2)-
2% (a**2-0**2)*Exp((-a+b)*XL)*y10*y19/(b*y2*y8**2)+
2%(a**2-0**2)*Exp(-2*b* X L+(-a+h)*X L) *y10*y10/(b*y2*y8**2)+
2*a**2*y11*y20/((a-b)*Exp((a+h)*XL)*y1*y8**2)-

2% (2*a+h)*y11*y20/((-a+b)*Exp((a+h)*XL)*y1*y8**2)-
2*a**2*Exp(2*(-a+h)*X L-(a+b)*X L) *y11*y20/((a-b)*y1*y8**2)+
2% (2*a+b) *Exp(2*(-a+b)*XL-
(a+b)*XL)*y11*y20/((-a+b)*y1*y8**2)-
2*(a+h)**2*y10%y21/((a-b)*Exp((a+h)*XL)*y2*y8**2)+
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2*(a+b)**2*Exp(2*(a-b)*XL-(a+b)*XL)*y10*y21/((a-b)*y2*y8**2)+
4*(a+b)**2*XL*(y1*y1l0*y20+yll*y2*y21)/
(Exp((@+b)*XL)*yl*y2*y8**2)-
2*(-(a**2)+b**2)*y11*y18/(b*y1*y4*y8**2)+
2*(-(a**2)+b**2)*Exp(2*b*XL)*y11*y18/(b*yl*y4*y8**2)-
2*(-(a**2)+b**2)*y10*y18/(a*y2*y4*y8**2)+
2*(-(a**2)+b**2)*Exp(2*a*XL)*y10*y18/(a*y2*y4*y8**2)

Mas= Mea=TM133-2%a**2*Exp(-(a*XL)+b*XL)*X L*y12*y19/(y13*y8)+

C

2*(2*a-b)*b*Exp(-(a*XL)+b*XL)*XL*y12*y19/(y13*y8)-
(@**2-b**2)*y12*y20/(b*Exp((a+b)*XL)*y13*y8)+
(@**2-b**2)*Exp(2*b*XL-(a+b)*XL)*y12*y20/(b*y13*y8)-
(@**2-b**2)*y12*y21/(a*Exp((a+b)*XL)*y13*y8)+
(@**2-b**2)*Exp(2*a*XL-(a+b)*XL)*y12*y21/(a*y13*y8)+
a**2*y12*y18/((a+b)*y13*y4*y8)-
(2*a-b)*b*y12*y18/((a+b)*y13*y4*y8)-
a**2*Exp(2*(a+b)*XL)*y12*y18/((a+b)*y13*y4*y8)+
(2*a-b)*b*Exp(2*(a+b)*XL)*y12*y18/((a+b)*y13*y4*y8)-
(a-b)*Exp((-a+b)*XL)*y19*y9/((a+b)*y8**2)+
(a-b)*Exp((-a+b)*XL-2*(a+b)*XL)*y19*y9/((a+b)*y8**2)+
(a+b)*y20*y9/(a*Exp((a+b)*XL)*y8**2)-
(at+b)*Exp(-2*a*XL-(a+b)*XL)*y20*y9/(a*y8**2)+
(a+b)*y21*y9/(b*Exp((a+h)*XL)*y8**2)-
(a+b)*Exp(-2*b*XL-(a+b)*XL)*y21*y9/(b*y8**2)+
2*(-a+h)*XL*y18*y9/(yd*y8**2)

TM144=(-((a+b)*y10*y23/(b*Exp(2*a*XL)*y2*y8**2))+
a*y10*y24/((a-b)*y2*y8**2))/Exp(2*(-a+b)*XL)+
(at+b)*yl11*y22/((a-b)*yl*y8**2)-
(atb)*Exp(2*(-at+b)*XL)*y11*y22/((a-b)*y1*y8**2)+
(at+b)*yll*y23/(a*yl1*y8**2)-(a+b)*y1l1*y23/
(@*Exp(2*a*XL)*yl*y8**2)+
(a+b)*y10*y23/(b*y2*y8**2)-a*y10*y24/((a-b)*y2*y8**2)+
b*y10*y24/((-a+h)*y2*y8**2)+
2*(ath)*XL*(y1l*y10*y22+yl1*y2*y24)/(yl*y2*y8**2)+
(a-b)*XL*y12*y23/(y13*y8)-(a-b)*y12*y25/((a+b)*y13*y4*y8)+
(a-b)*Exp(2*(a+b)*XL)*y12*y25/((a+b)*y13*y4*y8)-
(4*a*yl1*y13*y25+4*p*y11*y13*y25+a*yl*y12*y22*y4*y8-
b*yl1*y12*y22*yA*y8)/(2*b*y1*y13*y4*y8**2)+
Exp(2*b*XL)*(4*a*yl1*y13*y25+4*b*y11*y13*y25+
a*yl*yl2*y22*y4*y8-
b*yl1*y12*y22*y4*y8)/(2*b*yl*y13*y4*y8**2)

M= Mer= -M35= -Ms3=T M144-

(4*a*y10*y13*y25+4*b*y10*y13*y25+a*yl2*y2*y24*y4*y8-
b*y12*y2*y24*y4*y8)/(2*a*y13*y2*y4A*y8**2)+
Exp(2*(a-b)*XL)*(-(b*y10*y24/((-a+b)*y2*y8**2))+
Exp(2*b*XL)*(4*a*y10*y13*y25+4*p*y10*y13*y25+
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C

a*yl2*y2*y24*y4*y8-
b*y12*y2*y24*yA*y8)/(2*a*y13*y2*y4*y8**2))+y22*y9/(2*a*y8**2)-
y22*y9/(2*a*Exp(2*a*XL)*y8**2)+y23*y9/(2*(a+b)*y8**2)+
y24*y9/(2*b*y8**2)+2* XL *y25*y9/(y4*y8**2)+
(-(y23*y9)/(2*(at+b)*y8**2)-Exp(2*a*XL)*y24*y9/(2*b*y8**2))/
Exp(2*(a+b)*XL)

Ma,= mss=Exp((a+b)*XL)*(Exp((a-b)*XL)*yl4*y15/(a*y8**2)+
y15*y17/(b*Exp((a-b)*XL)*y8**2))+
(-(Exp((a-b)*XL)*y14*y16/(b*y8**2))-y16*y17/
(@*Exp((a-b)*XL)*y8**2))/
Exp((a+h)*XL)-y14**2/(2*(a-b)*y8**2)+
Exp(2*(a-b)*XL)*y14**2/(2*(a-b)*y8**2)-y14*y15/(a*y8**2)-
y15**2/(2*(a+b)*y8**2)+Exp(2*(a+b)*XL)*y15**2/(2*(a+h)*y8**2)+
y14*y16/(b*y8**2)+y16**2/(2*(a+b)*y8**2)-
y16**2/(2*(a+b)*Exp(2*(a+h)*XL)*y8**2)-y15*y17/(b*y8**2)+
y16*y17/(a*y8**2)+y17**2/(2*(a-b)*y8**2)-
y17**2/(2*(a-b)*Exp(2*(a-b)*XL)*y8**2)+

2% XL*(y15*y16+y14*y17)/y8**2

Mys5= Msp=(-(y16*y22+y17*y23)/(2*a*Exp((a-b)*XL)*y8**2)-

C

Exp((a-b)*XL)*(y14*y23+yl6*y24)/(2*b*y8**2))/Exp((a+b)*XL)+
Exp((a+b)*XL)*((2*y17*y25+y15*y22*y4)/
(2*b*Exp((a-b)*XL)*y4*y8**2)+
Exp((a-b)*XL)*(2*y14*y25+y15*y24*y4)/(2*a*y4*y8**2))+
y17*y22/(2*(a-b)*y8**2)-y17*y22/(2*(a-b)*
Exp(2*(a-b)*XL)*y8**2)+
y16*y23/(2*(a+b)*y8**2)-y16*y23/(2*(a+b)*
Exp(2*(a+b)*XL)*y8**2)+
(y16*y22+y17*y23)/(2*a*y8**2)-y14*y24/(2*(a-b)*y8**2)+
Exp(2*(a-b)*XL)*yl4*y24/(2*(a-b)*y8**2)+
(y14*y23+y16*y24)/(2*b*y8**2)-y15*y25/((a+h)*y4*y8**2)+
Exp(2*(a+b)*XL)*y15*y25/((a+h)*y4*y8**2)-
(2*y17*y25+y15*y22*y4)[(2*b*y4*y8**2)-
(2*y14*y25+y15*y24*y4)/(2*a*y4*y8**2)+
XL*(2*y16*y25+y14*y22*yA+y15*y23*y4+y17*y24*y4)[(y4*y8**2)

M11= Myy= 1/3
M= My1= 1/6
M2= M3 =M15= M1s =Ma2= Myz =Ma5= M46=0
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