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ABSTRACT

AN APPROXIMATE MODEL FOR PERFORMANCE MEASUREMENT
IN BASE-STOCK CONTROLLED ASSEMBLY SYSTEMS
Rodoplu, Umut
M. Sc., Department of Industrial Engineering

Supervisor: Assist. Prof. Z. Muge Avsar

January 2004, 125 Pages

The aim of this thesis is to develop a tractable method for approximating the
steady-state behavior of continuous-review base-stock controlled assembly systems
with Poisson demand arrivals and manufacturing and assembly facilities modeled as
Jackson networks. One class of systems studied is to produce a single type of
finished product assembling a number of components and another class is to
produce two types of finished products allowing component commonality. The
performance measures evaluated are the expected backorders, fill rate and the
stockout probability for finished product(s). A partially aggregated but exact model is
approximated assuming that the state-dependent transition rates arising as a result
of the partial aggregation are constant. This approximation leads to the derivation of
a closed-form steady-state probability distribution, which is of product-form.
Adequacy of the proposed model in approximating the steady-state performance
measures is tested against simulation experiments over a large range of parameters
and the approximation turns out to be quite accurate with absolute errors of 10% at
most for fill rate and stockout probability, and of less than 1.37 (=2) requests for
expected backorders. A greedy heuristic which is proposed to be employed using
approximate steady-state probabilities is devised to optimize base-stock levels while

aiming at an overall service level for finished product(s).

Keywords: Assembly Systems, Approximation, Performance Evaluation, Greedy

Heuristic, Base-Stock Control, Steady-State Behavior, Jackson Network.



0z
BAZ-STOK DENE]’iMi[}JDEKi l_\/IONTAJ SISTEMLERINDE PERFORMANS
OLCUMU ICIN BIR YAKLASIK MODEL
Rodoplu, Umut

Yiksek Lisans, Endistri Mihendisligi B&lim

Tez Yoneticisi: Assist. Prof. Z. Mlge Avsar

Ocak 2004, 125 sayfa

Bu calismada baz-stok denetim mekanizmasi altinda calisan, son rin
talebi Poisson sureci, Uretim ve montaj atolyeleri ise Jackson agi olarak
modellenmis bir sistemde kararli durum davranisini belirleyerek, aninda
karsilanamayip ileri tarihte karsilanmak Uzere kabul edilen taleplerin beklenen
degeri, talebin aninda karsilanma olasili§i gibi performans dlgitlerini hesaplamaya
yonelik bir yaklasik modelin gelistiriimesi amaclanmaktadir. Herhangi bir sayida alt
Urin montaji ile tek tip bir son trindn uretildigi veya iki farkh tipte son Griiniin ortak
alt Urdnlere izin verilerek Uretildigi sistemler Uzerinde calisiimistir. Kismen kimile
edilmig, ancak kesin bir modelde kimulasyon dolayisi ile olusan ve sistemin
durumuna gore dedisen gecis oranlarl sabit varsayilarak bir yaklasik modele
ulasiimigtir. Yaklasik model ile elde edilen sayisal degerler benzetim ile hesaplanan
degerlerle kiyaslanarak Onerilen yaklagsik modelin yeterliligi sinanmis ve talebin
aninda karsilanma olasiligi icin %10’dan, aninda karsilanamayip ileri tarihte
karsilanmak Uzere kabul edilen taleplerin beklenen degeri igin ise 1.37 (=2) adet
kargilanamayan talepten daha az hata oranlari gézlenmistir. Ayrica, yaklasik model
ile elde edilen degerler kullanilarak, belirli son Grlin servis seviyesi hedefini
saglamak Uzere en iyi baz-stok seviyelerini hesaplayan sezgisel bir algoritma

tasarlanmistir.

Anahtar Kelimeler: Montaj Sistemleri, Yaklastirim, Performans Degerlendirmesi,

Acgozli Sezgisel Algoritma, Baz-Stok Denetimi, Kararli Durum, Jackson Agi.
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CHAPTER 1

1. INTRODUCTION

Production/inventory control policies and bill of materials (BOM) of the
finished products manufactured are the underlying characteristics to identify the
structure of assembly systems. Different combinations of various
production/inventory control policies and BOM lead to a high variety in the structure
of assembly systems. The systems considered in this study are in the class of pull-
type make-to-stock systems under continuous-review base-stock type inventory
control policies and with the simplest possible BOM structures (a number of
components assembled to make a single type of finished product at least to start
with, and an immediate extension is also touched upon), which are already difficult
to analyze but form the basic building block for a further study on more complex
BOM structures (multiple finished products, component commonalities, closed
systems). In fact, contribution of this study to future research along the same
direction would be identifying the function of an assembly subsystem within a joint
collection of many different subsystems (not only assembly but also serial or
disassembly subsystems), most probably while employing a decomposition
approach for the analysis of the joint collection. Such a further progress of research
would reveal the importance of the investigation in this study to figure out steady-

state behavior of the basic assembly models.

Even in the case of the most tractable form of the basic assembly systems
(two components manufactured at their respective dedicated exponential single-
server manufacturing facilities and stored at the respective base-stock controlled
stock points and assembled at an exponential single-server assembly facility,
Poisson demand arrivals), exact analytical steady-state probabilities of the

corresponding model can not be found, pointing out the requirement to develop
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approximation approaches. The one proposed in this study is an analytical
approximation which first appeared in [2] and [38] for two-echelon and two-indenture
systems, respectively. The development of the adaptation of the work in [2] and [38]
to two-component assembly systems with single-server facilities is in Chapter 3.
This development over the corresponding queuing model is completely analytical
unlike its intuitive use in Chapter 4 for further extensions with more than two
components to be assembled and also with two different types of finished products
having a common component. The approximate steady-state probability distribution
proposed is of product-form, which is important to relate this thesis to the work in
[30] on exactly the same type of systems except the one with a common
component. In [30], the analysis is based on decomposition of the system, which
immediately calls product-form solutions. In spite of so many common points of the
decomposition in [30] and the development in this thesis, the product-form solutions
are not recognized as closed-form solutions in [30] while using matrix-geometric
solution algorithms for the decomposed subsystems. [30], being the only work in the
literature concentrating on the same systems as the ones in this thesis, is
comparable to ours in terms of not only the analytical approach but directly related
to this also the approximation performance. This comparison underlines the
contribution of this thesis: the closed-form (product-form) solution with its good
numerical performance and immediate generalization possible for open Jackson

network models of manufacturing and assembly facilities and for different BOMs.

To summarize, this thesis is on the performance analysis and design of
assembly systems controlled by continuous-review base-stock inventory policies.
Objective of the study is two-staged: to construct a model for approximating the
steady-state performance measures of the assembly systems; namely expected
backorder level, fill rate and stockout probability of finished products, and to use the
approximate values with a greedy approach for finding near-optimal design
parameters like base-stock levels at the stock points considering the trade-off
between the required stock investment and some target service level to be achieved

on the average in the long-run.



CHAPTER 2

2. LITERATURE REVIEW

The manufacturing system models considered in this study include fork-join
stations, which bring about the difficulty and so the challenge to analyze them. As
the name implies, a customer arrival at a fork-join station starts generation (fork) of a
number of different jobs of this customer to be (instantaneously) connected
(merged/joined) later for further processes to be carried out on the joined entity. The
following overview (classification) of the systems with fork-join stations is by
Krishnamurthy et al. [21]. Uses of fork-join stations appear in queuing models of not
only manufacturing but also computer systems to analyze parallel processing,
database concurrency control and communication protocols. Some related
references for the latter are [3], [4], [5], [26], [37]. As for the models of manufacturing
systems, the function of fork-join stations can be in one of the following two
categories: Queuing model of an assembly station, which is typically a fork-join
station, where a number of entities are merged to form a single entity representing
an assembly as in [15], [19], [23], [27], [28] and fork-join stations in multi-stage
manufacturing systems to model synchronization constraints under inventory control
policies (base-stock, kanban) as in [8], [9], [13], [16], [30]. The queuing models of
two-stage assembly systems under continuous-review base-stock type inventory
control policy in this thesis fall into the last category. In this chapter, previous studies
in this category are reviewed revealing how they are related to or different from the

work in this thesis.

In Sbhiti et al. [30], Di Mascolo and Dallery [13], Hazra et al. [16] and
Chaouiya et al. [9], fork-join stations handle production coordination of assembly
manufacturing systems under different inventory control policies that are all of pull-

type. In Shiti et al. [30] and Di Mascolo and Dallery [13], Hazra et al. [16], base-stock



control and kanban control policies are employed, respectively. The work by
Chaouiya et al. [9] is to extend a combination of these two one-parameter policies,
which was previously proposed in Dallery and Liberopoulos [10] for serial
manufacturing systems to achieve better trade-offs between inventory holding costs
and customer service, to assembly systems. This combined policy is called as
Extended Kanban Control System. Extended kanban control is a two-parameter
(one set of parameters specifying the base-stock levels to provide buffer against
stockouts and another set for the number of kanban cards circulating used to limit
work-in-process) policy with the advantages of work-in-process (WIP) limitation over
the base-stock control and of immediate transfer of demands to all manufacturing
facilities over the kanban control. Chaouiya et al. [9] study and compare two variants
of this policy: each component of an assembily is released into the assembly facility
independently of the other components required for assembly or simultaneously with
the other components. Unlike [13] and [30], the work by Chaouiya et al. [9] is just to
introduce this new combined policy for assembly systems without any performance

evaluation using simulation or some analytical approximate techniques.

On the other hand, Sbiti et al. [30] approximate base-stock controlled two-
component assembly system’s steady-state performance measures like probability
of immediately satisfying demand, probability that demand is backordered, average
number of backordered demands, average WIP for each stage of the system,
average waiting time per demand, etc., and they compare these with simulation
results. They extend their approximation to systems assembling any number of
components and containing any number of operations in series after the assembly
operation. Their simple two-component assembly system is modeled as a queuing
network with three exponential single-server facilities. Two types of components are
manufactured at their dedicated facilities and then, are assembled at the assembly
facility. Each facility is succeeded by an output buffer where the processed
components or finished products are stocked. The output buffers initially contain
components and finished products at the levels which we call the respective base-
stock levels. The buffers are assumed to be of infinite capacity. There is always
available raw material input for the facilities manufacturing components. Arrival
process is Poisson from an infinite population and arrivals that cannot be satisfied
immediately upon arrival are backordered. Since the model by Sbiti et al. [30] is

exactly the same as the one studied in Chapter 3, next their approximation approach



is further detailed now. They decompose the system into two, one manufacturing
and storing the components to be simultaneously picked up and the other
assembling the components and storing the finished assemblies; solution of the
former (upstream) subsystem feeding the latter (downstream) subsystem. The
model of the former subsystem is truncated and solved for the steady-state
probability distribution using matrix-geometric approach. Then, summing up the
probabilities over four different regions corresponding to each possible state of the
downstream to identify different arrivals (different sequence of operations) at the
latter subsystem, another set of steady-state equations is solved using matrix-
geometric approach. In case there are some more workstations following assembly,
the system is decomposed into more than two subsystems. Due to the curse of
dimensionality, the case of more than two components is handled incorporating a
further independence assumption for different types of components in their
respective queues, which leads to treating each component manufacturing facility as
an M/ M / 1 station. The authors restrict their study to the calculation of the
performance measures and do not make any study for optimizing the base-stock
levels at the buffers (service level for the finished product) subject to some service

level (budget) constraint.

In addition to the classification of the queuing models involving fork-join
stations mentioned at the beginning of this chapter, one could think of a further
classification based on the type of arrival process (distribution of the inter-arrival
times and size of the requests per arrival, unit or batch arrivals, and size of the
calling source population) or on the server facilities (service distribution, single
server or a network, capacitated or uncapacitated) or on the buffer sizes. Regarding
these, two sets of studies on finite-capacity buffers ([1], [11], [12], [18]) and finite
calling source population (closed queueing models) ([8], [13], [16]) are reviewed

next.

Altiok’s work, [1] and a series of studies by Dallery, Liu and Towsley, [11],
[12] are on the analysis of fork-join queuing networks with finite-capacity buffers
under various operating mechanisms regulating blocking (before service, after
service) and loading (independent, simultaneous). Altiok, [1] makes an exact
analysis of simple asynchronous assembly systems assembling two components to

get a finished assembly and an approximate analysis (using the concept of two-



node decomposition) for both synchronous and more complex (more than two
components, network of assembly stations instead of single server facilities)
asynchronous systems. On the other hand, the primary focus of the authors in [11],
[12] is on investigating the behavior of the throughput of these networks through the
properties of reversibility, symmetry, monotonicity and concavity of the
corresponding queueing models. Applying the results of the studies on these
properties to various problems in the design and operation of manufacturing
systems, Dallery et al. [12] evaluate the performance measures of simple assembly
systems consisting of three servers (two for manufacturing components and one for
assembly operation) with finite buffer capacities, serial production systems with finite
buffer capacities and kanban controlled production lines. Dallery et al. [12] also
consider an optimization problem for achieving a given production capacity at a
minimal cost by determining the capacities of the buffers in assembly systems and
serial production systems and also for kanban controlled production systems by
determining the number of kanbans. The authors present some of their observations
on the relation between the number of kanbans and buffer capacities depending on
the costs of each, which are towards reducing the complexity of the optimization

search procedure drastically.

Hemechandra and Kumar [18] study on a fork-join queuing model to
investigate the steady-state behavior of open assembly systems. The model
consists of two manufacturing servers; each working on one task after an arriving
job is split into two, and an assembly server to join the separately processed
subassemblies. Servers are all single operating under first-come-first-served (FCFS)
discipline with exponential service times and job arrivals are Poisson. There are four
buffers in the system, two of them are before and two are after the parallel
manufacturing servers. Since these buffer sizes are all limited, an arriving demand is
lost if an input buffer is full and blocking specified as of after-processing-type could
occur. The authors numerically solve the steady-state equations to compute mean
throughput of the system, fraction of arrivals lost, utilization of the servers, etc. Then,
they consider the determination of buffer sizes enumerating all possible
configurations for maximizing fraction of customers served or minimizing the
average waiting time or minimizing the average number of jobs in the system

emphasizing the trade-off between these performance measures.



Fork join stations need to be analyzed within the context of closed queuing
networks when, for example, a fixed number of automated guided vehicles circulate
in the networks to feed the assembly operations (as in [27], [28]) or kanban control
mechanisms are employed in multi-stage manufacturing systems (as in [8], [13],
[16]) or resources are shared in parallel or distributed computer systems (as in [17]).
Hazra et al. consider multi-stage assembly systems operating under CONWIP
(Constant work-in-process) control which is a WIP limiting type of kanban control
mechanism, characterized by directed graphs (trees in particular) with one root node
(server), a set of two or more leaf nodes, a set of intermediary nodes (not
necessarily all of these intermediary ones being at the same level) and directed
edges representing the buffers that connect server. Service times of the machines
are exponentially distributed having at least one input buffer and, aside from the root
node, exactly one output buffer for each machine. Analysis of the authors is a new
heuristic version of the exact numerical aggregation-disaggregation procedure by
Takahashi [35] to solve continuous-time Markov chains with large state spaces,
making [16] the first work on extending the aggregation ideas to fork-join kanban
controlled queuing networks. The approximation by Hazra et al. [16] has the novel
feature of doing simultaneous multiple partitions of the state space in such a way
that these partitions generate mutually consistent estimates of the aggregate
transition rates. This consistency leads to a fixed-point problem, which itself is
solved by iteration. Good (fast and accurate) approximations of the throughput (with
an error of 5% or less in all case, errors not affected by the number of kanbans) and
of the expected local buffer occupancy (with an error of 30% or better and of roughly
one job in absolute value, errors greater for upstream stages than for downstream
stages and not necessarily correlated with the number of kanbans) are obtained for
any given topology and number of kanbans. It is numerically observed that increase
in the number of kanbans result in a concave increase in the system throughput,
which could be compared to almost concave behavior of the fill rate as a function of
the base-stock levels in all numerical experiments performed for this thesis and
presented in section 3.4 and to the similar analytical results by Dallery et al. in [11]
and [12].

Di Mascolo and Dallery [13] study kanban controlled assembly systems
under two different release mechanisms (simultaneous and independent release of

kanbans attached to components when assembly occurs) as in Chaouiya et al. [9].



Due to the implementation nature of a kanban type control, any production system
must be decomposed into several stages (subsystems), each with a manufacturing
process and an output buffer for the parts processed at that stage to be stocked.
Each stage is associated with a fixed number of kanbans. The authors allow the
manufacturing process at any stage to consist of a set of identical machines or a
more complex system like a manufacturing flow line and the service time distribution
of each server and the arrival process of external demands being general and
approximated by phase-type (a mixture of exponential) distributions in the study.
The steady-state performance measures they consider to use for resolving the
design issue on the determination of the number of kanbans are the average WIP
and the average number of finished parts at each stage, the proportion of
backordered demands, the average number of backordered demands and the
average waiting time of a backordered demand. As for the approximation of these
performance measures, Di Mascolo and Dallery [13] extend the analytical method
based on the product-form approximation in [6] developed for serial configurations to
assembly systems. This method results from viewing the system as a multi-class
closed queuing network, each type of kanban representing one class of customers.
The idea is to set the load-dependent service rates of the associated stations in the
equivalent single-class networks and to come up with the arrival rates as the
functions of the service rates using an iterative procedure. The numerical results the
authors refer to in [13] for justifying the approximation in terms of accuracy and
rapidity as compared to simulation are for service times assumed to be distributed

according to coxian 2 distribution.

A line of research by [7], [15], [19], [24], [31], [32] is on Poisson arrivals.
There is exact analysis of the cases with not only exponential but also coxian
interarrival times in [32] to derive expressions for throughput and mean queue
lengths. Analysis of general arrival processes are mostly under the assumption of
infinite calling source population as in [33], [34]. In order to develop two-moment
approximations for throughput and mean queue lengths at the input buffers when
the arrival process is general from a finite population, Krishnamurty et al. [21], [22]
work with the assumption that arrival process is a renewal process. As for the use of
their approximation in decomposing larger closed queuing networks with fork-join
stations, based on their simulation experiments the authors point out the importance

of determining variability of the departure process (coefficient of variation of inter-



departure times) from the fork-join stations and of the impact of correlations between

successive inter-departure times on different performance measures.

Another research stream which to a certain extent could be related to the
work in this thesis (especially in Section 4.2) is worth mentioning: commonality and
postponement of product differentiation issues in assembly systems drawing great
attention during the last few decades with the requirement arising to manage
increasing product variety in supply chain excellence. For a neat overview of the
literature on these issues’ different aspects and impacts on the system performance,
the reader is referred to Ma et al. [25]. Related with these issues, [20] is summarized
next, pointing out also the difference of the approach taken compared to ours,
namely working with estimated lead times unlike the way we proceed to handle lead
times implicitly. De Kok and Visschers [20] work on the assembly systems with
multiple finished products and component commonality and propose an algorithm to
decompose these systems into purely divergent multi-echelon systems with the
inspiration from [29] and [36] where it is shown that a pure assembly system, each
stage supplying at most one (assembly) stage, is equivalent to a serial multi-echelon
system. Since it is possible to calculate near-optimal order-up-to-levels (to minimize
the total inventory handling cost) subject to some service-level constraint (fill rate or
stockout probability) for the decomposed divergent multi-echelon systems, the
authors proceed with these order-up-to-levels in the original assembly system.
Throughout their study on the decomposition algorithm, they formulate a constraint
imposing any assembly system under this constraint to decompose into a series
system only. For their further analysis, de Kok and Visschers concentrate on
systems satisfying this constraint. Different from the model studied in this thesis, in
[20] there may be subassemblies in addition to components and finished products
and periodic review policy is used for the stock points and the lead times of the
component and (sub)assembly processes are assumed constant (planned lead
times). It is further assumed that these lead times are multiples of the review period.
The random demand variables of the finished products are identically and
independently distributed (i.i.d.) for all of the time periods. Component commonality
is allowed under the restriction that the two subassemblies that have a common
component can not be used in the same finished product because that would result
in two different cumulative lead times for the same component with respect to the

same finished product. The key point in the study is the allocation of the common



components to sets of subassemblies and finished products, which reveals why [20]
is reviewed under the heading of commonality an product differentiation. Alternative
allocation policies such as series system allocation (pre-allocation), fixed order
allocation, random order allocation and combination of series system allocation and
random order allocation are evaluated simulating the systems. As compared to the
series system allocation, others which allocate common components as late as

possible perform worse in terms of both costs and service level.

For a further study along the research direction in this thesis to use the basic
building block (the simplest assembly system investigated in this thesis) within any
joint collection of many other types of subsystems, it is inevitable to cite [14]. Ettl et
al. [14] study base-stock controlled supply network of which structure is identified by
BOM under consideration. In [14], a supply network is modeled as a collection of
sites producing components, subassemblies or finished products. A single-level
BOM is associated with each site and with each product produced at this site,
containing the components and/or subassemblies making up a unit of the product.
For the components, subassemblies and finished products that appear on the
single-level BOMs of a site, there exist corresponding stock points at the site to hold
inventories of all these items. In general, sites have input and output stores that
keep one type of stock keeping unit (sku) and modeled as infinite-server queues,
i.e., M/ G/, where batch arrivals of size X are allowed. Ettl et al. [14] work with
an approximate analysis of lead times at each store and the associated normal
distribution approximation for the demand over lead times. Approximate
characterization of the lead time at a store is based on the assumptions that the
stockout events at the supply stores of the one under consideration are independent
and simultaneous stockout events at the stores are ignored. As an extension, they
study the case of non-stationary demands adopting a rolling-horizon point of view.
As for the optimization of the base-stock levels, the conjugate gradient routine they
propose is to minimize the overall inventory capital for both the expected on-hand
inventory (finished products) at the stores and work-in process inventory, applying
cost coefficients as a function of the inventory capital per sku at different stores for
on-hand (finished) products and the usage counts implied by the BOM to make up
the finished products at different levels of BOM, and to guarantee the customer
service requirements. The underlying difference between the approach taken by Ettl

et al. [14] and the one in this thesis is that the former is based on the detailed lead

10



time analysis unlike the latter. The uncapacitated model by Ettl et al. [14] allows any
product structure to be specified by single-level BOM for each site whereas the
product structure in the capacitated model we propose is quite specific. The
optimization technique being a standard in nonlinear optimization requires the
derivation of the gradients in explicit forms as opposed to the immediate usefulness

of the greedy heuristic employed in this thesis.
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CHAPTER 3

3. TWO-COMPONENT ASSEMBLY SYSTEMS

In this chapter, a simplified base-stock controlled assembly system is studied
considering the manufacturing and assembly facilities as single (exponential)
servers. Such a system with two components making up an assembly is depicted in
Figure 3.1. Two semi-finished products called components 1 and 2 manufactured by
the corresponding manufacturing servers are assembled to come up with a finished
product (assembly). It is assumed there is no shortage of the raw materials 1 and 2
feeding the manufacturing servers. Upon completion of the process of an item, it is

put in the associated stock point controlled by continuous-review base-stock policies

with base-stock level S, for component i, i=1, 2, and §, for the finished

assemblies. The principle of base-stock policy is to keep the inventory position (total

net inventory and amount on-order) at the target stock level specified as base-stock

level.
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Figure 3.1 Two-Component Assembly System
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A queuing model is presented for the two-component assembly systems a
sketch of which is given above. A partial aggregation and a further slight
modification of the queuing model lead to an approximate model that can be
completely investigated to obtain the (closed-form) steady-state distribution which is
of near-product-form. The numerical experiments show that the approximation is
quite good in terms of the key performance measures and performance of the

approximation does not deteriorate as the number of components increases.

The assembly system with two components is a building block to
approximate the systems with more than two components in a recursive manner

based on the approximations of the systems with lower number of components.

For the purpose of approximating the steady-state behavior of the assembly
systems characterized above, the approach for two-echelon systems in Avsar and
Zijm [2] and for two-indenture systems in Avsar and Zijm [38] is extended. To put it
shortly, this approach is approximating a partially aggregated, but exact, queuing
model which in our case is equivalent to an alternative model introduced in the next
subsection. Unlike the references [2] and [38] listed above with just one aggregation
step, for the two-component assembly system there are two aggregation steps, one
corresponding to each of the components picked up sequentially. Approximation is
analogous to the ones in these references where there is only one set of transition
rates assumed constant, in this study there are three sets of such transition rates

treated as constant rates.

3.1 Modeling

A queuing model for the assembly system with two components is given in
Figure 3.2. While introducing notation for the parameters and the variables in Figure
3.2 formally, mechanics of the system (model) are explained next. When demand for
an assembly arrives according to a Poisson process with rate A1, the demand
request is transmitted to all stock points instantaneously due to the employment of

continuous-review base-stock policies. Then, the following occurs:

13



An assembly in stock, if there is any, i.e., m >0, is withdrawn merging it
with the request generated by the demand arrival. If there is not any

assembly in stock, i.e., m =0, the request is backordered, maybe in
addition to the ones that are already backordered denoted by k.

A component from each corresponding stock point is picked up, if there are
both of the components, i.e., n, >0 for every component i =1, 2, merging
them with the request generated by the demand being considered. All
those merged are sent to the assembly server with exponential rate 1,, m

denoting the number of merged entities waiting for or being processed at
the assembly server. If at least one of the component stock points is

empty, the request is backordered increasing the value of k£ by one.

Manufacturing one of both components is started instantaneously, i.e., n,
and n,, the number of components to be processed by the manufacturing

servers with exponential rates x, and u, for components 1 and 2,

respectively, increased by one to replenish the stock to be withdrawn with

the requests just generated by the demand arrival.

S2
S0 5,
n, I ) =il
S, m m -
i @)=l {11
n n, k
1 1 ’_' 0 i
ST
> k

Figure 3.2 Model for the Assembly System with Two Components
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The system is analyzed for given parameters A, u,, u,, u, such that
A<y, i=0,1,2,and §,, S,, S, except the optimization section 3.5 where base-
stock levels §,, S,, S, are optimized. The other entire notation, i.e., n;, n,, m, n,,

n,, m, that appears in Figure 3.2 is to represent some specific values of the

random variables to be denoted by the corresponding capital letters.

The following below are the equations implied by the use of base-stock

control policies and the synchronization to coordinate materials:

n+n =8 +k, (3.1)
n,+n =S, +k, (3.2)
m+m+k=8,+kg, (3.3)

n - n,-k=0and m- k, =0.

More precisely, equations above with nonnegative random variables N, , ]Vl i=1,

2and K,K,, M, M, imply that

If n,<S, and n,<S,,thenn, =S8, -n,n,=5,-n, and k=0;

If n, >S, and n,<S,,thenn, =0, n, =S, —n, and k=n, - S,;

If n,<S, and n, >S,,thenn, =8, -n,, n, =0 and k=n, - §,;

If n, >S, and n, >S,,then 7, =0, 7, =0 and k =max{n, —S,,n, =S, };
fm+k<S,,thenm=S,—(m+k) and k, =0;

If m+k>S,,then m=0and k, =(m+k)-S,.

From these relations, it immediately follows that (»,,n,,m) is adequate to

completely determine state of the system. Thus this base-stock assembly system

can be modeled as a continuous time Markov chain with state description
(n,,n,,m). The corresponding transition diagram is given in Figure 3.4 where plus

signs in parentheses beside transition rates denote an increment of m but the

decreases in m are not shown not to complicate the figure with the inclusion of the
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third dimension for m. Pr(N, =n,,N, =n,,M =m) is the steady-state probability

of being in state (n,,n,,m ), to be denoted by P,

m TOr simplicity of the notation.

A similar model is given in Figure 3.3 as an alternative to the one in Figure
3.2. As it is clarified in the next subsection, alternative model is appropriate to
employ the type of approximation proposed by Avsar and Zijm in [2] and [38]
although the original model is not. The difference between the original and the

alternative models are questioned below.

Figure 3.3 Alternative Model for the Assembly System with Two Components

In the original model, a request is sent to the assembly stage only when both
of the two components are available. Alternative model, on the other hand, is to pick
up the components to be sent to the assembly stage sequentially. Only after the first
component becomes available, the request merged with this component proceeds to
pick up the second component. So, random variable K in the original model does

not appear in the alternative one but instead random variables K, and K, appear

to denote the backordered requests for both components and for just component 2
after being merged with an available component 1, respectively. Since a request
cannot be sent to the assembly stage without picking up one of each component,
mechanics of the two models are the same regardless of the sequence the

components are picked up. As a matter of fact, the transition diagrams of both the

16



original model in Figure 3.2 and the alternative model in Figure 3.3 are as given in

Figure 3.4 for the state description (n,,n,,m).

n, s,
4 A
/1 /1 ll’ll
H Y7 n,=S8,+(mn -S))
1 1, (+) 2 2 1 1
£ (+) 1 (+) L (e A
el :
Hs
A Ao A
M ¢ l/' 7% lﬁ o w7 n, =35,
Hs My £
A
A(+) A
H, ﬁ ﬂuT ﬂl%
Hy Hy #a
> n,

Figure 3.4 Transition Diagram of the Assembly Model for State Description (n,,n,,m)

Then, due to the use of base-stock policies the equations below are

satisfied.

n o+ n =38 +k, (3.4)
ny + =8, + ki +k, (3.5)
m+m ok tk, =S, +k, (3.6)

n, -k, =0 fori=1,2and m- k;, =0.

One could read equation (3.5) as the use of the base-stock level §, + k, for
component 2, which is dependent on the value of r.v. K,, and also one can argue
the validity of k, + k, = k. As already noted, the state of the alternative system can

also be determined by (n,,n,,m ), but this time, according to the following relations:
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If n, <S, and n, <S,+k ,thenn, =S, -n,,n,=5,-n,and k, =0, k, =0;

If n,>S, and n,<S,+k ,thenn =0, n,=S,+k —n,and k, =n, -S,, k, =0;
If n,<S§, and n,>S,+k ,thenn =S, —-n,n,=0and k, =0, k, =n,—(S, +k);
If n,>S, and n,>S,+k ,thenn =0, n,=0and k, =n, -S|, k, =n,—(S,+k));
fm+k +k,<S,,thenm=S,-(m+k, +k,)and k, =0;

fm+k +k,>S,,then m=0and ky=(m+k, +k,)-S,.

The fact that the original and the alternative models are equivalent for any

sequence to pick up the components is easily observed in Figure 3.4 rewriting line
n,=8,+(mn,-8,) (or n,=S,+k) as n =8 +(n,-S,) (or n,=8§, +k,) for
state description (n,,n,,m), and then noting the interchange of the roles of the

transitions with rates y, and y, .

Lemma 3.1: The original and the alternative assembly models with two components
are equivalent for state description (n,,n,,m), independent of the sequence the

components are picked up in the alternative model.

Proof: Balance equations below being the same for any m for both the original and
the alternative model in Figure 3.3 with state description (n,,n,,m) immediately

lead to the equivalence of these two models.

1) n <8§,, n,<8,

(ﬂ’ + /Ull{nl >0} + ﬂzl{n2>0} + /I'l]{m>0} )I)n]nzm

= ﬂ’l{nl >O}I{n2 >0}I{m>0}Pnl—l,n2 -1,m-1 + ﬂlljnlﬂ,nzm + ILIZPnl y+lm + :Lanlnz,m-H
2)n <S8, n,=8,

(ﬁ“ + ﬂll{nl>0} + ﬂZI{n2>O} + :Ll[{m>0} )Pnlnzm

- ﬂ{w11>0}1{n2 >O}I{m>0}Pn1—l,nz -1,m-1 + ILIIPnlJrl,nzm + luZI{m>0}Pnl,nz +1,m~1 + Iupnlnz ,m+1

18



3)n, =8, n,<8§,

(ﬂ’ + /ull{n1>0} + lu21{nz>0} + IUI{m>O} )})nlnzm

= ﬂ{nl>0}I{nz>0}I{m>0}Pnl—1,nz—l,m—1 + lull{m>0}f)nl+l,n2,m—l + /qu)nl My +lm + ﬂf)nlnz,mﬂ
4) n,=S§,, n, =S,

(ﬁ“ + ﬂll{nl>0} + ﬂZI{n2>0} + lul{m>0} )Pnlnzm

= /’i’l{nl>0}]{nz >0}]{m>0}Pn|—l,n2 —1,m-1 + lull{m>0}Pn|+1,n2,m—l + ﬂ21{m>0}Pn| My +1,m—1 + lupnlnz ,m+1
5) my >S8;, n,=8,+(n—-5S))

(/1+/'ll +/u2 +lu[{m>0})Pnln2m

= /IPnl—l,nz—l,m + lull{m>0}f)nl+l,nz,m—l + luzl{m>0}R1l My +l,m—1 + ILanlnz,erl
6) n, <S,, n,>S,

( At w1y, o + 1y + il ) )‘D nynym

= /11{”1 >0}PI11 —1,n,~1,m + /’lIPnlJrl,nzm + ILIZI{m>0}R11 My +l,m—1 + /l[)nlnz ,m+1

7)n, =S, n,>8S,
(/1 + ﬂll{nl >O}> + ﬂZ + lLlI{m>0} )Pnlnzm

= /11{”1>0}P”1 —1,n,—1,m + /’lIPnlJrl,nzm + ILIZI{m>O}PnI iy +1,m—1 + /l[)nlnz ,m+1
8) n, >S,, n,>S,+(n -85,

(/1 + lul + lu2 + ﬂl{m>0} )f)nlnzm = A‘Rq—l,nz—l,m + /’lIPnlJrl,nzm + luzl{m>0}R1l Ny +1,m—1 + luf)nlnz ,m+1
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9) n, >S,, n,<S,+(n-S5))

(ﬂ’ + H + IUZI{n2>O} + IUI{m>0})Pn]nzm

= ﬂ{nz >O}F)nl—l,nz—l,m + lull{m>0}f)nl+l,nz,m—l + lu2R1l My +lm + Iupnlnz ,m+1

As for the independence of the equivalence from the sequence the
components are picked up in the alternative model, it will be shown that the
alternative model in Figure 3.3 is equivalent to the alternative model where

component 2 is picked up first. Keeping the balance equations in cases 1, 4 and 5

(noting the representation of case 5 as n, >S5,, n, =8§,+(n,—S,)) as they are,

noticing the changes in the roles of n, (x,) and n, (u,)in the balance equations of

cases 2 and 3, and considering cases 6, 7, 8 altogether as n, >S§,,

n, <S8, +(n,—S§,) to be compared to case 9, it is obvious that the balance equations

above are also the balance equations of the alternative model picking up component
2 first. i

In spite of proving equivalence of the original and the alternative models for

the state description (#n,,n,,m ), one would recognize that n, and k in the original

model correspond to n, +k, and k, + k, in the alternative model in Figure 3.3. This
is because, unlike the original model, in the alternative model in Figure 3.3
component 1 is picked up immediately when there is a request for it even if there is
not any available component 2 in stock. That is, in the alternative model in Figure
3.3 n, <S8, but not in the original model. Requests merged with available
components of type 1 are taken into account in the secondary backorder queue the
size of which is denoted by k,. The only difference between the original and the
alternative model in Figure 3.3 is that component 1 is stored both in buffer stock (not
merged with a request) and second backorder queue (merged with a request)
before merging with component 2 to be next sent to the assembly facility. But this
difference does not change mechanics of the system since a request needs to be
merged with both component 1 and 2 to be assembled at the assembly facility in

both models.
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3.2 Aggregation of the model

We pursue an aggregation to change the parameters of the state description
from (n,,n,,m) to (k,,k,,m). Consider the transition diagram of the alternative
model shaded in Figure 3.5 for the first aggregation step. The part of the state space

shaded is aggregated because states with 0 <n, < S, are precisely those with no
backlogged entity for component 1, i.e., with k, =0, while any &, >0 corresponds
to the set of states with n, =(S, + k,). Therefore, the description of the system
through the state vector (k,,n,,m ) is the result of a natural aggregation. Denote the

steady-state probabilities of the new description by 13kl used for

nym

Pr(K, =k,,N, =n,,M =m). Then, for any (n,,m)

= (3.7)
k, > 0.

kynym

S, +ky,nym

The transition diagram for state description (k,,n,,m ) is given in Figure 3.6 where
introduction of the conditional steady-state probabilites ¢(n,,m) that appear to

adjust the transition rates for k£, =0 is due to the aggregation. g(n,,m) represents

the steady-state probability that an arriving request at backorder queue for

component 1 has to wait, given that it finds no other waiting requests in front of it

and N, =n,, M =m,i.e.,

q(n,,m)=Pr(N,=S,,N, =n,,M =m|K, =0,N, =n,,M =m)

Synym

= Smm (3.8)

SI
: : 1)7111’12171

=0

Note that 5 in Figure 3.6 denotes (7 - ¢).
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> n,
S

Figure 3.5 Transition Diagram of the Assembly Model with State Description (n,,n,,m )

Lemma 3.2: The model with state description (k,,n,,m) is an aggregate

formulation of the one with state description (n,,n,,m).

Proof: The steady-state balance equations for nine cases, a, b, .., i, of Figure 3.6

are obtained from cases 1, 2, .., 9 of Figure 3.5 in the proof of Lemma 3.1.

a) k, =0, n,<S, +k, Cases 1and 3

S1

(}b + /le{n2>o} + /Jl{m>0} )ﬁ:)nzm + /Jll{s1>0} z [)nlnzm

n =1

>

S1

A

0ny,m—1 - a
= Zl{nz >0}I{m>0} z [)"1 —1,n,-1,m-1 * + /’lll{sl >O} ZPnlnzm + /’lll{m>0}f)1n2,m—1 + lLlZPOn2+1,m +

n; =0 0

>

ny,m—1 m=l

N
lu})()nz ,m+l1
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The second terms on both sides of the equation cancel out and the first term on the

A

right hand side of the equation is rewritten as Aly, .,/ {m>0}g(nz—l,m—l)POnz,m%'

b) k, =0, n, =S, +k, Cases 2 and 4

1

(/1 + 11y, oy + M0 JF ) Onym /ull{sl>0}zf)nlnzm

=1

= /1]{712>0} {m>0}q(n2 1,m— I)POnz m—1 +IL11 5 >0 z nnym + ﬂll{m>0}131nz,m—l

n =1

A

+ 1u21{m>0}f)0,nz+1,m—1 + luR)nz,mH

The second terms on both sides of the equation cancel out, and the first term on the

right hand side comes up as in case (a).

c) k,=0, n, >S§, +k Cases 6 and 7

51

(ﬂ’ T+ ,U] {m>0} ) On m +lu11{s >0}zpnlnzm

n =1

= iq(nz—l,m)f)(),nz—l,m lul 51>0 Z nnym lLll 1nym + IUZI{m>O}PO,n2+1,m—l+ IUI)OnZ,erl

Cancellations and the explanation for the 5 term are as in cases (a) and (b).

d) k, =1, n, <S, +k Case 9

A

(ﬁ’+:u1 + 1 {1y >0} +,“[m>o ) 1nym

A

_ 0,n,=1,m N
/1]{712>0} ny=sy,ny—l,m * + ﬂll{m>0}P2n2,m 1 ﬂZ Liny+1,m lLd)lnz m+1

0,n,—1,m

| 2o

The first term on the right hand side of the equation is rewritten as follows:
/1]{/12 >0}Q(n2—1,m)P0,n271,m :

e) k=1 n, =8, +k Case 5
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(ﬂv"‘ﬂl +/U2+ﬂ]m>o ) Lnym

A

= //iqA(nz—l,m)R),nzfl,m + /’lll{m>0}P2n2,rn4 + /’lZI{m>0} Ln,+1,m-1 luplnz m+1
where the first term on the right hand side comes up as in case (d).

f) k, =1, n, >SS, +k Case 8

A

(/I+ﬂl+’tl2+‘td<m>0> 1nym

A A

= M(nz—l,m)PO,llz—l,ﬂl + lLlIPanm + IUZI{m>0}])1,n2+1,m—l + lu])lnz,m-H
where the derivation is as in cases (d) and (e).

g) k, >1, n, <S, +k Case 9

A

(/14',”1 +,L12 {n,>0} +ﬂlm>o ) kynym

/\ A

= ﬂ’l{nz >O} ky=l,ny=1,m lull{m>0}1)kl+1,nz,m 1 IUZ kyny+1,m lu})klnz m+1

h) k, >1, n, =S, +k Case 5

(’14'#1 + U, +ﬂ1m>o ) kynym

= ﬂj)kl—l,nz—l,m + lull{m>0}1)kl+l,n2,m—l + IUZI{m>0}Pk1,n2+1,m—l + lLl])klnz,m-H

i)k, >1, n,>S, +k, Case 8

(ﬂ’ + H + Hy + lu[{m>0} )Iaklnzm

A A A

ﬂl])kl—l,nz—],m + lulljkﬁ—l,nzm + IUZI{m>0}Pk1,nZ+1,m—1+ lu})klnz,m-u

The second natural aggregation is over the part of the state space shaded in

Figure 3.6 since the states with 0<n, <S§, + %, are exactly the ones with no

backlogged entity at the backorder queue for component 2, i.e., with k£, =0, while

any k, >0 represents the set of states with n, =(S, +k, +k,). This further

aggregation, then results in the change of the state description from (k,,n,,m) to

24



(k,,k,,m). Denote the steady-state probabilities of the new description by }N’klkzm

used for Pr(K, =k,,K, =k,,M =m). Then, for any m

P = (3.9)

ky,Sy+ky,m

”“-f S, +k,

Aq4(ny,m)
Agrregation
Ho () over 71,
24(S,.m) /
Hy
Aq(ny, m)(+)
Hy
> kl

Figure 3.6 Transition Diagram of the Aggregate Model with State Description (k,,n,,m )

The transition diagram for the aggregated model turns out to be as in Figure

3.7 and 3.8 where three sets of conditional probabilities, called as ¢, ¢', ¢',
appear this time. Note that ¢, ¢', ¢'' denote complementary cumulatives of ¢, ¢',
q'', respectively. q(k,,m) is the steady-state probability that an arriving request at

backorder queue for component 1 has to wait, given that it finds no other waiting

requests in front of itwhenK, =k,, M =m , i.e.,

25



S
q(0,m)= Y G(ny,,m)Pr(K, =0,N, =n,,M =m|K, =0,N, <8, +K,,M =m)

n,=0

= Zq(nz,m) For for k=0, (3.10)

n,=0
z f)()nzm
n,=0

q(k,,m)=q(S, +k,,m) for k,>0. (3.11)

q'(k,,m) is the steady-state probability that an arriving request at backorder queue
for component 2 has to wait, given that it finds no other waiting requests in front of it

whenK, =k, M =m,i.e.,

q'(k,m)=Pr(K, =k ,N,=8,+K,,M =mK, =k ,N, <S,+K,,M =m)

S2 +ki,m

A
P
Z

for &, >0. (3.12)

’ﬁ>

Finally, ¢''(m) is the steady-state probability that an arriving request at backorder

queue for component 1 is merged with an available component at the buffer stock
but this merged entity that passes to backorder queue for component 2 has to wait,

given that it finds no other waiting requests in front of it when M =m , i.e.,

Pr(N, <S,,N, =8,,M =m)

" m) =
) = (K = 0.K, = 0.M = m)
_ B
= G (55,m) 5
zf)()nzm
n,=0

A

P
=4'(0.m) = §(s,,m) 5" (3.13)

Z POnzm

ny
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Note that

q(0,m)=Pr(N,=S,,K, =k,,M =m|N, <S,,N, =k,,M =m), (3.14)

i.e.,

S)

Z Pslnzm

0 k, =0,

S, S

z z P”l”zm

n,=0n;=0
q(k,,m) =

P
8,8, +ky,m
S, >0,

Z PnlaS2+k2 N

n; =0

and

q'(k,,m)=Pr(K, =k,,N, =S, +K,M =m|K, =k;,N, <S, +K,,M =m), (3.15)

i.e.,
Sl

z R11S2m

SR k, =0,

S S

Z anlnzm

n;=0n,=0
q'(ky,m) =

P,
Sy +ky,S,+ki,m
S, +k; kl . O’

Sy +ky,ny,m
ny=0

and

q'"'"(m)=Pr(N,<S,,N,=8,,M =mK, =0,K, =0,M =m) (3.16)
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Lemma 3.3: The model with the state description (k,,k,,m) is an aggregate

formulation of the one with state description (k,,n,,m).

Proof: The steady-state balance equations for state description (%, k,,m ) of Figure

3.7 are obtained from cases a, b, .., i of Figure 3.6 in the proof of Lemma 3.2.

k,>1, k,=0 Cases gand h
S, +k R S, +k R
z (2’ + H +’Ll[{m>0} )F)k1 nym + z ’uzl{"z>0}Pkl nym
n,=0 ny=0

Sythy Sythy
= /11{112>0} z Bcl—l,nz—l,m + lull{m>0} z Pk]+l,n2,m—1
n,=0 n,=0

Syth-1 . Syth
+ U, z Pkl,n2+l,m +lu2l{m>O}Pkl,52+kl+l,m—1+ H z Pk]nz,erl
ny=0 ny=0

The second term on the left hand side of the equation and the third term on the right

hand side cancel out. Then, rewriting the remaining terms as

Sy +k+1 R
ky+1,ny ,m—1 P
= = 1,20 ke +1,S, e m-1 |
(}L Tt ILlI{m>0} )I)kl()m = /IPkl—l,Om + lull{m>0}( B - B ) Pk1+1,0,m—l
ky+1,0,m-1 ky+1,0,m-1

~

+ /’lzl{m>0}Pk]1,m—1 + IUPkIO,mH >
the second term on the right hand side becomes
/ull{m>0} (1 - q'(kl + 1’ m— 1))Pk] +1,0,m-1"

k=1, k,=0 Casesdand e
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S, +k S, +k;

z (/1 + H + IUI{m>0})Isln2m + z ﬂZI{n2>0}ﬁln2m

n,=0 n,=0

S,+k, S, +k Sytk -1

(nz _l’m)f)(),nz—l,m + /’lll{m>0} z f)an,mfl + /'12 Z f)l,n2+1,m

n,=1 n,=0 ny=0

I
N
%

S, +k

+ ﬂzl{m>o}P2,s2+2,m—1 +u Z Plnz,m+1

n,=0

The second term on the left hand side of the equation and the third term on the right

hand side cancel out. Rewriting the equation as

>

~ s P, B,
(ﬂ' + lul + /Ll]{m>0})Pl,()m =/1(Z o * = )P(),Om

l

ny=1+% n <S8, ,nym 00m
$)+2
zfznz,m—l D
10 2,542,m-1\ 3 D >
+ il 5 ) Bomat ol Bt o
2,0,m-1 2,0,m-1

the first and the second terms on the right hand side turn out to be Ag(0, m)INJOOm and

g0 (1=¢'(2,m - )Py, respectively.

k, =0, k,=0 Caseaandb
Sy n S, n Sy _ n
z (/1 + ll'll{m>0} )I)Onzm + ZIL!ZI{}'!Z >0}P0n2m = /I]{nz >0}I{m>0} Z Q(nZ - 1’ m)PO,nZ—l,m—l
n,=0 n,=0 n,=0

Sy . Sy-1 R Sy
+ /ull{m>0} Zf)lnz,m—l + ILIZ ZPO,anrl,m + ILIZI{m>O}f)O,SZ+1,m—1 + /’IZPOnZ ,m+1

n,=0 n,=0 n,=0

The second term on the left hand side and the third term on the right cancel out.

Rewriting the terms as

~

(’1 + :L‘I{m>0} )IN)O,Om = ﬁ“[{m>0} B o1

S, P D s D D
(3 et Thsuly (S G m— 1) L g5, -1yt
=0 £70,0,m-1 PO,O,m—l ny=0 0,0,m—1 0,0,m—1
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S,+1

Z R”z sm—=1 D

0 1,8y 42,m-1 \ 53 ~ ~
I, (2 -—=——)P +u,l, P + uP,
t ) B B 1,0,m-1 + Hod {0 0,1,m-1 T HE 00,41,
1,0,m~1 1,0,m-1

the equation takes the following form:

A

~ P ~
(ﬂ“ +:ul{m>0})P0,0m = ﬂ’l{m>0} ((1-q(0,m -1 )'(q'(O,m -- ‘}(Sz,m - I)M))Po,o,m_l

0,0,m-1
+ 0 g (=g (Lm = D), o+ o oy P+ 4B

where the first term on the right hand side of the equation is
Ay (A= g(O,m=1) =g" (m~1)Ey ..

k, =0, k,=1 Special case of ¢

A

(ﬂ +u, + /u[{m>0})POSzm = ﬂa(sz,m)Poszm + ,U1P1,sz+1,m + ;Uzl{m>0}P0,sz+2,m4 + IUPO,S2+1,m+1

A

~ P Py, ~ P -
_ S\S,m 0S,m 1,8, +1,m
(’1 A, + ﬂl{m>o})Po,1m = A =) B ot P P,
n <S),8,m P(),Om 1,0m

+ /u2 1{m>0}P0,2,m71 + /’lPO,l,erl

where the first and the second terms on the right side are ﬂq"(m)f’o,()m and

qu'(l,m)ﬁmm, respectively.

O
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A
q(k,,m)A 4 H
> q(k,,m)A A
A\ 4
245 () 1 (+)
qu(m)ﬂ, A q'(klam)/ul
Lg(0.m)2 AN ‘

_ k,
q'(k,,m)u,(+)

Figure 3.7 Transition Diagram of the Aggregate Model with State Description (k,,k, ,m )

Ak

" ]
9" ()4 (1-g(0,)) - ¢" (1A
q(0,2)4

(1-4(0,2) -¢"(2)4

Figure 3.8 A Part of the Transition Diagram of the
Aggregate Model with State Description (k,,k,,m)
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It is also possible to consider the aggregation of (n,,n,,m)to come up with

the formulation of (k,,k,,m) at one shot. The corresponding proof is given in

Appendix A.

Now, we consider the special case §, =0. Since there is no stock for
component 1 in this case, arriving requests are always backordered and the number

of items being processed at manufacturing server 1 (n,) is always equal to number
of requests backordered (k,). Then, the state descriptions (n,,n,,m) and
(k,,n,,m) are equivalent and the transition diagrams of the aggregate models with

state descriptions (k,,n,,m) and (k,,k,,m) become as in Figure 3.9 and Figure

3.10, respectively.

Hy S ,th

Ly ()

i

Figure 3.9 Transition Diagram of the Aggregate Model
with State Description (k,,n,,m) when §, =0

Note that there is nothing modified (approximated) while developing the
aggregate model. This is formally pointed out with the following remark. To justify

the correctness of the remark, one should refer to Lemma 3.1.
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Remark 3.1: The aggregate model is exact (equivalent to the original model)

regardless of the sequence the components are picked up. i
k2
A
Hy
— > A A
y 4y (1)
2 ,uz(+)
q'(ky,m)u,
. N, -
A q'(ky,myp, A l

Figure 3.10 Transition Diagram of the Aggregate Model
with State Description (k,,k,,m) when §, =0

3.3 Approximation of the aggregate model

The difficulty in solving balance equations of the aggregate model with state
description (k,,k,,m) to find the steady-state probability distribution is due to the
dependence of ¢q(k,,m) on k, and m, and of ¢'(k,,m) on k, and m, and of
q''(m) on m. Basically, the approximation discussed below comes down to
ignoring this dependence and working with some constant ¢, ¢' and ¢'' values.
Throughout this study, the aggregate model modified to include any constant ¢, ¢'

and ¢'' values (not necessarily the ones given by Lemma 3.4) is called as the

approximate model.

33



The constant ¢, ¢' and ¢'' values considered in this study are the expected
values of gq(k,,m), ¢q'(k,,m) and ¢q''(m), respectively. According to this
specification, formulas for ¢, ¢' and ¢'' given in Lemma 3.4 are derived in

Appendix B.

Lemma 3.4: The expected values of the q(k,,m), q'(k,,m) and q''(m) are

Pr(N, =S

g=2rN =5 (3.17)
Pr(N,<S))
Pr(N, = K

q'= r(N, =5, + 1), (3.18)
Pr(N, <S8, +K))

and

w_Pr(N, <S,,N, =S,) (3.19)

Pr(K, =0,K, =0)

respectively.

"

q'"' in Lemma 3.4 is approximated by ¢ -g' rearranging the terms as seen

below.

_Pr(N, <S§,,N, =5,)
Pr(K, =0,K, =0)

"

_ Pr(v, <Sl).P’"(N2 :Sz|N1 <S§))
Pr(K, =0) Pr(K,=0K, =0)

_ Pr(N, <S,) Pr(N, = SN, <8))
Pr(N,<S8,) Pr(N,<S,|N, <8))
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where in the last equation the first ratio is ¢ and the second ratio is approximated

by ¢q'.
Next, exactness of the approximate model with the ¢, ¢' and ¢'' values

specified by Lemma 3.4 is observed for some extreme values of the base-stock
levels. Exactness above means equivalence of the approximate model to the
aggregate model which is equivalent to the original one as already noted in Remark
3.1.

Lemma 3.5: The approximate model with g, q' and ¢'' given in Lemma 3.4 is exact

for (S,,S,) being (0,00), (,0), (0, ).

Proof: Recalling (3.14), (3.17) and (3.15), (3.18) and (3.16), (3.19),

1 for (S,,S,)=(0,0), for all k, and m,

q=q(ky,m)=
0 for (S,,S,) €{(,0),(0,00)} for all k, and m,
and
1 for (S,,S,) =(x,0), for all k, and m,
q'=q'(k;,m) =
0 for (S,,S,)e {(0,00),(O0,00)} for all k, and m,
and
1 for (S,,S,)=(x,0), for all m,
q'=q"(m)=
0 for (5,,8,) € {(0,00),(0,0)}  for all m,
respectively. m]

Two-step aggregation of the alternative model and then replacement of a

part of the transition rates with constant rates lead to the approximate model with a
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product-form steady-state distribution, which is called a near-product-form due to the

partial aggregations, given in Theorem 3.1.

Theorem 3.1: For the approximate model, the steady-state distribution is

P =B(K, =k)P,(K, =k,)P,(M =m)

where
2 Jor k =0, ﬁv for k,=0,
q _ q
P(K, =k)= P(K, =k,)=
apl”  for k =1, bp¥  for k,>1,
B(M =m)=(-p)p" for m>0
and
1 ¢'1-p,) A A A
a:(l_pl)plsi b:TZ: P=—"Hs L= Pr=—-
1-¢'p, H Hy Hy

Proof: It is shown that the near-product-form distribution satisfies balance equations

of the approximate model, which are as in the proof of Lemma 3.3 except that ¢, ¢'

and ¢'' are assumed constant. The balance equations are given below for each

case plugging in the near-product-form distribution, then the cancellations are

immediate to show that these equations hold true.

ab m — ,.a b m—
(l+ﬂ1{m>o})——.(l—p)p =M 0 (1-q-Gq" ) =— (1= p)p"”

q49 q9
m+1

, b m a — ab
+ il (1= q")ap, ;(l—p)p + ﬂzl{m>o};bp2(1_,0)p ‘w;;(l—p)p
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a m_ ,—,ab m . b m
(A + 4, +ﬂ1{m>o})gbpz(l—p)p =Aqq Ea(l—p)p g aplg(l—p)p

m—1 m+l1

a a
+ 1y 1 g gbpf (1-p)p" "+ ﬂ;bpz (1-p)p

k=0, k,>1

a m a - m
(A4, + m{,n>o});bp§2 (1= p)p"=4(1= ) bpi 1= p)p

m+1

_ . . a,
+wmapbpy ™ (1= p)p" + 11,1, gbp"z "1-p)p 1+ﬂgb,0§ (1-p)p

b m ab m
(24, + pil 0 Jap, =Pl = pip

m—1 m—1 m+1

, b b
+ud,.,(1=g")ap, ;(l —P)P" iy, qapbp, (- p)p" " + pap, ;(l -p)p

m a m ] b m
(At s, + g1y + {m>0})aplbp2 (-p)p =ﬂngpz (1-p)p" +wuq' ap; ;(l —-P)p

m+l1

+y21{m>0}ap1bp22 (1= p)p" "+ papbp, (1= p)p

k=1, k, >1

m a 2 m
(A4 g1y + g1y + il 00 Japibpt (1= p)p :M;bp; (1-p)p

m+l1

+apibpy” (1= p)p" + i, 1, apbps*" (1= p) p"~' + pap,bps* (1= p) p
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k,>1, k, =0

b m - b m 1]
(A, + al ) Japt ;(l —p)p"=lap"" ;(l = P)p"+ i1 (1=¢")

ky+1

ap,

m+l

b " " b
;(l = P)P" "+ 11, gap) bp, (1= p) p" ™' + ap” ;(l -P)p

k,>1, k, =1

(At + 41y + i) Japl by (1= p) " = Aapli~bp, (1= p) p" +

ke +1 ﬂ

' ap . (1= p)p" + 11y, gap bps (1= p)p" ™ + pap'bp,(1- p)p

m+l1

k,>1, k, >1

(A4 g1, + y + il ) Japlbpl (1= p) p™ = Aap!bp (1- p)p™ +

ky+1

wap!bpy (1= p)p" + w1, qapy bpy ™ (1= p) p" '+ pap{'bpy: (1= p)p

m+1

Remark 3.2: In this study, equivalence or difference of the approximate models with
respect to the sequence the components are picked up is not questioned

analytically. For the constant q, q', q'' values giving the best numerical results

(presented in subsection 3.4), it is numerically observed that different sequences to
pick up the components lead to different approximations. This issue is discussed in

detail in Chapter4. o
3.4 Performance of the approximation

This section is devoted to the assessment of the proposed approximation.

Performance measures that are considered for the assembly system are the
stockout probability Pr(K,>0), the fill rate Pr(ﬂ>0) and the expected

backordered quantity for the assembly E(K,), to be denoted by SP, FR and EB
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respectively throughout the thesis. These performance measures are computed by
simulation and also by using the analytical near-product-form solution of the
approximate model, to be compared to investigate performance of the
approximation. Approximation errors calculated are absolute percentage errors for
stockout probability and fill rate, and relative errors in percent for expected

backorders.

The constant ¢ value given in Lemma 3.4 is (1-p,)p /(1- p>*") due to
the M /M /1 nature of the marginal behavior of the manufacturing server 1. As for
the constant ¢', starting point being (3.18), six alternative values given below are

tried. The corresponding formulas are derived in Appendix C.

D Pr(N, =S, +K|K, =k)Pr(K, =k)
' k=0
A) 9. = .
ZPr(N2 <8, +K||K, =k)Pr(K, =k)

k=0

B) q}}g = Zq'([kl —1]+,m)Pr(K1 =k, M :m|N2 <S,+K)).

m,k;

0 for k =0,
where [k, —1]" =
k, =1 for k >0.

. Pr(N, =S, +E(K,))
¢ Pr(N,<S,+EK))

C) ¢q
D) Ignoring dependence on M , ¢, = Zq'(k1 )Pr(K, =k,).
k=0

E) Ignoring dependence on M , g, = Z:q’([k1 —1]+ )Pr(K, =k, ).
k=0
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L Pr(N, =S§,) _ (1-p,)p5° _
" Pr(N,<S,)  (1-p*")

F) q

The use of [k1 —1]+ that appears in qé and QE could be explained by the departure
of an entity merged with an available component 1 leaving [k1 —’I]+ backorders
behind to join the queue the size of which is represented by k, . Since ¢ is defined
for the arrivals a the second request queue to increase k, by one while the number

of requests in the first request queue is [k1 —1]+ at this point in time.

Remark 3.3: Using q’F in the approximate model, the near-product-form steady-

state distribution presented by Theorem 3.1 becomes
Py = B(K, = k)P,(K, = k,)F (M = m)
where

1-p>! for k, =0,
P(K, =k)= fori=1, 2,
(1 - pi)piSi+ki for ki 21,

P =(1-p)p" for m=>0.

This is the immediate result of complete independence assumption leading to

independent marginal M/M/1 behavior of the n, and n, queues which are, in fact,

correlated. Thus, the approximation with q;, can be thought of the worst one can do.

O

In order to test performance of the approximation as compared to the

simulation results, a wide range of parameters 1, u,, t,, A, S,, S,,and §, is

considered. Arrival rate A is fixed at 9 entities per time unit and x,, x, and i,

40



take the values of 10, 15 and 20 entities per time unit, respectively, to serve the

purpose of scanning cases with various traffic intensities. Parameters S, and S,
vary between 0 and 20, and S, takes the values of 5, 10 and 15. Different
combinations of these parameters give 27 different parameter sets of x,, #,, u,,

A and 1200 different values of S,, §,, and S, in each set for testing the proposed

approximate model.

The approximate performance measures are calculated with the use of a

Pascal code. The run time of the code at a Pentium 4 2.0 processor is 57 minutes

for a parameter set with 1200 different S,, S, and S, combinations and six

alternative ¢' values. For the calculations, the state space is truncated ensuring that

99.9999% of the cases is covered, which seems adequate to justify the truncation

levels. The Pascal code is given in Appendix D.

For simulation, Rockwell Arena 5.0 software is used. Since it has an object
oriented visual interface, it is easier to model the system and trace the entities to
see whether the model works in the right way or not. 15 replications are generated
with simulation 15000 time units (meaning 135000 entities on the average for 1 =9)
and warm-up period of 3000 time units (meaning 27000 entities on the average
for A =9) for every parameter set. The simulation parameters and the system are
initialized at every replication to get independent results. The run time of the code at
a Pentium 4 2.0 processor is 19 hours and 20 minutes for calculating values of each
parameter set. The object-oriented visualization of the code and the plots used for

determining the simulation time can be seen in Appendix D.

Comparison of the approximate performance measures with simulation

results in the following observations:

e Models with ¢, g5 and g.. have superior results compared to ¢),, ¢, and ¢, .
There are slight differences between the errors for q'A, q,} and g, but in

almost every case errors for ¢, are smaller than those of others. The

approximation errors of the 6 alternative ¢' values with system parameters
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Uy =, =4, =10, 1=9, §,=5 and S, =35 are given in Figure 3.11. For the
cases with low traffic intensity, and S, and S, approaching 20, the difference

between the approximate results found by the alternative ¢' values gets smaller.

According to the observations for 27 different parameter sets of p,, u,, u,, 4,

we select ¢'= g, and continue our further inquiries with it.

Two-dimensional graphs like the ones in Figure 3.12, 3.13 and 3.14 and in
Appendix G and the summary Table 3.1 show that the approximation and the

simulation results are very close. At first glance, we can say that the
approximation works better in cases S, and S, are higher meaning that the

system has lower traffic intensity.

Table 3.1 Average and maximum errors for several parameter sets (4 =9)

Average Errors Maximum Errors

EB | EB EB | EB
Mo | ty | 1y | So | S-S, | SP | FR |(Rel%)| (Abs) | SP | FR | (Rel%) | (Abs)

10,10 (10| 5 | 0-20 |2,19|2,12| 524 | 0,51 |4,92|5,25| 16,34 | 1,27

10,10 (1010 | 0-20 |2,05(2,12| 6,76 | 0,45 |5,12|5,16| 23,15 | 1,22

10,10 (10| 15| 0-20 | 1,6 (1,67| 8,21 | 0,38 |4,23(4,25| 28,25 | 1,37

20110 /10| 5 | 0-20 |1,55(1,75| 6,39 | 0,23 |7,83(9,27| 28,7 | 0,69

2011010 /10| 0-20 |0,76/0,85| 9,26 | 0,22 |3,64 (4,42 | 36,22 | 0,74

20(10 (10 /15| 0-20 [0,72]/0,69| 13,85 | 0,21 | 2,1 |2,15| 48,08 | 0,81

10,1020 5 | 0-20 |1,74(1,71| 3,81 | 0,30 |4,19| 4,1 | 12,96 | 1,07

10,10 /20|10 | 0-20 |1,48(1,56| 4,81 | 0,24 |5,96(4,55| 19,34 | 0,75

10,10 /20| 15| 0-20 |1,08(1,16| 5,36 | 0,18 |3,15(3,28| 22,99 | 0,69

10,20 /10| 5 | 0-20 |1,59|1,57| 3,89 | 0,30 |3,68(3,44| 14,54 | 1,11

10|20 ({1010 | 0-20 (1,36/1,43| 4,45 | 0,23 |3,89/3,96| 17,85 | 0,70

10|20 |10/15| 0-20 (1,06/1,12| 5,35 | 0,18 |3,23|3,32| 25,03 | 0,78

10120 (20| 5 | 0-20 |0,47(0,45| 2,51 | 0,13 |2,43|2,51| 9,32 | 0,46

10202010 0-20 |0,51|0,5| 3,78 | 0,13 |1,97(1,93| 17,09 | 0,53

10|20 (20| 15| 0-20 |0,53|0,54| 5,41 | 0,10 (2,89|3,14| 21,49 | 0,42

e As in Figures 3.12, 3.13 and 3.14 and Appendix G, the errors get smaller at
the extreme points (S,=0, S,=20), (§5,=20, §,=0) and
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(S, =20, S, =20) as expected from the theoretical judgments that the model
is exact for cases (S, =0, S,=m), (S,=0, §,=0) and (§, =00, S, =)

(refer to Lemma 3.5). This results in a conical shape of the three-dimensional

drawings of errors as seen in Appendix F.

Relative Errors (Expected Backorders)

qE
_qD
— - -qC
(o] =3
—_— _qA

ST S I T U2 SRR

Errors (Fill Rate)

%

qE
_qD
— = -qC
qB
—_— _qA

O -=-~NWhOo N

---.gF
qE
qb
— - -qC

qgB
— —QqA

Figure 3.11 Approximation errors for 6 different g’ values,

Uy =t =4, =10,1=9,5,=5and S, =5
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Figure 3.12 Stockout Probability s, = 4, =10, ¢, =20, 1=9, S, =5 and §, =5
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Figure 3.13 Fill Rate z, = g, =10, 1, =20, 1=9, §,=5and S, =5
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Figure 3.14 Expected Backorders 1, = 1, =10, 1, =20, 1=9,S,;=5 and §, =5

o |If we take the real errors into account instead of absolute errors, it is
observed that when the traffic intensity is high, the expected backorder and
stockout probabilities are underestimated and fill rate is overestimated.
When the traffic intensity is lower, the errors spread almost equally at both
sides of the zero level but on the average there is still the tendency of
underestimating and overestimating for SP, EB and FR, respectively, as

seen in Table 3.2 and Appendix H.

Table 3.2 Errors for high and low traffic intensities

Mo = 1y = p, =10, Ho =10, iy = p, =20,
FR SP EB @ FR | SP | EB |

" Min error -4.4310 | -4.9207  -16.3446 | -3.2933 | -2.4333 | -9.3229
Max error | 5.2460 | 4.5867 5.2260 2.5077 | 3.8017 | 8.0124
Avg. error | 1.4816 | -1.5281 -5.0027 0.1748 | -0.1589 | -0.5297

The 3-dimensional drawings for the high and low traffic intensity cases in

Table 3.2 are given in Appendix H, where the observation in this item can be

seen clearly over many combinations of S, and §, values.
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Examining 27 different parameter sets of u,, u,, u,, A4, it can be inferred

that as the traffic intensity of the system decreases, the errors also decrease
for stockout probability and fill rate. But an interesting observation is that for
lower traffic intensities that result in lower expected backorders, decrease in
the traffic intensity causes an increase in error of expected backorders. In
fact, in such cases, absolute error for expected backorders still decreases
but since this decrease is less than the decrease in the value of the expected
backorder, the relative error increases. This leads to a misinterpretation that
the approximation does not work well for estimating expected backorders in
case of lower traffic intensities. Maybe, for some small values of the
expected backorder, absolute errors should be taken into consideration for

interpreting the accuracy of the approximation. For example, at
o =H, =, =10, 1=9 and S, =35 the errors for stockout probability, fill

rate and expected backorder are 2.19, 2.12 and 5.24 on the average,

respectively, and at u, =20, 1 =u, =10, A=9 they are 1.55, 1.75, 6.39

on the average. It is seen that the relative error of the expected backorders
increases in the latter case as composed to the former one but the absolute
error of the expected backorder falls from 0.51 to 0.23 on the average. Since
this decrease (from 0.51 to 0.23) is less than the decrease in the expected
backorders (from 10.60 to 4.23 on the average), the relative increases. A
table for the errors of expected backorders for relatively lower traffic
intensities is given in Appendix E. For cases that the expected backorder
value is small, the relative measure of the error is higher even when errors
are pretty small in absolute measurement such that, do not exceed even one

backordered request.

Constructing 95% confidence intervals for the performance measures using

15
simulation results and student’s t distribution with X:ZXi/IS and

i=1

15
S=Q.(X,-X)*/14 in X+

L
= 0.025,14 \/E

My =M, =4, =10, =9 in Appendix | that not all of the approximate

it is seen for case

measures fall into the confidence intervals but number of measures that fall

into the confidence intervals is higher for low traffic intensity cases.
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Analyzing all the results gained from 32400 (27x1200) different parameter
sets, the approximation turns out to be quite accurate with absolute errors of 10% at
most for fill rate, stockout probability and of less than 1.37 (=2) requests for
expected backorder. So, we can conclude that the approximation works well and

gives satisfying results for the two-component assembly model.

3.5 Optimizing base-stock levels

We have observed that the performance measures calculated for the
approximate model serve as good approximations for those of the original model.

This suggests the use of the approximate model for optimizing the system
parameters like u,, p,, w1, and/or §;, §,, §,. Noting that changing the server
capacities (1, , t,, M,) would be an involved task in practice, though not in setting

up the optimization model theoretically, compared to changing the stock allocation,
in this study we proceed with the latter to numerically justify the use of approximate
performance measures for optimization purposes. The stock allocation problem
could be posed as determining optimal investment alternative given some target
service level like fill rate in the case of the numerical examples presented in this
section or optimal service level given the budget restriction for stock investment.

Corresponding formulations are

Min S, -c, +S, ¢, +8S, ¢, Max FR(S,,S,,S,)

subjectto FR(S,,S,,5,) =« subjectto S, -c, +S,-¢,+8,-¢c, <B

where ¢; in the model represents the cost of allocating one stock keeping unit
(SKU) for stock point i, FR(S,,S,,S,) is the fill rate for stock allocation (S,,S,,S,),
o is a given target fill rate and B is available budget. The optimization of ,, u,,
M, and even overall design of the system as the joint optimization of both server

capacities and stock allocation could also be considered in terms of the
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corresponding investment functions of these design parameters given some service

level constraints, even these constraints need not be restricted to just fill rate.

Referring to the smooth almost concave behavior of the approximate fill rate

as a function of (S,,S,) given some S, the following greedy heuristic is proposed

to solve the minimization formulation above.

Greedy Heuristic:

Step 0: Assign S, to the value that guarantees FR(S,,,0) >« .

Set S, =S5, =0.

C.
Step 1: Let FR = FR(S,,S,,S,) and [ = argmin : :
j=0,1,2 FR(...,SJ. +1,..)— FR

Set S, =S,+land S, =S, for j#1.
Step 2: If FR(S,,S,,S,)> a go to step 3,
else set (S,,9,,5,)=(S,,S,,S,") and go to step 1
Step 3: Let [ = argmin{cj‘FR(...,Sj +1,...)2 a}. Assign S, = §, +1 and stop.
j=0,1,2
We have performed a number of numerical experiments for the two-

component assembly system choosing « =0.95 and %0201 =c,. In Table 3.3,

iterations of the greedy heuristic can be seen for the case p, =20, u, = u, =15,

A =9. Minimum investment turns out to be 18 (§, =7, S, =2, S, =2). In order to

see if the heuristic works well, all possible allocations having total investment less
than or equal to the one found by the greedy heuristic are enumerated again using

the approximate fill rates. Table 3.4 is to display the enumeration for all possible

allocations with FR>0.95 for the case y, =20, u, =u, =15, 1 =9. Also, details
of the employment of the greedy heuristic for the cases u, =20, x4, =10, u, =20,

A=9 and y, =20, u, =u, =10, 1 =9 can be found in Appendix J.
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We should point out that none of the allocations with investment less than

the solution found by the greedy heuristic can satisfy the fill rate constraint. The

highest fill rates in all cases correspond to the allocations found by the greedy

heuristic, showing the power of the heuristic at least for the three cases considered.

If the greedy approach is not taken to determine allocations having the minimum

investment level, extensive mathematical modeling (nonlinear programming) or

enumeration would be required, which seems rather impractical for complex realistic

systems.

c
Table 3.3 lterations for g, =20, 4, = u, =15, A =9, a=0.95, 70 =¢, =c,

Syl S, | S, |FR(S,,S8.,8,) FR(S, +1,8,,8,) FR(S,,S, + LS, ) FR(S,,S,,S, +1)
4 1999 999 | 0,95899

4 0 0 0,66077 0,76482 0,7086 0,7021
5,0 0 0,76482 0,83989 0,8 0,79932

6 0 0 0,83989 0,89252 0,86479 0,86686

6 0 1 0,86686 0,91267 0,8953 0,88305

6 1 1 0,8953 0,93151 0,91295 0,91361

6 1 2 0,91361 0,94461 0,9323 0,92459

6| 2 2 0,9323 0,95706 0,94373 0,94391
7.2 2 0,95706

Table 3.4 Enumeration for g, =20, u, = u, =15, A =9 with investment <18

%)
S

0]
1

FR

0,95706

0,95563

0,95552

0,95308

0,95246

0,95196

0,95156

0,95087

OO |N|00|N(©|00 0N

AN W O|ROmWN .

NIAR=2INWO=_WIN

0,95069
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CHAPTER 4

4. EXTENSIONS

In Chapter 3, we have worked on a two-component assembly system and
have shown that the approximate near-product-form steady-state distribution we
have proposed performs well. Two extensions of the two-component assembly
model are taken into consideration in this chapter without a complete analytical
development but with the inspiration from the approximation of the two-component

assembly model.

4.1 Generalization for more than two components

This section is to generalize the approximation for assembly systems with
more than two components and show numerically how it performs then. The
approximate solution for the n-component case is obtained in a recursive manner
using the approximate solution for the (n-1)-component case. To present this
recursive development, we could first consider the three-component system and
show that it is resolved given the approximate near-product-form solution of a part of

this system with just two components of the three.

As in the two-component case, an alternative model to pick the components
sequentially as in Figure 4.1 could be considered, instead of simultaneously picking
them up, in order to handle the difficulties of simultaneously merging the
components by approximating some conditional probabilities that appear as a result

of (sequential) partial aggregations.
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Figure 4.1 Alternative Model for the Assembly System with Three-Components

The explanation on equivalence of the original and the alternative models is in
section 3.1. Employment of the base-stock policies leads to the following equations

in the alternative model:

n +n =8, +k, (4.1)
n,+n,=S5,+k +k,, (4.2)
ny+ny, =8, +k +k, +k;, (4.3)
m+m+k +k, +k;=8,+k,. (4.4)

Now, treat the part of the system circled with dashed line in Figure 4.1 as a
whole with its steady-state distribution given by the analysis of the two-component

system in the previous chapter. Then, view the backorders in this part in total as

k, +k, to be denoted by k,,. This is to reduce the system to two-component system
with backorders k,, to be satisfied first and &, to be satisfied next with the third

component. That is, the relations in (4.1) and (4.2) are reflected by the near-product-
form solution of the two-component case, and then (4.3) and (4.4) take the following

form
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n,+n, =8, +k, +kj,

m+m+k,+k, =8, +k;,

to be compared with (3.5) and (3.6), respectively. Representing the overall
departure rate from the part within dashed line by ., as if it is exponential without

questioning validity of this, one could draw the transition diagram in Figure 4.2 to be
compared with Figure 3.6 of two-component system to understand the assumptions,
basically the reduction to two-component case, and the system mechanics under
these assumptions. Here, when we compare transition diagrams of the two-

component and the three-component diagrams in Figure 3.6 and Figure 4.2,
respectively, the definition O =g +¢'' is adequate to peer the two models. Also, y,,

in the model is defined as the processing rate of the imaginary exponential single-

server facility representing the part of the system within the dashed line. In fact,
there is no need to know or approximate the value of 4, in order to propose a near-
product-form steady-state distribution for the three-component model. Questions
about ,, are bypassed by the correspondence between Figure 4.2 and 3.6 (and

between Figure 4.3 and 3.7 with further aggregation discussed after Remark 4.1)
and the use of near-product-form distribution of two-component case for the part

within dashed line.

Remark 4.1: Overall expected output rates of the system handling components 1

and 2 can be put as

u,Pr(K, >0)+A(1-¢q)Pr(K, =0) (4.5)
and
U Pr(K, >0)+ p,(1-¢")Pr(K, >0,K, =0)+ A(l-g—¢")Pr(K, =0,K, =0),(4.6)

respectively. The last terms with A and the other terms of (4.5) and (4.6) are
comparable. Thinking the system within the dashed line as a single-server facility
with processing rate u,,, the first two terms of (4.6) can be equated to something

similar to the first term of (4.5) as follows:

i, Pr(K,, >0) =, Pr(K, >0)+,(1-q" )Pr(K, >0,K, =0).
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Then, the approximate 1, turns out to be

:ﬂz'Pr(Kz =0)+u -(I-¢q)-Pr(K, >0,K, =0)
Pr(K,, =0)

12

=ty L4y (=) (L= 1)
a a

where the second equality follows using the joint distribution in Theorem 3.1 to

compute probabilities Pr(K, =0), Pr(K, >0,K, =0)and Pr(K,, =0). Note that

p, > A since w, L > p, and p,(1-g)(L-1)> 0.
o (04

To check how good this definition is to represent the imaginary exponential

single-server facility within the dashed line, we compare the marginal distribution of

K,, from Figure 4.2 using the approximation above, i.e.,

1_
Pr(K, =k,)=pr ——P2  foralk,
1-py, +p,0

where p,, = A/ u,,,
with the one obtained from the joint distribution in Theorem 3.1, i.e.,
kIZ

Pr(K,, =k;,)= ZP](KJ :kz)f)z(Kz =k, — k).

k,=0

The results show that the maximum absolute difference between the two solutions is
0.12% (see Appendix K for the case p, = p, =, =, =10, S, =85,=5, =39, =5,
A =9), which justifies proceeding with Figure 4.2. o
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Figure 4.2 Transition Diagram of Three-Component Assembly Model

with State Description (k,,,n;,m)

Then, aggregation (the second aggregation step as explained in section 3.2)

of the system in Figure 4.2 with state description (k,,,n,,m) leads to Figure 4.3 with

state description (k,,,k;,m) and introduction of
Q'=Pr(N; =S, +E(K12)|N3 <S8, +E(K,))

recalling ¢' from the two-component case. The correspondence between the state-

transition diagram in Figure 4.3 for three-component system and the one in Figure
3.7 for two-component system leads to the generalization of the near-product-form

solution as in Remark 4.2.
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Figure 4.3 Transition Diagram of Three-Component Aggregate Model

with State Description (k,,, k5, m )

Remark 4.2: The near-product-form steady-state distribution proposed for the three-

component assembly system is

Pklzkw = 1312(K12 = k12)133 (K, =k, )Po (M =m) (4.7)
where

E' for k; =0,
]33 (K; =k;)=

Bpl  for k,>1,
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Py(K,, =k,)= Z‘ﬁl(l{1 =k)P,(K, =k, —k,)  referring to Theorem 3.1 for the

computation of f’l and P,

B(M=m)=(1-p)p"  form=>0,
and
B—M D _i Q,_PI’(N3=S3+E(K12)))
- _V ’ 3 4 - 1
1-0'p, Hs Pr(N, <S8, +E(K,,))
O =q+q" recalling g and q'' from section 3.1,
0"=(1-0)0". -

Using the proposed approximate distribution given by (4.7), one can

compute the distribution for K, + K; which would be called as K,,, for the analysis
of a four-component assembly system so that QO and Q' serve the functions of ¢
and q', respectively. New Q' is Pr(N, =S, + E(K,5, )|N4 <S8, +E(K,,;)) defining

p, =A/ u, and new B is defined in terms of new Q' and p,. Proceeding this way,

the recursion would be to obtain the approximate near-product-form distribution of n-

component system given that of (n-1)-component system.

In order to test performance of the approximation for systems with more than
two components, nine different parameter sets are considered to cover the range
from high to low traffic intensities. The parameter sets and the corresponding
numerical results of the performance measures are given in Appendix L. As can be
seen from the numerical results, the performance of the approximation is still
satisfactory. A summary of the average errors of the performance measures for nine

different parameter sets is given in Table 4.1.
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Table 4.1 Average errors (%) of the nine parameter sets

for systems with more than two components

Fill Rate = Stockout Probability Expected Backorder

2 components 0.923 0.906 4,272
3 components 1.108 1.139 6.230
4 components 1.407 1.449 9.169
5 components 1.703 1.598 9.822
6 components 1.803 1.906 9.957
12 components 2.980 3.363 15.443

Regarding the approximation performance, two points to be investigated are

raised with the following questions:

e Does the approximation performance deteriorate as the number of
components increase? If it does, how much is this deterioration?
e How does the sequence the components are picked up affect the

approximation performance?

Graphs of the approximation errors in Appendix M show that performance of
the approximation deteriorate with increasing number of components. The
deterioration is more apparent for expected backorders such that the maximum
increase in the error between two-component model and twelve-component model
is 19.54% for the expected backorder while the maximum difference between the
errors is only 5.91% and 6.74% for fill rate and stockout probability, respectively, for
the two-component and twelve-component models. Also, as seen from the graphs
the increase in errors seems to decrease as the number of components increase,
but it is not possible to claim convergence of the errors for sufficiently large number
of components based on only the representative numerical experiments in this

thesis.
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Figure 4.4 Effect of the sequence the components are picked up

(Numerical Results in Appendix N)
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The impact of the component sequence (to pick them up in the alternative model) on
the approximation performance is questioned by the numerical experiment results in
Appendix N. The only and immediate way of revealing such an impact, if there is
any, is to consider parameter sets with high manufacturing capacity (high service
rate and high base-stock level combination) for some components and low
manufacturing capacity for others so that the sequences to pick up components
could be differentiated and then compared. But, it should be noted that we could
have such service rate and base-stock level combinations that it may not be
possible to differentiate the components to identify the sequence to pick them up for
having small approximation errors. In fact, even in the case of apparent
differentiation, numerical experiments (in Appendix N) do not favor a sequence from
faster to slower (referred as fast) or slower to faster (referred as slow) as seen in
Figure 4.4.

Next, the greedy heuristic is employed for optimization of three-component

systems with parameters p, =20, u, =u, =15, u, =20, A=9. The heuristic
finds the best possible allocation (S, =6, S, =3, §,=4, S, =1) with minimum

investment level 26 satisfying FR>0.95. Iterations of the greedy heuristic and the
enumeration over all possible allocations satisfying FR>0.95 can be found in

Appendix O.

4.2. Component Commonality

In the assembly system considered in this section, two types of finished
assemblies are manufactured. Each finished assembly is composed of two
components, one of the components being common. That is, there is manufacture of
three components, each at its own dedicated facility, feeding the assembly
operations of two different types, say 0 and 0, at the single assembly facility. A
sketch of such a system with single exponential servers at each facility is in Figure
4.5. Component 3 is the common component and its demand is the sum of the two

assemblies’ demands, i.e., Poisson with rate 4,+4,, while the demands of

components 1 and 2 are determined by the Poisson demand arrival process with
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rates 4, and /16, respectively, of the corresponding assemblies in which they

function.
A
]
"?C13 + "?('-IZI
)
Ry .
s 1 iy +m|:I Sn
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Figure 4.5 Assembly Model with Component Commonality

Employment of the base-stock policies leads to the following equations for the

(original) model in Figure 4.5:

n,+n, =S +k, fori=1, 2,
ny,+n, =8, +ki;+k,y,
my+my+k;=8,+k,,

Random variable K ; (K,;) represents the number of backordered requests

for both component 1 and 3 (2 and 3) to feed the assembly of type 0 (6). M is the

summation of joined entities for assembly of type 0, M, and 0, M. Service rate

of the assembly facility is, type dependent, taking the value of either x, or M- In
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this thesis, the analysis is presented for the case u,=x; and further extension will

be done for , # 4. The service discipline to match an available component 3 with

component 1 or 2 can be thought of as first-come-first-served (FCFS), but there

would be a need to further specify this discipline just regarding the coordination of

component 3 to resolve cases like the following: k,, and k,, are both equal to one,

suppose request of 1 and 3 has been generated before that of 2 and 3. There are
available components of type 2 but there is no component of type 1 in stock. If a
component of type 3 becomes available in this state of the system, should we use
this component to match it with component 2 available (although its request is new
compared to the request of 1 and 3) or should we wait for a component of type 1 to
become available? The distinction between these two service disciplines is made by
giving two alternative models to pick up components sequentially as for the
employment of the approximation approach proposed in this thesis. Alternative
model in Figure 4.6 is equivalent to the original one in Figure 4.5 if first-come-first-
served discipline is employed strictly without paying attention to the resolution of the
cases like the one mentioned above. On the other hand, alternative model in Figure
4.7 allows reasonable resolution (matching component 2 with component 3 as soon
as it becomes available in the example case above) of such cases. The former
alternative model allocates common components first and the latter allocates them

last.

For the alternative model in Figure 4.6, inventory balance equations implied by the

base-stock policies are as follows:

no+n =8, +k, +k,

n, +n, :S2+k36+k2,

ny+ny, =8, +k;,

my+m, +kyy +k =S, +k,, (4.8)

ms+m; +ko+k,=8;+k;, (4.9)

where ky =ky, +k ;.

61



%

Figure 4.6 Alternative Assembly Model where Common Component is Picked up First

Equivalence of Figure 4.6 and Figure 4.5 comes up with the recognition that

ny (n, and n,)and k,;, k,, in the latter model correspond to n, +k, +k, (1, +k;,

and n, +k)and k;, +k,, k; +k, inthe former model, respectively.

Recalling the type of aggregation in section 3.2, the state description of this

alternative model can be transformed from (n,,n,,n,,m) to (k,,k,,k;,m). Then,

analogous to Theorem 3.1, the approximate near-product-form distribution in
Remark 4.3 can be proposed without any formal proof but by just an intuitive

analogy.

Remark 4.3: For the case u,=u; = u of Figure 4.6, the near-product-form steady-

state distribution proposed for the three-component assembly system with two

finished products and one common component is
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Py = P(K, = k)P, (K, = k,)P,(K; = k)P (M =m) (4.10)

where
G
—  for k, =0,
_ q;
P(K, =k)= fori=1, 2,
G,p; for k =1,
H for k, =0,
qs;
P (K; =ky) =

Hp¥  for ky,>1,

Po(M=m)=(1-p)p",

and
1+ 30 Sy+E( 36) 3
C(=p)p?t L A=ppy _(-p)ps
1= +E(Ky)+l  ’ 2 = 5+ Y 3 o+
1_10151 E(Kjp)+ 1—,025 E(K 5)+ 1—,035 1
‘- p.
Gi:q’(—,’”) fori=1,2, H=(1-p))p;s. O

1—67,-/),«

For the purpose of computing ‘L i =1, 2, and using balance equations (4.8)

and (4.9) to evaluate the performance measures of both assemblies at the last stage

where customer demand arises, the product-form distribution above is detailed by

k3o k36
k A A
Pr(Kyy = ks, K 5 =k |Ky =k;) {k; J{ﬂ +0,1J [/1 fﬂ} for ky =k, +k,;,
0 0 0 0
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" P m P mg
Pr(M, =my,M; =m|M =m)= 0 0 for m =m, +m-.
my \ Ay + A Ay + A 0

In order to test performance of the approximation for the assembly system
with common component, 10 different parameter sets to cover the range from high
traffic intensities to low traffic intensities are considered. The parameter sets and the
corresponding simulation and approximation results of the performance measures
for the system in Figure 4.6 are given in Appendix P. As can be seen from these
numerical results, the performance of the approximation is similar to the results in

sections 3.4 and 4.1 and still satisfactory.

For the alternative model where common component is picked up at last,

inventory balance equations are:

n,+n, =8, +k, fori=1, 2,
ny+ny, =8, +k +k, +k; +k36,
my+m, +kyy +k =S, +k,,

ms+m; +ko+k,=8;+k;,
where ky =ky, +k ;.

The alternative model in Figure 4.7 is equivalent to the original one in Figure 4.5
with the resolution for the coordination of component 3 noting that 7, +k,,, n, +k;
and k, +ky,, k, + k5 in the latter model correspond to n,, 1, and k;, k,; in the

former model, respectively.

For the solution of the alternative model in Figure 4.7, the type of

aggregation in section 3.2 would transform the state description of this alternative
model from (n,,n,,n,,m) to (k,,k,,k;,m). Then, as in Remark 4.3, the

approximate near-product-form distribution is proposed in Remark 4.4 for the

alternative model in Figure 4.7 without any formal analytical development.
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Figure 4.7 Alternative Assembly Model Where Common Component is Picked up at Last

Remark 4.4: For the case p,=u; = u of Figure 4.7, the near-product-form steady-

state distribution proposed for the three-component assembly system where one

component is common and there are two finished products is

P = P(K, = k)P, (K, = k,)P,(K; = k;)P (M = m)

where
H.
—  for k, =0,
_ q;
P(K, =k)= fori=1, 2,
H.pl for k >1,
g, for k, =0,
q;
Py(Ky = ky) =

Gpy  for ky>1,
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PoM =m)=(1=p )p",

and
q, =M for l =1 2 q. _ (1—p3)p3~93+E(K|+K2)
i ]—piS,+l 3 &y 3 1_p353+E(1<1+K2)+1 ’
. I
H, =(1-p)p) fori=1,2 G- U=p5) ]

1-q'; p; .

The same parameter sets as the ones used for testing performance of the
approximation in Remark 4.3 are used also for testing performance of the
approximation in Remark 4.4. As can be seen in Appendix P, the results are still

good and very similar to the ones of the system in Figure 4.6.

These two alternative models of the original model in Figure 4.5 can be
selected according to several different performance criteria which are not
considered in this thesis. For example, the model in Figure 4.6 would be selected to
minimize the maximum waiting time of a demand arriving or the model in Figure 4.7
would be used to minimize WIP. In these respects, the analysis could be extended
and the performance measures can be compared within the context of common
component allocation recalling the related work in the literature like the one by de

Kok and Visschers [20] reviewed in Chapter 2.
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CHAPTER 5

5. CONCLUSION

In this thesis, the basic assembly systems are studied to investigate the
steady-state probability distribution that would serve the purpose of performance
analysis for given configurations and of system design based on the performance
analysis. Although the setting of assembly operation is presented in the context of
manufacturing in this thesis, validity of the same setting to resolve computer
systems and telecommunication issues is underlined in the literature. As for the
manufacturing setting, the system configuration is characterized by the BOM of the
finished products manufactured and the production/inventory policies employed. The
former characteristic considered in this thesis is to assemble two components to
come up with a single type of finished product as in Chapter 3, others in Chapter 4
are extensions to assemble more than two components of again a single type of
finished product and to produce two types of finished products assembling two
components for each, one of the three components under consideration being
common. Concentration on only these simple BOM structures can be justified
because analysis of them would be sufficient to investigate many complex BOMs as
a collection of these basics. The latter characteristic identified by the use of
continuous-review base-stock inventory control policies places the system setting
within the class of pull-type make-to-stock systems. The systems studied are further
specified with Poisson demand arrivals and exponential servers, which allow
generalization for general distributions due to the capability of the phase-type
distributions to approximate general ones with mixtures of exponentials. It is
assumed that there is no shortage of raw materials feeding the manufacturing

servers and that unsatisfied customers due to stockout are backordered.
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For the systems outlined above, an approximate near-product-form steady-
state distribution is proposed based on the approximation approach introduced for
the two-echelon systems in [2] and extended for two-indenture systems in [38]. This
approach is approximating an exact partially aggregated queuing model which in our
case is equivalent to what we call an alternative model (proposed to take the type of
approach mentioned) allowing the components to be picked up sequentially before
the assembly operation. The approximation is treating state-dependent transition
rates that result from partial aggregation as constant rates, the immediate
implication of which is the near-product-form steady-state distribution. Based on the
numerical results gathered by examining 27 different parameter sets of the demand
rate and manufacturing and assembly server rates and 1200 different base-stock
level combinations, the proposed method is shown to perform well in approximating
the performance measures (fill rate, stockout probability, expected backorder at the
downstream stage) of the two-component system with single server manufacturing
and assembly facilities. Generally, the approximation seems to be more precise for
the systems with lower traffic intensities than for systems with higher traffic
intensities. A greedy heuristic run using approximate distribution is observed to be
good to determine design parameters, namely base-stock levels, in order to meet a

given target fill rate.

The approximation method introduced for the simplest two-component
systems is then extended intuitively to systems with more than two components
assembled to produce a single type finished product. The approximate solution
proposed for the n-component system is obtained by applying the approximate
solution for the two-component system in a recursive manner. Numbering the
components from 1 to n in the order they are picked up in the alternative model, the
part of the system including manufacturing servers associated with components
from the 1% to the (n-1)*'is assumed as a black-box and the two-component results
are applied to the collection of the black-box and the servers associated with the n™
component. The marginal steady-state probabilities of the black-box representing
manufacturing servers of the first (n-1) components is found by applying the two-
component results to the system with the (n-1)® component and the servers of
components from the 1% to the (n-2)", this time servers of components from 1% to
the (n-2)" forming the next black-box. This recursion continues until the steady-

state probabilities of a pure two-component system can be applied to determine the
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steady-state probabilities of a black-box. The results gathered for these systems
have shown that the approach still serves well for approximating the performance
measures of the n-component systems. Questioning the impact of component
sequence on the performance of the approximation, parameter sets are selected in
such a way that the components can be picked up in decreasing or increasing order
of their dedicated server rates and base-stock levels. Note that ordering
components for both the server rates and the base-stock levels to change in the
same direction in the same order restricts the possible test configurations
considerably. Even over such a specific restricted test set of configurations we are
unable to determine impact of the component sequence, meaning although it is
obvious that approximation results are dependent on the sequence, the specific

behavior of this dependency can not be identified.

One other extension of the approximation proposed in this study is to handle
component commonality. The “alternative” queuing models generated in the case of
commonality turn out to be of two different forms; one to allocate common
components before the other components and one to allocate them after the others.
A near-product-form solution is proposed for each of these alternative models based
on the intuitive use of the observations about the solution of two-component
systems. The numerical experiments show that the two alternative models are
comparable in terms of the performance measures considered in this thesis, putting

the implications of immediate or latest common component allocation aside.

The approach presented in this study can easily be extended to more
complicated cases. Results remain valid as long as the manufacturing and assembly
facilities are of product-form, namely Jackson, networks. General service and
interarrival time distributions can be handled approximating these distributions with a
mixture of exponentials which maybe to recall Jackson network generalizations.
Another extension could be thought of concerning more complex BOM structures for
the finished products. Taking the n-component model and the common component
model as modules of the complex system and applying the proposed solutions

recursively, various BOM structures could be resolved.

Regarding the commonalities and product differentiation issues in general

multi-stage assembly systems (the related work in literature like [20] and many

69



others as summarized in [25]), points to investigate the connection of these issues
to processing times, procurement lead-times from external suppliers, performance of
the system in satisfying customer requests, e.g., under various allocation policies for
the common components, risk-pooling, lead time reduction, (safety) stock reduction
etc. may be of great benefit in foreseeing the performances of different “alternative”

models constructed to employ the approximation proposed in this thesis.

In conclusion, we believe that the analytical framework presented in this
study provides a powerful tool for approximating the steady-state performance of
fairly general assembly manufacturing systems, and subsequently to design these

systems, while various extensions seem to be possible for future research.
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APPENDIX A
ALTERNATIVE PROOF FOR THE AGGREGATE FORMULATION

The model with state description (k,,k,,m) is an aggregate formulation of the one

with state description (n,,n,,m).

Proof:
k, =0, k, =0 Cases 1,2,4,5
Si S
m>0 OOm 17.8,>0 nnym 27.8,>0 nin,m
(ol VPran* 10035 Pr® 1Y, 2P,
n=1n,=0 n=0n,=1
S, S, S-1 8, S,
= il{nl>0 {n,>0} m>0 Z Z m—=1,n,—1,m-1 + lul {8,>0} z z n+1,n,m + /ull{m>0} ZPSIH,nZ,m—I +
m=0n,=0 n=0n,=0 n,=0
S Sl
Sz>0 z ZPnl Ny +l,m /"2 {m>0} Z ny,Sy+1,m-1 /uPO 0,m+1
n=0n,=0 m=0

The following terms cancel out in the equation above; the second terms on both
sides, the third term on the left hand side and the fourth term on the right. Rewriting

the remaining terms as

(ﬁ“ + 1UI m>0 )PO Om
S Sy Sl
z Z mny,m=1 ZPSlnz,m—l Z f)nlSz,m—l
_ n;=0n,=0 n,=0 n =0 S
- ﬂ’l{m>0}( ﬁ’ - ﬁ - ﬁ ) * PO,O,m 1
0,0,m—1 0,0,m—1 0,0,m-1
S,+1
Z PSIH,an P
B =0 S, +1,S,+1,m B B
L0 Prom (5 -2 w0 By P,
L 0 om I3 = Hod (50140, 1,m1 0,0,m+1 7
0,0m 0,0m
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one comes up with

~

(ﬂ’ + /’l]{m>0} )PO,Om = ﬂl{m>0} (1 - q(o’ m— 1) - q”(m - 1) )ﬁ0,0,m—l

+ iy, 0 (1—q'(1Lm— 1))ﬁ1,0m + :Uz]{m>0}130,1,m—1 + :U}N)o,o,mﬂ

k, =0, k, =1 Cases 3, 6
~ Sy Sy 5,1

(/1 + /'12 + /u[{m>0} )PO,lm + /’lll{Sl >O} Z Pnlnzm = //L]{nl>0} zf)nl —1,n,—1,m + ILIII{S|>0} ZRLIH,nz,m
=1 n =0 n=0

+ ILll PSl+l,n2m + ILlZI{m>0}})0,2,m—l + /’lI)O,O,m-H

The last term on the left hand side of the equation and the second term on the right

cancel out. Rewriting

. =0 =~ SALS,+Lm | %S =~
(ﬁv + U, + ﬂl{m>o} )PO,lm = /U{S1>0} B By ot 14y B *P o, t ﬂzl{m>o}Po,2,m—1
0,0m 1,0m
+ IuR),O,mH ’

where the first and the second terms on the right side are /1]{,,1>0}q”(m)f~’0,0m and

,q' (L,m)P,,,. .

k, =0, k, >1 Cases 3, 6
—~ Sy Sy 51

(2’ + ﬂZ + /“ll{m>0} )P()kzm + /JIISI>0 z Pnlnzm = /ll{npO} anl—l,nz—l,m + ﬂ1151>0 ZRzl+l,n2m
n=1 m=0 n; =0

~

+ /ulPSlJrl,kz—l,m + /’IZI{m>O}f)O,k2+l,m—l + /UPo,kz,mu
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The last term on the left hand side of the equation and the second term on the right

cancel out. Then,

S;

z Pn,,SZ+(kZ—1),m - PS,,SZ+(kZ—1),m
= n;=0 D D
(/1 +u, + ﬂl m>0 )P(szm = AI{S,>0} = P(),kz—l,m + ,U1Ps1+1,k2—1,m

P(),k2 —1,m

+ /'l2]{m>0}E),k2+1,m—1 + IuR),kz,mH

where the first term on the right hand side is Al ., (1—qg(k, — l,m))f’o’krl’m .

k=1 k,=0 Cases 7, 8
Sy+1 S,+1 S,+1
(/1 + lul + IUI m>0 ) 1 ,0m + lu2 Z nn,m - ﬂ’z n—=lny~1,m {m>0} Z })nl+1,n2,m—l
ny=1 n,=0

+,Uzz n1n2+lm+/u2 {m>0} llml+ﬂf)10m+l

n,=0

The last term on the left hand side and the third term on the right cancel out.

Rewriting,
S,
Z §nym
(ﬂ’ + H + /Ll[{m>0}) 1,0m = 2’ S 1)0 Om
B,
S,+2
( Z PS,+2,n2 =1 Ps,+2,sz,m—1)
n,=0 ~ ~ ~
+ ﬂ]l{m>()} =~ PZ,(),mf] + /’IZI{m>0}R,1,m4 + /’IR,O,mH
PZ,(),m—]

The first and the second terms on the right hand side are rewritten as A¢(0, m)fN’O,Om

and 1 q‘(2,m—1)f~’2,ojm_l, respectively.

m>0}1
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k=1, k, =1 Case 9

~ P, ~ P, ~
S;,8,+1,m S§;+2,8,+2,m
(/1 + lul + ILIZ + lLl[ m>0 ) 1 Jm //i’l{n,>()} ~ P(),]m + /'11 ~ PZ,()m
P(),]m PZ,()m

~

+ /’lZI{m>0}1)l,2,m—l U

The first and the second terms on the right hand side are rewritten as

/U{nl>o}‘1(1,m)f~)o,1m and ,ulq'(Z,m)}N’z,Om, respectively.

k=1, k, >1 Case 9

Spny=I,m 3 =
(ﬂ“ +H Ut ﬂl m>0 ) P in = ﬁ“l{n1>0} ﬁ—Pozfzm tuby .t :Uz]{m>o}Pl,k2+1,m—1

Ok,m

~

+ Lk, ,m+1

The first term on the right hand side is rewritten as /11{n1>0}q(k2,m)f~’0k2m .

k,>1, k, =0 Cases 7,8
S, +ky Sy+ky S, +k
(/1 + /'ll + lul m>0 ) kIOm /’lZ Z nin,m _/1 Zqufl,nz—l,m +Iu1]{m>0} ZR{IH,nz,m—l
,] n2:l n2:0
S, +k—1

+/’12 Z ny,ny+lm :LlZ m>0} ke 1,m—-1 IUPkIOWHI

The last term on the left hand side and the third term on the right cancel out. Then,
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S, +ky+1

ny+1,n, ,m—1 P
g _ 1D n,=0 n+1,8, +k; ,m—1 g
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where the first term on the right hand side is 1., (1—¢'(k, +1,m - 1))1’3,{1+1,()’m_1 .
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APPENDIX B
PROOF OF LEMMA 3.4

Rewriting (3.10) and (3.11) as

S8y thy.m k, >0,
2
P()kzm
qlky,m) =1 & for any m,
ZPSlnzm
=0
i k, =0,
P(),Om

q is derived as follows:

q= ZQ(kzam)Pr(Kz =k,,M = m|N1 <S)

m,k,

= q(0,m)Pr(K, =0,M =m|N, <S))+ Y q(k,,m)Pr(K, =k,,M =m|N, <)

m,ky>1

S2
P Py
= za " Pr(N, <8,,K, =0,M =m) Ly P s iom Pr(N,<S,,K,=k,,M =m)
m No,()m Pr(N, £§,) mky21 130,{2,,, Pr(N, <58§))

_ZP}"(N1 =S5,,K,=0,M =m) _|_ZZP7’(N1 =S5,K, =k,,M =m)
p Pr(N, <58§)) el Pr(N,<£S))

_Pr(N,=S§,,K, =0) N Pr(N,=S,,K, =k,)
Pr(N, <§)) ky21 Pr(N, <§)) '
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_Pr(N, =S)

Then, g = .
7 Pr(v, < 8))

Rewriting equation (3.12) as

P,
S, +k,S,+ky,m
()
Pk]()m
q'(k,,m)={ P for any m,
Z mSym
=0
"k =0,
0,0m

q' is derived as follows:

q'= Zq'(kl,m)Pr(Kl =k, M = m|N2 <S8, +K))

m,k,
S
ZPnlszm
— an=0 . PF(KI = O’KZ = O,M = m) + z PSl+kl,Sz+k1,m . P]/'(Kl = kl’KZ = O,M = m)
m I)(),Om PV(NZ < S2 +K1) m, k=1 PkIOm Pr(Nz < S2 +K1)

:ZPr(Nl <S,,N, :Sz),M=m)+Z:Z:Pr(N1 =S8, +k,N,=S,+k M =m)
m Pr(N,<S§,+K)) k=1 m Pr(N,<S§,+K))

_Pr(N,<S.N, =5,) +ZPr(N1 =S, +k,N, =8, +k,)
Pr(N,<S,+K) & Pr(N,<S, +K,)

1
Pr(N, <8, +K1),§ (K, =k, Ny =5, +k)

_Pr(N,=5,+K))
Pr(N,<S,+K,)

Rewriting (3.13) as
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0 5 =0

5,1

q'"'(m)= anlszm for any m,

n =0
PO,Om
q'' is derived as follows:

q":Zq"(m)Pr(M :m|K1 =0,K, =0)

S,-1

yr

_yid " PHK, =0,K, =0,M =m)
— P Pr(K, =0,K, =0)

_Pr(N, <S§,,N, =5,)
Pr(K,=0,K,=0)
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APPENDIX C
ALTERNATIVE APPROXIMATE ¢g" VALUES

D> Pr(N,=8,+K K, =k)Pr(K, =k)
k=0

A) g, = from Lemma 3.4.

> Pr(N,<S,+K||K, =k)Pr(K, =k)

k=0

Assuming that K, and N, are independent,

D Pr(N, =8, +k)Pr(K, =k)

k=0

D> Pr(N, <S8, +k)Pr(K, =k)

k=0

q,=

k=1

(= p )P 1= pI™)+ Y (1= p2)ps ™ (1= oI ™)

(1= A= p )+ D (1= p (A= p)p ™))
k=1

B) g, = > q'([k, —1] ,m)Pr(K, =k,M =m|N, <S, +K))

m,k

where
0 for k =0,
[kl _1]+ =
k,—=1 for k >0.
Rewriting
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ZPr(K =[k,—1]'\N, =S, +K, .M =m) Pr(K,=k,K,=0,M = m)
T Pr(K, =[k -1 ,N, <S, +K,,M = m) Pr(N, <S, +K,)

Assuming that M and (K,, N, ) are independent,

1 P& =[k -1, N, =S, + K)P(M =m)

PN, <8, +K) 7' Pr(K, = [k ~1]", N, <8, +K)Pr(M =m) P&, =k, Ky =OPHM =)

Gy =

1 Pr(N, =S, +K|K, :[kl _1]+)P’(K1 :[kl _1]+)

- PHK, =k,,N, <S, +K,)
PHN, <S8, +K) % PN, <8, + K, |K, =[k, -] \Pr(K, =[k, —1]")

1 PN, =S, +K| K, :[kl _1]+)

PN, =5, +K1|K1 =k))-Pr(K, =k)

- PAN, <8,+K) 5 PN, <5, +K K, =[k, ~1])

Next assuming that K, and N, are independent,

g, = ! Pr(N, =8, +[k -1 ) pr(N, < S, +k)Pr(K, = k)
Pr(N, <S8, +K,) T Pr(N, < S, +[k, —1]")
_ (PSS L S PIOGRSS, k)
PN, = )PF(N2 <5) PrK, —O)+klz_l:Pr(N2 =S, +k —1) PHN, <5, +k. 1) PrK, =k)

PN, <5, +K,)

Sy +k+1

(@=p2)pr )= “‘”>+Z«1 PP = )P )
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where

E(K)) = Z:klPr(Kl =k)=—""" A=p)pi! using M /M /1 formulas.

k=0 (I- p1S +l)

D) Ignoring dependence on M ,

= iq'(kl)Pr(Kl =k))

Jy=0

_~Pr(N, =8, +k)
o Pr(N, <8, +k)

Pr(K, =k)

S, +k -
115

:(1—,02),02 — 5y 4 Z —P2)Ps (1—p)p5H .

(1_[0524—1) — (1_ Sz+k1+l)

E) Ignoring dependence on M ,

qy = > q'([k, =1]")Pr(K, =k,)

= ¢ (OPr(K, =0)+ > ¢ (k, ~DPr(K, =k,

k=1

_Pr(N, =,) ZPr(szSz+k1—l)
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(I—Pfﬁl) s 1;1 (1- ™)

Sy +k

(1-p)p;

Pr(N, =5,) (l—pz)pSZ
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APPENDIX D
CODES FOR THE APPROXIMATION AND SIMULATION

Code for calculating the approximation results of n component assembly model:
uses crt;
type n=0..6;
var d5: text;
S: array [n] of integer;
Mu: array [n] of Double;

Lamda: Double;

Procedure App_Values;
var SPapp, FRapp, ESapp: Double;

Ro: array [n] of Double;
Ek : array[n] of Double;
g_EkK : array [n] of Double;
g_Ek_bar: array [n] of Double;
Pk : array [n,0..120] of Double;
P2k: array [n,0..120] of Double;
Pm: array [0..120] of Double;
SumEk, SumP2k:Double;

I,t:integer;

Function Power(Say:Double; U:integer): Double;
Var iiinteger; us:Double;
Begin
us:=1;
if U>0 then
Fori:=1to U Do

us:= us * Say;
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Power:=us;
End;

Procedure bir;
var i: integer;
begin
fori:=0 to 120 do
begin
if i=0 then Pk[1,0]:=1-Power(Ro[1],(S[1]+1))
else
begin
PK[1,i]:=(1-Ro[1])*Power(Ro[1],(S[1]+i));
end;
P2k[1,i]:=PK[1,i];
end;
Ek[1]:=Power(Ro[1],(S[1]+1))/(1-Ro[1]);
a_Ek[1]:=(1-Ro[2])*EXP((S[2]+Ek[1])*LN(Ro[2]))/(1- EXP((S[2]+Ek[1]+1)*LN(Ro[2])) );
end;

Procedure ikin;

var i,j,comp:integer;

begin
for comp:=2 to 6 do
begin
for i:=0 to 120 do
begin

q_Ek_bar[comp-1]:=1-q_Ek[comp-1];
if i=0 then Pk[comp,0]:=(1-Ro[comp])/(1-q_Ek_bar[comp-1]*Ro[comp])
else Pk[comp,i]:= q_Ek[comp-1] * (1-Ro[comp]) * Power(Ro[comp], i) / (1-
g_Ek_bar[comp-1] * Ro[comp]);
SumP2k:=0;
Forj:=0toido
Begin
SumP2k:=SumP2k+P2k[comp-1,j]*Pk[comp,i-]];
End;
P2k[comp,i]:=SumP2k;
end;
SumEKk:=0;
for j:=0 to 120 do
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begin
SumEk:=SumEk + j*P2k[comp,j];
End,;
Ek[comp]:=SumEk;
g_Ek[comp]:=(1-Ro[comp+1])*EXP((S[comp+1]+Ek[comp])*LN(Ro[comp+1]))/(1-
EXP((S[comp+1]+Ek[comp]+1)*LN(Ro[comp+1])) );
end;

end;

Procedure assembly;
Var i: integer;
Begin
For i:=0 to 120 do
Pm[i]:=(1-Ro[0])*Power(Rol[01,i);
end;

Procedure SP_approximate; {p(k>0)=P(m>S-kab-kc)=1-P(m=<S-kab-kc)}
Var i,j,r: integer;
prob,prob2 : double;
Begin
prob2:=0;
For i:=0 to S[0] Do
begin
prob:=0;
for r:=0 to (S[0]-i) do prob:= prob + Pm([r];
for j:=0 to i do prob2:= prob2 + prob*P2k[5,(i-j)]*Pk[6,]];
end;

SPapp:= 1 - prob2;

End;

Procedure FR_approximate; {p(m_bar > 0)= (1-FR)- P(m_bar=)}

Var i,j,r: integer;

prob,prob2 : double;
Begin

prob2:=0;

For i:=0 to (S[0]-1) Do

begin
prob:=0;
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for r:=0 to (S[0]-i-1) do prob:= prob + Pm[r];
for j:=0 to i do prob2:= prob2 + prob*P2k[5,(i-j)]*Pk[6,]];
end;
FRapp:= prob2;
End;

Procedure Backorder;
Var i,j,m : integer;
prob,prob2 : double;
Begin

For m:=0 to 100 do
Begin
prob:=0;
For i:=0 to (S[0]+m) Do
begin
forj:=0toido
prob:= prob + Pm[(S[0]+m-i)]*P2K[(5),(i-)]*PK[6,]];
end;
PK[0,m] := prob;
end;
End;

Procedure ES_approximate; { Sum of "K * P(K=k)"}
var icinteger; sonuc:double;
Begin
fori:=0to 100 do
sonuc:=sonuc+ i*Pk][0,i];

ESapp:=sonuc;

End;

begin {main app procedure}

For t:=0 to 6 do
begin
Ro[t]:= Lamda/Mul[t];
end;

bir;
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ikin;

assembly;

SP_approximate;

FR_approximate;

Backorder;

ES_approximate;

Append(d5);

writeln(d5,'SP:',SPapp:5:5,' FR:'FRapp:5:5,' EB:', ESapp:5:5);

Procedure bilgi_al;

Var i: integer;

Begin
Write('Lamda...................."); ReadIn(Lamda);
For i:=0 to 6 do
begin
write("S[,i,"]................"");ReadIn(S[i]);
write('Mu[',i,'"].................");ReadIn(Muli]);
end;
Append(d5);
Write(d5,'Lamda:',Lamda:3:0);
For i:=0 to 6 do
begin
write(d5," S[,i,"T:,S[i]:3," Mu[\i,":",Mul[i]:3:0);

end;

end;

begin {main program}
Assign(d5,'qEk.dat");
bilgi_al;

App_Values;
Close(d5);
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writeln("THE END :))');
readin;
End.
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Expected Backorder

0,0175

0,017

0,0165

0,016

0,0155

0,015

7
(o)
%

Fill Rate

98,1
98,08
98,06
98,04
98,02

98
97,98
97,96
97,94

Time

Stockout Probability

S S Time

er

S S ®
S S $
S N EX

Figure A.2 Results of Performance Measures Versus Simulation Time

for Case with Parameters p, =y, =, =20, 1=9, §,=5,=5,=5
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APPENDIX E

APPROXIMATION PERFORMANCE FOR SEVERAL PARAMETER SETS:
TWO-COMPONENT CASE

Table A.1 Errors of Expected Backorders for Several Parameter Sets

VALUE ERROR

EB
Ho | my | py | So 1| S, | EB (App) | EB (Sim) | EB (Re)% | (Abs)
10 | 20 | 10 |15 0| 3930 | 3,649 7,701 0,281
10 | 20 | 10 |15 5| 3155 | 2,867 10,066 | 0,289
10 | 20 | 10 |15 10 | 2,698 | 2,538 6,308 0,160
10 | 20 | 10 |15 15 | 2427 | 2,378 2,084 0,050
10 | 20 | 10 |15 2268 | 2,061 10,035 | 0,207

10 | 20 | 10 |15 0 3,328 2,998 11,018 0,330

10 | 20 | 10 |15 5 2,458 2,198 11,803 0,259

10 | 20 | 10 |15 10 1,944 1,810 7,424 0,134

10 | 20 | 10 |15 15| 1,641 1,673 1,932 0,032

alojlolo|o|ololo|lo|lo| b
N
o

10 | 20 | 10 |15 20 1,462 1,575 7,197 0,113

10 | 20 | 10 |15 10| 0 2,888 2,611 10,597 0,277

10 | 20 | 10 |15 10| 6 1,996 1,845 8,186 0,151

10 | 20 | 10 |15 10 10| 1,470 1,133 29,761 0,337

10 | 20 | 10 |15 10 15| 1,159 1,066 8,756 0,093

10 | 20 | 10 |15 0,975 0,942 3,535 0,033

10 | 20 | 10 |15 201 O 2,372 2,003 18,410 0,369

10 | 20 | 10 |15 20| 5 1,502 1,324 13,434 0,178

10 | 20 | 10 |15 20/ 10| 0,988 0,832 18,788 0,156

10 | 20 | 10 |15 20 /15| 0,685 0,600 14,125 0,085

10 | 20 | 10 |15 20 20| 0,506 0,530 4,457 0,024

20 | 10 | 10 |15 0 6,479 6,376 1,614 0,103

20 | 10 | 10 |15 5 6,479 6,145 5,439 0,334

20 | 10 | 10 |15 10| 6,479 6,457 0,332 0,021

20 | 10 | 10 |15 15| 6,479 6,798 4,702 0,320

© (O (O (O O [ [© [© © O [(O (O[O €O (O (O [¢O (O (O (O (O (O (O (O (O (O (O (O (O (O |
—
o
N
o

oo |O|O |00 |o
N
o

20 | 10 | 10 |15 6,479 6,320 2,503 0,158
20 | 10 | 10 |15 0 4,589 4,743 3,236 0,153
20 | 10 | 10 |15 5 4,584 4,458 2,842 0,127
20 | 10 | 10 |15 10 | 4,584 4,546 0,835 0,038
20 | 10 | 10 |15 15| 4,584 4,431 3,457 0,153
20 | 10 | 10 |15 20 | 4,584 4,293 6,780 0,291
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Table A.1 Errors of Expected Backorder for Several Parameter Sets

(Continued)
20 | 10 | 10 (15| 9 |10 O | 3,488 3,190 9,358 0,298
20 | 10 | 10 [15] 9 |10 5 3,466 3,515 1,386 0,049
20 | 10 | 10 [15] 9 |10 /10| 3,466 3,090 12,142 0,375
20 | 10 | 10 [15] 9 |10 15| 3,466 3,463 0,075 0,003
20 | 10 | 10 [15] 9 |10 20| 3,466 3,143 10,257 0,322
20 | 10 | 10 /15| 9 |20 O | 2,505 2,420 3,531 0,085
20 | 10 | 10 |15| 9 |20 5 2,417 2,221 8,808 0,196
20 | 10 | 10 |15, 9 |20 10| 2,415 2,421 0,252 0,006
20 | 10 | 10 [15] 9 |20 15| 2,415 2,420 0,195 0,005
20 | 10 | 10 |15 9 |20 20| 2,415 2,074 | 16,457 0,341
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APPENDIX F

GRAPHS FOR APPROXIMATION ERRORS %

Felatve Brorin Bipected Backorders

o 15,0000-20,0000
o 10,0000-15,0000
|5 0000-10,0000
o0pooo-50000

Abzolute BErorin Fil Rate

-l

3

't' ‘?l .1:; ﬂ{{yﬂ}m i 2
AN I 1

L &ﬁﬁlTl ""ﬂ[ﬂ .JI' o
52 ‘llr g

m4.,0000-5,0000
o%.0000-4,0000
ol,0000-3,0000
m1,0000-20000
oQ,0000-1,0000

Figure A3 u, =10, 1, =10, u,
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Felatbe Ermor I Ecpected Backorder =

o 14,0000-16,0000
W 12,0000-14,0000
=2 10,0000-12,0000
m 3,0000-10,0000
o 6,0000-8 0000

O 4,0000-6 0000

= 2,0000-4 0000
20,0000-2 0000

= 3,0000-3 5000
= 2,5000-3 0000
= 2 0000-2 5000
o 1,5000-2 0000
0 1,0000-1 5000
m 0,5000-1 0000
=0,0000-0 5000

o 3,5000-4 0000
= 3 .0000-35000
= 2,5000-3 0000
m 2,0000-25000
0 1,5000-2 0000
2 1,0000-1 5000
m 0,5000-1,0000
= 0,0000-05000

Figure A4 u, =10, u, =10, i, =20, 1=9, S, =5
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Felatbe Brorl Bepeced backorkrs

= 9,0000-10,0000
m 3,0000-2 0000
o 7,008 0000
u 5,0000-7 0000
= 3,0000-5 0000
m L, 0000-5 0000
o 3,0000-4 0000
0 2,0000-3 0000
= |, 0000-2 0000
@ 0,0000-1 0000

@ 2.5000-3 0000
W 2000025000
o 1.5000-20000
o 100001 5000
B 0.5000-1 0000
20,0000 500

m 20002500

o 1,5000-2 0000

O 1000015000

m 0.5000-1 0000

@ 0000005000

Figure A5 u, =10, p, =20, i, =20, 1=9, S, =5
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APPENDIX G
GRAPHS FOR PERFORMANCE MEASURRES
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APPENDIX H

GRAPHS FOR APPROXIMATION ERRORS %

Relative Errar in Expected Backarders

05,0000 10,0000

| 0,0000-5 0000

O -5 0000 0,0000

= 4,0000 5 ,0000
W 2,0000 4,0000
O o0,0000-2 0000
O -2,0000-0 0000
= -40000-- 20000
O -6,0000-- 40000

puEay:

!}r

- -""‘"E.;-"' = f" b,
(RS AR

s B ]
A "ﬂh
e

5
4 -
; = 40000- 6,0000
2 |~ | 2 HD00-4.0000
‘ﬂ""fﬁ‘%"iﬁ" ‘ﬁ‘.“ﬂ'\{ﬂ:“‘ R ; 0,0000-2,0000
sz O JI'{H}"‘;E#H‘ T L 0 - Z.0000- 60,0000
"*J-‘ﬁm_q;ﬁ# s = - 4,0000- - 2,0000
-2 " "L'“?\"_-"é?@““‘ ..' 0 - 5.0000--4,0000
- "\- . . s1=20
-8 a2 s1=1z
=

Figure A7 py =, =, =10, 1 =9, §,=5
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s1=0
s1=2

Relative Error in Expected Backorders

s1=4

s1=6

S2

10
12
14
16
18

s1=8

s1=20

s1
s1
s1
s1
s1

m 8,0000-10,0000
m 6,0000-8,0000
0 4,0000-6,0000
m 2,0000-4,0000
@ 0,0000-2,0000
| -2,0000-0,0000
0O -4,0000--2,0000
0O -6,0000--4,0000
m -8,0000--6,0000
@ -10,0000--8,0000

Absolute Error in Fill Rate

\Yi

=0
s1=2
s1=4

s1=6

10
12
14
16
18

s1=8
s$1=20

s1
s1
s1
s1
s1

m 3,0000-4,0000
@ 2,0000-3,0000
| 1,0000-2,0000
0 0,0000-1,0000
0 -1,0000-0,0000
| -2,0000--1,0000
@ -3,0000--2,0000

Absolte Error in Stockout Probability

S2

@ 2,0000-3,0000
@ 1,0000-2,0000
m 0,0000-1,0000
0 -1,0000-0,0000
0 -2,0000--1,0000
m -3,0000--2,0000
@ -4,0000--3,0000

Figure A.8 1,

=10, g, =20, 1, =20, A=9, S, =5
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APPENDIX |

95% CONFIDENCE INTERVALS FOR PERFORMANCE MEASURES

Table A.2.A Confidence Intervals for SP, u, =y, = u, =10, A=9, S, =5

102

S1 | S2 | mean | stdev | Lower Limit | UpperLimit | Approximate | Check
0 0 | 60,701 | 1,68 59,771 61,632 61,227 1
0 1 | 58,253 | 1,92 57,190 59,317 59,659 0
0 2 | 58,375 | 1,298 57,657 59,094 58,953 1
0 3 | 59,531 | 2,525 58,132 60,929 58,635 1
0 4 | 58,676 | 1,954 57,594 59,758 58,492 1
0 5 | 57,495 | 1,077 56,898 58,091 58,428 0
0 6 | 58,543 | 1,801 57,545 59,540 58,399 1
0 7 | 58,605 | 1,555 57,744 59,467 58,386 1
0 8 | 57,234 | 1,717 56,283 58,185 58,380 0
0 9 | 58,623 | 1,92 57,560 59,687 58,378 1
0 | 10 | 57,856 | 1,419 57,070 58,642 58,376 1
0 | 11 | 58,155 | 1,447 57,354 58,957 58,376 1
0 | 12 | 58,178 | 1,175 57,527 58,829 58,376 1
0 | 13 59,4 2,042 58,269 60,531 58,376 1
0 | 14 | 58,659 | 1,631 57,755 59,562 58,376 1
0 | 15| 58,36 | 2,036 57,232 59,488 58,375 1
0 | 16 | 58,104 | 1,932 57,034 59,174 58,375 1
0 | 17 | 58,288 | 2,114 57,117 59,459 58,375 1
0 | 18 | 58,34 | 1,765 57,363 59,317 58,375 1
0 | 19 | 58,355 | 2,566 56,934 59,776 58,375 1
0 | 20 | 58,248 | 1,497 57,419 59,077 58,375 1
1 0 | 58,833 | 1,671 57,908 59,759 59,481 1
1 1 | 56,159 | 2,236 54,921 57,398 57,290 1
1 2 | 55416 | 1,422 54,628 56,204 56,305 0
1 3 | 55,183 | 2,07 54,037 56,330 55,861 1
1 4 | 54,522 | 1,522 53,679 55,365 55,662 0
1 5 | 54,885 | 2,056 53,747 56,024 55,572 1
1 6 | 54,873 | 2,016 53,757 55,990 55,531 1
1 7 | 55,263 | 2,013 54,148 56,377 55,513 1
1 8 | 55,313 | 1,872 54,276 56,350 55,505 1
1 9 | 54,517 | 1,755 53,545 55,490 55,501 0
1 10 | 54,661 | 2,123 53,486 55,837 55,500 1
1 11 | 55,349 | 1,401 54,573 56,125 55,499 1




Table A.2.A Confidence Intervals for SP, y, =y, = u, =10, 1=9, §, =5
(Continued)

1 112 | 54,673 | 1,293 53,957 55,389 55,498 0
1 [ 13 | 55,618 | 1,941 54,543 56,693 55,498 1
1 | 14 | 55,233 | 1,964 54,145 56,320 55,498 1
1 | 15 [ 54,89 | 1,557 54,028 55,752 55,498 1
1 | 16 | 54,435 | 2,515 53,042 55,828 55,498 1
1 | 17 | 55,005 | 1,753 54,034 55,976 55,498 1
1 |18 | 54,197 | 2,017 53,080 55,314 55,498 0
1 119 | 54,375 | 1,623 53,477 55,274 55,498 0
1 | 20 [ 54,811 | 2,007 53,699 55,922 55,498 1
2 0 | 58,507 | 1,511 57,671 59,344 58,831 1
2 1 [54,691 | 1,573 53,820 55,563 56,286 0
2 2 | 52,707 | 1,645 51,796 53,617 55,140 0
2 3 | 54,076 | 1,448 53,274 54,878 54,625 1
2 4 | 53,429 | 1,512 52,592 54,267 54,393 0
2 5 | 52,989 | 1,58 52,114 53,863 54,289 0
2 6 | 53,595 | 1,697 52,655 54,535 54,242 1
2 7 | 54,193 | 2,578 52,766 55,621 54,221 1
2 8 | 53,655 [ 1,921 52,591 54,719 54,211 1
2 9 | 53,415 | 1,04 52,839 53,991 54,207 0
2 | 10 | 53,546 | 2,447 52,191 54,901 54,205 1
2 | 11 | 53,855 | 1,889 52,808 54,901 54,204 1
2 | 12 | 54,097 | 2,238 52,857 55,336 54,204 1
2 | 13 | 53,538 | 1,974 52,445 54,631 54,204 1
2 |14 ] 533 1,604 52,412 54,188 54,204 0
2 | 15 | 53,507 | 1,816 52,501 54,512 54,203 1
2 | 16 | 54,417 | 2,021 53,297 55,536 54,203 1
2 | 17 | 53,861 | 1,751 52,891 54,830 54,203 1
2 | 18 | 53,769 | 1,125 53,146 54,393 54,203 1
2 | 19 | 52,948 | 1,689 52,013 53,883 54,203 0
2 | 20 | 52,792 | 2,265 51,538 54,046 54,203 0
3 0 | 58,952 | 1,383 58,186 59,718 58,571 1
3 1 | 54,632 | 2,358 53,326 55,938 55,848 1
3 2 | 54,093 | 1,711 53,146 55,041 54,623 1
3 3 | 563,683 | 1,796 52,688 54,678 54,072 1
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Table A.2.B Confidence Intervals for FR, u, = ¢, = u, =10, A=9, §, =5

104

S1 | S2 | mean | stdev | Lower Limit | UpperLimit | Approximate | Check
0 0 | 32,724 | 1,457 31,917 33,531 32,221 1
0 1 | 35,257 | 1,656 34,340 36,175 33,876 0
0 2 | 35123 | 1,124 34,500 35,745 34,621 1
0 3 | 34,187 | 2,145 32,998 35,375 34,956 1
0 4 | 34,951 1,7 34,010 35,893 35,107 1
0 5 | 36,026 | 0,928 35,512 36,540 35,175 0
0 6 | 35,076 | 1,642 34,167 35,985 35,206 1
0 7 | 35,046 | 1,373 34,285 35,807 35,219 1
0 8 | 36,205 | 1,539 35,353 37,058 35,226 0
0 9 | 35,024 | 1,732 34,065 35,983 35,228 1
0 | 10 | 35,643 | 1,231 34,961 36,324 35,230 1
0 | 11 | 35,451 | 1,253 34,757 36,145 35,230 1
0 | 12 | 35,409 | 0,982 34,865 35,953 35,230 1
0 | 13 | 34,341 | 1,767 33,363 35,320 35,231 1
0 | 14 | 35,031 | 1,466 34,219 35,843 35,231 1
0 | 15 | 35,266 | 1,851 34,241 36,291 35,231 1
0 | 16 | 35,436 | 1,693 34,499 36,373 35,231 1
0 | 17 | 35,267 | 1,863 34,236 36,299 35,231 1
0 | 18 | 35,195 | 1,531 34,348 36,043 35,231 1
0 | 19 | 35,284 | 2,348 33,984 36,584 35,231 1
0 | 20 | 35,259 | 1,298 34,540 35,978 35,231 1
1 0 | 34,649 | 1,473 33,833 35,465 34,092 1
1 1 | 37,693 | 1,917 36,632 38,755 36,449 0
1 2 | 38,514 | 1,335 37,774 39,254 37,509 0
1 3 | 38,768 | 1,872 37,731 39,805 37,986 1
1 4 | 39,363 | 1,393 38,591 40,134 38,201 0
1 5 | 39,081 | 1,838 38,063 40,098 38,298 1
1 6 39,09 | 1,819 38,083 40,097 38,341 1
1 7 | 38,765 | 1,758 37,791 39,739 38,361 1
1 8 | 38,656 | 1,707 37,710 39,602 38,370 1
1 9 |[39,379 | 1,55 38,521 40,238 38,374 0
1 10 | 39,229 | 1,905 38,174 40,284 38,375 1
1 11 | 38,645 | 1,245 37,956 39,335 38,376 1
1 12 | 39,215 | 1,117 38,597 39,834 38,377 0
1 13 | 38,401 | 1,729 37,444 39,359 38,377 1
1 14 | 38,729 | 1,751 37,759 39,698 38,377 1
1 15 | 38,987 | 1,347 38,242 39,733 38,377 1
1 16 | 39,482 | 2,31 38,203 40,761 38,377 1
1 17 | 38,987 | 1,569 38,118 39,856 38,377 1
1 18 | 39,713 | 1,82 38,705 40,721 38,377 0
1 19 | 39,55 | 1,484 38,728 40,372 38,377 0
1 | 20 | 39,117 | 1,806 38,117 40,117 38,377 1
2 0 | 35,091 | 1,333 34,353 35,829 34,770 1




Table A.2.B Confidence Intervals for FR, g, =y, = 4, =10, 1=9, §, =5
(Continued)

2 1 [ 39,093 | 1,479 38,274 39,912 37,532 0
2 2 | 41,283 | 1,486 40,460 42,106 38,775 0
2 3 | 40,001 | 1,356 39,250 40,752 39,335 1
2 4 | 40,583 | 1,337 39,843 41,324 39,587 0
2 5 | 41,037 | 1,43 40,245 41,829 39,700 0
2 6 | 40,45 | 1,557 39,588 41,312 39,751 1
2 7 |39,899 | 2,324 38,612 41,187 39,774 1
2 8 | 40,405 | 1,692 39,467 41,342 39,784 1
2 9 | 40,603 | 1,041 40,027 41,180 39,789 0
2 | 10 | 40,453 | 2,186 39,242 41,663 39,791 1
2 | 11 |40,197 | 1,724 39,242 41,152 39,792 1
2 |12 | 39,941 | 2,038 38,812 41,069 39,792 1
2 | 13 | 40,522 | 1,854 39,495 41,549 39,792 1
2 | 14 | 40,745 | 1,483 39,924 41,567 39,793 0
2 | 15| 40,535 | 1,609 39,644 41,426 39,793 1
2 | 16 | 39,665 | 1,828 38,652 40,677 39,793 1
2 | 17 | 40,207 | 1,55 39,349 41,066 39,793 1
2 | 18 | 40,336 | 1,066 39,746 40,926 39,793 1
2 |19 | 41,086 | 1,606 40,197 41,975 39,793 0
2 | 20 | 41,259 | 2,007 40,147 42,370 39,793 0
3 0 | 34,685 | 1,231 34,003 35,367 35,034 1
3 1 (39,277 | 2,187 38,066 40,488 38,002 0
3 2 | 39,97 | 1,465 39,159 40,781 39,337 1
3 3 | 40,403 | 1,616 39,508 41,298 39,938 1
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Table A.2.C Confidence Intervals for EB, x, = ¢, = 1, =10, 1=9, §, =5

106

S1 | S2 | mean | stdev | Lower Limit | UpperLimit | Approximate | Check
0 0 | 6,104 | 0,757 5,685 6,523 6,143 1
0 1 | 5,851 | 0,68 5,475 6,228 5,978 1
0 2 | 5,743 | 0,407 5,517 5,969 5,903 1
0 3 | 6,277 | 0,792 5,839 6,716 5,870 1
0 4 | 6,067 | 0,88 5,579 6,554 5,855 1
0 5 | 5491 | 0,436 5,249 5,733 5,848 0
0 6 | 5,949 | 0,633 5,599 6,300 5,845 1
0 7 | 6,032 | 0,723 5,632 6,432 5,844 1
0 8 | 5,482 | 0,449 5,233 5,730 5,843 0
0 9 | 5,916 | 0,733 5,510 6,321 5,843 1
0 | 10 | 5,604 | 0,566 5,291 5,918 5,843 1
0 | 11 ] 5,539 | 0,592 5,211 5,867 5,843 1
0 | 12| 5,798 | 0,58 5,476 6,119 5,843 1
0 | 13 | 6,223 | 0,804 5,778 6,669 5,843 1
0 | 14 | 6,027 | 0,536 5,730 6,324 5,843 1
0 | 15| 5,755 | 0,587 5,430 6,081 5,843 1
0 | 16 | 5,644 | 0,69 5,262 6,027 5,843 1
0 | 17 | 5,843 | 0,433 5,603 6,083 5,843 1
0 | 18 | 5,839 | 0,757 5,420 6,259 5,843 1
0 | 19 | 5,953 | 0,844 5,485 6,420 5,843 1
0 | 20 | 5,666 | 0,528 5,374 5,958 5,843 1
1 0 | 5616 | 0,477 5,352 5,880 5,962 0
1 1 | 5,672 | 0,982 5,128 6,216 5,736 1
1 2 | 5626 | 0,48 5,360 5,892 5,634 1
1 3 | 5,604 | 0,846 5,136 6,073 5,589 1
1 4 | 5,345 | 0,458 5,092 5,599 5,568 1
1 5 | 5,524 | 0,781 5,091 5,957 5,559 1
1 6 5,45 | 0,612 5,110 5,789 5,555 1
1 7 | 5,537 | 0,739 5,127 5,946 5,553 1
1 8 | 5,517 | 0,558 5,208 5,826 5,552 1
1 9 | 5,251 | 0,594 4,922 5,580 5,552 1
1 10 | 5,392 | 0,535 5,096 5,689 5,551 1
1 11 | 5,631 | 0,512 5,348 5,915 5,551 1
1 12 | 5,299 | 0,534 5,004 5,595 5,551 1
1 13 | 5,68 | 0,526 5,389 5,971 5,551 1
1 14 | 5,682 | 0,727 5,280 6,085 5,551 1
1 15 | 5,364 | 0,54 5,065 5,664 5,551 1
1 16 | 5,386 | 0,861 4,909 5,863 5,551 1
1 17 | 5,467 | 0,526 5,176 5,759 5,551 1
1 18 | 5,604 | 0,771 5,177 6,031 5,551 1
1 19 | 5,441 | 0,521 5,153 5,730 5,551 1
1 | 20 | 5,247 | 0,515 4,962 5,532 5,551 0
2 0 | 5,903 | 0,625 5,557 6,249 5,893 1




Table A.2.C Confidence Intervals for EB, y, = x, =1, =10, A=9, §, =5
(Continued)

2 1 [ 5,348 | 0,428 5,111 5,585 5,633 0
2 2 | 5128 | 0,408 4,903 5,354 5,516 0
2 3 | 5,421 | 0,571 5,105 5,737 5,463 1
2 4 5,25 | 0,502 4,972 5,528 5,440 1
2 5 | 5,083 | 0,407 4,857 5,308 5,429 0
2 6 | 5178 | 0,511 4,895 5,461 5,424 1
2 7 | 5486 | 0,746 5,073 5,900 5,422 1
2 8 | 5368 | 0,615 5,027 5,708 5,421 1
2 9 | 5313 | 0,359 5115 5,512 5,420 1
2 |10 | 5,472 | 0,875 4,987 5,957 5,420 1
2 | 11| 5,405 | 0,669 5,034 5,775 5,420 1
2 | 12 | 5,542 | 0,774 5,113 5,970 5,420 1
2 |13 ] 541 0,62 5,067 5,754 5,420 1
2 | 14 | 5274 | 0,449 5,025 5,523 5,420 1
2 | 15| 5371 | 0,657 5,007 5,734 5,420 1
2 | 16 | 5,575 | 0,796 5,134 6,016 5,420 1
2 | 17 | 5,373 | 0,552 5,067 5,678 5,420 1
2 | 18 | 5,489 | 0,432 5,249 5,728 5,420 1
2 |19 | 4976 | 0,534 4,680 5,271 5,420 0
2 120 5,1 0,632 4,750 5,450 5,420 1
3 0 5,95 0,43 5,712 6,189 5,864 1
3 1 |5428 | 0,682 5,050 5,806 5,588 1
3 2 | 5,364 | 0,811 4,915 5,813 5,463 1
3 3 | 5,335 | 0,606 4,999 5,671 5,407 1
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APPENDIX J
OPTIMIZATION WITH GREEDY HEURISTIC: TWO-COMPONENT CASE

Table A.4 lterations for 1, =20, w4, =10, u, =20, A =9, a=0.95, %0 =c =c,

So | S, S, FR(S),S,,8,)|FR(S, +1,5,,S,) FR(Sy, S, + LS, ) FR(S,,S,,S, +1)
4 1999|999/ 0,95899

4,0 O 0,28235 0,35226 0,34996 0,28237
4110 0,34996 0,41514 0,41075 0,35001
412 0 0,41075 0,47169 0,46539 0,41086
413 0 0,46539 0,52253 0,51445 0,46559
414 0 0,51445 0,56821 0,55844 0,51479
415 0 0,55844 0,6092 0,59781 0,559
416 0 0,59781 0,64595 0,63296 0,59869
417 0 0,63296 0,67884 0,66426 0,63429
418 0 0,66426 0,70824 0,69205 0,66618
419 0 0,69205 0,73446 0,71661 0,6947
4110 0 0,71661 0,7578 0,73825 0,72017
4 11,0 0,73825 0,77853 0,75722 0,74288
5,110 0,77853 0,80734 0,7969 0,78159
5112 0 0,7969 0,82456 0,81315 0,80071
5 13| 0 0,81315 0,83989 0,82748 0,8178
5/14 | 0 0,82748 0,85355 0,8401 0,83304
6 14 0 0,85355 0,87246 0,86569 0,85712
6 115/ 0 0,86569 0,8838 0,87649 0,86983
6 16| 0 0,87649 0,89395 0,88608 0,8812
6 17| 0 0,88608 0,90304 0,89461 0,89139
6 118 0 0,89461 0,91116 0,90218 0,9005
7,18 0 0,91116 0,92302 0,91844 0,91487
7,191 0 0,91844 0,9298 0,92495 0,92246
7,120 0 0,92495 0,93591 0,93078 0,92927
71210 0,93078 0,94139 0,936 0,93538
8121 0 0,94139 0,94908 0,94633 0,94432
8 122 0 0,94633 0,95365 0,95077 0,94938
8 23/ 0 0,95077
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Table A.5 lterations for u, =20, p, = u, =10, 1 =9, «=0.95, %" =c =c,

Sy | S, | S, FR(S,,5,,8,) FR(S, +1,5,,5,) [FR(Sy, S, +1,5,) FR(S,,S,,5, +1)
4 1999999 0,95899

4,00 0,19676 0,25086 0,2365 0,20532
4,110 0,2365 0,28805 0,26826 0,24785
4,20 0,26826 0,31801 0,29318 0,28252
4,30 0,29318 0,34179 0,31233 0,31044
5/ 3 0 0,34179 0,387 0,36032 0,35989
6 3 0 0,387 0,42942 0,40465 0,40552
7.3 .0 0,42942 0,46933 0,44608 0,44805
8 3.0 0,46933 0,5069 0,48499 0,48785
9. 3.0 0,5069 0,54224 0,52157 0,52513
9 3 |1 0,52513 0,56005 0,54143 0,54154
10/ 3 | 1 0,56005 0,59271 0,57517 0,57607
1) 3 | 1 0,59271 0,62324 0,60673 0,60827
1/ 3 | 2 0,60827 0,63826 0,62341 0,62228
11 4 | 2 0,62341 0,65221 0,63642 0,63841
114 | 3 0,63841 0,66661 0,65239 0,65192
121 4 | 3 0,66661 0,69277 0,67952 0,67956
13/ 4 | 3 0,69277 0,71704 0,7047 0,70515
13/ 4 | 4 0,70515 0,72882 0,71772 0,71629
13/ 6 | 4 0,71772 0,74038 0,72879 0,72943
13/ 6 | 6 0,72943 0,75148 0,74105 0,73998
13/ 6 | 5 0,74105 0,76218 0,75132 0,75208
13/ 6 | 6 0,75208 0,77259 0,76281 0,76201
13/ 7 | 6 0,76281 0,78247 0,77233 0,77316
13/ 7 | 7 0,77316 0,79219 0,78306 0,78247
13/ 8 | 7 0,78306 0,80131 0,79187 0,79272
13/ 8 | 8 0,79272 0,81035 0,80185 0,80141
13/ 9 | 8 0,80185 0,81876 0,80999 0,81083
13/ 9 | 9 0,81083 0,82714 0,81924 0,81891
13/10 | 9 0,81924 0,83488 0,82675 0,82756
1310 | 10 0,82756 0,84262 0,8353 0,83506
13/ 11 | 10 0,8353 0,84973 0,84222 0,84299
13111 | 11 0,84299 0,85686 0,8501 0,84992
13112 | 11 0,8501 0,86339 0,85646 0,85719
13112 | 12 0,85719 0,86994 0,8637 0,86357
13113 | 12 0,8637 0,87592 0,86954 0,87022
13/ 13 | 13 0,87022 0,88193 0,87619 0,87609
13114 | 13 0,87619 0,8874 0,88154 0,88217
13114 | 14 0,88217 0,8929 0,88763 0,88755
13/ 15 | 14 0,88763 0,8979 0,89252 0,8931
13,15 | 15 0,8931 0,90292 0,89809 0,89803
13,16 | 15 0,89809 0,90748 0,90256 0,90309
13/ 16 | 16 0,90309 0,91207 0,90764 0,9076
1317 | 16 0,90764 0,91622 0,91172 0,91221
13117 | 17 0,91221 0,9204 0,91635 0,91632
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Co

Table A5 lterations forpy, =20, u, =u, =10, A=9, a=095 —=c =c,

(Continued)
13118 | 17 0,91635 0,92418 0,92008 0,92052
13118 | 18 0,92052 0,92798 0,92429 0,92427
13119 | 18 0,92429 0,93142 0,92768 0,92808
13119 | 19 0,92808 0,93488 0,93151 0,93149
13120 | 19 0,93151 0,938 0,93459 0,93495
13|20 | 20 0,93495 0,94114 0,93807 0,93806
13121 | 20 0,93807 0,94397 0,94087 0,9412
13|21 | 21 0,9412 0,94682 0,94403 0,94402
13| 22 | 21 0,94403 0,94939 0,94657 0,94687
13|22 | 22 0,94687 0,95197 0,94943 0,94942
13|23 | 22 0,94943 0,9543 0,95174 0,95201
13123 | 28 0,95201

Table A.6 Enumeration for u, =20, x, =10, ¢, =20, 1=9

with investment <39 and FR >0.95

Total
S, S, S, FR Cost
8 23 0 |0,95077 39
7 24 1 10,95024 39
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Table A.7 Enumeration for u, =20, u, =10, u, =10, A =9
with investment <72 and FR >0.95

So S, S, FR Total Cost
13 23 23 0,95201 72
12 24 24 0,952 72
14 22 22 0,95197 72
11 25 25 0,95194 72
15 21 21 0,9519 72
16 20 20 0,95179 72
10 26 26 0,95177 72
13 24 22 0,95174 72
13 22 24 0,95173 72
12 25 23 0,95173 72
12 23 25 0,95172 72
14 23 21 0,9517 72
14 21 23 0,95169 72
11 26 24 0,95167 72
11 24 26 0,95166 72
17 19 19 0,95165 72
15 20 22 0,95162 72
15 22 20 0,95162 72
16 19 21 0,95152 72
16 21 19 0,95152 72
10 27 25 0,9515 72
10 25 27 0,95148 72
18 18 18 0,95147 72
17 18 20 0,95138 72
17 20 18 0,95137 72
9 27 27 0,95137 72
19 17 17 0,95124 72
18 17 19 0,9512 72
18 19 17 0,95118 72
9 28 26 0,9511 72
9 26 28 0,95109 72
19 16 18 0,95098 72
20 16 16 0,95096 72
19 18 16 0,95095 72
13 25 21 0,95091 72
12 26 22 0,95091 72
13 21 25 0,95089 72
12 22 26 0,95089 72
14 24 20 0,95087 72
14 20 24 0,95086 72
11 27 23 0,95084 72
11 23 27 0,95082 72
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Table A.7 Enumeration for u, =20, x4, =10, u, =10, 1 =9
with investment <72 and FR >0.95 (Continued)

15 23 19 0,9508 72
15 19 23 0,95079 72
20 15 17 0,95072 72
16 18 22 0,95069 72
16 22 18 0,95069 72
10 28 24 0,95067 72
20 17 15 0,95066 72
10 24 28 0,95065 72
21 15 15 0,95064 72
17 17 21 0,95055 72
17 21 17 0,95054 72
8 28 28 0,95051 72
21 14 16 0,9504 72
18 16 20 0,95038 72
18 20 16 0,95034 72
21 16 14 0,95032 72
9 29 25 0,95028 72
9 25 29 0,95026 72
22 14 14 0,95025 72
8 29 27 0,95024 72
8 27 29 0,95023 72
19 15 19 0,95017 72
19 19 15 0,9501 72
22 13 15 0,95004 72
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APPENDIX K
NUMERICAL RESULTS FOR REMARK 4.1

Table A.8 Numerical Results for Remark 4.1, case g, = u, = 1, = u; =10,
S, =8=5,=5=5 1=9.

Pr(K,, = k)
Results From Results From
K, Figure 4.2 Theorem 3.1 Error
0 0,32624 0,32631 0,00007
1 0,05078 0,05124 0,00045
2 0,04696 0,04772 0,00077
3 0,04342 0,04440 0,00099
4 0,04014 0,04127 0,00113
5 0,03712 0,03832 0,00120
6 0,03432 0,03555 0,00123
7 0,03173 0,03294 0,00121
8 0,02934 0,03051 0,00117
9 0,02713 0,02823 0,00110
10 0,02509 0,02610 0,00101
11 0,02319 0,02412 0,00092
12 0,02145 0,02227 0,00082
13 0,01983 0,02055 0,00072
14 0,01834 0,01895 0,00061
15 0,01695 0,01746 0,00051
16 0,01568 0,01609 0,00041
17 0,01449 0,01481 0,00031
18 0,01340 0,01363 0,00023
19 0,01239 0,01253 0,00014
20 0,01146 0,01152 0,00006
21 0,01059 0,01059 -0,00001
22 0,00980 0,00973 -0,00007
23 0,00906 0,00893 -0,00013
24 0,00837 0,00820 -0,00018
25 0,00774 0,00752 -0,00022
26 0,00716 0,00690 -0,00026
27 0,00662 0,00632 -0,00030
28 0,00612 0,00579 -0,00033
29 0,00566 0,00531 -0,00035
30 0,00523 0,00486 -0,00037
31 0,00484 0,00445 -0,00039
32 0,00447 0,00407 -0,00040
33 0,00414 0,00373 -0,00041
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Table A.8 Numerical Results for Remark 4.1 (Continued)

34 0,00382 0,00341 -0,00041
35 0,00354 0,00312 -0,00042
36 0,00327 0,00285 -0,00042
37 0,00302 0,00261 -0,00042
38 0,00280 0,00238 -0,00041
39 0,00258 0,00218 -0,00041
40 0,00239 0,00199 -0,00040
41 0,00221 0,00182 -0,00039
42 0,00204 0,00166 -0,00038
43 0,00189 0,00151 -0,00037
44 0,00175 0,00138 -0,00036
45 0,00162 0,00126 -0,00035
46 0,00149 0,00115 -0,00034
47 0,00138 0,00105 -0,00033
48 0,00128 0,00096 -0,00032
49 0,00118 0,00087 -0,00031
50 0,00109 0,00080 -0,00030
51 0,00101 0,00073 -0,00028
52 0,00093 0,00066 -0,00027
53 0,00086 0,00060 -0,00026
54 0,00080 0,00055 -0,00025
55 0,00074 0,00050 -0,00024
56 0,00068 0,00046 -0,00023
57 0,00063 0,00042 -0,00022
58 0,00058 0,00038 -0,00021
59 0,00054 0,00034 -0,00019
60 0,00050 0,00031 -0,00019
61 0,00046 0,00029 -0,00018
62 0,00043 0,00026 -0,00017
63 0,00039 0,00024 -0,00016
64 0,00036 0,00022 -0,00015
65 0,00034 0,00020 -0,00014
66 0,00031 0,00018 -0,00013
67 0,00029 0,00016 -0,00013
68 0,00027 0,00015 -0,00012
69 0,00025 0,00013 -0,00011
70 0,00023 0,00012 -0,00011
71 0,00021 0,00011 -0,00010
72 0,00019 0,00010 -0,00009
73 0,00018 0,00009 -0,00009
74 0,00017 0,00008 -0,00008
75 0,00015 0,00008 -0,00008
76 0,00014 0,00007 -0,00007
77 0,00013 0,00006 -0,00007
78 0,00012 0,00006 -0,00006
79 0,00011 0,00005 -0,00006
80 0,00010 0,00005 -0,00006
81 0,00010 0,00004 -0,00005
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Table A.8 Numerical Results for Remark 4.1 (Continued)

82 0,00009 0,00004 -0,00005
83 0,00008 0,00004 -0,00005
84 0,00008 0,00003 -0,00004
85 0,00007 0,00003 -0,00004
86 0,00006 0,00003 -0,00004
87 0,00006 0,00002 -0,00004
88 0,00006 0,00002 -0,00003
89 0,00005 0,00002 -0,00003
90 0,00005 0,00002 -0,00003
91 0,00004 0,00002 -0,00003
92 0,00004 0,00001 -0,00003
93 0,00004 0,00001 -0,00002
94 0,00003 0,00001 -0,00002
95 0,00003 0,00001 -0,00002
96 0,00003 0,00001 -0,00002
97 0,00003 0,00001 -0,00002
98 0,00003 0,00001 -0,00002
99 0,00002 0,00001 -0,00002
100 0,00002 0,00001 -0,00001
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APPENDIX M
APPROXIMATION PERFORMANCE
FOR INCREASING NUMBER OF COMPONENTS

Absolute Error in Fill Rate
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Figure A.9 Graphs of Approximation Errors (%)

for Increasing Number of Components
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APPENDIX N
APPROXIMATION PERFORMANCE WITH DIFFERENT SEQUENCES TO PICK

UP THE COMPONENTS
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APPENDIX O
OPTIMIZATION WITH GREEDY HEURISTIC: THREE-COMPONENT CASE
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Table A.16 Enumeration for g, =20, u, = u, =15, u, =20, A =9
with investment <28 and FR >0.95.

Total
SO S1 S2 SS FR Cost
6 3 4 1 0,95048 26
6 4 3 1 0,95044 26
6 3 3 2 0,95022 26
7 2 3 1 0,9576 27
6 4 4 1 0,95746 27
7 3 2 1 0,95737 27
6 3 4 2 0,95723 27
6 4 3 2 0,95719 27
7 3 3 0 0,95599 27
6 3 5 1 0,95462 27
6 5 3 1 0,95459 27
8 1 2 0 0,95455 27
7 2 2 2 0,9538 27
8 2 1 0 0,95364 27
6 3 3 3 0,95319 27
7 2 4 0 0,95308 27
7 4 2 0 0,95287 27
5 5 5 2 0,95184 27
8 1 1 1 0,9512 27
5 4 5 3 0,95069 27
5 5 4 3 0,95069 27
7 3 3 1 0,96523 28
6 4 4 2 0,964 32 28
7 2 4 1 0,96231 28
8 2 2 0 0,96226 28
7 4 2 1 0,96209 28
6 4 5 1 0,96172 28
6 5 4 1 0,96171 28
7 2 3 2 0,9617 28
7 3 2 2 0,96147 28
6 3 5 2 0,96145 28
6 5 3 2 0,96142 28
7 3 4 0 0,96077 28
7 4 3 0 0,96072 28
6 3 4 3 0,96028 28
6 4 3 3 0,96023 28
8 1 2 1 0,96011 28
8 1 3 0 0,95981 28
8 2 1 1 0,95924 28
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Table A.16 Enumeration for x, =20, u, = u, =15, u; =20,
A =9 with investment <28 and FR >0.95. (Continued)

0,95248 28

0,95224 28

0,95209 28

0,952 28

0,95146 28

0,95146 28

0,9512 28

0,95104 28

0,95072 28

0,95066 28

0,95056 28

0,95019 28

8 3 1 0 0,95888 28
9 0 1 0 0,95767 28
5 5 5 3 0,95717 28
6 3 6 1 0,95712 28
6 6 3 1 0,95709 28
7 2 5 0 0,95588 28
7 5 2 0 0,95572 28
5 5 6 2 0,95566 28
5 6 5 2 0,95566 28
7 2 2 3 0,95559 28
9 1 0 0 0,95489 28
6 3 3 4 0,95453 28
5 4 6 3 0,9545 28
5 6 4 3 0,9545 28
7 1 4 2 0,95393 28
8 1 1 2 0,95357 28
7 4 1 2 0,95324 28
8 0 3 1 0,95315 28
5 4 5 4 0,95303 28
5 5 4 4 0,95303 28
7 1 5 1 0,95271 28
6 2 5 3 0,95261 28
6 5 2 3
7 5 1 1
6 2 6 2
6 6 2 2
5 4 7 2
5 7 4 2
8 0 4 0
7 1 3 3
9 0 0 1
6 5 5 0
8 3 0 1
8 0 2 2
7 3 1 3

0,95013 28
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APPENDIX P
APPROXIMATION PERFORMANCE FOR COMPONENT COMMONALITY
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