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ABSTRACT 

ADAPTIVE NEURO FUZZY INFERENCE SYSTEM (ANFIS) 
APPLICATIONS IN CHEMICAL PROCESSES 

 

Güner, Evren 

M.S., Department of Chemical Engineering 

Supervisor:  Prof. Dr. Canan ÖZGEN 

   Co-supervisor: Prof. Dr. Kemal LEBLEBİCİOĞLU 

 

November 2003, 133 pages 

Neuro-Fuzzy systems are the systems that neural networks (NN) are 

incorporated in fuzzy systems, which can use knowledge automatically by 

learning algorithms of NNs. They can be viewed as a mixture of local experts. 

Adaptive Neuro-Fuzzy inference system (ANFIS) is one of the examples of Neuro 

Fuzzy systems in which a fuzzy system is implemented in the framework of 

adaptive networks. ANFIS constructs an input-output mapping based both on 

human knowledge (in the form of fuzzy rules) and on generated input-output 

data pairs. 

Effective control for distillation systems, which are one of the important 

unit operations for chemical industries, can be easily designed with the known 

composition values. Online measurements of the compositions can be done using 
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direct composition analyzers. However, online composition measurement is not 

feasible, since, these analyzers, like gas chromatographs, involve large 

measurement delays. As an alternative, compositions can be estimated from 

temperature measurements. Thus, an online estimator that utilizes temperature 

measurements can be used to infer the produced compositions. In this study, 

ANFIS estimators are designed to infer the top and bottom product compositions 

in a continuous distillation column and to infer the reflux drum compositions in a 

batch distillation column from the measurable tray temperatures. Designed 

estimator performances are further compared with the other types of estimators 

such as NN and Extended Kalman Filter (EKF). 

In this study, ANFIS performance is also investigated in the adaptive 

Neuro-Fuzzy control of a pH system. ANFIS is used in specialized learning 

algorithm as a controller. Simple ANFIS structure is designed and implemented 

in adaptive closed loop control scheme. The performance of ANFIS controller is 

also compared with that of NN for the case under study. 

Keywords: NN, Fuzzy Systems, Estimator, EKF, ANFIS, pH control 
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ÖZ 

KİMYASAL PROSESLERDE ADAPTİF SİNİRSEL BULANIK 

TAHMİN YÖNTEMİNİN UYGULAMALARI 

Güner, Evren 

Yüksek Lisans, Kimya Mühendisliği 

Tez Yöneticisi:  Prof. Dr. Canan ÖZGEN 

Tez Yardımcısı: Prof. Dr. Kemal LEBLEBİCİOĞLU 

 

Kasım 2003, 133 sayfa 

Sinirsel bulanık sistemler bilgiyi otomatik olarak sinir ağları öğrenme 

algoritmalarıyla elde edebilen, bulanık sistemler ile sinir ağlarının birleştirildiği 

sistemlerdir. Bu sistemler yerel uzmanların karışımı olarak irdelenebilirler. 

Adaptif sinirsel bulanık tahmin yönetimi (ASBT) bulanık sistemin adaptif ağ 

sisteminin yapısında uygulandığı sinirsel bulanık sistemlerden biridir. ASBT 

uzman bilgisine (bulanık system kuralları şeklinde) ve elde edilen girdi-çıktı 

verilerine dayalı olarak sistemin girdi-çıktı yapısını oluşturur. 

 Kimya endüstrilerinde önemli temel işlemlerden biri olan Damıtma 

sistemlerinin etkili kontrolü ölçülebilen derişim değerleriyle kolayca tasarlanabilir. 

Gerçek zamanlı derişim ölçümleri doğrudan derişim analiz cihazları kullanarak 
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yapılabilir. Ancak, gerçek zamanlı derişim analizleri kolay değildir. Çünkü, bu 

analiz cihazları (gaz kromotografisi gibi) ölçümlerde zaman gecikmesi içerirler. 

Bu yüzden, ölçülebilen sıcaklık verilerini kullanan gerçek zamanlı tahmin ediciler 

derişimleri tahmin etmek için kullanılabilirler. Bu çalışmada, sürekli damıtma 

kolonunda alt ve tepe ürün, kesikli damıtma kolonunda geri döngü tankı 

derişimleri ölçülebilir tepsi sıcaklıklarını kullanarak tahmin edebilen ASBT tahmin 

ediciler tasarlanmıştır. Tasarlanan tahmin edicilerin performansları, önceden 

tasarlanan sinir ağı ve geliştirilmiş kalman filtre (GKF) sonuçları ile 

karşılaştırılmıştır. 

Bu çalışmada, ASBT performansı ayrıca adaptif sinirsel bulanık pH sistem 

kontrolünde de araştırılmıştır. ASBT özel öğrenme algoritmasının içinde kontrol 

edici olarak kullanılmıştır. Basit ASBT yapısı dizayn edilmiş ve adaptif kapalı 

döngü kontrol planında uygulanmıştır. ASBT kontrol edici performansı ayrıca 

çalışılan sistem için tasarlanan sinir ağı kontrol ediciyle de karşılaştırılmıştır.   

 

Anahtar Kelimeler:  Sinir ağları, Bulanık sistemler, Tahmin edici, GKF, ASBT, pH 

kontrolü   
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CHAPTER 1 

INTRODUCTION 

An intelligence system is a system that is able to make decisions that 

would be regarded as intelligent if were done by humans. Intelligence systems 

adapt themselves using some example situations (inputs of a system) and they 

correct decisions automatically for future situations (Czogala and Leiski 2003). 

Neural networks (NNs), Fuzzy systems, and Neuro-Fuzzy systems are the 

examples of the artificial intelligence systems. 

Fuzzy systems provide a unified framework for taking into account the 

gradual or flexible nature of variables, and representation of incomplete 

information (Prode and Dubio 1992). This is an alternative to classical approach 

and is based on the observations that, humans think using linguistic terms such 

as “small” or “large” and others rather than numbers. The concept is described 

in a natural language, by Zadeh using fuzzy sets introduced by himself in 1965. 

The essence of fuzzy systems is conditional if-then rules, which use fuzzy sets as 

linguistic terms in antecedent and conclusion parts. A collection of these fuzzy if- 

then rules can be determined from human experts or alternatively can be 

generated from observed data (examples). The main advantage of such fuzzy 

systems is the easiness to interpret knowledge in the rule base (Leiviska 2001).  
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 NNs are the systems that get inspiration from biological neuron systems 

and mathematical theories for learning. They are characterized by their learning 

ability with a parallel-distributed structure and also can be considered as black 

box modeling. They are useful empirical modeling tools that have been used for 

process estimation and control since 1950’s. 

In most fuzzy systems, fuzzy if-then rules were obtained from a human 

expert. However, this method of knowledge acquisition has great disadvantages; 

not every expert can and/or wants to share his/her knowledge. For this reason, 

NNs were incorporated into fuzzy systems, which can acquire knowledge 

automatically by learning algorithms of NNs. These systems are called Neuro-

Fuzzy systems and have advantages over fuzzy systems, i.e., acquired 

knowledge is easy to understand. Like in NNs, knowledge is saved in connection 

weights, but can also be easily interpreted as fuzzy if then rules. The Neuro-

Fuzzy systems can be viewed as a mixture of local experts (rules operate 

dominantly in each fuzzy region) and their parameters are updated using 

gradient and least squares optimization methods. The most frequently used NNs 

in Neuro-Fuzzy systems are radial basis function networks (RBFN). Their 

popularity is due to the simplicity of structure, well-established theoretical basis 

and faster learning than in other types of NNs. Adaptive network based fuzzy 

inference system or adaptive Neuro-Fuzzy inference system (ANFIS), first 

proposed by Jang (1993), is one of the examples of RBFN Neuro Fuzzy systems 

in which a fuzzy inference system is implemented in the framework of adaptive 

networks. ANFIS constructs an input output mapping based both on human 

knowledge (in the form of fuzzy if then rules) and on generated input output 

data pairs by using a hybrid algorithm that is the combination of the gradient 

descent and least square estimates. ANFIS is not a black box model and works 

well with optimization techniques, which is computationally efficient and is also 
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well suited to mathematical analysis.  Therefore, it can be used in modeling and 

controlling studies, and also for estimation purposes. 

In batch and continuous distillation processes, composition control is very 

important. Especially, in order to meet the purity specifications, a batch column 

has to be operated as precisely as possible. If the current compositions are 

known, they can form a basis for improving the process performance through an 

operator decision making for the development of a closed loop control scheme 

(Venkateswarlu and Avantika 2001). An effective feedback control systems for 

continuous distillation columns can also be easily designed with the known 

composition values. Online measurements of the compositions can be done using 

direct composition analyzers. However, online composition measurement is not 

feasible, since, these analyzers, like gas chromatographs, involve large 

measurement delays as well as high investment and maintenance costs. As an 

alternative, compositions can be estimated from temperature measurements. 

Thus, an online estimator that utilizes temperature measurements can be used 

to infer the produced compositions. In this study, ANFIS estimators are designed 

to infer the top and bottom product compositions in a continuous distillation 

column and to infer the reflux drum compositions in a batch distillation column. 

Designed estimator performances are further compared with the other types of 

estimators such as NN and Extended Kalman Filter (EKF). 

 Since the control of pH is recognized as a difficult problem in literature due 

to its highly nonlinear nature. In this study, an ANFIS performance is also 

investigated in the adaptive Neuro-Fuzzy control of a pH system. Specialized 

learning algorithm is used for pH system to see the performance of the ANFIS as 

a controller. Therefore, simple ANFIS controller is designed and implemented in 

adaptive closed loop control scheme. The performance of the ANFIS controller is 

also compared with that of NN for the case under study. 
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CHAPTER 2 

LITERATURE SURVEY 

In this chapter, the literature survey on Neural Network (NN), Fuzzy Logic 

(FL) and Neuro-Fuzzy (NF) systems are given. In the first section, studies on 

NNs, in the second section cases in which fuzzy systems were applied are 

presented. In the last section, studies on NF systems development and 

implementation are given. At the end of each section, summary of the studies 

are also presented in tables.     

2.1 Neural Networks  

A neural network is a data processing system consisting of a large number 

of simple, highly interconnected processing elements (artificial neurons) in an 

architecture inspired by the structure of the cerebral cortex of the brain 

(Tsoukalas and Uhrig 1997). The formal realization that the brain in some way 

performs information processing tasks was first spelt out by McCulloch and Pitts 

(1943). They represented the activity of individual neurons using simple 

threshold logic elements, and showed how networks made out of many of these 

units interconnected could perform the logical operations. Rosenblat (1959) 

developed the concept of perceptron, a generalization of the McCulloch and Pitts 

concept of the functioning of the brain, by adding learning (Lisboa 1992). These 

studies were the initiations of NNs.  
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NNs are applied in many areas of science and engineering (Svrcek 2001). 

The use of NN is especially increased in the last two decades due to the following 

reasons:  

• Recent advances in computer technology and parallel processing 

have made the use of NNs more economically feasible than past. 

• Since NNs are composed of nets of nonlinear functions, they have 

the ability to evolve good process model from example data and 

require little or no priori knowledge. 

• They have the potential to solve complex problems that have not 

been satisfactorily handled by traditional methods (Himmelblau and 

MacMurray 1995). 

In chemical engineering, since NNs provide good empirical models of 

complex nonlinear processes, they have been frequently used in complex 

modeling problems. They have also used in control schemes as aid or controller. 

Fault detection, prediction of polymer quality and data rectification are some 

other examples of NN applications in chemical engineering (Himmelblau 2000).   

Yamamura et. al. (1988) proposed three different methods; general 

learning, specialized learning and combination of them to train the NN controller 

to act as the inverse of the plant. Since using general learning can be very 

difficult to provide adequate performance in practical control applications, 

method of error propagation backwards through the plant is introduced to train 

the network exactly on the operational range of the plant. Also, combination of 

generalized and specialized training was proposed to use their advantages and to 

avoid their potential disadvantages. A plant that converts polar coordinates (r,θ) 

to Cartesian coordinates (x,y) was considered as a simple plant example. 
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Proposed learning methods were applied to train the NN controller. Hybrid 

learning algorithm showed better performance than general and specialized 

learning.    

Bhat and McAvoy (1990) discussed the use of backpropagation, the most 

widely used NN, for non-linear dynamic modeling and model-based control of 

chemical process systems. They applied this algorithm to a CSTR to model the 

non-linear dynamic response of pH in the reactor and used this backpropagation 

model for control, including learning process inverses. In their paper, after a 

review of the backpropagation algorithm, a comparison between NN dynamic 

modeling and traditional modeling are presented. The backpropagation technique 

was shown to be able to pick up more of the non-linear characteristics of the 

CSTR than the traditional ARMA modeling. Then two approaches that use NNs for 

model-based control were discussed. One of them was the same as that used in 

DMC (Cutler and Ramaker, 1980), except that the nonlinear NN model was used 

in place of the linear convolution model. The other was the backpropagation 

dynamic modeling net that can be trained to learn the inverse of the process 

model and then this inverse can be employed in an Internal Model Control, IMC, 

structure.   

Also in 1990, Mc Avoy et. al. used NNs for modeling nonlinear chemical 

systems such as; a steady state reactor and a dynamic pH CSTR. In steady state 

example, an isothermal CSTR reaction sequence was considered. Inputs to the 

net were the scaled feed composition and reactor space time. The outputs were 

the dimensionless product concentrations. In dynamic example, to model the pH 

response, past and present values of pH and flow rate of base and future values 

of manipulated variables were fed to the net. The output from the net was the 

pH in the future. It was shown that, in all cases, NNs were able to learn the 

underlying governing relationships. 
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Himmelblau and MacMurray (1995) implemented a NN for MPC in a packed 

distillation column. Their column had the interesting feature of multiple changes 

in the sign of the process gain as the operating conditions change. They used an 

External Reccurent Network (ERN) to model the process over a significant part of 

the state space and compared the model performance with a simplified principles 

model for MPC. Although both models gave similar performance, in some 

instances the NN model was better. They concluded that, when the process is 

too complex to be modeled by a first principles model, or takes too long to 

model, an ERN model might be a very effective choice for a model. 

Fong et. al. (1995) presented a NN approach to model and control of a pH 

process in a CSTR. In the modeling task, their network consists of two single 

hidden layer nets connected in cascade. The first one was a recurrent net to 

reflect the dynamic nature of the CSTR, while the second one was a static net 

configured to reflect the static nature of the titration characteristics. For the 

control task, they simulated two control schemes. In the first scheme, a NN was 

trained to provide an inverse to the static titration curve. The training data were 

obtained from a model for the CSTR. In the second control scheme, a model 

reference adaptive NN control was studied. Thus, a direct method of adaptation 

was used.   

Himmelblau et. al. (1996) discussed the feasibility of using Internal 

Recurrent Network (IRN) to identify a nonlinear dynamic process under closed 

loop control conditions. They used a direct closed loop identification method, 

identifying an open loop process model using process input and output data 

collected under closed loop control. A packed distillation column and CSTR were 

used to demonstrate the feasibility of using IRN for closed loop identification. 

They concluded that IRN is a promising nonlinear process identification using 

data taken under closed loop control.  
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Wang et. al. (1998) proposed a nonlinear predictive control framework , in 

which nonlinear processes are modeled using NNs. In this framework, a 

predictive controller, based on the NN model, calculates the optimal manipulated 

variable; while at the same time the available measured output (controlled 

variable) is used to modify the output predicted by the NN model. The proposed 

framework was implemented to the pH control problem in a CSTR.    

Hussain (1999) provided an extensive review of the various applications 

utilizing NNs for chemical process control, both in simulation and also in online 

implementation. He categorized the review under three major control schemes; 

inverse model based control, predictive control and adaptive control methods. 

The review shows that using NNs in chemical process control is widespread and 

multilayered feedforward NN is the most popular network for such process 

control applications. However, it is emphasized that there is lack of actual 

successful online applications. 

Budman and Kavchak (1999) worked on estimation and control of 

nonlinear processes using adaptive radial basis function NNs. They used NNs that 

are adapted online to model the process dynamics. The Radial Basis Functions 

(RBF) used were wavelets, which provide advantages because of their 

localization in space. The network used the overall prediction error and were 

incorporated into an adaptive controller and tested on an exothermic CSTR. 

Jutan and Krishnapura (2000) proposed an adaptive NN controller for the 

control of nonlinear dynamical systems. The NN controller was adaptive in 

structure and used no explicit model of the process in the design. Contrasting 

traditional NNs, which have many connection weights, the proposed controller 

network had a few weights. This NN controller was applied to a nonlinear CSTR 

and a pH neutralization process and exhibited very good performance.   
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The summary of the literature on NNs is given in Table 2.1.   

Table 2.1   Summary of the NN studies   

 
Year Authors System Structure Specific 

 
 

1988 

 
 

Yamamura et. 
al. 

 
 

No specific system 
 

 
 

Backpropagation 
NN 

 
Learning methods; 
general, specialized 
and conjunction of 
these two methods 

  
 
 

1990 

 
 

Bhat & McAvoy 

 
 

CSTR 
 

 
 

Backpropagation 
NN 

 
Non-linear dynamic 

modeling and model-
based control of pH 

in CSTR with NN 
 

 
 

1990 

 
 

 McAvoy et. al. 

 
 

Steady state 
reactor and a 

dynamic pH CSTR  

 
 

Backpropagation 
NN 

 
Modeling product 

concentrations and 
pH in reactors with 

NNs 

 
 

1995 

 
 

Himmelblau & 
MacMurray 

 
 

A packed distillation 
column  

 
 

ERN 

 
Modeling the process 

with ERN and 
comparison 

performance with 
first principle models  

 
 
 

1995 

 
 

Fong et. al. 

 
 

pH process in CSTR 

 
 

NN consists of two 
single hidden layer 
nets connected in 

cascade 
 

 
Layers; recurrent and 
static nets to reflect 
the dynamic nature 

of CSTR  
 

 
 

1996 

 
 

Himmelblau et. 
al. 

 
 

A packed distillation 
column 

 

 
 

IRN 

 
A direct closed loop 
identification with 

input and output data 
collected under 

closed loop control   
 

 
 

1998 

 
 

Wang et. al. 

 
 

pH process in CSTR 

 
 

Backpropagation 
NN 

 
NN predictive control 

of CSTR, which is 
modeled using NN 

 
 

1999 

 
 
M. A. Hussain 

 
 

No specific system 
 
 

 
 

NNs 

 
A review of the 

various applications 
utilizing NNs for 
chemical process 

control 
 
 

1999 

 
Budman & 
Kavchak 

 
 

CSTR 

 
 

RBFNN 

 
Modeling process 

dynamics with radial 
basis functions 

 
 

2000 

 
Jutan & 

Krishnapura 

 
CSTR and pH 
neutralization 

process 

 
 

Backpropagation 
NN 

 
NN controller that 
uses no explicit 

model of the process 
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2.2 Fuzzy Logic Systems  

“As the complexity of a system increases, our ability to make precision and 

yet significant statements about the behavior diminishes until a threshold is 

reached beyond which precise and significance become almost mutually 

exclusive characteristics.” (Zadeh 1971) 

The concept of fuzziness was first proposed by Zadeh (1965). He aimed to 

describe complex and complicated systems using fuzzy approximation and 

introduced fuzzy sets. “Generally, fuzzy logic can be considered as a logical 

system that provide a model for modes of human reasoning that are 

approximations rather than exact” (Rutkowska 2002). 

Fuzzy logic systems had found successful applications in wide variety of 

fields such as: automatic control, pattern recognition, signal processing, expert 

systems, communication, system identification and time series prediction 

(Czogala and Leski 2000). In chemical engineering systems, they have been 

generally used in control studies. Since Fuzzy Logic Control (FLC) does not 

require a model and the control is based on expertise human reasoning, they 

have been applied in many control schemes. Also, they are used extensively in 

modeling. 

Kim and Kim (1995) combined the fuzzy control and predictive control and 

applied it to the binary distillation column. They compared its performance with 

MPC by simulation and experimentation. They used a combined technique in 

which a switching scheme was implemented. When error or change of error 

between the controlled variable and the set point of the variable was larger than 

a certain value, the fuzzy control was used in control computation. Otherwise 

MPC was employed. It was concluded that combined method improved the 

control performance for set point tracking and disturbance rejection. Considering 
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the IAE scores it was found that combined control technique improved the 

control performance by 9% over the MPC. 

 Benz et. al. (1996) developed and tested a self adaptive computer based 

pH measurement and control system for the control of fermentation process in a 

laboratory reactor and for the neutralization of wastewater streams. The 

controller was based on the fuzzy logic, which permitted the inclusion of 

subjective knowledge, often based on experience and not on a theoretical model. 

It also employed data and used primary knowledge (experimental results) 

directly. At the end of the study, the experiments showed that the fuzzy 

controller was able to adjust the pH value faster than the common PID 

controller. It was also stated that, by using self adaptive fuzzy controller it was 

possible to control the pH value of systems with an extremely small buffer 

capacity, even using strong acids and bases. 

   In another research, Matko et. al. (1997) presented a new method of 

fuzzy model based predictive control for highly nonlinear pH process. Since a 

standard MPC technique uses linear process model and thus unable to deal with 

strong process nonlinearities, this method was based on a fuzzy model of the 

Takagi-Sugeno form. Different step responses for current operating points were 

extracted from the fuzzy model of the process online, and this concept was 

integrated into standard linear DMC predictive control. It was observed that 

despite its simplicity (fuzzy rules of zeroth order), the presented fuzzy model 

had good accuracy in steady state mapping, as well as in prediction of dynamic 

behavior.   

Fisher et. al. (2000) investigated the performance of the two fuzzy 

relational controllers; the self-learning predictive fuzzy controller (SLPFC) and 

the fuzzy relational long range predictive controller (FRLRPC). They were 
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evaluated experimentally on a laboratory scale, nonlinear, interacting tank 

process. It was shown that, although both controllers gave good overall 

performance, the SLPFC was slightly better than the FRLRPC. 

A fuzzy classifier that can be used as an adequate and reliable expert 

system to perform quality qualifications in chemical engineering system was 

proposed by Bafas et. al. (2002). The method builds a fuzzy logic model, which 

infers the quality variables from other accurately measured system parameters. 

It was applied to two chemical engineering problems; the wine distillate 

maturation and the tissue making process and compared with a feedforward NN 

methodology and a fuzzy identification method. It was confirmed that 

classifications of proposed fuzzy logic model were more accurate. 

Burden et. al. (2003) constructed a linear constrained model predictive 

controller (CMPC) in order to control nonlinear systems. For this purpose, a fuzzy 

logic concept was used. They combined fuzziness with CMPC to extend the 

applicability of CMPC to nonlinear systems. 2-D and 3-D type fuzzy PI controllers 

were also presented. Some examples were given to show how to apply these 

structures to chemical engineering systems.  

Roffel et. al. (2003) investigated the development of a simple model that 

describes the product of an experimental batch distillation column. Their 

objective was to develop a hybrid model that can simulate a batch run, including 

start-up. In hybrid modeling, Takagi-Sugeno type fuzzy models were used. For 

identification of fuzzy models, G-K (Gustafson and Kessel, 1978) clustering 

algorithm with structure optimization was used. Proposed framework included 

the behavior for bottom exhaustion, column warming-up that applies for a 

column under constant quality or constant temperature operation. The 

production as a function of a batch time was described with the derived model 
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without the need to describe internal column dynamics. The summary of the 

literature survey on FL is given in Table 2.2. 

Table 2.2   Summary of the FL studies   

 
 

Year Authors System Structure Specific 

 
 

1995 

 
 

Kim & Kim 

 
 

A binary distillation 
column 

 
 

FLC 

 
Combining the fuzzy 
control and model 
predictive control 

 
 

1996 

 
 

Benz et. al.  

 
pH systems ; 

fermentation reactor 
and neutralization 

wastewater 
 

 
 

Adaptive FLC 

 
Controlling pH value 

systems with an 
extremely small buffer 

capacity 

 
 

1997 

 
 

Matko et. al. 

 
 

pH process 

 
 

Fuzzy models 

 
 

MPC with Takagi-
Sugeno type fuzzy 

model 

 
 

2000 

 
 

Fisher et. al. 

 
 

A laboratory scale, 
nonlinear, interacting 

tank process 

 
 

FLC 

 
 

Fuzzy relational 
controllers; SLPFC and 

FRLRPC 

 
 

2002 

 
 

Bafas et. al. 

 
 

A wine distillation and 
tissue making 

processes 

 
 

Fuzzy classifier 

 
A fuzzy logic model, 

which infers the quality 
variables from other 
accurately measured 
system parameters 

 
 
 

2003 

 
 

Burden et. al. 

 
 

No specific system 

 
 

Fuzzy models 

 
Combining fuzziness 
with CMPC to extend 
the applicability of 
CMPC to nonlinear 

systems 
  

 
 

2003 

 
 

Roffel et. al. 

 
 

A batch distillation 
column 

 
 

Fuzzy models 
 

 
A hybrid modeling of 

the column with 
Takagi-Sugeno type 

fuzzy models 
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2.3 Neuro Fuzzy Systems  

In most fuzzy systems, fuzzy rules were obtained from the human expert. 

However, every expert does not want to share his knowledge and there is no 

standard method that exists to utilize expert knowledge. As a result, ANNs were 

incorporated into fuzzy systems to be able to acquire knowledge automatically 

by learning algorithms. The learning capability of the NNs was used for 

automatic fuzzy if then rules generation (Czogala and Leski 2000).  

The connection of fuzzy systems with an ANN is called neuro-fuzzy, NF, 

systems. Like in NNs where knowledge is saved in connection weights, it is 

interpreted as fuzzy if then rules in NF systems. The most frequently used NN in 

NF systems is radial basis function neural network, RBFNN in which each node 

has radial basis function such as Gaussian and Ellipsoidal. Their popularity is due 

to the simplicity of structure, well-established theoretical basis and faster 

learning than in other types of NNs. Also, there are many developed fuzzy neural 

networks (FNN) as NF algorithms in literature. Adaptive network based fuzzy 

inference system, ANFIS, is one of them. It is type of RBFNN.  

Jang (1992) proposed to use the ANFIS architecture to improve the 

performance of the fuzzy controllers. The performance of the fuzzy controller 

relies on two important factors: knowledge acquisition and the availability of 

human experts. For the first problem, Jang proposed the ANFIS to solve the 

automatic elicitation of the knowledge in the form of fuzzy if then rules. For the 

second problem, that is how the fuzzy controller is constructed without using 

human experts; a learning method based on a special form of gradient descent 

(backpropagation) was used. The proposed architecture identified the near 

optimal membership functions and the other parameters of a controller rule base 

for achieving a desired input-output mapping. The backpropagation type 

gradient descent method was applied to propagate the error signals through 
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different time stages to control the plant trajectory. The inverted pendulum 

system was employed to show the effectiveness and robustness of the proposed 

controller. 

In 1992, Uchikawa et. al. presented a fuzzy modeling method using fuzzy 

neural networks, FNNs, with the backpropagation algorithms. They proposed 

three types of NN structures of which the connections weights have particular 

meanings for getting fuzzy inference rules for tuning membership functions.  

These structures are categorized into FNNs and these different types FNNs 

realize three different types of reasoning. 

Rao and Gupta (1994) described the basic notions of biological and 

computational neuronal morphologies and the principles and architectures of 

FNNs. Two possible models of FNN were given. In first one, the fuzzy interface 

provides an input vector to a multilayered network in response to linguistic 

statements. Then the NN can be trained to yield desired output. In the second 

scheme, a multilayered NN drives the fuzzy inference mechanism. It was pointed 

out that using FNN approaches having the potential for parallel computation 

could eliminate the amount of computation required. 

In another paper, Uchikawa et. al. (1995) presented a new design method 

of adaptive fuzzy controller using linguistic rules of fuzzy models of the 

controlled objects. FNNs identify fuzzy models of nonlinear systems 

automatically with the backpropagation algorithm in this method. Authors also 

presented a rule-to-rule mapping method for describing the behavior of fuzzy 

dynamical systems. Using this methodology, first, the control rules are modified 

by considering rule-to-rule transitions. After that, designed controller was 

implemented with another FNN. The adaptive tuning of the control rules was 

done using the fuzzy model of the controlled object by utilizing the derivative 
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value from the fuzzy model. A second order system was simulated to show the 

feasibility of the proposed design method. 

Aoyama et. al. (1995) proposed a FNN employed in IMC scheme for SISO 

nonlinear process. The control-affine model was described identified from 

transient and steady state data using backpropagation in this scheme. Inverse of 

the process is obtained through algebraic inversion of the process model to use 

as a controller. Two highly nonlinear process; CSTR and pH neutralization 

processes were studied. In the CSTR, effluent concentration was controlled using 

the coolant flow rate. In pH neutralization, manipulating the base flow rate 

controlled the effluent pH. The proposed strategy was compared to a 

conventional PID controller for set point and disturbance changes. The results 

showed that controller performance was significantly better than PID controller.  

A methodology for batch process automation using reinforcement learning 

was presented Martinez and Wilson (1997). In this study, an autonomous 

controller continuously learned to implement control actions that can drive the 

process state very close to desired one with near optimal performance. Fuzzy Q-

Learning algorithm was proposed to build the controller. This methodology was 

exemplified using a batch process involving simultaneous reaction and 

distillation. 

Dagli et. al. (1997) combined the Dynamic Neural Networks, DNN, with the 

Fuzzy Associative Memory, FAM, that determines the performance of the 

controller by evaluating the error (e) and derivative of the error (∆e) of the 

system to find a better model for nonlinear control problems. The proposed 

model consisted of three major parts: action network, ANW, critic network, CNW 

and fuzzy membership adjustment procedure. ANW was the main controller of 

the model generates the control signal of the system. The CNW was used as the 
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FAM. The output of the CNW was sent to ANW to adjust the weight matrices of 

the DNN. CNW was composed of the fuzzifier, the rule base and deffuzifier. 

Fuzzy membership adjustment procedure was used to improve the quality of the 

output network. The proposed model was tested in chemical and real processes. 

Peng and Chen (1999) developed an intelligent control system for the 

direct adaptive control of chemical processes in the presence of unknown 

dynamics, nonlinearities and uncertainties. They constructed a Neuro-Fuzzy 

Controller (NFC) with an equivalent four-layer connectionist network. With a 

derived learning algorithm, fuzzy rules and membership functions were updated 

adaptively by observing the process output error. A shape tunable NN with 

backpropagation algorithm was also suggested as the estimator in order to 

provide a reference signal to the controller. The proposed algorithm was 

implemented to direct adaptive control of an open loop unstable nonlinear CSTR. 

Comparisons were performed with a static fuzzy controller.    

Belarbi et. al. (2000) proposed a FNN that learns rules of inference for a 

fuzzy system through classical backpropagation. The network was trained off-line 

in a closed loop simulation to design Fuzzy Logic Controller (FLC).  Another 

network was used as a design model in order to backpropagate the error signal. 

Controller rules were extracted from the trained network to build the rule base of 

the FLC. The framework was applied to the estimation and control of a batch 

pulp digester. The Kappa number, the controlled variable, which cannot be 

measured online was estimated with same type of FNN through the 

measurements of the batch temperature and concentration of the alkali. 

Although the FLC was quite simple with nine rules, simulation results showed 

good degree of robustness in the face of parameter variations and changes in 

operating conditions. 
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Leiviska et. al. (2001) used linguistic equations (fuzzy models) and  NN 

models in prediction of Kappa number in the continuous digester. Actual 

prediction data was collected from a continuous digester house. It included the 

extraction flow measurements and reactive index, temperature in the extraction 

flow, and the measurement of Kappa number from an online device after 

digester. Then the data was divided into training and testing data. ANFIS was 

used as one of the fuzzy model and gave the best performance in other fuzzy 

models.  

Castillo and Melin (2001) used an ANFIS methodology in electrochemical 

process. The problem in battery manufacturing was to find how much the current 

could be increased without causing battery to explode due to the increase in 

temperature and at the same time minimizing the time of loading. Since ANFIS 

can be used to adapt the membership functions and consequents of the rule 

base according to the historical data of the problem, ANFIS was used as fuzzy 

controller in this research. Fuzzy logic toolbox of MATLAB was used with 5 

membership functions and first order Sugeno function in the consequents. ANFIS 

controller input and output were temperature and electrical current, respectively. 

They found that, the ANFIS methodology gave better results than manual, 

conventional and fuzzy control methods.  

In another study of adaptive FNN, Hancheng et. al. (2002) used the ANFIS 

to extract fuzzy rules from experimental data for material property modeling. 

Prediction of tensile strength based on compositions and microstructure was 

aimed. Hence, backpropagation NNs used in literature needed large amount of 

training data in order to acquire high learning precision, and had a poor 

generalization capability and obtaining experimental data was also expensive, 

authors tried to use ANFIS. To verify the generation of the model, 38 available 

patterns were divided into two categories: a training set of 29 cases and a test 
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of 9 cases. All the membership functions of the input variables were of the 

gaussian type, and parameters sub-spaces were determined by using K-means 

clustering of the training data set, 20 rules being obtained. Inputs to the ANFIS 

were the carbon equivalent, the graphite flake size, and the microhardness of 

the matrix, the amount of austenite dentrite and the eutectic cell. Output was 

the tensile strength. The results were compared with multiple statistical 

analyses, fuzzy regression and the generalized regression network and ANFIS 

showed good learning precision and generalization. 

Sarimveis et. al. (2002) presented a new fast and efficient method for 

training RBFNN to model nonlinear dynamical MIMO discrete-time systems. The 

proposed training methodology was based on a fuzzy partition of the input space 

and combines self-organized and supervised learning. According to the 

algorithm, first, the centers of the nonlinear units were determined. Then, the 

widths of Gaussian functions were calculated. Finally, the connection weights 

between the hidden and the output layers were computed, by solving a simple 

quadratic optimization problem, which minimized the errors between the desired 

and predicted outputs. The developed RBF network models were used to predict 

the concentration and temperature in CSTR and Kappa number in a continuous 

pulp digester. The most important advantage of proposed algorithm was the 

ability to determine the network structures and parameters using a very limited 

computational time.  

The summary of the literature survey on NF is given in Table 2.3. 
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Table 2.3   Summary of the NF studies   

 
 

Year Authors System Structure Specific 

 
 

1992 
 
 
 

 
 

R. J. Jang 

 
 

Inverted pendulum 
system 

 
 

ANFIS 

 
ANFIS, used as fuzzy 
controller to improve 
the performance of 

the controller 
 

 
 

1992 
 
 
 

 
 

Uchikawa et. al. 
 
 

 
 

No specific system 

 
 

 FNN 

 
Proposed three 

different type FNNs, 
used for getting FIS 

for tuning MFs 

 
 

1994 
 
 

 
 

Gupta & Rao 

 
 

A second order 
system 

 
 

FNN 

 
Error-based 

and 
output-based 

learning 
algorithms 

 
 
 
 

1995 
 
 
 

 
 
 

Uchikawa et. al. 
 

 
 
 

A second order 
system 

 
 

 
FNN 

 
Description of 

dynamical behavior 
of control system and 
adaptive tuning of a 

controller 

 
 

1995 
 
 

 
 

Aoyama et. al. 
 

 
 

CSTR and pH 
neutralization 

 
 

Modified FNN 

 
 

Control- affine   
process model 

 
 

1997 
 
 

 
 

Dagli et. al. 
 

 
 

Different kind of 
nonlinear real life 

processes 

 
Dynamic neural 

networks with fuzzy 
associative memory 

 
 

Fuzzy MFs 
adjustment 
procedure 

 
 

 
 

1997 

 
 

Martinez & 
Wilson 

 
Batch process 

involving reaction 
and distillation 

 
 

Fuzzy Logic System 

 
Fuzzy controller 

constructed by Fuzzy 
Q learning algorithm 

 
 
 

1998 
 

 
 

Castillo & Melin 

 
 

Electrochemical 
process 

 
 

ANFIS 

 
ANFIS, used as 

controller in battery 
manufacturing 

 
 

1999 

 
 

Cheng & Peng 

 
 

CSTR 

 
 

FNN and a shape 
tunable NN  

 
NFC with a shape 
tunable NN that is 

estimator to provide 
a reference signal 

 
 
 

2001 

 
 

Leiviska et. al. 

 
 

A continuous pulp 
digester 

 

 
 

ANFIS 

 
 
ANFIS estimator for 
prediction of Kappa 

number 
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Table 2.3   Continued….  
  
 

 
 

2002 

 
 

Hancheng et. al. 

 
 

Material property 
modeling 

 
 

ANFIS 

 
ANFIS estimator for 

prediction of material 
tensile strength 

based on 
compositions and 

microstructure 
 

 
 

2002 

 
 

Sarimveis et. al. 

 
 

CSTR and continuous 
pulp digester 

 
 

RBFNN 

 
RBFNNs, used as to 

predict the 
concentrations and 

temperature in CSTR 
and Kappa number in 

digester  
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CHAPTER 3 

STRUCTURES OF ARTIFICIAL INTELLIGENCE SYSTEMS 

In this chapter, the theoretical background and structures for artificial 

intelligence systems will be given. Characteristics of NNs and the theory of fuzzy 

logic will be presented. Also, the structure of ANFIS will be explained in detail. 

3.1 Neural Networks (NN) 

 Basic characteristics of NNs will be summarized in this section. First, a 

neuron model and architecture of NN will be described. After that, learning in 

NNs will be explained. Also, adaptive network will be given as an example of NN 

with backpropagation and hybrid learning algorithms. 

3.1.1 Models of Neuron 

 A neuron is a special nervous cell in organisms, which have electric 

activity. These cells are mainly intended for the operation of the organism. The 

biological neuron is shown schematically in Figure 3.1 . A neuron consists of a 

cell body, which is surrounded by a membrane. The neuron has dendrites and 

axons, which are its inputs and outputs of neuron. Axons of neurons join to 

dendrites of other neurons by forming synaptic contacts (synapses).  
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Figure 3.1 Biological neuron 

Input signals of the dendrite tree are weighted and added in the cell body 

and formed in the axon, where the output signal is generated. The signal’s 

intensity, consequently, is a function of a weighted sum of the input signal. The 

output is passed through the branches of the axon and reaches the synapses. 

Through the synapses the signal is transformed into a new input signal for 

neighbor neurons. The input signal can be either positive or negative (exciting or 

inhibiting), depending on the synapses (Aliev 2001).  

In accordance with the biological model, different mathematical models 

were suggested. The mathematical model of the neuron, which is usually utilized 

under the simulation of NN, can be shown in Figure 3.2. The neuron receives a 

set of input signals x1, x2,…, xn (vector X) which are usually the output signals of 

other neurons. Each input signal is multiplied to a corresponding connection 

weight, w, analogue of the synapse’s efficiency. Weighted input signals come to 

the summation module corresponding to cell body, where their algebraic 

summation is executed and the excitement level of neuron is determined:  

∑
=

=
n

i
iiwxI

1
    (3.1) 
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Figure 3.2 Mathematical neuron  

The output signal of a neuron is determined by conducting the excitement 

level through the function f, called activation function as in Equation 3.2. 

( )Ify =     (3.2) 

 The following activation functions can be utilized as function f: 

Linear function: 

Iky .= , k= constant    (3.3) 

Binary (threshold) function: 
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 Sigmoid function: 

                                                    ( )Ie
y −+

=
1

1
                                        (3.5) 

3.1.2 Architectures of Neural Networks 

 The totality of the neurons, connected with each other and with the 

environment, forms the NN. Figure 3.3 shows the basic structure of the neural 
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network. The input vector comes to the network by activating the input neurons. 

A set of input signals of a network’s neurons is called the vector of input 

activeness. Connection weights of neurons are represented in form of matrix W, 

element wij of which is the connection weight between i-th and j-th neurons. 

During the network functioning process, the input vector is transformed into 

output one, i.e. some information processing is performed. The computational 

power of the network, thus, solves problems with its connections. Connections 

link inputs of one neuron with output of others. The connection strengths are 

given by weight coefficients. NN can also consist a bias term, which acts on a 

neuron like an offset. The function of the bias is to provide a threshold for the 

activation of neurons. The bias can be connected all neurons in network. 

 

                  Figure3.3 Basic structure of neural network 

 NNs can be divided into two types of architectures: feedforward networks 

and recurrent NNs. 

 Feedforward networks have no feedback connections. In this type of 

network, neurons of the j-th layer receive signals from environment (when j=1) 

or the neurons of previous the (j-1)-th layer when (j>1) and pass their outputs 

to neurons of the next (j+1)-th layer to the environment (when j is the last 

layer). Feedforward networks can be single-layer or multi-layer.  Multilayer NNs 



 

 26

consist of input, output and hidden layer. The use of hidden layers allows an 

increase in the computational power of the network. Choosing the optimal 

structure of a network provides an increase in reliability and computational 

power, and a decreased processing. The multiplayer perceptron (MLP), adaptive 

network, radial basis function neural network (RBFNN), the learning vector 

quantization (LVQ) network, and the group-method of data handling network 

(GMDH) can be given the examples of feedforward networks (Bulsari A.B. 1995). 

 Recurrent neural networks (RNN) have structures similar to standard 

feedforward NN with layers of nodes connected via weighted feed-forward 

connections, but also include time delayed feedback or recurrent connections in 

the architecture (Himmelblau 2000). The important advantage of the RNN is the 

ability to approximate a continuous or discrete nonlinear dynamic system by 

neural dynamics defined by a system of nonlinear differential equations. This 

offers the opportunities for applications to adaptive control problems. Examples 

of the RNN include the Hopfield network, the Elman network, and the Jordan 

network.  

3.1.3 Learning in Neural Networks 

Generally, learning is the process by which the NN adapts itself to a 

stimulus, and eventually it produces a desired response. It is also a continuous 

classification process of input stimuli: when a stimulus appears at the network, 

the network either recognizes it or it develops a new classification. Actually, 

during the process of learning, the network adjusts its parameters, the synaptic 

weights, in response to an input stimulus so that its actual output response 

converges to the desired output response. When the actual output response is 

the same as the desired one, the network has completed the learning phase. 

Learning rules for networks are described by mathematical expressions called 

learning equations. The neurons in NNs may be interconnected in different ways; 
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however, the learning process is not same for the all. It is known that, different 

learning methodologies suit different people. Like this, different learning 

techniques suit different NNs (Kartalopoulos 1996). There are two general 

categories of learning in NNs, supervised and unsupervised learning. 

In supervised learning, both the input and the actual response and the 

desired response are available and are used to formulate a cost (error) measure. 

If the actual response differs from the target response, the NN generates an 

error signal, which is then used to calculate the adjustment that should be made 

to the network’s weights so that actual output matches the target output (Jain 

1997). 

 Unlike supervised learning, there is no target output in unsupervised 

learning. During the training period, the network receives at its input many 

different input patterns and it arbitrarily organizes the pattern into categories. 

When a stimulus is later applied, the network provides an output response 

indicating the class to which the stimulus belongs. If a class cannot be found for 

the stimulus, a new class is generated. This type of learning sometimes referred 

to as self-organizing learning. 

3.1.4 Learning algorithms 

A learning algorithm is a mathematical tool that outlines the methodology 

and the speed for NN to reach the steady state of its parameters, weights and 

thresholds successfully. It starts with an error function (energy function), which 

is expressed in terms of weights. The objective is to minimize the error in the set 

of weights. When the error function is zero, or small enough, the steady state of 

the network and of the weights is reached. During learning, the error function 

decreases and the weights are updated. The decrease may be accomplished with 

different optimization techniques such as the Delta rule, Boltzman’s algorithm, 
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the backpropagation learning algorithm and simulation annealing. The selection 

of the error function and the optimization method is important, because it may 

increase stability, instability or a solution trapped in a local minimum. 

Backpropagation learning algorithm (Rumelhart et al 1986) is the basic 

learning mechanism and it is very popular in the literature. In this algorithm, the 

network output, on presentation of input data, is compared with the desired 

output and a measure of the error is obtained. This error measure is then used 

to incrementally modify appropriate weights in the connection matrices in order 

to reduce the error. Following numerous presentations of training data, the 

overall error of the network is expected to be reduced to an acceptable level and 

the network has then learned how to solve the problem posed by training data. 

Example of the backpropagation learning algorithm will be given in the following 

section. 

3.1.5 Adaptive networks 

 

                         Figure 3.4 Adaptive network 

An adaptive network (Figure 3.4) is an example of multilayer feedforward 

NN in which each node performs a particular function (node function) on 

incoming signals as well as a set of parameters pertaining to this node. The 

formulas for the node functions may vary from node to node, and the choice of 

each node function depends on the overall input-output function, which the 

adaptive network is required to carry out. The links in an adaptive network only 



 

 29

show the flow direction signals between nodes. No weights are associated with 

the links (Jang 1993).  

The basic learning rule of adaptive networks is the backpropagation 

learning rule. However, since it is slow and tends to become trapped in local 

minima, a hybrid learning rule algorithm was proposed to speed up the learning 

algorithm by Jang in 1993. 

3.1.5.1 Backpropagation of Adaptive Networks 

Suppose that adaptive network in Figure 3.4 has N layers. (j,i) is the node 

in the ith position of the jth layer and ijO ,  is the node output. Since a node 

output depends on its incoming signal and its parameter set, it can be defined as 

follows: 

( )( ),.......,,,,.... 1
1

1
,, cbaOOfO j

j
j
iijij

−
−#

−=     (3.6) 

cba ,,  are the parameters pertaining to this node and f  is the node 

function. Assuming the training data has P  entries, an error measure can be 

defined for the pth ( Pp ≤≤1 ) entry of training data as the sum of the square 

errors and it is equal to: 

      ( )
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where kd  is the kth component of the pth target vector, and kNO ,  is the kth 

component of the actual output vector produced by presentation of pth input 

vector. Therefore, the overall error measure can be expressed as: 
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When pE  is equal to zero, the network is able to reproduce exactly the 

desired output vector in the pth training data pair. Therefore, aim is to minimize 

an overall measure. For this, first error rate 
O
Ep

∂

∂
 for pth training data and for 

each node output should be calculated. The error rate for output node at layer N 

can be calculated from Equation 3.7 as: 

                 ( )N
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For internal node at the ith position of layer j, the error rate can be 

derived by the chain rule of differential calculus as follows: 
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where ( 11 −≤≤ Nj ). That is, the error rate of an internal node at layer j can be 

expressed as a linear combination of the error rates of the layer j+1. Therefore, 

for all Nj ≤≤1  and ( )ji ≤#≤1  error rates are found by applying Equation 3.9 

and 3.10. The underlying procedure is called backpropagation since the error 

rates are obtained sequentially from the output layer back to the input layer. The 

gradient vector is defined as the derivative of the error measure with respect to 

α  and equals to:  
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where S  is the set of nodes whose outputs depend on  α . Then, the derivative 

of the overall measure E  with respect to α  is written as: 

∑
= ∂
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pEE
1 αα

    (3.12) 

According to the simple steepest descent, the update formula for the 

generic parameter α  is as follows: 
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α
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in which η  is a learning rate which can be further expressed as: 

∑ 
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    (3.14) 

where k  is the “step size”, the length of each transition in the parameter space. 

It is observed that if k  is small, the gradient method will closely approximate 

the gradient path, but convergence will be slow since gradient must be 

calculated many times. On the other hand, if k  is large, convergence will initially 

be vary fast, but the algorithm will oscillate about the optimum. For this reason, 

it is proposed that if the error measure undergoes four consecutive reductions, 

k should be increased by 10%, if the error measure undergoes two consecutive 

combinations one increase and one reduction, it should be decreased by 10% 

(Jang 1993). 

 There are two learning paradigms for adaptive networks: offline learning 

(batch learning) and online learning (pattern learning). In offline learning, the 

update formula parameter α  is based on Equation 3.12 and the update action 

takes place only after the whole training data set has been presented, i.e., only 

after each epoch. On the other hand, the parameters are updated immediately 

after each input-output pair has been presented in online learning, and the 

update formula is based on Equation 3.11 (Castillo and Melin 2001). 

3.1.5.2 Hybrid Learning Rule: Offline Learning 

Hybrid learning rule combines the gradient method and the least square 

estimate (LSE) to identify the parameters. 
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Assuming that the adaptive network has only one output, the output can 

be expressed as: 

),( SIFoutput=     (3.15) 

where I  is the set of input variables and S  is the set of parameters. “If there 

exists a function H  such that the composite function FH o is linear some of the 

elements of S, these elements can be identified by the least square estimates.” 

(Jang 1993). Hence parameter set S  can be decomposed into two sets: 1S  and 

2S  such that FH o  is linear in the elements of 2S . Then applying H to Equation 

3.15, it becomes as follows: 

),( SIFHoutput o=     (3.16) 

which is linear in the elements of 2S . Now given values of elements of 1S , P  

training data is plugged into Equation 3.15 and a matrix equation obtained: 

BAX =     (3.17) 

where X  is an unknown vector whose elements are parameters in 2S . Since 

number of training data pairs is usually greater than number of linear 

parameters, this is an over-determined problem and there is no exact solution 

for Equation 3.17. To deal with this problem, a sequential method of LSE was 

proposed by Jang. According to this method X  is calculated iteratively using the 

sequential formulas adopted in literature as: 
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where T
ia  is the ith row vector of matrix A  defined in Equation 3.17 and T

ib  is 

the ith element of B . iS  is called the covariance matrix. 
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 Each epoch of hybrid learning procedure consists of a forward pass and 

backward pass. In forward pass, input data and functional signals go forward are 

supplied to calculate each node output until the matrices A  and B  in Equation 

3.17 are obtained. Then, the parameters in 2S are identified by the sequential 

least squares formulas. After identifying parameters in 2S , the functional signals 

keep going forward till the error measure is calculated. In the backward pass, 

the error rates propagate from the output end toward the input end, and the 

parameters in 1S  are updated by the gradient method (Equation 3.13). 

3.1.5.3 Hybrid Learning Rule: Online Learning 

Online learning method is important for online parameter identification for 

systems with changing characteristics. The gradient descent is based on 

pE instead of E  in this method. A forgetting factor is added to the original 

sequential formula to decay the effects of the old data pairs as new data pairs 

become available. This approach gives higher factors to more recent data pairs 

and hence the time varying characteristics of the incoming data are accounted 

for. Original sequential formula for online learning is written as follows: 
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where λ is between 0 and 1. The smaller λ  is, the faster effects of old data 

decay.  

3.2 Fuzzy Logic Systems 

This section presents general information about the theory of fuzzy logic.  

Definition of a fuzzy set and linguistic variable conception are presented. The 
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meaning of a fuzzy rule is explained and some rule examples are given. Fuzzy 

reasoning mechanism and fuzzy inference systems are also presented. 

3.2 .1 Fuzzy set 

A “fuzzy set” is a simple extension of the definition of a classical set in 

which the characteristic function is permitted to have any values between 0 and 

1 (Castillo and Melin 2000). A “fuzzy set” A  in X  can be defined as a set of 

ordered pairs: 

( )( ){ }XxxxA A ∈= |, µ    (3.20) 

where ( )xAµ  is called membership function for the fuzzy set A . It maps each x  

to a membership grade between 0 and 1. Examples of membership functions  

(Triangular, Trapezoidal and Gaussian) can be seen in Figure 3.5 and described 

with the following formulas:  

Triangular MFs: 
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Trapezoidal MFs: 
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Gaussian MFs: 
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Figure3.5 Examples of membership functions 

3.2 .2 Linguistic Variables 

The concept of linguistic variables was introduced by Zadeh (1973) to 

provide a basis for approximate reasoning. A linguistic variable was defined as a 

variable whose values are words or sentences. For instance, Age can be linguistic 

variable if its values are linguistic rather than numerical, i.e., young, very young, 

old, very old, etc., rather than 20, 21, 23, 45…. Figure 3.6 illustrates the term 

set Age expressed by the Gaussian MFs. 

 

Figure3.6 Membership functions of the term set Age 



 

 36

3.2 .3 Fuzzy if then Rules 

A fuzzy if-then rule (fuzzy rule, fuzzy implication, or fuzzy conditional 

statement) is expressed as follow: 

If x is A then y is B 

where A and B linguistic values defined by fuzzy sets. “x is A” is called 

“antecedent” or “premise”, while “y is B” is called the “consequence” or 

“conclusion” (Castillo and Melin 2000). Some of the if-then rule examples can be 

given below: 

• If pressure high, then volume is small. 

• If the speed is low AND the distance is small, then the force on brake 

should be small. 

3.2 .4 Fuzzy Reasoning 

Fuzzy reasoning, approximate reasoning, is an inference procedure whose 

outcome is conclusion for a set of fuzzy if-then rules. The steps of fuzzy 

reasoning can be given as follows: 

1. “Input variables are compared with the MFs on the premise part to 

obtain the membership values of each linguistic label (fuzzification). 

2. The membership values on the premise part are combined through 

specific fuzzy set operations such as: min, max, or multiplication to 

get firing strength (weight) of each rule. 

3. The qualified consequent (either fuzzy or crisp) is generated 

depends on the firing strength. 
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4. The qualified consequents are aggregated to produce crisp output 

according to the defined methods such as: centroid of area, bisector 

of area, mean of maximum, smallest of maximum and largest of 

maximum (deffuzification) (Jang 1993)”. 

3.2 .5 Fuzzy Systems  

Fuzzy systems are made of a knowledge base and reasoning mechanism 

called fuzzy inference engine. The structure of fuzzy inference engine is shown in 

Figure 3.7.  A fuzzy inference engine combines fuzzy if-then rules into a mapping 

from the inputs of the system into its outputs, using fuzzy reasoning methods 

(Czogala and Leski 2002). That is, fuzzy systems represents nonlinear mapping 

accompanied by fuzzy if-then rules from the rule base. Each of these rules 

describes the local mappings. The rule base can be constructed either from 

human expert or automatic generation that is extraction of rules using numerical 

input-output data. 

 

Figure3.7 Fuzzy Inference Engine 

Mamdani and Takagi-Sugeno fuzzy systems are the examples of fuzzy 

inference systems.  Mamdani fuzzy inference system was first used to control a 

steam engine and boiler combination by a set of linguistic rules obtained from 

human operators (Mamdani and Assilian 1975). Figure 3.8 illustrates how a two 

rule Mamdani fuzzy inference system derives the overall output z when 
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subjected to two numeric inputs x and y. Takagi-Sugeno fuzzy inference system 

was first introduced by Takagi and Sugeno (1985). The difference of Takagi-

Sugeno model is that each rule has a crisp output, and the overall output is 

determined as weighted average of single rules output. This type of fuzzy 

inference system is shown in Figure 3.9 

 

Figure3.8  Mamdani Fuzzy Inference System 

 

 

Figure3.9 Takagi-Sugeno Fuzzy Inference System 
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3.3 ANFIS 

As previously stated, ANFIS is an adaptive network that is functionally 

equivalent to fuzzy inference system (Jang 1993), and referred in literature as 

“adaptive network based fuzzy inference system” or “adaptive neuro fuzzy 

inference sytem”. In this section, architecture of ANFIS will be presented.  

3.3.1 ANFIS architecture 

In ANFIS, Takagi-Sugeno type fuzzy inference system is used. The output 

of each rule can be a linear combination of input variables plus a constant term 

or can be only a constant term. The final output is the weighted average of each 

rule’s output. Basic ANFIS architecture that has two inputs x and y and one 

output z is shown in Figure 3.10. The rule base contains two Takagi-Sugeno if-

then rules as follows: 

  Rule1: If x  is 1A and y  is 1B , then 1111 ryqxpf ++=  

  Rule2: If x  is 2A and y  is 2B , then 2222 ryqxpf ++=  

 

    Figure3.10 Basic structure of ANFIS 
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 The node functions in the same layer are the same as described below: 

Layer 1:  Every node i  in this layer is a square node with a node 

function as:  
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where x is the input to node i, and iA (or 2−iB ) is a linguistic label (such as 

“small” or “large”) associated with this node. In other words, 0l,i is the 

membership grade of a fuzzy set A  and it specifies the degree to which the 

given input x satisfies the quantifier A . The membership function for A  can be 

any appropriate membership function, such as the Triangular or Gaussian. When 

the parameters of membership function changes, chosen membership function 

varies accordingly, thus exhibiting various forms of membership functions for a 

fuzzy set A . Parameters in this layer are referred to as “premise parameters”. 

Layer 2:  Every node in this layer is a fixed node labeled as Π, whose 

output is the product of all incoming signals:  

                         ( ) ( ) 2,1,0 ,2 === iyBxAw
iiii µµ                         (3.25) 

 

Each node output represents the firing strength of a fuzzy rule.  

 Layer 3: Every node in this layer is a fixed node labeled N. The ith 

node calculates the ratio of the rule’s firing strength to the sum of all rules’ firing 

strengths: 

    ( ) 2,1,/0 21,3 =+== iwwww iii                         (3.26)   

         

Outputs of this layer are called “normalized firing strengths”. 
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 Layer 4: Every node i  in this layer is an adaptive node with a node 

function as: 

      ( )iiiiiii ryqxpwfw ++==,40                         (3.27)   

                    

where iw  is a normalized firing strength from layer 3 and { }iii rqp ,,  is the 

parameter set of this node. Parameters in this layer are referred to as 

“consequent parameters”. 

Layer 5: The single node in this layer is a fixed node labeled Σ that 

computes the overall output as the summation of all incoming signals: 

∑
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i ifiwioutputoverall ,50                         (3.28)   

 Thus an adaptive network, which is functionally equivalent to the Takagi-

Sugeno type fuzzy inference system, has been constructed. Other example of 

ANFIS with nine rules can be shown in Figure 3.11. Three membership functions 

are associated with each input, so the input space partitioned into nine fuzzy 

subspaces. The premise part of a rule describes a fuzzy subspace, while the 

consequent part specifies the output within this fuzzy subspace. 

  

Figure3.11 ANFIS Architecture with nine rules 
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3.3.2 ANFIS Learning algorithm 

 From the proposed ANFIS architecture above (Figure 3.11), the output f  

can be defined as: 
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where 1p , 1q , 1r , 2p , 2q and 2r  are the linear consequent parameters. The 

methods for updating the parameters are listed as below: 

1. Gradient decent only: All parameters are updated by gradient decent 

backpropagation. 

2. Gradient decent and One pass of Least Square Estimates (LSE): The LSE 

is applied only once at the very beginning to get the initial values of the 

consequent parameters and then the gradient descent takes over to 

update all parameters. 

3. Gradient and LSE: This is the hybrid learning rule. 

Since the hybrid learning approach converges much faster by reducing 

search space dimensions than the original backpropagation method, it is more 

desirable. In the forward pass of the hybrid learning, node outputs go forward 

until layer 4 and the consequent parameters are identified with the least square 

method. In the backward pass, the error rates propagate backward and the 

premise parameters are updated by gradient descent. 

 



 

 43

CHAPTER 4 

ANFIS DESIGN AND CASE STUDIES 

In this study, as a continuation of previous studies done by Bahar (2003), 

and Yıldız (2003), the aim is to use the ANFIS methodology, a hybrid structure, 

in the estimation of compositions using tray temperatures in continuous and 

batch distillation columns. The performance of the ANFIS estimator is compared 

with the performance of the NN and Extended Kalman Filter (EKF) estimators.  

In this chapter, the design of ANFIS architecture for the estimation and control 

purposes will be explained. Also, the case studies used for the applications will 

be presented. 

4.1 Design of ANFIS  

The basic idea behind the neuro-adaptive learning techniques is very 

simple. These techniques provide a method for the fuzzy modeling procedure to 

learn information about data set, in order to compute the membership function 

parameters that best allow the associated fuzzy inference system to track the 

given input-output data.  ANFIS constructs an input-output mapping based on 

both human knowledge (in the form of fuzzy if-then rules) and simulated input-

output data pairs. It serves as a basis for building the set of fuzzy if-then rules 

with appropriate membership functions to generate the input output pairs.  
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The parameters associated with the membership functions are open to 

change through the learning process. The computation of these parameters (or 

their adjustment) is facilitated by a gradient vector, which provides a measure of 

how well the ANFIS is modeling the input output data for a given parameter set. 

Once the gradient vector is obtained, backpropagation or hybrid learning 

algorithm, described in the previous chapter, can be applied in order to adjust 

the parameters.  

       As stated previously, ANFIS can be used in modeling, estimating and 

controlling studies in chemical engineering processes similar to other artificial 

intelligence methods such as NNs and Fuzzy Logic (FL). In this work, the 

designed ANFIS is utilized as an estimator and a controller. Estimation is done 

for compositions from the temperature measurements in continuous and batch 

distillation columns whereas adaptive control strategy that needs no separate 

process network model with ANFIS controller is utilized in a pH system for set 

point tracking problem. 

  

4.1.1 ANFIS as an Estimator 

ANFIS can be used for the estimation of some dependent variables in 

chemical process. The designed ANFIS estimator is used to infer the 

compositions from measurable tray temperatures in batch and continuous 

distillation columns. Estimation scheme is shown in Figure 4.1. In estimator 

design process, different ANFISs are constructed and trained to find the 

architecture that gives the best performance as an estimator. 

 In order to design an estimator, first, training data sets should be 

generated to train the estimator networks. These data sets consist of estimator 

inputs and desired output values. They are produced from the process input- 
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output data. Since, ANFIS is a data processing method, it is important that the 

input-output data must be within the sufficient operational range including the 

maximum and minimum values for both input and output variables of the 

system. If this is not provided, estimator performance cannot be guaranteed and 

thus the designed estimator will not be accurate. Having generated the training 

data, estimators that have different architectures are trained with the obtained 

data sets.  

Performances of the trained estimators are evaluated with model 

simulations and best estimator architecture is obtained. These simulations are 

made to verify and to generalize the ANFIS structures. Verification is done to 

show how good the estimator structure learned the given training data. This is 

carried out by simulating the column models with specific initial process inputs 

used in obtaining training data sets. Generalization capabilities of the estimators 

are found with other simulations in which input process variables are in 

operational range but not used in training data formation.   

 

 

 

 

     

Figure 4.1 Estimation using ANFIS estimator 
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input MF. Frequently used MFs in literature are the Triangular and Gaussian. For 

this reason, they are chosen as input MF type in this study. Number of MFs on 

each input can be chosen as 3, 5, and 7 to define the linguistic labels 

significantly. Effective partition of the input space is important and it can 

decrease the rule number and thus increase the speed in both learning and 

application phase. Output MFs can be either a constant or in linear form. Both of 

these two forms are used for the output MF in this study. Having described the 

number and type of input MFs, the estimator rule base is constituted. Since, 

there is no standard method to utilize the expert knowledge; automatic rule 

generation (grid partition) method is usually preferred (Castillo and Melin 2000). 

According to this method, for instance, an ANFIS model with two inputs and 

three MFs on each input would result in 32=9 Takagi-Sugeno fuzzy if-then rules 

automatically. Although this method can require much computational knowledge 

especially in systems that have to be defined with many inputs, it is used in this 

study due to advantage of MATLAB software. Therefore, rule bases of the 

estimators are formed automatically with the number of inputs and number of 

MFs. After the ANFIS structure is constructed, learning algorithm and training 

parameters are chosen. As mentioned in the previous chapter, backpropagation 

or hybrid learning can be used as a learning algorithm. The hybrid learning 

algorithm is used in this study. Parameters in the algorithm are epoch size 

(presentation of the entire data set), error tolerance, initial step size, step size 

decrease rate, and step size increase rate. Since there is no exact method in 

literature to find the optimum of these parameters a trial and error procedure is 

used. In all trainings, they are taken as 10, 1x10-5, 0.01, 0.9, and 1.1, 

respectively as default constant value as proposed in MATLAB.   

MATLAB fuzzy logic toolbox is used to design ANFIS estimators’ structures. 

Using the given training data set, the toolbox constructs an ANFIS structure 

using either a backpropagation algorithm alone, or in combination with least 
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squares type of method (hybrid algorithm). ANFIS model can be generated 

either from the command line, or through the ANFIS editor GUI. In this study, 

ANFIS Editor GUI is used to generate the ANFIS models with the chosen design 

parameters in construction phase. Written MATLAB code is used to train the 

ANFIS structure in the training step. This code is given Appendix B.1. The use of 

the ANFIS editor GUI can be found in program help files.  

The steps in ANFIS estimator design in this study utilizing the MATLAB 

fuzzy logic toolbox are as follows: 

1. Generated training data is loaded to the Editor GUI. 

2. Design parameters, number of input MF, type of input and output 

MF, are chosen. Thus, initial ANFIS structure is formed.  

3. The code for the training is run with the initial structure. 

4. ANFIS structure constituted after training is saved to use as an 

estimator.   

4.1.2 ANFIS as a Controller 

In the literature, approaches of using NNs for the control of nonlinear 

processes literature are usually model based, i.e., they have one NN for 

modeling the dynamics of the process and a second NN that acts as the 

controller. However, NN structures are not generally mean. A network consists of 

several connection weights. Therefore, any adaptive model-based control 

scheme will have to deal with updating a very large number of weights. The 

iterative inversion of the forward model in a Model Predictive Control (MPC) 

scheme and the online adaptation of controller network parameters in an 

adaptive control scheme require considerable computational power and the 
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convergence of such schemes within a sampling interval is not guaranteed. 

Hence, the scope of applications using such control schemes is severely limited 

in practice (Jutan and Krishnapura 2000). 

The original purpose of fuzzy logic control, proposed by Mamdani in 1975, 

is to mimic the behavior of a human operator able to a control complex plant 

satisfactorily. When a fuzzy controller is constructed, “knowledge acquisition”, 

which takes a human operator’s knowledge and generates fuzzy if-then rules is 

needed to perform as the backbone for a fuzzy controller that behaves like the 

original human operator. Usually, “linguistic and numerical” information are the 

types of information from a human operator. An experienced human operator 

usually summarizes his or her reasoning processes to find the final control 

decisions as a set of fuzzy if-then rules with imprecise but roughly correct MFs. 

These MFs are obtained with a certain amount of trial and error plus a lengthy 

interview process. This corresponds to linguistic information. But, it is possible to 

obtain data observed by human and human’s corresponding actions as a set of 

desired input-output data pairs. Next, this data can be used as training data in 

constructing a fuzzy controller. Before the Neuro-Fuzzy approaches, most 

controller design methods used only the linguistic information to build a fuzzy 

controller. Manual trial and error processes were involved to fine tune the MFs. 

Therefore, linguistic information can be used to identify the structure of the fuzzy 

controller, and then numerical information can be used to identify the 

parameters such that the fuzzy controller can reproduce the desired action more 

accurately.   

To deal with the problems mentioned above in control applications, ANFIS 

can be used. An adaptive Neuro-Fuzzy controller with a small number of weights 

can be designed by using the ANFIS architecture. The ANFIS structure, with very 

few weights, can overcome the problem of excessive tuning parameters and the 
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need for modeling of the process by a separate network model such as NN, fuzzy 

or ANFIS.  

Inverse learning is one of the methods of designing Neuro-Fuzzy 

controllers. It involves two phases: learning and application phases. In the 

learning phase training set is obtained by generating inputs randomly, and 

observing the corresponding outputs produced by the plant. In the application 

phase, the ANFIS identifier is copied to the ANFIS controller for generating the 

desired output. Learning phase and application phase of inverse learning are 

shown in Figures 4.2 and 4.3, respectively. This method seems straightforward 

and only one learning task is needed to find the inverse of the plant. It assumes 

the existence of the inverse plant, which is not valid in general. Minimization of 

the network error does not guarantee minimization of the overall system error. 

However, inverse learning is an indirect approach that tries to minimize the 

network output error instead of overall system error (defined as the difference 

between desired and actual trajectories). Instead of this method, “specialized 

learning” (illustrated in Figure 4.4) can be used as an alternative that tries to 

minimize the system error directly by backpropagating error signals through the 

plant block. In order to backpropagate the error signals through the plant, a 

model representing the behavior of the plant is needed. In other words, Jacobian 

of the plant, 
u
y

∂
∂

, is required. It can be estimated online from the changes of 

plant’s inputs and outputs. The desired behavior of the overall system can also 

be implicitly specified by a (usually linear) model that is able to achieve the 

control goal satisfactorily. In literature, Yamamura et. al. (1988) used an 

iterative approach to evaluate the plant Jacobian information. Ydtsie (1990) also 

used a similar approach, called one-step ahead indirect adaptive control, with a 

single linear neuron in the output layer and many nonlinear neurons in the 

hidden layer of the network. Saerens and Soquet (1991) used the sign of the 
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process gain to approximate the process Jacobian. Juan and Krishnapura (2000) 

proposed the use of sigmoidal function that has the property of having 

continuous derivatives to approximate the plant Jacobian. Their approach of 

using the sigmoidal function to represent the unmodifaible process layer in 

controller process network gives an approximation to both the process gain as 

well as its sign. 

plant

ANFIS
identifier

+

-

u(k)

x(k)
x(k+1)

 

Figure4.2 Learning phase of the Inverse Learning 
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Figure 4.3 Application phase of the Inverse Learning 
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Figure 4.4 Specialized Learning 
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In the control part of this study, specialized learning algorithm shown in 

Figure 4.4 is used in pH system to see the performance of the ANFIS as a 

controller. Therefore, a simple ANFIS controller designed. The sigmoidal function 

approximation proposed by Jutan and Krishnapura (2000) is used to 

approximate the plant Jacobian.     

When designing the ANFIS controller, first, inputs to the controllers are 

decided. Two inputs are chosen. They are the controller and process outputs at 

the previous sampling instant. These are base flow rate and pH, respectively. 

Since Gaussian MF has two parameters, it is chosen as an input MF. Three MFs 

labeled with the Small (S), Medium (M) and Big (B) as linguistic variables are 

used for input MFs. Output membership function type is chosen as constant form 

explained in detail in Chapter 3.3. Thus, ANFIS controller, with two inputs and 

three MFs on each input, has nine control rules in the controller rule base due to 

the grid partition method mentioned in previous section. Generated ANFIS 

controller structure is given in Figure 3.11. In the controller, total number of 

adjusted parameters is 21. Since each input is graded with three MFs and one of 

them consists of two parameters, twelve of adjusted parameters come from the 

premise part of the controller network. Consequent part of the controller consists 

of nine parameters due to the nine rules with constant output. Controller 

parameters are adapted at each sampling instant. A code for simple 

backpropagation algorithm is written to update the parameters of the ANFIS 

controller in closed-loop system simulation.  

The performance error for the pH system is ( )pHpHe d −= . The cost 

(error) function to be optimized is defined as follows: 

                                        ( ) ( )αEpHpHeE d =−== 22

2
1

2
1

                     (4.1)   
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where α  is one of the controller parameters. The calculation of the cost function 

gradient 
α∂

∂E
 is done by applying the chain rule to optimize the parameterα  as  

αα ∂
∂

∂
∂

∂
∂

∂
∂

=
∂
∂ u

u
pH

pH
e

e
EE

                        (4.2) 

( )
αα ∂

∂
∂

∂
−−=

∂
∂ u

u
pHpHpHE

d                         (4.3) 

 

where 
u
pH
∂

∂
 is the plant Jacobian. To minimize the error, the parameter change 

should be in the negative gradient direction. Therefore,  

                                             
α

ηα
∂
∂

−=∆
E

                                   (4.4) 

Adaptation formula for the parameter α  is calculated as 

 
( ) ( ) ααα ∆+=+ kk 1                                (4.5) 

 ( ) ( )
α

ηαα
∂
∂

−=+
Ekk 1                               (4.6) 

All parameters in the controller are adapted according to Equation 4.6.  

4.2 Case Studies 

In this section, the cases in which ANFIS methodologies are implemented 

will be given. In the first part, the multicomponent industrial continuous 

distillation column will be described. The case of batch distillation column will be 

given in the second part. In the third part of this section, the pH system will be 

presented. 
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4.2.1 Industrial Continuous Distillation Column 

The industrial continuous distillation column used in this study is C3-C4 

Splitter column. This column exists in Kırıkkale refinery, in Turkey. Figure 4.5 

presents the sketch of the column. A mixture of propane, i-butane, n-butane, 

and i-pentane enters the column from the 22nd tray and propane and n-butane 

are separated as a top and bottom product, respectively. Top product 

composition purity is controlled by manipulating the reflux flow rate. The bottom 

product purity is controlled by measuring the temperature of the bottoms and 

manipulating the steam flow rate to the reboiler. Liquid heights in the column 

bottom and receiver drum are controlled by adjusting the bottoms and liquid 

distillate flow rates, respectively. The pressure in the column is controlled by 

manipulating the overhead vapor flow rate to the receiver drum. Design 

parameters and the operating data of the column are given in Table 4.1. 

The unsteady state simulation program for the column mentioned above 

was first written in FORTRAN by Alkaya (1990). Then, it was improved by Kaya 

(2000) and modified by Dokucu (2002). Bahar (2003) adapted the simulation 

code to MATLAB software without changing the main algorithm. Details of the 

algorithm of the unsteady state model can be found in the study of Dokucu 

(2002). 
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Figure 4.5  C3-C4 Splitter column (Dokucu 2002) 
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Table 4.1 Plant Data (Dokucu 2002) 

Column Specifications  

Number of Trays 35 

Column Inside Diameter 1000 mm 

Tray Spacing 600 mm 

Weir Length 880 mm 

Weir Height 50 mm 

Maximum Capacity (% of nominal design) 110 % 

Minimum Capacity (% of nominal design) 50 % 

Feed Condition  

Feed Rate 118.53 kmol/hr 

Feed Pressure 18.04 bar 

Feed Temperature 84 0C 

Feed Composition (mole fraction)  

   Propane 0.3933 

   i-Butane 0.2384 

   n-Butane 0.3678 

   i-Pentane 0.0005 

Operational Values (Design)  

Maximum Pressure Drop for One Tray 5 mm Hg 

Top Tray Pressure 16.18 bar 

Bottom Tray Pressure 16.67 bar 

Top Tray Temperature 48 0C 

Bottom Tray Temperature 98 0C 

Reflux Rate 161.51 kmol/hr 

Distillate Rate 32.76 kmol/hr 

Bottoms Rate 85.77 kmol/hr 

Reboiler Duty 1930 MW 
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4.2.2 Batch Distillation Column 

The batch distillation column simulated by Mujtaba et. al. (1993) is used in 

the second study. Figure 4.6 illustrates the sketch of the batch column. This 

column separates a mixture of cyclo-hexane, n-heptane and toluene. Design 

parameters for the case column is given in Table 4.2. The column is under the 

perfect control of reflux drum level and reflux ratio (R) is used as the 

manipulated variable in order to realize the optimal operation policy 

recommended by Mujtaba et. al. (1993). In this policy, a switching time between 

R and shortcuts was optimized according to the minimization of the capacity 

factor.  Table 4.3 shows the parameters of the optimal reflux policy profile given 

by Mujtaba et. al. (1993).  

 

Figure 4.6 Batch Distillation Column (Yıldız 2003) 
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Table 4.2 Design parameters for the batch distillation column (Yıldız 2003) 

Number of trays 8 
Condenser-Reflux-Drum Holdup 0.02 kmol 
Trays Holdup 0.01 kmol 
Maximum Boil-up rate 2.75 kmol/h 

 

Table 4.3 Optimal reflux ratio policy parameters (Yıldız 2003) 

Amount of fresh feed 2.93 kmol 
Feed composition:  

cyclo-hexane 0.407 
n-heptane 0.394 

toluene 0.199 
Desired purity of comp. 1 in Product-cut 1 0.9 
Desired purity of comp. 2 in Product-cut 2 0.8 

Optimum Reflux Profile  
Time Interval (hour) Reflux Ratio 

0-2.04 0.875 
2.04-3.4 0.911 
3.4-6.17 0.933 
6.17-6.51 0.831 
6.51-8.35 0.876 

 

The simulation code for the column was written in MATLAB by Yıldız 

(2003). He developed a rigorous batch distillation column model and tested the 

validity of the model by using operating conditions of the column given in 

literature. Assumptions made in model development are negligible vapor holdup, 

constant volume of tray liquid holdups, negligible fluid dynamics lags, adiabatic 

operation and ideal trays. Details of the model development and simulation code 

of the system can be found in the study of Yıldız (2003).  

4.2.3 pH System 

The pH system was first studied by Sain (1989). Sain investigated the 

effect of large dead time in the measuring line on the control performance of 

different controller tuning methods in her study. Then, Kaffashi (1998) and 

Nasrellah (1998) applied the intelligent process control techniques. Akbay (2002) 
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also studied the system experimentally using sliding mode and fuzzy sliding 

mode control techniques.  

The pH system under study can be shown schematically in Figure 4.7. The 

acetic acid (CH3COOH) stream (process stream), with concentration c1, enters 

the CSTR at a flow rate of F1 while the sodium hydroxide (NaOH) base stream 

(titrating stream) of concentration c2, flows into reactor at a rate of F2. The 

reactor has a constant volume V and the mixture in the reactor is assumed to be 

perfectly. The process output being measured is the pH of the exiting stream. 

The objective of the system is to control of the effluent pH by manipulating the 

base stream flow, F2, into the system. 1x  and 2x  are the total ion concentrations 

of the acetate and sodium respectively.  

 

Figure 4.7 pH reactor  

In order to model this simple dynamic pH system, a method proposed by 

Wright and Kravaris (1991) is used in this study. According to the Wright and 

Kravaris, the material balances around the dynamic CSTR system with the 

assumptions of constant volume and perfect mixing are of the form: 

x1, x2 

F1 , c1 F2 , c2 
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      ( ) ( ) niuxxcF
dt
dx

V iiii
i ,.....,1==−+−= α                    (4.7) 

where ix = total ion concentration of the ith acidic or basic species in the effluent 

stream (state variables), F = flow rate of the process stream, V = volume of the 

CSTR, iα = total ion concentration of ith species in process stream, and u = flow 

rate of titrating stream (manipulated variable). Equation 4.6 forms the state 

model for the system. The pH is calculated from the following pH Equation: 

                                  ( ) ( ) 0
1

=+∑
=

pHAxpHa i

n

i
i                              (4.8) 

where pH =–log[H+], ( )pHai  are weighting factors, and ( )pHA  is given by the 

following equation: 

( )pHA = 10-pH -Kw10pH                             (4.9) 

where Kw is the water equilibrium constant. Equations 4.7 and 4.8 constitute a 

general mathematical model for any pH process. The discrete forms of these 

equations are: 
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  In the pH system under study, consisting of acetic acid being titrated by 

sodium hydroxide, the total acetate ( 1x ) and total sodium ( 2x ) concentrations 

are defined as follows: 

                      [ ] [ ]COOHCHCOOHCHx 331 += −                           (4.12) 

                                     [ ]+= Nax2                                             (4.13) 

The acetate balance and sodium balance can be given by the following 

equations: 
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( ) 12111
1 xFFcF
dt
dxV +−=                                   (4.14) 

( ) 22122
2 xFFcF
dt
dxV +−=                                   (4.15)  

 Figure 4.8 represents steady state gain variation in the pH to changes in 

base stream flow rate of the system, with the acid stream flow rate held 

constant. CSTR parameters used are taken the study of McAvoy (1990).  

  

Figure4.8 Steady state pH gain curve  
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CHAPTER 5 

RESULTS AND DISCUSSION 

In this study, the aim is to design ANFIS architectures for chemical 

processes in estimation problems and to see their performances. For this 

purpose, ANFIS architecture is applied to batch and continuous distillation 

columns to estimate the compositions from measured tray temperatures. It is 

also tried as a controller in pH reactor control system.   

 In this chapter, simulation results will be given and be discussed in detail. 

Design and implementations of ANFIS estimators will be demonstrated. 

Controller performance of ANFIS for set point tracking in pH reactor will also be 

presented.   

5.1 Estimation in Continuous Distillation Column 

 In the continuous distillation column for estimation purposes, two parallel 

ANFIS estimators are designed to estimate the top (propane) and bottom 

(butane) product compositions from tray temperatures. Static mapping of the 

compositions from the temperatures are achieved using the ANFIS estimators. 

This is performed in four phases. In the first phase, estimators’ inputs are 

selected. Then, in the second phase, training data sets are generated. Estimator 
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structures are trained in the third phase. And, in the last phase, simulations are 

done to obtain the results for performance evaluations. 

5.1.1 Selection of Estimator Inputs 

   In estimators, estimation accuracy can be easily affected from the inputs 

behavior. Also estimator performance depends strongly on the number of inputs. 

For these reasons, selection of the inputs is a critical issue in estimator design 

process.   

Bahar (2003) designed NN estimator for the continuous distillation column 

under study to estimate the bottom and top compositions from temperatures 

and past composition values. She applied a Singular Value Decomposition (SVD) 

technique to select the sensor locations. According to the SVD, for a NC 

component system, NC-1 temperature measurements are needed for the 

composition estimation. Hence, three trays from top and three from bottom were 

found to estimate the top (propane) and bottom (butane) compositions. These 

are 31st, 32nd, and 33rd trays for the top, and 10th, 11th, and 12th trays for the 

bottom. 

  In this study, it is aimed to estimate the compositions only from 

temperature measurements. However, since ANFIS has a single output, only one 

of the product compositions can be estimated using the temperature values. 

There is no need to use past composition values as estimator inputs as NN 

needs. Also, as the number of measurements is increased as system inputs, 

structure complexity is increased which affects the convergence of the problem. 

Therefore, it is decided to use three-tray measurement for estimation process as 

suggested by SVD. Thus, by referring to the Bahar’s study, 31st, 32nd, and 33rd 

trays are selected to estimate the top product (propane) composition and 10th, 

11th, and 12th trays are selected to estimate the bottom product (butane) 
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composition in the column. The estimation scheme for continuous distillation 

column is shown in Figure 5.1. 

 

Figure5.1 Estimation scheme for continuous distillation column 

5.1.2 Generation of Training Data  

If the operating input-output data are outside their training data range, 

estimator will not operate accurately. As a result, the training data set should 

possess sufficient operational range including the maximum and minimum values 

for input-output variables. The data set should include data for each process 

variable, evenly distributed throughout the range for which estimation is desired.  

The maximum and minimum values of reflux and boilup rates in the 

column were determined by Bahar (2003) by looking at the closed-loop 

responses of the system without the estimator obtained by Dokucu (2002) to 

10% increase in feed flow rate. This corresponds to approximately maximum 

+7% change in the reflux rate, and maximum +5% change in the boilup rate. 

These are considered to be their maximum changes in operation. The percent 

changes for each process variable used in training data generation are shown in 
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Table 5.1. Thus, model simulations are done to obtain the input-output data by 

using these values. Then, tray temperature values and corresponding top and 

bottom product compositions are collected. In training data sets (matrix of 4 

columns), first three columns correspond to tray temperature values and the last 

column corresponds to composition values.      

Table 5.1 Range of Process Variables 

Process Variable % changes 

Reflux Rate, R +1, +4, +7 

Boilup Rate, Q +1, +3, +5 

Feed Flowrate, F +1, +5, +10 

Feed Composition, zF -1, -5, -10 

5.1.3   Training of ANFIS estimators 

Estimator structure design and training are realized as explained in the 

previous chapter using MATLAB software. First, generated training data is loaded 

using the GUI Editor. Then, with chosen design parameters, initial estimator 

structure is constructed. For example, if three triangular MFs are used for each 

input and constant output MF is chosen, GUI Editor determines the initial 

parameters of triangular MFs automatically using loaded data and constructs the 

initial Tri3con (three triangular MFs for each input and constant output MF) 

ANFIS structure. Trainings of the structures are done by running the written 

code in MATLAB. This code is given in Appendix B.1. All structures are trained in 

the same way only by changing the training data. In the design of top product 

estimator, training data set corresponded to 31st, 32nd, and 33rd trays 

temperatures and actual top product composition. In the bottom product 

estimator design, data set that includes 10th, 11th, and 12th trays’ temperatures 

and actual bottom product composition. 
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5.1.4   Simulations results 

After the training of the ANFIS structures, performances of estimators are 

investigated through the model for both the verification and generalization tests. 

These tests are made by utilizing the different estimator structures. The 

responses of the compositions to a 4% increase in reflux rate and a 5% increase 

in feed rate are obtained by simulations to verify the estimator’s learning 

performances. Also, reflux rate and feed rate are increased by 5% and 7% 

respectively to see the generalization capabilities of the estimators. In all 

simulations, the Integral of the Absolute Error (IAE) scores for the error between 

the actual and estimated compositions are calculated as the performance 

criteria. Simulation results are given in Tables 5.2-5.5. Verification capabilities of 

the estimators can be followed considering the IAE scores giving how well these 

different estimator structures can generalize what they have learned. 

Table 5.2 Verification: 5% increase in Feed Flowrate  

Input MF 
 

Number 
of input 

MF 

Output 
MF 

   IAE score  
 Top product   
       xd 

IAE score 
Bottom 
product 

xb 
Triangular 3 constant 0 0 
Triangular 3 linear 0 0 
Triangular 5 constant 0 0 
Triangular 5 linear 0 0 
Triangular 7 constant 0 0 
Triangular 7 linear 0 0 
Gaussian 3 constant 0 0 
Gaussian 3 linear 0 0 
Gaussian 5 constant 0 0 
Gaussian 5 linear 0 0 
Gaussian 7 constant 0 0 
Gaussian 7 linear 0 0 
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Table 5.3 Verification: 4% increase in Reflux Rate  

  Input MF 
 

Number 
of input 

MF 

Output 
MF 

   IAE score  
 Top product   
       xd 

IAE score 
Bottom 
product 

xb 
Triangular 3 constant 0.00049 0.0038 
Triangular 3 linear 0.00017 0.0011 
Triangular 5 constant 0.00026 0.0035 
Triangular 5 linear 0.00015 0.0007 
Triangular 7 constant 0.00025 0.0032 
Triangular 7 linear 0.00019 0.0008 
Gaussian 3 constant 0.00172 0.0038 
Gaussian 3 linear 0.00014 0.0014 
Gaussian 5 constant 0.00037 0.0026 
Gaussian 5 linear 0.00012 0.0006 
Gaussian 7 constant 0.00027 0.0021 
Gaussian 7 linear 0.00048 0.0023 

Table 5.4 Generalization: 7% increase in Feed Flowrate 

  Input MF 
 

Number 
of input 

MF 

Output 
MF 

   IAE score  
 Top product   
       xd 

IAE score 
Bottom 
product 

xb 
Triangular 3 constant 0 0 
Triangular 3 linear 0 0 
Triangular 5 constant 0 0 
Triangular 5 linear 0 0 
Triangular 7 constant 0 0 

Triangular 7 linear 0 0 

Gaussian 3 constant 0 0 

Gaussian 3 linear 0 0 

Gaussian 5 constant 0 0 

Gaussian 5 linear 0 0 

Gaussian 7 constant 0 0 

Gaussian 7 linear 0 0 

Table 5.5 Generalization: 5% increase in Reflux rate 

  Input MF 
 

Number 
of input 

MF 

Output 
MF 

   IAE score  
 Top product   
       xd 

IAE score 
Bottom 
product 

xb 
Triangular 3 constant 0.0003 0.0124 
Triangular 3 linear 0.0001 0.0075 
Triangular 5 constant 0.0030 0.0290 
Triangular 5 linear 0.0004 0.0083 
Triangular 7 constant 0.0003 0.0054 
Triangular 7 linear 0.0004 0.0219 
Gaussian 3 constant 0.0018 0.0312 
Gaussian 3 linear 0.0013 0.0420 
Gaussian 5 constant 0.0036 0.0376 
Gaussian 5 linear 0.0014 0.0364 
Gaussian 7 constant 0.0086 0.0543 
Gaussian 7 linear 0.0032 0.0528 
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As can be seen from the IAE scores in Table 5.2 and 5.3 that all structures 

have learned the training data exactly. Learning performances of the estimators 

are close the each other’s. Figures related with verification tests can be seen in 

Appendix A.1. 

 When investigating the generalization capabilities, it is seen from Table 5.4 

that all structures give actual composition values when the system is disturbed 

by feed flow rate changes. Their performances are also very good in estimating 

the top product composition as reflux ratio changes. However, it is observed that 

predictions of Triangular structures are better considering the IAE scores than 

that of Gaussian structures for bottom product composition in reflux ratio 

changes. Table 5.5 shows that minimum IAE score for top product composition is 

achieved from the Tri3lin structure. For bottom product, although Tri7con, 

Tri5lin, and Tri3lin structures show almost similar performance, Tri7con structure 

has the minimum IAE score. Thus, Tri3lin structure can be selected as the 

estimator architecture for top product composition. Figure 5.2 illustrates the 

Tri3lin structure performance in terms of top and bottom product compositions 

responses to 5% increase in reflux ratio. Performances of Tri7con and Tri5lin can 

be seen in Figure 5.3 and 5.4. Figures that show other structure’s generalization 

performances are also given in Appendix A.2. 
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Figure 5.2 Tri3lin structure performance to 5% increase in reflux rate with the IAE 
scores 0.00014 and 0.0074 for top and bottom product 

 

 

Figure 5.3 Tri5lin structure performance to 5% increase in reflux rate with 
the IAE scores 0.00044 and 0.0088 for top and bottom product 
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Figure 5.4 Tri7con structure performance to 5% increase in reflux rate with 
the IAE scores 0.00034 and 0.0054 for top and bottom product 

It can be seen from the Figure 5.2 and 5.3 that structures with linear 

output show excellent performance up to 3.5 hours of response time. Tri3lin 

structure is somewhat better than Tri5lin structure. It is also found that defining 

of the inputs with many MFs do not improve performances of the structures that 

have linear output. However, in Figure 5.4, it is seen that that structure with 

seven MFs in input and with constant output results in good estimates for the 

steady state value with slight deviations from the actual values in short response 

time.  

Therefore, in order to determine the estimator structures, another 

generalization simulation is made. The reflux ratio is increased by 3% and 6%, 

and then Tri3lin and Tri7con estimator performances are investigated. Figures 

5.5-5.9 illustrate the performances of Tri3lin and Tri7con structures, 

respectively. 
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Figure 5.5 Tri3lin structure performance to 3% increase in reflux rate with 
IAE scores 0.0002 and 0.0018, for top and bottom product 

 

Figure 5.6 Tri7con structure performance to 3% increase in reflux rate with 
IAE scores 0.0008 and 0.0151, for top and bottom product 
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Figure 5.7 Tri3lin structure performance to 6% increase in reflux rate 
with IAE scores 0.00014 and 0.0108, for top and bottom product 

 

Figure 5.8 Tri7con structure performance to 6% increase in reflux 
rate with IAE scores 0.00032 and 0.00487, for top and bottom 

product 
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As can be seen from the Figures 5.5-5.9 and IAE scores, the Tri3lin 

structure performance is better to estimate the top product composition and is 

selected as the top product estimator. However, when the results are evaluated 

for bottom product composition Tri3lin and Tri7con structure’s performances are 

similar. Although IAE scores of Tri7con structure are smaller in total, Tri3lin 

structure performance is very good up to 3 hours of response time. The Tri7con 

structure performance becomes also weak especially in small increase in reflux 

ratio. This can be seen in Figure 5.6 as the reflux ratio is increased by 3%.  

In this study, Tri3lin and Tri7con structure performance are also evaluated 

for the other compositions in the column. It is seen from the Figures 5.9 and 

5.10 that Tri3lin structure performance is very good for other compositions in 

the top of the column. Figures 5.11 to 5.14 show the structure’s performances 

for the compositions in bottom. As can be seen from these figures that Tri7con 

structure performance changes after 3 hours of response time similar to the 

Tri3lin structure. It can also be seen from the Figures 5.12 and 5.14 that Tri3lin 

structure performance is better than Tri7con structure for the i-butane 

composition in bottom. If the many training data are collected from the part of 

simulations after 3 hours, better learning of the Tri3lin structure can be achieved 

and thus estimator performance can be developed. 
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Figure 5.9 Tri3lin structure performance to 5% increase in reflux rate 
for the i-pentane composition in top with IAE score, 0.00012 

 

Figure 5.10 Tri3lin structure performance to 5% increase in reflux 
rate for the i-butane composition in top with IAE score, 0.00047 

 

Figure 5.11 Tri3lin structure performance to 5% increase in reflux 
rate for the i-pentane composition in bottom with IAE score, 0.0065 
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Figure 5.12 Tri3lin structure performance to 5% increase in reflux 
rate for the i-butane composition in bottom with IAE score, 0.0056 

 

Figure 5.13 Tri7con structure performance to 5% increase in reflux 
rate for the i-pentane composition in bottom with IAE score 0.0075 

 

Figure 5.14 Tri7con structure performance to 5% increase in reflux 
rate for the i-butane composition in bottom with IAE score, 0.0096 
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Therefore, evaluating all the obtained simulation results; Tri3lin structure 

can be used as ANFIS estimator to predict the top and bottom product 

compositions, and the other compositions, in the continuous distillation column 

under study. It can be implemented to the real plant and online estimation of the 

compositions from temperatures can be achieved. Tri3lin fuzzy inference system 

files in MATLAB and rule base are given in Appendix B.2 to B.5. Its parameters 

can be seen in these files. Input MFs are also shown in Figure A.30 and A.31. 

The column simulation code can be found in the study of Bahar (2003).  

Designed ANFIS estimators are also compared with NN estimator 

developed by Bahar (2003). This NN estimator was designed to be used in MPC 

framework for the control of product compositions of the column. Estimator’s 

performances for the 5% increase in reflux rate for top and bottom product 

compositions are shown in Figures 5.7 and 5.8, respectively. It is seen that 

ANFIS estimator is very good compared to the NN estimator. 

 

Figure 5.15 Comparison of the ANFIS and NN estimators for top product 
compositions for a 5% increase in reflux rate with the IAE scores, 0.00014 

0.0059, respectively 
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Figure 5.16 Comparison of the ANFIS and NN estimators for bottom 
product compositions for a 5% increase in reflux rate with the IAE scores, 

0.0074 0.0308, respectively 

In the designed NN estimator in Bahar’s study which predicts the top and 

bottom compositions, input vector also considers the past composition values. 

The past composition values are also the outputs of the estimator. Therefore, the 

estimator, which can produce inaccurate composition values in the past, is used 

for the estimator at next time steps. This brings errors to the system and it 

reduces the system performance. In NN estimator, many input output data pairs 

are needed for training and normalization process. If the input and output 

variables are not of the same order of magnitude, some variables may appear to 

have more significance then they actually do. Thus, training data and network 

inputs and outputs are needed to be normalized to values between 0 and 1. 

Besides, system with many inputs and parameters can require additional 

computational power, especially in online applications. As a result, although 

different estimators should be designed for each composition, it can be said that, 

ANFIS can be utilized for a better estimation in distillation columns instead of 

NNs.  
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5.2 Estimation in Batch Distillation Column 

In this part of the study, it is aimed to investigate the ANFIS structure 

performances in batch distillation column. For this purpose, three parallel ANFIS 

estimators are developed to predict the reflux drum compositions; cyclo-hexane 

(C1), n-heptane (C2) and toluene (C3) from tray temperatures by applying the 

same procedure as implemented in the case of continuous distillation column.  

5.2.1 Selection of Estimator Inputs 

In continuous distillation column, since four components were separated, 

three tray temperatures were used as the estimator’s input according to the SVD 

method. It was also seen from the results that three tray temperature 

measurements were sufficient to estimate the compositions. If the SVD method 

(NC-1) is applied in batch distillation column, since three components are 

separated, two tray temperature measurements should be selected and used for 

estimation in batch distillation column.  

In the case study of continuous distillation column, number of trays on 

which the temperature can be measured is 37. However, batch distillation 

column under study has 8 trays. Besides, batch distillation process has much 

complex characteristics than continuous distillation columns. Therefore in order 

to reflect the column dynamic well, instead of two trays, three trays are used in 

batch distillation column without SVD analysis. Thus, 2nd, 5th and 9th trays, one 

from bottom, one from middle and one from top of the column, are selected and 

used for the composition estimation. 

5.2.2 Generation of training data 

As stated in the previous chapter, the column is worked under optimal 

reflux ratio policy of Mujtaba (1993). Optimal reflux ratio policy and column 
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design parameters can be seen in Table 4.2 and 4.3. Rigorous model for column 

developed by Yıldız (2003) is used with these column parameters. Different 

simulations are done with this model by changing the initial composition of the 

feed charge to the column to generate the training data for estimators. Initial 

fractions for feed used in simulations are given in Table 5.6. C1, C2 and C3 are 

the compositions of cyclo-hexane, n-heptane and toluene, respectively. Having 

collected the input output data, three different training data sets are formed and 

used in training. 

Table 5.6 Initial feed compositions 

Run 
No 

C1init 

 

C2init C3init 

1 0.20 0.20 0.60 

2 0.25 0.50 0.25 

3 0.30 0.15 0.55 

4 0.35 0.40 0.25 

5 0.40 0.30 0.30 

6 0.50 0.25 0.25 

7 0.60 0.35 0.05 

8 0.22 0.60 0.18 

 

5.2.3 Training of ANFIS structures 

Estimations based on simulations for continuous column indicated that, 

Triangular structures are better than Gaussian structures both in verification and 

generalization. Therefore, only Triangular structure’s performances are used in 

batch distillation studies. These structures are trained with generated training 

data sets. Thus, number of trainings and test simulations are decreased. 

5.2.4 Simulations results 

After trained the structures, estimators’ verification and generalization 

capabilities are tested using the rigorous model of the column as a real plant. 
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Verification test is done using Run No 6 from the Table 5.6 as the initial feed 

compositions. Figures in Appendix A.3 illustrate this verification performance of 

structures. IAE scores are tabulated in Table 5.7. It can be seen from Figures in 

Appendix A.3 that learning performances of the constant output structures are 

better than linear output structures. This can also be seen from the IAE scores 

given in Table 5.7. Therefore, it is decided to use only constant output structures 

in generalization tests.  

First generalization test is done with the initial fractions of Cinit [0.407; 

0.394; 0.199]. Results are shown in Figures 5.17, 5.18 and 5.19. Tri3con and 

Tri5con performance are nearly same but Tri7con structure performance is not 

good as the others. Therefore, another generalization test is done to make better 

decision. 

Table 5.7 Verification test results with the initial fractions of [0.5; 0.25; 0.25] 

Input MF Number 
of input 

MF 

Output 
MF 

IAE 
score 
of C1 

IAE 
score 
of C2 

IAE 
score 
of C3 

Total  
IAE 

score 
Triangular 3 constant 0.04211 0.0972 0.0644 0.20374 

Triangular 3 linear 0.0783 0.1845 0.1036 0.3664 

Triangular 5 constant 0.0521 0.1073 0.0627 0.2200 

Triangular 5 linear 0.1173 0.3009 0.17918 0.5975 

Triangular 7 constant 0.079 0.1594 0.0873 0.3258 

Triangular 7 linear 0.123 0.2761 0.1652 0.5644 
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Figure 5.17 Generalization of Tri3con structure; Cinit [0.407; 0.394; 0.199] 
with the IAE scores 0.0213, 0.0428 and 0.0251, respectively 

 

Figure 5.18 Generalization of Tri5con structure; Cinit [0.407; 0.394; 0.199] 
with the IAE scores 0.0285, 0.1002 and 0.0645, respectively 
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Figure 5.19 Generalization of Tri7con structure; Cinit [0.407; 0.394; 0.199] 
with the IAE scores 0.0609, 0.2114 and 0.1335, respectively 

Second generalization test is done with the initial fractions of Cinit [0.25; 

0.35; 0.40]. Figure 5.20, 5.21 and 5.22 shows the estimator performances. It 

can be seen that Tri3con shows the best performance among the constant 

output structures.  

Moreover, additional generalization simulations are done and Tri3con 

structure performance is investigated in detail with the different initial feed 

fractions. It can be seen from Figures 5.23 to 5.25 and from IAE scores that 

Tri3con structure performance is very good. This structure can be used as ANFIS 

estimator to predict the reflux drum compostions from the 2nd, 5th and 9th trays 

temperatures in batch distillation column under study. Tri3con structure 

parameters, estimator rules and simulation code for the batch distilllation column 

are given in Appendix from B.6 to B.9. In addition, Figures of input MFs are 

presented in Appendix A.32, A.33 and A.34. 
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Figure 5.20 Generalization of Tri3con structure; Cinit [0.25; 0.35; 0.40] with 
the IAE scores 0.0552, 0.1126 and 0.0626, respectively 

 

 

Figure5.21 Generalization of Tri5con structure; Cinit [0.25; 0.35; 0.40] with 
the IAE scores 0.1088, 0.2849 and 0.1605, respectively 
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Figure 5.22 Generalization of Tri7con structure; Cinit [0.25; 0.35; 0.40] with 
the IAE scores 0.1459, 0.5813 and 0.3378, respectively 

 

Figure 5.23 Generalization of Tri3con structure; Cinit [0.34; 0.33; 0.33] with 
the IAE scores 0.0456, 0.0826 and 0.0451, respectively  
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Figure 5.24 Generalization of Tri3con structure; Cinit [0.27; 0.53; 0.20] with 
the IAE scores 0.0292, 0.0583 and 0.0349, respectively 

 

Figure 5.25 Generalization of Tri3con structure; Cinit [0.58; 0.16; 0.26] with 
the IAE scores 0.0389, 0.1073 and 0.0741, respectively 
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Yıldız (2003) designed an Extended Kalman Filter (EKF) to estimate the 

compositions in the reflux drum for the batch distillation column under study. 

Figure 5.26 illustrates the performance of the EKF estimator for the reflux drum 

compositions with the initial fractions of feed Cinit [0.407; 0.394; 0.199]. For the 

same initial fractions, Tri3con ANFIS estimator performance was already given in 

Figure 5.19. Estimators’s performances are shown in Figure 5.27. As can be seen 

from the Figure 5.27 that ANFIS performance is quite well according to the EKF.  

 EKF is the optimal state estimator while ANFIS can be used in estimation 

studies of distillation columns. If the sensors provide perfect and complete data 

about a system without any measurement corruption by noise and without 

device inaccuracies, trained ANFIS structures can be implemented to the system 

for online estimation of the state variables. Also, there is no need for a simplified 

mathematical model of the system; that is needed for the EKF design.  

 

Figure 5.26 EKF estimator performance; Cinit [0.407; 0.394; 0.199] with 
the IAE scores 0.2211, 0.1933 and 0.1966, respectively 
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Figure 5.27 Comparison of ANFIS and EKF estimators 

In this study, design parameters of the system are selected as the ANFIS 

structure parameters. Temperature sensors locations were not investigated in 

detail. Actually, according to the SVD method NC-1 number of tray temperature 

is sufficient to use as the estimator inputs. Therefore, in the system under study, 

only two tray temperatures can be used. However, as stated previously in the 

batch distillation column study, three temperature locations were selected as 2nd, 

5th and 9th trays (one from bottom, one from middle and one from top of the 

column) to represent the column dynamic well. The designed ANFIS estimator 

performances with two tray temperatures are shown in Figure 5.28 and 5.29. 

These two trays are selected from the top of the column as 8th and 9th trays 

without applying SVD analysis. Figure 5.28 illustrates the performance of the 

estimator with the initial feed fractions of 0.58, 0.16 and 0.26. The estimator 

performance with three inputs for the same initial feed fractions was shown in 
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Figure 5.25. When these two Figures 5.25 and 5.28 and IAE scores are 

compared, it is observed that two input estimator performance is as good as 

than three input estimator. However, initial fraction estimation of C2 and C3 is 

not very close (0.1677/0.64, 0.2822/-0.101). Figure 5.29 also illustrates the 

performance of the estimator with the initial fractions of 0.407, 0.399, and 

0.199. The estimator performance with three inputs for the same initial fractions 

was shown in Figure 5.17. It can be seen from the Figure 5.17 and 5.29 that the 

estimator perfromance with two inputs is as good as three input estimator with 

the IAE comparison but initial fraction estimation of C3 (0.20/-0.10) is not 

achieved. When the total IAE scores are compared in these two runs tested with 

different initial feed composition, it can be concluded that the estimation can be 

done using only two tray temperatures but initial composition fractions can not 

be estimate accurately.    

 

Figure 5.28 ANFIS estimator performance with two estimator inputs with 
the initial fractions; Cinit [0.58; 0.16; 0.26] and with the IAE scores 0.0441, 

0.0938 and 0.0569, respectively  
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Figure5.29 ANFIS estimator performance with two estimator inputs with 
the initial fractions; Cinit [0.407; 0.394; 0.199] and with the IAE scores 

0.029, 0.076 and 0.045, respectively    

5.3 Control of the pH reactor  

The control of a pH system is often considered to be the benchmark for 

nonlinear process control because of the highly nonlinear behavior exhibited by 

pH dynamics. In this study, it is aimed to use ANFIS as a controller in a pH 

control system. For this purpose, ANFIS controller is designed and used in an 

adaptive way in the pH control scheme. Figure 5.30 illustrates the adaptive 

control scheme for the pH system under study. Developed pH model is used as a 

real plant in this scheme. The objective of the system is to control the effluent 

pH by manipulating base stream flow. Inputs to the controller at each sampling 

instant are plant and controller output, pH(k-1) and F2(k-1), respectively at 

previous sampling instant. Controller output is the new plant input, F2(k). 
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Figure5.30 Adaptive pH control scheme 

  In this study, Gaussian MFs are only used as the input MFs. The controller 

inputs are labeled with three linguistic variables Small (S), Medium (M) and Big 

(B), and output MF type is constant. Hence, a controller structure that has few 

parameters is constructed. Since the controller has two inputs and three MFs on 

each input, its rule base consists of nine rules. These rules are given in Table 

5.8. Unlike the estimation part, backpropagation algorithm is used for controller 

parameter adaptation instead of hybrid learning algorithm due to the 

computational simplicity. A code for parameter update is written according to the 

backpropagation algorithm explained in Chapter 4.1. 

Table 5.8 Rule base of the controller 

Rule Controller rule base 

1 If pH(k-1) is S and F2(k-1) is S then F2(k) is f1 

2 If pH(k-1) is S and F2(k-1) is M then F2(k) is f2 

3 If pH(k-1) is S and F2(k-1) is B then F2(k) is f3 

4 If pH(k-1) is M and F2(k-1) is S then F2(k) is f4 

5 If pH(k-1) is M and F2(k-1) is M then F2(k) is f5 

6 If pH(k-1) is M and F2(k-1) is B then F2(k) is f6 

7 If pH(k-1) is B and F2(k-1) is S then F2(k) is f7 

8 If pH(k-1) is B and F2(k-1) is M then F2(k) is f8 

9 If pH(k-1) is B and F2(k-1) is B then F2(k) is f9 
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In the plant Jacobian for calculating the gradient in backpropagation 

algorithm (Equation 4.2), approximation of sigmoidal function is used. In the 

scheme, process is assumed to form an unmodifiable layer of the lumped 

controller-process network. Hence, using sigmoidal function to represent the 

process layer gives an approximation process gain as well as its sign. Actually, 

this approach can be more appropriate for pH system compared to other 

nonlinear process due to S shape the steady state gain curve in Figure 4.8 

Having obtained the parameters by trial and error, the function is found as 

follows: 

                                  ( ) ( )[ ]515012.02 21
14

−−+
= Fe

FpH                                 (5.1) 

Approximation is shown in Figure 5.31. Hence, the plant Jacobian, 
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The controller parameters can be adapted at each sampling instant 

according to the Equation 4.6. However, initial parameters of the controller must 

be determined suitably for the convergence of the system to start the 

simulation. Thus, training data is obtained from open loop simulation by 

changing the base stream flow rate of the system while the acid stream flow rate 

is held constant. Training data set is generated from pH and base flow rate 

values and then controller is trained. Initial CSTR parameters used in the present 

study are the same as in Bhat and McAvoy (1990) and given in Table 5.8. Closed 

loop simulation code including controller structure, model and parameter 

adaptation are given Appendix B.10.  
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Figure5.31  Sigmoidal function approximation 

Figure 5.32 represents the closed-loop system responding to set point 

changes with the proposed ANFIS controller in the loop. The pH set point is 

varied from an initial value of 6.94 to a value of 5 and then to a new value of 9. 

As can be seen from the Figure 4.8, this system exhibits highly nonlinear 

behavior and has very high gains around the neutral zone (pH=7). A small 

change in the base stream input flow results in changing the output pH 

significantly in this steep region. Hence, it poses quite a challenging problem to 

control the pH of the process around the electroneutrality point, where the gain 

surface is very steep. Although the controller does not have to work hard for the 

first set point change due to the flat region of the gain surface, it has to balance 

the closed-loop system on the steep surface for the second set point change.  

As can be seen from Figure 5.32 that ANFIS controller is able to drive the 

closed-loop system to the desired values. While there is no oscillatory response 

for the first set point change from 6.94 to 5, there are some oscillations in the 

process response for the second change in set point from 5 to 9. This is to be 

expected because even a very small corrective action by the controller to 
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increase and decrease base flow rate in this region will cause a large variation in 

the process output, pH. 

Table 5.9 Initial operating conditions of the pH CSTR 

Parameter Value Unit 

V 1000 l 

F1 81 l/min 

F2 515 l/min 

C1 0.32 mol/l 

C2 0.05 mol/l 

x1 0.0432 mol/l 

X2 0.0435 mol/l 

 

The performance of ANFIS controller is also compared with that of the NN 

controller studied by Jutan and Krishnapura (2000) for the same system under 

study. The process response with NN controller is presented in Figure 5.33. It is 

seen from the figures that although system responses follow the same 

trajectory, the process controlled with ANFIS controller is slower and reaches the 

steady state values later with the oscillations. Actually, both controllers, ANFIS 

and NN, use the backpropagation algorithm with constant learning rate, but 

performance of NN is better than that of ANFIS. This points out that classical 

backpropagation algorithm is not effective for ANFIS controller. Therefore, 

learning rate, η, during the simulation can be decreased or increased to improve 

the convergence performance of the controller. Although computational power is 

needed, controller performance can also be increased by using the hybrid-

learning algorithm. Besides, inputs to the controller can be increased and type of 

MFs for inputs and outputs can be changed or to improve the performance of 

ANFIS. As previously stated, the sigmoidal function is used to approximate the 

plant Jacobian. It can be seen from the Figure 5.21 that actual steady state gain 
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of the system curve cannot be captured with this approximation method. Thus, 

other alternative plant Jacobian methods can be used to improve the controller 

performance. For instance, a crude estimate can be obtained by approximating 

plant Jacobian directly from the changes in the plant’s input and output during 

the consecutive sampling instants. 

 

Figure5.32  pH control-set point tracking with ANFIS controller  

                  

Figure5.33  pH control-set point tracking with NN controller  
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

In this study, estimation of the compositions from the trays temperature 

measurements in continuous and batch distillation columns, and the pH control 

in CSTR are achieved by using the ANFIS architecture.  

1. In continuous distillation column, ANFIS structures are trained and 

tested to infer one of the components of the top and bottom product 

compositions. It is concluded that all estimators’ structures 

verification and generalization capabilities are very good especially 

in feed flow rate changes. Triangular structures are better than 

Gaussian structures that are used in membership functions (MF). 

2. Best performance is obtained by Tri3lin (three triangular MFs for 

each input and linear output MF) ANFIS structure for both top and 

bottom product estimation. Tri3lin ANFIS estimator performance is 

compared with NN estimator and it is seen that performance of the 

ANFIS is better than that of NN. 

3. In batch distillation column, three parallel Triangular ANFIS 

structures are trained and tested for the three components in reflux 

drum. It is seen that, structures that have constant output MF 
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performances are better. The best performance is obtained by 

Tri3con ANFIS structure for all compositions in reflux drum. Tri3con 

ANFIS estimator is compared with EKF estimator and it is seen that 

ANFIS is better than EKF. 

4. In batch distillation column, designed estimator using two tray 

temperatures is also evaluated. It is seen that, the estimator 

performance with two tray temperatures is as good three tray 

temperatures. However, initial composition values are not estimated 

accurately. 

5. The performance of ANFIS is also investigated in pH control 

problem. ANFIS structure is used as a controller in adaptive Neuro-

Fuzzy control scheme for set point tracking. It is concluded that the 

ANFIS controller drives the closed loop system to the desired set 

point values.  

6. ANFIS controller performance is compared with NN controller. It is 

concluded that convergence of ANFIS with backpropagation 

algorithm is slower than that of NN. 

7. As a recommendation for further studies, using hybrid-learning 

algorithm that combines the backpropagation learning algorithm 

and least squares estimates can increase the performance of the 

ANFIS especially in controller applications. 

8.  If sufficient process input-output data is collected form the system, 

ANFIS methodology can be used for estimation and modeling 

purposes in chemical processes. 
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9. ANFIS can be also used for control purposes in chemical processes 

especially in Neuro-Fuzzy control structures.   
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APPENDIX A 

 FIGURES 

A.1 Verification results in continuous distillation column 

 

Figure A.1 All structure responses to 5% increase in feed flowrate 

 

Figure A.2 Tri3con structure response to 4% increase in Reflux rate 



 

 104

 

Figure A.3 Tri3lin structure response to 4% increase in Reflux rate 

 

Figure A.4 Tri5con structure response to 4% increase in Reflux rate 

 

Figure A.5 Tri5lin structure response to 4% increase in Reflux rate 
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Figure A.6 Tri7con structure response to 4% increase in Reflux rate 

 

Figure A.7 Tri7lin structure response to 4% increase in Reflux rate 

 

Figure A.8 Gauss3con structure response to 4% increase in Reflux 
rate 
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Figure A.9 Gauss3lin structure response to 4% increase in Reflux rate 

 

Figure A.10 Gauss5con structure response to 4% increase in Reflux 
rate 

 

Figure A.11 Gauss5lin structure response to 4% increase in Reflux 
rate 



 

 107

 

Figure A.12 Gauss7con structure response to 4% increase in Reflux 
rate 

 

Figure A.13 Gauss7lin structure response to 4% increase in Reflux 
rate 
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A.2 Generalization results in continuous distillation column 

 

Figure A.14 All structures responses to 7% increase in feed flow rate 

 

Figure A.15 Tri3con structure response to 5% increase in reflux rate 

 

Figure A.16 Tri5con structure response to 5% increase in reflux rate 
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Figure A.17 Tri7lin structure response to 5% increase in reflux rate 

 

Figure A.18 Gauss3con structure response to 5% increase in reflux 
rate 

 

Figure A.19 Gauss3lin structure response to 5% increase in reflux 
rate 
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Figure A.20 Gauss5con structure response to 5% increase in reflux 
rate 

 

Figure A.21 Gauss5lin structure response to 5% increase in reflux 
rate 

 

Figure A.22 Gauss7con structure response to 5% increase in reflux 
rate 
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Figure A.23 Gauss7lin structure response to 5% increase in reflux 
rate 

A.3 Verification results in batch distillation column 

 

Figure A.24 Verification performance of Tri3con structure 
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Figure A.25 Verification performance of Tri3lin structure 

 

Figure A.26 Verification performance of Tri5con structure 
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Figure A.27 Verification performance of Tri5lin structure 

 

Figure A.28 Verification performance of Tri7con structure 
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Figure A.29 Verification performance of Tri7lin structure 

A.4 Input MFs for estimators 

 

Figure A.30 Input MFs for top product composition estimator 
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Figure A.31 Input MFs for bottom product composition estimator 

 

Figure A.32 Input MFs for reflux drum composition C1 estimator 
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Figure A.33 Input MFs for reflux drum composition C2 estimator 

 

Figure A.34 Input MFs for reflux drum composition C3 estimator 
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APPENDIX B 

SOURCE CODES, FUNCTIONS AND SYSTEM FILES 

B.1 Training.m 
 
% ANFIS  
% data set 
% Training data sets ( Traindatxd, Traindatxb )  
 
 load('Traindatxd.mat'); 
 
% Training parameters  
%trnOpt(1): number of training epochs  
Number_of_epoch=10  ; 
%trnOpt(2): error tolerance 
error_tolerance=1e-5 ; 
%trnOpt(3): initial step-size  
int_step_size=0.01 ; 
%trnOpt(4): step-size decrease rate 
ss_dec_rate=0.9  ; 
%trnOpt(5): step-size increase rate 
ss_inc_rate=1.1; 
  
 % ANFIS  Esimator training   
 
 anfis=readfis('initanf1'); 
[fismat1,error1,ss] =anfis(Traindatxd,anfis,... 
[Number_of_epoch error_tolerance int_step_size ss_dec_rate ss_inc_rate],[1 1 1 1],1); 
writefis(fismat1,'anfisxd'); 
save('trainxdinall'); 

B.2 ANFIS Tri3lin estimator structure for top product comp. 
 
 [system] 
Name='anfis estimator for top porduct composition' 
Type='sugeno' 
Version=2.0 
NumInputs=3 
NumOutputs=1 
NumRules=27 
AndMethod='prod' 
OrMethod='probor' 
ImpMethod='prod' 
AggMethod='max' 
DefuzzMethod='wtaver' 
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[Input1] 
Name='Tray-33-Temperature' 
Range=[320 350] 
NumMFs=3 
MF1='S':'trimf',[305 320 335] 
MF2='M':'trimf',[320 335 350] 
MF3='B':'trimf',[335 350 365] 
 
[Input2] 
Name='Tray-32-Temperature' 
Range=[320 350] 
NumMFs=3 
MF1='S':'trimf',[305 320 335] 
MF2='M':'trimf',[319.920634920635 334.920634920635 349.920634920635] 
MF3='B':'trimf',[335 350 365] 
 
[Input3] 
Name='Tray-31-Temperature' 
Range=[320 350] 
NumMFs=3 
MF1='S':'trimf',[305 320 335] 
MF2='M':'trimf',[320 335 350] 
MF3='B':'trimf',[335 350 365] 
 
[Output1] 
Name='Top-product-comp.' 
Range=[0.898131644 0.99937822] 
NumMFs=27 
MF1='out1mf1':'linear',[0.22313658093071 -0.101577676329315 -0.118383541149573 -0.00187249919229055] 
MF2='out1mf2':'linear',[-0.0351757456478434 -0.028975746592769 0.067072516405571 
0.00163548870682386] 
MF3='out1mf3':'linear',[0 0 0 0] 
MF4='out1mf4':'linear',[0.211498804326545 -0.102040268548731 -0.0961474825789182 
0.00118084118080798] 
MF5='out1mf5':'linear',[-0.0532897398973157 0.0700247770940657 -0.00829069403658541 -
0.00143972345287384] 
MF6='out1mf6':'linear',[0 0 0 0] 
MF7='out1mf7':'linear',[0 0 0 0] 
MF8='out1mf8':'linear',[0 0 0 0] 
MF9='out1mf9':'linear',[0 0 0 0] 
MF10='out1mf10':'linear',[0.0422249759832046 0.174316019595751 -0.225029353687692 -
0.00303042066941992] 
MF11='out1mf11':'linear',[-0.269896536737564 0.217150843689906 0.0386028391136344 
0.00233823314152329] 
MF12='out1mf12':'linear',[0 0 0 0] 
MF13='out1mf13':'linear',[0.133559345483427 -0.170226876161504 0.0518939698721778 
0.0177952298743884] 
MF14='out1mf14':'linear',[-0.0172076320955233 -0.177358824942259 0.197349605997108 -
0.0170627963722117] 
MF15='out1mf15':'linear',[-0.0181907550557125 -0.0138072088995837 0.0254045586067765 
0.000846318157304845] 
MF16='out1mf16':'linear',[-0.352585102378571 0.359302995086343 0.0362991960113568 -
0.0132236435571341] 
MF17='out1mf17':'linear',[0.0717587597464706 -0.143330024569982 0.0902429198071236 
0.0138978977081317] 
MF18='out1mf18':'linear',[-0.0103333059978692 0.0229049196456512 0.0232688078446274 -
0.000784053920055757] 
MF19='out1mf19':'linear',[-0.162261058907324 -0.0970886227997957 0.248190428690175 
0.00490711761782341] 
MF20='out1mf20':'linear',[0.117414214791879 -0.040747606431513 -0.108192946316506 -
0.00426949300240609] 
MF21='out1mf21':'linear',[0 0 0 0] 
MF22='out1mf22':'linear',[0.0105241342648875 0.317754311881693 -0.321345105526963 -
0.0170962540169099] 
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MF23='out1mf23':'linear',[-0.137341000997744 -0.0910454817863009 0.227000108646743 
0.0170540282304605] 
MF24='out1mf24':'linear',[-0.0406378624141448 0.00197467814367782 -0.00570202424669482 -
0.000978129141067654] 
MF25='out1mf25':'linear',[0.219153117784947 -0.0811445303977888 -0.105645061269921 
0.0122756817340606] 
MF26='out1mf26':'linear',[0.0213397476861223 -0.0840424415286495 0.0803940527241428 -
0.0130362777873095] 
MF27='out1mf27':'linear',[0.0802006376359789 0.00287745417725242 -0.0811585007774142 
0.000950072554021044] 
 
[Rules] 
1 1 1, 1 (1) : 1 
1 1 2, 2 (1) : 1 
1 1 3, 3 (1) : 1 
1 2 1, 4 (1) : 1 
1 2 2, 5 (1) : 1 
1 2 3, 6 (1) : 1 
1 3 1, 7 (1) : 1 
1 3 2, 8 (1) : 1 
1 3 3, 9 (1) : 1 
2 1 1, 10 (1) : 1 
2 1 2, 11 (1) : 1 
2 1 3, 12 (1) : 1 
2 2 1, 13 (1) : 1 
2 2 2, 14 (1) : 1 
2 2 3, 15 (1) : 1 
2 3 1, 16 (1) : 1 
2 3 2, 17 (1) : 1 
2 3 3, 18 (1) : 1 
3 1 1, 19 (1) : 1 
3 1 2, 20 (1) : 1 
3 1 3, 21 (1) : 1 
3 2 1, 22 (1) : 1 
3 2 2, 23 (1) : 1 
3 2 3, 24 (1) : 1 
3 3 1, 25 (1) : 1 
3 3 2, 26 (1) : 1 
3 3 3, 27 (1) : 1 
 

B.3 ANFIS Tri3lin estimator structure for bottom product comp. 
 
 [system] 
Name='anfisbottom' 
Type='sugeno' 
Version=2.0 
NumInputs=3 
NumOutputs=1 
NumRules=27 
AndMethod='prod' 
OrMethod='probor' 
ImpMethod='min' 
AggMethod='max' 
DefuzzMethod='wtaver' 
 
[Input1] 
Name='Tray-10-Temperature' 
Range=[343.1713556 369.2226122] 
NumMFs=3 
MF1='S':'trimf',[330.1457273 343.1713556 356.1969839] 
MF2='M':'trimf',[343.102572531217 356.128200831217 369.153829131217] 
MF3='B':'trimf',[356.1969839 369.2226122 382.2482405] 
 
[Input2] 
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Name='Tray-11-Temperature' 
Range=[342.9109127 368.8577226] 
NumMFs=3 
MF1='S':'trimf',[329.93750775 342.9109127 355.88431765] 
MF2='M':'trimf',[342.842129631217 355.815534581217 368.788939531217] 
MF3='B':'trimf',[355.88431765 368.8577226 381.83112755] 
 
[Input3] 
Name='Tray-12-Temperature' 
Range=[342.7218287 368.4181872] 
NumMFs=3 
MF1='S':'trimf',[329.87364945 342.7218287 355.57000795] 
MF2='M':'trimf',[342.7218287 355.57000795 368.4181872] 
MF3='B':'trimf',[355.57000795 368.4181872 381.26636645] 
 
[Output1] 
Name='Bottom-product-comp.' 
Range=[0.525944598 0.648049865] 
NumMFs=27 
MF1='out1mf1':'linear',[-0.349006709314208 0.789861798976041 -0.438841308414577 -0.156602408449348] 
MF2='out1mf2':'linear',[-0.67158482894933 0.102610826707204 0.678257844206966 0.151617063059198] 
MF3='out1mf3':'linear',[0 0 0 0] 
MF4='out1mf4':'linear',[-0.0357790665226616 -0.176496225844082 0.0201025449450525 0.152617122139784] 
MF5='out1mf5':'linear',[-0.0121620677174623 -0.237844065072512 0.204774866626714 -0.146470007480143] 
MF6='out1mf6':'linear',[0 0 0 0] 
MF7='out1mf7':'linear',[0 0 0 0] 
MF8='out1mf8':'linear',[0 0 0 0] 
MF9='out1mf9':'linear',[0 0 0 0] 
MF10='out1mf10':'linear',[0.611946578276047 -0.267276453176755 -0.258492680271999 0.151840486062888] 
MF11='out1mf11':'linear',[0.0072712135116738 -0.065861592075415 0.176425659316952 -
0.146584680729087] 
MF12='out1mf12':'linear',[0 0 0 0] 
MF13='out1mf13':'linear',[0.28470983444281 0.0265516132188946 -0.377895538163907 -0.146312777108544] 
MF14='out1mf14':'linear',[-0.666352781526469 1.41395662740005 -0.745954947506552 0.196840685060586] 
MF15='out1mf15':'linear',[-0.185469225025512 -0.720802132691032 0.975814053013067 -
0.054270116616474] 
MF16='out1mf16':'linear',[-0.282484424828341 -0.0835110836211585 0.160057566493536 -
0.000871806849476438] 
MF17='out1mf17':'linear',[0.351404643466166 -0.512263928259577 0.0457526583637452 -
0.0513780630297902] 
MF18='out1mf18':'linear',[1.02112944858637 -0.443932167824431 -0.645573377038038 0.0492036576477876] 
MF19='out1mf19':'linear',[0.10285016134605 0.0632682468118817 0.0152074531447263 5.99305282609536e-
005] 
MF20='out1mf20':'linear',[0.273364438202161 0.0624189200358236 -0.195517227884446 -
0.000564865625630779] 
MF21='out1mf21':'linear',[0 0 0 0] 
MF22='out1mf22':'linear',[0.0682866512560048 0.00416992355938628 -0.0208292080190554 
0.000161319022466568] 
MF23='out1mf23':'linear',[0.720757034862477 -0.178655381411407 -0.494744086589861 -
0.0536465120139853] 
MF24='out1mf24':'linear',[0.0315700630529699 -0.567226860643969 0.630942120956261 
0.0519387277108186] 
MF25='out1mf25':'linear',[-0.0694729644377239 -0.0308579107465855 0.0178180752333713 -
0.000112188197231817] 
MF26='out1mf26':'linear',[-0.0711607880729906 -0.606822295538997 0.65322974638599 
0.0503245313074935] 
MF27='out1mf27':'linear',[-1.09296199619905 1.47076997460625 -0.375289370909959 -0.0476623763197282] 
 
[Rules] 
1 1 1, 1 (1) : 1 
1 1 2, 2 (1) : 1 
1 1 3, 3 (1) : 1 
1 2 1, 4 (1) : 1 
1 2 2, 5 (1) : 1 
1 2 3, 6 (1) : 1 
1 3 1, 7 (1) : 1 
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1 3 2, 8 (1) : 1 
1 3 3, 9 (1) : 1 
2 1 1, 10 (1) : 1 
2 1 2, 11 (1) : 1 
2 1 3, 12 (1) : 1 
2 2 1, 13 (1) : 1 
2 2 2, 14 (1) : 1 
2 2 3, 15 (1) : 1 
2 3 1, 16 (1) : 1 
2 3 2, 17 (1) : 1 
2 3 3, 18 (1) : 1 
3 1 1, 19 (1) : 1 
3 1 2, 20 (1) : 1 
3 1 3, 21 (1) : 1 
3 2 1, 22 (1) : 1 
3 2 2, 23 (1) : 1 
3 2 3, 24 (1) : 1 
3 3 1, 25 (1) : 1 
3 3 2, 26 (1) : 1 
3 3 3, 27 (1) : 1 
 

B.4 Rule base of the top product estimator 
 
If (Tray 31 Temp. is S) and (Tray 32 Temp. is S) and (Tray 33 Temp. is S) then Top prod. Comp. is outmf1 
If (Tray 31 Temp. is S) and (Tray 32 Temp. is S) and (Tray 33 Temp. is M) then Top prod. Comp. is outmf2 
If (Tray 31 Temp. is S) and (Tray 32 Temp. is S) and (Tray 33 Temp. is B) then Top prod. Comp. is outmf3 
If (Tray 31 Temp. is S) and (Tray 32 Temp. is M) and (Tray 33 Temp. is S) then Top prod. Comp. is outmf4 
If (Tray 31 Temp. is S) and (Tray 32 Temp. is M) and (Tray 33 Temp. is M) then Top prod. Comp. is outmf5 
If (Tray 31 Temp. is S) and (Tray 32 Temp. is M) and (Tray 33 Temp. is B) then Top prod. Comp. is outmf6 
If (Tray 31 Temp. is S) and (Tray 32 Temp. is B) and (Tray 33 Temp. is S) then Top prod. Comp. is outmf7 
If (Tray 31 Temp. is S) and (Tray 32 Temp. is B) and (Tray 33 Temp. is M) then Top prod. Comp. is outmf8 
If (Tray 31 Temp. is S) and (Tray 32 Temp. is B) and (Tray 33 Temp. is B) then Top prod. Comp. is outmf9 
If (Tray 31 Temp. is M) and (Tray 32 Temp. is S) and (Tray 33 Temp. is S) then Top prod. Comp. is outmf10 
If (Tray 31 Temp. is M) and (Tray 32 Temp. is S) and (Tray 33 Temp. is M) then Top prod. Comp. is outmf11 
If (Tray 31 Temp. is M) and (Tray 32 Temp. is S) and (Tray 33 Temp. is B) then Top prod. Comp. is outmf12 
If (Tray 31 Temp. is M) and (Tray 32 Temp. is M) and (Tray 33 Temp. is S) then Top prod. Comp. is outmf13 
If (Tray 31 Temp. is M) and (Tray 32 Temp. is M) and (Tray 33 Temp. is M) then Top prod. Comp. is outmf14 
If (Tray 31 Temp. is M) and (Tray 32 Temp. is M) and (Tray 33 Temp. is B) then Top prod. Comp. is outmf15 
If (Tray 31 Temp. is M) and (Tray 32 Temp. is B) and (Tray 33 Temp. is S) then Top prod. Comp. is outmf16 
If (Tray 31 Temp. is M) and (Tray 32 Temp. is B) and (Tray 33 Temp. is M) then Top prod. Comp. is outmf17 
If (Tray 31 Temp. is M) and (Tray 32 Temp. is B) and (Tray 33 Temp. is B) then Top prod. Comp. is outmf18 
If (Tray 31 Temp. is B) and (Tray 32 Temp. is S) and (Tray 33 Temp. is S) then Top prod. Comp. is outmf19 
If (Tray 31 Temp. is B) and (Tray 32 Temp. is S) and (Tray 33 Temp. is M) then Top prod. Comp. is outmf20 
If (Tray 31 Temp. is B) and (Tray 32 Temp. is S) and (Tray 33 Temp. is B) then Top prod. Comp. is outmf21 
If (Tray 31 Temp. is B) and (Tray 32 Temp. is M) and (Tray 33 Temp. is S) then Top prod. Comp. is outmf22 
If (Tray 31 Temp. is B) and (Tray 32 Temp. is M) and (Tray 33 Temp. is M) then Top prod. Comp. is outmf23 
If (Tray 31 Temp. is B) and (Tray 32 Temp. is M) and (Tray 33 Temp. is B) then Top prod. Comp. is outmf24 
If (Tray 31 Temp. is B) and (Tray 32 Temp. is B) and (Tray 33 Temp. is S) then Top prod. Comp. is outmf25 
If (Tray 31 Temp. is B) and (Tray 32 Temp. is B) and (Tray 33 Temp. is M) then Top prod. Comp. is outmf26 
If (Tray 31 Temp. is B) and (Tray 32 Temp. is B) and (Tray 33 Temp. is B) then Top prod. Comp. is outmf27 

B.5 Rule base of the bottom product estimator 
 
If (Tray 10 Temp. is S) and (Tray 11 Temp. is S) and (Tray 12 Temp. is S) then Bottom prod. Comp. is outmf1 
If (Tray 10 Temp. is S) and (Tray 11 Temp. is S) and (Tray 12 Temp. is M) then Bottom prod.  Comp. is outmf2 
If (Tray 10 Temp. is S) and (Tray 11 Temp. is S) and (Tray 12 Temp. is B) then Bottom prod.  Comp. is outmf3 
If (Tray 10 Temp. is S) and (Tray 11 Temp. is M) and (Tray 12 Temp. is S) then Bottom prod.  Comp. is outmf4 
If (Tray 10 Temp. is S) and (Tray 11 Temp. is M) and (Tray 12 Temp. is M) then Bottom prod.  Comp. is outmf5 
If (Tray 10 Temp. is S) and (Tray 11 Temp. is M) and (Tray 12 Temp. is B) then Bottom prod.  Comp. is outmf6 
If (Tray 10 Temp. is S) and (Tray 11 Temp. is B) and (Tray 12 Temp. is S) then Bottom prod.  Comp. is outmf7 
If (Tray 10 Temp. is S) and (Tray 11 Temp. is B) and (Tray 12 Temp. is M) then Bottom prod.  Comp. is outmf8 
If (Tray 10 Temp. is S) and (Tray 11 Temp. is B) and (Tray 12 Temp. is B) then Bottom prod.  Comp. is outmf9 
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If (Tray 10 Temp. is M) and (Tray 11 Temp. is S) and (Tray 12 Temp. is S) then Bottom prod.  Comp. is outmf10 
If (Tray 10 Temp. is M) and (Tray 11 Temp. is S) and (Tray 12 Temp. is M) then Bottom prod. Comp. is outmf11 
If (Tray 10 Temp. is M) and (Tray 11 Temp. is S) and (Tray 12 Temp. is B) then Bottom prod.  Comp. is outmf12 
If (Tray 10 Temp. is M) and (Tray 11 Temp. is M) and (Tray 12 Temp. is S) then Bottom prod. Comp. is outmf13 
If (Tray 10 Temp. is M) and (Tray 11 Temp. is M) and (Tray 12 Temp. is M) then Bottom prod.Comp is outmf14 
If (Tray 10 Temp. is M) and (Tray 11 Temp. is M) and (Tray 12 Temp. is B) then Bottom prod. Comp is outmf15 
If (Tray 10 Temp. is M) and (Tray 11 Temp. is B) and (Tray 12 Temp. is S) then Bottom prod.  Comp. is outmf16 
If (Tray 10 Temp. is M) and (Tray 11 Temp. is B) and (Tray 12 Temp. is M) then Bottom prod.Comp. is outmf17 
If (Tray 10 Temp. is M) and (Tray 11 Temp. is B) and (Tray 12 Temp. is B) then Bottom prod. Comp. is outmf18 
If (Tray 10 Temp. is B) and (Tray 11Temp. is S) and (Tray 12 Temp. is S) then Bottom prod.  Comp. is outmf19 
If (Tray 10 Temp. is B) and (Tray 11Temp. is S) and (Tray 12 Temp. is M) then Bottom prod.  Comp. is outmf20 
If (Tray 10 Temp. is B) and (Tray 11Temp. is S) and (Tray 12 Temp. is B) then Bottom prod.  Comp. is outmf21 
If (Tray 10 Temp. is B) and (Tray 11Temp. is M) and (Tray 12 Temp. is S) then Bottom prod.  Comp. is outmf22 
If (Tray 10 Temp. is B) and (Tray 11Temp. is M) and (Tray 12 Temp. is M) then Bottom prod. Comp. is outmf23 
If (Tray 10 Temp. is B) and (Tray 11 Temp. is M) and (Tray 12 Temp. is B) then Bottom prod. Comp. is outmf24 
If (Tray 10 Temp. is B) and (Tray 11 Temp. is B) and (Tray 12 Temp. is S) then Bottom prod.  Comp. is outmf25 
If (Tray 10 Temp. is B) and (Tray 11 Temp. is B) and (Tray 12 Temp. is M) then Bottom prod. Comp. is outmf26 
If (Tray 10 Temp. is B) and (Tray 11 Temp. is B) and (Tray 12 Temp. is B) then Bottom prod.  Comp. is outmf27 
 

B.6 ANFIS Tri3con estimator structure for reflux drum comp C1 
 
 [System] 
Name='anfis C1' 
Type='sugeno' 
Version=2.0 
NumInputs=3 
NumOutputs=1 
NumRules=27 
AndMethod='prod' 
OrMethod='probor' 
ImpMethod='prod' 
AggMethod='max' 
DefuzzMethod='wtaver' 
 
[Input1] 
Name='Tray-2-Temp.' 
Range=[358.256868 383.071248] 
NumMFs=3 
MF1='in1mf1':'trimf',[345.849678 358.257787053743 370.667990280714] 
MF2='in1mf2':'trimf',[358.25664412853 370.66723709827 383.068055214585] 
MF3='in1mf3':'trimf',[370.659775244075 383.073507020429 395.478438] 
 
[Input2] 
Name=' Tray-5-Temp.' 
Range=[355.674577 382.802466] 
NumMFs=3 
MF1='in2mf1':'trimf',[342.1106325 355.675084276322 369.231529977593] 
MF2='in2mf2':'trimf',[355.674152827397 369.241651973919 382.801902728499] 
MF3='in2mf3':'trimf',[369.1598469572 382.805114907896 396.3664105] 
 
[Input3] 
Name=' Tray-9-Temp.' 
Range=[354.170049 380.046657] 
NumMFs=3 
MF1='in3mf1':'trimf',[341.231745002973 354.180074059252 367.073787268364] 
MF2='in3mf2':'trimf',[354.160061545438 367.1302307862 380.033419123547] 
MF3='in3mf3':'trimf',[367.122538896839 380.058542849881 392.984961] 
 
[Output] 
Name='Comp. C1' 
Range=[1.5e-005 0.981329] 
NumMFs=27 
MF1='out1mf1':'constant',[0.982006680242058] 
MF2='out1mf2':'constant',[0.190386332362015] 



 

 123

MF3='out1mf3':'constant',[-22.392942830294] 
MF4='out1mf4':'constant',[0.947654056698508] 
MF5='out1mf5':'constant',[0.500176205791321] 
MF6='out1mf6':'constant',[1.98172335598331] 
MF7='out1mf7':'constant',[1.63216430887809] 
MF8='out1mf8':'constant',[64.2152937876542] 
MF9='out1mf9':'constant',[-2.16171634197359] 
MF10='out1mf10':'constant',[0.985853911189988] 
MF11='out1mf11':'constant',[0.0126149008570596] 
MF12='out1mf12':'constant',[-7.27752424098632] 
MF13='out1mf13':'constant',[1.02073154201006] 
MF14='out1mf14':'constant',[0.272507560874275] 
MF15='out1mf15':'constant',[-0.637030883156609] 
MF16='out1mf16':'constant',[1.23097569336719] 
MF17='out1mf17':'constant',[0.274343646675519] 
MF18='out1mf18':'constant',[0.310940392774676] 
MF19='out1mf19':'constant',[0.739079672434684] 
MF20='out1mf20':'constant',[1.86028137773717] 
MF21='out1mf21':'constant',[0] 
MF22='out1mf22':'constant',[0.930816885753836] 
MF23='out1mf23':'constant',[0.487873652203564] 
MF24='out1mf24':'constant',[-1.00721820556956] 
MF25='out1mf25':'constant',[0.877354177674599] 
MF26='out1mf26':'constant',[0.406048965409524] 
MF27='out1mf27':'constant',[-0.0189171616149951] 
 
[Rules] 
1 1 1, 1 (1) : 1 
1 1 2, 2 (1) : 1 
1 1 3, 3 (1) : 1 
1 2 1, 4 (1) : 1 
1 2 2, 5 (1) : 1 
1 2 3, 6 (1) : 1 
1 3 1, 7 (1) : 1 
1 3 2, 8 (1) : 1 
1 3 3, 9 (1) : 1 
2 1 1, 10 (1) : 1 
2 1 2, 11 (1) : 1 
2 1 3, 12 (1) : 1 
2 2 1, 13 (1) : 1 
2 2 2, 14 (1) : 1 
2 2 3, 15 (1) : 1 
2 3 1, 16 (1) : 1 
2 3 2, 17 (1) : 1 
2 3 3, 18 (1) : 1 
3 1 1, 19 (1) : 1 
3 1 2, 20 (1) : 1 
3 1 3, 21 (1) : 1 
3 2 1, 22 (1) : 1 
3 2 2, 23 (1) : 1 
3 2 3, 24 (1) : 1 
3 3 1, 25 (1) : 1 
3 3 2, 26 (1) : 1 
3 3 3, 27 (1) : 1 
 

B.7 ANFIS Tri3con estimator structure for reflux drum comp C2  
 
 [System] 
Name='anfis C2' 
Type='sugeno' 
Version=2.0 
NumInputs=3 
NumOutputs=1 
NumRules=27 
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AndMethod='prod' 
OrMethod='probor' 
ImpMethod='prod' 
AggMethod='max' 
DefuzzMethod='wtaver' 
 
[Input1] 
Name=' Tray-2-Temp ' 
Range=[358.256868 383.071248] 
NumMFs=3 
MF1='in1mf1':'trimf',[345.849678 358.258020067984 370.650508349578] 
MF2='in1mf2':'trimf',[358.256652678929 370.666544446069 383.068503718612] 
MF3='in1mf3':'trimf',[370.652494858713 383.072582023573 395.478438] 
 
[Input2] 
Name=' Tray-5-Temp ' 
Range=[355.674577 382.802466] 
NumMFs=3 
MF1='in2mf1':'trimf',[342.1106325 355.675935544443 369.235575338006] 
MF2='in2mf2':'trimf',[355.673253114779 369.241094568775 382.802422379147] 
MF3='in2mf3':'trimf',[369.152004345474 382.803766900634 396.3664105] 
 
[Input3] 
Name=' Tray-9-Temp ' 
Range=[354.170049 380.046657] 
NumMFs=3 
MF1='in3mf1':'trimf',[341.231745000671 354.175272362572 367.091043927468] 
MF2='in3mf2':'trimf',[354.164866448959 367.120903034683 380.039391874954] 
MF3='in3mf3':'trimf',[367.121646703249 380.053994324431 392.984961] 
 
[Output1] 
Name='Comp. C2' 
Range=[0.017719 0.911318] 
NumMFs=27 
MF1='out1mf1':'constant',[0.0175128892155713] 
MF2='out1mf2':'constant',[0.66194083678541] 
MF3='out1mf3':'constant',[15.7519201989238] 
MF4='out1mf4':'constant',[0.208583718989921] 
MF5='out1mf5':'constant',[-0.324609779818212] 
MF6='out1mf6':'constant',[-17.6021302022835] 
MF7='out1mf7':'constant',[14.5235804704464] 
MF8='out1mf8':'constant',[-164.49232448122] 
MF9='out1mf9':'constant',[-1.06793546474844] 
MF10='out1mf10':'constant',[-0.00379217733848338] 
MF11='out1mf11':'constant',[1.22123499217628] 
MF12='out1mf12':'constant',[24.4876979210084] 
MF13='out1mf13':'constant',[-0.0626900990626596] 
MF14='out1mf14':'constant',[0.737662134600771] 
MF15='out1mf15':'constant',[1.92797448029802] 
MF16='out1mf16':'constant',[-0.559988566690381] 
MF17='out1mf17':'constant',[0.435961374860723] 
MF18='out1mf18':'constant',[-1.08004305482104] 
MF19='out1mf19':'constant',[0.63774404745321] 
MF20='out1mf20':'constant',[-2.32177213105731] 
MF21='out1mf21':'constant',[0] 
MF22='out1mf22':'constant',[0.0782133147793849] 
MF23='out1mf23':'constant',[0.336526917871792] 
MF24='out1mf24':'constant',[2.44509930463474] 
MF25='out1mf25':'constant',[0.661946624774005] 
MF26='out1mf26':'constant',[0.368125882283921] 
MF27='out1mf27':'constant',[0.259922743359131] 
 
[Rules] 
1 1 1, 1 (1) : 1 
1 1 2, 2 (1) : 1 
1 1 3, 3 (1) : 1 



 

 125

1 2 1, 4 (1) : 1 
1 2 2, 5 (1) : 1 
1 2 3, 6 (1) : 1 
1 3 1, 7 (1) : 1 
1 3 2, 8 (1) : 1 
1 3 3, 9 (1) : 1 
2 1 1, 10 (1) : 1 
2 1 2, 11 (1) : 1 
2 1 3, 12 (1) : 1 
2 2 1, 13 (1) : 1 
2 2 2, 14 (1) : 1 
2 2 3, 15 (1) : 1 
2 3 1, 16 (1) : 1 
2 3 2, 17 (1) : 1 
2 3 3, 18 (1) : 1 
3 1 1, 19 (1) : 1 
3 1 2, 20 (1) : 1 
3 1 3, 21 (1) : 1 
3 2 1, 22 (1) : 1 
3 2 2, 23 (1) : 1 
3 2 3, 24 (1) : 1 
3 3 1, 25 (1) : 1 
3 3 2, 26 (1) : 1 
3 3 3, 27 (1) : 1 

B.8 ANFIS Tri3con estimator structure for reflux drum comp C3  
 
 [System] 
Name='anfis C3' 
Type='sugeno' 
Version=2.0 
NumInputs=3 
NumOutputs=1 
NumRules=27 
AndMethod='prod' 
OrMethod='probor' 
ImpMethod='prod' 
AggMethod='max' 
DefuzzMethod='wtaver' 
 
[Input1] 
Name='Tray-2-Temp.' 
Range=[358.256868 383.071248] 
NumMFs=3 
MF1='in1mf1':'trimf',[345.849678 358.258089007431 370.64180876486] 
MF2='in1mf2':'trimf',[358.256641854165 370.665215170102 383.071310865505] 
MF3='in1mf3':'trimf',[370.649061840508 383.071184937993 395.478438] 
 
[Input2] 
Name=' Tray-5-Temp.' 
Range=[355.674577 382.802466] 
NumMFs=3 
MF1='in2mf1':'trimf',[342.110632500002 355.676450718881 369.238310038246] 
MF2='in2mf2':'trimf',[355.672723333751 369.239788922644 382.802571841195] 
MF3='in2mf3':'trimf',[369.151728320173 382.801945678647 396.3664105] 
 
[Input3] 
Name=' Tray-9-Temp.' 
Range=[354.170049 380.046657] 
NumMFs=3 
MF1='in3mf1':'trimf',[341.231744999983 354.174402030284 367.112961306089] 
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MF2='in3mf2':'trimf',[354.165731354943 367.11447951232 380.045416894431] 
MF3='in3mf3':'trimf',[367.092865214924 380.04843018439 392.984961] 
 
[Output1] 
Name='Comp. C3' 
Range=[0.000138 0.773586] 
NumMFs=27 
MF1='out1mf1':'constant',[-0.00109007290656566] 
MF2='out1mf2':'constant',[0.272462794301091] 
MF3='out1mf3':'constant',[-1.94272417978808] 
MF4='out1mf4':'constant',[-0.188110472462333] 
MF5='out1mf5':'constant',[0.743936155026231] 
MF6='out1mf6':'constant',[16.8997986036545] 
MF7='out1mf7':'constant',[-9.23722199686824] 
MF8='out1mf8':'constant',[102.873314242532] 
MF9='out1mf9':'constant',[1.73665894986522] 
MF10='out1mf10':'constant',[0.0212873232679715] 
MF11='out1mf11':'constant',[-0.186980425524613] 
MF12='out1mf12':'constant',[-14.1374715484766] 
MF13='out1mf13':'constant',[0.0320467547490414] 
MF14='out1mf14':'constant',[-9.270867910532e-005] 
MF15='out1mf15':'constant',[-0.310140042864206] 
MF16='out1mf16':'constant',[0.258765665447207] 
MF17='out1mf17':'constant',[0.218936660423444] 
MF18='out1mf18':'constant',[1.93976844948546] 
MF19='out1mf19':'constant',[-0.420721937336112] 
MF20='out1mf20':'constant',[1.8048593600609] 
MF21='out1mf21':'constant',[0] 
MF22='out1mf22':'constant',[-0.0135449045280753] 
MF23='out1mf23':'constant',[0.197791351576457] 
MF24='out1mf24':'constant',[-0.529261703124254] 
MF25='out1mf25':'constant',[-0.478811223831693] 
MF26='out1mf26':'constant',[0.239919755475814] 
MF27='out1mf27':'constant',[0.758932284850586] 
 
[Rules] 
1 1 1, 1 (1) : 1 
1 1 2, 2 (1) : 1 
1 1 3, 3 (1) : 1 
1 2 1, 4 (1) : 1 
1 2 2, 5 (1) : 1 
1 2 3, 6 (1) : 1 
1 3 1, 7 (1) : 1 
1 3 2, 8 (1) : 1 
1 3 3, 9 (1) : 1 
2 1 1, 10 (1) : 1 
2 1 2, 11 (1) : 1 
2 1 3, 12 (1) : 1 
2 2 1, 13 (1) : 1 
2 2 2, 14 (1) : 1 
2 2 3, 15 (1) : 1 
2 3 1, 16 (1) : 1 
2 3 2, 17 (1) : 1 
2 3 3, 18 (1) : 1 
3 1 1, 19 (1) : 1 
3 1 2, 20 (1) : 1 
3 1 3, 21 (1) : 1 
3 2 1, 22 (1) : 1 
3 2 2, 23 (1) : 1 
3 2 3, 24 (1) : 1 
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3 3 1, 25 (1) : 1 
3 3 2, 26 (1) : 1 
3 3 3, 27 (1) : 1 
 

B.9 Rule base of the reflux drum compositions estimators 
 
If (Tray 2 Temp. is S) and (Tray 5 Temp. is S) and (Tray 9 Temp. is S) then  Comp. C ….s outmf1 
If (Tray 2 Temp. is S) and (Tray 5 Temp. is S) and (Tray 9 Temp. is M) then  Comp. C …. is outmf2 
If (Tray 2 Temp. is S) and (Tray 5Temp. is S) and (Tray 9 Temp. is B) then Comp. C …. is outmf3 
If (Tray 2 Temp. is S) and (Tray 5 Temp. is M) and (Tray 9 Temp. is S) then Comp. C …. is outmf4 
If (Tray 2 Temp. is S) and (Tray 5 Temp. is M) and (Tray 9 Temp. is M) then Comp. C …. is outmf5 
If (Tray 2 Temp. is S) and (Tray 5 Temp. is M) and (Tray 9 Temp. is B) then Comp. C …. is outmf6 
If (Tray 2 Temp. is S) and (Tray 5 Temp. is B) and (Tray 9 Temp. is S) then  Comp. C …. is outmf7 
If (Tray 2 Temp. is S) and (Tray 5 Temp. is B) and (Tray 9 Temp. is M) then Comp. C …. is outmf8 
If (Tray 2 Temp. is S) and (Tray 5 Temp. is B) and (Tray 9 Temp. is B) then Comp. C …. is outmf9 
If (Tray 2 Temp. is M) and (Tray 5 Temp. is S) and (Tray 9 Temp. is S) then Comp. C …. is outmf10 
If (Tray 2 Temp. is M) and (Tray 5 Temp. is S) and (Tray 9 Temp. is M) then Comp. C …. is outmf11 
If (Tray 2 Temp. is M) and (Tray 5 Temp. is S) and (Tray 9 Temp. is B) then Comp. C …. is outmf12 
If (Tray 2 Temp. is M) and (Tray 5 Temp. is M) and (Tray 9 Temp. is S) then Comp. C …. is outmf13 
If (Tray 2 Temp. is M) and (Tray 5 Temp. is M) and (Tray 9 Temp. is M) then Comp. C …. is outmf14 
If (Tray 2 Temp. is M) and (Tray 5 Temp. is M) and (Tray 9 Temp. is B) then Comp. C …. is outmf15 
If (Tray 2 Temp. is M) and (Tray 5 Temp. is B) and (Tray 9 Temp. is S) then Comp. C …. is outmf16 
If (Tray 2 Temp. is M) and (Tray 5 Temp. is B) and (Tray 9 Temp. is M) then Comp. C …. is outmf17 
If (Tray 2 Temp. is M) and (Tray 5 Temp. is B) and (Tray 9 Temp. is B) then Comp. C …. is outmf18 
If (Tray 2 Temp. is B) and (Tray 5 Temp. is S) and (Tray 9 Temp. is S) then Comp. C …. is outmf19 
If (Tray 2 Temp. is B) and (Tray 5 Temp. is S) and (Tray 9 Temp. is M) then Comp. C …. is outmf20 
If (Tray 2 Temp. is B) and (Tray 5 Temp. is S) and (Tray 9 Temp. is B) then Comp. C …. is outmf21 
If (Tray 2 Temp. is B) and (Tray 5 Temp. is M) and (Tray 9 Temp. is S) then Comp. C …. is outmf22 
If (Tray 2 Temp. is B) and (Tray 5 Temp. is M) and (Tray 9 Temp. is M) then Comp. C …. is outmf23 
If (Tray 2 Temp. is B) and (Tray 5 Temp. is M) and (Tray 9 Temp. is B) then Comp. C …. is outmf24 
If (Tray 2 Temp. is B) and (Tray 5 Temp. is B) and (Tray 9 Temp. is S) then Comp. C ….is outmf25 
If (Tray 2 Temp. is B) and (Tray 5 Temp. is B) and (Tray 9 Temp. is M) then Comp. C …. is outmf26 
If (Tray 2 Temp. is B) and (Tray 5 Temp. is B) and (Tray 9 Temp. is B) then  Comp. C …. is outmf27 
 

B.10 Simulation code of pH control system 
 
Parameter1.m 
 
% pH Modelling ( Wright and Kravaris, 1991)  
% Implementing this strategy to controlling problem of pH reactor om MC AVoy (1972) 
% Acetic acid and NaOH input streams 
% Content of the Acid feed :  HAc 
% Initial concentrations  HAc :(C2) 
% Initial concentration NaOH (alfa) :(alfa3) 
con2=0.00d0; 
con1=0.32d0; 
alfa3=0.05d0; 
% Constant Flow rate of Acid stream (L/min) 
F=81; 
% Volume of the tank (L) 
V=1000 ; 
% Dissociation constant of Acetic Acid at (25 C). 
pKa=4.76d0 ; 
%  NaOH or Na in the tank initially, total Na concentration 
x3(1)=0.04320469795531 ; 
% Assuming there will be no HCl left drom the dissociation of HCl x2(0)=C2(0) (M) 
x2(1)=con2; 
% Finding eguation obtained using Ka for x1(1) 
x1(1)=0.04348993295291; 
%Initial time is zero 
time(1)=0.0d0; 
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time(2)=1; 
% Initial pH in the tank from initial total hydrogen concentration 
pH(1)=6.94; 
sp=6.94; 
% Initial Flow rate (lt/min) 
u(1)=515; 
v(1)=515; 
%Sampling interval (min) 
delt=1;% Set point tracking 
delsp=0; 
%Learning rate 
n=0.01; 
% jacobian parameters 
sa=0.0115; 
sc=515; 
% Anfis initial parameters 
  b1=0.200574360279041 ; 
  c1=5.28061128448098; 
    b2=0.200052784216443 ; 
  c2=5.69939525951916; 
  b3=0.186851285106911 ; 
  c3=6.13804978912724; 
  B1=25.2143373079753  ; 
  C1=400.00001723419; 
  B2=25.214317364033 ; 
  C2=459.374935088131; 
  B3=25.2141941522302 ; 
  C3=518.750006915436; 
   r1=372.386; 
  r2=391.352; 
  r3=-39.80488; 
  r4=658.9136; 
  r5=526.310; 
  r6=509.505; 
  r7=0.20478; 
  r8=408.027; 
  r9=527.604; 
 
Parameter2.m 
 
% Content of the Acid feed :  HAc 
% Initial concentrations  HAc :(C2), HCl (C1) 
% Initial concentration NaOH (alfa) :(alfa3) 
con2=0.00d0; 
con1=0.32d0; 
alfa3=0.05d0; 
% Constant Flow rate of Acid stream (L/min) 
F=81; 
% Volume of the tank (L) 
V=1000 ; 
% Dissociation constant of Acetic Acid at (25 C). 
pKa=4.76d0 ; 
%  NaOH or Na in the tank initially, total Na concentration 
x3(51)=0.0373 ; 
% Assuming there will be no HCl left drom the dissociation of HCl x2(0)=C2(0) (M) 
x2(51)=con2; 
% Finding eguation obtained using Ka for x1(1) 
x1(51)=0.0814; 
time(50)=43; 
time(51)=43.25; 
%Sampling interval (min) 
delt=0.25; 
% Set point tracking 
delsp=0; 
%Learning rate 
n=0.01; 
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% jacobian parameters 
sa=0.0115; 
sc=515; 
% Anfis initial parameters 
  b1=0.85640; 
  c1=5.266; 
  b2=0.439; 
  c2=32.0436; 
    b3=0.5358; 
  c3=11.9802; 
   B1=62.63957; 
  C1=300; 
    B2=62.5913 ; 
  C2=447.49; 
    B3=62.5331; 
  C3=595; 
  r1=236.6003; 
  r2=382.0986; 
  r3=591.499; 
  r4=1323; 
  r5=812.699; 
  r6=249.5989; 
  r7=4030; 
  r8=433.39; 
  r9=626.299; 
 
  pHcontsim.m 
 
% Closed loop simulation of pH CSTR reactor system. 
% Written by Evren Güner 
% Simulation part1  
% Controller and CSTR Parameter initalization 
 parga; 
 for k=1:48; 
% Solution of states for each time step in pH system 
% GOVERNING EQUATIONS 
% xi(k+1)=xi(k).exp[-((Fk+uk)/V).delt]+[(Fk.(ci)k+uk.&i)/Fk+uk].[1-exp(-((Fk+uk)/V).delt)] 
% ai(ph(k+1)).xi(k+1)+A(ph(k+1))=0  
    x1(k+1)=[x1(k)*exp(-((F+u(k))/V)*delt)]+[(F*(con1))/(F+u(k))]*[1-exp(-((F+u(k))/V)*delt)] ;    
    x2(k+1)=0; 
    x3(k+1)=[x3(k)*exp(-((F+u(k))/V)*delt)]+[(u(k)*(alfa3))/(F+u(k))]*[1-exp(-((F+u(k))/V)*delt)] ; 
    A=x1(k+1); 
    B=x2(k+1); 
    C=x3(k+1); 
%Solving pH values using states at time step  
 D=FZERO(@necati, 7, optimset, A,B,C); 
 time(k+1)=time(k)+delt ; 
 pH(k+1)=D; 
 H=pH(k); 
if k<20; 
    sp=6.94; 
    delt=1;   
else if k>=21 & k<=41 
     sp=5.0; 
     delt=1; 
 else  
     sp=9.0; 
     delt=0.25; 
 end    
end 
 pHsp(k+1)=sp; 
 g=pH(k+1)-pH(k); 
% ANFIS Controller ;  Five Layer connectionist network 
% Layer1 , Calculating the MF's values for inputs ( F2(k) and pH(k) 
% Layer2 , Calculating the rule firing strengths  
% Layer3 , Calculating the normalized firing strengths ( ratio of ht ith rule's 
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%firing strength to the sum of all rule's FS) 
% Layer4 , Calculating the rules outputs 
% Layer5 ; Calculating the over all output ; F2(k+1) 
% Inputs to the ANFIS Controller  
% v(k) ; manipulated variable ( Flow Rate of Base F2(k)) 
% pH(k) ; pH value of the system  
% Output ; F2(k+1) ;manipulated variable 
% Membership functions for the input values choosen as Gaussian type 
% LAYER 1 Calculating the MF's values for inputs 
% For v(k); Ma's  
% Ma1 ; small for pH(k) 
Ma1=exp(-0.5*(((pH(k)-c1)/b1)^2)); 
delc1=(1/(b1^3))*(pH(k)-c1)*exp(-0.5*(((pH(k)-c1)/b1)^2)); 
delb1=(1/(b1^3))*((pH(k)-c1)^2)*exp(-0.5*(((pH(k)-c1)/b1)^2)); 
% Ma2 ; medium for pH(k) 
Ma2=exp(-0.5*(((pH(k)-c2)/b2)^2)); 
delc2=(1/(b2^3))*(pH(k)-c2)*exp(-0.5*(((pH(k)-c2)/b1)^2)); 
delb2=(1/(b2^3))*((pH(k)-c2)^2)*exp(-0.5*(((pH(k)-c2)/b2)^2)); 
% Ma3 ; big for v(k) 
Ma3=exp(-0.5*(((pH(k)-c3)/b3)^2)); 
delc3=(1/(b3^3))*(pH(k)-c3)*exp(-0.5*(((pH(k)-c3)/b3)^2)); 
delb3=(1/(b3^3))*((pH(k)-c3)^2)*exp(-0.5*(((pH(k)-c3)/b3)^2)); 
% For F2(k) ; Mb's 
% Mb1 ;  small for v(k) 
Mb1=exp(-0.5*(((v(k)-C1)/B1)^2)); 
delC1=(1/(B1^3))*(v(k)-C1)*exp(-0.5*(((v(k)-C1)/B1)^2)); 
delB1=(1/(B1^3))*((v(k)-C1)^2)*exp(-0.5*(((v(k)-C1)/B1)^2)); 
% Mb2 ;  medium for v(k) 
Mb2=exp(-0.5*(((v(k)-C2)/B2)^2)); 
delC2=(1/(B2^3))*(v(k)-C2)*exp(-0.5*(((v(k)-C2)/B2)^2)); 
delB2=(1/(B2^3))*((v(k)-C2)^2)*exp(-0.5*(((v(k)-C2)/B2)^2)); 
% Mb3 ; big for v(k) 
Mb3=exp(-0.5*(((v(k)-C3)/B3)^2)); 
delC3=(1/(B3^3))*(v(k)-C3)*exp(-0.5*(((v(k)-C3)/B2)^2)); 
delB3=(1/(B3^3))*((v(k)-C3)^2)*exp(-0.5*(((v(k)-C3)/B3)^2)); 
% LAYER2 Calculating the rule firing strengths  
% w1; If pH(k) is S and v(k) is S then f1 = r1  
 w1=Ma1*Mb1 ; 
% w2;  If pH(k) is S and v(k) is M then f2 = r2 
 w2=Ma1*Mb2 ; 
% w3 ; If pH(k) is S and v(k) is B then f3 = r3 
 w3=Ma1*Mb3 ; 
% w4 ; If pH(k) is M and v(k) is S then f4 = r4  
 w4=Ma2*Mb1 ; 
% w5 ; If pH(k) is M and v(k) is M then f5 = r5  
 w5=Ma2*Mb2 ; 
 % w6 ; If pH(k) is   M and v(k) is B then f6 = r6 
 w6=Ma2*Mb3 ; 
 % w7 ; If pH(k) is   B and v(k) is    S   then f7 = r7  
 w7=Ma3*Mb1 ; 
 % w8 ; If pH(k) is   B and v(k) is    M   then f8 = r8 
 w8=Ma3*Mb2 ; 
 % w9 ; If pH(k) is   B and v(k) is    B   then f9 = r9  
 w9=Ma3*Mb3; 
 % LAYER 3 , Calculating the normalized firing strengths Wi ( ratio of ht ith rule's  
 %firing strength to the sum of all rule's FS) 
 % Sum of the firing strengths 
 wT=w1+w2+w3+w4+w5+w6+w7+w8+w9 ; 
 % Normalized firing strengths  
 W1=w1/wT; W2=w2/wT ; W3=w3/wT ; W4=w4/wT; W5=w5/wT ; W6=w6/wT; W7=w7/wT; W8=w8/wT ; 
W9=w9/wT;  
 % LAYER 4 , Calculating the rules outputs 
 f1=(r1) ;f2=(r2);f3=(r3);f4=(r4);f5=(r5); 
 f6=(r6) ;f7=(r7);f8=(r8) ;f9=(r9); 
 o1=W1*f1 ;  o2=W2*f2 ;  o3=W3*f3 ;  o4=W4*f4 ;  o5=W5*f5; 
 o6=W6*f6;  o7=W7*f7 ;  o8=W8*f8;  o9=W9*f9 ;   
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 % LAYER 5 ; Calculating the over all output ; Fbase(k) at time t  
if k<20; 
    u(k+1)=515; 
else   
    u(k+1)=(o1+o2+o3+o4+o5+o6+o7+o8+o9); 
end     
v(k+1)=u(k+1); 
% For plant Jacobian derivative of the pH with respect to Fbase is 
% calculated from the sigmoid model of the plant 
% pH= 14/(1+exp(-sa*(u(k)-sc))); 
% Plant Jacobian:  delpH/delFbase 
jacobian=(14*sa*exp(-sa*(u(k)-sc)))/((1+exp(-sa*(u(k)-sc)))^2); 
% Adaptation of parameters according to the equations derived from the EBP algorithm 
% n; learning rate     
% MFs  parameters b1,c1,b2,c2,b3,c3,B1,C1,B2,C2,B3,C3 the parameters of the 
% gaussian MFs 
b1=b1-n*((pHsp(k+1)-pH(k+1))*(-1)*(jacobian)*((delb1)/wT)*(Mb1*r1+Mb2*r2+Mb3*r3)); 
c1=c1-n*((pHsp(k+1)-pH(k+1))*(-1)*(jacobian)*((delc1)/wT)*(Mb1*r1+Mb2*r2+Mb3*r3)); 
b2=b2-n*((pHsp(k+1)-pH(k+1))*(-1)*(jacobian)*((delb2)/wT)*(Mb1*r4+Mb2*r5+Mb3*r6)); 
c2=c2-n*((pHsp(k+1)-pH(k+1))*(-1)*(jacobian)*((delc2)/wT)*(Mb1*r4+Mb2*r5+Mb3*r6)); 
b3=b3-n*((pHsp(k+1)-pH(k+1))*(-1)*(jacobian)*((delb3)/wT)*(Mb1*r7+Mb2*r8+Mb3*r9)); 
c3=c3-n*((pHsp(k+1)-pH(k+1))*(-1)*(jacobian)*((delc3)/wT)*(Mb1*r7+Mb2*r8+Mb3*r9)); 
B1=B1-n*((pHsp(k+1)-pH(k+1))*(-1)*(jacobian)*((delB1)/wT)*(Ma1*r1+Ma2*r2+Ma3*r3)); 
C1=C1-n*((pHsp(k+1)-pH(k+1))*(-1)*(jacobian)*((delC1)/wT)*(Ma1*r1+Ma2*r2+Ma3*r3)); 
B2=B2-n*((pHsp(k+1)-pH(k+1))*(-1)*(jacobian)*((delB2)/wT)*(Ma1*r4+Ma2*r5+Ma3*r6)); 
C2=C2-n*((pHsp(k+1)-pH(k+1))*(-1)*(jacobian)*((delC2)/wT)*(Ma1*r4+Ma2*r5+Ma3*r6)); 
B3=B3-n*((pHsp(k+1)-pH(k+1))*(-1)*(jacobian)*((delB3)/wT)*(Ma1*r7+Ma2*r8+Ma3*r9)); 
C3=C3-n*((pHsp(k+1)-pH(k+1))*(-1)*(jacobian)*((delC3)/wT)*(Ma1*r7+Ma2*r8+Ma3*r9)); 
% Consequent parameters ; ri 
 r1=r1-n*[(pHsp(k+1)-pH(k+1))*(-1)*(jacobian)*W1]; 
 r2=r2-n*[(pHsp(k+1)-pH(k+1))*(-1)*(jacobian)*W2]; 
 r3=r3-n*[(pHsp(k+1)-pH(k+1))*(-1)*(jacobian)*W3]; 
 r4=r4-n*[(pHsp(k+1)-pH(k+1))*(-1)*(jacobian)*W4]; 
 r5=r5-n*[(pHsp(k+1)-pH(k+1))*(-1)*(jacobian)*W5]; 
 r6=r6-n*[(pHsp(k+1)-pH(k+1))*(-1)*(jacobian)*W6]; 
 r7=r7-n*[(pHsp(k+1)-pH(k+1))*(-1)*(jacobian)*W7]; 
 r8=r8-n*[(pHsp(k+1)-pH(k+1))*(-1)*(jacobian)*W8]; 
 r9=r9-n*[(pHsp(k+1)-pH(k+1))*(-1)*(jacobian)*W9]; 
end 
% Saving data 
simpart1(:,1)=time'; 
simpart1(:,2)=u'; 
simpart1(:,3)=pH'; 
save simpart1 simpart1 ; 
clear; 
% Simulation part2  
% Controller and CSTR Parameter initalization 
 parga2; 
 for k=50:400; 
    x1(k+1)=[x1(k)*exp(-((F+u(k))/V)*delt)]+[(F*(con1))/(F+u(k))]*[1-exp(-((F+u(k))/V)*delt)] ;    
    x2(k+1)=0; 
    x3(k+1)=[x3(k)*exp(-((F+u(k))/V)*delt)]+[(u(k)*(alfa3))/(F+u(k))]*[1-exp(-((F+u(k))/V)*delt)] ; 
    A=x1(k+1); 
    B=x2(k+1); 
    C=x3(k+1); 
 D=FZERO(@necati, 7, optimset, A,B,C); 
 time(k+1)=time(k)+delt ; 
 pH(k+1)=D; 
 H=pH(k); 
if k<20; 
    sp=5.0; 
else     
sp=9.0; 
end 
 pHsp(k+1)=sp; 
 g=pH(k+1)-pH(k);  



 

 132

% LAYER 1 Calculating the MF's values for inputs 
% For v(k); Ma's  
% Ma1 ; small for pH(k) 
Ma1=exp(-0.5*(((pH(k)-c1)/b1)^2)); 
delc1=(1/(b1^3))*(pH(k)-c1)*exp(-0.5*(((pH(k)-c1)/b1)^2)); 
delb1=(1/(b1^3))*((pH(k)-c1)^2)*exp(-0.5*(((pH(k)-c1)/b1)^2)); 
% Ma2 ; medium for pH(k) 
Ma2=exp(-0.5*(((pH(k)-c2)/b2)^2)); 
delc2=(1/(b2^3))*(pH(k)-c2)*exp(-0.5*(((pH(k)-c2)/b1)^2)); 
delb2=(1/(b2^3))*((pH(k)-c2)^2)*exp(-0.5*(((pH(k)-c2)/b2)^2)); 
% Ma3 ; big for v(k) 
Ma3=exp(-0.5*(((pH(k)-c3)/b3)^2)); 
delc3=(1/(b3^3))*(pH(k)-c3)*exp(-0.5*(((pH(k)-c3)/b3)^2)); 
delb3=(1/(b3^3))*((pH(k)-c3)^2)*exp(-0.5*(((pH(k)-c3)/b3)^2)); 
% For pH(k) ; Mb's 
% Mb1 ;  small for v(k) 
Mb1=exp(-0.5*(((v(k)-C1)/B1)^2)); 
delC1=(1/(B1^3))*(v(k)-C1)*exp(-0.5*(((v(k)-C1)/B1)^2)); 
delB1=(1/(B1^3))*((v(k)-C1)^2)*exp(-0.5*(((v(k)-C1)/B1)^2)); 
% Mb2 ;  medium for v(k) 
Mb2=exp(-0.5*(((v(k)-C2)/B2)^2)); 
delC2=(1/(B2^3))*(v(k)-C2)*exp(-0.5*(((v(k)-C2)/B2)^2)); 
delB2=(1/(B2^3))*((v(k)-C2)^2)*exp(-0.5*(((v(k)-C2)/B2)^2)); 
% Mb3 ; big for v(k) 
Mb3=exp(-0.5*(((v(k)-C3)/B3)^2)); 
delC3=(1/(B3^3))*(v(k)-C3)*exp(-0.5*(((v(k)-C3)/B2)^2)); 
delB3=(1/(B3^3))*((v(k)-C3)^2)*exp(-0.5*(((v(k)-C3)/B3)^2)); 
% LAYER2 Calculating the rule firing strengths  
% w1; If pH(k) is S and v(k) is S then f1 = r1  
 w1=Ma1*Mb1 ; 
% w2;  If pH(k) is S and v(k) is M then f2 = r2 
 w2=Ma1*Mb2 ; 
% w3 ; If pH(k) is S and v(k) is B then f3 = r3 
 w3=Ma1*Mb3 ; 
% w4 ; If pH(k) is M and v(k) is S then f4 = r4  
 w4=Ma2*Mb1 ; 
% w5 ; If pH(k) is M and v(k) is M then f5 = r5  
 w5=Ma2*Mb2 ; 
 % w6 ; If pH(k) is   M and v(k) is B then f6 = r6 
 w6=Ma2*Mb3 ; 
 % w7 ; If pH(k) is   B and v(k) is    S   then f7 = r7  
 w7=Ma3*Mb1 ; 
 % w8 ; If pH(k) is   B and v(k) is    M   then f8 = r8 
 w8=Ma3*Mb2 ; 
 % w9 ; If pH(k) is   B and v(k) is    B   then f9 = r9  
 w9=Ma3*Mb3; 
 % LAYER 3 , Calculating the normalized firing strengths Wi ( ratio of ht 
 % ith rule's firing strength to the sum of all rule's FS) 
 % Sum of the firing strengths 
 wT=w1+w2+w3+w4+w5+w6+w7+w8+w9 ; 
 % Normalized firing strengths  
 W1=w1/wT; W2=w2/wT ; W3=w3/wT ; W4=w4/wT; W5=w5/wT ; W6=w6/wT; W7=w7/wT; W8=w8/wT ; 
W9=w9/wT;  
 % LAYER 4 , Calculating the rules outputs 
 f1=(r1) ;f2=(r2);f3=(r3);f4=(r4);f5=(r5); 
 f6=(r6) ;f7=(r7);f8=(r8) ;f9=(r9); 
 o1=W1*f1 ;  o2=W2*f2 ;  o3=W3*f3 ;  o4=W4*f4 ;  o5=W5*f5; 
 o6=W6*f6;  o7=W7*f7 ;  o8=W8*f8;  o9=W9*f9 ;   
 % LAYER 5 ; Calculating the over all output ; Fbase(k) at time t 
 u(k+1)=(o1+o2+o3+o4+o5+o6+o7+o8+o9); 
 v(k+1)=u(k+1); 
% For plant Jacobian derivative of the pH with respect to Fbase is 
jacobian=(14*sa*exp(-sa*(u(k)-sc)))/((1+exp(-sa*(u(k)-sc)))^2); 
% Adaptation of parameters according to the equations derived from the EBP algorithm 
b1=b1-n*((pHsp(k+1)-pH(k+1))*(-1)*(jacobian)*((delb1)/wT)*(Mb1*r1+Mb2*r2+Mb3*r3)); 
c1=c1-n*((pHsp(k+1)-pH(k+1))*(-1)*(jacobian)*((delc1)/wT)*(Mb1*r1+Mb2*r2+Mb3*r3)); 
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b2=b2-n*((pHsp(k+1)-pH(k+1))*(-1)*(jacobian)*((delb2)/wT)*(Mb1*r4+Mb2*r5+Mb3*r6)); 
c2=c2-n*((pHsp(k+1)-pH(k+1))*(-1)*(jacobian)*((delc2)/wT)*(Mb1*r4+Mb2*r5+Mb3*r6)); 
b3=b3-n*((pHsp(k+1)-pH(k+1))*(-1)*(jacobian)*((delb3)/wT)*(Mb1*r7+Mb2*r8+Mb3*r9)); 
c3=c3-n*((pHsp(k+1)-pH(k+1))*(-1)*(jacobian)*((delc3)/wT)*(Mb1*r7+Mb2*r8+Mb3*r9)); 
B1=B1-n*((pHsp(k+1)-pH(k+1))*(-1)*(jacobian)*((delB1)/wT)*(Ma1*r1+Ma2*r2+Ma3*r3)); 
C1=C1-n*((pHsp(k+1)-pH(k+1))*(-1)*(jacobian)*((delC1)/wT)*(Ma1*r1+Ma2*r2+Ma3*r3)); 
B2=B2-n*((pHsp(k+1)-pH(k+1))*(-1)*(jacobian)*((delB2)/wT)*(Ma1*r4+Ma2*r5+Ma3*r6)); 
C2=C2-n*((pHsp(k+1)-pH(k+1))*(-1)*(jacobian)*((delC2)/wT)*(Ma1*r4+Ma2*r5+Ma3*r6)); 
B3=B3-n*((pHsp(k+1)-pH(k+1))*(-1)*(jacobian)*((delB3)/wT)*(Ma1*r7+Ma2*r8+Ma3*r9)); 
C3=C3-n*((pHsp(k+1)-pH(k+1))*(-1)*(jacobian)*((delC3)/wT)*(Ma1*r7+Ma2*r8+Ma3*r9)); 
% Consequent parameters ; ri 
 r1=r1-n*[(pHsp(k+1)-pH(k+1))*(-1)*(jacobian)*W1]; 
 r2=r2-n*[(pHsp(k+1)-pH(k+1))*(-1)*(jacobian)*W2]; 
 r3=r3-n*[(pHsp(k+1)-pH(k+1))*(-1)*(jacobian)*W3]; 
 r4=r4-n*[(pHsp(k+1)-pH(k+1))*(-1)*(jacobian)*W4]; 
 r5=r5-n*[(pHsp(k+1)-pH(k+1))*(-1)*(jacobian)*W5]; 
 r6=r6-n*[(pHsp(k+1)-pH(k+1))*(-1)*(jacobian)*W6]; 
 r7=r7-n*[(pHsp(k+1)-pH(k+1))*(-1)*(jacobian)*W7]; 
 r8=r8-n*[(pHsp(k+1)-pH(k+1))*(-1)*(jacobian)*W8]; 
 r9=r9-n*[(pHsp(k+1)-pH(k+1))*(-1)*(jacobian)*W9]; 
end 
% Saving data 
tim=time'; U=u'; PH=pH'; 
simpart2(:,1)=tim(50:400,:); 
simpart2(:,2)=U(50:400,:); 
simpart2(:,3)=PH(50:400,:); 
save simpart2 simpart2 ; 
clear; 
load simpart1; 
load simpart2; 
simdata=[simpart1;simpart2]; 
save simdata simdata; 
clear; 


