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ABSTRACT 

 

CONTACT MECHANICS OF A GRADED SURFACE WITH ELASTIC 
GRADATION IN LATERAL DIRECTION 

 
 

Özatağ, A.Cihan 

M.S., Department of Mechanical Engineering 

Supervisor: Asst. Prof. Dr. Serkan Dağ 

 

August 2003, 109 pages 

 

Today, nonhomogeneous materials are used in many technological applications. 

Nonhomogeneity can be introduced intentionally in order to improve the 

thermomechanical performance of material systems. The concept of functionally 

graded materials (FGMs) is an example of such an application. Nonhomogeneity 

can also be an intrinsic property of some of the natural materials such as natural 

soil. The main interest in this study is on the contact mechanics of nonhomogeneous 

surfaces. There is an extensive volume of literature on the contact mechanics of 

nonhomogeneous materials. In most of these studies, the elastic gradation is 

assumed to exist in depth direction. But, it is known that elastic gradation may also 

exist laterally. This may either occur naturally as in the case of natural soil or may 

be induced as a result of the applied processing technique as in the case of FGMs. 

The main objective in this study is therefore to examine the effect of the lateral 

nonhomogeneities on the contact stress distribution at the surface of an elastically 

graded material. In the model developed to examine this problem, a laterally graded 

surface is assumed to be in sliding contact with a rigid stamp of arbitrary profile. 

The problem is formulated using the theory of elasticity and reduced to a singular 

integral equation. The integral equation is solved numerically using a collocation 

 iii



approach. By carrying out parametric studies, the effects of the nonhomogeneity 

constants, coefficient of friction and stamp location on the contact stress distribution 

and on the required contact forces are studied. 

 

 

Keywords: Contact mechanics, Sliding Contact, Laterally Nonhomogeneous 

Medium, Functionally Graded Materials, Singular Integral Equations.  
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ÖZ 

 

YANAL YÖNDE ELASTİK DERECELENMİŞ BİR YÜZEYİN  
TEMAS MEKANİĞİ 

 
 

Özatağ, A. Cihan 

Yüksek Lisans, Makina Mühendisliği Bölümü 

Tez Yöneticisi: Y. Doç. Dr. Serkan Dağ 

 

Ağustos 2003, 109 sayfa 

 

Günümüzde, homojen olmayan malzemeler, pek çok teknolojik uygulamada 

kullanılmaktadır.Homojen olmama özelliği, malzemelerin termomekanik 

performanslarını geliştirmek amacıyla bilinçli olarak sonradan kazandırılabilir. 

Fonksiyonel olarak derecelenmiş malzemeler bu tür bir uygulamanın örneğidir. 

Homojen olmama özelliği, toprak gibi bazı doğal malzemelerin esas özelliği 

olabilmektedir. Bu çalışmanın esas ilgi alanı, homojen olmayan yüzeylerin kontak 

mekaniği üzerinedir. Literatürde, homojen olmayan yüzeylerin temas mekaniği 

üzerine birçok çalışma vardır. Bu çalışmaların çoğunda elastik derecelenmenin 

derinlik yönünde olduğu varsayılmıştır. Fakat, elastik derecelenme yanal yönde 

varolabilir. Bu özellik toprakta olduğu gibi doğal olarak ya da fonksiyonel olarak 

derecelendirilmiş malzemelerde olduğu gibi sonradan kazandırılabilir. Bu yüzden, 

bu çalışmadaki ana hedef, yanal yöndeki homojen olmama özelliklerinin elastik 

olarak derecelenmiş malzemelerin yüzeyindeki temas gerilmesi dağılımı üzerindeki 

etkisini incelemektir. Bu problemi incelemek için geliştirilen modelde, yanal yönde 

derecelenmiş bir yüzeyin rijit bir zımba ile kayma temasında olduğu varsayılmıştır. 

Problem, elastisite teorisi kullanılarak formüle edilmiş ve tekil bir integral 

denklemine indirgenmiştir. İntegral denklemi sayısal olarak çözülmüş ve parametrik 

 v



çalışmalar yürütülerek, homojen olmama sabitlerinin, sürtünme katsayısının ve 

zımba konumunun temas gerilmesi dağılımı ve gerekli temas kuvvetleri üzerindeki 

etkileri incelenmiştir 

 

 

Anahtar kelimeler: Temas mekaniği, Kaymalı Temas, Yanal Yönde Homojen 

Olmayan Ortam, Fonksiyonel Olarak Derecelenmiş Malzemeler, Tekil İntegral 

Denklemleri.  
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CHAPTER I 
 
 

INTRODUCTION 
 
 
 

Contact mechanics of nonhomogeneous elastic materials has been studied by 

many researchers in the past. Selvadurai and Lan [1] classifies the contact 

mechanics problem of nonhomogeneous materials as a nonclassical problem in the 

theory of elasticity. Largely because of the applications in soil mechanics, there is 

an extensive literature on the contact mechanics problems for nonhomogeneous 

elastic half space. In these problems, the elastic constants are assumed to be 

functions of the spatial variables. Recently, there has been a renewed intereset on 

the contact mechanics of nonhomogeneous elastic materials, this time within the 

context of functionally graded materials (FGMs). In most of the studies mentioned 

above, the elastic nonhomogeneity is assumed to exist in depth direction at the 

surface of the nonhomogeneous medium. But, it is well known that 

nonhomogeneities may exist in directions other than the depth direction in both soil 

mechanics applications and in materials which are processed using the FGM 

concept.  

The main objective in this study is to develop a method to examine the contact 

mechanics problem for a nonhomogeneous elastic medium by assuming that there is 

a material nonhomogeneity in lateral direction instead of the depth or thickness 

direction. Main interest in this study is therefore on the effect of the lateral material 

nonhomogeneity on the contact stress distribution. In this section, we will first give 

a brief literature review of the contact mechanics problems in nonhomogeneous 

media. Then, the scope of this study will be described by giving the problem 

definition and the techniques used in the solution of the problem. 

 

1



1.1.Previous Work on Contact Mechanics of Nonhomogeneous 

Media 
 

Contact mechanics is one of the central problems of solid mechanics, since the 

load transfer between different components in an engineering structure can take 

place through a contact region. In most of the cases, the highest stresses occur in the 

contact area which may lead to the failure of a component through any of the 

mechanisms of wear, surface cracking, spallation or surface fatigue. The analysis of 

stress and displacement fields induced due to contact loading is the main field of 

study in contact mechanics. Generally, it is accepted that studies in contact 

mechanics originated with Hertz’s work [2]. This work gives the solution of the 

frictionless contact problem of two elastic bodies of ellipsoidal profile. A brief 

review of the development of the field of contact mechanics since the work of Hertz 

and the state of art can be found in the review article of Barber and Ciavarella [3].  

Because of the applications in soil mechanics, there was a great deal of interest 

in the contact mechanics of nonhomogeneous materials, especially in the 60’s and 

the 70’s. There are a number of articles which review the work that belong to that 

era. For a detailed literature review, the reader may refer to [4] or [5]. Early studies 

related to the contact mechanics of nonhomogeneous materials were aimed to 

provide Flamant’s solution for these materials. Several studies investigating the 

stress and displacement fields within and on the bounding surface of a half – plane, 

which is subjected to point or distributed loads were published. These works were 

mainly motivated by the need to understand the settlement of structures founded on 

large mass of soil. It is known that the rigidity of natural soil increases with 

overburden pressure and such media were analyzed within the framework of linear 

elasticity. An elastic and incompressible half – plane with a linear variation in 

elastic modulus is considered in several studies. Gibson [6] and Calladine and 

Greenwood [7] solved this problem for line and point loads on the bounding surface 

of the half – plane. Awojobi and Gibson [8] presented results for an axisymmetric 

half – space. Gibson and Sills [9] considered a nonhomogeneous orthotropic elastic 

semi – infinite medium. Brown and Gibson [10] released the assumption of 
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incompressibility and Poisson’s ratio was assumed to have a constant value between 

zero and one – half. In all the studies cited above, primary focus is on the settlement 

of foundations and elastic modulus varies linearly in depth direction. 

 Contact of nonhomogeneous surfaces with rigid stamps are also considered by 

many researchers within the context of soil mechanics. Kassir [11] considered the 

indentation of an elastic half – space by stamps with arbitrary profiles. Shear 

modulus is assumed to have a power – law type variation in the depth direction. 

Contact is assumed to be frictionless and normal stress distributions beneath the 

stamp are presented for various nonhomogeneity parameters. Bakırtaş [12] 

examined frictionless planar stamp problems. Elastic modulus is assumed to vary 

exponentially in depth direction. Contact stresses for flat ended and circular stamps 

are given for different values of the nonhomogeneity constants. In the stamp 

problems quoted above,  Poisson’s ratio is assumed to be constant. Fabrikant and 

Sankar [13] studied axisymmetric contact problems for a nonhomogeneous half – 

space whose elastic modulus is a power function of the depth coordinate. The 

contact region is assumed to be in the shape of a circle. Selvadurai and coworkers 

have a series of studies [1,5,14] dealing with axisymmetric stamp problems for a 

nonhomogeneous half – space with elastic nonhomogeneity in the depth direction. 

 Graded materials, also known as functionally graded materials (FGMs) are 

generally multi – phase composites with continuously varying thermomechanical 

properties. The important property of FGMs from mechanics point of view is their 

macroscopic nonhomogeneity. These material systems were originally proposed to 

be used as protective coatings in high temperature applications, e.g. as thermal 

barrier coatings in aircraft engines. An excellent up – to – date review of the FGM 

subject can be found in [15]. In recent years, functionally graded materials are also 

proposed to be used as coatings or bulk materials to enhance the resistance of 

structural components to tribological damage [15]. For example, graded coatings for 

the cutting edges of the cutting tools have been developed [16]. The coating 

material in these applications is most of the time ceramic and carbide or nitride 

content is varied from the substrate interface to the surface. The cutting behavior 

and wear resistance of the graded ceramic tools were observed to be better than the 

conventional ceramic ones. Suresh et al. [17] showed that gradients in elastic 
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modulus at a surface may enhance the resistance against cracking due to sliding 

contact. In their experiment, these researchers processed a functionally graded 

alumina–aluminosilicate glass FGM using the infiltration technique. 

Aluminosilicate glass penetrates into the grain boundaries of alumina at high 

temperatures. In the indentation and scratch tests using the processed FGM 

specimens, it was seen that controlled gradients in elastic modulus alone can lead to 

a marked increase in the resistance of a surface to frictional sliding contact. The 

findings of this study show that FGMs can be utilized as protective coatings against 

wear and specifically against frictional contact related cracking.  

Due to the promising results obtained in these studies, recently a number of 

research papers are published on the contact mechanics of functionally graded 

materials. Indentation of a graded half – space by a point force is examined by 

Giannakopoulos and Suresh [18]. Again, in another study by the same authors [19], 

analytical and computational results are given for stress and displacement fields in a 

graded elastic half – space due to indentation from a rigid axisymmetric indentor. A 

review of the analytical, computational and experimental results on the spherical 

indentation of a graded elastic half space is given by Giannakopoulos [20]. Two 

dimensional sliding contact problems for an elastic graded half – plane is 

considered by Giannakopoulos and Pallot [21]. In this study,  for the sake of 

mathematical expediency, the authors used a power – law variation for the elastic 

modulus. The drawback in this assumption is that, the elastic modulus becomes zero 

at the contact surface which is physically unrealistic. Two dimensional contact 

problems for elastic FGM coatings bonded to homogeneous substrates are examined 

by Güler [22]. In this study, a more realistic exponential variation in elastic 

modulus for the FGM coating is assumed. The sliding contact problems for rigid 

stamps, and for two contacting FGM coatings are reduced to singular integral 

equations which are solved using a collocation method. Extensive results are given 

on the influence of the material nonhomogeneity in thickness direction and friction 

on the contact stress distribution at the contacting surfaces.  

An important failure mode related to contact loading is the fretting fatigue which 

is essentially the initiation and propagation of surface cracks due to oscillatory 

contact loading at the contact surfaces. The analysis of this problem requires the 
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examination of coupled crack and contact problems. For an elastically graded 

surface this problem is solved by Dağ [23]. Some of the details and extensive 

results related to this problem can also be found in the studies by Dağ and Erdoğan 

[24] and Erdoğan and Dağ [25]. 

 

1.2.Motivation and Scope of the Study 
 

In all the studies mentioned above the elastic nonhomogeneity is assumed to 

exist in depth direction and Poisson’s ratio is assumed to have a constant value. The 

confinement of the direction of the nonhomogeneity to the depth direction is most 

of the time a consequence of mathematical tractability. Actually, in soil mechanics 

it is a well known fact that the earth surface may also have nonhomogeneities in 

lateral direction. The effect of lateral nonhomogeneity seemed to be taken into 

account in some studies on seismic wave propagation [26,27]. Contact mechanics 

analyses of a surface that has lateral nonhomogeneities are very few in the 

literature. In one study, Singh et al. [28] examined the distribution of stresses 

induced in a semi – infinite solid when a rigid punch penetrates its plane boundary. 

The shear modulus is assumed to be a function of the spatial coordinates in 

perpendicular and lateral directions. But, no numerical parametric analyses are 

given on the effect of material nonhomogeneities on the stress distribution. As 

mentioned in the previous section, Suresh et al. [17] processed an alumina – 

aluminosilicate glass FGM surface using the infiltration technique. At high 

temperatures, (about 1700 0C) aluminosilicate glass penetrates into the grain 

boundaries of alumina and a graded ceramic FGM can be obtained. The indentation 

and scratch tests and theoretical analyses show that this graded surface is perfectly 

suitable for applications that require wear and cracking resistance. But, in addition 

to the thickness direction, the processed material contains nonhomogeneities in 

lateral direction which is not taken into account in the analytical and computational 

analyses.The main objective in this study is to develop a technique to study the 

effect of the lateral nonhomogeneities on the contact stress distribution for a graded 

surface. Depending on the nature of the effect of the lateral nonhomogeneity, the 

5



processing of an FGM surface with elastic gradation in lateral direction can also be 

suggested. In order to study the effect of the material nonhomogeneity, a contact 

mechanics model as shown in Figure 1 is considered. As can be seen in the Figure, 

the forces transferred by the contact are P  and Pη , where η  is the coefficient of 

friction. An FGM half – plane is in sliding contact with a rigid circular indentor. We 

assume that Coulomb’s friction model applies to our case, and tangential force 

transferred by the contact is sufficiently large and is equal to friction coefficient 

multiplied by the normal force P. In this model, shear modulus is assumed to vary 

exponentially in lateral direction. The graded surface is assumed to be isotropic, 

hence shear modulus variation is mathematically expressed as, ( ) ( )yy γµµ exp0= . 

This type of exponential variation is used in most of the analytical and 

computational studies related to the fracture and contact mechanics of FGMs [23]. 

In this equation 0µ  is the shear modulus at 0=y and γ is a nonhomogeneity 

constant which has a unit of 1/length and which can be used for curve – fit 

purposes. Partial differential equations resulting from this type of variation in shear 

modulus proved to be tractable [23-25]. Poisson’s ratio, on the other hand is 

assumed to have a constant value. This is another assumption whose validity is 

verified by almost all the studies in the literature. The main unknown in this 

problem is the contact stress distribution at the contact surface between and 

 The material is assumed to be under a condition of plane stress or plane 

strain. 

ay =

.by =

                          

         P 

 

     ηP             y R 

                      a b 
                                                                       

c 

         x  FGM 

 

 

Figure 1: Contact mechanics model for a laterally nonhomogeneous FGM surface 
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This problem can be categorized as a mixed boundary value problem in 

mechanics. A convenient technique of solution of these types of problems is to 

formulate them using singular integral equations. The integral equations can be 

solved using the properties of orthogonal polynomials. The theory of singular 

integral equations applied to the mixed boundary value problems in mechanics is 

laid down by Erdoğan [29]. The solution technique developed in this study is 

mainly based upon the methods in given in [29]. Also, we note that the solution 

methods developed in this study can be used for any type of stamp profile. The 

stamp profile that can be considered is not necessarily confined to a circular shape 

as shown in Figure 1. 

In Chapter 2, the sliding contact problem for the laterally nonhomogeneous 

medium is formulated using Fourier Transformations and the problem is reduced to 

a singular integral equation. Normal contact stress is used as the unknown function 

in the formulation of the problem. In Chapter 3, the singular behavior of the 

unknown function at the end points of its domain of definition is taken into account 

and bounded part of the function is expanded into a series of Jacobi polynomials. 

The problem is then solved numerically using a collocation technique. A computer 

program is developed using Visual Fortran 90 language to implement the developed 

numerical solution technique. In the numerical solution, flat – ended, triangular and 

circular stamp profiles are considered. Numerical results are presented in Chapter 4. 

Some of the numerical results obtained in this study are compared to the results 

obtained by a finite element model of the same problem which are provided by 

Yıldırım [30]. A good agreement is observed between the results computed using 

the semi – analytical technique developed in this study and the results obtained 

using the finite element model. The discussion of the results and the suggestions for 

future work are given in Chapter 5. 
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CHAPTER II 
 
 

FORMULATION 
 
 
 

The contact problem for a non-homogeneous half-plane considered in this study 

is described in Figure 2. The half plane is in sliding contact with a rigid stamp of 

arbitrary profile. The normal and tangential forces transferred by the contact are P 

and ηP, respectively where η is the coefficient of friction and contact area extends 

from y=a to y=b.  

 

          P 

  

  

  ηP            

 

a        b         y 

 

 

        x           FGM     
 

 

 

 

Figure 2: The general description of the contact problem in a graded medium. 

 

In this study, we will formulate the problem and reduce it to a singular integral 

equation. Solving the integral equation numerically, we will examine the effects of 

8



material non-homogeneity and friction on contact stresses and singularities at the 

ends of the contact region. It will be assumed that the elastic parameters of the 

graded medium may be approximated by; 

 
yey γµµ 0)( =  ,  κ = constant     (1a,b) 

where µ is the shear modulus , γ is the non-homogeneity parameter, κ =3-4ν for 

plane strain and κ = (3-ν) / (1+ν) for generalized plane stress, ν being the Poisson’s 

ratio. Equations of equilibrium can be written in the following form:  

 

0=
∂
∂

+
∂
∂

xy
xyyy σσ

        (2a) 

0=
∂
∂

+
∂
∂

yx
xyxx σσ         (2b)            

 

Assuming plane stress or plane strain and small deformations for the isotropic linear 

elastic medium considered,  Hooke’s law becomes: 
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Substituting  equations (3)  in (2); governing equations for the displacements can be 

obtained as follows, 
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In the previous studies [23], it was shown that the contact stresses in graded 

materials are not significantly influenced by the variation in ν. Therefore in this 

study the Poisson’s ratio will be assumed to be constant. Considering Figure 2, the 

following boundary conditions must be satisfied in the solution of the problem. 

 

0),0( =yxxσ  ,               0),0( =yxyσ     ,    -∞ < y < a ,   b < y < ∞  (5a,b) 

)(),0( yfyxy ησ = , )(),0( yfyxx =σ  ,     a < y < b   (6a,b) 

Py
b

a
xx −=∫ ),0(σ  ( equilibrium equation )    (7) 

 

where η is the coefficient of friction for sliding contact. Considering Fourier 

Transformation in y-direction, u and v can be represented in the following form, 

 

ρρρ
π
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2
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∞
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ρρρ
π

dyixVyxv )exp(),(
2
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∞
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=       (8b) 

 

where 1−=i  and ),( ρxU and ),( ρxV are Fourier transforms of u(x,y) and v(x,y) 

in y, respectively. Substituting 8a, 8b in 4a, 4b, following ordinary differential 

equations are obtained, 
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Assuming  a solution of the form exp(sx), we obtain the characteristic equation, 
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The roots of the characteristic equation are, 
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After solving the equations (9a,b), the displacement components u and v can be 

written as: 
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where Mj are unknown functions of ρ  and, 
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Note that only the roots whose real parts are less than zero are used in the 

solution. Using Hooke’s Law, stresses and the displacement derivative can be 

written as follows; 
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Using the boundary conditions given by equations (5),(6) and (14), we can write; 
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After taking Fourier Transforms of both sides, we obtain the following equation 

system to determine the unknown constants, 
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So, ( )ρjM , ( )2,1=j  can be expressed as, 
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Here, the functions ( )ρφ j  and ( )ρϕ j , ( )2,1=j  can be easily determined using a 

symbolic manipulator. Stresses and displacement derivative for the stamp loading 

can now be obtained using equations (14), (16) and (18).Substituting (18) in (14d), 

normal displacement derivative can be written as: 
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Now, we define two functions H11(ρ,x) and H12(ρ,x) as: 
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So, du/dy becomes; 
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In the numerical solution, it will be easier to deal with (0,∞) integrals instead of the 

(-∞,∞) integrals. Here, we convert the (-∞,∞) integrals to (0, ∞) integrals as follows: 
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We rename some of the terms in these equations as; 
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Therefore, du/dy takes the following form; 
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It is well known that [23] in order to extract the singular terms, asymptotic 

analyses of the functions    and  are required as ,11K ,12K 13K 14K ∞→ρ . By using 

the symbolic manipulator MAPLE it can be shown that, 
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Using this result, asymptotic expressions for the mentioned functions can be 

written as, 
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Now, in order to complete the asymptotic analyses the terms preceding the 

exponential term can be expanded into Taylor series as ∞→ρ . Using MAPLE, 

following results are obtained for the asymptotic expansions, 
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−−−+−

2

2347

1128
2164511149826

κ
κκκκγ     (27e) 

 

)exp(... 7
8

3
4

2
32

112 x
bbbb

bK ρ
ρρρρ

−
⎭
⎬
⎫

⎩
⎨
⎧

+++++=∞     (28) 

where; 
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08642 ==== bbbb         (29a) 

2
1

1
+

=
κb          (29b) 

4
)624( 232

3
++−

−=
κκκγb       (29c) 

)1(16
)263015485( 234564

5 +
++−−+−

=
κ

κκκκκκγb     (29d) 

⎜⎜
⎝

⎛
+

−−+−
−= 2

567896

7 )1(64
)126126(

κ
κκκκκγb   

+ ( )
( ) ⎟⎟

⎠

⎞

+
+++−

2

2346

164
105221535618

κ
κκκκγ      (29e)  

 

)exp(... 7
8

3
4

2
32

113 x
cccc

cK ρ
ρρρρ

−
⎭
⎬
⎫

⎩
⎨
⎧

+++++=∞     (30) 

where; 

08642 ==== cccc         (31a) 

2
1

1
κ−

=c          (31b) 

4
)12( 232

3
−−

=
κκγc        (31c) 

16
)43464( 23454

5
−−−+−

−=
κκκκκγc      (31d) 

64
)161561520156( 2345676

7
−−−+−+−

=
κκκκκκκγc    (31e) 

 

)exp(... 7
8

3
4

2
32

114 x
dddd

dK ρ
ρρρρ

−
⎭
⎬
⎫

⎩
⎨
⎧

+++++=∞     (32) 

where; 

07531 ==== dddd        (33a) 

4
)231( 2

2
κκγ +−−

−=d        (33b) 
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8
)2333( 2343

4
−−+−

=
κκκκγd       (33c) 

32
)89510105( 234565

6
−−+−+−

−=
κκκκκκγd     (33d) 

128
)32337213535217( 23456787

8
−−+−+−+−

=
κκκκκκκκγd   (33e) 

 

By subtracting and adding the first terms of the asymptotic expansions, we can 

determine the dominant singular terms, 

 

⎢
⎣

⎡
−

⎩
⎨
⎧

−=
∂
∂

∫∫
∞

0
11

0

)(cos(),(
2
1)exp()(1 ρρρ
π

γ
µ

dtyxKdtttf
y
u b

a

 

+  ⎥
⎦

⎤
−−+−−− ∫∫

∞∞

0
11

0
12 ))(sin)exp())(sin())exp(),(( ρρρρρρρ dtyxbdtyxbxK

+ ⎢
⎣

⎡
−−−− ∫∫

∞

0
113 )(cos())exp(),((

2
1)exp()( ρρρρ
π

γη dtyxcxKdtttf
b

a

 

+   (34) 
⎪⎭

⎪
⎬
⎫
⎥
⎦

⎤
−+−−∫ ∫

∞ ∞

0 0
141 ))(sin(),())(cos()exp( ρρρρρρ dtyxKdtyxc

 

The integrals that occur after adding the leading terms can be evaluated in closed 

form using the equations given below, 

 

∫
∞

−+
=−−

0
22 )(

))(cos()exp(
tyx

xdtyx ρρρ      (35a) 

∫
∞

−+
−

=−−
0

22 )(
))(sin()exp(

tyx
tydtyx ρρρ      (35b) 

 

Now, we make following definitions, 

)exp()()(1 ttftP γ−=         (36) 

)exp()()(1 ttftQ γη −=        (37) 
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Substituting in (34), and taking the limit as x→0, we get: 

 

∫ ∫∫ ⎜⎜
⎝

⎛
−

⎩
⎨
⎧

+
−

+
=

∂
∂ ∞b

a

b

a

dtyKdttPdt
ty

tP
y

yu

0
111

1

0

))(cos()0,()(
)(

)(
2

1
2

1),0( ρρρκ
πµ

 

+   ⎟⎟
⎠

⎞
−−∫

∞

ρρρ dtybK ))(sin())0,(( 1
0

12

- ∫ ∫⎜⎜
⎝

⎛
−−+

− ∞b

a

dtycKdttQyQ
0

11311 )(cos())0,(()()(
2

1 ρρρπκ   

+       (38) 
⎪⎭

⎪
⎬
⎫
⎟⎟
⎠

⎞
−∫

∞

ρρρ dtyK ))(sin()0,(
0

14

 

Multiplying both sides of equation (38) by (4µ0 / κ+1),we obtain the standard form 

for the displacement derivative: 

 

∫ ⎟
⎠
⎞

⎜
⎝
⎛

+
−

−
−

=
∂

∂
⎟
⎠
⎞

⎜
⎝
⎛

+

b

a

yQdt
ty

tP
y

yu )(
1
1

)(
)(1),0(

1
4

1
10

κ
κ

πκ
µ

 

+ 

∫ ∫ ∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

∞ ∞b

a

dtybKdtyKdttP
0 0

112111 ))(sin())0,(())(cos()0,(
)1(

2)( ρρρρρρ
κπ

 

+ ⎜⎜
⎝

⎛
−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+ ∫∫

∞

0
1131 ))(cos())0,((

)1(
2)( ρρρ
κπ

dtycKdttQ
b

a

 

+       (39) ⎟⎟
⎠

⎞
−∫

∞

0
14 ))(sin()0,(( ρρρ dtyK

 

Note that, we have the Cauchy singularity and the free term in equation (39). 

Remaining terms exist because of the elastic gradation. Now, we rename some 

terms in equation (39) as, 

),())(cos()0,( 11
0

11 tyhdtyK =−∫
∞

ρρρ      (40a) 
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),())(sin())0,(( 12
0

112 tyhdtybK =−−∫
∞

ρρρ      (40b) 

),())(cos())0,(( 13
0

113 tyhdtycK =−−∫
∞

ρρρ      (40c) 

),())(sin()0,(( 14
0

14 tyhdtyK =−∫
∞

ρρρ      (40d) 

 

In the computations, Gauss-Legendre quadrature and integration cut-off points 

are used to evaluate the functions ( ),,11 tyh  ( ),,12 tyh  ( )tyh ,13  and Using 

integration cut-off points these terms can be rearranged to give: 

( ).,14 tyh

 

∫ ∫
∞

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−+−=

11

110
7
82

111111 ))(cos(...)0,())(cos()0,(),(
A

A

dty
aa

KdtyKtyh ρρ
ρρ

ρρρρ

 

+ ∫
∞

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++

11

))(cos(... 7
8

2
32

A

dty
aaa

ρρ
ρρρ

     (41a) 

∫ −−=
12

0
11212 ))(sin())0,((),(

A

dtybKtyh ρρρ +

∫∫
∞∞

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−−−

1212

))(sin(...))(sin(...)0,( 7
82

7
82

112
AA

dty
bb

dty
bb

bK ρρ
ρρ

ρρ
ρρ

ρ  

          (41b) 

∫ −−=
13

0
11313 ))(cos())0,((),(

A

dtycKtyh ρρρ +

∫∫
∞∞

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−−−

1313

))(cos(...))(cos(...)0,( 7
82

7
82

113
AA

dty
cc

dty
cc

cK ρρ
ρρ

ρρ
ρρ

ρ  

          (41c) 

∫ ∫
∞

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−+−=

14

140
7
82

141414 ))(sin(...)0,())(sin()0,(),(
A

A

dty
dd

KdtyKtyh ρρ
ρρ

ρρρρ  

+ ∫
∞

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++

14

))(sin(... 7
8

2
32

A

dty
ddd

ρρ
ρρρ

     (41d) 
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In these equations,  ,1iA ( )4,..,1=i  are integration cut-off points. A sufficiently 

large value for these numbers have to be used in order to calculate the integrals 

accurately. The second terms on the right hand sides of the equations (41a-d) are 

going to be neglected in the numerical computations. Again, for sufficiently large 

values of these terms tend to zero. The third terms can be evaluated in closed 

form. The expressions used in the evaluation of these terms are given in Appendix 

A.Finally, normal displacement derivative can be written as: 

,1iA

 

∫ ⎟
⎠
⎞

⎜
⎝
⎛

+
−

−
−

=
∂

∂
⎟
⎠
⎞

⎜
⎝
⎛

+

b

a

yQdt
ty

tP
y

yu )(
1
1

)(
)(1),0(

1
4

1
10

κ
κ

πκ
µ

 

+ [ ] [
⎭
⎬
⎫

⎩
⎨
⎧

+++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+ ∫ ∫

b

a

b

a

dttyhtyhtQdttyhtyhtP ),(),()(),(),()(
)1(

2
1413112111κπ

]  (42) 

 

2.1.Normalization 
 
 

The expression given above by equation (42) can be normalized. With the 

normalized form, parametric analyses can be more easily done. The interval of 

integration can be normalized by defining: 

 

2
)(

2
)( absaby +

+
−

=        (43a) 

2
)(

2
)( abrabt +

+
−

=         (43b) 

 

Normalized unknown functions are defined as: 

 

)(
2

)(
2

)()( 111 sPabsabPyP
)

=⎟
⎠
⎞

⎜
⎝
⎛ +

+
−

=      (44a) 

)(
2

)(
2

)()( 111 sQabsabQyQ
)

=⎟
⎠
⎞

⎜
⎝
⎛ +

+
−

=      (44b) 
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Substituting (43) and (44) in (42), and defining a normalized non-homogeneity 

parameter γ* as: 

 

)(* ab −= γγ ,         (45) 

 

the normalized form of equation (42) is obtained as: 

 

)(
1
1)(1),0(

1
4

1

1

1

10 sQdr
rs
rP

y
yu )

)

⎟
⎠
⎞

⎜
⎝
⎛

+
−

−
−

=
∂

∂
⎟
⎠
⎞

⎜
⎝
⎛

+ ∫
− κ

κ
πκ

µ
 

+ [ ] [
⎭
⎬
⎫

⎩
⎨
⎧

+++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+ ∫ ∫

− −

drrshrshrQdrrshrshrP
1

1

14
*

13
*

1

1
112

*
11

*
1

*

),(),()(),(),()(
)1(

))))))

κπ
γ ]  

          (46) 

 

In equation (46), it is interesting to note that when ,0=γ the additional term due 

to material grading disappears and the expression for a homogeneous half-plane is 

recovered. The terms ),(1 rsh i
∗
)

, ( )4,,1 Κ=i   are also in normalized form. In the 

normalization of these terms,we use the transformation, 

 

γαρ = .         (47) 

 

Depending on  the sign of  γ ,  normalized forms of these terms are given below.  

For  γ > 0, we have, 

 

∫ −=
11*

0

*

1111
* ))(

2
cos()0,(),(

A

drsKrsh αγαγα
)

 

αγα
ααα

drs
aaa

A

))(
2

cos(...
*

7

*
8

2

*
3

*

*
2

11

−⎟⎟
⎠

⎞
+++⎜⎜

⎝

⎛
+ ∫

∞

    (48a) 
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∫ −−=
12*

0

*

11212
* ))(

2
sin())0,((),(

A

drsbKrsh αγαγα
)

 

αγα
ααα

drs
bbb

A

))(
2

sin(...
*

7

*
8

2

*
3

*

*
2

12

−⎟⎟
⎠

⎞
+++⎜⎜

⎝

⎛
+ ∫

∞

     (48b) 

 

∫ −−=
13*

0

*

11313
* ))(

2
cos())0,((),(

A

drscKrsh αγαγα
)

 

αγα
ααα

drs
ccc

A

))(
2

cos(...
*

7

*
8

2

*
3

*

*
2

13

−⎟⎟
⎠

⎞
+++⎜⎜

⎝

⎛
+ ∫

∞

    (48c) 

 

∫ −=
14*

0

*

1414
* ))(

2
sin()0,(),(

A

drsKrsh αγαγα
)

 

αγα
ααα

drs
ddd

A

))(
2

sin(...
*

7

*
8

2

*
3

*

*
2

14

−⎟⎟
⎠

⎞
+++⎜⎜

⎝

⎛
+ ∫

∞

    (48d) 

 

Note that negligibly small terms are omitted. For 0<γ , the integration cut-off 

points become negative (see the transformation (47)). In this case, the normalized 

forms of the terms ( ),,1 rsh i
∗
)

 ( )4,,1 Κ=i  are appropriately modified and are given 

below: 

 

∫ −−=
11*

0

*

1111
* ))(

2
cos()0,(),(

A

drsKrsh αγαγα
)

 

αγα
ααα

drs
aaa

A

))(
2

cos(...
*

7

*
8

2

*
3

*

*
2

11

−⎟⎟
⎠

⎞
+++⎜⎜

⎝

⎛
+ ∫

∞

    (48e) 

 

∫ −−−=
12*

0

*

11212
* ))(

2
sin())0,((),(

A

drsbKrsh αγαγα
)

 

αγα
ααα

drs
bbb

A

))(
2

sin(...
*

7

*
8

2

*
3

*

*
2

12

−⎟⎟
⎠

⎞
+++⎜⎜

⎝

⎛
+ ∫

∞

     (48f) 
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∫ −−−=
13*

0

*

11313
* ))(

2
cos())0,((),(

A

drscKrsh αγαγα
)

 

αγα
ααα

drs
ccc

A

))(
2

cos(...
*

7

*
8

2

*
3

*

*
2

13

−⎟⎟
⎠

⎞
+++⎜⎜

⎝

⎛
− ∫

∞

    (48g) 

 

∫ −−=
14*

0

*

1414
* ))(

2
sin()0,(),(

A

drsKrsh αγαγα
)

 

αγα
ααα

drs
ddd

A

))(
2

sin(...
*

7

*
8

2

*
3

*

*
2

14

−⎟⎟
⎠

⎞
+++⎜⎜

⎝

⎛
− ∫

∞

    (48h) 

 

In equations (48), the constants A*
1i (i=1,..,4) are positive. The constants of the 

asymptotic expansions take the form: 

 

γ
2*

2
a

a = , 2
3*

3 γ
a

a = , … , 7
8*

8 γ
a

a =       (49a) 

γ
2*

2
b

b = , 2
3*

3 γ
b

b = , … , 7
8*

8 γ
b

b =       (49b) 

γ
2*

2
c

c = , 2
3*

3 γ
c

c = , … , 7
8*

8 γ
c

c =       (49c) 

γ
2*

2
d

d = , 2
3*

3 γ
d

d = , … , 7
8*

8 γ
d

d =       (49d) 

 

Note that in all the constants given above, γ dependence is eliminated by 

normalization. As for the equilibrium equation, substituting (36) in (7), we get: 

 

∫ −=
b

a

PdyyyP )exp()(1 γ        (50) 

At this point, we define another non-homogeneity parameter, 

 

)(** ab += γγ          (51) 
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When we use equations (43a), (44a), (45) and (51), we obtain the final form of the 

normalized equilibrium equation: 

 

∫
− −

−
=⎟

⎠
⎞

⎜
⎝
⎛ +

1

1

***
1

2)(
2
1exp)(

ab
PdsssP γγ

)
      (52) 

 

This compeletes the formulation of the sliding contact problem for a graded 

half–plane with elastic gradation in lateral direction. Equations (46) and (52) can be 

used to solve the problem for any type of stamp profile. Before proceeding with the 

numerical solution of the contact problem, we want to note that, after normalization 

the required parameters for the solution of the problem are: 

, and the profile of the stamp. In this study, we are mainly 

interested in the effect of the non-homogeneity parameters  and on the 

contact stress distribution at the surface. Note that, the first parameter is related to 

the size of the contact area while the second one is related to the location of the 

stamp. In Chapter 3, we will give the details of the numerical solution techniques 

for the flat, triangular and circular stamp problems. The numerical solution is based 

on a numerical collocation technique where the unknown contact stress is 

approximated by using a series expansion of Jacobi polynomials. 

( ) κηγγγγ  , , and or   , *** ba
*γ **γ
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CHAPTER III 
 

 
NUMERICAL SOLUTION 

 
 
 
3.1.Flat Stamp Problem 
 
 
The geometry of the flat stamp problem is shown in Figure 3. 
 

      P 

 

 

  ηP 

          y 

       a               b 

 

    FGM 

   x 

 

 

 

Figure 3: The general description of the contact problem for flat stamp  

 

For the flat stamp, displacement derivative in the contact area is constant. So, we 

can write:  

 

0),0(
=

∂
∂

y
yu ,    a<y<b      (53) 
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We now normalize the function )(1 sP
)

 by )/( abP −  and define )(1 sP  as: 

 

)/(
)()( 1

1 abP
sPsP
−

=
)

        (54) 

 

Substituting equation (54) in (46), we have: 

 

)(
1
1)(1

1

1

1

1 sPdr
rs
rP

η
κ
κ

π
⎟
⎠
⎞

⎜
⎝
⎛

+
−

−
−∫

−

 

+ [ ] [ ]
⎭
⎬
⎫

⎩
⎨
⎧

+++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+ ∫ ∫

− −

drrshrshrPdrrshrshrP
1

1

14
*

13
*

1

1
112

*
11

*
1

*

),(),()(),(),()(
)1(

))))
η

κπ
γ = 0  

     -1<s<1     (55) 

 

Note that (55) is a singular integral equation for the unknown function 

)(1 sP .Substituting (54) in (52), equilibrium equation becomes: 

 

∫
−

−=⎟
⎠
⎞

⎜
⎝
⎛ +

1

1

***
1 2)(

2
1exp)( dsssP γγ       (56) 

 

There are standard solution methods to solve the equations (55) and (56). A 

detailed description of the solution techniques using series expansion and 

collocation approaches can be found in Erdoğan [29]. It is known that, for the flat 

stamp, the stress ),0( yxxσ  is singular at the end points of the contact region. In this 

study, the singular terms obtained for the integral equation (55) are same as those 

obtained for the homogeneous problem [23]. Hence, the singular behavior of the 

stresses are exactly the same as those for the homogeneous medium. A material 

property grading in lateral direction does not effect the singular behavior of the 

stresses at the ends of the contact region.  
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The normalized stress is now expressed in the following form: 

 

( ) ⎟
⎠

⎞
⎜
⎝

⎛
= ∑

∞

=0

2,1
11 )()()(

n
nn rPArWrP ββ       (57) 

 

where,  are unknown constants and nA ( )2,1 ββ
nP are Jacobi polynomials. Other 

functions and variables are given as: 
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1 )1()1()( ββ rrrW +−=        (58) 

1
1)cot( 1 +

−
−=

κ
κηπβ         (59a) 

1
1)cot( 2 +

−
=

κ
κηπβ         (59b) 

121 −=+ ββ  , -1<β1<0  ,  -1<β2<0    (60) 

 

In the aforementioned equations (57) – (60), the bounded part of the unknown 

function is expanded into an infinite series of Jacobi polynomials and are the 

unknown constants. The variables, 

nA

1β and 2β  are the strengths of the singularity at 

the ends of the contact region for the flat stamp. Using complex function theory, it 

is possible to derive the equations given by (59). For more details on the derivation 

of these equations, the reader may refer to Dağ [23]. However, it is interesting to 

note that the sum of  1β and 2β  is equal to .1− Substituting (57) in (55), we get: 
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drrshrshrPArW
n

nn

))ββ

κπ
γ  

+ = 0 ,  -1< s <1 (61) ( ) [ ⎟⎟
⎠

⎞
+⎟

⎠

⎞
⎜
⎝

⎛
∫ ∑
−

∞

=

1

1

14
*

13
*

0

2,1
1 ),(),()()( drrshrshrPArW

n
nn

))ββη ]

 

27



Now we rearrange equation (61) to get a more useful form, 
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The first integral in equation (62) can be evaluated in closed form using the 

following identity: 
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where ( ).βαχ +−= Note that for this equation to be valid χ  has to be equal to 1, -

1 or 0 which is the case for all the contact mechanics problems considered in this 

study. Substituting (63) in (62), we get: 
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Now we define two new functions as: 
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Then, equation (64)is written as: 
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Again, we rename the two terms of the equation (66): 
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To find the final form of the normalized equilibrium equation, we substitute 

equation (57) in (56): 
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⎞

⎜
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nn dsssPAsW γγββ     (68) 

 

We rename the term in equation (68) as: 
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2
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When we use equations (67a,b) in (66) and  (69) in (68), we finally obtain the 

following normalized linear equation system: 
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N

n
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∑
=

−=
N

n
nnmA

0
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Note that, the linear equation system is truncated at .Nn =  These functional 

equations can be solved by using collocation points for equation (70a). In this study, 

the collocation points for (70a) are selected as the roots of the Chebyshev 

polynomials as: 

 

( ) .1      ,12cos Ni
N
isi Κ=⎟

⎠
⎞

⎜
⎝
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=
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Now collocating equation (70a) at N points using (71) and also using (70b) we 

have equations for 1+N 1+N unknowns which are , nA ( )Nn Κ0= . A computer 

program is written using Visual Fortran 90 language, to solve the equation system 

and to calculate the normalized contact stress distribution )(1 sP  for .11 <<− s  

Detailed parametric analyses are given in Chapter 4. 

 

3.2.Closed Form Solution Of The Contact Mechanics Problem For 

The Homogeneous Half-plane (Flat Stamp) 

 
In the previous section, a numerical solution method is developed to solve the 

frictional contact problem for the graded medium. In this section, we will obtain the 

closed form solution for the contact stress distribution on the surface of the 

homogeneous half-plane. The results obtained in this section are going to be used in 

Chapter 4 for comparison purposes. We assume that the problem definition is same 

as that given in Section 3.1, except that we now consider a homogeneous half-plane. 

In this case we have,  

.0*** === γγγ         (72) 
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So the governing equations of the problem reduce to: 
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Again we assume a solution of the form: 
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where 1β and 2β  are given by equation (59). Now substituting (74) in (73a) and 

integrating in closed form using equation (63), we obtain: 
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This equation can be satisfied only if, 

0321 ===== nAAAA Κ        (76) 

 

The only nonzero constant in the expansion is , hence the normalized contact 

stress takes the form,  

0A

( ) ( ) ( ) 21 1101
ββ ssAsP +−=        (77) 

  
The constant can be determined by substituting (77) in equation (73b), 0A

( ) ( )∫
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1
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The integral can be evaluated in closed form using the expressions given in [29] and 

is determined as,  0A

 

( )
π
πβ2

0
sin2

=A         (79) 

 

Finally normalized contact stress distribution for the homogeneous half – plane is 

expressed as, 

 
 

( ) ( ) ( ) ( ) 11      ,11sin2 212
1 <<−+−= ssssP ββ

π
πβ     (80) 

 

Note that 2β  is negative, hence the normalized contact stress is also negative at 

every point in the contact region. This is an expected result, since the contact 

stresses are always compressive. 

 

3.3.Triangular Stamp Problem 
 

             P 

 

 

 

                     ηP                       y 
 

      a       θ    b      

             

 

     x  FGM 

 

 

 

Figure 4: The general description of the contact problem for the triangular stamp. 
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The geometry of the triangular stamp problem is shown in Figure 4. In this case, 

the stamp has a constant slope of ( ) m=θtan  in the contact region. The normal 

displacement decreases as y increases in the contact region, hence displacement 

derivative can be written as: 

 

myu
y

−=−=
∂
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Substituting equation (81) in  (46) we have:  
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We divide both sides by µ0m and let: 
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Now, equation (82) becomes, 
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Also, by substituting equation (83a) in (56): 
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Normalized contact stress is expressed as: 
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In this case, strengths of the singurity are given as: 
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Note that the contact at 1=s  is smooth, hence at this point the exponent is 

positive and the contact stress is zero. At the other end however there is a sharp 

corner. Consequently,  the exponent at this point is negative and the contact stress 

tends to infinity. Also, note that .021 =+ ββ  The derivation of the equations (87) 

using complex function theory can be found in the reference [23]. Substituting 

equation (86) in (84) and evaluating the Cauchy Principal Value Integral in closed 

form, using equation (63) we find: 
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where Z1n and Z2n are given by equation (65). We now make the following 

definitions: 

 

)(
)sin(

1)( )2,1(

1
1 sPsq nn

ββ

πβ
−−=       (89a) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

= ∫ ∫
− −

1

1

1

1
21

*

2 ),(),(
)1(

)( drrsZdrrsZsq nnn κπ
γ     (89b) 

 

Truncating the infinite series at N, the singular integral equation can now be 

expressed as: 
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Substituting (86) in (56), we can obtain the equilibrium equation: 
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We define  as:  nq3
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So, the equilibrium equation takes the final form as: 
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µ
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Equations (90) and (93) can be used to solve the contact mechanics problem for 

the triangular stamp. But, in this case the solution approach is going to be slightly 

different. Technically, triangular stamp problem is defined as an incomplete contact 
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mechanics problem where the size of the contact region is a function of the applied 

force. So, in the numerical solution first, the contact stresses will be computed using 

equation (90) with collocation points. Then, the computed contact stress 

distribution will be substituted in equation (93) to calculate the required normalized 

force. In the triangular stamp problem, for each data set contact stress distribution 

and required contact force will be the outputs of the numerical analysis. The 

collocation points for equation (90) are again selected as the following roots of the 

Chebyshev polynomials, 

1+N
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N

isi Κ
π       (94) 

 

Note that equation (94) gives us 1+N equations for 1+N unknowns, namely 

, ( )  nA .0 Nn Κ=

 

3.4.Closed Form Solution of the Contact Mechanics Problem for 

the Homogeneous Half - Plane (Triangular Stamp) 
 

In section 3.3 we laid down the numerical procedure for the solution of the 

triangular stamp problem for the laterally graded medium. Now, we will derive the 

closed form expressions for the contact stresses and contact force assuming that the 

contact is between the triangular stamp and the homogeneous half–plane. The 

nonhomogeneity constant is zero for the homogeneous half–plane, i.e., 
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Then, the governing equations can be written as: 
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Again we assume a solution of the form: 
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where 1β and 2β  are given by equation (87). Now substituting (97) in (96a) and 

integrating in closed form using equation (63), we obtain: 
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We can also write this equation in the following form: 
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Note that, ( ) .121,
0 =−− ββP  Equating the coefficients of the polynomials on both sides, 

we get, 

021 ==== nAAA Κ        (100a) 
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Hence, normalized contact stress distribution can be written as, 

 

( ) ( ) ( ) 21 1101
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Substituting (101) in (96b) and evaluating the integral in closed form using the 

expression given in [29], normalized contact force is determined as: 

 

( ) 1
4 2

0 +
−=

− κ
πβ

µ abm
P         (102) 

 

Note that 2β is negative and 1β is positive. Hence, the normalized force given by 

equation (102) is positive and the contact stress given given by equation (101) is 

negative, which are as expected. 

 

3.5. Circular Stamp Problem 
 

3.5.1. Geometry of the circular stamp 

 

 

 

       θ  

          R     
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   a        b     δ  

         c 

 

       x 

 

Figure 5: Geometry of the circular stamp 

 

The geometry for a circular stamp is shown in Figure 5. The radius of the stamp 

is assumed to be equal to R and the centerline of the stamp passes through point 

. cy = δ  is the rigid body displacement given to the stamp in x – direction. The 

normal displacement in the contact area can now be written as, 
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( ) ( )( )( ) ,    ,cos1,0 byayRyu <<−−= θδ      (103) 

 

where θ  is the angle measured from the axis of symmetry. At this point we make 

an assumption regarding the geometry of the contact. We assume that, the length of 

the contact  is much smaller than the radius of the circular stamp, R, i.e.,  ( ab − )
( ) Rab <<− .         (104) 

 

Given this assumption, the term ( )θcos  can be approximated by retaining the first 

two terms of its Taylor series expansion: 
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Substituting (105) in (103) we have, 
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Again, since θ  is assumed to be sufficiently small, it can be expressed as, 
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R
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Substituting (107) in (106), normal displacement in the contact area is obtained as, 
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Now, we can easily determine the normal displacement derivative as: 
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Equation (109) has to be used as an input to the right hand side of the singular 

integral equation in the numerical solution. 
 

3.5.2. Numerical Solution 
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Figure 6: The general description of the contact problem for the circular stamp. 

 

The geometry of the contact problem for the circular stamp is shown in Figure 6. 

First by substituting equation (107) in equation (46) singular integral equation for 

the circular stamp problem can be written as, 
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We now divide both sides by 0µ  and and let: 
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Also by substituting (111a) in (56) equilibrium condition is expressed as: 
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Now, we express the normalized contact stress using a series expansion of the 

Jacobi polynomials, 
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In this case the exponents are given as: 
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1
1cot 2 +

−
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κ
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Note that at both ends the contact is smooth, hence contact stress tends to zero at 

these points. Consequently, there is no singularity and both of the exponents 1β and 

2β  are greater than zero. Also, we notice that .121 =+ ββ  The details of the 

derivation of equations (114) using complex function theory can be found in [23]. 

Substituting equation (113) in (110) and evaluating the Cauchy Principal Value 

Integral in closed form using equation (63), we find: 
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where  and are given by equation (65). We now make the following 

definitions: 
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Singular integral equation for the circular stamp problem can now be expressed as: 
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Now, we will express the right hand hand side of this equation in terms of the 

Jacobi polynomials. Jacobi polynomial of the first order can be written as: 
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Note that equation (118) is valid only if .121 =+ ββ  Solving for s in terms of the 

first order Jacobi polynomial and then substituting in (117) we have: 
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In the circular stamp problem, the variables a, b and c are not independent. Only 

two of these parameters can be independently specified. In order to determine the 

relationship between a, b and c we first multiply both sides of equation (119) by 

and then integrate them from ( ) ( ) 21 11 ββ −− +− ss 1−=s  to Applying this 

procedure we obtain the following equation: 
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In order to be able to deal with the integrals given in equation (120), we can 

make use of the integral identities given in Erdoğan [29]. Using these identities we 

can say that the first integral on the left hand side and the second integral on the 

right hand side are equal to zero. The first integral on the right hand side of (120) 

can be determined in closed form using the following identity: 
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Then, equation (121) is reduced to: 
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So, the relationship between a, b and c is expressed as: 
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Note that given a and b, c can be calculated using equation (123) if the contact 

stress distribution is known. We can substitute equation (123) in equation (119) to 

eliminate c dependence in the singular integral equation. Doing so integral equation 

is reduced to the following form: 
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In this equation the infinite series expansions are truncated at Nn =  and  is 

given as: 

nM
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Equation (125) involves double integrals in s and these double integrals will 

significantly increase the computation time compared to the flat and triangular 

stamp problems. Rc can be expressed in terms of Ra and Rb using equation 

(123) as: 
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The final equation that has to be considered in the solution of the circular stamp 

problem is the equilibrium equation. Substituting (113) in (112), this equation is 

obtained as: 
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where is given in the following form: nm3
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The solution approach to the circular stamp problem can now be summarized as 

follows. First, the geometric parameters,  , the nonhomogeneity 

constants  and , the friction coefficient 

,/ Ra Rb /
∗γ ∗∗γ η  and the Poisson’s ratio ν  will be 

specified. Then, the normalized contact stress distribution is going to be computed 

using equation (124) with 1+N collocation points. The collocation points are 

selected as the following roots of the Chebyshev polynomials: 
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Once the contact stress distribution is determined, the corresponding location of 

the centerline of the circular stamp will be calculated using equation (126) and the 

normalized contact force will be calculated using equation (127).  

 

3.6. Closed Form Solution of the Contact Mechanics Problem for 

the Homogeneous Half – Plane (Circular Stamp) 
 

In section 3.5., we laid down the numerical procedure for the solution of the 

circular stamp problem for the laterally graded medium. Now, we will derive the 

closed form expressions for the contact stresses and contact force assuming that the 

contact is between the circular stamp and the homogeneous half – plane. The 

nonhomogeneity constant is zero for the homogeneous half – plane, i.e.,  

0=== ∗∗∗ γγγ         (130) 
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Then, the governing equations can be written as: 
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Again, we assume a solution of the form: 
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where 1β  and 2β are given by equation (114). Substituting (132) in (131a) and 

integrating in closed form using equation (63), we obtain: 
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Right hand side of equation (133) can be expressed in terms of the Jacobi 

polynomials and then (133) reduces to: 
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Now, we multiply this equation by ( ) ( ) 21 11 ββ −− +− ss and integrate from 1−=s  

to Using the integral identities given in Erdoğan [29] following result is 

obtained: 
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Equation (135) gives the relationship between c, b and a. Now, the integral equation 

becomes: 
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Equating the coefficients of the Jacobi polynomials on both sides, we get, 
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Hence, normalized contact stress distribution can be written as 
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Substituting (138) in (131b) and evaluating the integral in closed form using the 

expression given in [29], normalized contact force is determined as: 
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Note that, for the homogeneous half-plane, contact force P, is a parabolic 

function of the size of the contact region (b-a). In order to implement the numerical 

methods developed in this chapter, a computer program is developed using Visual 

Fortran language. In the following chapter, we give detailed results of our 

parametric analyses of the contact mechanics problems considered in this study.  

 

 

 

48



 

 

 

CHAPTER IV 
 
 

RESULTS 
  

 

 

The numerical results obtained are presented in this chapter. In all the numerical 

results, κ  is assumed to be equal to 2. Since we are mainly interested in the effect 

of the nonhomogeneity constants on the contact stress distribution and also since the 

effect of the Poisson’s ratio is not very significant, we fixed the value of κ  as 2. 

This corresponds to a Poisson’s ratio of 0.25 if the problem is considered to be 

plane strain and to 0.33 if we have a situtation of plane stress. This chapter consists 

of four subsections. In section 4.1 we give the comparisons of the results for the 

graded medium with a very small nonhomogeneity constant to the results obtained 

by using the closed form solutions for the homogeneous half – plane. In section 4.2, 

our results are compared to the results obtained by a finite element model which are 

provided by [30]. Detailed parametric studies for flat, triangular and circular stamps 

are given in sections 4.3, 4.4 and 4.5, respectively. Further comments on the results 

provided in this section are given in Chapter 5. 

 

 

 

 

 

 

 

 

 49



4.1.Comparisons of the Results to  the Closed Form Solutions  
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Figure 7: Comparison of the contact stress distribution for various friction 

coefficients for the flat stamp. 

 

 

Table 1: Comparison of the results for the normalized force for the triangular 

stamp. 

  
Normalized Force (

)(0 abm
P
−µ

) 

η  Graded ( *γ =0.002) Closed form 

0 2.0944 2.0934 

0.2 2.1832 2.1821 

0.4 2.2711 2.2700 

0.8 2.4419 2.4405 
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Figure 8: Comparison of the contact stress distribution for various friction 

coefficients for the triangular stamp. 

 

 

Table 2: Comparison of the results for the normalized force for the circular stamp. 

(a/R = -0.05 , b/R = 0.05) 

  
Normalized Force (

)(0 ab
P
−µ

) 

η  Graded ( *γ =0.002) Closed form 

0 0.0524 0.0524 

0.4 0.0520 0.0520 

0.8 0.0509 0.0509 
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Table 3: Comparison of the results for the location of the centerline for the circular 

stamp. (a/R = -0.05 , b/R = 0.05) 

  Location of the centerline (c/R) 
η  Graded ( *γ =0.002) Closed form 

0 0 0 

0.4 0.00421 0.00422 

0.8 0.00828 0.00829 
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Figure 9: Comparison of the contact stress distribution for various friction 

coefficients for the circular stamp. (a/R = -0,05 , b/R = 0,05) 
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4.2.Comparisons to the FEA Results 
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Figure 10: Comparison of the contact stress distribution to FEA results [30] for 

different values of *γ  for flat stamp. ( 0,0** == ηγ ) 
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Figure 11: Comparison of the contact stress distribution to FEA results [30] for 

different values of *γ  for flat stamp. ( 4,0,0** == ηγ ) 
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Figure 12: Comparison of the contact stress distribution to FEA results [30] for 

different values of *γ  for triangular stamp. ( 0,0** == ηγ ) 

 

               s 

 

 

 

 

 

 

   
)/( abP

xx

−
σ

 

 

 

 

 

Figure 13: Comparison of the contact stress distribution to FEA results [30] for 

different values of *γ  for triangular stamp. ( 4,0,0** == ηγ ) 
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Figure 14: Comparison of the contact stress distribution to FEA results [30] for 

different values of *γ  for circular stamp. ( 0,0** == ηγ , a/R = -0,05 , b/R = 0,05) 
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Figure 15: Comparison of the contact stress distribution to FEA results [30] for 

different values of *γ  for circular stamp.( 2,0,0** == ηγ  , a/R = -0,05,b/R = 0,05) 
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Table 4: Normalized force values for the results  given in Figures 12 and 13. 

  
Normalized Force (

)(0 abm
P
−µ

) 

*γ  0=η  4.0=η  

0.5 1.784 1.920 

-0.5 2.712 2.778 

 

 

Table 5: Normalized force values for the results  given in Figures 14 and 15. 

  
Normalized Force (

)(0 ab
P
−µ

) 

*γ  0=η  2.0=η  

0.5 0.0539 0.0543 

-0.5 0.0539 0.0534 

 

 

Table 6:  c/R values for the results  given in Figures 14 and 15. 

  Location of the centerline (c/R) 

*γ  0=η  2.0=η  

0.5 -0.00355 -0.00177 

-0.5 0.00355 0.00526 
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4.3.Parametric Studies for the Flat Stamp 
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Figure 16: Normalized stress distribution for various values of the nonhomogeneity 

constant .* aa γ=  (η=0 and  bb γ=* =0) 
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Figure 17: Normalized stress distribution for various values of the nonhomogeneity 

constant .* aa γ=  (η=0,2 and bb γ=* =0)  
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Figure 18: Normalized stress distribution for various values of the nonhomogeneity 

constant .* aa γ=  (η= -0,2 and bb γ=* =0) 
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Figure 19: Normalized stress distribution for various values of the nonhomogeneity 

constant .* aa γ=  (η= 0,4 and bb γ=* =0) 
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Figure 20: Normalized stress distribution for various values of the nonhomogeneity 

constant .* aa γ=  (η= - 0,4 and bb γ=* =0) 
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Figure 21: Normalized stress distribution for various values of the nonhomogeneity 

constant .* aa γ=  (η= 0,6 and bb γ=* =0) 
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Figure 22: Normalized stress distribution for various values of the nonhomogeneity 

constant .* aa γ=  (η= - 0,6 and bb γ=* =0) 
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Figure 23: Normalized stress distribution for various values of the nonhomogeneity 

constant .* bb γ=  (η= 0 and aa γ=* =0) 
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Figure 24: Normalized stress distribution for various values of the nonhomogeneity 

constant .* bb γ=  (η= 0,2 and aa γ=* =0) 
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Figure 25: Normalized stress distribution for various values of the nonhomogeneity 

constant .* bb γ=  (η= - 0,2 and aa γ=* =0) 
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Figure 26: Normalized stress distribution for various values of the nonhomogeneity 

constant .* bb γ=  (η=  0,4 and aa γ=* =0) 
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Figure 27: Normalized stress distribution for various values of the nonhomogeneity 

constant .* bb γ=  (η= - 0,4 and aa γ=* =0) 
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Figure 28: Normalized stress distribution for various values of the nonhomogeneity 

constant .* bb γ=  (η= 0,6 and aa γ=* =0) 
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Figure 29: Normalized stress distribution for various values of the nonhomogeneity 

constant .* bb γ=  (η= - 0,6 and aa γ=* =0) 
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Figure 30: Normalized stress distribution for various values of the nonhomogeneity 

constant .*γ  (η= 0 and γ**=0) 
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Figure 31: Normalized stress distribution for various values of the nonhomogeneity 

constant .*γ  (η= 0,2 and γ**=0) 
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Figure 32: Normalized stress distribution for various values of the nonhomogeneity 

constant .*γ  (η= - 0,2 and γ**=0) 
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Figure 33: Normalized stress distribution for various values of the nonhomogeneity 

constant .*γ  (η= 0,4 and γ**=0) 
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Figure 34: Normalized stress distribution for various values of the nonhomogeneity 

constant .*γ  (η= - 0,4 and γ**=0) 
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Figure 35: Normalized stress distribution for various values of the nonhomogeneity 

constant .*γ  (η= 0,6 and γ**=0) 
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Figure 36: Normalized stress distribution for various values of the nonhomogeneity 

constant .*γ  (η= - 0,6 and γ**=0) 
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4.4.Parametric Studies for the Triangular Stamp 
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Figure 37: Normalized stress distribution for various values of the nonhomogeneity 

constant .* aa γ=  (η=0 and bb γ=* =0) 
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Figure 38: Variation of the normalized force with respect to normalized 

nonhomogeneity parameter a* = γa. (η=0 and bb γ=* =0) 
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Figure 39: Normalized stress distribution for various values of the nonhomogeneity 

constant .* aa γ=  (η=0,2 and bb γ=* =0) 

 

 

 

0

20

40

60

80

-6 -4 -2 0 2 4 6

 

 

 

 

      
)(0 abm

P
−µ

 

 

 

 

              a* 

 

Figure 40: Variation of the normalized force with respect to normalized 

nonhomogeneity parameter a* = γa. (η=0,2 and bb γ=* =0) 
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Figure 41: Normalized stress distribution for various values of the nonhomogeneity 

constant .* aa γ=  (η= -0,2 and bb γ=* =0) 
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Figure 42: Variation of the normalized force with respect to normalized 

nonhomogeneity parameter a* = γa. (η= -0,2 and bb γ=* =0) 
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Figure 43: Normalized stress distribution for various values of the nonhomogeneity 

constant .* aa γ=  (η= 0,4 and bb γ=* =0) 
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Figure 44: Variation of the normalized force with respect to normalized 

nonhomogeneity parameter a* = γa. (η= 0,4 and bb γ=* =0) 
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Figure 45: Normalized stress distribution for various values of the nonhomogeneity 

constant .* aa γ=  (η= - 0,4 and bb γ=* =0) 
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Figure 46: Variation of the normalized force with respect to normalized 

nonhomogeneity parameter a* = γa. (η= - 0,4 and bb γ=* =0) 
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Figure 47: Normalized stress distribution for various values of the nonhomogeneity 

constant .* aa γ=  (η=  0,6 and bb γ=* =0) 
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Figure 48: Variation of the normalized force with respect to normalized 

nonhomogeneity parameter a* = γa. (η=  0,6 and bb γ=* =0) 
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Figure 49: Normalized stress distribution for various values of the nonhomogeneity 

constant .* aa γ=  (η= - 0,6 and bb γ=* =0) 
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Figure 50: Variation of the normalized force with respect to normalized 

nonhomogeneity parameter a* = γa. (η= - 0,6 and bb γ=* =0) 
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Figure 51: Normalized stress distribution for various values of the nonhomogeneity 

constant .* bb γ=  (η=  0 and aa γ=* =0) 
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Figure 52: Variation of the normalized force with respect to normalized 

nonhomogeneity parameter b* = γb. (η=  0 and aa γ=* =0) 
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Figure 53: Normalized stress distribution for various values of the nonhomogeneity 

constant .* bb γ=  (η=  0,2 and aa γ=* =0) 
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Figure 54: Variation of the normalized force with respect to normalized 

nonhomogeneity parameter b* = γb. (η=  0,2 and aa γ=* =0) 
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Figure 55: Normalized stress distribution for various values of the nonhomogeneity 

constant .* bb γ=  (η=  - 0,2 and aa γ=* =0) 
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Figure 56: Variation of the normalized force with respect to normalized 

nonhomogeneity parameter b* = γb. (η=  - 0,2 and aa γ=* =0) 
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Figure 57: Normalized stress distribution for various values of the nonhomogeneity 

constant .* bb γ=  (η=  0,4 and aa γ=* =0) 
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Figure 58: Variation of the normalized force with respect to normalized 

nonhomogeneity parameter b* = γb. (η=  0,4 and aa γ=* =0) 
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Figure 59: Normalized stress distribution for various values of the nonhomogeneity 

constant .* bb γ=  (η=  - 0,4 and aa γ=* =0) 
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Figure 60: Variation of the normalized force with respect to normalized 

nonhomogeneity parameter b* = γb. (η=  - 0,4 and aa γ=* =0) 
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Figure 61: Normalized stress distribution for various values of the nonhomogeneity 

constant .* bb γ=  (η=  0,6 and aa γ=* =0) 
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Figure 62: Variation of the normalized force with respect to normalized 

nonhomogeneity parameter b* = γb. (η=  0,6 and aa γ=* =0) 
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Figure 63: Normalized stress distribution for various values of the nonhomogeneity 

constant .* bb γ=  (η=  - 0,6 and aa γ=* =0) 
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Figure 64: Variation of the normalized force with respect to normalized 

nonhomogeneity parameter b* = γb. (η=  - 0,6 and aa γ=* =0) 
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Figure 65: Normalized stress distribution for various values of the nonhomogeneity 

constant *γ  (η=  0 and γ** =0) 
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Figure 66: Variation of the normalized force with respect to normalized 

nonhomogeneity parameter γ*. (η=  0 and γ** =0) 
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Figure 67: Normalized stress distribution for various values of the nonhomogeneity 

constant *γ  (η=  0,2 and γ** =0) 
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Figure 68: Variation of the normalized force with respect to normalized 

nonhomogeneity parameter γ*. (η=  0,2 and γ** =0) 
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Figure 69: Normalized stress distribution for various values of the nonhomogeneity 

constant *γ  (η=  - 0,2 and γ** =0) 
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Figure 70: Variation of the normalized force with respect to normalized 

nonhomogeneity parameter γ*. (η=  - 0,2 and γ** =0) 
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Figure 71: Normalized stress distribution for various values of the nonhomogeneity 

constant *γ  (η=  0,4 and γ** =0) 
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Figure 72: Variation of the normalized force with respect to normalized 

nonhomogeneity parameter γ*. (η=  0,4 and γ** =0) 
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Figure 73: Normalized stress distribution for various values of the nonhomogeneity 

constant *γ  (η= - 0,4 and γ** =0) 
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Figure 74: Variation of the normalized force with respect to normalized 

nonhomogeneity parameter γ*. (η= - 0,4 and γ** =0) 
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Figure 75: Normalized stress distribution for various values of the nonhomogeneity 

constant *γ  (η=  0,6 and γ** =0) 
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Figure 76: Variation of the normalized force with respect to normalized 

nonhomogeneity parameter γ*. (η= 0,6 and γ** =0) 
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Figure 77: Normalized stress distribution for various values of the nonhomogeneity 

constant *γ  (η=  - 0,6 and γ** =0) 
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Figure 78: Variation of the normalized force with respect to normalized 

nonhomogeneity parameter γ*. (η= - 0,6 and γ** =0) 
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4.5.Parametric Studies for the Circular Stamp 
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Figure 79: Normalized stress distribution for various values of the nonhomogeneity 

constant *γ .(η=  0 and γ** =0, a/R = -0,05 , b/R = 0,05) 
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Figure 80: Variation of the normalized force with respect to normalized 

nonhomogeneity parameter γ*. (η=  0 and γ** =0, a/R = -0,05 , b/R = 0,05) 
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Figure 81: Variation of the location of the centerline with respect to normalized 

nonhomogeneity parameter γ*. (η=  0 and γ** =0, a/R = -0,05 , b/R = 0,05) 
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Figure 82: Normalized stress distribution for various values of the nonhomogeneity 

constant *γ .(η=  0,2 and γ** =0, a/R = -0,05 , b/R = 0,05) 
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Figure 83: Variation of the normalized force with respect to normalized 

nonhomogeneity parameter γ*. (η=  0,2 and γ** =0, a/R = -0,05 , b/R = 0,05) 
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Figure 84: Variation of the location of the centerline with respect to normalized 

nonhomogeneity parameter γ*. (η=  0,2 and γ** =0, a/R = -0,05 , b/R = 0,05) 
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Figure 85: Normalized stress distribution for various values of the nonhomogeneity 

constant *γ .(η=  - 0,2 and γ** =0, a/R = -0,05 , b/R = 0,05) 
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Figure 86: Variation of the normalized force with respect to normalized 

nonhomogeneity parameter γ*. (η=  - 0,2 and γ** =0, a/R = -0,05 , b/R = 0,05) 
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Figure 87: Variation of the location of the centerline with respect to normalized 

nonhomogeneity parameter γ*. (η=  - 0,2 and γ** =0, a/R = -0,05 , b/R = 0,05) 
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Figure 88: Normalized stress distribution for various values of the nonhomogeneity 

constant *γ .(η=  0,6 and γ** =0, a/R = -0,05 , b/R = 0,05) 

 93



0

0,05

0,1

0,15

-6 -4 -2 0 2 4 6

 

 

 

 

 

       
)(0 ab

P
−µ

 

 

 

 

 

 

      *γ  

Figure 89: Variation of the normalized force with respect to normalized 

nonhomogeneity parameter γ*. (η=  0,6 and γ** =0, a/R = -0,05 , b/R = 0,05) 
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Figure 90: Variation of the location of the centerline with respect to normalized 

nonhomogeneity parameter γ*. (η=  0,6 and γ** =0, a/R = -0,05 , b/R = 0,05) 
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Figure 91: Normalized stress distribution for various values of the nonhomogeneity 

constant *γ .(η=  - 0,6 and γ** =0, a/R = -0,05 , b/R = 0,05) 
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Figure 92: Variation of the normalized force with respect to normalized 

nonhomogeneity parameter γ*. (η=  - 0,6 and γ** =0, a/R = -0,05 , b/R = 0,05) 
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Figure 93: Variation of the location of the centerline with respect to normalized 

nonhomogeneity parameter γ*. (η=  - 0,6 and γ** =0, a/R = -0,05 , b/R = 0,05) 
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CHAPTER V 
 
 

CONCLUSIONS AND FUTURE WORK 
 
 
 

5.1. Concluding Remarks 
 

Detailed parametric analyses of the contact mechanics problems considered in 

this study are given in Chapter 4. In section 4.1, in order to check the accuracy of 

the results obtained using the developed computer program, some comparisons are 

given. In this set of results, the nonhomogeneity constant is taken as sufficiently 

small ( )002.0=∗γ  and the stamp is assumed to be centrally located ( )0=∗∗γ . 

Actually, for the homogeneous medium the location of the sliding stamp is 

irrelevant. The results for are compared to those obtained using the 

closed form expressions for the homogeneous half–plane which are given in 

Sections 3.2, 3.4 and 3.6. Figure 7 shows the contact stress distribution at the 

surface for the flat stamp for various values of the coefficient of friction.  

002.0=∗γ

The results generated by our computer program are very close to the results 

obtained using the closed form solution. Figure 8 shows contact stress distribution 

for a triangular stamp, and a good agreement is observed between our results and 

the closed form solution for the triangular stanp problem. Table 1 gives the required 

contact forces for the data given in Figure 8. Again, the results are very close. The 

small difference in the results can be attributed to the fact that the nonhomogeneity 

constant is not exactly zero for the results generated using the computer program. A 

smaller nonhomogeneity constant is expected yield a better accuracy. The reader 

can find the comparisons for the circular stamp in Figure 9 and in Tables 2 and 3. 
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Again, it is seen that there is a close agreement between the results obtained using 

the two different methods. 

The accuracy of the results for a nonzero nonhomogeneity constant is tested by 

comparing the results to those obtained using a finite element model of the contact 

mechanics problem. The finite element model is developed by Yıldırım [30] using 

the commercial finite element software ANSYS. Figures 10 and 11 show the close 

agreement for the results obtained for the flat stamp problem for both positive and 

negative nonhomogeneity constants. The agreement of the results for the triangular 

stamp problem are shown in Figures 12 and 13.  The way of generation of the 

results using the finite element model is different from the analytical approach. In 

the triangular stamp problem for example, in the finite element solution the applied 

force has to be specified first. The extent of the contact region ( )ab −  is determined 

after post-processing. In the analytical solution however there is no need to specify 

the contact force as an input to the problem. We also note that some convergence 

problems are observed in the finite element solution for the triangular stamp 

problem especially for large values of the angle θ . Figures 14 and 15 show the 

comparisons for the circular stamp problem. In the finite element solution of the 

circular stamp problem, the contact force and the location of the centerline are 

specified first and the extent of the contact region, ( ) Rab −  is determined after 

post–processing. In the analytical approach however, the centerline location and the 

required contact force are the outputs of the numerical solution for a given contact 

length. The best agreement seemed to occur in the circular stamp problem. In the 

flat and triangular stamp problems, there are stress singularities at the sharp corners. 

In the analytical approach, the strengths of the singularity are determined and 

embedded in the solution. Finite element model also captures the singular behavior 

at the ends, but the strengths of the singularity are not embedded. This may be a 

reason for the comparatively larger deviation of the results for the flat and triangular 

stamp problems. But, for all practical intents and purposes, the results are 

sufficiently close for all cases. Another drawback in the finite element model is that, 

it is not possible to give an exactly continuous variation to the elastic properties as 

in the analytical approach. The elastic properties can be specified for each element 
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and the smoothness of the variation of the elastic properties depends on the element 

size. Tables 4–6 give the values of the normalized force and centerline location for 

the triangular and circular stamp problems considered in section Section 4.2. 

 

5.1.1. Comments on the Results Obtained for the Flat Stamp 

 

In section 4.3 parametric studies are given for the flat stamp problem. The results 

given in this section can be grouped according to the location of the stamp. In 

Figures 16–22, the stress distributions are given for .0=bγ  For a nonzero 

nonhomogeneity constant, this implies that the right corner of the flat stamp is at the 

origin. In Figures 23–29, the results are given for 0=aγ  which implies that, for a 

nonzero value of the nonhomogeneity constant left corner of the stamp is at the 

origin. In Figures 30–36, the results are given for . In this case the flat stamp 

is centrally located. In each group, each figure corresponds to a different value of 

the friction coefficient. Positive, negative and zero friction coefficients are 

considered. A negative friction coefficient indicates a reversal of direction of the 

applied tangential force. In our sign convention, a positive friction coefficient 

implies a tangential force acting in the direction of the positive y – axis as shown in 

Figure 3. If the friction coefficient is taken as negative the applied tangential force 

acts in the negative y – direction. A zero friction coefficient is for the frictionless 

contact. Figure 16 shows the normalized stress distribution versus the normalized 

position parameter s for the flat stamp for 

0=∗∗γ

.0==ηγa  The results are given for three 

different nonhomogeneity constants. It is seen that for 002.0−=aγ  the stress 

distribution is almost symmetric which is an expected result. The distortion in the 

stress distribution for nonzero values of the nonhomogeneity constant can be seen in 

the other curves. The minimum pressure seemed to be lower in the laterally 

nonhomogeneous medium. There is also symmetry with respect to the 

nonhomogeneity constant. Note that the curves  and  are aymmetric 

about  The effect of friction for 

2−=∗a 2=∗a

.0=s 0=bγ can be seen in the other figures, i.e. in 

Figures 17–22. In Figures 17 and 18, we see that reversing the direction of the 

applied force does not significantly effect the stress distribution for .2.0=η For 
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higher values of the friction coefficient the effect is more pronounced (see for 

example, Figures 21 and 22 which are given for 6.0=η  and ,6.0−=η  

respectively). But in all the cases, the shear modulus gradient is the prevailing 

factor effecting the contact stress distribution. The stress distributions for a flat 

stamp  whose left corner is at the origin ( )0=aγ  is given in Figures 23–29. For a 

centrally located stamp ( )0=∗∗γ , we can see the results in Figures 30–36. Similar 

trends can also be observed in these figures. 

In summary, in the flat stamp problem we observe that the contact stress 

distribution is distorted to take the shape of the shear modulus variation. For 

example in Figure 30, for a shear modulus increasing in y – direction the contact 

stress distribution is in the shape of the exponential function with a positive 

exponent (see the curve for ). If the shear modulus is decreasing in y – 

direction the contact stress distribution takes the shape of an exponential function 

with a negative exponent (see the curve for ). This trend is observed in all 

the cases. 

2=∗γ

2−=∗γ

 

5.1.2. Comments on the Results Obtained for the Triangular Stamp 

 

The results for the triangular stamp problem are given in Figures 37–78. These 

results can also be divided into three main groups. Figures 37–50 give the results 

for a triangular stamp whose smooth end is at the origin after contact, i.e. .0=bγ  

The results for a triangular stamp whose sharp corner is at the origin ( )0=aγ  are 

given in Figures 51–64. Figures 65–78 give the results for a triangular stamp whose 

end points are symmetric after contact ( )0=∗∗γ .  

On each page the normalized contact stress distribution versus normalized 

position parameter s and the corresponding contact force versus the relevant 

nonhomogeneity parameter plots are given. Figures 37 and 38 show the contact 

stress and normalized force distribution for .0==ηγb In this case we see that at 

  there is an elastic stress singularity and at ay = ( 1−=s ) by =   the contact 

stress is zero due to smooth contact. Hence, there is no symmetry in the stress 

( 1=s )
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distribution even for .0== aγη  The effect of the nonhomogeneity constant on the 

contact stress distribution is very significant and can be seen in Figure 37. The 

required contact force for the curves given in Figure 37 are not same. In Figure 38, 

we observe that required contact forces increases considerably as increases. 

Since, a is negative in this case, a positive value for  implies a negative 

aa γ=∗

∗a γ , hence 

a decreasing shear modulus in the direction of the positive y – axis. The competing 

effects of the value of the friction coefficient, direction of the applied frictional 

force and the nonhomogeneity constant for 0=bγ  can be observed in Figures 39–

50. In all cases contact stress distributions are similar. Again, nonhomogeneity 

constant is the most important factor effecting the distribution of the contact 

stresses. In all the cases, the required contact force increases as  increases. ∗a

The normalized contact stress and normalized contact force distributions for a 

triangular stamp whose sharp corner is at origin ( )0=aγ  are given in Figures 51–

64. Similar results are obtained in this case, but interestingly this time normalized 

contact force is increasing for increasing shear modulus (see for example, Figures 

52, 54, 56, 58, 60, 62). So, effect of the location of the stamp on the contact stress 

distribution is significant for the triangular stamp case. Similar results are given for 

a centrally located triangular stamp in Figures 65–78. The behavior of the variation 

of the normalized contact force is different from the two cases described above. As 

can be seen in Figures 66, 68, 70, 72, 74, 76 and 78 the normalized force generally 

makes a minimum near  and it increases in both positive and negative  

directions (a positive  implies a positive value for 

0=∗γ ∗γ

∗γ γ and vice versa).  

The main conclusion of this section is that the contact stress distribution again 

mimics the shear modulus variation, such that the it adapts to the variation of the 

shear modulus. This can be clearly seen in the Figures. 
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5.1.3. Comments on the Results Obtained for the Circular Stamp 

 

The results related to the circular stamp problem are given in Figures 79–93. The 

computation time required for the solution of the circular stamp problem is much 

more than the time required for the flat stamp or triangular stamp problems. So, in 

this case parametric studies are carried out for a centrally located circular stamp. In 

all cases, It is assumed that after indentation 05.0/ −=Ra and  For 

each case, the location of the centerline and the required normalized contact force 

are computed. Figure 79 shows the contact stress distribution for frictionless 

contact. The symmetry is distorted for the laterally nonhomogenous medium as 

expected. But, the behavior is symmetric with respect to the nonhomogeneity 

parameter , which is expected for frictionless contact. Here, we observe that even 

though that maximum pressure in the contact is larger for the nonhomogeneous 

medium, the absolute value of the pressure is significantly smaller in some parts of 

the contact when compared to the homogeneous case. Figure 80 shows the variation 

of the normalized contact force, which is symmetric about and increases in 

both positive and negative directions. There is a skew – symmetry for the 

location of the centerline 

.05.0/ =Rb

∗γ

0=∗γ

∗γ

Rc about as can be seen in Figure 81. For a 

medium with a shear modulus increasing in y – direction, centerline shifts to the 

right, while for a medium with a shear modulus decreasing in y – direction 

centerline shifts to the left. The other figures (i.e., Figures 82–93) are for nonzero 

friction coefficients and they depict the increasing effect of the coefficient of 

friction on the stress distribution, normalized force and centerline location. In these 

figures, we observe that perfect symmetry (or skew – symmetry in the case of 

0=∗γ

Rc )  

with respect to is distorted. The effect of the direction of the tangential force also 

seems to be significant (see for example Figures 88 and 91). 

∗γ

Let us consider Figure 82, in order to examine the competing effects of the 

nonhomogenity constant and the friction coefficient on the stress distribution. In 

this case, we observe that for a nonhomogeneous medium the highest pressure in 

the contact is larger. But, for  and , we observe that the pressure near 2=∗γ 4=∗γ
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the trailing end of the contact is significantly reduced. It is known that surface crack 

inititation due to sliding contact always begins at the trailing end [23, 31]. Hence, a 

reduction in the pressure around the trailing end can have a positive effect on the 

fatigue life of a surface. It is obvious that this reduction is a consequence of grading 

in lateral direction and this point can be further investigated. 

 

5.2. Future Work 
 

In this study, a semi – analytical technique is developed to study the contact 

mechanics of a laterally graded medium. The results of this study show that elastic 

gradation in lateral direction can have a significant influence on the contact stress 

distribution at the surface. So, it is shown that in order to have more realistic models 

on the contact mechanics of nonhomogeneous media lateral nonhomogeneity has to 

be taken into account. The model considered in this study can be further used to 

study the subsurface stresses in the semi – infinite medium. This requires that 

asymptotic analyses be made for all stress components. When the subsurface 

stresses are calculated the integrals have to be handled very carefully in order not to 

lose accuracy due to singular terms. In this study it is seen that, a lateral 

nonhomogeneity can significantly reduce the pressure near the trailing end of a 

sliding contact. This point can be further investigated to clarify the effect of the 

lateral nonhomogeneity. In order to study this effect, coupled crack and contact 

problem in a laterally nonhomogeneous medium can be formulated and the 

behavior of a surface crack can be examined. 

There are a number of other research areas related to the contact mechanics of 

nonhomogeneous media. In order to study the effects of nonhomogeneities in both 

depth and lateral directions, a mathematical model containing variations in elastic 

properties in both directions can be developed. An analysis of this sort will reveal 

the behavior of a surface which is graded in two directions. Another important 

subject that can be further studied is the contact mechanics of coated 

nonhomogenous surfaces. The coating thickness may have an important effect on 

the contact stress distribution. This subject is studied by Güler [22]. But, the 
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approach in this study can be extended to include the effect of intentional or natural 

lateral nonhomogeneities for coated surfaces.  

In the contact mechanics problem considered in this study, Columb’s friction 

model is assumed to hold. But, this is only valid when the applied tangential force is 

sufficiently large. When the applied tangential force is small, only some portion of 

the contact slips while there is stick in the other portion. This is the so – called  

partial slip contact problem in solid mechanics and it has not been studied for a 

nonhomogeneous medium. The analysis of partial slip contact in materials having 

nonhomogeneities in depth and/or lateral directions will be an important 

contribution to the literature. Crack propagation due to repeated microslip 

commonly occurs in practical applications. The analysis of this problem requires the 

solution of the partial slip contact mechanics problem. Analysis of crack growth 

under repeated microslip in FGMs can be another area of future study. In all the 

fields of study mentioned above, both analytical and computational (using FEM or 

BEM) studies are required in order to have a better understanding of the contact 

mechanics of nonhomogeneous media.  
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APPENDIX A 
 
 

SOME USEFUL INTEGRALS 
 
 
 

In this section, the expressions that are used to evaluate the integrals involving 

the asymptotic expansions of the integrands of the kernels are given. The integrals 

that we want to evaluate are in the following form: 

 

( )1 cosn n
A

C u dρ ρ
ρ

∞

= ∫                   (A1) 

( )1 sinn n
A

S u dρ ρ
ρ

∞

= ∫                   (A2) 

 

For , following results are obtained using MAPLE, 1n =

 

( )1 Ci ,C A= − u                      (A3) 

( ) ( )1 sign Si ,
2

S u A uπ⎧ ⎫= −⎨ ⎬
⎩ ⎭

                 (A4) 

 

where  and  are cosine and sine integrals, respectively and they are 

defined as: 

( )Ci ( )Si

( ) ( ) ( )
0

0

cos 1
Ci ln

x

x x
α

dγ α
α

−
= + + ∫               (A5) 
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( ) ( )
0

sin
Si

x

x d
α

α
α

= ∫                    (A6) 

 

0γ  is the Euler constant and it is equal to 0.5772156649. For , integrating (A1) 

and (A2) by parts the following general recursive relations can be obtained [23], 

1n >

 

( )
11

cos1 ,
1 1n n

uA uC nn A n
S               (A7) −−= − +

− −
1,n >

( )
11

sin1 ,
1 1n n

uA uS nn A n
C               (A8) −−= − −

− −
1.n >
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