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Prof. Dr. Münevver TEZER

Supervisor

Examining Committee Members

Prof. Dr. Kemal LEBLEBİCİOGLU
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ABSTRACT

DIFFERENTIAL QUADRATURE METHOD FOR

TIME-DEPENDENT DIFFUSION EQUATION

Makbule Akman

M.Sc., Department of Mathematics

Supervisor: Prof. Dr. Münevver Tezer

November 2003, 75 pages

This thesis presents the Differential Quadrature Method (DQM) for solving

time-dependent diffusion or heat conduction problem. DQM discretizes the

space derivatives giving a system of ordinary differential equations with respect

to time and the fourth order Runge Kutta Method (RKM) is employed for

solving this system. Stabilities of the ordinary differential equations system

and RKM are considered and step sizes are arranged accordingly.

The procedure is applied to several time dependent diffusion problems and

the solutions are presented in terms of graphics comparing with the exact

solutions. This method exhibits high accuracy and efficiency comparing to the

other numerical methods.

Keywords: Time-dependent diffusion equation, Differential quadrature method,

Runge-Kutta method.
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ÖZ

ZAMANA BAĞLI DİFÜZYON DENKLEMİ İÇİN DİFERENSİYEL

KARE YAPMA METODU

Makbule Akman

Yüksek Lisans, Matematik Bölümü

Tez Danışmanı: Prof. Dr. Münevver Tezer

Kasım 2003, 75 sayfa

Bu tez zamana bağlı difüzyon veya ısı iletim problemini çözmek için diferen-

siyel kare yapma metodunu sunmuştur. Diferensiyel kare yapma metodu uzay

türevlerini zamana bağlı bir adi diferensiyel denklem sistemi verecek şekilde

ayırır ve bu sistemi çözmek için dördüncü dereceden Runge-Kutta metodu

uygulanmıştır. Adi diferensiyel denklem sisteminin ve Runge-Kutta meto-

dunun stabilitesi göz önünde tutulmuş ve adım genişliği ona göre ayarlanmıştır.

Bu yöntem, birçok zamana bağlı difüzyon denklemine uygulanmıştır ve

çözümler analitik çözümle kars.ılas.tırılarak grafikler ile sunulmus.tur. Bu metod

diğer nümerik metodlarla karşılaştırıldığında yüksek doğruluk ve etkinlik göster-

mis.tir.

Anahtar Kelimeler: Zamana bağlı difüzyon denklemi, Diferensiyel kare yapma

metodu, Dördüncü dereceden Runge-Kutta metodu.

iv



ACKNOWLEDGMENTS

I would like to express my sincere appreciation to the members of the

Mathematics Department of Middle East Technical University, especially to
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CHAPTER 1

INTRODUCTION

The Differential Quadrature Method(DQM) is a numerical solution

technique for initial and/or boundary value problems. It was developed by the

late Richard Bellmann and his associates in the early 70s and since then, the

technique has been succesfully employed in a variety of problems in engineering

and phsical sciences. The method has been projected by its proponents as a

potential alternative to the conventional numerical solution techniques such as

the finite difference and finite element methods. (Bert,Malik (1996)).

The DQ method, akin to the convential integral quadrature method,

app-roximates the derivative of a function at any location by a linear summa-

tion of all the functional values along a mesh (grid) line. The key procedure in

the DQ application lies in the determination of the weighting coefficients. The

DQ method and its applications were rapidly developed after the late 1980s,

thanks to the innovative work in the computation of the weighting coefficients

by other researchers. As a result, the DQ method has emerged as a powerful

numerical discretization tool in the past decade. (Shu and Richards(1990),

Shu(2000)).

At the first time the Differential Quadrature Method was mentioned in a

book written by Bellman and Roth in 1986. There are many innovative ideas

contained in this book. In 1996, Bert and Malik presented a comprehensive

review of the chronological development and the application of the DQ method.

The textbook of Shu (2000) represents the first comprehensive work on the

DQ method and applications. However, there is no abundant book which

systematically describes both the theoretical analysis and the application of

the DQ method. Since there are many achievements in the DQ method, the

number of reference books on the DQ method and its applications will increase.
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In seeking an efficient discretization technique to obtain accurate numer-

ical solutions using a considerably small number of grid points, Bellman(1971,

1972) introduced the method of DQ where a partial derivative of a function

with respect to a coordinate direction is expressed as a linear weighted sum of

all the functional values at all grid points along that direction. Bellman(1972)

suggested two methods to determine the weighting coefficients of the first order

derivative. The first method solves an algebraic equation system. The second

uses a simple algebraic formulations, but with the coordinates of grid points

chosen as the roots of the Legendre Polynomials. Unfortunately, when the

order of the algebraic equation system is large, its matrix is ill-conditioned.

Thus, it is difficult to obtain the weighting coefficients.

To further improve the computation of, Quann and Chang(1989a,b)

applied Lagrange Interpolated polynomials as test functions and obtained ex-

plicit formulations to calculate the weighting coefficients for the discretization

of the first and second order derivatives.

Shu and Richards(1990) generalized all the current methods for determina-

tion of the weighting coefficients under the analysis of a high order polyno-

mial approximation and the analysis of a linear vector space. The weighting

coefficients of the first order derivative are determined by a simple algebraic

formulation whereas the weighting coefficients of the second and higher order

derivatives are determined by a recurrence relationship.

Applications of DQ method may be found in the available literature

include biosciences, transport processes fluid mechanics, statik and dynamic

structural mechanics, statik aeroelasticity and lubrication mechanics. It has

been claimed that the DQ method has the capability of producing highly

accurate solutions with minimal computational effort. (Bert, Malik(1996)).

Civan(1994) considered a proper application of the DQ method for the

numerical solution of a model of an isothermal reactor with axial mixing and

showed that the DQ method alleviates the numerical difficulties encountered

in finite difference and quadrature solutions while satisfying the boundary
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conditions accurately.

Fung(2001) solved first order initial value problems by taking the time

derivative at a sampling grid point as a weighted linear sum of the given initial

condition and the function values. His algorithm is unconditionally stable and

the sampling grid points are the roots of Legendre Polynomials. In part II,

he extended this differential quadrature algorithm to solve second order initial

value problems.

In a later paper, Fung(2003) modified the weighting coefficient matrices

in the DQM for the imposition of boundary conditions containing higher order

derivatives.

A Differential Quadrature Method proposed by Wu and Liu(1999) chooses

the function values and some derivatives whenever necessary as independent

variables. Therefore, the delta-type grid arrangement used in the classic

DQM is exempt while applying the boundary condition exactly. The explicit

weighting coefficients can also be obtained.

In the past decade, the DQ method has succesfully applied with explicit

computation of the weighting coefficients to the simulation of many incompress-

ible viscous flows, free vibration analysis of beams, plates and shells. Apart

from the work on the explicit computation of the weighting coefficients and

its application in various areas, significant contributions were made in the

theoretical analysis such as the error estimates, relationship between the DQ

method and conventional discretization techniques, effect of the grid point

distribution on the accuracy of the DQ results and the stability condition

(Shu, 2000)

The technique of Differential Quadrature Method for the solution of

two-dimensional partial differential equations is extended by Lam(1993) to

encompass problems with arbitrary geometry. He compared the results of

thermal and torsional problems with other solutions and showed reasonably

good accuracy.
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For solving steady-state heat conduction problems by using the irregular

elements of the differential quadrature method is proposed by Chang(1999).

He used the mapping technique to transform the governing partial differential

equation with the natural transition condition of two adjacent elements and the

Neumann boundary condition defined on the irregular physical element into

the parent space. Then the DQ technique is used to discretize the transformed

relation equation defined on the regular element.

Rapaci(1991) deals, in the one dimensional case, with an inverse problem

for the Heat Equation. Such a problem is a two point initial-boundary value

problem with boundary conditions. The missing boundary conditions are rep-

laced by a measurement of the temperature in an inner point of the space

domain. He obtained the results by using the DQM.

Chawla and Al-Zanaidi(2001) described a locally one-dimensional (LOD)

time integration scheme for the diffusion equation in two space dimensions

based on the extended trapezoidal formula (ETF). The resulting LOD-ETF

scheme is third order in time and is unconditionally stable preventing unwanted

oscillations in the solution.

Tanaka and Chen(2001) presents the application of dual reciprocity BEM

(DRBEM) and differential quadrature (DQ) method to time-dependent dif-

fusion problems. The DRBEM is employed to discretize the spatial partial

derivatives. The time derivative is discretized by using DQM. But the resulting

algebraic formulation is the known Lyapunov matrix equations which require

a special solution technique.

In this thesis, Differential Quadrature Method is applied to time depen-

dent diffusion problem in two-dimensional space. The diffusion equation is

supplemented with Dirichlet or Dirihlet-Neumann type boundary conditions

together with an initial condition forming an initial and boundary value prob-

lem in two-dimensional space. Time dependent boundary conditions as well as

time dependent coefficients in the equation are also discussed and accompanied

with sample problems. For simplicity, one dimensional case is chosen to demon-
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strate the DQM application. Differential Quadrature technique approximates

the derivative of a function at a grid point by a linear weighted summation

of all the functional values. Derivatives with respect to space variables are

discretized using DQM giving a system of ordinary differential equations for

the time derivative. We used fourth order explicit Runge-Kutta Method for

discretizing time derivatives since its stability region is larger comparing to

the other time integration methods and simple for the computations. This

DQM and 4th order RK method combination gives very good numerical tech-

nique for solving time dependent diffusion problems. Stability criterias are

also controlled with several values of time increment ∆t and number of grid

points N in space region. Implicit RK method is not preferred because of its

complexity in the computations.

1.1 Plan of The Thesis

In Chapter 2, first the theory of the Differential Quadrature Method is

given in one dimensional case and then the extension to the two dimensional

case and the application to our problem is explained. Implementation of

Dirichlet and Neumann type boundary conditions to the final system of ordinary

differential equations is also presented. Then discretization of the time derivative

by using fourth order Runge-Kutta Method is introduced.

Chapter 3 presents application of DQ method and RKM to solve time

dependent Diffusion equation. Dirichlet and Dirichlet-Neumann type boundary

conditions are used. Time dependent boundary conditions and time depen-

dent coefficients in the equations are also demonstrated with some problems.

Choices of ∆t and N are discussed in terms of stability requirements.
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CHAPTER 2

DIFFERENTIAL QUADRATURE METHOD FOR DIFFUSION

EQUATION

This chapter presents the combined application of Differential Quadrature

Method (DQM) and The Fourth Order Runge-Kutta Method (RKM) to time-

dependent transient diffusion equation.

The equation governing transient diffusion problems can be expressed as

∂ u(x, y, t)

∂t
−∇2u(x, y, t) = 0 (x, y) ∈ Ω (2.1)

with the initial condition

u(x, y, 0) = u0(x, y) (2.2)

and the Dirichlet, Neumann and Linear Radiation boundary conditions are

given by

u(x, y, t) = ū(x, y, t) (x, y) ∈ Γu (2.3)

q(x, y, t) = ∂ū(x, y, t)/∂n = q̄(x, y, t) (x, y) ∈ Γq (2.4)

q(x, y, t) = −h(x, y, t)(u(x, y, t)− ur(x, y, t)) (x, y) ∈ Γr (2.5)

where variable domain Ω ∈ R2 is bounded by a piecewise smooth boundary

Γ = Γu + Γq + Γr. Here q = ∂u
∂n

, n is the unit outward normal, ∇2 = ∂2

∂x2 + ∂2

∂y2

is the Laplace operator. The functions ū(x, y, t), q̄(x, y, t), h(x, y, t) and ur(x, y, t)

are given functions of (x,y,t) and the initial condition u0(x, y) is a given func-

tion of space variables (x,y).

6



The transient diffusion Equation (2.1)

∇2u =
∂u

∂t
(2.6)

can be considered in the general form

∇2u = b(x, y, t, u, ut) (2.7)

where (x,y) represents the spatial coordinates, u is the dependent unknown

solution, t is the time and ut denotes the time derivative of u.

Apart from the Differential Quadrature Method, there are many available

numerical discretization techniques to solve transient diffusion equation such

as the Dual Reciprocity Boundary Element Method, Finite Element Method,

Finite Difference Method, Finite Volume Method. As compared to these lower

order numerical methods, the Differential Quadrature (DQ) Method can obtain

very accurate numerical results using a considerably smaller number of grid

points and hence requiring relatively little computational effort. It will be

shown in this thesis that the polynomial-based differential quadrature method

is an efficient approach to solve the transient diffusion problem.

Differential Quadrature Method will be applied to Equation (2.7) con-

taining Laplace Operator. Since right hand side function b contains also the

time derivative of u, the resulting system of equations will contain ut. There-

fore, the time derivatives will be discretized by one of the explicit shemes which

is the Fourth Order Runge-Kutta Method in this thesis.

2.1 Differential Quadrature Method

The Differential Quadrature Method was presented by R.E. Bellman

and his associates in early 1970’s and it is a numerical discretization technique

for the approximation of derivatives. In seeking an efficient discretization

technique to obtain accurate numerical solutions using a considerably small

7



number of grid points, Belmann (1971,1972) introduced the method of differ-

ential quadrature, where a partial derivative of a function with respect to a

coordinate direction is expressed as a linear weighted sum of all the functional

values at all grid points along that direction. The key to DQ Method is to

determine the weighting coefficients for the discretization of a derivative of any

order. A major breakthrough in computing the weighting coefficients was made

by Shu and Richards (1990) in which all the current methods for determination

of the weighting coefficients are generalized under the analysis of a high order

polynomial approximation and the analysis of a linear vector space. In Shu’s

approach, the weighting coefficients of the first order derivative are determined

by a simple algebraic formulation without any restriction on the choice of grid

(mesh) points, whereas the weighting coefficients of the second and higher or-

der derivatives are determined by a recurrence relationship. Clearly, all the

work is based on the polynomial approximation and accordingly, the related

DQ method can be considered as the Polynomial-Based Differential Quadra-

ture (PDQ) Method. Recently, Shu and Chew (1997) and Shu and Xue (1997)

have developed some simple algebraic formulations to compute the weight-

ing coefficients of the first and second order derivatives in the DQ approach

when the function or the solution of a a partial differential equation (PDE) is

approximated by a Fourier series expansion. These formulations are different

from PDQ and the approach can be termed as the Fourier Expansion-Based

Differential Quadrature (FDQ) Method.

Depending on the feature of the problem, the solution of a PDE can

be approximated by a polynomial of high degree or by the Fourier series

expansion. The FDQ approach is more suitable for problems with harmonic

behaviours such as the Helmholtz equation. Since the transient diffusion equa-

tion does not have this kind of behaviour, the PDQ Method will be used in

this thesis.

For simplicity, the one-dimensional problem is chosen to demonstrate the

PDQ Method. When a structured grid is used, the one dimensional results can

8



be directly extended to the multi-dimensional cases and thus to our problem

in two dimensions.

2.1.1 One Dimensional Polynomial-Based Differential Quadrature

Method

Following the idea of integral quadrature, the Differential Quadrature

Method approximates the derivative of a smooth function at a grid point by a

linear weighted summation of all the functional values in the whole computa-

tional domain (Shu (2000)). For example, the first and second order derivatives

of a function f(x) at a point xi are approximated by

fx(xi) =
df

dx
|xi

=
N∑

j=1

aijf(xj), i = 1, 2...N (2.8)

fxx(xi) =
d2f

dx2
|xi

=
N∑

j=1

bijf(xj), i = 1, 2...N (2.9)

where aij, bij are the weighting coefficients and N is the number of grid points

in the whole domain. It should be noted that the weighting coefficients aij(and

bij) are different at different location of xi since they depend on coordinates

of the points. The important procedure in DQ approximation is to determine

the weighting coefficients aij and bij efficiently.

When the function f(x) is approximated by a high order polynomial,

one needs some explicit formulations to compute the weighting coefficients

within the scope of a high order polynomial approximation and a linear vector

space. In accordance with the Weierstrass polynomial approximation theorem,

it is known that the solution of a one dimensional differential equation is

approximated by a (N-1)th degree polynomial

f(x) =
N−1∑

k=0

ckx
k (2.10)
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where ck’s are constants. The polynomial of degree less than or equal to

N-1 constitutes an N dimensional linear vector space VN with respect to the

operation of vector addition and scalar multiplication.

Obviously, in the linear vector space VN , a set of vectors 1, x, x2, ..., xN−1

is linearly independent. Thus,

sk(x) = xk−1, k = 1, 2, ..., N (2.11)

is a basis of VN .

For the numerical solution of a differential equation, we need to find

out the solution at certain discrete points. Now, it is supposed that in a

closed interval [a,b], there are N distinct grid points with the coordinates

a = x1, x2, ..., xN = b and the functional value at a grid point xi is f(xi).

Then the constants in Equation (2.10) can be determined from the following

system of equations

c0 + c1x1 + c2x
2
1 + ... + cN−1x

N−1
1 = f(x1)

c0 + c1x2 + c2x
2
2 + ... + cN−1x

N−1
2 = f(x2) (2.12)

.................................................................

c0 + c1xN + c2x
2
N + ... + cN−1x

N−1
N = f(xN).

The matrix of Equation (2.12) is of Vandermonde form which is not sin-

gular. Thus the equation can give unique solutions for constants c0, c1, ..., cN−1.

Once these are determined, the approximated polynomial is obtained. However,

when N is large, the matrix is highly ill-conditioned and its inversion is very

difficult to find. Then it is hard to determine the constants c0, c1, ..., cN .

Here, if rk(x), k = 1, 2, ..., N are the base polynomials in VN , f(x) can

then be expressed by

f(x) =
N∑

k=1

dkrk(x). (2.13)
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Clearly, if all the base polynomials satisfy a linear constrained relation-

ship such as Equation (2.8) or Equation (2.9), so does f(x). In the linear

vector space, there may exist several sets of base polynomials. Each set of

base polynomials can be expressed uniquely by another set of base polynomials.

This means that every set of base polynomials would give the same weight-

ing coefficients. However, the use of different sets of base polynomials will

result in different approaches to compute the weighting coefficients. Since

there are many sets of base polynomials in the linear vector space, we have

many approaches to compute the weighting coefficients.

The property of linear vector space also gives us the ability to apply

the weighting coefficients for the discretization of a differential equation. Re-

membering that the solution of a differential equation is approximated by a

polynomial of degree (N-1) which constitutes the N-dimensional vector space,

the actual expression of the polynomial contains the unknown constants ck’s

which are to be determined. On the other hand, in the linear vector space, the

set of base polynomials can be chosen to be independent of the solution. From

the property of a linear vector space, if one set of base polynomials satisfies a

linear operator so does any polynomial in the space. This indicates that the

solution of the partial differential equation also satisfies the linear operator.

Here, for generality, two sets of base polynomials are used to determine

the weighting coefficients (Shu, 2000). The first set of base polynomials is

chosen as the Lagrange interpolated polinomials,

rk(x) =
M(x)

(x− xk)M (1)(xk)
, k = 1, 2, ..., N (2.14)

where

M(x) = (x− x1)(x− x2)...(x− xN) (2.15)

and

M (1)(xk) =
N∏

j=1,j 6=k

(xk − xj) (2.16)

11



being the derivative of M(x).

Here x1, x2, ..., xN are the coordinates of grid points and may be chosen

arbitrarily but distinct.

For obtaining an efficient procedure to compute the polynomials rk(x)

at discrete points we make use of Kronecker operator as

M(x) = N(x, xk)(x− xk), k = 1, 2, ..., N (2.17)

with

N(xi, xj) = M (1)(xi)δij. (2.18)

Using Equation (2.17), Equation (2.14) can be simplified to

rk(x) =
N(x, xk)

M (1)(xk)
, k = 1, 2, ...N (2.19)

and at the point xi,

rk(xi) =
N(xi, xk)

M (1)(xk)
, i = 1, 2, ...N, k = 1, 2, ..., N. (2.20)

From Equation (2.18), we can obtain the following expression as

N(xi, xk) = M (1)(xi)δik =

{
0 if i 6= k

M (1)(xi) if i = k
(2.21)

giving rk(xi) = 0 if i 6= k and rk(xi) = 1 for i = k. Using this property of

rk(x) when i = k in the Equation (2.13) at the point xi, we obtain

f(xi) =
N∑

k=1

dkrk(xi) = di. (2.22)
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Then f(xi) takes the form

f(xi) =
N∑

k=1

f(xk)rk(xi). (2.23)

Thus the first and second order derivatives of f(x) with respect to x at

the point xi are

fx(xi) =
N∑

k=1

r′k(xi)f(xk) (2.24)

fxx(xi) =
N∑

k=1

r′′k(xi)f(xk). (2.25)

From Equation (2.8) and Equation (2.9), the coefficients aij and bij in

the first and second order derivatives of f(x) at the point xi become

r′k(xi) = aik (2.26)

r′′k(xi) = bik. (2.27)

Thus the coefficients aij and bij can be computed by taking first and

second order derivatives of rk(x) as follows,

r′j(xi) =
N (1)(xi, xj)

M (1)(xj)
= aij (2.28)

r′′j (xi) =
N (2)(xi, xj)

M (1)(xj)
= bij (2.29)

where N (1)(x, xj) and N (2)(x, xj) are the first and second order derivatives of

the function N(x, xj).

We successively differentiate Equation (2.17) with respect to x and obtain

the following recurrence formulation

M (m)(x) = N (m)(x, xk)(x− xk) + mN (m−1)(x, xk)

13



for m = 1, 2, ..., N − 1, k = 1, 2, ..., N (2.30)

where M (m)(x) and N (m)(x, xk) indicate the mth order derivative of M(x) and

N(x, xk) respectively.

From the Equation (2.30), we can easily obtain

N (1)(xi, xj) =
M (1)(xi)

xi − xj

, i 6= j (2.31)

N (1)(xi, xi) =
M (1)(xi)

2
i = j. (2.32)

Similarly, using Equation (2.30) for m=2 gives

N (2)(xi, xj) =
M (2)(xi)− 2N (1)(xi, xj)

xi − xj

, i 6= j (2.33)

N (2)(xi, xi) =
M (3)(xi)

3
. i = j (2.34)

Subsituting Equation (2.31) into Equation (2.28) and Equation (2.32)

into Equation (2.29), we finally obtain the coefficients aij and bij

aij =
M (1)(xi)

(xi − xj)M (1)(xj)
, i 6= j (2.35)

aii =
M (2)(xi)

2M (1)(xi)
(2.36)

bij = 2aij(aii − 1

xi − xj

) i 6= j (2.37)

bii =
M (3)(xi)

3M (1)(xi)
. (2.38)

It is observed that, if xi is given, it is easy to compute M (1)(xi) from

Equation (2.16) and hence aij, bij for i 6= j. However, the computation of

aii (Equation (2.36)) and bii (Equation (2.38)) involve the computation of the

second order derivative M (2)(xi) and the third order derivative M (3)(xi) which

14



are not easy to compute. This difficulty can be eliminated by the property of

the linear vector space.

According to the theory of a linear vector space, one set of base polyno-

mials can be expressed uniquely by another set of base polynomials. Thus if

one set of base polynomials satisfies a linear operator, say Equation (2.8) or

Equation (2.9), so does another set of base polynomials. As a consequence,

the Equations (2.8) and (2.9) should also be satisfied by the second set of base

polynomials xk, k = 0, 1, 2, ..., N − 1. When k=0 this set of base polynomials

gives
N∑

j=1

aij = 0 or aii = −
N∑

j=1,j 6=i

aij (2.39)

and
N∑

j=1

bij = 0 or bii = −
N∑

j=1,j 6=i

bij (2.40)

which are practical to compute once aij, bij (i 6= j) are known.

Now, the PDQ method is going to be applied to transient diffusion prob-

lem in two-dimensions and the discretization for time derivative will be per-

formed by using Runge-Kutta Method. The choice of the grid points is going

to be given in a later section.

2.1.2 Two Dimensional Differential Quadrature Method For Time-

Dependent Diffusion Equation

In previous Section Differential Quadrature Method was explained for

one-dimensional case. The time dependent diffusion equation in two-dimensions

has second order space derivatives and first order time derivative. The PDQ

Method is applied for the discretization of space derivatives of the unknown

function u, discretization with respect to time will be performed by using

15



fourth order Runge-Kutta Method. The diffusion equation in two dimensions,

∂u(x, y, t)

∂t
=

∂2u(x, y, t)

∂x2
+

∂2u(x, y, t)

∂y2
(2.41)

can be discretized by using first PDQ method as

N∑

k=1

w
(2)
ik ukj +

M∑

k=1

w̄
(2)
jk uik =

∂u(xi, yj, t)

∂t
(2.42)

for i = 1, 2, ..., N and j = 1, 2, ...,M

where N and M are the number of grid points in the x and y directions

respectively. w
(2)
ik and w̄

(2)
jk are the DQ weighting coefficients of the second

order derivatives of u with respect to x and y respectively. Those coefficients

w
(2)
ik , w̄

(2)
jk are computed analogous to the coefficients bij given in Equations

(2.37), (2.38) for one dimensional case. For example,

w
(2)
ik = 2w

(1)
ik (w

(1)
ii − 1

xi − xk

) i, k = 1, 2, ..., N (2.43)

w̄
(2)
jk = 2w̄

(1)
jk (w̄

(1)
jj −

1

yj − yk

) j, k = 1, 2, ...,M (2.44)

where w
(1)
ik , w

(1)
ii , w̄

(1)
jk and w̄

(1)
jj are also analogous to the coefficients aij of the

first order derivatives of u with respect to x and y (Equations (2.35),(2.36))

w
(1)
ik = aik =

M (1)(xi)

(xi − xk)M (1)(xk)
i 6= k (2.45)

w
(1)
ii = aii =

M (2)(xi)

2M (1)(xi)
(2.46)

w̄
(1)
jk = ājk =

M (1)(yj)

(yj − yk)M (1)(yk)
j 6= k (2.47)

w̄
(1)
jj = ājj =

M (2)(yj)

2M (1)(yj)
. (2.48)
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For the computation of diagonal entries w
(1)
ii , w̄

(1)
jj , w

(2)
ii , w̄

(2)
jj again Equations

(2.39) and (2.40) are made use of giving

w
(1)
ii = −

N∑

j=1,i6=j

w
(1)
ij , w

(2)
ii = −

N∑

j=1,i 6=j

w
(2)
ij i = 1, 2, ..., N, (2.49)

w̄
(1)
jj = −

M∑

i=1,i 6=j

w̄
(1)
ji , w̄

(2)
jj = −

M∑

i=1,i 6=j

w̄
(2)
ji j = 1, 2, ..., M. (2.50)

Now, ∂u
∂t

is also considered discretized as
∂uij

∂t
, thus Equation (2.42) is a

set of DQ algebraic equations which can be written in a matrix form

[A]{u} = {b} (2.51)

where {u} is a vector of unknown NM functional values at all discretized points

of the region, [A] is the NM×NM coefficient matrix containing the weighting

coefficients w
(2)
ik , w̄

(2)
jk and the right hand side vector {b} of size NM×1 contains

first order time derivatives of the function u at the same discretized points.

Therefore a numerical scheme is necessary for handling these time derivatives.

Equation (2.51) can be solved by several time integration schemes such as

Euler, Modified Euler, Runge-Kutta Methods. Here, Runge-Kutta Method is

going to be used since it is a one step method obtained from the Taylor series

expansion of u up to and including the terms involving (∆t)4 where ∆t is the

step size with respect to time.

2.1.3 Choice of Grid Points

Since the weighting coefficients w
(2)
ik , w̄

(2)
jk and w

(1)
ik , w̄

(1)
jk corresponding to

the discretization of the second and first order derivatives respectively, contain

grid points xi, yj’s, the choice of these grid points becomes quite important.

Equally spaced grid points, due to their obvious convenience, have been in
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use by most investigators. However, unequally spaced grid points especially

the zeros of orthogonal polynomials like Legendre and Chebyshev polynomials

usually give more accurate solutions then the equally spaced grid points.

The natural choice for the grid points is the equally spaced points which

is given by

xi =
i− 1

N − 1
a ; i = 1, 2, ..., N (2.52)

and

yj =
j − 1

M − 1
b ; j = 1, 2, ..., M (2.53)

in the x and y directions, respectively for a region [0, a] × [0, b]. For this

uniform grid (equally spaced) with step sizes ∆x and ∆y in x and y directions

respectively, one can obtain

xk − xi = (k − i)∆x, yk − yj = (k − j)∆y

M (1)(xi) = (−1)N−1(∆x)N−1(i− 1)!(N − i)! i = 1, 2, ..., N

M (1)(yj) = (−1)M−1(∆y)M−1(j − 1)!(M − j)! j = 1, 2, ..., M

and the coefficients for the first order derivatives reduce to

w
(1)
ij = (−1)i+j (i− 1)!(N − i)!

∆x(i− j)(j − 1)!(N − j)!
i, j = 1, 2, ..., N, i 6= j

w̄
(1)
ij = (−1)i+j (i− 1)!(M − i)!

∆y(i− j)(j − 1)!(M − j)!
i, j = 1, 2, ..., M, i 6= j.

The so-called Chebyshev-Gauss-Lobatto point distribution offer a better

choice and have been found consistently better than the equally spaced, Leg-

endre and Chebyshev points in a variety of problems (Bert and Malik, 1996).
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These points are the Chebyshev collacation points which are the roots of

|TN(x)| = 1 and given by (Shu,(2000))

xk = Cos(
k − 1

N − 1
π) 1 ≤ k ≤ N

for an interval [-1,1]. For a region on [a,b]

xi =
1

2
[1− cos (

i− 1

N − 1
)π]a, i = 1, 2, ..., N (2.54)

and

yj =
1

2
[1− cos (

j − 1

M − 1
)π]b, i = 1, 2, ..., M (2.55)

in the x and y directions, respectively.

For the Chebyshev-Gauss-Lobatto points we have (in x direction)

M (1)(xi) = (−1)i+1N2

M (2)(xi) = (−1)iN2 xi

1− x2

and the corresponding weighting coefficients simplify greatly.

In this thesis for discretization of the intervals, the Chebyshev-Gauss-

Lobatto point distribution is going to be used since it gives real part of all the

PDQ matrix eigenvalues strictly negative. This is the condition of obtaining

stable solutions (Shu,(2000)) for the system of ordinary differential equations.

2.1.4 Implementation of Boundary Conditions

Proper implementation of boundary conditions is very important for

the accurate solution. The insertion of Dirichlet type boundary conditions

is straightforward since these known values contribute to the right hand side

vector {b} in the system (2.51). If the boundary condition involves normal

derivatives of the unknown function u then these derivatives can also be

approximated by the Differential Quadrature Method.

19



Dirichlet Type Boundary Condition:

For imposing the Dirichlet type boundary conditions, the Equation

(2.42) should only be applied at the interior points since the solution at the

boundary grid points is known. Thus, the Equation (2.42) can be rewritten as

N−1∑

k=2

w
(2)
ik ukj +

M−1∑

k=2

w̄
(2)
jk uik =

∂uij

∂t
− sij (2.56)

where 2 ≤ i ≤ N − 1, 2 ≤ j ≤ M − 1 and

sij = (w
(2)
i1 u1j + w

(2)
iN uNj + w̄

(2)
j1 ui1 + w̄

(2)
jMuiM).

Equation (2.56) is a set of DQ algebraic equations which can be written

in matrix form

[A]{u} = {b} − {s} (2.57)

where {u} is a vector of unknown functional values at all the interior points

given by

{u} = {u22, u23, ..., u2,M−1, u32, ..., u3,M−1, ..., uN−1,2, ..., uN−1,M−1}T

and {b} is a vector still containing discretized time derivatives of u and {s}
vector contains known values of u at the boundary grid points. The size of

the matrix [A] is (N-2)(M-2) by (N-2)(M-2). Equation (2.57) can be solved by

using iterative methods for discrete time derivative values of u after the time

derivative is discretized. As mentioned before the fourth order Runge-Kutta

Method is going to be used in this thesis for discretizing the time derivative u̇.

Neumann Type Boundary Condition:

For the Neumann conditions the normal derivatives on the boundary

should also be discretized by polynomial-based differential quadrature method.
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The normal derivative of u can be written as

∂u

∂n
=

∂u

∂x
nx +

∂u

∂y
ny (2.58)

and ∂u/∂x and ∂u/∂y are discretized by using PDQ Method.

Now,

∂uij

∂x
=

N∑

k=1

w
(1)
ik ukj, i = 1, 2, ..., N (2.59)

and
∂uij

∂y
=

M∑

k=1

w
(1)
jk uik, j = 1, 2, ..., M (2.60)

where w
(1)
ik and w̄

(1)
jk are the weighting coefficients with respect to x and y

directions and obtained analogously in the one dimensional case (Equation

(2.35)).

Thus,

w
(1)
ik =

M (1)(xi)

(xi − xk)M (1)(xk)
, i 6= k (2.61)

w
(1)
ii =

M (2)(xi)

2M (1)(xi)
(2.62)

w̄
(1)
jk =

M (1)(yj)

(yj − yk)M (1)(yk)
j 6= k (2.63)

w̄
(1)
jj =

M (2)(yj)

2M (1)(yj)
. (2.64)

Assuming ∂uNj/∂x = cj (j = 1, 2, ..., M) and ∂uNj/∂y = 0 are given on

one part of the boundary, we can write

∂uNj

∂x
=

N∑

k=1

w
(1)
Nkukj = cj. (2.65)
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Rewriting Equation (2.65) as

w
(1)
NNuNj +

N−1∑

k=1

w
(1)
Nkukj = cj (2.66)

uNj is easily obtained as a value on the boundary

uNj =
1

w
(1)
NN

(cj −
N−1∑

k=1

w
(1)
Nkukj) j = 1, 2, ...M. (2.67)

These M equations for the unknowns uNj, (j = 1, 2, ..., M) are going to

be added to the DQ system of equations (2.42) which is written for i 6= N ,

j = 1, 2, ..., M for the case of Neumann type of boundary conditions
∂uNj

∂x
= cj

on x = xN , (i=N case). When normal boundary conditions are implemented

at all the related grid points, the final system of DQ equations will be again

in the form of Equation (2.57)

[A]{u} = {b} − {s}

where the vectors {b} and {s} still contains the discretized time derivatives of

u and known values of u at the boundary grid points respectively.

Thus, equations found by discretizing the normal derivatives of u on

the boundary are updated using interior u values which are not known yet.

This problem is handled during the iterations performed in the Runge-Kutta

Method since the initial u values are given.

The mixed type boundary conditions which are combinations of the

Dirichlet and Neumann conditions are implemented in a similar fashion.
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2.2 Runge-Kutta Method

The fourth order explicit Runge-Kutta Method (RKM) is applied to dis-

cretize time derivatives in the resulting system of algebraic equations (2.57).

RKM is a one step method for solving initial value problems. Our time depen-

dent diffusion problem is an initial and boundary value problem. Therefore

the resulting algebraic system of equations Equation (2.57) can originally be

considered as an initial value problem in the form (a set of ordinary differential

equations in time)

{b} =
d{u}
dt

= [A]{u}+ {s} (2.68)

where {u} is the unknown vector of values at the interior grid points, {s}
is the vector containing known boundary conditions and [A] is the weighting

coefficient matrix.

The fourth order explicit RKM is going to be explained for a ordinary

differential equation (initial value problem) in the form

u̇ = f(t, u)

u(t0) = u0

and then modified for our system of equations.

One step methods for solving u̇ = f(t, u) require only a knowledge of

the numerical solution un in order to compute the next value un+1. This has

advantages over the p-step multistep methods that use several past values

u1, ..., up that have to be calculated by another method.

The best known one-setep methods are the Runge-Kutta Methods. They

are fairly simple to program and their truncation error can be controlled more

than for the multistep methods.(Atkinson,(1978)).

The most simple one-step method is based on Taylor series expansion.
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Assume U(x, y, t) is the solution of initial value problem

u̇ = f(t, u), u(x, y, t0) = U0. (2.69)

Expanding U(x, y, t1) about t0 using Taylor’s theorem

U(x, y, t1) = U(x, y, t0) + ∆tU̇(x, y, t0) + ... +
(∆t)r

r!
U (r)(x, y, t0)

+
(∆t)r+1

(r + 1)!
U (r+1)(ξ) (2.70)

for some t0 ≤ ξ0 ≤ t1, and dropping the remainder term, we have an approxi-

mation for U(x, y, t1) provided that we can calculate Ü(x, y, t0), ..., U
(r)(x, y, t0).

Differentiate U̇(x, y, t) = f(t, U) to obtain

Ü(x, y, t) = ft(t, U(x, y, t)) + fU(t, U(x, y, t)).U̇(x, y, t)

Ü = ft + fUf

and proceed similarly to obtain the higher order derivatives U (r)(x, y, t0) of

U(x, y, t).

Although the Taylor series method can give excellent results, the deriva-

tives can be very difficult to calculate and very time-consuming to evaluate.

To avoid the differentiation of f(t, u), one can use the Runge-Kutta formulas.

Runge-Kutta methods are closely related to the Taylor series expansion

of U(x, y, t) in Equation (2.70), but differentiation of f are not necessary in

this method. All Runge-Kutta Methods will be written in the form

un+1 = un + ∆tF (tn, un, ∆t; f) n ≥ 0. (2.71)

We want

F (t, U(x, y, t), ∆t; f) ≈ U̇(x, y, t) = f(t, U(x, y, t))
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for all small values of ∆t. The truncation error for Equation (2.71) is defined

as

Tn+1(U) = U(x, y, tn+1)− U(x, y, tn)

−∆tF (tn, U(x, y, tn), ∆t; f) n ≥ 0. (2.72)

The derivation of a formula for the truncation error is linked to the

derivation of these methods and this will also be true when considering Runge-

Kutta Methods of a higher order. The derivation of Runge-Kutta Method will

be introduced by deriving a family of second order formulas (Butcher, (2003)).

We suppose F has the general form

F (t, u, ∆t; f) = γ1f(t, u) + γ2f(t + α∆t, u + α∆tf(t, u)) (2.73)

in which the three constants γ1, γ2, α are to be determined.

When the Taylor’s theorem for functions of two variables is used to ex-

pand the second term on the right hand side of Equation (2.73), through the

second derivative terms, we obtain

F (t, u, ∆t; f) = γ1f(t, u) + γ2[f(t, u) + ∆t(αft + αffu)

+(∆t)2(
1

2
α2fttf + αftuf +

1

2
α2f 2fuu)] + O((∆t)3). (2.74)

Also, one needs derivatives of U̇(x, y, t) = f(t, U(x, y, t))

Ü = ft + fuf

U (3) = ftt + 2ftuf
2 + fuuf

2 + fuft + f 2
uf (2.75)
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for the truncation error,

Tn+1(U) = U(x, y, tn+1)− U(x, y, tn)− hF (tn, U(x, y, tn), ∆t; f)

= ∆tU̇(x, y, tn) +
(∆t)2

2
Ü(x, y, tn) +

(∆t)3

6
U (3)(x, y, tn)

+O(∆t)4 −∆tF (tn, U(x, y, tn), ∆t; f).

Substituting from Equation (2.74) and Equation (2.75) and collocating

together, we obtain

Tn+1(U) = ∆t[1− γ1 − γ2]f + (∆t)2[(
1

2
− γ2α)ft + (

1

2
− γ2α)fuf ]

+(∆t)3[(
1

6
− 1

2
γ2α

2)ftt + (
1

3
− γ2α

2)ftuf + (
1

6
− 1

2
γ2α

2)fuf
2
u

+
1

6
fuft +

1

6
f 2

uf ] + O((∆t)4) (2.76)

where all derivatives are evaluated at (tn, Un).

We want to make the truncation error converge to zero as rapidly as

possible. The coefficient of (∆t)3 cannot be zero in general, if f is allowed to

vary arbitrarily. The requirement that the coefficients of ∆t and (∆t)2 be zero

leads to

γ1 + γ2 = 1 γ2α = 1/2 (2.77)

We observe that Equation (2.77) reduces to γ2 = 1/2α and γ1(1−(1/2α)).

That there are infinitely many solutions for the parameters is a peculiarity

of Runge-Kutta Methods. For example, one choice is α = 1/2, giving the

sequence

yn+1 = yn + ∆tf(tn +
∆t

2
, un +

∆t

2
f(tn, un)) n ≥ 0

which is usually called the modified Euler’s Method. Another choice is α = 2/3,
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which leads to second order Runge-Kutta Method

yn+1 = yn +
∆t

4
[f(tn, un) + 3f(tn +

2

3
∆t, un +

2

3
∆tf(tn, un))] n ≥ 0. (2.78)

Higher order formulas can be created, although the algebra becomes very

complicated. Assume a formula for F (t, u, ∆t; f) of the form

F (t, u, ∆t; f) =
m∑

j=1

γjKj

K1 = f(t, u)

Kj = f(t + αj∆t, u + ∆t

j−1∑
i=1

βjiKi) (2.79)

where 0 ≤ αj ≤ 1 and αj =
∑j−1

i=1 βji.

These coefficients can be chosen to make the leading terms in the trun-

cation error equal to zero, just as was done with Equation (2.76) and Equation

(2.77). Using Equation (2.79), one can obtain m-stage Runge-Kutta Method

to solve u̇ = f(t, u). Higher order Runge-Kutta Methods are more accurate

than lower order, but it is known that m and order k must satisfy m ≥ k for

an m-stage kth order method.

For a given value of m, there are many choices for the weights γj in

Equation (2.79) and for the parameters αj and βjr. For m = 4, a very popular

four-stage, 4th order Runge-Kutta Method is

un+1 = un +
∆t

6
[K1 + 2K2 + 2K3 + K4] (2.80)

where

K1 = f(tn, un)

K2 = f(tn +
1

2
∆t, un +

1

2
∆tK1)
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K3 = f(tn +
1

2
∆t, un +

1

2
∆tK2)

K4 = f(tn + ∆t, un + ∆tK3).

For the transient diffusion equation, considered in this thesis, the DQ

discretized set of ordinary differential equations (Equation 2.57)

[A]{u}+ {s} = {b} =
d{u}
dt

(2.81)

are solved now by using 4th order RKM (Equation (2.80)). Thus, we can

easily write by taking [A]{u}+{s} as the vector function {f(t,{u})} in the

sample initial value problem u̇ = f(t, u). So,

{f(t, {u})} = [A]{u}+ {s}. (2.82)

Thus the fourth order RKM gives for the transient diffusion equation the

following vector equation

{un+1} = {un}+
∆t

6
[{K1}+ 2{K2}+ 2{K3}+ {K4}] (2.83)

where

{K1} = [A]{un}+ {s}

{K2} = [A]{un +
∆t

2
{K1}}+ {s}

{K3} = [A]{un +
∆t

2
{K2}}+ {s}

{K4} = [A]{un + ∆t{K3}}+ {s}.

Now, the stability of the numerical scheme (2.83) in applying the system

(2.57) has to be considered for obtaining converged numerical solution to the

transient diffusion equation.
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2.3 Stability of Discretized Differential Quadrature Equations

From the application of PDQ method to the transient diffusion equation

we obtained the set of ordinary differential equations (2.57)

[A]{u} = {b} − {s}.

The stability analysis of this equation is based on the eigenvalue dis-

tribution of the DQ discretization matrix [A]. If [A] has eigenvalues λi and

corres-ponding eigenvector ξi, (i=1,2,...,K) K being the size of the matrix [A],

the similarity transformation reduces the system of the form

d{U}
dt

= [D]{U}+ {S}. (2.84)

Here the diagonal matrix [D] is formed from the eigenvalues and from a

nonsingular matrix [P] containing the eigenvectors as columns

[D] = [P ]−1[A][P ] (2.85)

{U} = [P ]−1{u} (2.86)

{S} = −[P ]−1{s} (2.87)

Since [D] is a diagonal matrix Equation (2.84) is an uncoupled set of

ordinary differential equations.

Considering the ith equation of (2.84)

dUi

dt
= λiUi + Si (2.88)

the solution is given by

Ui = (Ui(0) +
Si

λi

)eλit − Si

λi

. (2.89)
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Thus, the solution {u} of the system (2.57) can be obtained as

{u} = [P ]{U} =
K∑

i=1

Uiξi =
K∑

i=1

[Ui(0)eλit +
Si

λi

(eλit − 1)]ξi. (2.90)

Clearly, the stable solution of {u} when t →∞ requires

Re(λi) < 0 for all i (2.91)

where Re(λi) denotes the real part of λi. This is the stability condition for the

system (2.57).

When single step method is applied to the system of ordinary differential

equations, it is absolutely stable if

|Ei(λi∆t)| < 1 i = 1, 2, ..., K

Where Re(λi) < 0 and Ei(λi∆t) denotes the growth factor for each diagonal

element of E(D∆t) for approximating the matrix exp(D∆t).

Fourth order RKM has the region of absolute stability (Butcher, (2003))

−2.78 < λi∆t < 0 for real λi (2.92)

0 < |λi∆t| < 2(3/2) for pure imaginary λi. (2.93)
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CHAPTER 3

PROBLEMS AND RESULTS

In this Chapter, application of Differential Quadrature Method for Diffu-

sion type problems described in Chapter 2 as Equation (2.1) is given. First four

problems are diffusion equations with Dirichlet type boundary conditions and

the other two problems are diffusion equation with Dirichlet-Neumann type

boundary conditions together with an initial condition for each of the problems

considered. Two problems are also added with time dependent boundary

conditions and time dependent coefficients of second order derivatives in the

equations. Results are presented in terms of potential (solution of diffusion

equation) contours in (x, y) domain for certain time levels comparing with the

exact solution. Since the fourth order Runge-Kutta Method used in this thesis

is an explicit procedure, choosing the right time step ∆t for each problem to

obtain stable solution is an important feature of this study. Use of Chebyshev-

Gauss-Lobatto grid distribution guaranties the stability condition for the re-

sulting system of PDQ ordinary differential equations giving the eigenvalues of

the weighting coefficient matrix as real and negative. Choices of the time step

∆t and grid steps ∆x, ∆y are made according to the absolute stability region

of the fourth order RKM. Comparison for different numbers of grid points is

also carried. Computer programs are written in Fortran Language and run in

PC platform. All the graphics are obtained by using MATLAB package.
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Problem 1

The Dirichlet problem is defined as

∂ u(x, y, t)

∂t
−∇2u(x, y, t) = 0 (x, y) ∈ (−1, 1) (3.1)

with the initial condition

u(x, y, 0) = u0(x, y) = 1 (3.2)

and the Dirichlet boundary conditions are given by

u(x, y, t) = 0 x, y = (−1, 1). (3.3)

The analytical solution is (Tanaka and Chen (2001))

u(x, y, t) = v(x, t)v(y, t) (3.4)

where

v(z, t) =
4

π

∞∑
i=0

(−1)i

2i + 1
cos

(2i + 1

2
πz

)
e

[
−(2i+1)2 π2t

4

]
. (3.5)

This problem is solved by using several numbers of grid points and

compared with the analytical solution for finding the suitable number of grid

points. We employed N = 5, N = 7, N = 13 and N = 14 Chebyshev-Gauss-

Lobatto grid points in one direction in the Differential Quadrature Method for

comparing with the analytical solution. The number of grid points Nx and Ny

respectively for x and y directions are taken as equal to N and grid step sizes

∆x = ∆y = h.

Since we use Chebyshev-Gauss-Lobatto grid points the resulting PDQ set

of ordinary differential equations (Equation 2.57)) are stable in the sense that
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all the eigenvalues of weighting coefficients matrix [A] are real and negative

for both Dirichlet and Neumann boundary conditions.

Also absolute stability region for the fourth order RKM is−2.78 < λi∆t < 0

i=1,2,...K where K is the size of the matrix [A]. Therefore choice of h and ∆t

play an important role for the stability of the overall numerical scheme em-

ployed for solving transient diffusion equation. While the refinement of h

improves the results for PDQ part (discretization of Laplace operator part),

∆t in RKM must also be decreased since the eigenvalues are getting large in

magnitude for small h.

For the number of grid points N = 5, 7, the time step ∆t was taken to

be 0.01 first and the approximated solution agrees with the exact solution at

the time level t = 1.0 as can be seen from Figures 3.1 and 3.2. When the

number of grid points N is increased (h is decreased) to get smoother contours

of the potential at the same time level, we need smaller time steps. Thus for

N = 9, 10 and 13, we have taken ∆t = 0.001 since the maximum eigenvalue

in magnitude is about 20× 103 for N=10 (Shu,(2000)) and obtained very well

agreement with the exact solution. Figures 3.3, 3.4, 3.5 show potential values

at t = 1.0 from both DQ Method and exact solution. Figure 3.6 represents both

solutions at the time level t = 2.0 and Figure 3.7 shows the very well agreement

of the potential with the exact solution for several values of ∆t. Smaller ∆t

values provide the same accuracy but since it requires more computational

time, ∆t = 0.001 or ∆t = 0.0001 values are suitable for most of the Dirichlet

problems.

Since the solution obtained with N = 13 is already very accurate there

is no need for this problem to increase N . Increasing N will increase the size

of the coefficient matrix and this will be costly in terms of computation since

in the Runge-Kutta Method we have matrix vector multiplications four times

in each time step.

For the coming problems the number of points in one direction is going

to be taken around N = 13 since it is a suitable number of grid points in one
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direction for obtaining accurate results and for drawing the contours. Time

step size ∆t is going to be taken as 10−3 or 10−4 which gives −2.78 < λi∆t < 0

for some.
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Figure 3.1: At t=1.0 with N = 5 grid points, ∆t = 0.01.
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Figure 3.2: At t=1.0 with N = 7 grid points,∆t = 0.01.
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Figure 3.3: At t=1.0 with N = 7 grid points, ∆t = 0.001.

37



Figure 3.4: At t=1.0 with N = 9 grid points, ∆t = 0.001.
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,

Figure 3.5: At t=1.0 with N = 13 grid points, ∆t = 0.001
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Figure 3.6: At t=2.0 with N = 13 grid points, ∆t = 0.001
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Figure 3.7: At t=1.0 with N = 13 grid points
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Problem 2

The Dirichlet problem is defined as

∂ u(x, y, t)

∂t
−∇2u(x, y, t) = 0 (x, y) ∈ (0, 1) (3.6)

with the initial condition

u(x, y, 0) = u0(x, y) = sin(πx) sin(2πy) (3.7)

and the Dirichlet boundary conditions are given by

u(x, y, t) = 0 x, y = 0, 1. (3.8)

Exact solution is given by the equation

u(x, y, t) = e−5π2t sin(πx) sin(2πy). (3.9)

This Dirichlet problem differs from the Dirichlet problem 1 only in the

initial condition which is a function of x and y. The region of the problem is

still a square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. In this problem N = 13 and ∆t = 0.0001

were used for drawing potential contours at the time levels t = 0.01 and t = 0.1

in Figures 3.8 and 3.9. Figure 3.10 gives much smoother potential contours

at t = 0.1 with ∆t = 0.0001 by using N = 17 which is expected since more

points are involved for both PDQ computations and drawing graphs.
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Figure 3.8: At t=0.01 with N = 13 grid points, ∆t = 0.0001

43



Figure 3.9: At t=0.1 with N = 13 grid points, ∆t = 0.0001
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Figure 3.10: At t=0.1 with N = 17 grid points, ∆t = 0.0001
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Problem 3

The Dirichlet problem considered is

∂ u(x, y, t)

∂t
−∇2u(x, y, t) = 0 (0 < x, y < 1; t > 0) (3.10)

with the initial condition

u(x, y, 0) = u0(x, y) = 20 + 80
[
y − sin(

πx

2
) sin(

πy

2
)
]

(0 ≤ x, y ≤ 1)

(3.11)

subject to the boundary conditions

u(x, 0, t) = 20, u(x, 1, t) = 20 + 80
[
y − e−0.5π2t sin(0.5πx)

]
(3.12)

u(0, y, t) = 20 + 80y, u(1, y, t) = 20 + 80
[
y − e−0.5π2t sin(0.5πy)

]
. (3.13)

The analytical solution is given by

u(x, y, t) = 20 + 80
[
y − e−0.5π2t sin(0.5πx) sin(0.5πy)

]
. (3.14)

In this Dirichlet problem, both initial and boundary conditions are func-

tions of x and y. Results are obtained with N = 13 and ∆t = 0.0001 at

the time levels t = 0.1, t = 0.5, t = 1.0 and t = 10 as presented in Figures

3.11, 3.12, 3.13 and 3.14 respectively. As can be seen from these Figures the

steady-state case is obtained after the time level t = 0.5 giving exactly the

same contours.
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Figure 3.11: At t=0.1 with N = 13 grid points, ∆t = 0.0001
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Figure 3.12: At t=0.5 with N = 13 grid points, ∆t = 0.0001
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Figure 3.13: At t=1.0 with N = 13 grid points, ∆t = 0.0001
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Figure 3.14: At t=10 with N = 13 grid points, ∆t = 0.0001
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Problem 4

The last Dirichlet problem is defined as

∂ u(x, y, t)

∂t
−∇2u(x, y, t) = 0 (0 < x, y < π; t > 0) (3.15)

with the initial condition

u(x, y, 0) = u0(x, y) = sin(yxπ) (0 ≤ x, y ≤ π) (3.16)

subject to the boundary conditions

u(x, 0, t) = u(x, π, t) = 0 (0 ≤ x ≤ π) (3.17)

u(0, y, t) = 0 (0 ≤ y ≤ π) (3.18)

and

u(π, y, t) = sin y (0 ≤ y ≤ π). (3.19)

The analytical solution is given by

u(x, y, t) =
sinh x

sinh π
sinh y +

2

π

∞∑

k=1

(−1)k+1

k(1 + k2)1/2
e−(1+k2)1/2t sin kx sin y. (3.20)

In this problem, initial and some of the boundary conditions are also

functions of x and y as in the previous problem. The region of the problem is

a square 0 ≤ x ≤ π, 0 ≤ y ≤ π. The potential contours are obtained by using

N = 13 and ∆t = 0.001 at the time levels t = 0.1 and t = 0.01 in Figures

3.15 and 3.16. It can be seen that the Figures show the very well agreement

of the approximate solution (differential quadrature solution) with the exact

solution.
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Figure 3.15: At t=0.1 with N = 13 grid points, ∆t = 0.001
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Figure 3.16: At t=0.01 with N = 13 grid points, ∆t = 0.001
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The following two problems are Dirichlet-Neumann problems that

on some boundaries normal derivative q of the potential u is given and on the

others still Dirichlet conditions are specified.

Problem 5

This case is a reduced form of the Dirichlet problem 1 and thus holds

the same analytical solution formulas. The problem is a Dirichlet-Neumann

problem
∂ u(x, y, t)

∂t
−∇2u(x, y, t) = 0 (x, y) ∈ (0, 1) (3.21)

with the initial condition

u(x, y, 0) = u0(x, y) = 1. (3.22)

The Dirichlet boundary conditions are given by

u(1, y, t) = 0, u(x, 1, t) = 0 (3.23)

and the Neumann boundary conditions are specified as

q(0, y, t) = 0, q(x, 0, t) = 0. (3.24)

The analytical solution is given by the equations (3.4), (3.5) in problem

1 as

u(x, y, t) = v(x, t)v(y, t) (3.25)

where

v(z, t) =
4

π

∞∑
i=0

(−1)i

2i + 1
cos

(2i + 1

2
πz

)
e

[
−(2i+1)2 π2t

4

]
. (3.26)

54



For Dirichlet-Neumann problem defined in the region (x, y)ε[0, 1]× [0, 1]

has two homogenous Dirichlet and two homogenous Neumann type boundary

conditions with unity initial condition.

For this problem Neumann conditions are also discretized to the final

system of equations. The number of discretization points N = 10 was suitable

for obtaining potential contours. Figures 3.17 gives potential at t = 0.1 with

∆t = 0.001 obtained by using N = 13 grid points. Figures 3.18 and 3.19

present solution of the problem at the time level t = 0.1 with ∆t = 0.001 and

∆t = 0.0001 respectively and by using N = 10. As can be seen smaller ∆t

gives better accuracy for this Dirichlet-Neumann problem. This may be due

to the behaviour of mixed boundary conditions since the maximum eigenvalue

in magnitude also vary with varying h. We continue with N = 10 grid points

since it gives almost the same accuracy with N = 13 for the other computations

in solving Dirichlet-Neumann diffusion problems for decreasing computational

cost.
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Figure 3.17: At t=0.1 with N = 13 grid points, ∆t = 0.001
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Figure 3.18: At t=0.1 with N = 10 grid points, ∆t = 0.001
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Figure 3.19: At t=0.1 with N = 10 grid points, ∆t = 0.0001
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Problem 6

The Dirichlet-Neumann problem considered is

∂ u(x, y, t)

∂t
−∇2u(x, y, t) = 0 (0 < x, y < 1; t > 0) (3.27)

with the initial condition

u(x, y, 0) = u0(x, y) = 20 + 80
[
y − sin(

πx

2
) sin(

πy

2
)
]

(0 ≤ x, y ≤ 1)

(3.28)

subject to the boundary conditions

u(x, 0, t) = 20 q(x, 1, t) = 80 (3.29)

u(0, y, t) = 20 + 80y q(1, y, t) = 0. (3.30)

The theoretical solution is given by the equation

u(x, y, t) = 20 + 80
[
y − e−0.5π2t sin(0.5πx) sin(0.5πy)

]
. (3.31)

This problem is the modified form of problem 3 in boundary conditions.

Two of the Dirichlet type boundary conditions are converted to Neumann

conditions. In this way normal derivatives on the respective boundaries are

included to the final system of equations through PDQ formulations. As ex-

pected the same potential contours are obtained as in problem 3 at the time

levels t = 0.1, t = 0.5, t = 1.0 and t = 10 respectively in Figures 3.20, 3.21,

3.22, 3.23 with ∆t = 0.0001 but by using N = 10. Around with t = 0.5 the

steady state case is reached.
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Figure 3.20: At t=0.1 with N = 10 grid points, ∆t = 0.0001
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Figure 3.21: At t=0.5 with N = 10 grid points, ∆t = 0.0001
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Figure 3.22: At t=1.0 with N = 10 grid points, ∆t = 0.001
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Figure 3.23: At t=10 with N = 10 grid points, ∆t = 0.0001
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Problems 7 and 8 are different in nature from the previous Dirichlet type

problems. In these problems boundary conditions are not only functions of

x and y but also the time t. Also second order derivatives have coefficients

containing space variables in Problem 7 and space together with time variables

in Problem 8.

In these problems N = 13 is used as in the other Dirichlet problems.

Problem 7

The Dirichlet problem is defined as

∂u(x, y, t)

∂t
=

1

4
(1− x2)

∂2u

∂x2
+

1

4
(1− y2)

∂2u

∂y2
0 ≤ x, y ≤ 0.9, t > 0 (3.32)

with the initial condition

u(x, y, 0) = (1− x2)(1− y2) (3.33)

and the Dirichlet boundary conditions are given by

u(x, 0, t) = (1− x2)e(−t) u(x, 0.9, t) = 0.19e(−t)(1− x2) (3.34)

u(0, y, t) = (1− y2)e(−t) u(0.9, y, t) = 0.19e(−t)(1− y2). (3.35)

The analytical solution is given by

u(x, y, t) = (1− x2)(1− y2)e(−t). (3.36)

Potential contours are given in Figures 3.24 and 3.25 at the time level

t = 1.0 by using N = 13, ∆t = 0.001 and ∆t = 0.0001 respectively. Agreement

with the exact solution is perfect for this problem. In Figure 3.26 behavior
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of potential is presented at t = 0.1 with the same parameters N = 13 and

∆t = 0.0001.

One can see that time dependent boundary conditions are easily inserted

in DQM.
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Figure 3.24: At t=1.0 with N = 13 grid points, ∆t = 0.001
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Figure 3.25: At t=1.0 with N = 13 grid points, ∆t = 0.0001
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Figure 3.26: At t=0.1 with N = 13 grid points, ∆t = 0.001
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Problem 8

In this problem coefficients of the second order derivatives are func-

tions of x, y and t.

∂u(x, y, t)

∂t
=

x + 1

2(1 + y)(1 + t)2

∂2u

∂x2
+

1 + y

2(1 + x)(1 + t)2

∂2u

∂y2
0 ≤ x, y ≤ 1, t > 0

(3.37)

with the initial condition

u(x, y, 0) = e(1+x)(1+y) (3.38)

and the Dirichlet boundary conditions are given by

u(x, 0, t) = e(1+x)(1+t) u(x, 1, t) = e2(1+x)(1+t) (3.39)

u(0, y, t) = e(1+y)(1+t) u(1, y, t) = e2(1+y)(1+t). (3.40)

The analytical solution is

u(x, y, t) = e(1+x)(1+y)(1+t). (3.41)

The weighting coefficients are recomputed for each time level and there-

fore the matrix [A] is changed from time level to time level. Since the size of

the matrix is small this recomputations are not time consuming contrary to

FDM and FEM.

Here, ∆t = 0.0001 is used for drawing potential contours at the time

level t = 0.1 and t = 0.01. Figures 3.27 and 3.28 show very well agreement

between computed solution and exact solution.
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Figure 3.27: At t=0.1 with N = 13 grid points, ∆t = 0.0001
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Figure 3.28: At t=0.01 with N = 13 grid points, ∆t = 0.0001
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CHAPTER 4

CONCLUSION

In this thesis, the Differential Quadrature Method is accompanied with

the fourth order Runge-Kutta Method for solving time dependent diffusion

equation. Derivatives in space directions are discretized with DQM while time

derivative is discretized by using 4th order RKM. The combination of these

two methods performs very well since the resulting system of ordinary differen-

tial equations is stable for Dirichlet and Dirichlet-Neumann type of boundary

conditions and the explicit 4th order RKM has quite a large stability region

as well as practical to use.

The numerical procedure presented is applied to several Dirichlet Dirichlet-

Neumann type problems. The solutions depend on the choices of step sizes ∆t

and h in time and space directions respectively since they have to satisfy the

stability criteria of RKM. Thus, results are obtained and presented in terms

of contours for several values of ∆t and h (for several values of number of grid

points)

Time dependent coefficients in the equation and time dependent boundary

conditions are also implemented in the method and applied to two problems.

When the results are compared with the exact solutions, the high accuracy,

efficiency and the stability of the method is observed.

For the DQM discretization, we did not require more than N = 13 number

of grid points in space directions since with N = 13 we obtained very well

accuracy. Thus, DQM has the advantage that it gives very accurate numerical

results using a considerably smaller number of grid points as compared to the

other numerical methods.
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