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ABSTRACT

THE ENHANCEMENT OF THE CELL-BASED GIS ANALYSES WITH

FUZZY PROCESSING CAPABILITIES

Yanar, Tahsin Alp

M.Sc., Department of Geodetic and Geographic Information Technologies

Supervisor: Assist. Prof. Dr. Zuhal Akyürek

August 2003, 101 pages

In order to store and process natural phenomena in Geographic Information

Systems (GIS) it is necessary to model the real world to form computational

representation. Since classical set theory is used in conventional GIS software

systems to model uncertain real world, the natural variability in the environ-

mental phenomena can not be modeled appropriately. Because, pervasive im-

precision of the real world is unavoidably reduced to artificially precise spatial

entities when the conventional crisp logic is used for modeling.

An alternative approach is the fuzzy set theory, which provides a formal

framework to represent and reason with uncertain information. In addition,

linguistic variable concept in a fuzzy logic system is useful for communicating

concepts and knowledge with human beings.

In this thesis, a system to enhance commercial GIS software, namely ArcGIS,

with fuzzy set theory is designed and implemented. The proposed system al-

lows users to (a) incorporate human knowledge and experience in the form of

linguistically defined variables into GIS-based spatial analyses, (b) handle impre-
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cision in the decision-making processes, and (c) approximate complex ill-defined

problems in decision-making processes and classification.

The operation of the proposed system is presented through case studies,

which demonstrate its application for classification and decision-making pro-

cesses. This thesis shows how fuzzy logic approach may contribute to a better

representation and reasoning with imprecise concepts, which are inherent char-

acteristics of geographic data stored and processed in GIS.

Keywords: Fuzzy set theory, Geographic Information Systems, Uncertainty,

Decision-making, Classification.
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ÖZ

HÜCRE TABANLI CBS ANALİZLERİNİN BULANIK İŞLEME

KAPASİTESİ İLE GELİŞTİRİLMESİ

Yanar, Tahsin Alp

Yüksek Lisans, Jeodezi ve Coğrafi Bilgi Teknolojileri Bölümü

Tez Yöneticisi: Assist. Prof. Dr. Zuhal Akyürek

Ağustos 2003, 101 sayfa

Doğaya ait verilerin Coğrafi Bilgi Sistemlerinde (CBS) saklanabilmesi ve işlene-

bilmesi için gerçek dünyanın hesaplanabilir biçime dönüştürülmesi gerekir. Ge-

leneksel CBS yazılımlarında belirsizlik içeren gerçek dünyanın modellenmesi için

klasik küme teorisi kullanıldığından, çevredeki doğal değişkenlik uygun olarak

modellenemez. Çünkü, modelleme için klasik mantık kullanıldığında gerçek

dünyayı çevreleyen kesin olmayan verilerin yapay bir kesinlik içeren mekansal

varlıklara dönüştürülmesi kaçınılmazdır.

Alternatif yaklaşım olarak, belirsizlik içeren bilgiyi ifade etmek ve belirsizlik

içeren bilgiyi kullanarak sonuç çıkarmak için biçimsel bir çatı sunan bulanık

küme teorisi kullanılabilir. Buna ek olarak, bulanık mantık sisteminde yeralan

dilsel değişkenler insan düşünce ve bilgisinin aktarılmasında faydalıdır.

Bu tezde, ticari bir CBS yazılımı olan ArcGIS’i, bulanık küme teorisi ile

geliştiren sistem tasarlandı ve gerçekleştirildi. Geliştirilen sistem kullanıcılara

(a) insan bilgisini ve deneyimini, doğal dilde tanımlanan değişkenler aracılığı ile

CBS tabanlı konumsal analizlere aktarabilme, (b) karar verme sürecinde kesin
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olmayan verileri işleyebilme ve (c) karar verme süreçlerinde ve sınıflandırmada

yer alan kompleks, tam olarak tanımlanamayan problemleri yaklaşık olarak

tanımlayabilme imkanlarını sağlar.

Önerilen sistemin işleyiş şeklinin gösterilmesi amacı ile sınıflandırma ve karar

verme süreçlerinin geliştirilen sistemde uygulanması örneklendirilerek incelenmiş-

tir. CBS’lerinde saklanan ve işlenen coğrafi verilerin kesinlik taşımaması coğrafi

verilerin doğal bir karakteristiğidir. Bu tezde, kesinlik taşımayan coğrafi veri-

lerin bulanık küme yöntemleri ile nasıl daha iyi bir şekilde işlenebileceği ve bu

verileri kullanarak nasıl daha iyi sonuçlar alınabileceği gösterilmiştir.

Anahtar Kelimeler: Bulanık küme teorisi, Coğrafi Bilgi Sistemleri, Belirsizlik,

Karar verme, Sınıflandırma.
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CHAPTER 1

INTRODUCTION

1.1 The Scope and The Objectives

Geographic Information Systems (GIS) are computer-based systems that store

and process (e.g. manipulation, analysis, modeling, display, etc.) spatially refer-

enced data at different points in time (Aronoff, 1989). Geographic data, stored

and processed in a GIS, form a conceptual model of the real world (Aronoff,

1989). The abstraction of the real world to construct the conceptual model un-

avoidably results in differentiation between objects of the real world and their

representation in GIS (i.e., computer) (Wang and Hall, 1996; Burrough, 1986).

Because, classical set theory used in a conventional GIS is inadequate to ex-

press the natural variability in the environmental phenomena (Wang and Hall,

1996). Essentially, the contention is that the conventional precise quantitative

techniques are intrinsically unsuited for dealing with the real world or for that

matter, any system whose complexity or uncertainty degree is comparable to

that of the real world. As it is stated by Heuvelink and Burrough (2002) there

will often be meaningful discrepancies between reality and its representation

since the reality is forced into rigid data storage formats.

The translation of geographic data from real world to conceptual (or per-

ceptual) space is based on human cognition (Benedikt et al., 2002). Thus, an
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alternative approach to crisp logic is based on the key elements in human think-

ing (Zadeh, 1973). The most important aspects of human thinking is the ability

to summarize information (i.e., approximation) (Burrough, 1986; Zadeh, 1973;

Benedikt et al., 2002). The human brain may not require high degree of pre-

cision to perform most of the basic tasks. The human brain takes advantage

of imprecision and encodes information into labels of fuzzy sets. Therefore, the

major difference between human intelligence and machine intelligence used in

most GIS software is the ability to summarize information and to manipulate

fuzzy sets (Zadeh, 1973).

Since humans have the ability to summarize information (i.e., information

about complex and imprecise phenomena), each word in a natural language

may be viewed as a summarized description (Zadeh, 1973). Therefore, natural

language has a way of deriving information and making decisions about complex

and imprecise phenomena (Benedikt et al., 2002). Since language is also used

as a tool for communicating knowledge in a decision-making process, the main

objective of this thesis is the incorporation of human knowledge and experience

in the form of linguistically defined variables into raster based GIS through the

use of fuzzy set theory. To accomplish this objective, a commercial GIS software

namely ArcGIS, which is a major GIS desktop system, is enhanced with fuzzy

set theory. Another objective is to show how GIS technology may contribute to

a better understanding of formal definitions of geographic categories.

The developed system can be viewed as a scheme for capturing experts’

knowledge on a specific problem. Through the use of linguistic variables, ex-

perts’ experiences in the problem domain, even though they naturally involve

imprecision, are converted to fuzzy rules. Therefore, the proposed system should

allow users to handle imprecision in the decision-making process by knowing only

the fuzzy logic background. Easy to use graphical user interfaces (GUIs) should

enable users to define fuzzy rules without necessarily knowing all the underlying

concepts of the fuzzy set theory.

Fuzzy set theory has been used considerably not only in the researches but

2



also in the industrial applications to solve a wide range of problems. Applications

of fuzzy set theory in cruise control (Isuzu, Nissan, Mitsubishi), Sendai subway

operation (Hitachi), automatic transmission (Honda, Nissan, Subaru), eleva-

tor scheduling (Fujitech, Mitsubishi, Hitachi), microwave oven (Hitachi, Sanyo,

Sharp, Toshiba), refrigerator (Sharp), video image stabilizer (Matshushita/Pa-

nasonic), video camera autofocus (Sanyo, Canon) and washing machine (Hitachi,

Matshushita, Samsung, Sanyo, Sharp, Goldstar, Daewoo) have emphasized a

way for an effective use of fuzzy set theory in the complex ill-defined processes

(for many additional applications see (Maiers and Sherif, 1985; Kosko, 1994;

Lee, 1990a)). The proposed system should allow users to approximate complex

ill-defined problems in decision-making processes and classification to obtain

better results.

Fuzzy set theory has been used in many GIS researches to solve specific

decision-making problems, classification processes, representing and handling

uncertainty in data. The developed system should not be dedicated to a specific

decision-making problem or it should not be limited with a specific classification

process.

A fuzzy logic system (FLS) is a nonlinear system that maps input vari-

ables into a crisp scalar output, and is rich with the number of possible designs

(Mendel, 1995). The richness of FLS was not taken into consideration while

using (or integrating) fuzzy logic theory to enhance GIS operations. However,

the proposed system should enable users to decide on the type of membership

functions (triangular, trapezoidal, Gaussian, bell-shaped, sigmoidal, S, Π1 type,

Π2 type), parameters of membership functions, inference methods (minimum,

product), aggregation methods (maximum, sum, probabilistic-or), conjunction

operators (drastic product, bounded product, Einstein product, algebraic prod-

uct, Hamacher product, minimum), disjunction operators (drastic sum, bounded

sum, Einstein sum, algebraic sum, Hamacher sum, maximum) and defuzzifier

(center of area, bisector of area, mean of maximum, largest of maximum, small-

est of maximum). To demonstrate the richness of the system, choosing among

3



the parenthetical possibilities will lead to 230 = 1073741824 different choices.

This richness of the system can be viewed as another contribution of the work

within the scope of this thesis.

1.2 Organization of the Thesis

The organization of the thesis is as follows: a brief overview of fuzzy set method-

ologies in comparison with crisp logic and GIS interests in fuzzy set theory are

explained in Chapter 2.

Chapter 3 is reserved for the design of Fuzzy Inference System. The Fuzzy

Inference System has been developed on a commercial GIS software namely

ArcGIS and is composed of two components, Fuzzy Inference Engine and Fuzzy

Inference System Module. After giving general architecture design and workflow

of the Fuzzy Inference System, design details of Fuzzy Inference Engine and

Fuzzy Inference System Module are presented.

Chapter 4 begins with a brief discussion on commercial GIS software ArcGIS,

which the Fuzzy Inference System has been developed on. The implementation

details of Fuzzy Inference Engine and Fuzzy Inference System Module are de-

scribed. In this chapter public interfaces that can be used by the client or user

of functionality are presented. Chapter concludes with the description of the

development environment and elements affecting performance.

In Chapter 5, causes of the employment of crisp logic in GIS and effects

of employing fuzzy set theory in GIS are presented through case studies. The

operation of the system is tested and results obtained from the system are ex-

amined in order to clarify differences between sharply defined rules and rules

which involve imprecision.

The identification of fuzzy models, estimating the parameters of membership

functions, performance of the proposed system and discussion on fuzzy rule based

model types are presented in Chapter 6.

The thesis concludes with Chapter 7 in which case studies are discussed and

the eventual improvements for future work are stated.
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CHAPTER 2

FUZZY LOGIC

Fuzzy set theory provides a formal system for representing and reasoning with

uncertain information. Linguistic variable concept in a fuzzy logic system en-

ables to handle numerical data and linguistic knowledge simultaneously (Mendel,

1995). Even L. A. Zadeh (1965), formulated the initial statement of fuzzy set

theory (Maiers and Sherif, 1985), at first never expected fuzzy sets to be used

in consumer products or in geographic information systems (Perry and Zadeh,

1995).

This chapter presents the fundamental concepts in fuzzy set theory. Since

fuzzy set theory generalizes classical set theory, the theoretical information is

given in both classical and fuzzy sense. Chapter concludes with the discussion

on applications of fuzzy set theory in Geographic Information Systems.

2.1 Classical Sets

A collection of objects of any kind form a classical set and the objects themselves

are called elements or members of the set. The elements of a classical set A in

a universe of discourse U can be defined by specifying a condition. One other

way to identify the elements of A is by introducing characteristic function for

A, denoted as µA(x), such that µA(x) = 1 if x ∈ A and µA(x) = 0 if x /∈ A.
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(a) (b) (c)

Figure 2.1: Partition of the lectures in METU into subsets by (a) departments,
(b) student capacity, and (c) type.

Example 2.1 Consider the set of cities, C in Turkey whose population is greater

than one million. C can be defined as C = {u| totalpopulation(u) > 1 Million

AND country (u) = Turkey}. If population of a city exceeds one million, then

it is completely in the set of C, hence its grade of membership is unity.

Example 2.2 Consider the set of lectures, L in METU. Many different types

of subsets can be established for L. Three of them are shown in Figure 2.1. It

is seen that if a course is held in GGIT, its membership function value for the

subset of GGIT is unity, whereas its membership function value for the subset

of CENG is zero.

2.2 Fuzzy Sets

A fuzzy set is a generalization to classical set to allow objects to take membership

values between zero and unity in vague concepts (Zadeh, 1965). A fuzzy set F

defined on a universe of discourse U is characterized by a membership function

µF (x) that maps elements of universe of discourse U to their corresponding

membership values which is a real number in the interval [0, 1].

Example 2.3 A course can be viewed as “department specific” or not from

different perspectives. One perspective is that, a course is considered to belong

to a department where it is delivered. This is a very crisp definition. However,
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Figure 2.2: Membership functions for courses.

many students from different departments can take this course. This makes the

course not as departmental as it once was. Because many of the students taking

this course what is considered to be students of that department are actually not.

Consequently, membership functions for courses can be defined like depicted in

Figure 2.2.

It can be observed that a course exists in both subsets simultaneously -

department specific and shared - but to different grades of membership. Note

that it is not clear a course is department specific or shared when 50% of the

students are from different departments (see (Kosko, 1994) for discussions on

maximum fuzziness and paradoxes). From Example 2.3 it is obvious that an

element can belong to more than one fuzzy set to different degrees. This is not

allowed in classical set theory. A fuzzy set F, in a universe of discourse U can

be written as (Zadeh, 1973)

F =

∫

U

µF (x)

x
(2.1)

where integral sign stands for the union operation (details of union operation

on fuzzy sets will be discussed in Section 2.6). The term µF (x)/x describes the

degree of similarity of x in F . If U is discrete, then (2.1) may be replaced by
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the summation

F =
∑

U

µF (x)

x
(2.2)

in which summation sign denotes union operation.

2.3 Linguistic Variables

Developing approximate solutions, to model a system whose complexity is com-

parable to that of humanistic systems, i.e., human-centered, in an effective way,

i.e., trade off between precision and cost, relies on the use of linguistic variables

(Zadeh, 1973; Yen, 1999).

Precise quantitative techniques to model humanistic systems are not relevant

to the real world because as Zadeh (1973) states, “As the complexity of a sys-

tem increases, our ability to make precise and yet significant statements about

its behavior diminishes until a threshold is reached beyond which precision and

significance (or relevance) become almost mutually exclusive characteristics”.

An alternative approach is to summarize information as humans. Humans do

not require high degree of precision while performing basic tasks. An approxi-

mate collection of data is sufficient for human brain. The ability to summarize

information is essential to characterize the complex systems. In this context,

linguistic variables provide the ability to summarize information.

As pointed in the previous section fuzzy sets are characterized by member-

ship functions. In addition to membership functions, fuzzy sets are associated

linguistically meaningful terms. This association makes it easier for human ex-

perts to express their expertise using linguistic terms (Yen, 1999).

A linguistic variable is usually composed of atomic and composite labels (i.e.,

linguistic terms, e.g., words, phrases, and sentences) (Zadeh, 1973).

Example 2.4 Let age(u) be a linguistic variable. Then its values child, young,

middle-aged, old, etc., may be interpreted as set of terms linguistic variable

u decomposed into: T (age) = {child, young,middle − aged, old} where each

8



Figure 2.3: Membership functions for T (age) = {child, young, middle − aged,
old}.

term is characterized by a fuzzy subset in the universe of discourse, U = [0, 60].

Membership functions of these terms are depicted in Figure 2.3.

2.4 Membership Functions

A membership function µF (x) maps each point in the input space to a degree of

membership between zero and unity. Formally, if U is the universe of discourse

and its elements are denoted by x, then a fuzzy set F in U is defined as a set of

ordered pairs

F = {x, µF (x)|x ∈ X} (2.3)

where µF (x) is called the membership function of x in F . Most commonly used

membership functions are in the sequel:

Triangular membership function: Triangular membership function depends

on three scalar parameters a, b, and c as given by

triangle(x : a, b, c) =





0 x < a

(x− a)/(b− a) a ≤ x ≤ b

(c− x)/(c− b) b ≤ x ≤ c

0 x > c

(2.4)
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or in more compact form, by

triangle(x : a, b, c) = max

(
min

(
x− a

b− a
,
c− x

c− b

)
, 0

)
(2.5)

The parameters a and c locate the “feet” of the triangle and the parameter

b locates the peak. Figure 2.4(a) illustrates an example of a triangular

membership function.

Trapezoidal membership function: A trapezoidal membership function de-

pends on four scalar parameters a, b, c, and d as given by

trapezoidal(x : a, b, c, d) =





0 x < a

(x− a)/(b− a) a ≤ x < b

1 b ≤ x < c

(d− x)/(d− c) c ≤ x < d

0 x ≥ d

(2.6)

or in more compact form, by

trapezoidal(x : a, b, c, d) = max

(
min

(
x− a

b− a
, 1,

d− x

d− c

)
, 0

)
(2.7)

The parameters a and d locate the “feet” of the trapezoid and the pa-

rameters b and c locate the “shoulders”. Triangular and trapezoidal mem-

bership functions have the advantage of simplicity, hence have been used

extensively. Figure 2.4(b) illustrates an example of a trapezoidal member-

ship function.

Gaussian membership function: Gaussian membership function is built on

the Gaussian distribution curve and depends on two parameters m, σ

gaussian(x : m,σ) = e
−(x−m)2

σ2 (2.8)

where m and σ defines the center and width of the function. Figure 2.4(c)

illustrates an example of a Gaussian membership function.

Bell-shaped membership function: A bell-shaped membership function de-

pends on three parameters a, b, and c as given by

bell(x : a, b, c) =
1

1 + |x−c
a
|2b

(2.9)
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(a) (b)

(c) (d)

Figure 2.4: Examples of membership functions (a) Triangle(x : 20, 60, 80), (b)
Trapezoidal(x : 10, 20, 60, 95), (c) Gaussian(x : 50, 20), (d) Bell(x : 20, 4, 50).

Gaussian and bell-shaped membership functions have the advantage of

being smooth and non-zero at all points. Although the Gaussian mem-

bership functions and bell-shaped membership functions achieve smooth-

ness, asymmetric membership functions, which are important in certain

applications, are not specified. Figure 2.4(d) illustrates an example of a

bell-shaped membership function.

Sigmoidal membership function: Sigmoidal membership function is speci-

fied by two parameters a, and c as given by

sigm(x : a, c) =
1

1 + e−a(x−c)
(2.10)

The sigmoidal membership function is inherently open to the right or to

the left depending on the sign of the parameter a, hence is appropriate for

representing concepts such as “very large” or “very negative”. An example

of a sigmoidal membership function is depicted in Figure 2.5(a).

S membership function: S membership function is specified by two parame-

11



ters a, and b. The function is as follows:

s(x : a, b) =





0 x < a

2
(

x−a
b−a

)2
a ≤ x ≤ a+b

2

1− 2
(

x−b
b−a

)2 a+b
2
≤ x < b

1 x ≥ b

(2.11)

An example of S membership function is depicted in Figure 2.5(b).

Π1 type membership function: The first Π membership function is specified

by two parameters a, and b. The function is as follows:

Π1(x : a, b) =
1

1 +
(

x−a
b

)2 (2.12)

The shape of the function is depicted in Figure 2.5(c).

Π2 type membership function: The second Π membership function is spec-

ified by four parameters lw, lp, rp, and rw as given by

Π2(x : lw, lp, rp, rw) =





lw
lp+lw−x

x < lp

1 lp ≤ x ≤ rp

rw
x−rp+rw

x > rp

(2.13)

The shape of the function is depicted in Figure 2.5(d).

2.5 Hedges

Meaning of a linguistic term, or more generally, of a fuzzy set can be modified

through the use of linguistic hedge (Yen, 1999). For example, if tall is a fuzzy

set, then the meaning of the fuzzy set tall can be modified to very tall, more-or

less tall, not tall, and not very tall etc. by applying hedges very, more-or less,

and not. It is noted that combinations of hedges can be applied to modify the

meaning of a fuzzy set. A hedge may be regarded as an operator that acts upon

a membership function of a fuzzy set.

If F is a fuzzy subset defined over the universe of discourse U and its elements

are denoted by x then some of the operations on F are listed below (Yen, 1999;

Mendel, 1995):
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(a) (b)

(c) (d)

Figure 2.5: Examples of membership functions (a) Sigmoidal(x : 0.2, 50), (b)
S(x : 20, 80), (c) Π1(x : 50, 5), (d) Π2(x : 5, 40, 60, 5).

Concentration: The operation of concentration is defied by

µCon(F )(x)
4
= [µF (x)]2 (2.14)

Concentration operation narrows the membership function as it is seen

from the Figure 2.6.

Dilation: The operation of dilation is defied by

µDil(F )(x)
4
= [µF (x)]1/2 (2.15)

The effect of dilation operation is the opposite of the concentration oper-

ation. Figure 2.6 depicts the effect of dilation operation.

Artificial Hedges: The artificial hedges plus and minus are defined by

µPlus(F )(x)
4
= [µF (x)]1.25 (2.16)

µMinus(F )(x)
4
= [µF (x)]0.75 (2.17)

The artificial hedges provide milder degrees of concentration and dilation

than the previously defined operators (2.14) and (2.15).
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Figure 2.6: Examples of concentration and dilation.

2.6 Set Operations

After summarizing basic operations on classical sets, operations on fuzzy sets

are introduced in this section.

2.6.1 Operations on Crisp Sets

It is considered that A and B are two subsets of the universe of discourse U .

The union of A and B, denoted A∪B, is given by A∪B = {x|x ∈ A or x ∈ B}
i.e., µA∪B(x) = 1 if x is contained in either A or B. The intersection of A and

B, denoted A ∩ B, is given by A ∩ B = {x|x ∈ A and x ∈ B} i.e., µA∩B(x) = 1

if x is simultaneously in both A and B. The complement of A, denoted A, is

defined as A = {x|x ∈ U and x /∈ A} i.e, µA(x) = 1 if x is not contained in A.

Note that these definitions can be written as follows (Yen and Langari, 1999;

Mendel, 1995):

A ∪B ⇒ µA∪B(x) = max (µA(x), µB(x)) (2.18)
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A ∩B ⇒ µA∩B(x) = min (µA(x), µB(x)) (2.19)

A ⇒ µA(x) = 1− µA(x) (2.20)

Among the others the two fundamental laws of crisp set theory are: Law of

Contradiction A∩A = ∅ which states that an element x can either in the set A

or in the complement of the set A, (i.e., A). The Law of the Excluded Middle

A ∪ A = U asserts that a set and its complement must comprise the universe,

U .

2.6.2 Operations on Fuzzy Sets

The negation not, and the set operations union and intersection are defined on

fuzzy sets in terms of their membership functions. It is considered that A and

B are fuzzy subsets, described by membership functions µA(x) and µB(x) and

defined on a universe of discourse U . The union of fuzzy sets A and B is defined

by (Zadeh, 1973)

A ∪B
4
=

∫

U

(µA(x) ∨ µB(x)) /x (2.21)

The union operation corresponds to “or” connective (disjunction). The inter-

section of fuzzy sets A and B is defined by (Zadeh, 1973)

A ∩B
4
=

∫

U

(µA(x) ∧ µB(x)) /x (2.22)

The intersection operation corresponds to “and” connective (conjunction). The

complement of fuzzy set A is defined by (Zadeh, 1973)

A
4
=

∫

U

(1− µA(x)) /x (2.23)

The complement operation corresponds to negation “not”. There are many

choices for the fuzzy union and fuzzy intersection operators. The set of fuzzy

union operators is called t-conorm (triangular conorms) or s-norm and the set of

fuzzy intersection operators is called t-norm (triangular norms) operators (Yen

and Langari, 1999; Yen, 1999; Mendel, 1995). Due to the principle of duality

between the two operators, the choice of t-norm operator determines the choice
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of t-conorm operator, and vice versa. Typical t-norm, t-conorm pairs are listed

below (Yen and Langari, 1999):

Drastic Product:

tDrastic(x, y) =





min{x, y} if max{x, y} = 1

0 x, y < 1
(2.24)

Drastic Sum:

sDrastic(x, y) =





max{x, y} if min{x, y} = 0

1 x, y > 0
(2.25)

Bounded Difference:

tBounded(x, y) = max{0, x + y − 1} (2.26)

Bounded Sum:

sBounded(x, y) = min{1, x + y} (2.27)

Einstein Product:

tEinstein(x, y) =
x · y

2− [x + y − (x · y)]
(2.28)

Einstein Sum:

sEinstein(x, y) =
x + y

[1 + x · y]
(2.29)

Algebraic Product:

tAlgebraic(x, y) = x · y (2.30)

Algebraic Sum:

sAlgebraic(x, y) = x + y − x · y (2.31)

Hamacher Product:

tHamacher(x, y) =
x · y

x + y − (x · y)
(2.32)
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Hamacher Sum:

sHamacher(x, y) =
x + y − 2xy

1− (x · y)
(2.33)

Minimum:

tMinimum(x, y) = min{x, y} (2.34)

Maximum:

sMaximum(x, y) = max{x, y} (2.35)

Example 2.5 If the color is regarded as a linguistic variable, then its values,

white, red, yellow, etc., may be interpreted as terms of fuzzy subsets of the

universe. In this sense, the redness of a rose is determined by the membership

function µRed(rose). Suppose a rose belongs to the set of red roses to degree

0.73, i.e., µRed(rose) = 0.73. This rose also belongs to the complement of the

set at a degree µRed(rose) = 0.27. Therefore, rose partially belongs to both set

of red roses and its complement.

Example 2.5 shows that an element may simultaneously belong to a fuzzy set

and its complement. It is seen that fuzzy sets violate the Law of Excluded Middle

and the Law of Contradiction. Consequently, formula equivalents in crisp set

theory are not necessarily equivalent in fuzzy set theory (Yen and Langari, 1999;

Yen, 1999; Mendel, 1995). Ignoring such differences i.e., adopting wrong axioms

for fuzzy sets, may incorrectly lead to rejection of fuzzy set theory (Elkan, 1994).

2.7 Relations

In this section classical relations and compositions will be used as basis for the

discussion of fuzzy relations and fuzzy compositions.

2.7.1 Crisp Relations and Compositions

A crisp relation describes an association between two or more objects. Formally,

if U and V are domains of the variables u and v respectively, then a relation

on variables u and v is described as a set of ordered pairs in U × V , such that
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U × V = {(x, y)|x ∈ U and y ∈ V }. Note that a relation, R(U, V ) on variables

u and v is a subset of U × V . Since a relation can be viewed as a set, all basic

crisp set operations can be applied to relations. A relation on variables u and

v whose domains are U and V , denoted as R(U, V ) can be written as (Mendel,

1995):

µR(u, v) =





1 if (u, v) ∈ R(U, V )

0 otherwise
(2.36)

It has to be also noted that compositions of relations that share a common set

form crisp compositions. It is considered that relations P (U, V ) and Q(V,W ) are

defined. Relation P (U, V ) is defined over variables u and v, whose domains are

U and V and relation Q(V,W ) is defined on variables v and w, whose domains

are V and W . The composition of relations P and Q is (Mendel, 1995):

R(U,W ) = P (U, V ) ◦Q(V, W ) (2.37)

where composition relation R(U,W ) is a subset of U ×W and

(u,w) ∈ R ⇔ (∃v ∈ V |(u, v) ∈ P ∧ (v, w) ∈ Q) (2.38)

The composition of the relations P (U, V ) and Q(V,W ), namely R(U,W ) can be

calculated by using the formulas (Mendel, 1995): The max-min composition

µR(u,w) =
{

(u,w), max
v

[min (µP (u, v), µQ(u,w))]
}

(2.39)

The max-product composition

µR(u,w) =
{

(u,w), max
v

[µP (u, v) · µQ(u,w)]
}

(2.40)

In the crisp case max-min and max-product compositions produce exactly the

same result for R(U,W ).

2.7.2 Fuzzy Relations and Compositions

A fuzzy relation describes degree of association between two or more objects. In

other words, a fuzzy relation is a generalization to crisp relation to allow each
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association between objects to take membership values between zero and unity

in vague concepts (Yen and Langari, 1999; Yen, 1999; Mendel, 1995). Formally,

if U and V are domains of the variables u and v respectively, then a fuzzy

relation, R(U, V ) on variables u and v is a subset of U×V and is characterized by

membership function µR(u, v), such that R(U, V ) = {((u, v), µR(u, v))|(u, v) ∈
U × V }. A fuzzy relation on variables u and v whose domains are U and V ,

denoted as R(U, V ) can be expressed as (Zadeh, 1973):

R
4
=

∫

U×V

µR(u, v)/(u, v) (2.41)

Because fuzzy relations can be viewed as fuzzy sets, operations on fuzzy sets

defined in Section 2.6.2 can be applied to fuzzy relations.

Example 2.6 Let R and Q are fuzzy relations defined over the same variables

u and v whose domains are U and V respectively. The union and intersection

of these two relations can be obtained as

µR∩Q(u, v) = µR(u, v)⊗ µQ(u, v) (2.42)

µR∪Q(u, v) = µR(u, v)⊕ µQ(u, v) (2.43)

where ⊗ and ⊕ are t-norm and t-conorm operators.

The compositions of fuzzy relations that share a common set are analogous

to crisp compositions. Difference between the fuzzy compositions and crisp

compositions is that in the fuzzy case the sets are fuzzy rather than crisp. If P

is a relation from U to V and Q is a relation from V to W , then the composition

of relations P and Q form a fuzzy relation R, defined by (2.38). A mathematical

formula for the composition, R is (Zadeh, 1973):

R
4
=

∫

U×W

∨
v

(µP (u, v) ∧ µQ(v, w))/(u,w) (2.44)

where
∨

and
∧

denote, supremum and t-norm operator. It is noted that, fuzzy

composition is not uniquely defined. Different choices of fuzzy conjunction and

fuzzy disjunction operators yield different compositions. The most commonly

used compositions are the sup-min and sup-product compositions.
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Example 2.7 Consider the relations P and Q, where P is defined as “u is more-

or less equal to v” and Q is defined as “v is smaller than w”. Their relation

matrices are shown below:

µP (u, v) =

v1 v2

u1 0.4 0.9

u2 0.7 0.6

(2.45)

µQ(v, w) =

w1 w2

v1 0.3 0.9

v2 0.8 0.5

(2.46)

The max-min composition result is:

µP◦Q(u,w) =

w1 w2

u1 0.8 0.5

u2 0.6 0.7

(2.47)

The max-product composition result is:

µP◦Q(u,w) =

w1 w2

u1 0.72 0.45

u2 0.48 0.63

(2.48)

As it is pointed in the previous section, max-min and max-product composi-

tions, in the crisp case, produce the exactly same result for R(U,W ). However,

Example 2.7 shows that the max-min and max-product compositions, in the

fuzzy case are not the same.

2.8 Logic

Propositional logic and set theory are isomorphic. There is a one-to-one corre-

spondence between propositional logic and set theory, which preserves the rela-

tions existing between the elements in its domain. Moreover, these two mathe-

matical systems are also isomorphic to Boolean algebra (Yen and Langari, 1999;

Mendel, 1995). Because of the connection between set theory, propositional logic
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and Boolean algebra, a theorem in any one of these systems has a counterpart

in other two systems. For instance, if A and B are subsets of the universe of

discourse, U and p and q are propositions, such that p represents the sentence

“x is an element of set A” and q represents the sentence “x is an element of set

B” then

p is true ⇔ x ∈ A (2.49)

q is true ⇔ x ∈ B (2.50)

(p ∨ q) is true ⇔ x ∈ A ∪B (2.51)

Logic operations are not described in this section because of the isomorphism.

2.8.1 Crisp Logic

A proposition is a basic unit, i.e., a simple sentence describing statements about

the world. Propositions can be combined by using conjunction (denoted p ∧ q),

disjunction (denoted p∨q), and implication (denoted p → q) connectives to form

complex sentences. In traditional logic, implication is used for the expressions

in the form of IF A THEN B. The expression IF A THEN B where A and B

are propositions is considered as a rule. A rule represents a relation between

A and B and it is characterized by membership function µA→B(x, y). A rule

has two parts: a premise (i.e., antecedent, if-part of the rule) and a conclusion

(i.e., consequent, then-part of the rule). Rules are also considered as a form of

propositions. From truth table, depicted in Table 2.1, implication between A

Table 2.1: Truth table for implication operation

A B A → B
T T T
T F F
F T T
F F T

and B can be formulized as

A → B ⇔ (¬A) ∨B (2.52)
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and this equation can be written as

A → B ⇔ ¬(A ∧ (¬B)) (2.53)

Membership function of an implication, µA→B(x, y) on propositions A and B

can be obtained by using equations (2.52) and (2.53) (Mendel, 1995). Using

equation (2.52),

µA→B(x, y) = µA∪B(x, y) (2.54)

µA→B(x, y) = max[1− µA(x, y), µB(x, y)] (2.55)

using equation (2.53),

µA→B(x, y) = 1− µA∩B(x, y) (2.56)

µA→B(x, y) = 1−min[µA(x, y), 1− µB(x, y)] (2.57)

It has to be also noted that the implication should not conclude anything about

B (conclusion) when A (premise) is false. This is due to the fact that when A

(premise) is false, implication is true whether B (conclusion) is true or not (the

third and the forth rows in Table 2.1). Therefore, the value of B is unknown,

i.e., nothing can be inferred about B when A is false. There are two important

inference schemes in traditional propositional logic:

Modus Ponens: When an implication and its premise are known to be true

then modus ponens infers conclusion is true. For instance, consider an

implication “IF x is A THEN y is B”. It is known that the implication is

true and “x is A” (i.e., premise is true), then modus ponens infers that “y

is B” (i.e., conclusion is true).

Modus Tollens: When it is known that an implication is true and its conclu-

sion is not true then modus tollens infers that its premise is not true. For

instance, consider an implication “IF x is A THEN y is B”. It is known

that implication is true and “y is not B” (i.e., conclusion is not true), then

modus tollens infers that “x is not A” (i.e., premise is not true).
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It is not easy to represent uncertainty in data and reason under uncertainty

in classical logic. Whereas, fuzzy logic generalizes classical logic for reasoning

under uncertainty (Yen and Langari, 1999).

2.8.2 Fuzzy Logic

Fuzzy logic generalizes crisp logic to allow truth-values to take partial degrees.

Since bivalent membership functions of crisp logic are replaced by fuzzy mem-

bership functions, the degree of truth-values in fuzzy logic becomes a matter of

degree, which is a number between 0 and 1.

Applications of fuzzy set theory ranging from consumer products, manufac-

turing, robotics, control systems, finance to earthquake engineering (Maiers and

Sherif, 1985; Lee, 1990a) are mostly based on the use of fuzzy if-then rules. A

fuzzy if-then rule in the form of a statement such as “IF x is A THEN y is B”,

where x ∈ X and y ∈ Y has a membership function defined as µA→B(x, y). Note

that µA→B(x, y) describes the degree of truth of the implication relation between

x and y (Mendel, 1995). Examples of such membership functions are the fuzzy

versions of equations (2.55) and (2.57) which were defined for crisp case.

Even though in most applications rules are connected using a t-conorm oper-

ator, there are a number of ways to connect rules (for discussions on connecting

rules see (Kiszka et al., 1985a; Kiszka et al., 1985b; Lee, 1990b)).

Since linguistic variables are used in the fuzzy if-then rules to describe elastic

conditions (i.e., conditions that can be partially satisfied), a fuzzy if-then rule

can capture knowledge about real world that is inexact by nature and involves

imprecision (Yen and Langari, 1999; Yen, 1999). Another important feature of

fuzzy if-then rules is its partial matching capability (Yen and Langari, 1999;

Yen, 1999; Mendel, 1995).

Example 2.8 (Mendel, 1995) Consider a rule “IF a car is big THEN its con-

sumption is high.” The premise contains a fuzzy set P , big car and the conclu-

sion contains a fuzzy set C, high consumption. What will be the inference, (i.e.,

consumption of the car) if it is known that the car is a small hatchback? It is
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clearly seen that the given fuzzy set (a small hatchback car) and the fuzzy set

in the if-part of the rule (a big car) are not the same, but they are similar. The

conclusion will be the following “The consumption is moderate for this car.”

Again the fuzzy set moderate consumption and the fuzzy set in the then-part of

the rule (high consumption) are not the same, but they are similar.

In crisp logic a rule is fired when the premise is exactly the same as the given

input fuzzy set, and the result is the same as the then-part (conclusion) of the

rule. However, Example 2.8 shows that in fuzzy logic, a rule is fired even the

given fuzzy set only partially satisfies the if-part (premise) of the rule, and the

result is a consequent which is similar to the fuzzy set in then-part (conclusion)

of the rule (i.e., the consequent has a nonzero degree of similarity to the fuzzy

set in the then-part of the rule).

There are two types of fuzzy if-then rules: fuzzy mapping rules and fuzzy

implication rules. In the sequel these two types of fuzzy if-then rules are de-

scribed.

2.8.2.1 Fuzzy Mapping Rules

A set of fuzzy mapping rules can approximate a function of interest by describing

a mapping relationship between a set of input parameters to a set of output

parameters. Since, a single fuzzy mapping rule approximates a small segment

of a function, a set of fuzzy mapping rules are needed to approximate the whole

function. A set of fuzzy mapping rules is called a fuzzy rule-based model or a

fuzzy model.

To draw a conclusion from a set of fuzzy mapping rules (i.e., fuzzy model) it

is based on a four-step algorithm:

Fuzzy Matching: This step involves the computation of the meaning of fuzzy

conditional statements of the form IF A THEN B. The computation of

the meaning of a fuzzy conditional statement, which is a combination of

multiple linguistic variables connected with connectives, is primarily based
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on the meaning of each linguistic variable. Let T denotes a set of terms in

the universe of discourse U and x represents a term in T and consider a

fuzzy naming relation N between x and y where y is an object in U then

the meaning of an object y is denoted by M(x) and defined by (Zadeh,

1973):

µM(x)(y)
4
= µN(x, y) (2.58)

where x ∈ T and y ∈ U . The meaning of a linguistic variable can be

modified by using hedges. The computation of the meaning of a linguistic

variable modified with hedge is discussed in Section 2.5. The meaning

of a more complex composite term, which may involve additional terms

connected with connectives, is computed by using definitions described in

Section 2.6.2.

Inference: Each rule’s conclusion is computed based on its matching degree.

Meaning of the fuzzy conditional statement computed in the previous step

is used to suppress the membership function of the conclusion (i.e., then-

part of the rule). There are two types of suppression techniques:

1. The Clipping Method: The inference is made based on the minimum

operator. The clipping method cuts off the values of membership

function, which are higher than the matching degree.

2. The Scaling Method: The inference is made based on the product

operator. The scaling method scales down the values of membership

function in proportion to the matching degree.

The clipping and scaling methods are illustrated in Figure 2.7.

Combination: The value of the consequent variable for each rule is inferred

through the previous two steps. Since a fuzzy model consists of multiple

fuzzy if-then rules with partially overlapping conditions, a particular input

may fire more than one rule. Hence, computed inferences are combined
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(a)

(b)

Figure 2.7: Fuzzy inference (a) clipping method, and (b) scaling method.

by applying the fuzzy disjunction operator. The combination of fuzzy

conclusions is depicted in Figure 2.8.

Defuzzification: Defuzzification is an optional step which produces a crisp

output for fuzzy systems whose final output needs to be in crisp. Many

defuzzification methods have been proposed in the literature, some of the

major defuzzification methods are: It is considered that “y is B” is a fuzzy

conclusion to be defuzzified.

1. Center of Area Defuzzification (COA): Center of area defuzzification

(centroid method, center of gravity method) method calculates the

center of gravity of fuzzy set B. The result of center of area defuzzi-

fication is unique and is calculated by:

y =

∫
S

µB(y)× ydy∫
S

µB(y)dy
(2.59)

where S denotes the support of µB(y).
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Figure 2.8: The combination of fuzzy conclusions (Koczy, 1995).

2. Bisector of Area Defuzzification: Bisector of area defuzzification (bi-

sector) technique calculates a point which partitions the area under

the membership function curve (µB(y)) into two subregions with the

same area. ∫ y

α

µB(y)dy =

∫ β

y

µB(y)dy (2.60)

where y divides the area into two equal parts, and α and β denotes

the minimum and maximum values of the support of B.

3. Mean of Maximum Defuzzification (MOM): Mean of maximum de-

fuzzification first determines the maximum values of y for which the

membership function value is a maximum. The output value is the

mean of these values. Mean of maximum defuzzification can be for-

mulized as (Yen and Langari, 1999):

y =

∑
y∗∈P y∗

|P | (2.61)
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Figure 2.9: Defuzzification methods (King, 2000).

where P is a set values which has a maximum membership grade.

P = {y∗|µB(y∗) = supyµB(y)} (2.62)

where sup stands for the supremum (i.e., the maximum value of a

continuous function) over the domain y.

4. Largest of Maximum Defuzzification (LOM): Largest of maximum

defuzzification method calculates the largest value (in magnitude)

that maximizing the membership function µB(y).

5. Smallest of Maximum Defuzzification (SOM): Smallest of maximum

defuzzification method calculates the smallest value (in magnitude)

that maximizing the membership function µB(y).

Figure 2.9 illustrates discussed defuzzification methods.

2.8.2.2 Types of Fuzzy Rule Based Models

There are three types of fuzzy rule based models:
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The Mamdani Model: The first fuzzy logic controller was developed by E.

H. Mamdani using the model (Mamdani and Assilian, 1975). Rules of the

Mamdani model are in the form of (Yen and Langari, 1999)

Ri : IF x1 is Ai1 AND . . . AND xr is Air THEN y is Ci (2.63)

where i = 1, 2, . . . , N and N denotes the number of fuzzy rules, xj ∈
Xj(j = 1, 2, . . . , r) and y are linguistic variables, and Ai and Ci are fuzzy

sets whose membership functions are µAij
(xj) and µCi

(y). Fuzzy model

defined in (2.63) describes a mapping from X1 × X2 × . . . × Xr to Y

and receives inputs in the form of “x1 is A′
1”, “x2 is A′

2”,. . . ,“xr is A′
r”

where A′
1, A′

2,. . . ,A
′
r are fuzzy subsets of X1, X2, . . . , Xr. Suppose sup-min

composition is used for the fuzzy inference, and maximum and minimum

operations are used for all fuzzy disjunction and fuzzy conjunction oper-

ators. Then, the final output of the model (before defuzzification), C ′ is

written as

µC′(y) =
N

max
i=1

(
µC′i(y)

)
(2.64)

where

µC′i(y) = (αi1 ∧ αi2 ∧ . . . ∧ αiN ) ∧ µCi
(y) (2.65)

and

αij = supxj

(
µA′j(xj) ∧ µAij

(xj)
)

(2.66)

where ∧ denotes the minimum operator. Since the final output (2.64) is

produced by combining inference results of individual rules by superimpo-

sition, the Mamdani model is a non-additive rule model.

The Takagi-Sugeno-Kang (TSK) Model: Unlike the Mamdani model, the

TSK model uses linear functions in their consequent (then-part of the

rule). Therefore, the TSK model can approximate a function using fewer

rules. Rules of the TSK model are in the form of (Takagi and Sugeno,

1985)

Ri : IF x1 is Ai1 AND . . . AND xr is Air THEN y = gi(x1, . . . , xr)

(2.67)
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where i = 1, 2, . . . , N and N denotes the number of fuzzy rules, x and y

are linguistic variables and Ai are fuzzy sets and gi denotes a function that

implies the value of y.

Example 2.9 (Takagi and Sugeno, 1985)

R : IF x1 is small AND x2 is big THEN y = x1 + x2 + 2x3 (2.68)

According to the rule, R the value of y can be inferred by summing x1,

x2 and 2x3 (x3 is unconditioned in the premise), if the premise is satisfied

(i.e., x1 is small and x2 is big).

The TSK model aggregates conclusions of individual rules similar to a

weighted sum, the model is considered as additive model.

The Standard Additive Model (SAM): Unlike the Mamdani model, the

SAM, first introduced by Kosko (1997), assumes the inputs to the sys-

tem are crisp values. Moreover, the SAM uses different operators than the

Mamdani model: the SAM model uses sup-product composition, product

for all fuzzy conjunction operators and addition to combine conclusions of

individual rules and the SAM model uses centroid defuzzification method.

Rules of the SAM model are in the form of (Yen and Langari, 1999; Yen,

1999)

IF x is Ai AND y is Bi THEN z is Ci (2.69)

If inputs are x = x0, y = y0 then the model calculates z as

z = Centroid

(∑
i

µAi
(x0)× µBi

(y0)× µCi
(z)

)
(2.70)

Like the TSK model, SAM model also uses addition to aggregate rules,

thus the SAM model is an additive model.

2.8.2.3 Fuzzy Implication Rules

The semantics of fuzzy implication rules are constructed by generalizing im-

plications in two-valued logic. Since fuzzy mapping rules are generalization to
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(a) (b)

Figure 2.10: Differences between (a) implication rule, and (b) mapping rule (Yen
and Langari, 1999; Yen, 1999).

set-to-set associations and fuzzy implication rules are generalization to set-to-set

implications, their inference behavior are not the same. For instance, consider

the rule “IF x is A THEN y is B”. The differences between the implication

rules and mapping rules are illustrated in Figure 2.10 (Yen and Langari, 1999).

When the antecedents are satisfied both rules behave the same, however the

implication rules and mapping rules behave different when their antecedents are

not satisfied.

In accordance with crisp version of implication as discussed in Section 2.8.1,

the expression “IF A THEN B” where A and B are fuzzy subsets of U and V ,

respectively is considered as a rule. A rule represents a relation between A and

B and is characterized by membership function µA→B(x, y). The membership

function µA→B(x, y) describes the truth value of the fuzzy implication rule “(xi

is A) → (yj is B)” and written as

RI(xi, yj) = t ((xi is A) → (yj is B)) (2.71)

where t denotes the truth value of a proposition. Truth value of an implication

in (2.71) can be defined in terms of the truth value of the antecedent (i.e., “xi
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is A”) and the truth value of the consequent (i.e., “yj is B”).

t ((xi is A) → (yj is B)) = I(αi, βj) (2.72)

where I is called implication function, and

αi = t(xi is A) (2.73)

βj = t(yj is B) (2.74)

2.8.2.4 Families of Fuzzy Implication Functions

There isn’t a unique definition for implication function. A particular logic formu-

lation of implication in propositional logic can be extended. These formulations

are equivalent in classical logic, however because the Law of Excluded Middle

and the Law of Contradiction are not the axioms of fuzzy logic, they are not

equal in fuzzy logic. There are three families of fuzzy implication functions:

1. The first family is based on material implication where a material impli-

cation is defined as A → B = ¬A ∨ B. Then the truth value of the

implication “(xi is A)→ (yj is B)” is written as

t ((xi is A) → (yj is B)) = t (¬(xi is A) ∨ (yj is B)) (2.75)

t ((xi is A) → (yj is B)) = (1− µA(xi))⊕ µB(yj) (2.76)

2. The second family is based on the propositional calculus. The equivalence

in propositional logic A → B = ¬A∨ (A∧B) is extended. Then the truth

value of the implication “(xi is A)→ (yj is B)” is written as

t ((xi is A) → (yj is B)) = t (¬(xi is A) ∨ ((xi is A) ∧ (yj is B))) (2.77)

t ((xi is A) → (yj is B)) = (1− µA(xi))⊕ (µA(xi)⊗ µB(yj)) (2.78)

3. The third family is based on the definition of standard sequence, an im-

plication is true when the consequent is truer than the truth value of its
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antecedent. Then the truth value of the implication “(xi is A)→ (yj is B)”

is written as (Yen and Langari, 1999)

t ((xi is A) → (yj is B)) = sup {α|α ∈ [0, 1], α⊗ t(xi is A) ≤ t(yj is B)}
(2.79)

t ((xi is A) → (yj is B)) = sup {α|α ∈ [0, 1], α⊗ µA(xi) ≤ µB(yj)}
(2.80)

Fukami et al. (1980) have proposed a set of intuitive criteria to compare

and evaluate the various definitions of the fuzzy implication functions.

2.9 Fuzzy Logic in GIS

Geographic data, stored and processed in a GIS, are captured from real world.

The real world about which a GIS maintains information contains uncertainties

(Roman, 1990). In a GIS operation, two different sources of uncertainties can be

considered: uncertainty in data and uncertainty related with the model (Lark

and Bolam, 1997; Heuvelink and Burrough, 2002).

1. Uncertainty in Data: The fundamental axioms of crisp logic limit the way

of human thinking about the real world. It is necessary to be able to deal

with concepts that are not necessarily “True” or “False” (i.e., concepts

that are somewhere in between “True” or “False”) (Burrough, 1986). For

representing and handling uncertain geographic data, research began to

investigate the use of fuzzy set theory. For example, same representation

of boundaries is used in thematic maps for different types of changes in

the real world (Burrough, 1986; Wang and Hall, 1996; Kiiveri, 1997).

The representation of geographical boundaries with continuously changing

properties (i.e., boundaries which are diffuse or uncertain) as sharp lines

misrepresent changes in geographical properties. As pointed out by Wang

and Hall (1996), fuzzy set theory can be used to improve the expressive

ability of polygons.

Fuzzy classification and identification in GIS have been widely used for
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many different problem domains (Lark and Bolam, 1997; Zhu et al., 1996;

Ahamed et al., 2000b; Ahamed et al., 2000a; Sasikala and Petrou, 2001).

The main reason for the investigation of the use of fuzzy classification is the

classification error, especially, when dealing with linguistic concepts such

as “flat” or “gentle” (Stefanakis et al., 1996). For example, in conventional

classification of soil in a continuum landscape, an area is assigned to one

soil mapping unit, and is separated from other mapping units by sharp

lines. The discretization of such a continuous phenomena into distinct

spatial and categorical classes results in information loss (Zhu et al., 1996).

Zhu et al. (1996) combined fuzzy logic with GIS to infer soil series from

environmental conditions and stated that images produced using the pro-

posed methodology have advantages in terms of revealing spatial patterns

of soil information and detailing attribute information.

For sustainable agricultural production, crop-land suitability analysis is a

prerequisite to achieve optimum utilization of the available land resources.

Ahamed et al. (2000b) addressed the problems encountered when the

Boolean methods are designed to assign a given area element (i.e., pixel)

to a single suitability class and proposed the use of fuzzy membership

approach. It is stated by Ahamed et al. (2000b) that fuzzy membership

approach delineates areas of various suitability ratings to a given crop more

accurately and fuzzy membership approach is found to be advantageous

when determining the crops of highest suitability for a given area.

Another example of fuzzy classification is development of a method for

classifying soil in soil erosion classes (Ahamed et al., 2000a). It is noted

by Ahamed et al. (2000a) that various soil loss ratings are appropriately

represented using fuzzy class membership approach and information in

fuzzy class membership highlights the spatial variation in the severe erosion

classes.
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Ahlqvist et al. (2003) addressed the classification problem and intro-

duced the idea of rough fuzzy classifications. Rough fuzzy classifications

allow GIS users to reason about areas that have been classified using in-

discernible concepts and for which some additional vague information is

available (Ahlqvist et al., 2003). It is stated by Ahlqvist et al. (2003)

that rough fuzzy classification is able to integrate uncertainty due to both

vagueness and indiscernibility.

2. Uncertainty in Model: Uncertainty in the interpretation of data values

within the GIS is mainly based on “early and sharp” classification (Ste-

fanakis et al., 1996). In a GIS, a common type of operation in decision-

making is a threshold model. When the underlying logic in GIS is crisp

logic, then results of applying threshold values in decision-making pro-

cesses are 0 or 1. This threshold model is defined as (Burrough, 1986):

µA(x) =





1 if THLow ≤ x < THHigh

0 otherwise
(2.81)

where x ∈ A and x is an individual observation. THLow and THHigh

represent low and high threshold values, which define the exact boundaries

of set A. Such models can cause problems since they are inherently rigid.

Consider the threshold value for a flat land is slope = 10%, a location with

slope 9.9% is classified as flat land however a location with slope 10.1%

is rejected. Stefanakis et al. (1996) addressed weakness of crisp logic in

decision processes and proposed the use of fuzzy logic methodologies to

overcome this problem.

Kollias and Kalivas (1998) enhanced GIS software (ARC/INFO) with

fuzzy logic methodologies to allow a more precise and realistic classifica-

tion and assessment of natural phenomena. New commands are added to

the GIS software. The proposed system (FUZZYLAND) was developed by

AML (ARC/INFO Macro Language) and operates as a set of ARC/INFO

commands. Although, the developed system has important advantages
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when it classifies and evaluates soil data, it also has limitations in mem-

bership function types and operations on fuzzy sets. Since FUZZYLAND

does not have any mechanism to capture experts’ experiences, it is not

easy to make decisions using linguistic variables defined by experts on a

continuous landscape.

Similarly, a major desktop system ArcView is augmented to evaluate infor-

mation that has vague definition, like “flat land” and “southern aspect”

(Benedikt et al., 2002). The information used in the developed system

(MapModels) is derived from the elevation models (e.g., slope and aspect).

The developed system has a flowchart based user interface to allow easy

use rather than using command like system. The proposed system can

evaluate linguistic concepts to produce classified map layers. And these

map layers can be combined using fuzzy map overlay operators. The fuzzy

map overlay operators used in this work are based on gamma operators

(Benedikt et al., 2002). Like FUZZYLAND, MapModels system can not

be used for decision-making processes. Moreover, only data derived from

elevation models are used in MapModels (i.e., problem specific).

Note that MapModels system uses gamma operators for map overlay in-

stead of logical operators such as intersection (i.e., AND) and union (i.e.,

OR). As it is stated by Jiang and Eastman (2000), integration methods of

multi-criteria need to go beyond the common approaches of union, inter-

section and also weighted linear combination. The aggregation approaches

of fuzzy measures used in map overlay are minimum operator for intersec-

tion and maximum operator for union. The minimum operator commonly

assigns suitability value to a location in terms of its worst quality (i.e.,

avoiding risk in decision). Whereas, the maximum operator is the op-

posite, it assigns suitability value to a location to the extent of its best

quality (i.e., risk-taking attitude). And the averaging operator falls mid-

way between the two extreme cases. Therefore, Jiang and Eastman (2000)

propose the use of ordered weighted averaging (OWA) operator in multi-
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criteria evaluation for aggregation.

Martin-Clouaire et al. (2000) developed a system using possibility theory to

represent and process uncertainty and imprecision present in the soil hydrolog-

ical properties and showed that possibility theory can also be used for dealing

with the incompleteness and vagueness pervading the soil knowledge. Since the

hydrologic soil properties are computed as possibility distribution, the result can

not be communicated directly by a map. Further processing is required to pro-

duce meaningful maps from possibility distributions. The proposed approach

can be used for classification.

As it is stated previously geographic data contains uncertainties and these

uncertain information can be captured by using fuzzy set methodologies. The

visualization of uncertainty in geographic data is also an important tool for

intelligent GIS. Techniques use fuzzy logic in the production of maps to visualize

several types of spatially variable uncertainty in a single display (Davis and

Keller, 1997). Fuzzy set theory can also be used to develop natural language

interfaces for querying (Robinson, 2000; Wang, 2000).
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CHAPTER 3

DESIGN OF FUZZY INFERENCE SYSTEM

This chapter presents the design issues of Fuzzy Inference System to enhance cell-

based information modeling. The system has been developed on a commercial

GIS software namely ArcGIS, which is a major GIS desktop system. After giving

a general workflow of the Fuzzy Inference System, design details are presented.

3.1 General Architecture Design

The general architecture design and workflow of the fuzzy inference system for

cell-based information modeling is shown in Figure 3.1. Commercial GIS ap-

plication uses Fuzzy Inference System through public interface defined by Fuzzy

Inference System Module. The interface is a collection of logically related op-

erations that define some behavior (Kirtland, 1999). However, commercial GIS

application and Fuzzy Inference System act as two separate applications.

Fuzzy Inference System is designed as an ActiveX module. Within the Fuzzy

Inference System Module, precompiled libraries Fuzzy Inference Engine and

ESRI ArcObjects Library are used. Since Component Object Model (COM)

environment is used, applications can interact with objects only through their

public interfaces. These connection points’ descriptions are given in Section

4.1.1 and in Section 4.1.2.

When the Fuzzy Inference System tool is selected from the commercial GIS
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Figure 3.1: Architectural design and workflow of Fuzzy Inference System for
GIS.

application, the GIS application starts execution of Fuzzy Inference System

Module. The Fuzzy Inference System Module initialization phase includes cre-

ation and start of Fuzzy Inference Engine. After initialization phase, Fuzzy

Inference System Module queries interfaces according to actions defined by the

user.

ESRI applications are COM clients; their architecture supports the use of

software components that adhere to the COM specification (ESRI, 2001). Hence,

components can be built with different languages including Visual Basic and Vi-

sual C++, and these components can then be added to the applications easily.

As discussed in detail in Chapter 4, Visual Basic and Visual C++ are used to

create COM components to enhance the functionality of cell-based information

modeling in the form of extensions. An extension is a component or a set of

components that implements an interface that is expected by the application

and registers itself with the application so that it may be loaded at the appro-

priate time. End-users can control what pieces of functionality are installed on

a machine or loaded at run time. ArcGIS provides developers the key benefit

of standard mechanisms for plugging extensions and other components into the
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Figure 3.2: Class diagram for Fuzzy Inference Engine.

system (ESRI, 2001). In addition, previous experience in both using ArcGIS

product family and ArcObjects Library lead to the selection of ArcGIS devel-

oped at ESRI for commercial GIS application.

The design of Fuzzy Inference System is mainly divided into two sections,

the Fuzzy Inference Engine design and Fuzzy Inference System Module design.

3.2 Design of Fuzzy Inference Engine

Operations of fuzzy sets, linguistic variable definitions, fuzzy if-then rules and

fuzzy inference compose main functionality of the Fuzzy Inference Engine. Since

raster maps are major source of input for cell-based information modeling, Fuzzy

Inference Engine can produce output in the form of raster map by applying fuzzy

rule-based reasoning to data gathered from input raster maps.
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Fuzzy Inference Engine class hierarchy is shown in Figure 3.2. Bases of the

Fuzzy Inference Engine are membership function classes. Fuzzy if-then rules are

constructed with the help of linguistic variables, where linguistic variables are

defined by using membership functions.

3.2.1 Membership Function Classes

A fuzzy set can be defined in the Fuzzy Inference Engine by the MF Class object.

In order to form a fuzzy set, name of the fuzzy set, membership function type of

the fuzzy set and membership function parameters must be known. Membership

function types supported by the Fuzzy Inference Engine are:

1. Triangular membership function.

2. Trapezoidal membership function.

3. Gaussian membership function.

4. Bell-shaped membership function.

5. Sigmoidal membership function.

6. S membership function.

7. Π1 type membership function.

8. Π2 type membership function.

Each membership function class shown in Figure 3.2, is a subclass of Base MF

Class and computes degree of membership according to membership function

parameters.

3.2.2 Operations of Fuzzy Sets

The set operations intersection and union correspond to logic operations, con-

junction (and, t-norm operators) and disjunction (or, t-conorm operators) re-

spectively. Therefore, operations on fuzzy sets in the Fuzzy Inference Engine

are:
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T-Norm Operators Class: A simple reusable entity class where fuzzy con-

junction operators are managed. Supported t-norm operators are listed

below:

1. Drastic product.

2. Bounded difference.

3. Einstein product.

4. Algebraic product.

5. Hamacher product.

6. Minimum.

T-CoNorm Operators Class: A simple reusable entity class where fuzzy dis-

junction operators are managed. Supported t-conorm operators are listed

below:

1. Drastic sum.

2. Bounded sum.

3. Einstein sum.

4. Algebraic sum.

5. Hamacher sum.

6. Maximum.

T Norm Operators and T CoNorm Operators clasess are inherited from super-

class Logic Operator as shown in the Figure 3.2.

3.2.3 Linguistic Variables

By incorporating both linguistic term and membership function in a linguistic

variable, a linguistic variable can represent human knowledge and can process

numeric input data (Yen and Langari, 1999). Hence, a linguistic variable in

Fuzzy Inference Engine is composed of one ore more membership functions and

a linguistic term to express concepts and knowledge in human communication.
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A set of problem specific linguistic variable form a variable set in the problem

domain. Linguistic variables in this variable set are the basic components of

fuzzy if-then rules.

3.2.4 Hedges

The meaning of a fuzzy set can be modified by hedges to create a compound

fuzzy set. Mainly, a hedge is defined by a modifier name and a simple function

in the form f = µA(x)n for all n ∈ R+, where A represents a fuzzy set defined

over the universe of discourse.

In Fuzzy Inference Engine, “NOT” keyword is considered as a hedge because

it modifies the original fuzzy set to create complement of the original fuzzy set.

3.2.5 Fuzzy If-Then Rules

Fuzzy if-then rules associate an input data described using linguistic variables

and fuzzy sets to a conclusion. Since input data are described using linguis-

tic variables and fuzzy sets, fuzzy if-then rules can be viewed as a scheme for

capturing imprecise knowledge.

A fuzzy if-then rule in Fuzzy Inference Engine contains one ore more linguistic

variables, hedges and logic operations. Structure of a fuzzy if-then rule is as

follows:

IF Linguistic Variable1 is Hedge1 Fuzzy SetA LogicOperator1

Linguistic Variable2 is Hedge2 Fuzzy SetB LogicOperator2

· · · ·
· · · ·

Linguistic VariableN is HedgeN Fuzzy SetM LogicOperatorN

THEN

Linguistic VariableX is Fuzzy SetY

A set of fuzzy if-then rules can represent human knowledge on a specific problem

domain that is imprecise and inexact by nature. Human knowledge is captured

by Fuzzy Inference Engine and is represented using fuzzy if-then rules in the
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RuleSet Class.

3.2.6 Defuzzification

Defuzzification is a step in fuzzy rule based inference where a fuzzy conclusion

is converted to a crisp output. Defuzzification types implemented in Fuzzy

Inference Engine are:

1. Center of area defuzzification.

2. Bisector of area defuzzification.

3. Mean of maximum defuzzification.

4. Largest of maximum defuzzification.

5. Smallest of maximum defuzzification.

3.2.7 Fuzzy Model

A set of fuzzy mapping rules form a fuzzy model (Yen and Langari, 1999). In

the Fuzzy Inference Engine, fuzzy if-then rules, a set of linguistic variables and

defuzzification method are used to construct the FuzzyModel Class, where fuzzy

rule based inference take place. The fuzzy rule based inference consists of four

basic steps:

Fuzzy Matching: The degree to which input data match the condition of the

fuzzy rules is calculated. Fuzzy matching algorithm in pseudo code is given

in Figure 3.3. In the fist step of the Algorithm 1, membership grades are

computed according to linguistic variables’ membership function parame-

ters. Second step involves application of hedge functions, which are defined

before and represented by Hedge Class. In the last step, selected conjunc-

tion operators (t-norm operators) and disjunction operators (t-conorm op-

erators) are used to compute the degree of matching between input data

and rule.
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Algorithm 1 Fuzzy Matching Algorithm.
for each <Linguistic Variable> in the fuzzy if-then rules

1. Compute the <Degree of Membership> to which input data belongs to the
fuzzy set
2. Apply hedge functions to computed <Degree of Membership> values

for each <Rule> in the fuzzy model
1. Apply logic operators that connect linguistic variables to find each rule’s
matching degree

Figure 3.3: Fuzzy matching algorithm.

Inference: An inferred conclusion for the rule is calculated based on its match-

ing degree. The membership function of the consequent linguistic variable

is suppressed depending on the degree to which the rule is matched (Yen

and Langari, 1999). There are two different methods for suppressing the

membership function of the consequent:

1. The clipping method.

2. The scaling method.

Fuzzy Inference Engine supports both implication function types.

Combination: A final conclusion is generated by superimposing all fuzzy con-

clusions about a variable. Supported aggregation functions are:

1. The maximum operator.

2. The sum operator.

3. The probabilistic-or operator.

Defuzzification: To produce output maps, a crisp output is needed to specify

the value of each pixel in the raster map. Therefore, the combined fuzzy

conclusion is converted into a crisp conclusion.

Properties of the Fuzzy Inference Engine are:

1. Assumes the inputs are crisp.
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Figure 3.4: Class diagram for Fuzzy Inference System Module.

2. Can use either clipping inference or scaling inference method.

3. Supports the use of maximum, addition or probabilistic-or aggregation

function to combine conclusions of fuzzy rules.

4. Does not insist on a specific defuzzification method.

5. The consequent part of the fuzzy mapping rules can be defined both as a

fuzzy set and as a crisp value.

The foundations of fuzzy mapping rules and detailed discussion on the fuzzy

rule based inference are given in Section 2.8.2.1.

3.3 Design of Fuzzy Inference System Module

Fuzzy Inference System Module acts as a bridge between user and the Fuzzy

Inference Engine. Fuzzy Inference System Module class diagram is shown in

Figure 3.4.
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Fuzzy Inference System Module includes interfaces required to:

• Design membership functions.

• Define linguistic variables.

• Define hedges with their functions.

• Form fuzzy if-then rules.

• Set the fuzzy model properties.

A fuzzy rule-based, expert-like system can be designed to solve a specific

problem or for a decision-making process by setting up linguistic variables, fuzzy

if-then rules and model properties. The designed system can be used to approx-

imate human knowledge in the problem domain using interfaces of the Fuzzy

Inference System Module. Then, the Fuzzy Inference System Module transfers

all input parameters to Fuzzy Inference Engine to produce an inferred conclu-

sion.
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CHAPTER 4

IMPLEMENTATION DETAILS

This chapter presents the implementation details of Fuzzy Inference System for

ArcGIS. After giving a general information on development environment, Fuzzy

Inference Engine and Fuzzy Inference System Module implementation details,

and interface definitions are presented.

4.1 Implementation Overview

ESRI ArcGIS is a major desktop GIS software. ArcGIS product family includes

three desktop applications: ArcMap, ArcCatalog and ArcToolbox. These ap-

plications can operate independently, however they are best thought of as three

parts of an integrated desktop system.

ArcMap: ArcMap is the map-centric application for all mapping and editing

tasks, as well as for map-based analysis. ArcMap provides users an envi-

ronment in which to display, browse, query, link, and format geographic

data.

ArcCatalog: ArcCatalog is the data-centric application that locates, browses,

and manages spatial data.
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ArcToolbox: ArcToolbox is a complete environment for performing the geo-

processing operations provided by ArcGIS such as data conversion, overlay

processing, buffer creation, and map transformation.

As discussed in Section 3.1 ArcGIS is selected for GIS software and ArcMap is

enhanced with fuzzy set methodology.

Component Object Model (COM) environment is used for developing fuzzy

inference system for ArcMap, where the Component Object Model is a protocol

that connects one software component, or module, with another and defining

the manner by which objects interact through an exposed interface.

Since applications can interact with objects only through their public inter-

faces, Fuzzy Inference Engine and Fuzzy Inference System Module can be used

through their interfaces. Detailed discussion on Fuzzy Inference Engine inter-

faces and Fuzzy Inference System Module interfaces are given in Section 4.1.1

and Section 4.1.2 respectively.

The implementation of the fuzzy inference system tool for a commercial

Geographic Information System product, ArcMap is divided into two parts:

1. Fuzzy Inference Engine implementation.

2. Fuzzy Inference System Module implementation.

4.1.1 Fuzzy Inference Engine Implementation

Microsoft Visual C++ Version 6.0 is used for Fuzzy Inference Engine devel-

opment. In the Fuzzy Inference Engine implementation, classes that a fuzzy

system has to support are designed and implemented. Implemented classes are

depicted in Figure 3.2. Every class has parametrized constructor and a destruc-

tor. Copy constructor and assignment operator is also provided in each class.

Each member variable in classes has the two characteristic member functions:

SetXXX(arg ...): Set the member variable XXX with the value given in the

argument.
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GetXXX(): Get content of the member variable XXX.

Fuzzy Inference Engine is designed as a precompiled library. Since Component

Object Model is selected as development environment, functionality provided by

Fuzzy Inference Engine is used via its interfaces. As shown in Figure 4.1 Fuzzy

Inference Engine has three different interfaces:

Figure 4.1: Interface diagram for Fuzzy Inference Engine.

1. ISet Interface: Provides access to members that create membership func-

tions, linguistic variables, variable sets, rules and rule sets. Members of

the interface are:

AddLinguisticVariable: Adds a linguistic variable to variable set.

AddMembershipFunction: Adds a membership function to linguistic

variable.

AddRule: Adds a rule to rule set.

CreateLinguisticVariable: Creates a new linguistic variable in the do-

main of concern.
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CreateRule: Creates a new rule that describes a mapping relationship

between inputs and output.

CreateRuleSet: Creates a rule set, which will represent human knowl-

edge about a specific problem.

CreateVariableSet: Creates a new linguistic variable set, which will de-

fine a set of linguistic variables for a specific domain.

Figure 4.2 shows the appropriate interface call sequence.

Figure 4.2: Interface call sequence diagram for Fuzzy Inference Engine ISet
interface.

2. IFuzzyModel Interface: Provides access to members that create fuzzy in-

ference system, get properties of fuzzy inference system, make inference

and clear fuzzy inference system. Members of the interface are:

ClearFIS: Deletes the fuzzy inference system created by this interface.

CreateFuzzyInferenceSystem: Creates a new fuzzy inference system

by setting all the parameters explicitly.

CreateFuzzyInferenceSystem2: Creates a new fuzzy inference system

by using FISPropertiesType structure.

GetFISProperties: Gets the properties of the fuzzy inference system.

MakeInference: Makes inference based on defined rules and input value

list.
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Figure 4.3 shows the appropriate interface call sequence.

Figure 4.3: Interface call sequence diagram for Fuzzy Inference Engine IFuzzy-
Model interface.

3. IFuzzyRaster Interface: Provides access to members that create inferred

conclusion based on defined fuzzy inference system and given input raster

maps. Members of the interface are:

AddRaster: Adds a new input raster map by reference to the raster map.

AddRasterByPath: Adds a new input raster map by its full path in the

system.

ClearAllRasters: Deletes input raster maps from the fuzzy inference

system and clears memory blocks allocated.

CreateFuzzyRaster: Creates an inferred conclusion in the form of an

output raster map. Figure 4.4 depicts algorithm for creating an in-

ferred output raster map in pseudo code.

Figure 4.5 shows the appropriate interface call sequence for IFuzzyRaster

interface.

Figure 4.6 shows the appropriate interface call sequence to use fuzzy inference

engine functionality.
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Algorithm 2 Algorithm to Create Inferred Output Raster Map.
Create a new empty raster map for output
for each <Input Raster> map

1. Create a memory block
2. Read <Input Raster> map pixel block to allocated memory block

for each <Band> of output raster map
1. Create a memory block to store resulting pixel block
2. for each <Pixel> of output raster map

1. Infer a conclusion by using pixel values of input raster maps of the same
location

3. Write pixel block in memory to file

Figure 4.4: Algorithm to create inferred output raster map.

Figure 4.5: Interface call sequence diagram for Fuzzy Inference Engine IFuzzy-
Raster interface.

4.1.2 Fuzzy Inference System Module Implementation

Microsoft Visual Basic Version 6.0 is used for Fuzzy Inference System Module

development. In the Fuzzy Inference System Module implementation, user inter-

faces required to create a fuzzy inference system and interaction with ArcMap

are designed and implemented. Implemented classes, modules and forms are

shown in Figure 3.4.

Figure 4.6: Interface call sequence diagram for Fuzzy Inference Engine.
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For each form, similar design patterns are followed to standardize user in-

terfaces and similar coding scheme is used to trace code easily. Fuzzy Inference

Engine, ESRI ArcObjects precompiled libraries and COM components are used

by Fuzzy Inference System Module. COM components used in the Fuzzy Infer-

ence System Module, but not mentioned here, are not related with the scope

of this thesis. Interactions with other objects are shown in Figure 4.7. Fuzzy

Figure 4.7: Object interactions in Fuzzy Inference System Module.

Inference System Module has a public property named “MapDocument”, and a

method named “ShowMainMDI”.

Property MapDocument: Used to set reference of MxDocument of ArcMap.

MxDocument represents the current ArcMap document. IMxDocument

interface is a starting point for much of the other objects in ArcMap.

For example, IMxDocument interface provides access to the current active

view, the currently selected map, all of the maps displayed, and the style

gallery (ESRI, 2001).

Method ShowMainMDI: Starts execution of Fuzzy Inference System Mod-

ule.
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4.2 Technical Specifications of Fuzzy Inference System

The proposed system was developed using the commercial GIS package ArcGIS

8.1, which runs at Microsoft Windows NT 4.0 Workstation (with Service Pack

6a) operating system. The developed system supports Microsoft Windows NT

4.0 Workstation, Microsoft Windows 2000 and Microsoft Windows XP operating

systems. 10 MB or more free disk space is required to accommodate the system.

The developed system does not insist on any hardware requirements other than

the disk space. Installation notes are given in APPENDIX A.

The performance of the system is mostly affected by the size of the input

raster maps (i.e., width and height in pixel), the number of input raster maps

used in spatial analysis and the number of rules defined. Since operations to

infer a scalar output value are mostly based on computations, the higher rates

of CPU is recommended. In order to operate on input raster maps, each one of

the input raster map is read to the memory, block by block. Hence, large raster

maps (e.g., 50 MB or more) degrades the performance of the system. When

there is a need to operate on large raster maps, it is recommended that the

higher the memory and the faster the disk, it is better.

It is recommended that all input raster maps are in the same spatial refer-

ence and have exactly equal extends. Moreover, output raster map, containing

inferred results in its pixel values, is created in the same spatial reference and

the same extend as the first input raster map added to the Fuzzy Inference

Engine.
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CHAPTER 5

CASE STUDY

This chapter presents the operation of fuzzy inference system for cell-based in-

formation modeling. Operation of fuzzy inference system is exemplified through

classification process and decision-making process.

5.1 Applications

To exemplify the operation of the system Digital Elevation Model (DEM) and

vector maps, describing roads and town, are used for input to classification

process and decision-making process. In the sequel the developed system is used

for classification and taking decisions in decision-making processes.

5.1.1 Classification

Classification is defined as identification of a set of features as belonging to a

group (Aronoff, 1989). In the classical sense in order to test for belonging to a

group, each group is separated from other groups with sharply defined intervals.

For example, in a raster-based GIS, a cell is assigned to a group if value of the

cell is between the values describing that group. However, it is very difficult

to work with vague concepts, which are easily comprehended by humans. The

developed system can be used to classify the study area into classes, which are
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Figure 5.1: Membership function for linguistic term gentle.

defined as linguistic terms (i.e., classes do not have sharply defined intervals).

In the sequel the study area is classified as linguistically defined terms “gentle”,

“southern” and “close” to exemplify and test the operation of the system.

Example 5.1 To characterize a value of the slope by a natural label “gentle”,

it is necessary to define the meaning of the term “gentle”. Suppose that the

meaning of the term “gentle” is defined as shown in the Figure 5.1. The

main purpose of the system is to assist the user to take decisions using experts’

experiences in the decision-making process. Experts’ knowledge are captured

by fuzzy if-then rules which are in the form of IF A THEN B where A and B

are terms with a fuzzy meaning. Therefore, system expects rules to be defined

completely. Up to now, antecedent of the rule is constructed as “IF slope is

gentle”. Since “IF slope is gentle THEN ?” is not a valid rule, what actions

will be taken when the rule’s antecedent is partially satisfied is not known. The

consequent of the rule must also be defined. One possible consequent variable is

“suitable” with meaning depicted in Figure 5.2. There are plenty of choices for

consequent variable and its membership function (i.e., meaning) depending on

the problem or even depending on wish. The scale of the consequent linguistic

variable “suitable” is selected as [0, 100]. Output values will lie in the scale of

the consequent variable. Depending on the scale and the meaning of the output

variable (i.e., suitable) used in the example, in the output raster map pixel values
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Figure 5.2: Consequent variable “suitable” and its meaning.

close to 100 means pixel definition is close to linguistic term “gentle”. Finally,

to classify slope map of the study area, the rule

IF slope is gentle THEN site is suitable. (5.1)

is used. Model properties are selected as shown in Table 5.1. Input slope map

Table 5.1: Model properties for classification of slope map using one rule

Model Properties
AND operation Minimum operator
OR operation Maximum operator
Implication Minimum operator
Aggregation Maximum operator

Defuzzification process Mean of maximum (MOM) defuzzifier

of the study area is derived from DEM and is depicted in Figure 5.3. Result of

the classification based on the Rule (5.1) and the model properties listed above

is depicted in Figure 5.4. In the fuzzy result map, upper parts of the region

mostly has “gentle slope” with varying degrees. Higher pixel values imply pixel

definition is more close to “gentle”. All pixels in the input slope map are then

classified as “gentle” with varying grades. Each pixel value in the output map

defines the grade of “suitability” to describe the cell as having a “gentle slope”.

The exact Boolean expression of the Rule (5.1) is:

IF cell has slope value between 10% and 20% THEN cell is defined as gentle.

(5.2)
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Figure 5.3: Slope map of the study area.

Result of applying Boolean expression to the input slope map is depicted in

Figure 5.5. A location with slope equal to 10.1% is characterized as “gentle”,

while another location with slope equal to 9.9% is not. For decisions based

on multiple criteria, it is usually the case an entity which satisfies majority of

constraints posed by decision-maker and is marginally rejected in only one of

them to be selected as valid by decision-maker. However, based on crisp logic a

location with 9.9% will be rejected, even it satisfies all other constraints. Gray

areas in Figure 5.4 (i.e., fuzzy result) represent locations that partially satisfy

the constraint where these locations are excluded in Figure 5.5 (i.e., Boolean

result). Specifically, 31.4% of the total area is represented by different tones

of gray (i.e., locations that partially satisfy the constraint) in the fuzzy result

map, however these locations are characterized as “not gentle” in the Boolean

result map. Suppose that if Figure 5.4 (i.e., fuzzy classification) is classified

as locations equal to 100 are assigned to 1 and others are assigned to 0, the
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Figure 5.4: Fuzzy result map showing “gentle slope”.

Figure 5.5: Classified locations according to Boolean expression.
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Figure 5.6: Classified fuzzy (“gentle slope”) map.

result is the same as applying Boolean expression (5.2) to the input slope map.

Figure 5.6 illustrates result of classification of fuzzy result. As it is easily

seen that Figure 5.5 and Figure 5.6 are the same. Therefore, the result of fuzzy

classification includes the result of the conventional classification (i.e., crisp logic

in classification). In addition, fuzzy classification gives better results because all

the pixels of input slope map contribute to the answer of the rule with a grade.

Note that scale of the consequent linguistic variable differs from the scale

of the fuzzy output map shown in Figure 5.4. Because, values in the output

map are in the range of [50, 100]. Membership functions, their parameters,

model properties and defined rules affect values and their range in the produced

output.

A fuzzy model describes functional mapping relationship from a set of input

variables to a set of output variables using a set of fuzzy if-then rules. Fuzzy

model in Example 5.1 defines a relationship from input linguistic variable “slope”
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Figure 5.7: Meaning of output linguistic variable “suitable”.

to output linguistic variable “site”. The antecedent of a fuzzy model is defined

by fuzzy partitions of input space. Generally, a fuzzy partition of an input space

is a set of fuzzy subspaces whose boundaries partially overlap and whose union

is the entire input space (Yen and Langari, 1999). However, input space “slope”

in Example 5.1 is partitioned only in one subspace “gentle” which is defined

between 3% and 40% with a core area of 10% and 20%. Therefore, other possible

values for linguistic variable “slope” are not included in the model. For instance,

a location with slope value equal to 2% is not mapped to any output variable

using rules. These locations in Example 5.1 which are not included in the fuzzy

subspace “gentle” are mapped to output value 50 (i.e., mean value in the scale

of the consequent linguistic variable) based on the selected model properties.

Example 5.2 In this example, the study area is classified as suitability to build

a house by using only slope as an input criterion. It is considered that the values

of consequent linguistic variable suitability are “good”, “average” and “bad”.

Meaning of output linguistic terms “good”, “average” and “bad” are depicted

in Figure 5.7. A fuzzy partition of the entire input space “slope” is formed

by four fuzzy subregions namely “flat”, “gentle”, “moderate” and “steep” and

their membership functions are given in Figure 5.8. To classify slope map of the

study area following rules are used.

IF slope is flat THEN suitability is good. (5.3)
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Figure 5.8: Membership functions of linguistic terms “flat”, “gentle”, “moder-
ate”, and “steep”.

IF slope is gentle THEN suitability is average. (5.4)

IF slope is moderate THEN suitability is bad. (5.5)

IF slope is steep THEN suitability is bad. (5.6)

And model properties are selected as shown in Table 5.2. Result of the

Table 5.2: Model properties for classification of slope map using multiple rules

Model Properties
AND operation Minimum operator
OR operation Maximum operator
Implication Minimum operator
Aggregation Maximum operator

Defuzzification process Center of area (COA) defuzzifier

classification based on rules (5.3)-(5.6) and the model properties listed above

is depicted in Figure 5.9. As it is easily seen from the result map, areas

close to white color represent more suitable places to build a house and these

areas are mostly associated with flat slope. Locations represented by dark gray

and black color are not as suitable as others are because these areas can be

considered as having moderate or steep slope. It is noted that qualified locations

derived from the developed system can be available in orderly manner. Decisions

based on multiple criteria are discussed in Section 5.1.3. As has been stated

previously, membership function types and membership function parameters,

model properties and defined rules affect values and their range in the produced
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Figure 5.9: The result map showing suitability to build a house based on defined
fuzzy model.

output. For instance, if mean of maximum, largest of maximum or smallest of

maximum defuzzifier were selected for defuzzification the range of the output

values in output suitability map would be [0, 100].

Example 5.3 This example illustrates characterizing a location by a natural

label “southern”. Southerly exposed locations are classified as “suitable” sites.

Suppose that the meaning of the term “southern” and output linguistic term

“suitable” are defined as shown in the Figure 5.10. To characterize a location

by a label like “southern”, aspect map of the study area is produced based on

the DEM. Input aspect map of the study area is depicted in Figure 5.11.

Classification is based on the rule:

IF aspect is southern THEN site is suitable. (5.7)

Model properties are selected as shown in Table 5.3. Result of the classification

based on the Rule (5.7) and the model properties is depicted in Figure 5.12. Note
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(a)

(b)

Figure 5.10: Membership functions for linguistic term (a) “southern”, and (b)
“suitable”.

Table 5.3: Model properties for classification of aspect map

Model Properties
AND operation Minimum operator
OR operation Maximum operator
Implication Minimum operator
Aggregation Maximum operator

Defuzzification process Smallest of maximum (SOM) defuzzifier
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Figure 5.11: Aspect map of the study area.

Figure 5.12: The result map showing southerly exposed locations.
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Figure 5.13: Roads and proximity to roads.

that input space is not entirely partitioned as in the Example 5.1. However, the

range of the output values in the output fuzzy map is not the same as in Example

5.1. Because the model properties are different from the model properties used

in Example 5.1.

Example 5.4 It is common in most site selection problems to find sites that are

close to roads. In classical approach one solution is with creating buffer zones

with the defined upper limit for the term “close”. This example illustrates fuzzy

approach in place of using buffer zones for finding locations “close to roads”.

Roads in the study area and proximity to roads are depicted in Figure 5.13.

Suppose that the meaning of the linguistic term “close” and the linguistic term

“suitable” are defined as shown in the Figure 5.14. Model properties are selected

as shown in Table 5.4. And classification is based on the rule:

IF distance to road is close THEN site is suitable. (5.8)

Result of the classification based on the Rule (5.8) and the model properties
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(a)

(b)

Figure 5.14: Membership functions for linguistic term (a) “close”, and (b) “suit-
able”.

Table 5.4: Model properties for classification of proximity to roads

Model Properties
AND operation Minimum operator
OR operation Maximum operator
Implication Minimum operator
Aggregation Maximum operator

Defuzzification process Smallest of maximum (SOM) defuzzifier
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Figure 5.15: Fuzzy result map showing locations close to roads.

listed above is depicted in Figure 5.15. It is seen that the result of applying fuzzy

classification resembles the buffer zones. In classical approach every location

in the buffer zone has equal degree (i.e., true or 1). In the result of fuzzy

classification, locations having grade equal to 100 (i.e., maximum suitability)

represent these locations. In addition, fuzzy classification presents locations that

partially satisfy the constraint “close to roads”. These locations are represented

by different tones of gray depending on suitability values. Note that suitability

decreases as we moved away from the roads.

5.1.2 Hedges

Meaning of a linguistic term can be modified using linguistic hedges. The de-

veloped system provides interfaces for decision-makers to define hedges. After

defining hedges, the meaning of a linguistic term in a rule can be modified using

hedges.
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Figure 5.16: Fuzzy result map showing “flat slope”.

Example 5.5 The hedge “very” does not have a well-defined meaning in ev-

eryday use. However, in essence the hedge “very” has an intensive effect on

linguistic term it operates. In general, definition of hedge “very” is given below:

µV ery(F )(x) = [µF (x)]2 (5.9)

In this example the study area is classified using the Rule (5.10). Membership

function of linguistic term “flat” is given in Figure 5.8.

IF slope is flat THEN site is suitable. (5.10)

Figure 5.16 illustrates the result of applying Rule (5.10) to the input slope map

shown in Figure 5.3. Using the definition of hedge “very” (5.9) the meaning of

the term “flat” is modified to obtain a more stringent Rule (5.11).

IF slope is very flat THEN site is suitable. (5.11)

Result of the classification based on the Rule (5.11) is depicted in Figure 5.17.

Since the hedge “very” has an effect of narrowing the membership function,
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Figure 5.17: Fuzzy result map showing “very flat slope”.

value of a specific location shown in Figure 5.17 is less than the value of the

same location shown in Figure 5.16. As it is seen, Figure 5.17 is darker than

the Figure 5.16, dark locations became darker after adding hedge “very” to the

Rule (5.10). Note that it is easier to satisfy the constraint “flat slope” than the

constraint “very flat slope”.

Example 5.6 In Example 5.4 sites that are “close to roads” are classified as

suitable according to the Rule (5.8). Like hedge “very”, hedge “too” also has an

effect of narrowing the membership function, while hedge “enough” widens the

membership function. Because the criteria “too close to roads” should be more

stringent than “close to roads”, while the criteria for “enough close to roads”

should be relaxed. Definitions of hedges “too” and “enough” are listed below:

µToo(F )(x) = [µF (x)]2 (5.12)

µEnough(F )(x) = [µF (x)]0.4 (5.13)

Definitions given above can change depending on the problem, depending on
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context a linguistic term used, or depending on wish. Using the definitions of

hedge “too” (5.12) and hedge “enough” (5.13) the meaning of the constraint

“close to roads” is modified to obtain the following rules:

IF distance to road is too close THEN site is suitable. (5.14)

IF distance to road is enough close THEN site is suitable. (5.15)

Figure 5.18 depicts the results of applying rules (5.14) and (5.15) to the proximity

map shown in Figure 5.13, respectively. Since it is difficult to satisfy the criteria

“too close to roads” than “close to roads”, not all locations that satisfy the

criteria “close to roads” satisfy the criteria “too close to roads”. In addition,

the degree of satisfying the constraints “too close to roads” and “close to roads”

for a specific location is not the same. The degree of satisfying the constraint

“too close to roads” is less than the degree of satisfying the constraint “close

to roads”. Therefore, the result of adding hedge “too” to modify the meaning

of the rule results in narrowing the zone shown in the fuzzy map (Figure 5.15).

On the other hand, it is easy to satisfy the criteria “enough close to roads” than

“close to roads”. Therefore, more locations satisfy the constraint “enough close

to roads”. Moreover, the degree of satisfying the constraint “enough close to

roads” is higher than the degree of satisfying the constraint “close to roads”.

Hence, hedge “enough” has an effect of widening the zone shown in the fuzzy

map (Figure 5.15).

5.1.3 Decision Making

One of the main tasks in GIS is making decisions using information from different

maps. The decision-making is affected by many factors and sometimes needs

many criteria. In numerous situations involving a large set of feasible alternatives

and multiple, conflicting and incommensurate criteria, it is difficult to state

and measure these factors and criteria (Malczewski, 1996). Indeed most of the

information about the real world contains uncertainties.

Threshold model is a common type of operation in decision-making. In the
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(a)

(b)

Figure 5.18: The result map showing (a) “too close to roads”, and (b) “enough
close to roads”.
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threshold model, low and high threshold values limit the exact boundaries of

criteria. When the underlying logic in GIS is crisp logic, then results of apply-

ing threshold values in decision-making processes are 0 or 1. Maps consisting of

zero and unity values are produced for each criteria using threshold values that

define the meaning of the criteria by only low and high threshold values (i.e.,

boundaries which are sharp or clear-cut). Then the overall result is obtained

through the map overlay. Such models can cause problems since they are in-

herently rigid. The developed system, on the other hand, can be used to make

decisions capturing uncertain information using fuzzy set methodologies. In the

sequel a set of criteria is used to select suitable sites for industrial development

to exemplify and test the operation of the system.

Example 5.7 To select suitable locations for industrial development humans

may pose criteria such as “If site has flat or gentle slope and if site is close to

roads and town then site is suitable for industrial development”. It is simple

for humans to comprehend and make decisions based on these vague terms.

However, the conventional GIS cannot answer such vague questions. The exact

Boolean criteria for the industrial development site selection is:

Site is suitable if (slope <= 20%) and (distance to road <= 1000 m)

and (distance to town <= 5000 m). (5.16)

Associated input raster maps are: “slope map” is depicted in Figure 5.3, “prox-

imity to roads” is depicted in Figure 5.13, and map showing “proximity to town”

is depicted in Figure 5.19. Boolean answer to question (5.16) is simple. First,

for each criterion (i.e., slope, distance to road and distance to town) a map

containing 0s and 1s is produced. Pixel values that are less than the threshold

values are assigned 1 in the output map and 0 otherwise. Second, the overall

result is produced by overlaying these three maps using logical AND operation.

Boolean result is depicted in Figure 5.20. The proposed system can be used

to find fuzzy answer to site selection problem (see APPENDIX B). In addition,

the developed system allows using vague definitions in the criteria. Hence, the
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Figure 5.19: “Proximity to town” raster map for decision-making process.

Figure 5.20: Result of Boolean analysis for suitable sites (using AND).
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rules listed below are used to approximate conceptual model of the problem

in expert’s opinion (i.e., human cognition) and generate fuzzy answer to site

selection problem:

IF slope is flat and

distance to road is close and

distance to town is close

THEN site is suitable. (5.17)

IF slope is gentle and

distance to road is close and

distance to town is close

THEN site is suitable. (5.18)

Rules (5.17) and (5.18) approximate what industrial site selection problem means

to user by using linguistic terms instead of precise numerical values. These two

rules can be further joined to form the rule below:

IF slope is flat or

slope is gentle and

distance to road is close and

distance to town is close

THEN site is suitable. (5.19)

Rule (5.19) is very similar to the problem definition introduced earlier. Mem-

bership functions for linguistic terms are depicted in Figure 5.21. Membership

functions can be chosen by the user arbitrarily based on user’s experience, hence

the membership functions for two user could be quite different depending upon

their experiences and perspectives. It has to be also noted that linguistic term

“close” is used twice, one stands for “close to roads” and other stands for “close

to town” and two different membership functions were defined for linguistic term

“close”. This illustrates the fact that membership functions can be quite context
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(a)

(b)

(c)

(d)

Figure 5.21: Membership functions for (a) flat and gentle slope, (b) close to
roads, (c) close to town, and (d) suitability.
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Figure 5.22: Fuzzy result to site selection problem using one rule.

dependent. Fuzzy result produced using two rules (5.17) and (5.18) is the same

with the result produced using single rule (5.19). Fuzzy result is depicted in

Figure 5.22. It is easily seen that fuzzy result provides a result set of locations

whose attribute values partially satisfy the constraints, whereas Boolean result

provides only a set of locations whose attribute values satisfy all constraints.

When the underlying logic in GIS is crisp logic, locations satisfying all con-

straints are assigned to unity and others are assigned to 0. However, all pixels

in the fuzzy output map have a suitability degree for industrial development

based on satisfaction of each criterion. For instance, locations that are not close

to town are not included to the Boolean result set. Hence, locations that fail to

satisfy criteria “distance to town <= 5000 m” even with 1m are excluded from

the result set disregarding their slope and closeness to roads. Consider location

labeled A in Figure 5.22. Location A has properties as listed below:

slope = 3%
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distance to roads = 300 m

distance to town = 4953.1 m

Since, properties of location A are in the defined threshold values, location A

is assigned to 1 in the Boolean result map indicating it is a suitable location.

Another location near to point A is labeled as A′ and has the following properties:

slope = 2.1%

distance to roads = 190 m

distance to town = 5045 m

Location A′ fails to satisfy the Boolean criteria because distance to town is

a little bit higher than the defined threshold value. Therefore location A′ is

assigned to 0 in the Boolean result map indicating it is not a suitable location.

Location A′ has even better slope value and more close to road but it is classified

as unsuitable location based on value of distance to town, note that distance

between location A and A′ is less than 100 m. On the other hand, the proposed

system graded suitability of location A with 77 and graded location A′ with 76

(out of 100) for industrial development.

Input maps store information about real world which are continuously chang-

ing properties. Applying threshold values in Boolean analysis leads to lose in-

formation stored in the input maps. Since, the result of Boolean analysis only

consists of 1s and 0s which indicate it is a suitable location or not, the user has no

idea about best or worst locations satisfying all constraints. On the other hand,

as has been stated previously, fuzzy site selection analysis provides locations in

orderly manner; each location has a suitability degree. For example, consider

points in Figure 5.22 A, A′, B, B′, and C. Table 5.5 gives property values and

results associated with the locations. It is noted that location A, B, and C are

suitable locations according to Boolean analysis. Since values of locations A,

B, and C are 1 in the output Boolean map, the user has no idea about which

is better for industrial development. Fuzzy result provides this information to

user with no further processing requirements.
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Table 5.5: Properties of locations and results of Boolean and fuzzy analysis

Locations Slope Distance to Distance to Boolean Fuzzy
(%) road (m) town (m) result result

A 3.0 300 4953.1 1 77
A′ 2.1 190 5045.0 0 76
B 1.4 995.7 2352.4 1 70
B′ 1.7 1051.2 2227.5 0 68
C 1.1 50 2197.3 1 90

The user may choose locations, which satisfy any of the criteria, for industrial

development. Then, the rule “If site has a flat or gentle slope or site is close

to road or town then the site is suitable” is used to find suitable sites. Result

of applying Boolean analysis and result produced from the developed system

are depicted in Figure 5.23. Locations classified as unsuitable in the Boolean

analysis have lowest grade in the fuzzy result.

Example 5.8 To select suitable sites for industrial development three rules are

defined as follows:

Rule 1. IF slope is flat and

distance to road is close and

distance to town is very close

THEN site is suitable. (5.20)

Rule 2. IF slope is flat and

distance to road is close and

distance to town is close

THEN site is average. (5.21)

Rule 3. IF slope is not flat and

distance to road is not close and

distance to town is far

THEN site is bad. (5.22)

Membership functions for linguistic terms are depicted in Figure 5.21. The
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(a)

(b)

Figure 5.23: Result of (a) Boolean analysis for suitable sites (using OR), (b)
fuzzy analysis.
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Figure 5.24: Fuzzy result to site selection problem using multiple rules.

developed system produced fuzzy result as depicted in Figure 5.24.

This example illustrates the fact that experiences of a GIS user on a specific

decision-making process can be approximated easily using the developed fuzzy

inference system for cell-based information modeling.
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CHAPTER 6

DISCUSSION OF THE RESULTS

The choice of membership function types, membership function parameters,

input and output linguistic variables, rules and fuzzy model properties depend

on the problem. Hence, the identification of fuzzy models is a very important

issue and consists of three main tasks (Yen, 1999):

1. Structure identification involves finding important input variables for the

problem domain, partitioning of input space, specifying membership func-

tions, and defining rules.

2. Parameter estimation involves finding unknown parameters in the model

by using optimization techniques.

3. Model validation involves testing the model.

In order to estimate parameters of membership functions both linguistic

information from human experts and numerical data (e.g., statistical data, data

obtained from observations on the system) obtained from the actual physical

system can be used (Yen, 1999).

The system has been developed on a commercial GIS software namely ArcGIS.

Visual Basic and Visual C++ are used to enhance the functionality of cell-based

information modeling in the form of extensions. In Visual Basic 10556 lines of

code, in Visual C++ 6066 lines of code are written.
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Fuzzy model approach can be used in place of classical approach in classi-

fication and decision-making processes using the proposed software. Note that

classical set theory used in conventional GIS software imposes artificial preci-

sion on inherently imprecise information about real world and fails to model the

way of human thinking about the real world. In addition, decision-maker has

to produce maps for each criterion when using conventional GIS software based

on classical set theory. However, in this thesis, it is demonstrated that using

the proposed software for decision-making, decision-maker has no longer need

to produce maps for each criterion. For this reason, the overall time required

for the whole analysis is reduced using the developed system. Decision-making

problem introduced in Example 5.7 in Section 5.1.3 contains three input maps.

Each input map is in 1000-pixel height and 1000-pixel width. The developed

system running on Pentium III 450MHz machine with 320MB RAM (Windows

NT Workstation 4.0 platform) produced output map (i.e., 1000× 1000 pixel) in

188 seconds. Note that to find Boolean answer to question first, for each crite-

rion (i.e., slope, distance to road and distance to town) a map containing 0s and

1s is produced (i.e., three layers). Second, the overall result is produced using

logical connectives. Thus, Boolean result is obtained by creating four layers.

A set of fuzzy mapping rules form a fuzzy model. There are three types of

fuzzy rule based models: the Mamdani model, the TSK model and Standard

Additive Model. In this thesis, the Mamdani model is used to approximate the

real world or to model a decision-making process. The Mamdani model is one

of the most widely used fuzzy models in practice. The consequent part of the

fuzzy mapping rules can be defined both as a fuzzy set and as a crisp value in the

Mamdani model. The TSK model replaces the fuzzy sets in the consequent part

of the Mamdani rule with a linear equation of the input variables. The main

motivation for developing TSK model is to reduce the number of rules required

by the Mamdani model, especially for complex and high-dimensional problems

(Yen and Langari, 1999). It is, however, usually not the case that rules approx-

imating human knowledge and experience in classification and decision-making
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processes contain a linear equation of the input variables (Takagi and Sugeno,

1985). Instead, most of the rules defined in a classification and decision-making

processes have linguistically defined fuzzy sets in their consequent part. The

structure of rules in SAM is identical to that of the Mamdani model. The SAM

uses different operators than the Mamdani model: the SAM model uses sup-

product composition, product for all fuzzy conjunction operators and addition

to combine conclusions of individual rules and the SAM model uses centroid

defuzzification method. Parameters, rules and fuzzy model properties differ for

problems. Since the Mamdani model does not insist on a specific defuzzification

method as opposed to SAM, the Mamdani model provides more functionality

to approximate human knowledge and experience in classification and decision-

making processes. Therefore, in this thesis the Mamdani model is used to ap-

proximate a function of interest.
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CHAPTER 7

CONCLUSION

Geographic data, stored and processed in a GIS, are the abstraction of the

real world. Since the underlying logic in conventional GIS software systems is

crisp logic, continuous nature of landscape can not be modeled appropriately.

Because the real physical world is gray but crisp logic is black and white. The

classical set theory used in conventional GIS software imposes artificial precision

on inherently imprecise information about real world and fails to model the way

of human thinking about the real world. Therefore, the abstraction of the real

physical world unavoidably results in differentiation between objects of the real

world and their representation in GIS.

Fuzzy logic offers a way to represent and handle uncertainty present in

the continuous real world. Fuzzy logic is unique in that it provides a formal

framework to process linguistic knowledge and its corresponding numerical data

through membership functions. The linguistic knowledge is used to summa-

rize information about a complex phenomenon and is used to express concepts

and knowledge in human communication, whereas numerical data is used for

processing.

In this thesis, fuzzy logic methodologies are used to enhance cell-based in-

formation modeling. The fuzzy inference system for commercial GIS software,

namely ArcGIS, is designed and implemented. The use of fuzzy logic in GIS has
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become an active field in recent years (see Section 2.9). Most of the researches

primarily focus on the use of fuzzy logic in classifying the continuum of the land-

scape. Since there is a general lack of user friendly software especially focuses

on the GIS-based decision-making process, the Fuzzy Inference System has been

developed to enhance a major desktop GIS software.

The main purpose of the developed system is to assist the GIS user to make

decisions using experts’ experiences in the decision-making process. Experts’

experiences and human knowledge described in natural languages are captured

by fuzzy if-then rules. In this thesis, it is tried to enable decision-makers to

express their constraints through the use of natural language interfaces. The

developed system enables decision-makers to express imprecise concepts that are

used with geographic data. The capacity of taking linguistic information from

decision-makers permits the decision-maker to more easily develop the criteria

and softens the constraints and goals in order to find suitable sites.

In conventional decision-making process, a common type of operation is

threshold model. For each of the criterion the study area is classified into two

subregions describing whether a property value of a specific location is in the

defined limit values or not. Then, maps produced for each criterion are overlaid

using logical connectives (i.e., Boolean overlay). Each criterion can be weighted

based on their importance to decision-maker. In this thesis, it is demonstrated

that using the proposed software for decision-making, decision-maker has no

longer need to produce maps for each criterion. In addition, final conclusion for

multiple fuzzy rules is generated by superimposing all fuzzy conclusions (i.e.,

superimposing all inferred output linguistic variables) about a variable. Final

scalar value is calculated by defuzzifying the superimposed fuzzy conclusions

(i.e., not aggregating individual membership values in maps produced for each

criterion). Therefore, operators for map overlay are not crucial for the developed

system as oppose to (Benedikt et al., 2002; Jiang and Eastman, 2000). More-

over, all locations in the input space are mapped to a degree of suitability using

property values of location and rules defined by the decision-maker. Therefore,
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values of locations in the fuzzy output map derived from fuzzy inference process

can be available in orderly manner. Note that Boolean result contains only a

set of 1 and 0 values. Another advantage of fuzzy inference is that fuzzy result

of a decision-making process provides a set of locations whose attribute values

partially satisfy the constraints posed by the user.

Rules, input and output linguistic variables, membership function types and

membership function parameters and fuzzy model properties can be selected de-

pending on the problem. Importance of a criterion can be dictated using these

parameters. Variety of results can be obtained using different operators, differ-

ent membership functions, different membership function parameters, different

implication and aggregation operators, different defuzzifier operators and differ-

ent rules. Parameters, rules and all other choices that form a fuzzy model differ

for problems. Therefore, for a specific decision-making problem which properties

of fuzzy model are suitable can be specified as a future work.

The developed system can be used not only to make decisions but also to

classify the study area into classes, which are defined as linguistic terms (i.e.,

classes do not have sharply defined intervals). In this thesis, the advantages of

using fuzzy logic methodologies in the classification process are demonstrated

using the developed system. For the developed system, classification is similar

to making decisions using rules. Using fuzzy logic methodologies in the classifi-

cation avoid the high loss of information, which occurs when data are processed

using conventional classification methods. Since fuzzy logic approach allows a

user-defined tolerance to the class limits in the form of transition zones, interme-

diate conditions can be better described and gradual changes or transitions in the

property values can be better expressed. Therefore, more continuous approach

to classification leads to more realistic assessment of continuous landscape.

A membership function maps each point in the input space to a degree of

membership between zero and unity. There exist numerous types of membership

functions. In this thesis, the designed and implemented system covers the most

commonly used membership functions (see Section 2.4). A fuzzy model is formed
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by fusing a set of fuzzy mapping rules. There are three types of fuzzy rule based

models: the Mamdani model, the TSK model and Standard Additive Model. In

this thesis, the Mamdani model is used to approximate a function of interest.

Design and implementation of the TSK model and Standard Additive Model as

an extension can be specified as a future work.

Choosing fuzzy model properties, membership function types and parame-

ters, input-output linguistic variables, input-output relationship and operators

for fuzzy inference process are crucial for developing a fuzzy model to approx-

imate the real world or to model a decision process. Selection of appropriate

parameters for specific GIS operations can be addressed as a future work.

By relying on the use of linguistic variables and fuzzy rules the incorporation

of fuzzy set theory into GIS provides an approximate and yet effective means of

describing the real world which is (not precise) full of uncertainties.
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APPENDIX A

FUZZY INFERENCE SYSTEM

INSTALLATION

The Fuzzy Inference System for ArcMap Setup wizard automatically installs the

Fuzzy Inference System executable and related files on computer. The Setup

wizard decompresses files from the Fuzzy Inference System release media and

copies them to a folder on hard disk. The Setup wizard will suggest a location

for the folder, but user can specify a different location.

The Setup wizard logs installation progress to a file named “St6unst.log”,

which is created in the installation folder. In case a problem is encountered with

the installation, this file may provide information to help diagnose the problem.

ArcMap has buttons on the Standard toolbar for quickly displaying its most

commonly used toolbars. The Toolbars list can be accessed by right-clicking

any toolbar, the status bar, or the title bar of the table of contents in ArcMap.

The Setup wizard creates a toolbar menu item named “Fuzzy Inference System

for ArcMap” on the standard toolbar. Checking the mark next to the toolbar

named “Fuzzy Inference System for ArcMap” will display the Fuzzy Inference

System on ArcMap desktop as a floating toolbar. The Fuzzy Inference System

will be executed when the associated toolbar item is selected.

The release can be removed by going to the Windows Control Panel and
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choosing Add/Remove Programs and choosing Fuzzy Inference System for ArcMap

from the displayed list of programs.

The system requirements to install and run Fuzzy Inference System success-

fully are listed below:

1. The minimum disk space required to install the developed software is 10

MB.

2. The developed system requires ArcGIS software installed on the system.

3. CD-ROM drive for installation.

4. The Fuzzy Inference System supports the following operating systems:

• Microsoft Windows NT 4.0 Workstation.

• Microsoft Windows 2000.

• Microsoft Windows XP.

The Fuzzy Inference System for ArcMap Setup is available from e-mail addresses

tahsin alp@yahoo.com and zakyurek@metu.edu.tr.

94



APPENDIX B

FUZZY INFERENCE SYSTEM SOFTWARE

The Fuzzy Inference System has interfaces required to define hedges, define input

and output linguistic variables, form fuzzy if-then rules, set the fuzzy model

properties and other utility functions (e.g., saving designed fuzzy model to a file,

selecting output file format and output file directory etc.). In the sequel steps to

design a fuzzy model for the decision-making problem introduced in Section 5.1.3

in the Example 5.7 are given. Before starting to design membership functions,

associated input raster maps are added to a map in the ArcMap (Figure B.1).

To define input linguistic variable “Slope”, linguistic variable name “Slope”

is written to field linguistic variable name, variable type is set to “Raster”, its

status is selected as “Input” from the list, minimum and maximum values for

the linguistic variable are written and associated input raster map is selected

from the list. Membership functions for the linguistic variable “Slope” are added

as shown in the Figure B.2.

After designing membership functions (Figure B.3), defined linguistic vari-

able is added to linguistic variable list. Other input and output linguistic vari-

ables are defined in the same way. Membership functions for linguistic terms

are depicted in Figure B.4, Figure B.5 and Figure B.6.

In the second step, rule approximating industrial site selection problem is

formed by selecting linguistic variable name, hedge, linguistic term and logical
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Figure B.1: Input raster maps.

Figure B.2: Adding membership functions to linguistic variable “Slope”.
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Figure B.3: Membership functions for linguistic variable “Slope”.

Figure B.4: Membership functions for linguistic variable “Distance to Road”.
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Figure B.5: Membership functions for linguistic variable “Distance to Town”.

Figure B.6: Membership functions for linguistic variable “Site”.
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Figure B.7: Selecting linguistic terms for linguistic variable “Slope”.

connective from the associated lists. Figure B.7 and Figure B.8 depict scenes

while defining if-part of the rule. Consequent part of the rule is formed as shown

in Figure B.9.

Third step involves selecting implication and aggregation methods, defuzzi-

fication type and conjunction and disjunction operators from the lists (Figure

B.10).

After selecting output directory for fuzzy result and output file format (Fig-

ure B.11), model is executed to generate fuzzy answer to industrial site selection

problem.

99



Figure B.8: Selecting linguistic terms for linguistic variable “Distance to Town”.

Figure B.9: Defining consequent part of the rule.
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Figure B.10: Selecting model properties.

Figure B.11: Setting output directory and output file format.
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