

DESIGN AND DEVELOPMENT
OF AN

INTERNET TELEPHONY TEST DEVICE

BY

TURGUT ÇELİKADAM

DECEMBER 2003

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
THE MIDDLE EAST TECHNICAL UNIVERSITY

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

IN

THE DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Approval of the Graduate School of Natural and Applied Sciences

I certify that this thesis satisfies all the requirements as a thesis for the degree of
Master of Science.

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science.

Prof. Dr. Canan Özgen
Director

Prof. Dr. Mübeccel DEMİREKLER
Head of Department

Prof. Dr. Faruk Rüyal ERGÜL
Supervisor

Prof. Dr. Mete SEVERCAN ______________________________

Prof. Dr. Faruk Rüyal ERGÜL ______________________________

Prof. Dr. Yalçõn TANIK ______________________________

Prof. Dr Hasan GÜRAN ______________________________

Serkan SEVİM ______________________________

Examining Committee Members

 iii

ABSTRACT
7. REFERENCES

Design and Development of an

Internet Telephony Test Device

Çelikadam, Turgut

M.S., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. F. Rüyal Ergül

December 2003, 90 pages

The issues involved in Internet telephony (Voice over Internet Protocol (VoIP)

device) can be best understood by actually implementing a VoIP device and

studying its performance. In this regard, an Internet telephony device, providing full

duplex voice communication over internet, and a user interface program have been

developed. In the process, a number of implementation issues came into focus,

which we have touched upon in this thesis.

Transport layer network protocols are discussed in the concept of real time

streaming applications and Real Time Protocol (RTP) is modified to use as transport

layer protocol in developed VoIP device. Adaptive playout buffering algorithms are

studied and compared with each other by trace driven simulation experiments with

 iv

objective measures. A method to solve clock synchronization problem in streaming

internet applications is presented.

One way and round trip delay measurement functionalities are added to the VoIP

device, so that device can be used to investigate the network characteristics.

Keywords: VoIP, Internet Telephony, Adaptive Playout Buffering, Real Time

Protocol

 v

ÖZ
8. REFERENCES

İnternet Telefonu Test Cihazõ

Tasarõmõ ve Geliştirilmesi

Çelikadam, Turgut

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. F. Rüyal ERGÜL

Aralõk 2003, 90 sayfa

Internet telefonu (Internet Protokolü Üzerinden Ses (IPÜS) cihazõ) tarafõndan

kapsanan önemli noktalar, en iyi şekilde bir IPÜS cihazõ gereçekleyerek ve cihazõn

performansõ üzerinde çalõşarak en iyi şekilde anlaşõlabilir. Bu göz öünde

bulundurularak, Internet üzerinden çift yönlü ses iletişimine olanak sağlayan

Internet telefonu ve kullanõcõ arayüz proğramõ geliştirilmiştir. Bu süreçte,

gerçekleme ile ilgili birçok önemli nokta ilgi odağõ olmuş ve bunlara bu tez

kapsamõnda değinilmiştir.

Taşõma katmanõ ağ protokolleri gerçek zamanlõ akan uygulamalar kapsamõnda

tartõşõlmõş ve Gerçek Zaman Protokolü (GZP) geliştirilen IPÜS cihazõnda taşõma

katmanõ protokolü olarak kullanõlmak üzere değiştirilmiştir. Uyarlamalõ çalma

tampon algoritmalarõ üzerinde çalõşõlmõş ve bu algoritmalar birbirleriyle simülasyon

 vi

deneyleri yaparak, nesnel ölçütlerle karşõlaştõrõlmõştõr. Akan internet

uygulamalarõnda saat senkronizasyon problemini çözmek için bir yöntem

sunulmuştur.

Tek yönlü ve dairesel döngü gecikme ölçüm özellikleri IPÜS cihazõna eklenmiş,

böylelikle ağ karakteristiklerini araştõrmada kullanõlabilmesine imkan sağlanmõştõr.

Anahtar Kelimeler : IPÜS, Internet telefonu, Uyarlamalõ çalma tamponu, Gerçek

Zaman Protokolü

 vii

To My Family

 viii

ACKNOWLEDGEMENTS

I wish to express my sincere gratitude to Prof. Dr. Faruk Rüyal Ergül for his

supervision, valuable guidance and helpful suggestions.

I would like to express my sincere appreciation to Serkan Sevim, K. Gökhan Tekin,

Mehmet Karakaş, Hasan Çitçi in ASELSAN Inc. for their valuable friendship, help

and support. I am also grateful to ASELSAN Inc. for the facilities provided for the

completion of this thesis.

 ix

TABLE OF CONTENTS

ABSTRACT.. iii

OZ..v

ACKNOWLEDGEMENTS .. viii

TABLE OF CONTENTS ...ix

LIST OF TABLES������������������������������������.Xİ

LIST OF FIGURES�����������������������������������.Xİİ

CHAPTER

1. INTRODUCTION .. 1

2. PLAYOUT PROBLEM...�����..���������������.....................6

2.1 Introduction... 6

2.2 Playout problem.. 6

2.3 Adaptive Playout Algorithms ... 8

2.3.1 Illustration of the adaptive playout .. 11

2.3.2 Algorithm 1.. 13

2.3.3 Algorithm 2.. 14

2.3.4 Algorithm 3.. 15

2.3.5 Algorithm 4.. 15

3.PROTOCOLS .. 18

3.1 Ethernet ... 18

3.2 Internet Protocol (IP) .. 20

3.3. Real Time Protocol ... 23

4. SYSTEM ARCHITECTURE AND IMPLEMENTATION�������......28

4.1 Hardware... 30

 x

4.1.1 Voice Digitization.. 33

4.1.2 CODEC- FPGA Serial Interface.. 35

4.1.5 Microprocessor-FPGA interface:... 39

4.2 Microprocessor Software ... 43

4.2.1 Control Functions. ... 43

4.2.1.1 Network Settings... 45

4.2.1.2 Clock Offset Calculation .. 46

4.2.1.3 Connection Establishment .. 50

4.2.1.4 RTT Measurement .. 51

4.2.2 Sender and Receiver Functions.. 53

4.2.2.1 Sender Functions... 54

4.2.2.2 Receiver Functions ... 56

4.3 User Interface Program... 61

4.4 Total End to End Delay... 64

 4.5 VoIP Device Compatible Computer Software Development..........................65

 4.5.1 The basic system design...66

 4.5.2 Control Module...67

 4.5.3 Receiver Module...69

 4.5.4 Transmitter Module..71

5. ADAPTIVE PLAYOUT ALGORITHM SIMULATIONS AND

COMPARISONS..73

5.1 Simulations ... 74

5.2 Comparison and Discussion of results.. 81

6. CONCLUSION AND FUTURE WORK�����������������..............84

REFERENCES.. 87

APPENDIX

A. Pseudo code for the Send_Adc_Data_Task������....���..........................89

 xi

LIST OF TABLES

TABLE

4.1 DPRAM data format�����������... ����������...41

4.2 DPRAM Sections������������������������42

4.3 UART Commands�����������������������...44

4.4 Packet Type Indicator Characters������������������45

5.1 Mean Playout Delay and Number of Lost Packets for Trace 1������...78

5.2 Mean Playout Delay and Number of Lost Packets for Trace 2������...81

 xii

LIST OF FIGURES

FIGURE

2.1 Generation and reconstruction of Packetized voice ����������.�7

2.2 Timing associated with packet i�����������������.......9

2.3 Ilustration of playout mechanism����������������.......12

2.4 Pseudo code of Algorithm 2������������������.......14

2.5 A typical Delay Spike�������������������...��..15

2.6 Algorithm 4 (Spike detection Algorithm)������������...�...16

3.1 Bus based broadcast network�������������������..19

3.2 Ethernet Frame Format��������������������.......19

3.3 IP Header��������������������������....21

3.4 RTP Header�����������������������...��.25

3.5 UDP Header����������������������....26

3.6 Packet Nesting���������������������� �.......27

4.1 VoIP Board�����������������������.. �......29

4.2 VoIP Device����������������������...29

4.3 Block diagram of the VOIP board��������������.�32

4.4 Functional block diagram of the CODEC��������������..33

4.5 Timing diagram of the Codec serial interface�����������........35

4.6 CODEC serial interface frame format���������������....35

4.7 FPGA-ADPCM Processor Interface����������������...38

4.8 DPRAM- Microprocessor Interface����������������...41

4.9 Clock offset and skew between two clocks��������������47

4.10 UDP packet exchange for clock offset calculation between clients A and B....48

 xiii

4.11 UDP Packet�s Used for Clock Offset Calculation Between clients A and B�49

4.12 Voice UDP Packet Data section For PCM mode�����������..54

4.13 Voice UDP Packet Data section for ADPCM mode����������.54

4.14 DPRAM DAC Section Implemented as a Circular Buffer�.������..59

4.15 User Interface Program���������������������..61

4.16 Two communicating VoIP Device�����������������62

4.17 Basic system structure of the VoIP software on a PC platform........................66

4.18 Code segment to create sockaddr_in structure..67

4.19 Code segment to set the soundcard waveout properties....................................69

5.1 Delay Measurement Result for Trace 1���������������..75

5.2 PDF of Trace1 and Gamma Distribution Fitted to Trace 1��������75

5.3 Calculated Playout Time by Algorithm 1 for Trace 1��...�������.76

5.4 Calculated Playout Time by Algorithm 2 for Trace 1���...������.76

5.5 Calculated Playout Time by Algorithm 3 for Trace 1���...������.77

5.6 Calculated Playout Time by Algorithm 4 for Trace 1���...������.77

5.7 Delay Measurement Result for Trace 2������...��������...78

5.8 PDF of Trace1 and Gamma Distribution Fitted to Trace 2��������79

5.9 Calculated Playout Time by Algorithm 1 for Trace 2����������79

5.10 Calculated Playout Time by Algorithm 2 for Trace 2..���������80

5.11 Calculated Playout Time by Algorithm 3 for Trace 2..���������80

5.12 Calculated Playout Time by Algorithm 4 for Trace 2..���������81

 1

CHAPTER 1

INTRODUCTION

In the past few years we have witnessed a significant growth in the Internet in terms

of the number of hosts, users, and applications. The success in coping with the fast

growth of the Internet rests on the Internet Protocol (IP) architecture�s robustness,

flexibility, and ability to scale.

By the availability of high bandwidth, new applications, such as Internet telephony

also known as Voice over IP (VoIP), audio and video streaming services, video-on-

demand, and distributed interactive games, have proliferated. These new

applications have diverse quality-of-service (QoS) requirements that are

significantly different from traditional best-effort service. For example, high-quality

video applications, such as remote medical diagnosis and video-on-demand

applications, demand reliable and timely delivery of high bandwidth data, and

require QoS guarantees from the network.

On the other hand, a majority of multimedia applications including Internet

telephony, video conferencing, and web TV, do not need in-order, reliable delivery

of packets, and can tolerate a small fraction of packets that are either lost or highly

delayed, while still maintaining reasonably good quality. These applications employ

end-to-end control that adapts to the changing dynamics of the network and can

often deliver the acceptable quality to users.

 2

VoIP, which is the subject of this thesis, is the transportation of speech signals in an

acceptable method from sender to destination over an Internet network. The speech

signal is digitized pieces of voice conversation sampled at regular intervals. These

samples are sent via the network to the desired destination where they are

reconstructed into an analog signal representing the original voice. Packet network

based voice is extremely desirable due to advantages like cost effectiveness and easy

integration with other information channels. This can lead to single network that

provides all services.

Unlike conventional telephony, VoIP is afflicted with problems that affect its

quality, like delay, jitter and loss. High quality voice communication over the

Internet requires low end-to-end delay and low loss rate, [1]. However, best effort

networks such as today�s Internet, are characterized by highly varying delay and

loss characteristics that contradict with QoS requirements. Both delay and loss result

from buffering within the network. As packets traverse the network, they are queued

in buffers (adding to their end to end delay) and from time to time dropped due to

buffer overflow. A detailed work on end to end Internet packet dynamics can be

found in [10]. A number of playout adaptation and loss recovery techniques exist to

counter these problems, respectively. Correlation between delay and loss is

discussed in [1].

Compensating for loss using end-to-end protocols and algorithms can be done using

a number of mechanisms, including local repair (interpolation of missing data using

the surrounding packets) and interleaving, [2]. There has been much interest in the

use of packet level Forward Error Correction (FEC) mechanisms. All of the FEC

mechanisms send some redundant information, which is based on previously

transmitted packets. Waiting for the redundant information results in a delay

penalty, and consequently an increase in size of the playout buffers. When network

loss rates are high, accepting the delay penalty for increased recovery capabilities is

appropriate. However when network loss rates are low, The FEC may not provide

 3

useful information, and increasing the playout buffer sizing to wait for it is not

appropriate. In this thesis, interpolation by zero insertion method is used to

compensate for packet loss and FEC methods are left as an future scope of work.

Detailed information about the usage of FEC with adaptive playout algorithms can

be found in [2].

In real-time applications, such as VoIP, a smoothing buffer is typically used at a

client host to compensate for variable delays (delay jitter). Received packets are

first queued into the smoothing buffer. After several packets are queued, actual

decoding is started. Then, the consequences of the delay variations within the

network can be minimized (We refer to this delay as the playout delay). Choosing

the playout delay is important because it directly affects the communication quality

of the application; if the playout delay is set to be too short, the client application

treats packets to be lost even if those packets eventually arrive. On the contrary, the

large playout delay may introduce an unacceptable delay that the client users cannot

be tolerant. The packet transmission delay between the server and client may be

varied according to the network condition in the Internet, and hence, the adequate

playout delay is heavily dependent on variations of packet transmission delays. That

is, a difficulty exists in determining the playout delay. Adaptive playout delay

estimation algorithms are used to compensate the delay variations. These algorithms

adapts to the changing dynamics of the network by estimating the network delay and

delay variance, [3]. According to the estimated variables of delay and delay variance

playout delay is set. Changing the playout delay in between an audio stream will

cause jitter in the played out speech. Thus, adjustments are made only in the silence

periods between two talkspurts in the audio stream. Therefore, a mechanism for

Voice Activity Detection (VAD) is needed to discriminate the silence periods.

Enabling the VAD and not transmitting packets in the silence periods can reduce

transmission rate. Since one communication party is speaking usually other is not;

VAD can reduce transmission rate %50.

 4

Also, when using a data network for real-time voice communication, there comes a

question of which transport layer protocol should be used? This protocol should

introduce minimum delay and overhead. Transport layer protocols such as

Transmission Control Protocol (TCP) or User Datagram Protocol (UDP) can be

used. TCP/IP is considered to be �reliable�. Reliable means that each individual

packet that is sent over the network is verified at the receiver and acknowledged. In

TCP, a retransmission mechanism exist that every unacknowledged packet is

retransmitted. Therefore, TCP guarantees packet delivery. This retransmission

mechanism introduces a extra delay on packet delivery therefore unacceptable. In

contrast, UDP has no retransmission mechanism. While this reduces the overhead

and delay in processing, packets can arrive out of order or be dropped from

reception completely. The latest IP protocol developed specifically for streaming

audio and video over the Internet is Real-Time Transfer Protocol (RTP). It is

described in RFC 1889,[4].RTP imposes packet sequencing and time stamping on a

UDP data stream to ensure sequential packet reconstruction at the receiver while not

imposing the high processing overhead of reliable transmission. In the concept of

this thesis a RTP like custom protocol is developed that is used as Transport Layer

Protocol for the developed VoIP device.

The issues involved in VoIP can be best understood by actually implementing a

VoIP device and studying its performance. In this regard, we have built a VoIP

device. In the process, a number of implementation issues came into focus, which

we have touched upon in this thesis. Adaptive playout algorithms are compared

using the objective measures, in trace driven simulation experiments where traces

are collected with the developed VoIP device. An adaptive playout algorithm was

chosen according to the simulation results and incorporated into the developed VoIP

device to compensate for delay jitter. Network delay, used in playout adaptation

algorithms, is measured using both sender and receiver clock. This causes clock

synchronization problem. This problem is solved by estimating the clock offset with

the method given in [5]. Loss packets are interpolated by zero insertion to

compensate for loss packets. An experimentally developed VAD mechanism is

 5

implemented to discriminate talkspurts and to be able to set the playout delay at the

start of the each talkspurt and to reduce the transmission rate. Adaptive Differential

Pulse Code Modulation (ADPCM) is used to further reduce the transmission rate.

RTP wise custom protocol is developed and used in the design as the transport layer

protocol. A user interface program is developed that runs on windows based PC.

This software is used both to control the device and to collect running measurement

results of network delay.

Organization of the thesis is as follows. In Chapter 2 playout problem is discussed

and four adaptive playout algorithms, given in [3], are explained. In Chapter 3,

network protocols used in the VoIP device and custom RTP protocol are discussed

and explained. In Chapter 4, device architecture and implementation details of the

VoIP device and user interface program are described. In chapter 5, the trace driven

simulation results of the four adaptive playout algorithms that will be explained in

Chapter 2 are given. These algorithms are compared according to the simulation

results. The thesis ends in Chapter 6 with a summary and a discussion about the

further scope for work.

 6

CHAPTER 2

PLAYOUT PROBLEM

2.1 Introduction.

Streaming systems rely on buffering at the client to protect against the random

packet losses and delays that characterize a best-effort network. These parameters

vary depending on the locations of the senders and the receivers; with typical loss

rates of 0-20% and one-way delays of 5-500 ms, [6]. Buffering reduces a system�s

sensitivity to short-term fluctuations in the data arrival rate by absorbing variations

in end-to-end delay that is called jitter. However, buffering has drawbacks. While

the amount of protection a buffer offers grows with its size, so does the latency that

it introduces. Unfortunately, this additional delay lowers the perceived QoS. In

streams of live events or in two-way communication, latency is noticeable

throughout the session,[3]. On the other hand, if the playout delay is set to low, the

network-introduced delay will cause some packets to arrive too late for playout and

thus be lost, which also lowers the perceived QoS. The main objective of jitter

buffering is to keep the packet loss rate under 5% and to keep the end-to-end delay

as small as possible, [3].

2.2 Playout problem

We shall first discuss the underlying model for packetized voice, the assumptions

regarding their generation and the mechanism for their playout.

 7

Figure 2.1 : Generation and reconstruction of Packetized voice

Figure 2.1 shows the operation of the sending and receiving hosts while taking part

in an audio session. At the sender, packets are periodically generated as a result of

the periodic sampling of an audio source. When the audio source is active (i.e.,

sound is being produced) packets containing the audio samples are generated and

sent into the network. The staircase nature of the sender in Figure 2.1 indicates that

packets are being generated periodically at the source. One commonly used standard

is sending one 160 byte audio packet, which is generated approximately every 20

milliseconds when the speaker is in talkspurt, i.e. when there is voice activity. The

average talkspurt length is typically on the order of several 100's of milliseconds,

although the lengths can vary with different silence detection thresholds.

Packets incur random delays while traversing the network. This is illustrated by the

decidedly non-staircase nature of the number of received packets as a function of

time in Figure 2.1. In order to smooth out such delay jitter, a receiving host can

delay the initiation of periodic playout of received packets for some time. For

example, in Figure 2.1, if the receiver delays the beginning of playout until t2, all

packets will have been received by the time their playout is scheduled. The 45

degree line emanating from t2 indicates the playout time of packet i under a periodic

 8

playout strategy which begins playout at i. On the other hand, if the playout delay

begins at t1, there is a shorter playout delay, but packets 6, 7, and 8 will be lost at the

receiver, having arrived after their scheduled playout time. This illustrates the

tradeoff between the delay that an audio application is willing to tolerate and the

packet loss suffered as a result of the late arrival of packets.

Figure 2.1 depicts a playout strategy in which the playout delay is fixed, called the

fixed playout scheme. If both the propagation delay and the distribution of the

variable component of network delay are known, a fixed playout delay can be

computed such that no more than a given fraction of arriving packets are lost due to

late arrival, [3]. One problem with this approach is that the propagation delay is not

known (although it can be estimated and typically remains fixed throughout the

duration of the audio call). A more serious concern is that the end-to-end delay

distribution of packets within a talkspurt is not known, and can change over

relatively short time scales.

An approach to dealing with the unknown nature of the delay distribution is to

estimate these delays and adaptively respond to their change by dynamically

adjusting the playout delay. In the following section, we shall describe a four

receiver-based algorithms, presented in [3], for performing such delay estimation

and dynamic playout delay adaptation. As we will see, these algorithms determine

the playout delay on a per-talkspurt basis. Within a talkspurt, packets are played out

in a periodic manner, thus reproducing their periodic generation at the source.

However, the algorithms may change the playout delay from one talkspurt to the

next, and thus the silence periods between two talkspurts at the receiver may be

artificially elongated or compressed (with respect to the original length of the

corresponding silence period at the sender). Compression or expansion of silence by

a small amount is not noticeable in the played-out speech.

2.3 Adaptive Playout Algorithms

 9

In this section we define four adaptive playout delay adjustment algorithms. In

describing these algorithms the notation in Figure 2.2 will be useful. Figure 2.2

shows the various times associated with the sending and receiving of packet i within

an audio call, [3].

Figure 2.2: Timing associated with packet i

The following times associated with packet i are introduced, in accordance with

Figure 2.2:

ti : the time at which packet i is generated at the sending host,

ai: the time at which packet i is received at the receiving host,

pi: the time at which packet i is played out at the receiving host,

 10

Dprop: the propagation delay from the sender to the receiver, which is assumed to be

constant throughout the lifetime of an audio connection,

 vi: the queuing delay experienced by packet i as it is sent from the source to the

destination host,

bi : the amount of time that packet i spends in the buffer at the receiver awaiting its

scheduled play out time, bi = pi - ai,

di : the amount of time from when the ith packet is generated by the source until it is

played out at the destination host, di = pi � ti, this will be referred to as the playout

delay of packet i,

ni : the total delay introduced by the network. ni = ai � ti.

In determining the playout point for packet i, two cases are considered depending on

whether or not it is the first packet in a talkspurt,[3]. If packet i is the first packet of

a talkspurt, its playout time pi is computed as:

pi = ti + di
�+4 x vi

� (2.1)

Where di
� and vi

� are estimates of the mean and variation in the end to end delay

during the talkspurt. The playout point for any subsequent packet in a talkspurt is

computed as an offset from the point in time when the first packet in that talkspurt

was played out. If i was the first packet in a talkspurt and packet j belongs to this

talkspurt the playout point for j is computed as:

pj = pi + tj � ti

We note that di
� and vi

� are computed for every packet received although they are

only used to determine the playout point for the first packet in any talkspurt. The

four algorithms described in section 2.3.1 through 2.3.1.4 differ only in the manner

 11

in which di
� is computed. The computation of vi

� which in turn depends on di
� is the

same for all the algorithms and is defined in equation 2.1. From an intuitive

standpoint the term 4x vi
� is used to set the playout time to be far enough beyond the

delay estimate so that only a small fraction of the arriving packets should be lost due

to late arrival A discussion of this variation measure and standard measures of

variation such as standard deviation can be found in, [7].

2.3.1 Illustration of the adaptive playout

The playout mechanism is further illustrated in Figure 2.3. The graph at the top of

the figure labeled A represents the network delay ni on the y-axis experienced by

packet i transmitted at time ti.. Note that the unit of time on the x-axis is the inter

packetization interval which is 16 ms in the case of our audio experiments. Two

talkspurts are shown in the Figure 2.2, one starting at t1=1 and another starting at

t7=9. The time axis labeled B shows the arrival pattern of the packets at the receiver.

For example packets 2, 3 and 4 shown on top of each other arrive almost

simultaneously at ai = 8, as they experience different network delays. The remaining

three axes illustrate the playout behavior for three possible delay adaptation

scenarios.

 12

Figure 2.3: Ilustration of playout mechanism.

The axis labeled C computes the playout delay for talkspurt 1 to be 8 units and thus

schedules the playing of packet 1 at time p1=9 units. The remaining packets in

talkspurt 1 are scheduled one after another in the order in which they were

generated. In this example, it is then determined that the playout delay for the

second talkspurt should be 7 units. Recall that this playout delay for the packet at the

beginning of every talkspurt depends on the di� and the vi�, which are computed for

 13

every packet seen so far, and which in turn depend on the delay adaptation

algorithm used.

The axis labeled D illustrates a second possible playout scenario, in which playout

delay for the first talkspurt is determined to be 7 units Note that this leads to the

dropping of packet number 5 as it doesn�t arrive at the receiver until after its

scheduled playout time The axis labeled E shows yet another scenario in which the

playout delay for talkspurt 1 is determined to be 9 units.

It is important to note how the silence period between the two talkspurts differs in

these scenarios. In scenario 1, the silence period is one unit of time shorter than

what was generated by the audio source; in the third scenario, the silence period is

completely eliminated. From Figure 2.3, it is also clear that if we set the playout

delay of a talkspurt to be greater than or equal to the maximum network delay

experienced by any packet in that talkspurt, we would not have any late packet loss.

Of course this value in not known a priori, although one could possible set a playout

delay to a large enough value to ensure that a significant percentage of packets

would not be lost. On the other hand, setting the playout delay to a high value leads

to longer delays between the transmission and the playout of the audio packets; long

delays are intolerable with interactive audio. Thus we desire a playout adaptation

mechanism, which has low loss rate as well as low playout delay

We now describe the four playout adaptation algorithms presented in [3].

2.3.2 Algorithm 1

In first algorithm, the delay estimate for the ith packet is calculated based on the

RFC793 algorithm [8] and a measure of the variation in the delays is calculated as

suggested by Van Jacobson [7] in the calculation of round trip time estimates for the

TCP retransmit timer. Specifically the delay estimate for packet i is computed as

 14

di� = α*di-1� +(1-α)*ni

and the variation is computed as

vi� = α*vi-1� +(1-α)*|di � ni | (2.2)

This algorithm is basically a linear recursive filter and is characterized by the

weighting factor α.

2.3.3 Algorithm 2

The second algorithm is a small modification to the first algorithm based on a

suggestion by Mills [9].

The idea is to use a different weighting mechanism by choosing two values of the

weighting factor, one for increasing trends in the delay and one for decreasing

trends. Variation estimate is calculated as in algorithm 1. The delay estimation

algorithm is given in Figure 2.4.

 Figure 2.4: Pseudo code of Algorithm 2

If (ni>di�) then

 di� = β* di�+(1-β)*ni

else

 di� = α *di�+(1-α)*ni

 15

2.3.4 Algorithm 3

 Let Si be the set of all packets received during the talkspurt prior to the one initiated

by i. The delay estimate is computed as;

di� = min j ε Si {nj} (2.3)

The delay variance is calculated as in algorithm 1.

2.3.5 Algorithm 4

Delay spikes are a common occurrence in the Internet. A spike constitutes a sudden,

large increase in the end-to-end network delay, followed by a series of packets

arriving almost simultaneously, leading to the completion of the spike. Figure 2.5,

shows a typical spike; with the arrival time indicated on the x-axis, and the network

delay experienced on the y-axis.

Figure 2.5: A typical Delay Spike

 16

The algorithms discussed until now do not adapt fast enough to such spikes, taking

too long to increase their delay estimate on detection of a spike and too long again to

decrease their estimate once the spike is over. In [3], an algorithm is described to

adapt to such spikes. This algorithm is called spike detection algorithm and it is

given in Figure 2.6.

Figure 2.6: Algorithm 4 (Spike detection Algorithm)

1. ni=Receiver_timestamp �Sender_timestamp

2. if (mode==Normal {

 if (abs(ni � ni-1) > abs(v�)*2+800

 var = 0 ; /* Detected Beginnig of a spike*/

 mode = IMPULSE ; }

 Else {

 var = var/2 +abs ((2ni-ni-1-ni-2) / 8);

 if var (<=63){

 mode = NORMAL; /*End of a spike*/

 ni-2 = ni-1;

 ni-1 = ni;

 Return;}

 }

3. if mode == NORMAL) then

 di� = 0.125*ni +0.875* di-1�;

 Else

 di�= di-1� + ni-ni-1 ;

 vi� = 0.125*abs(ni �di�) + 0.875 * vi-1;

4. ni-2 = ni-1;

 ni-1 = ni;

 Return;

 17

Detection of the beginning of a spike is done by checking if the delay between

consecutive packets at the receiver is large enough for it to be called a spike. On

entering the impulse mode on detection of a spike, the spike is �followed�; in the

sense that, the estimate is dictated only by the most recently observed delay values.

The detection of the completion of a spike is a bit difficult. The delay on completion

of the spike could be different from the delay before the beginning of the spike.

Nonetheless, one prominent characteristic is that a series of packets would arrive

one after another almost simultaneously at the receiver, and almost immediately

following the observed increase (upward spike) in delay. Since the packets within a

talkspurt are transmitted at regular intervals at the sender, near simultaneous arrivals

implies that subsequent packets in the burst of arrivals have experienced

progressively smaller end-to-end network delays. So a variable is employed that

keeps track of the slope of spike, which is indicated by var in algorithm 4 (Spike

detection algorithm). When this variable has a small enough value, indicating that

there is no longer a significant slope, the algorithm reverts back to normal mode.

One limitation of this algorithm is that the parameters involved in the detection of

the beginning and end of a spike are dependent on the nature of spikes being

observed.

These algorithms will be compared with each other with the trace driven simulations

carried on MATLAB, to decide which algorithm to use in the developed VoIP

device. Simulation traces are obtained using the developed VoIP device before

actually implementing the adaptive algorithm chosen. Simulation method and

simulation results are discussed in Chapter 5.

 18

CHAPTER 3

PROTOCOLS

Using an Internet protocol network requires the utilization of an IP protocol for

transmitting the information. Main functions of the IP are switching and routing.

Networks are sometimes referred to as �packet� networks, since they communicate

through the sending and receiving of data packets with known formats.

In the next sections, used protocols by the developed VoIP device are explained to

form a background for chapter 4, where device architecture is explained. Since the

device can be used in an Ethernet network, Ethernet protocol is mentioned. IP

protocol and real time protocol, developed in the scope of this thesis, are explained.

3.1 Ethernet

Internet is designed for wide area networking. However, many companies,

universities, and other organizations have large number of computers that must be

connected. This need gave rise to the Local Area Network (LAN). Then, LANs can

be connected to the Wide Area Networks (WANs), such as Internet, using gateways.

In this section we will say a little bit about most popular LAN, Ethernet that is the

network interface of the developed VoIP device.

 19

Ethernet is bus based broadcast network usually operating at 10 Mbps to 10 Gbps,

[4]. In the VoIP device 10 Mbps Ethernet interface is implemented. Computers or

devices on Ethernet can transmit whenever they want to; if two or more packets

collide, each computer waits a random time and tries again later. In Figure 3.1, bus

based broadcast network is shown.

Figure 3.1 : Bus based broadcast network

The protocols used to determine who goes next on a multi-access channel belong to

a sublayer of the data link layer called Medium Access Control (MAC) sublayer,

[4]. Ethernet MAC uses the frame structure shown in Figure 3.2.

 8 6 6 2 0-1500 0-46 4

 Bytes Bytes Bytes Bytes Bytes Bytes Bytes

Figure 3.2: Ethernet Frame Format.

Preamble Destination

Address

Source

address

Type Data

Pad Checksum

Computer

Cable

 20

Each Frame starts with a preamble of 8 bytes, each containing the bit pattern of

10101010. The Manchester encoding of this pattern produces a 10-MHz square

wave for 6.4 microseconds to allow receivers clock to synchronize with the

sender�s. They are required to stay synchronized for the rest of the frame, using the

Manchester encoding to keep track of the bit boundaries.

The frame contains two addresses, one for the destination and one for the source. It

is up to the network layer to figure out how to locate the destination.

Next comes the �Type� field, which tells the receiver what to do with the frame. The

type field specifies which processes give the frame to.

Next comes the �Data field�. Data length can extend up to 1500 bytes. In addition to

the being a maximum frame length, there is also a minimum frame length. If data

portion of a frame is less than 46 bytes, the �Pad� field is used to fill out the frame

to the minimum size.

The final Ethernet field is the checksum. It is 4-byte in length. If some data bits are

erroneously received (due to the noise on the cable) the check sum will almost

certainly be wrong and the error will be detected. The checksum algorithm is a

cyclic redundancy check. This algorithm performs only error detection not forward

error correction.

3.2 Internet Protocol (IP)

Figure 3.3 shows the IP protocol header. The header has a 20 byte fix part and a

variable length optional part, [4].

 21

32 bits

Version IHL Type of

service

 Total length

Identification DF MF Fragment

Offset

Time to live Protocol Header Checksum

Source Address

Destination Address

Options (0 or more words)

Figure 3.3: IP Header

The version field keeps track of which version of the protocol the datagram belongs

to and it is 4 bits in length.

Since the header length is not constant, a field in the header, IHL, is provided to tell

how long the header is, in 32 bit words. The minimum value of this 4-bit field is 5,

which indicates there is no option present. The maximum value of this 4-bit field is

15, which limits the header to 60 bytes, and thus options field to 40 bytes.

The type of service field is intended to distinguish between different classes of

service. It is used to indicate reliability and speed parameters. For digitized voice,

fast delivery beats accurate delivery. For file transfer, error free transmission is more

important than fast transmission. Originally, the 6-bits field contained, a 3-bits

�Precedence� field and three flags D, T and R. The three flag bits allowed the host to

specify what it cared most about the set {Delay, Throughput, and Reliability}. In

theory, these fields allow routers to make choices between, for example, a satellite

link with high throughput and high delay and a leased line with low throughput and

 22

low delay. In practice, current routers often ignore the Type of Service field

altogether.

The Total length includes both header and data. The maximum length is 65535

bytes. At present, this upper limit is tolerable, but with future gigabit networks,

larger datagrams may be needed.

The identification field is needed to allow the destination host to determine which

datagram a newly arrived fragment belongs to. All the fragments of a datagram

contain the same identification value.

DF stands for Don�t Fragment. It is an order to the routers not to fragment the

datagram because the destination is incapable of putting the pieces back together

again. MF stands for More Fragments. All fragments except the last one have this

bit set.

The fragment offset tells where in the current datagram this fragment belongs. All

fragments except the last one in a datagram must be a multiple of 8 bytes.

The time to live field is a counter used to limit packet lifetimes. It is supposed to

count time in seconds, allowing a maximum lifetime of 255 seconds. It must be

decremented on each hop and is supposed to be decremented multiple times when

queued for a long time in a router. In practice, it just counts hops. When it hits zero,

the packet is discarded and a warning packet is sent back to the source host.

When the network has assembled a complete datagram, it needs to know what to do

it. The protocol field tells it which transport process gives it to. The Header

Checksum verifies the header only.

 23

The Source address and Destination address indicate the network number and host

number. The options field was designed to provide an escape to allow subsequent

versions of the protocol to include information not present in the original design.

3.3. Real Time Protocol

Two standard transport protocols, TCP/IP and UDP are the most widely used

protocols today, [4]. First, advantages and disadvantages of these protocols will be

discussed and developed real time protocol will be explained.

 All Internet Service Providers (ISP) support TCP/IP. Everyone with a home dial-up

Internet account, home Digital Subscriber Line (DSL) account or home cable

modem Internet account uses TCP/IP for communications with the Internet. TCP/IP

refers to the format of data that is transmitted over the network and the rules in force

for ensuring delivery at the desired location. TCP/IP is considered to be �reliable�.

Reliable means that each individual packet that is sent over the network is verified at

the receiver and acknowledged. If the data is larger than a single packet, it would be

broken down into several individual packets and each would be transmitted

separately. Packets are reassembled in the proper order at the destination prior to

delivery to the client�s application. TCP/IP guarantees that packets will be

reconstructed at the receiver in proper order. Reconstruction in the proper order is of

vital importance to a voice signal. Out of order or lost packets will significantly

degrade the quality of the transmitted voice. However, the processing overhead and

delay for this guarantee will significantly increase latency in transmission and

reconstruction of the voice signals.

UDP is the second-most widely used IP protocol in use. Unlike TCP/IP, UDP is

unreliable. The UDP protocol does not contain the stringent requirement to

acknowledge each individual packet. Packets are transmitted from the sender and

essentially forgotten. While this reduces the overhead and delay in processing,

packets can arrive out of order or be dropped from reception completely. Both of

 24

these protocols use an IP network for transmission. IP networks do not guarantee a

specific path for delivery of packets between sender and receiver. Each packet may

take a different network path, and can arrive to the destination out of order. For this

reason, UDP is generally considered unsatisfactory for live voice. But UDP has

advantages such as low protocol header overhead. Also, there is no retransmission

mechanism in UDP. Retransmission mechanism in VoIP is not a practical option

since the retransmitted packet will probably arrive too late to be useful.

The latest IP protocol developed specifically for streaming audio and video over the

Internet is Real-Time Transfer Protocol. It is described in RFC 1889. RTP imposes

packet sequencing and time stamping on a UDP data stream to ensure sequential

packet reconstruction at the receiver while not imposing the high processing

overhead of reliable transmission.

RTP protocol is adequate for Internet Radio, Internet Telephony (VoIP), video-on-

demand, and other multimedia applications. In the scope of this thesis, a RTP like

custom protocol is implemented which is only adequate for Internet Telephony

applications. This protocol, as RTP, seats on top of UDP header

Custom RTP header is given in Figure 3.4. After UDP header of the IP/UDP packet,

sequence number and timestamp information is added for voice packets into the data

section of the UDP. Because RTP just uses normal UDP, its packets are not

specially by the routers. In particular, there are no special guarantees about delivery

and jitter. Also since retransmission mechanism introduces delay, there is no

retransmission mechanism inserted into the RTP.

By using sequence numbers, packet sequencing at the receiver is enabled. Also,

using sequence numbers allows the destination to determine if any packets are

missing. If a packet is missing best action for the destination is receiver can

determine lost packets and can take action for lost packets such as zero insertion.

 25

For lost packets, interpolation or forward error correction algorithms can also be

used. But these are not under the focus of this thesis.

Also, VoIP applications need timestamping. The idea here is to allow the source to

associate a timestamp with the first sample in each packet. The timestamps are

relative to the start of the stream. This mechanism allows the receiver to do a small

amount of buffering and play each sample the right number of milliseconds after the

start of the stream. By means of timestamping mechanism, effect of delay jitter is

reduced on the played out speech.

An additional byte is used at the beginning of the RTP header for packet type

identification and control purposes, which is referred as packet type identification

character. Receiver of the packet starts some tasks according to the received packets

packet type identification character; details are given in section 4.2.

Packet Type Identification

Character (PTI)

1-Byte

Sender Timestamp (Ts)

4-Byte

Sequence Number (Sn)

2-Byte

Figure 3.4 : RTP Header

As mentioned before, RTP protocol is located over UDP. UDP transmits segments

consisting of an 8-byte header followed by the payload. The header is shown in

Figure 3.5. The two ports serve to identify the end points within the source and

destination machines. When a UDP packet is received, its payload is handed to the

process attached to the destination port. In fact, main value of the UDP over using

just raw IP is the addition of the source and destination ports,[4]. Without the port

fields, the transport layer would not know what to do with the packet.

 26

Source Port Destination Port

UDP Length UDP Checksum

Figure 3.5: UDP Header

The source port is primarily needed when a reply must be sent back to the source.

The UDP �Length Field� includes the 8-byte header and the data. The UDP

checksum is optional and stored as 0 if not needed.

It is probably worth mentioning explicitly some of the thing that UDP does not do. It

does no flow control, error control or retransmission upon receipt of a bad segment.

All of that is up to the user processes. What it does is to provide an interface to the

IP protocol with the added feature of demultiplexing multiple processes using the

ports.

After RTP packet is generated, it is embedded in UDP packet and UDP packet is

embedded into the IP packet.. If the device is on a Ethernet network, as in our case,

IP packets are then put in Ethernet frames for transmission. This packet nesting is

shown in Figure 3.6.

 27

Figure 3.6 : Packet Nesting.

UDP Payload

 RTP Payload

Ethernet
Header

IP
Header

UDP
Header

RTP
Header

 IP Payload

Ethernet Payload

 28

CHAPTER 4

SYSTEM ARCHITECTURE AND IMPLEMENTATION

In the framework of this thesis, an embedded Internet telephony device, providing

full duplex voice communication over internet has been developed. Device performs

connection establishment, voice packetization, voice activity detection, sending and

receiving voice packets over a network using User Datagram Protocol (UDP),

adaptive playout buffering of received packets to combat network delay jitter and

converting these packets back to the voice. VoIP device is also able to measure

network delay observed by the received packet, number of lost packets and round

trip delay.

Developed board is placed in a box and UART connector, Ethernet connector,

microphone input, speaker output, and Ethernet activity, collision and link leds, are

placed on the box. VoIP device is seen in the Figure 4.2

In the following sections, developed board for the VoIP device is explained in

detail, including both board hardware and software.

 29

Figure 4.1: VoIP Board

Figure 4.2: VoIP Device

 30

4.1 Hardware

Analog voice signals are sampled and digitized using the Texas Instruments

TLV320AIC22 voice codec, and then these samples are transferred to the Field

Programmable Gate Array (FPGA) via the CODEC� s serial interface. CODEC and

FPGA use 24.576 MHz clock supplied by a crystal clock oscillator.

FPGA is the product of the Xilinx Inc. named XC4028. FPGA architecture is an

array of logic cells that communicate with each other and pads via routing channels.

Like semi-custom gate array, which consists of a sea of transistors, an FPGA

consists of a sea of logic cells. In an FPGA, existing wire resources that run in

horizontal and vertical columns (routing channels) are connected together via

programmable elements, with logic cells and pads. Each logic cell consists of two

programmable function generators, two flip flops and a multiplexer. Since it�s a

reprogrammable device, there is flexibility in the development cycle and device

upgrades. It is programming information is transferred on power up from a serial

EPROM. ATMEL�s AT10V5 EPROM is used as configuration EPROM for the

FPGA. This infrastructure gives enough freedom to be able to implement the

necessary logic functions needed on the board.

FPGA design is performed using the �Very High speed integrated circuit hardware

Description Language� (VHDL). VHDL is an IEEE standard for the description,

modeling, and synthesis of circuits and systems. Because VHDL is a standard,

VHDL design descriptions are device independent, allowing the designers easily

benchmark design performance in multiple device architectures.

FPGA extracts ADC data from the codec serial interface. Formats the received data

and transfer them to the microprocessor via the DPRAM interface. It also reads the

received samples written to the DPRAM interface by the microprocessor and

transfers them to the CODEC DAC section using the CODEC serial interface by

performing necessary formatting.

 31

Four 16Kx32 dualported RAM (DPRAM) are used for playout buffer memory

requirements and to exchange voice samples between FPGA and microprocessor

asynchronously

Microprocessor is the Ubicom�s IP2022 processor, which is also called Internet

processor. It is chosen for the supplied network stack, embedded Ethernet interface,

in system programming and debugging capabilities. It uses 4.8 MHz crystal for its

clock input and multiplies this frequency to reach the its operating speed of 120

MHz. This is a relatively high operating speed that minimizes the delay introduced

on voice over IP communication by the application software. Microprocessor

provides 10 MHz Ethernet interface of the board to send and receive voice packets.

Ethernet interface is compliant to the IEEE 802.3 standard. Microprocessor also

provides 57600 baud rate serial RS232 UART port to transmit diagnostics messages

and for the reception of commands and device settings.

 User interface of the device is provided by the serial interface of the

microprocessor. Microprocessor communicates with the user interface program that

runs on a Windows based PC, which is connected to the device via a serial port. By

using user interface program, user can establish a connection with a host and can

make device settings. User can send commands from user interface program to set

device IP number, gateway number, subnet mask, to calculate clock offset, to enable

voice activity detection and to start and stop round trip delay calculation. User

interface program also logs the data, which is related to the received packets such as

observed network delay and sequence number send.

 Microprocessor performs Voice Activity Detection (VAD) on voice samples, which

are supplied by the FPGA using DPRAM interface. Packets the voice samples and

sends them to the receiving host using Ethernet interface. A playout-buffering

algorithm runs on microprocessor to assign playout time to the received packets.

Received voice packets are transferred from the network to the FPGA using

 32

DPRAM interface to be played out by the DAC according to the assigned playout

time.

 In Figure 4.3 block diagram of the device is shown. In the following subsections

board hardware, FPGA and microprocessor software and user interface program are

explained in detail.

 Figure 4.3: Block diagram of the VOIP board

 33

4.1.1 Voice Digitization

For voice digitization Texas Instruments TLV320AIC22 voice codec is used.

Device performs both of the analog to digital and digital to analog conversion of

voice. Sampled values of the input voice signal are passed to the FPGA and voice

samples to be converted to the analog signal are received from the FPGA via a

CODEC serial interface.

Functional block diagram of the codec is given in Figure 4.4.

Figure 4.4: Functional block diagram of the CODEC

The ADC channel consists of a programmable gain amplifier (PGA), antialiasing

filter with a 3.6 kHz bandwidth for a sampling rate of 8 kHz, sigma delta analog to

digital converter and decimation filter. The ADC is an over sampling sigma-delta

modulator. The ADC provides high resolution and low-noise performance using

over sampling techniques and the noise shaping advantages of sigma-delta

modulators.

The analog input signals are amplified and filtered by on-chip buffers and an

antialiasing filter before being applied to ADC input. The ADC converts the analog

 34

voice signal into discrete output digital words in 2s-complement format,

corresponding to the analog signal value at the sampling time.

The decimation filter reduces the digital data rate to the sampling rate. This is

accomplished by decimating with a ratio equal to the over sampling ratio. The

output of this filter is a 16-bit 2s-complement data word clocking at the selected

sample rate. Output samples are then compressed to the 8-bit µ-law PCM format.

8 bit µ-law PCM digital words, representing sampled values of the analog input

signal, are sent to the FPGA via the serial port interface. The ADC and DAC

conversions are synchronous.

The DAC channel consists of an interpolation filter, a sigma-delta DAC, low-pass

filter, and a programmable gain amplifier. The DAC is an over sampling sigma-delta

modulator. The DAC performs high-resolution, low-noise, digital-to-analog

conversion using over sampling sigma-delta techniques.

The DAC receives 8 bit µ-law PCM words from the FPGA via the serial port

interface.

The data is converted to an analog voltage by the sigma-delta DAC comprised of a

digital interpolation filter and a digital modulator. The interpolation filter resample

the digital data at a rate of 2 times the incoming sample rate where 2 is the over

sampling ratio. The high-speed data output from this filter is then applied to the

sigma-delta DAC.

The DAC output is then passed to an internal, low-pass filter to complete the signal

reconstruction resulting in an analog signal. This analog signal is then buffered and

amplified by differential output driver capable of driving 150 ohm microphone load.

 35

4.1.2 CODEC- FPGA Serial Interface

As mentioned before data exchange between COEDC and FPGA is performed via a

serial codec interface. Both of the FPGA and CODEC runs with 24.576 MHz master

clock (MCLK). For serial data exchange between them, codec behaves as master

and provides 2.048 MHz bit clock (BCLK) and frame synchronization pulse

(FSYNC) for every 256 BCLK cycles. Two other lines Dout, which is used to

transfer ADC data to the FPGA and Din, which is used to transfer DAC data and

codec programming information from the FPGA are used. Timing diagram of the

codec serial interface is given in Figure 4.5

Figure 4.5: Timing diagram of the Codec serial interface

Figure 4.6 : CODEC serial interface frame format

 36

Data is received and transmitted in frames consisting of 256 BCLKs, which is

sixteen, 16-bit time slots. Each frame is subdivided into time slots consisting of 16

BCLKs per time slot. In each frame, two time slots are reserved for control register

information and eight time slots are reserved for codec data. The remaining six time

slots are unused. A pulse on the FSYNC pin indicates the beginning of a frame.

FPGA uses rime slot 2 to exchange ADC DAC data. In time slots 0 and 1 FPGA

sends programming information to the codec. FPGA selects microphone input pins

of the CODEC as ADC input and headphone output pins of the CODEC as DAC

output. PGA amplifier gain is set to 12 dB, preamplifier gain is set to 23 dB for

both the ADC and DAC networks. Echo gain for the headphone output is set to -12

dB to cancel the echo coupled to the DAC output from the ADC input. These values

are chosen experimentally to give a satisfactory audio level.

4.1.3 ADPCM Compression- Expansion.

APCM compression option is added to the device to allow transmitted bit rate

reduction. DS2165 ADPCM Processor Chip is used for ADPCM compression and

expansion. DS2165 ADPCM Processor Chip is a dedicated Digital Signal

Processing (DSP) chip that has been optimized to perform Adaptive Differential

Pulse Code Modulation (ADPCM) speech compression. The chip can be

programmed to compress (expand) 64 kbps voice data down to (up from) either 32

kbps, 24 kbps, or 16 kbps. The compression to 32 kbps follows the algorithm

specified by CCITT Recommendation G.721 (July 1986) and ANSI document

T1.301 (April 1987). The compression to 24 kbps follows ANSI document T1.303.

The compression to 16 kbps follows a proprietary algorithm developed by Dallas

Semiconductor.

The DS2165 contains three major functional blocks: a high performance (10 MIPS)

DSP engine, two independent PCM interfaces (X and Y) which connect directly to

serial Time Division Multiplexed (TDM) backplanes, and a serial port that can

 37

configure the device on-the-fly via an external controller. A 10 MHz master clock is

required by the DSP engine. Each channel on the device samples the serial input

PCM or ADPCM bit stream during a user-programmed input time slot, processes

the data and outputs the result during a user-programmed output time slot.

Onboard counters establish when PCM and ADPCM I/O occur. The counters are

programmed via the time slot registers. Time slot size (number of bits wide) is

determined by the working state of the device; compression or expansion.

For example, if the X channel is set to compress then the input port (XIN) is set up

for 32 8-bit time slots and the output port (XOUT) is set up for 64 4-bit time slots.

4.1.4 FPGA-ADPCM Processor Interface

Since the organization of the input and output time slots on the DS2165 does not

depend on the algorithm selected, it always assumes that PCM input and output will

be in 8-bit bytes and that ADPCM input and output will be in 4-bit bytes. Figure 4.7

demonstrates how the DS2165 handles the I/O for the three different algorithms. In

the figure, it is assumed that channel X is in the compression mode and channel Y is

in the expansion mode Also, it is assumed that both the input and output time slots

for both channels are set to 0.

 38

Figure 4.7: FPGA-ADPCM Processor Interface

In designed board, X channel is used for compression ad Y channel is used for

expansion. Algorithm for compression to the 16 Kbps is used. When FPGA extracts

PCM voice sample from codec serial interface, it sends the PCM voice sample to the

ADPCM processor for compression by implementing the ADPCM interface which

is shown in Figure 4.7. At the same time, it extracts ADPCM compressed samples

from the Xout pin of the processor. Extracted samples are written to the DPRAM

ADC data section by completing 2 bits APCM samples to the 8 bits by zero

padding. This operation allows microprocessor software work with both ADPCM

 39

and PCM data. Microprocessor extracts compressed sample when in ADPCM mode

of a operation by masking the zero padded bits.

For expansion, FPGA reads the compressed samples from the DPRAM interface,

which are written by microprocessor, and then it sends the compressed sample to the

ADPCM processor using the Y channel. Expanded samples are extracted from the

Yout pin of the processor and send to the CODEC for playout.

These operations are performed when device is in ADPCM mode of a operation.

Otherwise they are bypassed and PCM voice samples are transferred to the

microprocessor. Microprocessor informs FPGA for mode of a operation by a single

line connection between FPGA and microprocessor. Logic high value on this line

corresponds to the PCM mode and logic low value corresponds to the ADPCM

mode.

4.1.5 Microprocessor-FPGA interface:

FPGA runs at 24.576 MHz clock rate and microprocessor runs at 120 MHz clock

rate. Their clocks are asynchronous. Direct connection of FPGA and microprocessor

can cause unestimated communication problems between them because of

asyncronicity. Therefore, their communication is performed over a asynchronous 4

16Kx32 Dual Ported RAM (DPRAM). These four DPRAMs are connected as a

single 64Kx32 DPRAM.

DPRAM has two ports, which are completely independent of each other. Each of the

ports has address bus width of 16 bits and data bus width of 32 bits. All memory

locations are available to the both of the ports. Microprocessor uses one of the ports

to read/write data to the DPRAM and FPGA uses the other port. Therefore, there is

no direct connection between them and data exchange is performed by memory read

write operations.

 40

ADC data is written by the FPGA to the DPRAM ADC data section and it is read by

the microprocessor. DAC data, received from the network is written to the DAC

data section and it is read by the FPGA to play the received audio. Two interrupt

lines exist between FPGA and microprocessor to inform each other that the data is

ready at the DPRAM.

Because of the low available I/O pin count of the Microprocessor, address and data

lines of DPRAM interface uses same set of 16 pins. An additional line is used to

demultiplex the address and data lines before connecting them to the DPRAM.

Because of data width of the DPRAM is 32 bit, data is written or read from the

DPRAM by the Microprocessor in two cycles by enabling one half of the DPRAM

at a time. Block diagram of Microprocessor DPRAM interface is given in Figure

4.8. FPGA performs read and write operations in one cycle by the logic circuit

designed inside the FPGA.

 41

Figure 4.8: DPRAM- Microprocessor Interface

As mentioned, DPRAM data width is 32 bits. Therefore four voice samples are

written per address location of the DPRAM. These samples can be PCM samples or

ADPCM samples depending on mode of a operation. These packed samples will be

called DPRAM word. Data format is shown in Table 4.1.

Table 4.1: DPRAM data format

Sample N+3 Sample N+2 Sample N+1 Sample N

 42

Since the sampling frequency is 8 KHz, every word in the DPRAM corresponds to

0.5 ms of voice. Voice packets that are used for voice over IP communication

carries 16 ms of voice, which corresponds to 128 samples. When 128 samples are

written to the 32 sequential locations of DPRAM from the start of the ADC data

section 1, FPGA interrupts the microprocessor to inform that ADC data is ready in

ADC data section1 for further processing. When microprocessor reads samples

from ADC section 1, FPGA writes new samples to the ADC DATA section 2 and

interrupts microprocessor again. An additional line is used by the FPGA to inform

the microprocessor, which ADC data section contains new samples This process

continues sequentially. DPRAM sections are given in Table 4.2.

TABLE 4.2: DPRAM Sections

 ADC Data Section 1 Start 0x0000

ADC Data Section 1 End 0x001F

ADC Data Section 2 Start 0x0020

ADC Data Section End 0x003F

DAC DATA Section Start 0x0080

DAC DATA Section End 0x3F00

DPRAM DAC section is used as a circular buffer by FPGA and microprocessor.

FPGA reads one DPRAM word every 0.5 ms and increments DPRAM address by

one by starting from the DAC DATA section start location, once it is informed that

connection is established. When FPGA reaches to the end of the DAC DATA

section it changes DPRAM address to the DAC DATA section start address.

Microprocessor writes received packets to the DPRAM location, where packet

playout time, calculated by the playout-buffering algorithm, refers.

 43

4.2 Microprocessor Software

Microprocessor manages the board. It supplies board�s Ethernet interface and

RS232 UART port. Microprocessor software development environment provides an

operating system, UART and Ethernet drivers and network protocol software stack.

Operating system provides necessary parellization between the tasks by using timer

based interrupt subroutine. By using external interrupt line that is connected to the

FPGA, FPGA-microprocessor communication is carried out over DPRAM�s.

Microprocessor software performs three main functions.

i. Control Functions.

ii. Sender Functions.

iii. Receiver Funcitons.

4.2.1 Control Functions.

Board can be controlled using the UART port of the microprocessor by the user.

Microprocessor performs assigned tasks when it receives commands from the

UART interface.

 Also, some sort of control information should be carried between the

communicating two host VOIP devices. These control information are inserted into

the transmitted UDP packet�s data section and named packet type identifier. When

VOIP device receives a UDP packet, it takes some actions according to the received

packet�s packet type identifier.

When microprocessor receives a packet from a UART or ETHERNET interface,

interrupt subroutine of microprocessor invokes processes for each of them, named

uart_data_receive and ethernet_data_receive respectively.

 44

When commands are received from UART interface, uart_data_receive process

invokes the processes that run the tasks indicated by the received command. These

commands are given in Table 4.3 and tasks related to the each command are

explained in the following subsections.

TABLE 4.3: UART Commands

COMMAND PAREMETER FUNCTION

�i� 4 byte IP Number Set IP Number

�s� 4 byte Subnet Mask Set Subnet Mask

�g� 4 byte Gateway Number Set Gateway Number

�r� 4 byte IP Number of the Host Calculate Clock Offset

�c� 4 byte IP Number of the Host Connect

�q� - Disconnect

�e� - Enable VAD

�d� - Disable VAD

�t� 4 byte IP Number of the Host Start RTT measurement

�f� - Stop RTT measurement

�p� 2 byte RTT Packet Length Set RTT Packet Length

�l� 2 byte RTT measurement period Set RTT measurement period

�a� - Set ADPCM mode

�b� - Set PCM mode

All UDP packets, constructed by the microprocessor, include a one-byte packet type

indicator character at the first byte of the UDP data section. When UDP packets are

received, ethernet_data_receive process first checks the packet type indicator of

the received packet and executes the related tasks. Packet type indicators are given

 45

in Table 4.4. Tasks related to the packet type indicators are explained in the

following subsections.

TABLE 4.4: Packet Type Indicator Characters

UDP PACKET TYPE

IDENTIFIER

UDP PACKET TYPE

�c� Connection Request Packet for PCM mode

�a� Connection Request Packet for ADPCM

mode

�q� Disconnect Packet

�f� Clock Offset Calculation Request Packet

�p� Clock Offset Calculation Reply Packet

�v� Voice Packet

�s� Voice Packet. (Start of silence)

�r� RTT measurement initiator packet

�a� RTT measurement acknowledge packet

Also, software drivers are written for microprocessor to be able to read and write to

the external DPRAM memory. Microprocessor reaches DPRAM using three of its

ports as seen in Figure 4.5.

4.2.1.1 Network Settings

Boards network settings should be made when it is inserted in a new Ethernet

network. It�s IP number, subnet mask and gateway numbers should be chosen that

can be used in that network and they should be assigned to the board using UART

interface. For that purpose, three commands are assigned. These are named SET IP

NUMBER, SET SUBNET MASK and SET GATEWAY NUMBER

 46

VOIP device�s network numbers are stored in the microprocessors internal FLASH

memory. FLASH memories are nonvolatile memories. Therefore board stores these

numbers when its power is off. When boards power is on microprocessor reads these

numbers from its FLASH memory to its DATA memory. This is done because that

microprocessor reaches its DATA memory faster than FLASH memory. DATA

memory can be accessed at 120 MHz and FLASH memory at 30 MHz.

One byte Network number setting commands are followed by four byte network

numbers that will be written to the internal FLASH memory as new network

number. When microprocessor receives network number setting commands it waits

for four following bytes. After it receives these four bytes, it changes the related

network number at the FLASH memory.

FLASH memory is organized as 4 blocks of 512 bytes. If one wants to change a line

in a block of flash memory, all the block contents should be erased first before

writing to the block. Network numbers are located at third block. Therefore when

microprocessor changes one of the network numbers, it transfers all three network

numbers to its data memory. Changes the network number according to the received

command in the data memory. Erases third block of flash memory and then transfers

all three network numbers from data memory to the flash memory including the one

changed.

4.2.1.2 Clock Offset Calculation

When the packet arrives at the receiver host, the delay is calculated using the

receiver�s clock. In this method, however, time clocks of the sender and receiver

should be synchronized in order to measure accurate delays. Unless the two clocks

are not synchronized, different two clocks may cause relative offset and skew as

illustrated in Figure 4.9. The relative offset of the two clocks is caused when the two

clocks have different time.

 47

Figure 4.9 : Clock offset and skew between two clocks

Before connecting to a host, synchronization should be established between them.

Therefore a command is assigned for clock offset calculation. Clock offset is

calculated using the method given in [5].

When clock offset calculation command is received from UART interface,

microprocessor invokes a process. This process constructs a UDP packet for clock

offset calculation request and sends it to the host. First byte of the UDP packet

includes packet type indicator character �f� that indicates this is a clock offset

calculation request packet. Following four bytes includes the timer value of the

microprocessor at the UDP packet�s construction instant.

When host receives clock offset calculation request packet, it immediately reads the

value of its timer. Then it adds this value to the end of the received UDP packet�s

data section. Changes packet type indicator character to �p� that indicates this is a

clock offset calculation reply packet. Finally it reads its timer value again, that

shows the send instant. Writes this value to the end of the constructed packet. Sends

this packet back to the requesting communication party.

 48

When clock offset calculation requester receives clock offset calculation reply

packet, it reads its timer value immediately and stores it as receive time. Then

calculates the clock offset value.

 UDP packet exchange for clock offset calculation between clients A and B is seen

in Figure 4.10. Client A request clock offset calculation and client B replies it. Data

sections of the UDP packets that are used for clock offset calculation between

clients A and B is seen Figure 4.11.

Figure 4.10: UDP packet exchange for clock offset calculation between clients A

and B

 49

Figure 4.11: UDP Packet�s Used for Clock Offset Calculation Between clients A

and B

When client A receives clock offset calculation reply packet from client B, it

immediately records the timer value, which is the client A receive instant timestamp

TA_r.

It is assumed that, network delay observed by the request and reply packets are

same. This assumption makes the calculation of clock offset possible. Let�s says

both of the packets observe network delay of nd milliseconds and timer value of the

client B is higher than the timer value of the client A by ∆C ms offset. Then

following equations can be written for receive times.

ndC__ +∆+= sTArTB (4.1)

ndC__ +∆−= sTBrTA (4.2)

By manipulating the equations 4.1 and 4.2 equation 4.3 is obtained for clock offset

calculation.

 50

2
)__()__(rTAsTArTBsTBC +−+=∆ (4.3)

Microprocessor calculates the clock offset using equation 4.3 after the clock offset

calculation reply packet is received as given in [5].

4.2.1.3 Connection Establishment

After synchronization is established between the communication clients, connection

can be established. Connect command; received from UART interface starts the

connection establishment tasks.

Connect command is a five byte command, �c� or �a� character, depends on the

mode of a operation PCM or ADPCM, followed by four byte IP number of the host

to be connected, . When microprocessor receives �c� or �a� character from its UART

port, it waits for 4-byte IP address of host. After receiving IP number, it turns its

UART interface to the new command wait state and calls its connection

establishment task.

Connection establishment task, constructs a UDP packet. This UDP packet is three

bytes long. First byte is packet type identification character �c� that indicates this is

a connection request packet. Following two bytes are clock offset value, calculated

before connection establishment. Microprocessor changes the sign of the clock

offset value before writing it to the UDP packet since the clock offset for the host to

be connected is opposite of the clock offset calculated.

When host receives the connection request packet it reads the clock offset value and

records it for delay calculation. Converts microprocessors state to the connection-

established state. Then, microprocessor sends a 1-byte long UDP packet that only

consists of packet type identification character �o� that indicates this is a connection

acceptance packet. When the connection requester receives the connection

 51

acceptance packet it turns its microprocessor state to the connection-established

state too. In this state, microprocessor does not respond to the connection request

packets.

Connection is terminated by a 1-byte disconnect command received form UART

interface. �q� character received from UART interface indicates connection should

be terminated.

When microprocessor receives �q� character from UART interface, it changes its

state to the no connection state and stops sending voice packets to the host. It

constructs a UDP packet that is one byte long, containing packet type identification

character �q� that indicates this is a connection termination packet. When host

receives connection termination packet, it changes its microprocessor state to the no

connection state and stops sending voice packets to the host.

4.2.1.4 RTT Measurement

Round Trip time measurement facility is added to the VOIP device to be able to

extract the characteristics of the network that device is inserted. RTT measurements

give more accurate delay measurement results than one-way delay measurement

results, because of there are no synchronization problem between the hosts; because

all calculations are made using the RTT measurement initiator�s clock..

Also, data length of the RTT packets and time period between departure times of the

two successive RTT packets can be adjusted using the serial control interface. This

gives chance to extract the network characteristics with different settings of this

variables. By default, RTT packet length is set to 128 bytes and RTT measurement

period is set to 20 ms.

RTT packet length is set with 3-byte command received from UART interface. This

command consists, �p� character followed by 2-byte number, indicating RTT packet

 52

length in bytes. When microprocessor receives this command from its UART

interface, it changes the value of the variable indicating RTT packet length to the

received value.

In the same way, RTT measurement period is set by the 3-byte command received

from UART interface. This command consists �l� character followed by 2-byte

number, indicating RTT measurement period in milliseconds. When microprocessor

receives this command from its UART interface, it changes the value of the variable

indicating RTT packet length to the received value.

After packet length and period settings are done, RTT measurement can be started

with RTT measurement start command send through UART interface of the

microprocessor. RTT measurement start command is a 5-byte command,�t�

character followed by a 4-byte IP number of the host, which RTT measurement will

be made with. When microprocessor receives RTT measurement start command, it

constructs a UDP packet that will be send to the host and that packet will be

acknowledged by the host. This packet consists packet type identification character

�r�, indicates that this is rtt measurement initiator packet, at the first byte of the data

section of the UART packet. Packet type identifier character is followed by current

value of the microprocessor timer, which is 4-byte in length, and 2-byte sequence

number. After that, toggling binary 1�s and 0�s are inserted to the packet�s data

section until packet size reaches the RTT packet length. As soon as packet is

constructed, it is send to the host that measurement will be made with. This process

of packet construction and transmission to the host repeats every RTT measurement

period elapses until the RTT measurement is stopped. Sequence number is

incremented by one for every transmitted packet.

 When host receives RTT measurement initiator packet, it immediately changes

packet type identification character of the received character from�t� to �a�, that

indicates this is a RTT measurement acknowledge packet, and transmits packet back

to the RTT measurement initiator. When RTT measurement imitator receives

 53

acknowledge packet, it immediately records current value of the microprocessor

timer. Then, it reads sequence number and departure time of the packet from the

beginning of the packets data section, calculates RTT by subtracting the departure

time from the recorded value of the timer when acknowledge packet is received.

Calculated RTT and corresponding sequence number is send from UART interface

to be logged.

RTT measurement stops with RTT stop command received from UART interface.

This command is one byte command, which is the �f� character.

4.2.2 Sender and Receiver Functions

Sender and receiver functions cover, sending and receiving voice UDP packets

through Ethernet interface to satisfy satisfactory voice communication over IP.

Before sending voice packets, voice activity detection is performed. At the receiving

side, adaptive or fixed playout buffering is performed on received packets before

playout.

Voice samples are transmitted to the receiver using developed RTP that is explained

Chapter 3. A voice UDP packet consists of packet type identification character �v�,

2-byte sequence number of voice UDP packets, 4 byte timestamp information that is

used to show the packets generation instant and 128 8-bit µ-law compressed voice

samples or 128 2-bit APCM compressed voice sample depending on a mode of a

operation. Since the sampling frequency is 8 kHz, 128 voice samples carry voice

information that is 16 ms of duration. A voice UDP packet data section is total of

135 bytes in length and arranged as in Figure 4.12 for PCM mode of a operation and

39 bytes for ADPCM operation and arranged as in Figure 4.13.

 54

RTP

Header

7-byte

Sample(n)

1-byte

Sample(n+1)

1-byte

��� Sample(n+126)

1-byte

Sample(n+127)

1-byte

Figure 4.12: Voice UDP Packet Data section For PCM mode

RTP

Header

7-byte

Sample(n)

2-bits

Sample(n+1)

2-bits

��� Sample(n+126)

2-bits

Sample(n+127)

2-bits

Figure 4.13: Voice UDP Packet Data section for ADPCM mode

4.2.2.1 Sender Functions

These part of the microprocessor software is responsible for reading voice samples

from DPRAM, generating voice UDP packets and sending these packets to the host

after connection is established.

Every 16 ms, FPGA writes 128 voice samples to the one of the DPRAM ADC

DATA sections and interrupts microprocessor to inform that ADC data is ready.

Microprocessor interrupt service routine invokes send_adc_data task, if connection

is established. Pseudo code for the send_adc_data task is given in Appendix B.

 Send_adc_data task, when invoked starts forming voice UDP packet. First, timer

value of the microprocessor is read and recorded as a voice packet generation

timestamp. Then packet sequence number is incremented. At the receiver side

39-byte

135-byte

 55

timestamps are used for delay calculation and the sequence numbers are used to

arrange the received packets in the correct generation order.

After that, microprocessor allocates a buffer inside its internal memory. Voice UDP

packet data section will be formed in this buffer. Packet type indication character

�v�, which indicates this is a voice packet, is written to the start of the buffer. Then

packet generation timestamp that is four-byte and two-byte packet sequence number

is written to the buffer. These 7 byte data forms the RTP header of the voice packet

as explained in Chapter 3, Real Time Protocol section.

After then, ADC data section of the DPRAM, that contains new samples, should be

determined. This task is accomplished by reading the logic level of the

corresponding pin of the microprocessor, which is driven by the FPGA. FPGA

drives this pin with logic level of low to indicate that first ADC data section

contains new samples and with logic level of high to indicate that second ADC data

section contains new samples. After the ADC data section that contains new

samples is determined, voice samples are read from the determined DPRAM ADC

data section that contains 128 samples or 32 DPRAM words which are 4 bytes long

as indicated in section 4.1.3.

Voice activity detection is performed on voice samples to decide start, continue or

stop voice UDP packet transmission. Microprocessor compares every sample read

from DPRAM with a voice activity detection threshold and writes them to the

internal buffer, which is allocated to form the voice UDP packet data section,

sequentially. Voice activity detection threshold is selected experimentally. Samples

that are over the threshold are called active samples. For each active sample, a

counter called active sample count is incremented by one. After all of the 128

samples are read, the number of samples that are over the voice activity threshold is

checked using the value of the active sample count. If number of active samples is

greater than the half of the number of samples, all of the 128 samples are treated as

 56

containing voice activity. Otherwise all of the 128 samples are treated as not

containing voice activity or silent.

After all of the samples are written to the internal buffer, voice UDP packet data

section is formed. This packet is send over network using UDP protocol to the

receiving host if silence period is not determined. If silence period is determined,

voice packet transmission is stopped until the end of the silence period is

determined.

Start of silence period is decided when sequential 3 voice packets read from

DPRAM is silent. First two packets at the start of the silent period is send over

network as active packets. When sequential third silent packet is read from

DPRAM, start of the silence period is decided. Packet type indicator which is

written to the start of the internal network buffer for third silent packet is changed

from character �v� to the character �s� indicating the beginning of silence period and

send over network. No other packet is send to host until the end of the silence period

is decided. End of the silence period is decided when first active voice packet is read

from the DPRAM in the silence period. By using packet type indicators �s� and �v�,

receiver determines start and end of the talk spurts.

Voice activity detection can be enabled or disabled from the UART interface. One

byte commands are assigned to enable and disable the VAD. When �e� character is

received from UART interface, VAD is enabled and when�d� character is received

from UART interface VAD is disabled. When VAD is disabled every sample read

from DPRAM is treated as active. By default VAD is disabled.

4.2.2.2 Receiver Functions

Receiver part of the software works against network delay variance, out of order

packet reception and lost packets. Receiver part of the software sequences the

 57

received voice UDP packets, determines lost packets, and assigns playout time

according to the adaptively determined playout buffer length at the beginning of

each talkspurt.

As indicated in 4.1.3, microprocessor writes received voice samples from network to

the DPRAM DAC data section. FPGA reads voice samples from DPRAM DAC

data section and transfers them to the CODEC DAC section for playout. Every

received packet is buffered before playing out to compensate the network delay

jitter. Playout buffer length is determined using the adaptive playout buffering

Algorithm 3, which is explained in Chapter 2 This algorithm is chosen according to

the simulation results given in Chapter 5.

Playout buffer length is determined adaptively because of network delay

characteristics changes from time to time. For every received packet, network delay

and its variance is estimated adaptively from packet�s send time and receive time.

Playout buffer delay is determined from these calculated values as in equation 2.1,

at the start of the each talk spurt. Playout buffer delay is changed from talk spurt to

talk spurt.

For voice packets, packet type identification characters �v� and�s� are used as given

in Table 4.4. Packet type identification character�s� indicates the end of a talk spurt.

Playout out buffer length is changed when received character is�s�. For the first talk

spurt playout delay of 18 ms is used. Playout buffering algorithm 3 given in section

2.3.1.3 is used for playout buffer delay calculation. This algorithm is chosen

according to the MATLAB simulation results given in Chapter 5.

Network delay is calculated for each received packet using the following equation.

Network Delay = Receive Time � Send Time �Clock Offset

 58

Clock offset is used to synchronize the two communication clients as explained in

the clock offset calculation section 4.2.1.2.

In playout buffering algorithm 3, network delay estimate is the minimum of the

network delay�s observed by the packets within the talk spurt as given in equation

2.3. Therefore, network delay of the first packet of the talk spurt is recorded as the

minimum network delay and this value is compared with the network delay of the

subsequent received packets within the talk spurt. If a lower delay value is observed

minimum network delay value is changed to this value. Also, for each received

packet network delay variance is updated using the equation 2.2.

At the end of the talk spurt, which is decided with the reception of a packet with

packet type identification character �s�, network delay and network delay variance

are used to calculate the playout time of the following talk spurt according to the

equation 2.1 which is rewritten below using the software variable names and clock

offset correction is included.

Playout time = (Send Time�Clock Offset) + Minimum Network Delay+4xNetwork

Delay Variance

When the connection is established, microprocessor software informs FPGA that

connection is established. A line connected from a pin of microprocessor to the

FPGA accomplishes this. Microprocessor records the value of the timer as

Connection Start Time.

When connection is established FPGA sets its READ address pointer to the start of

the DPRAM DAC data section and reads one DPRAM word every 0.5 ms. As

mentioned in section 4.1.3. DPRAM DAC Data section is used as a circular buffer

for playout buffering. A graphical illustration of DPRAM DAC data section

implemented as a circular buffer and relative locations of the FPGA read pointer and

microprocessor write pointer is seen in Figure 4.14.

 59

Figure 4.14: DPRAM DAC Section Implemented as a Circular Buffer.

DPRAM address, where calculated playout time corresponds, is further than

DPRAM DAC data section start address by an amount of twice the difference

between Playout Time and Connection Start Time. Since at the connection start time

FPGA read address pointer is at the DPRAM DAC data section start address and

increments by one every 0.5 ms and playout time is calculated using the unit of 1

millisecond. Playout Buffer length is the twice the difference between playout time

and current value of the timer.

Voice samples extracted from the first voice UDP packet of the talk spurt are written

sequentially starting from the DPRAM address where calculated playout time

corresponds. Voice samples extracted from the following packets of the talk spurt

are written sequentially after the first packet according to the sequence numbers.

Lost packets are determined from the sequence numbers and DPRAM section where

lost packets should be written is filled with zeros.

FPGA read pointerr

DPRAM Dac Data Region Start Address

Microprocessor Write
Pointer

Playout Buffer
Length

 60

For each received UDP packet, with packet type identification character �v�,

microprocessor records the current timer value as packets receive time. Then, it

reads the one byte packet type identification character, 2-byte sequence number, and

4 byte send time timestamp from the received packet.

Then, network delay is calculated according to the equation 2.3. Calculated Network

Delay and sequence number of each received packet is send from UART interface

for diagnostics purposes. Network delay is compared with the previous minimum

of the network delay. If it is smaller, minimum network delay value is changed.

Then network delay variance is updated using equation 2.2.

Number of lost packets is determined from the sequence number of the previously

received packet and received packet. If the difference between the sequence

numbers of the previously received packet and received packet is greater than one

there is lost packets. Microprocessor fills DPRAM locations with zero

corresponding to the lost packets, starting from the current microprocessor write

address pointer location. Then, microprocessor writes the voice samples extracted

from the received packet to the DPRAM DAC section by incrementing the pointer

location by one for every four samples until the all 128 samples that a voice packet

contains are written.

At the end of a talkspurt, which is decided with the reception of UDP packet with

packet type identification character �s�, playout time is calculated according to the

equation 2.1 and playout buffer length is determined. Then, microprocessors write

pointer location is incremented or decremented according to the difference with the

previously used buffer length to set the playout buffer length to the length that

corresponds to the calculated new playout buffer delay.

 61

4.3 User Interface Program

Figure 4.15: User Interface Program

In figure 4.15, user interface program is shown. By using this program user can send

defined set of commands given in Table 4.4 to the developed VOIP device and can

log the results of the measurements made by the VOIP device. User interface

program is developed using the Microsoft Visual Studio 6.0 and runs on a windows

based PC.

PC and VOIP device connection is established by connecting the COM1 port of the

PC to the VOIP device serial port. Configuration of two communicating VoIP

device is seen in Figure 4.16

 62

Figure 4.16: Two communicating VoIP Device.

As mentioned in the section 4.2.1.1, when device is inserted in a network, its IP

number, subnet mask and gateway number settings should be done. These numbers

should belong to the inserted subnetwork. These settings can be done using the

buttons named SET IP_NUMBER, SET SUBNET, SET GATEWAY and their related

edit boxes located at the left of the corresponding button as shown in Figure 4.15.

When setting these numbers, first number should be written to the edit box and after

corresponding button should be clicked. After network number settings are done,

device is ready to use for VOIP communication.

 63

Connection can be established with the host using the user interface program.

Before connecting to a host clock offset with the host clock should be removed. For

this purpose host IP number should be written to the edit box at the top left corner of

the window. After host IP number is written, CLOCK OFFSET button should be

clicked. Measured clock offset value is returned to the box which is on the right of

the clock offset button. This value is recorded to the log file.

After clock offset is removed, connection can be established with the host by

clicking the connect button. When connection is established, diagnostic message

showing the status of the connection changes from disconnected to the connected.

This message is located below the disconnect button.

When connection is established, VOIP device returns the sequence number and

measured network delay of each received packet to the user interface program. User

Interface program prints this values to the boxes named sequence # and Network

Delay. These values are also written to the log file. User can end the connection by

clicking the disconnect button. When connection is released, diagnostic message

showing the status of the connection changes from connected to the disconnected.

As mentioned in section 4.2.2.1, VAD is disabled by default. By clicking the VAD

Enable check box, VAD can be enabled. When VAD is enabled, VOIP device

senses whether or not the user is speaking and sends voice packets only when user is

speaking. User can disable the VAD by clicking the check box again.

Also, user can start round trip delay calculation and set round trip delay calculation

parameters.

User can set size of the packets used in the round trip delay calculation by writing

the packet size to the edit box, which is at right of the PACKET SIZE button, and

clicking the PACKET SIZE button. Unit of the packet size is byte. Default value of

the packet size is 128 bytes.

 64

Also, time difference between departure times of the two successive packets used

for round trip delay can be set by writing the value to the edit box, which is at the

right of the SET PERIOD, and clicking the SET PERIOD button. Unit of the Round

Trip Time (RTT) packet generation period is in milliseconds. Default value of the

RTT packet generation period is 20 milliseconds.

After RTT measurement parameters are set, user can start RTT measurement by

clicking the RTT Start button and end measurement by clicking the RTT Stop button.

Measurement results returned from VOIP device are printed to the Sequence # and

Network Delay boxes and also written to the log file.

4.4 Total End to End Delay

There are many contributors to the total end to end delay in VoIP systems. VoIP

device is designed so as to minimize the total end to end delay. In the developed

VoIP device, voice samples see many processes until they are transferred across

Ethernet interface.

Main contributors to the total end-to-end delay in the developed VoIP device will be

explained in this section. Intermediate processes inside the microprocessor will be

ignored. A 100-clock cycle process inside the microprocessor costs 0.83

microseconds because of the high clock rate of 120 MHz.

Main contributor to the end-to-end delay in VoIP device is introduced to collect

voice samples from codec. 16 ms delay is introduced for voice sample collection,

since a voice packet consists, voice samples of 16 ms of duration. In the voice

sample collection process, samples extracted from the coded are written to the

DPRAM ADC data section as explained in section 4.1.5. Since this process is a

pipelined process, there is no extra delay introduced on voice samples to write them

to the DPRAM.

 65

After voice samples are written to the DPRAM, microprocessor is interrupted. In

the interrupt subroutine of the microprocessor, microprocessor reads voice samples

from DPRAM. Voice samples of 16 ms in duration are located in 32 subsequent

locations in DPRAM where each location consist 4 samples. Microprocessor reads

single location, compares samples with VAD threshold and then writes samples to

the network buffer. Then it advances to the next location in the DPRAM. It is

measured experimentally that, microprocessor reads single location of DPRAM

every 1 microseconds in the interrupt subroutine. Since there are 32 locations, delay

introduced in the interrupt subroutine is 32 microseconds. This relatively low value

when compared to the voice sample collection delay of 16 ms.

After all samples are written to the network buffer, packet is send via Ethernet

interface and network delay is introduced on the packet.

At the receive side, when a voice packet is received, its playout time and

corresponding DPRAM location is calculated and received voice samples are

written to that DPRAM location. This process is very similar to the transmitter side

and delay introduced by this process is very low compared to the network delay and

voice sample collection delay. There is also playout buffer delay, which is used to

compensate the variable part of the network delay and calculated by playout buffer

algorithm.

We can say that, main contributors to the total end to end delay are voice sample

collection delay, network delay and playout buffer delay. Processing delay

introduced by developed VoIP device is on the order of microseconds and not

comparable to the main contributors of the delay.

4.5 VoIP Device Compatible Computer Software Development

In this section, basic C language programming techniques will be described in order

to write software, which runs on PC platforms, that is compatible with the packet

structure of the developed VoIP device. Implementation issues that are same with

 66

the VoIP device microprocessor software are not given. Functions that are specific

to the main software structure and usage of the network adapter card and soundcard

will be given.

4.5.1 The basic system design

The program has to have three main modules. These modules are named transmitter,

receiver and control modules. This system structure is like microprocessor software

structure of the VIP device. Basic system structure is shown in Figure 4.17.

Figure 4.17: Basic system structure of the VoIP software on a PC platform

To run three modules of the software in parallel, �thread� structure of the �C�

programming language can be used. Threads work as a separate programs in

parallel. Codes for the three modules should be written as different programs.

Commands for thread are included in the process.h header file. Threads can be

started to work using _beginthread(*(threadName), 0, Null) command. After this

TRANSMITTER MODULE RECEIVER MODULE

CONTROL MODULE

Wave
Input
Device

Wave
Output
Device

 Network Socket

 67

command is executed thread function runs as an separate programs. Communication

between threads is performed using event structures. Threads can set or reset events

using SetEvent(handle) and ResetEvent(handle) commands respectively. A thread

can wait for a event using WaitForSingleObject(handle, duration) command. This

command pauses the thread execution until handle event is set by another thread.

As explained, transmitter, receiver and control modules can be run in parallel using

thread structure and they can communicate with each other using event structure. In

the following sections all three modules will be explained.

4.5.2 Control Module

Control module is the main part of the software. It controls the execution of the

other two modules (threads), creates a UDP socket, and controls connection

establishment process.

First of all, control module should create a socket to listen a UDP port for

connection requests. A UDP socket can be created executing following command;

 listen_socket = socket(AF_INET, SOCK_DGRAM,0).

After then, local address and port combination should be combined with the created

socket. Bind() command can be used for this purpose. Before using this command a

sockaddr_in structure should be created to identify the local address and port. This

structure can be created using the code segment seen in Figure 4.18.

Figure 4.18: Code segment to create sockaddr_in structure

Struct sockaddr_in local;

local_sin_family =AF_INET;

local.sin_addr.s_addr= ip_address;

local.sin_port = port_number;

 68

After sockaddr_in structure is created; it can be used in bind command to associate

local address and port combination with the listen_socket in the following way;

bind(listen_socket, (struct sockaddr*)&local, sizeof(local));

After then, listen_socket can be used to listen the incoming packets. Another

sockaddr_in structure should be defined for the host port and address. Control

module listens network by executing following command.

retval = recvfrom (listen_socket, PacketBuffer ,sizeof (Buffer),0,

(struct sockaddr)&host, &hostlen);

PacketBuffer contains the UDP payload of the received packet and retval shows the

received number of bytes. To send a packet to the host a similar function sendto

should be used .

sendto (listen_socket, SendBuffer ,sizeof (SendBuffer),0,(struct sockaddr)&host,

&hostlen);

Control module checks every received packet�s packet type identification character

as in the developed VoIP device. List of packet type identification characters are

shown in Table 4.4. Developed software should take similar actions with the

developed VoIP device for each received packet type.

After connection is established by performing the same packet exchange structure in

the VoIP device, streaming voice packets can be received or transmitted. Control

module starts the receiver and transmitter modules threads using _beginthread()

command. When control module receives connection close packet it ends the

operation of the receiver and transmitter threads using _endthread() command.

Voice packet reception is done in the control module; since control module has to

check packet type identification character of the each received packet to decide

 69

which action to take. If a voice packet is received by the control module, it

processes the RTP header as VoIP device, assigns playout buffer length for received

voice samples. Then writes the received packets to the previously allocated playout

buffer according to the assigned playout buffer length. Receiver module (thread)

then plays samples contained in the playout buffer in a periodic manner.

4.5.3 Receiver Module

Receiver module plays the audio written to the playout buffer by the control module.

Computer soundcard wave out capabilities are used for this purpose.

WAVEFORMATHEX structure contained in the windows library is used to set the

properties of the played audio. First a variable with the type WAVEFORMATHEX

should be defined and audio properties should be set. Code segment to set the audio

properties to the 8 kHz PCM format is shown in figure 4.19

Figure 4.19 : Code segment t set the soundcard waveout properties.

WAVEFORMATHEX waveFormat;

waveFormat.wFormatTag = WAVE_FORMAT_PCM;

waveFormat.nChannels = 1;

waveFormat.nSamplesPerSecond = 8000;

waveFormat.wBitsPerSample=8;

waveFormat.nBlockAlign=waveFormat.nchannels*

(waveFormat.wBitsPerSample/8);

waveFormat.nAvgBytesPerSecond=waveFormat.nChannels*

waveFormat.nBlockAlign;

waveFormat.cbSize = 0;

 70

Then a WAVEHDR structure should be created to assign a buffer to the wave out

device. Buffer named waveoutbuffer is associated with the waveheader by

executing the following command.

Waveheader.lpData = waveoutbuffer;

After soundcard settings are performed, receiver thread continuously reads the

playout buffer and writes the samples to the waveoutbuffer to be played out by the

soundcard. To play the voice samples contained in the waveoutbuffer , waveheader

should be prepared and associated with wave out device. Following command

should be executed for this purpose.

waveOutPrepareHeader(outHandle,&waveheader,sizeof(WAVEHDR));

OutHandle is a structure with type HWAVEOUT and this structure handles the

waveout device. After waveheader is prepared waveoutbuffer can be played by

executing the following command.

waveOutWrite(outHandle, &waveheader, sizeof(WAVEHDR));

Status of the waveout device can be viewed by checking waveHeader.dwFlags.

When wave out device plays all the samples contained in the waveoutbuffer value of

the waveHeader.dwFlags is set to 3. After all the samples contained in the

waveoutbuffer are played, waveheader should unprepared by executing

waveOutPrepareHeader command. Then new samples should be read from the

playout buffer and written to the waveoutbuffer to be played out by the soundcard.

Same commands explained up to now should be executed again to play out the

samples contained in the waveoutbuffer. These commands should run in loop

structure that periodically fills the waveoutbuffer with the received voice samples

from the playout buffer and plays out the voice samples using the soundcard for the

periodic reconstruction of the voice.

 71

4.5.4 Transmitter Module

After connection is established, transmitter module uses the computer soundcard

wave in capabilities to extract the user voice samples. Extracted samples are

packetized according to the packet structure of VoIP device and then transmitted to

the host using network adapter card.

Soundcard should be configured as wave input device and audio properties should

be set as in Figure 4.19. WAVEHDR structure should be created to assign a buffer to

the wave in device. Then an input buffer, with the size of 128 bytes should be

created and associated with the waveheader as in the receiver module. Buffer size is

128 bytes; because VoIP device voice packets contain 128 bytes of voice samples

that correspond to the 16 ms of voice in duration. A wave input device handle

should be created with the structure type HWAVEIN. Created waveheader should be

associated with the wave input device using the following command.

waveInPrepareHeader(InHandle,&waveheader,sizeof(WAVEHDR));

Next, buffer associated with the waveheader should be added to the wave input

device by executing following command.

waveInAddBuffer(InHandle,&waveheader,sizeof(WAVEHDR));

Then, wave input device can be started to sample incoming voice by executing

waveInStart(inHandle) command. Status of the wave input device can be viewed by

checking waveHeader.dwFlags. When wave input device fills the 128 bytes long

input buffer with voice samples value of the waveHeader.dwFlags is set to 3. This

flag can be used to decide when input buffer is filled. When input buffer is ready

with vice samples waveheader should be unprepared using the following command;

waveInUnPrepareHeader(InHandle,&waveheader,sizeof(WAVEHDR));

Voice packet should be created in voice packet buffer using voice samples collected

in the input buffer. Voice packet buffer should contain RTP header, created as in the

 72

VoIP device and the extracted samples from the soundcard wave input device.

When voice packet is created, it should be sent to the host over network using

computer network adapter card. UDP socket created in the control module can also

be used for packet transmission. Voice packet should be sent to the host using the

following command;

sendto (listen_socket, SendBuffer ,sizeof (SendBuffer),0,(struct sockaddr)&host,

&hostlen);

Transmitter thread should run in an continuous way until thread is end by control

module when connection is closed. Therefore, after packet is send to the host,

transmitter module should return to the beginning to create another voice packet and

send to the host in a loop structure.

 73

CHAPTER 5

ADAPTIVE PLAYOUT ALGORITHM SIMULATIONS AND
COMPARISONS

The performances of the four adaptive playout buffering algorithms, explained

Chapter 2, are needed to be evaluated to decide which algorithm to use in the

developed VoIP device.

These algorithms can be compared with each other by actually implementing all of

the algorithms on the different versions of the device or by evaluating their

performance with the simulations. But actual implementations of the algorithms do

not give the chance of evaluating the algorithms in the identical network conditions.

Since the network characteristics are very dynamic, same experimental conditions

cannot be created for all of the algorithms. Therefore it is preferred to use

simulations to compare algorithms.

 Simulations can be carried on the traces that are artificially generated on the

simulation environment, which is the MATLAB in our case or with the real traces

collected by observing the network. We have carried simulations on both artificially

generated traces and network-collected traces. By this approach we are able to run

all four algorithms on same set of traces and we were thus able to compare the

performance of the algorithms under identical network conditions. Developed VoIP

device is used the collect the network traces that will be used in the simulations. For

this purpose, test setups are developed in the METU and Hacettepe University.

 74

Traces are collected for two days using the network delay and sequence number

logging feature of the User Interface Program of the VoIP device. VoIP device

sends the sequence number and corresponding measured delay values for the

received packets on a VoIP session to the user Interface Program. And user interface

program writes these values to a log file.

In the next section, collected network traces and calculated playout times for the

algorithms, Algorithm 1 through Algorithm 4, referenced in Chapter 2 are given.

5.1 Simulations

In this section, simulation results of the algorithms for the three traces collected

using VoIP device are given. Experiments are carried between METU and

Hacettepe University.

Trace network delay values, collected by VoIP device, are added to the send time,

which is generated according to the sequence numbers corresponding to network

delays in the log file, to calculate the receive time of the packets. Algorithms use

Send time and Receive Time, as timestamps in an actual implementation and

calculate playout time. Send time of the first packet is taken as 0 end following

packet send times are calculated according to this time origin.

Trace 1 is collected at 13:15 PM at 29.08.2003. Network delay values for collected

trace are given in Figure 5.1. Mean network delay value for the trace is 37 ms,

minimum value is 16 ms and the maximum value is 71 ms. 8.37% of the packets are

lost in the network. Probability density function of Trace 1 is extracted by

normalizing the histogram of the Trace 1 with packet count and it is shown on the

Figure 5.2. It is noted that PDF of the Trace 1 follows a gamma distribution with

parameters 40.19 and 0.92. Gamma distribution with these parameters is also plotted

on Figure 5.2. Detailed information on gamma distribution can be found in

appendix B.

 75

Figure 5.1: Delay Measurement Result for Trace 1

Figure 5.2: PDF of Trace1 and Gamma Distribution Fitted to Trace 1

 76

Figures 5.3 through 5.6 shows send time, receive time and corresponding playout

time settings of Algorithms 1 through 4 for the Trace 1. Receive time later than

corresponding playout time shows late arrival for a packet and that packet is treated

as lost.

Figure 5.3 : Calculated Playout Time by Algorithm 1 for Trace 1

Figure 5.4 : Calculated Playout Time by Algorithm 2 for Trace 1

 77

Figure 5.5 : Calculated Playout Time by Algorithm 3 for Trace 1

Figure 5.6 : Calculated Playout Time by Algorithm 4 for Trace 1

Number of lost packets due to the late arrival after their scheduled playout time and

mean playout delay calculated for the algorithms 1 through 3 is given in Table 5.1

for Trace 1.

 78

 Table 5.1: Mean Playout Delay and Number of Lost Packets for Trace 1

 Algorithm 1 Algorithm2 Algorithm3 Algorithm 4

Number of Lost Packets

Due to Late Arrival

8 0 2 101

Mean Playout Delay

(ms)

55.189 86.73 75.77 52.92

Network delay values for Trace 2 are given in Figure 5.7. Trace 2 is collected at

10:45 AM at 29.08.2003. Mean network delay value for the trace is 33.52 ms,

minimum value is 7 ms and the maximum value is 57 ms. 8.04% of the packets are

lost in the network. Probability density function of Trace 1 is extracted by

normalizing the histogram of the Trace 1 with packet count and it is shown on the

Figure 5.8. It is noted that PDF of the Trace 1 follows a gamma distribution with

parameters 24.81 and 1.35 (std=6.49). Gamma distribution with these parameters is

also plotted on Figure 5.8.

Figure 5.7: Delay Measurement Result for Trace 2

 79

Figure 5.8: PDF of Trace1 and Gamma Distribution Fitted to Trace 2

Figures 5.9 through 5.12 shows send time, receive time and corresponding playout

time settings of Algorithms 1 through 3 for the Trace 1.

Figure 5.9 : Calculated Playout Time by Algorithm 1 for Trace 2

 80

Figure 5.10 : Calculated Playout Time by Algorithm 2 for Trace 2

Figure 5.11 : Calculated Playout Time by Algorithm 3 for Trace 1

 81

Figure 5.12 : Calculated Playout Time by Algorithm 3 for Trace 1

Number of lost packets due to the late arrival after their scheduled playout time and

mean playout delay calculated for the algorithms 1 through 4 is given in Table 5.1

for Trace 1.

Table 5.2: Mean Playout Delay and Number of Lost Packets for Trace 2

 Algorithm 1 Algorithm2 Algorithm3 Algorithm 4

Number of Lost Packets

Due to Late Arrival

7 0 5 154

Mean Playout Delay

(ms)

54.84 89.06 76 50.62

5.2 Comparison and Discussion of results

As we can see from the simulation results for Trace 1 and Trace 2, Algorithm 4

perform the playout time setting with smaller mean playout delay than other

algorithms. But number of lost packets, due to late arrival, is bigger for Algorithm 4.

 82

This is due to the fact that, Algorithm 4 is designed for networks that network delay

spikes are seen often. But for our traces, network delay spikes are not seen too

much. Also, as given in [2], constant parameters used in Algorithm 4 are very

sensitive to the network characteristics.

Algorithm 2 gives the biggest mean playout delay between all three algorithms. But

it gives the minimum number of lost packets.

As seen from the figures for playout times, Algorithm 1 sets the playout time

smoother than other algorithms. This results in more preservation of actual silence

period lengths. Preservation of silence periods also increases the perceived quality

of the played out speech.

As mentioned, Algorithm2 gives the minimum number of lost packets and algorithm

4 gives the minimum mean playout delay for the given traces. But Algorithm 1,

gives slightly higher number of lost packets than other algorithms and gives smaller

mean playout delay value. It is seen that, for the given traces, by considering both

number of lost packets and mean playout delay, Algorithm 1 performs better than

other algorithms. Also silence period compression for algorithm 1 is minimum,

which also increases perceived quality of played out speech. Algorithm3 has

advantage of ease of implementation where network delay estimate is calculated by

finding the minimum of the observed network delays in a talkspurt. This algorithm

gives smaller number of lost packets at the expense of higher mean playout delay.

If we look at the statistics of the collected traces, they have both number of lost

packets almost %8. This is relatively high percentage that degrades the quality of

the played out speech. Therefore, we should choose the algorithm that gives small

number of lost packets. Algorithm 1semms most appropriate algorithm, but it has a

high computational complexity because of. On the other hand Algorithm 3 achieves

this goal, and it has a ease of implementation. Algorithm 3 is chosen to use in the

 83

developed VoIP device and implemented on microprocessor software as explained

in section 4.2.2.2.

 84

CHAPTER 6

CONCLUSION AND FUTURE WORK

In the framework of this thesis, an embedded Internet telephony device, providing

full duplex voice communication over internet has been developed. Various subjects

come on to focus in the development cycle.

First, there was a need for a protocol to use as network transport layer protocol in

the developed device. Existing protocols, such as TCP and UDP are examined, their

advantages and disadvantages, when used in a real time application, are discussed.

Because of their lack of transmitting timing information and other disadvantages

explained in Chapter 2, RTP, latest protocol used in real time applications, [4], is

examined. And finally a RTP like custom protocol is developed and used in the

developed device as transport layer protocol. This protocol satisfies all the

requirements existing in an Internet Telephony application.

When we try to measure the one way network delay of the received packets, it is

seen that there is a clock offset and clock skew problem. Clock offset problem is

solved with the method given in [5]. This method removes the clock offset by

assuming transmitted packets travels with the same network delay in both directions.

This results in an error of a few milliseconds in the clock offset calculation and ear

is tolerant to such a delay. Methods that give more accurate results can be used. For

example both communication clients can be synchronized in the order of 100 ns by

using Global Positioning System (GPS),[5]. However usage of GPS is not practical

 85

because of its high cost. Internet Telephony applications does not need

synchronization in the order that GPS satisfies. GPS can be used in the systems

where accurate one-way delay measurements are needed.

A VAD algorithm is developed and used in order to discriminate the talkspurt

boundaries and to reduce transmission rate. Talkspurt boundaries should be

determined since, adaptive playout algorithms sets playout time at the start of

talkspurts.

Main problem in VoIP applications is network delay variance and packet loss. Lost

packets are interpolated using zero insertion. Better QoS can be achieved by using

more sophisticated interpolation methods or FEC methods can be used to increase

the received QoS. Network delay variance is compensated using the one of the

adaptive playout buffering algorithms presented in [3]. This algorithm is chosen

according to the trace driven simulation results. Simulation approach is preferred in

order to compare performance of the algorithms in identical network conditions.

Simulation network delay traces are collected with the developed VoIP device in the

experiments carried between Hacettepe University and METU.

A user interface program is developed to control the device and collect the

measurement results such as network delay, and Round Trip Delay.

Developed VoIP device is fully tested in the experiments on local area networks of

Aselsan Inc. and METU and also in the internet between Hacettepe University and

METU. Device gives toll quality voice in local area networks. Perceived QoS

decreases in wide area networks but still remains satisfactory because of high

number of network related lost packets. Where packet lost rates between Hacettepe

University and METU is on the order of almost 8% measured.

As future work, network delay and round trip delay measurement facility of the

device can be used in the experiments to extract the characteristics of networks.

 86

These experiments require extensive measurement of the network delay to be able to

characterize the network with statistical approaches. Perceived QoS in VoIP

communication can be tested between long distances where network delay and its

variance are higher. Adaptive Playout Buffering algorithm simulations can also be

done on these traces to compare the algorithms. Also, FEC algorithms can examined

and one of them can be embedded on microprocessor to compensate lost packets.

Advanced speech coding techniques can be used in order to reduce the transmission

rate.

 87

REFERENCES

1. Sue B. Moon, �Measurement And Analysis Of End-to-End Delay and Loss

In The Internet�, University of Massachusetts Amherst, February 2000

2. J.Rosenberg, L. Qui, H. Schulzrinne, �Integrating Packet Fec into Adaptive

Voice Plyout Buffer Algorithms on the Internet�, Infocom 2000

3. R. Ramjee, J. Kurose, D. Towsley, H. Schulzrinne, �Adaptive Playout

Mechanisms for packetized Audio Applications in Wide Area Networks�,
Proceedings of the Conference on Computer Communications (IEEE
Infocom), Toronto, Canada, 1994

4. A.S. Tanenbaum, �Computer Networks 4th Ed�, Prentice-Hall, 2003

5. K. Fujimoto, Adaptive Playout Buffer Algorithm for Enchancing Perceived

Quality of Streaming Apllications, Osaka University, Japan, February 2002

6. M. Narbutt, L. Murhpy, Adaptive Playout Buffering For Audio/Video

Transmission Over the Internet, University College Dublin, Dublin,
Ireland,2000

7. V. Jacobson, �Congestion Avaoidance and Control�, Proc. 1988 ACM

SIGCOMM Conf., pages 314-329, August 1988

8. Jon Postel, editor, �Transmission Control Protocol Specification�,

ARPANET Working Group Request For Comment, RFC 793, September
1981

9. D. Mills, �Internet Delay Experiments�, ARPANET Working Group

Request for Comment, RFC 889, December 1983

10. Vern Paxson, �End-to-End Internet Packet Dynamics�, Network Research

Group, Lawrence Berkeley Netional Laboratory, University of California,
Berkeley, June 1997

11. J-C. Bolot, �End-to-End Packet Delay and Loss Behavior in the Internet,�

Proc. SIGCOMM '93, pp. 289-298, Sept. 1993.

 88

12. Jean-Chrysostome Bolot and Andres Vega Garcia, �Control mechanisms for
packet audio in the Internet,� Proceedings of the Conference on Computer
Communications (IEEE Infocom), San Fransisco, California,Mar. 1996

13. Sue Moon, Paul Skelly, and Don Towsley, �Estimation and removal of clock

skew from network delay measurements,� in Proceedings of the Conference
on Computer Communications (IEEE Infocom), New York, Mar. 1999

14. Sanghi, D., Gudmundsson, O., Agrawala, A., and Jain, B.N. �Experimental

assessment of end-to-end behavior on Internet.�, Proceedings of INFOCOM
�93, pp. 867�874., 1993

15. Schulzrinne, H. �RTP profile for audio and video conferences with minimal

control.�,RFC 1890, Internet Engineering Task Force, Jan 1996.

16. C.J. Sreenan, Jyh-Cheng Chen, Prathima Agrawal, and B. Narendran,
 �Delay reduction techniques for playout buffering,� IEEE Transactions
 on Multimedia, vol. 2, no. 2, June 2000.

 89

Appendix A

Pseudo code for the Send_Adc_Data_Task

1. Record timer value as packet generation timestamp.

2. Increment sequence number by 1

3. Allocate packet buffer

4. Write packet type identifier character �v� to the buffer

5. Write sequence number to the buffer

6. Write generation time timestamp to the buffer

7. If adc_data_section_identifer_pin = low

 ADC_data_Read_pointer = Start of te ADC data section 1

 Else

 ADC_data_Read_pointer = Start of te ADC data section 2

8. For i=1:32 do

 {

 Read DPRAM location where ADC_data_Read_pointer is indicating

 Increment ADC_data_Read_pointer by 1

 Compare read 4 samples with VAD Threshold

 Increment ActiveSampleCount by 1 if samples are exceeding threshold.

 Write 4 samples read from DPRAM to the buffer

 }

9. If ActiveSampleCount > 64

 Set packet VAD status as Active

 Else

 Set packet VAD status as Silent

10. If packet Vad status = Silent

 90

 Increment SuccessiveSilentPacketCount by 1

 Else

 SuccessiveSilentPacketCount = 0

11. If VAD enabled

 {

 If SuccessiveSilentPacketCount < 3

 Send the buffer to the host using UDP protocol

 }

 Else

 Send the buffer to the host using UDP protocol

