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ABSTRACT

COMPONENTS OF RESPONSE VARIANCE FOR CLUSTER SAMPLES

Akdemir, Deniz

M.S., Department of Statistics

Supervisor: Prof. Dr. H. Oztas Ayhan

June 2003, 109 pages

Measures of data quality are important for the evaluation and
improvement of survey design and procedures. A detailed investigation of the
sources, magnitude and impact of errors is necessary to identify how survey
design and procedures may be improved and how resources allocated more
efficiently among various aspects of the survey operation. A major part of this
thesis is devoted to the overview of dtatistical theory and methods for
measuring the contribution of response variability to the overall error of a
survey.

A very common practice in surveys is to select groups (clusters) of

elements together instead of independent selection of elements. In practice



cluster samples tend to produce higher sampling variance for statistics than
element samples of the same size. Their frequent use stems from the desirable
cost features that they have.

Most data collection and sample designs involve some overlapping
between interviewer workload and the sampling units (clusters). For those
cases, a proportion of the measurement variance, which is due to interviewers,
is reflected to some degree in the sampling variance calculations.

The prime purpose in this thesis is to determine a variance formula that
decomposes the total variance into sampling and measurement variance
components for two commonly used data collection and sample designs. Once
such a decomposition is obtained, determining an optimum allocation in

existence of measurement errors would be possible.

Keywords: Measurement Errors, Response Errors, Interviewer Variance,

Cluster Sampling, Simple Response Variance, Correlated Response Variance



Oz

KUME ORNEKLEMELERINDE YANIT VARYANSININ BILESENLERI

Akdemir, Deniz

Master, Istatistik Boluma

Tez Yoneticisi: Prof. Dr. H. Oztas Ayhan

Haziran 2003, 109 sayfa

Arastirmalarda, sonuclarin degerlendirilebilmess ve daha sonraki
arastirmalarin tasarim ve islemlerinin gelistirilebilmes agisindan veri kalites
Olcutleri oldukga 6nemli bir yere sahiptir. Hatalarin kaynaklari, buyuklUkleri ve
etkilerinin ayrintili bir bicimde incelenmes, arastirmanin tasarim ve
islemlerinin ne sekilde iyilestirilebilecegi ve kaynaklarin birgok farkli kullanim
icin ne sekilde dagitilacagi hakkinda bilgi verir. Bu tezin dnemli bir kismi
arastirmalarda meydana gelen yanit degiskenliginin payinin 6lglilmesine

yarayacak yontemleri ve istatistik teorisini incelemeye ayrilmistir.



Arastirmalarda yaygin olarak kullanilan bir yontem 6rneklem
elemanlarin tek tek ve bagimsiz sekilde secilmesindense kimeler halinde
secilmesine dayanir. Uygulamada kiime orneklemelerinin varyansi gogunlukla
ayni bluyUklUkteki eleman orneklemesininkinden daha buyuktor. Kidme
orneklemesinin yaygin olarak kullanilma nedeni sahip oldugu uygun maliyet
Ozelliklerine dayanir.

Anketorlerin is yukleri ve kimeler arasinda cogunlukla bir ortisme
goruldr. Bu gibi durumlarda anketor varyansinin bir kismi érnekleme varyans
tarafindan olcultr. Bu tezin temel amaci bu gibi durumlar icin yanit varyansini

bilesenlerine ayiran bir model gelistirmektir.

Anahtar Kelimeler: Olgme Hatasi, Yanit Hatalari, Anketor Varyansi,

Kuime Orneklemesi, Olgme Varyansi.
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CHAPTER 1

INTRODUCTION

All statistical data, from whatever source and whatever the manner of
their collection, are potentially subject to errors of various types. Even a
complete census of all known members of a population is subject to errors.

Knowledge about data quality is required for their proper use and
interpretation. This knowledge is essential in determining whether and with
what degree of confidence the patterns observed in the results are real, and not
merely products of the variability and deficiency inherent in the data
Information on the nature and magnitude of errors can aso be useful for
making appropriate corrections to the data or adjustments in their
interpretation.

A survey attempts to acquire knowledge by observing the population
and making quantitative statements about aggregated and disaggregated
population characteristics. Surveys consist of a number of survey operations.
Each phase of the operations affects the quality of survey estimates, and with
each phase we can associate sources of errors in the estimate. A survey error
refers to deviations of obtained results from those which are true reflections of

population values.



1.1. Survey operations associated with survey errors

a. Sample selection: This phase consists of the execution of a
predetermined sampling design using a suitable sampling frame. The sample
Size necessary to obtain the desired precision is determined. Errorsin estimates
associated with this phase are; frame errors of which undercoverage is
particularly serious and sampling error which arises because a sample not the
whole population, is observed.

b. Data Collection: There is a predetermined measurement plan with a
specified mode of data collection (persona interview, telephone interview,
mail questionnaire, or other). The fieldwork is organised, interviewers are
selected, and interviewer assignments are determined. Data are collected,
according to the measurement plan, for the elements in the sample. Errors in
estimates resulting from this phase include;

i. Measurement errors, where the respondent gives (intentionally or
unintentionally) incorrect answers, the interviewer misunderstands or records
incorrectly, the interviewer influences the responses, the questionnaire is
misinterpreted, etc.

ii. Errors due to nonresponse (i.e., missing observations).

c. Data Processing: During this phase collected data are prepared for
estimation and analysis. It includes the following elements; coding and data
entry, editing, renewed contact with respondents to get clarification if
necessary, imputation. Errors in estimates associated with this phase include
transcription error (keying errors), coding errors, error in imputed values,

errors introduced by or not corrected by edit.



d. Estimation and Analysis: This phase entails the calculation of survey
estimates according to the specified point estimator formula, with appropriate
use of auxiliary information and adjustment for nonresponse, as well as a
calculation of measures of precision in the estimates (e.g., variance estimate,
coefficient of variation of the estimate, confidence interval). Statistical
analyses may be carried out, such as comparison of subgroups of the
population, correlation and regression analyses, etc. All error from phases (a)
to (c) above will affect the point estimates, and they should ideally be
accounted for in the calculation of the measures of precision.Dissemination of
Results and Postsurvey Evaluation

e. Dissemination of Results and Postsurvey Evaluation: This phase
includes the publication of the survey results, including a general declaration of
the conditions surrounding the survey. This declaration often follows a set of
specified guidelines for quality declaration, which traditionally include two

major categories: sampling and nonsampling errors.

1.2. Objectives of this Study

A major aim of thisthesisisto provide an overview of statistical theory
and methods for measuring the contribution of response variability to the
overal error of a survey. The first chapters of the thesis are devoted to
overview of the measurement error theory. Some concepts and ideas related to
the subject are reviewed concisely. Various available measurement error
models are described. Those chapters, which are meant to provide an overview
of measurement error theory, are not meant to give a complete treatment of the

subject. They are meant as an introduction to the second aim of this thesis.



The second major aim of this thesis is determining a variance formula
that decomposes the total variance into sampling and measurement variance
comporents for data collection and sample designs which involve a degree of
correspondence between interviewer workload and the sampling units
(clusters). This data collection and sample designs need a specific variance
decomposition model. Assigning only one interviewer for each cluster
generates a different variance then assigning interviewers randomly to
sampling units. A different assignment and sample design is often used to
reduce the costs of the survey but it also changes the variance structure.
Utilisng a general measurement error model for a survey with interviewers
given by Lessler and Kalsbeek (1992) the variance decomposition is obtained
for the assignment and sample design which involves all cluster elements for
chosen clusters being observed.

A random sub-sample of cluster elements, considered next, complicates
the precision error of the cluster mean estimator, introducing a sampling error
within the clusters. Within a cluster two kinds of error will be present:
sampling error and measurement error made by the interviewers. These two
errors have been assumed to be independent, and a linear additive moddl is
used to illustrate their total effect. This second data collection and sample
design involved further complexities but the proper use of the model for the
first data collection and sample design made the solution possible.

This thesis examines the languages of measurement errors in Chapter 2.
In Chapter 3, empirical estimation of survey measurement errors are covered.

Sources of measurement error issues are examined in the Chapter 4. Survey



costs subject is an important aspect of the survey operation, which is covered in
Chapter 5. In Chapter 6, measurement error models is covered. Decomposition
of the survey error is discussed in Chapter 7. Findly, cluster sampling and

variance decomposition proposals are followed by the conclusion of this thesis.



CHAPTER 2

LANGUAGES OF MEASUREMENT ERROR

The field of measurement of survey error components has evolved
through the somewhat independent, and uncoordinated, contributions of
researchers trained as dstatisticians, psychologists, political scientists, and
sociologists. Therefore, it lacks a common language and a common set of
principles for evaluating new ideas. According to Groves (1989) at least three
major languages of error appear to be applied to survey data. They are
associated with three different academic disciplines and illustrate the
consequences of groups addressing similar problems in isolation of one
another. The three disciplines are dtatistics (especially statistical sampling
theory), psychology (especially psychometric test and measurement theory),
and economics (especially econometrics). Although other disciplines use
survey data (e.g., sociology and political science), they appear to employ

languages similar to one of those three.

2.1. Measurement Error Terminology in Survey Statistics

The total error of a survey statistic is labeled the mean squared error; it
Is the sum of all variable errors and all biases. Another common conceptual
structure labels the total survey error of a survey statistic, by the root mean

square error (Kish, 1965); which is the square root of the mean squared error.



Bias of a statistic is a systematic error that affects the statistic in al
implementations of a survey design; in that sense it is a constant error. Bias of
a survey can not be measured from within the survey. Its estimation involves
validating information from sources that are external to the survey.

A variable error, measured by the variance of a statistic, arises because
achieved values differ over the units (e.g., sampled persons, interviewers used,
guestions asked) that are the sources of the errors. The concept of variable
errors inherently requires the possibility of repeating the survey, with changes
of unitsin the replications.

Variable errors and biases are connected; bias is the part of error
common to al implementations of the survey design, and variable error is the
part that is specific to each trial. A survey design defines the fixed properties of
the data collection over all possible implementations.

Define the mean squareerror as

Mean Square Error = Variance + Bias®
— (21.1)

Es,t,i,a (ys,t,i,a - E.DZ = Es,t,i a (ys,t,i,a - _y)2 + (K/ - m)2
where E,;.() denotes the expectation over all samples, s, given a sample
design; dl trials, t; al sets of interviewers, i, chosen for the study; and all

assignment patterns, a, of interviewers to sample persons, ysyt’i'a denotes the

mean over respondents in the s-th sample, t-th tria, i-th set of interviewers, a-th

assignment pattern of interviewers to sample persons, for y, the survey measure

of the variable m in the target population; y denotes the expected value of

Y/s,t,i,a over all samples of respondents, all trials, al sets of interviewers, and all



assignment patterns; m denotes the mean of the target population for true

values on variable m. The bias of the mean is
Bias(y,,.) = (Y. - M. (2.1.2)
The variance of the mean is

Var(ys,t,i,a) = Es,t,i,a (ys,t,i,a - 9)2 ' (213)

2.1.1. Sample Selection

Observational errors concern the accuracy of measurement at the level
of individua units enumerated in the survey. These arise from the fact that
what is measured on the units included in the survey can depart from the actual
(true) values for those units. Observational errors are deviations of the answers
of respondents from their true values on the measure. Observational errors
center on substantive content of the survey: definition of the survey objectives
and questions; ability and willingness of the respondent to provide the
information sought; the quality of data collection, coding editing, processing

€tc.

2.1.2. Errors of nonobservation

Errors of observation concerns generalizability from the units observed
to the target population, includes sampling variability and various biases
associated with sample selection and implementation, such as coverage,
selection and nonresponse errors. These are errors in the process of
extrapolation from the particular units enumerated to the entire study

population for which estimates or inferences are required. These center on the



process of sample design and implementation, and include errors of coverage,
sample selection, sample implementation and nonresponse, as well as
sampling errors and estimation bias.
The above categorisation is based on operational considerations, and in
a sense is more fundamental than the distinction usually made between
sampling and nonsampling errors. In the survey statistics terminology
sampling errors are viewed as the errors emerging because of the sampling
procedure. Nonsampling errors are often thought of being due to mistakes and
deficiencies during the development and execution of the survey procedures.
Each group of errors may be further classified in as much detall as
possible to identify specific sources of error, so as to facilitate their assessment
and control:
a. Observational errors
a.l. Conceptual errors
- errorsin basic concepts, definitions, and classifications
- errorsin putting them into practice (questionnaire
design, interviewers training and instructions)
a.2. Response errors
- response bias
- simple response variance

- correlated response variance

a.3. Processing errors

- editing errors



- coding errors
- data entry errors
- programming errors
b. Non-observational errors
b.1. Coverage and related errors
- omissions
- incorrect boundaries
- outdated lists
- sample selection errors
b.2. Non-response
- refusals
- inaccessible
- not-at-homes, etc.
b.3. Sampling error
- sampling variance
- estimation bias
There are two main alternative views on survey error within the survey
statistics field. The simpler view on the survey error is based on the assumption
that the only source of variation in survey results comes from measuring
different subsets of the population. Thus, sampling variance is the only variable
error. This view is taken in most standard statistica sampling theory.
According to this view the variance given in (2.1.3) contains only the sampling

variance,

Eia(Ee(Yaria- Yaia)?), (2.1.4)

10



where y_m is the expected value of ys,t,i,a over all samples of respordents, s,
given asampling design.

According to Groves (1989) a more elaborated view of survey error
held by some survey statisticians comes from those interested in total survey
error. Underlying this perspective is the notion that the survey at hand is only
one of an infinite number of possible trials or replications of the survey design.
Respondents are assumed to vary in their answers to a survey question over
trias, leading to simple response variance (Hansen, Hurwitz and Pritzker,
1964). The interviewer is often treated as a source of error in this perspective,
and is most often conceptualized as a source of variable error.

The variable effects that interviewers have on respondent answers are
sometimes labeled correlated response variance in this perspective (Bailey,
Moore and Bailar, 1978). Measurement bias or response bias refers to
systematic errors that have a discernible pattern compared to the "true
response”. The response bias of an estimate will not be reflected in the variance
of asample statistic; its effect, if it can be estimated, will be reflected in the

mean sgquared error. The ssimple response variance is defined as

Es,i,a(Et (ys,t,i,a - ys,i,a)z) . (215)

2.2. Measurement Error Terminology in Psychological Measurement

Groves (1989) states that when moving from survey statistics to
psychometrics, the most important change is the notion of an unobservable
characteristic the researcher is attempting to measure with a survey indicator

(i.e., aquestion). In contrast, within survey statistics, the measurement problem

11



lies in the operationalization of the question (indicator, in psychometric terms).
The psychometrician, typically dealing with attitudinal states, is more
comfortable labelling the underlying characteristic (construct, in psychometric
terms) as unobservable, something that can only be approximated with any
applied measurement.

There are two influential measurement models. In the first, classical
true score theory, all observational errors are viewed as joint characteristics of
a particular measure and the person to whom it is administered. In such
measurement the expected value (over repeated administrations) of an indicator
is the true value it is attempting to measure. That is, there is no measurement
bias possible, only variable error over repeated administrations. Although
classical true scores provide the basis for much of the language of errors in
psychometrics, it is found to be overly restrictive for most survey applications.

An additional change when moving to the field of psychometric
measurement is the explicit use of models as part of the definition of errors.
That is, error terms are defined assuming certain characteristics of the
measurement apply. In this perspective expectations of the measures are taken
over trials of administration of the measurement of a person. That is, each
asking of a question is one sample from an infinite population (of trials) of
such askings. The propensity distribution describes the variability over trials of
the error for the particular person. Under the classical true score assumption the
mean of that distribution is zero. When there is interest in a population of

persons, the expected value of the indicator is taken both over the many



propensity distributions of the persons in the population and the different
persons.

The true score m on the construct m, of aperson, |, on the indicator
g isdefined as the expected value of the observed score; that is,

M = E(Vg), (22.)
where 'y, denotes the response to indicator g on the tth trial for the jth
person; and the expectation E,(.) is with respect to the propensity distribution
over trias of the indicator’s administration for the j-th person. The model for

measurement is

Response = True Score + Error

~ (2.2.2)
ygjt - n] + egjt !

where e_. isthe error for the g-th indicator committed by the j-th person on the

]
t-th tridl.
Two terms in the psychometric perspective, validity and reliability, are
frequently used to label two kinds of variable errors. The notion of theoretica
validity, sometimes called construct validity, is used to mean the correlation
between the true score and the respondents answer over trials. The measure is
taken to be one of an extensible set of indicators of the construct. It is not
equated with the construct it attempts to measure or it is not considered to
define the construct itself. Thisis in contrast with strict operationism, in which
each construct is defined in terms of a narrowly specified set of operations.

Theoretical validity of the gth indicator, for the population of which

the j-th person is a member, is

13



Covariance of Indicator and True Score
(Standard Deviation of Indicator)(Standard Deviation of True Score)

Eiel (Vg - ¥ )(m - m)] _,
‘/Ejt(ygjt - Y/g__)z\/Ejt(rq - r_rbz ym?

(2.2.3)

where r _isthe correlation between the true scores and observed values over
trials and persons in the population; Y/g__ is the mean over persons and trials of

observed scores; and m denotes the mean over persons of true values.
The other error concept used in psychometrics is reliability, the ratio of
the true score variance to the observed score variance. Variance refers to

variability over personsin the population and over trials within a person.

Variance of True Score
Variance of Indicator 904
Ey(m-m° _s? (@24

= =r

= — > ,
Ejt(ygjt - yg) S ’

Index of Reliability =

3

<N

where s fn Is the variance of the true scores across the population and trias; s 5
is the variance of the observed scores across the population; r , isthe index of

reliability. With this definition of reliability, it can be noted that the concept is
not defined for measurements on a single person, only on a population of
persons and reliability has a value specific to that population.

Validity and reliability can be assessed only with multiple indicators.
Bohrnstedt (1983) makes the distinction between theoretical validity, which is
defined on a single indicator, and empirical validity, an estimation of
theoretical validity that can be implemented only with another measure of the
same construct. Sometimes criterion validity is used to denote that the other

measure is assumed to be measured without any variable error. Empirica or

14



criterion validity of y, inrelationto y,, where y, and y, aretwo indicators
of m, isgiven by the correlation of y, and y, over trials and persons in the

population, r .

2.3. Measurement Error Terminology in Econometrics

In the field of econometrics the terminology for errors arise mostly
through the language of the general linear model. The observations analysed
are viewed to be a collection of events from a random process. In this respect
the term measurement error model is used to denote a regression model, either

linear or nontlinear, where at least one of the covariates or predictors is

observed with error. If m denotes the value of the covariate for the j-th sample
unit, then m is unobserved, instead we observe y; = f(m,d;) where d, is

known as the measurement error. The observed (or indicator) variable is
assumed to be associated to the unobserved (or latent) variable via the function
f . The form of this function defines the different types of measurement error

models.

Within the class of error modds , there are two variants. classical
additive error models, and error calibration models. The classical additive

error model establishes that the observed variable y, onthe t- th tria is an
unbiased measure of m. That is
Y, =m+d,, (2.3.1)

where d, isarandom variable with mean 0 and variance s ;.

15



We tak about error calibration models when the observed variable is a
biased measurement of the variable of interest. In this case a regression model
to associate the two variables is

y, =a,+ta,m+d,, (2.3.2)
where as before E,(d,)=0, but now E/(y,) =a,+a,m. If information about

the relationship (2.3.2) is available, the measurement y, can be calibrated by

using a_'(y; - a,).
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CHAPTER 3

EMPIRICAL ESTIMATION OF SURVEY MEASUREMENT ERROR

This section describes some techniques for evaluating and controlling
measurement error in surveys. The methods discussed are

a Reinterview Studies

b. Multiple Indicators Studies

c. Record Check Studies

d. Cognitive Studies

3.1. Reinterview Studies

A reinterview (replicated measurement on the same unit in interview
surveys) is a new interview which repeats all or part of the questions of the
origina interview. When implementing reinterview methodology, there are two
underlying assumptions:

a. Thereinterview is independent of the first interview,

b. The original interview and the reinterview either use the same mode
of data collection and are conducted under the same general conditions or the
reinterview and reconciliation provide "true" values.

Reinterview studies requiring two sets of measurements on the sample

or part o it have been implemented since the early days of sample surveys

17



(Mahalanobis, 1946). There are three maor purposes for conducting
reinterview studies:

a. Estimation of simple response variance or reliability: A reinterview
will permit the partitioning o the observed variability of responses into the
sampling variance and the simple response variance. A reinterview used to
measure either simple response variance or reliability must be an independent
replication of the original interview. Independence is threatened, however, by
conditioning, which occurs when respondents remember their first answer
during the reinterview.

b. Estimation of the response bias. Theoretically, the measurement of
response bias requires the existence of data from which the true \alue may be
estimated; however, often these data do not exist. In practice, reinterview
programs frequently estimate a measure of response bias by including a
process known as reconciliation. This is when the respondent is asked to
reconcile answers that differed between the origina and the reinterview.
Reconciliation can occur during or a the end of the reinterview or in a
separate, third contact.

c. Evaluation of the field work: Reinterview studies can be used to
identify interviewers who are falsifying data, and who misunderstand the
survey procedures and require additional training. The different purposes for
which reinterviews may be used necessitate different methodologies and thus
dictate different reinterview designs. Forsman and Schreiner (1991) describe
four basic reinterview designs. Two focus on evaluating interview performance

(one of which was specifically developed to detect interviewer fasification),
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and two on estimating measurement error components of the interview data
(one estimating simple response variance and reliability and the other
estimating response bias.

Forsman and Schreiner (1991) explain that each basic design is
characterized by the following six factors:

a. The method of reinterview sample selection. The reinterview sample
can be a onestage sample of respondents, households, or clusters of households
(such a cluster may consist of, e.g., four neighbouring households). The
reinterview sample can aso be a two-stage sample, where the origina
interviewers are primary sampling units, and respondents (or households or
clusters) within interviewers are secondary sampling units (ssu). Such a two-
stage sample permits a proper allocation of ssu's over interviewers.

b. The choice of reinterviewers. The reinterviewers can be selected from
the same pool of interviewers as the original interviewers. They may also be
selected from among the most experienced interviewers in this pool. A third
option is to select the reinterviewers from a group of supervisors.

c. The choice of respondent. The respondent can be the same as in the
original interview; he or she can be chosen according to the same procedure as
in the original interview ("origina respondent rule"); the respondent might be
the most knowledgeable person in the household, or each person could respond
for himself or herself ("self-response™).

d. The design of the reinterview questionnaire. The reinterview

questionnaire may be exactly the same as the original questionnaire, or may
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contain a subset of the original questions. To achieve "true" values, the
reinterview questionnaire may contain probing questions.

e. Whether or not to conduct reconciliation. When the responses
obtained during the reinterview differ from those obtained in the original
interview the differences are evaluated through a process called reconciliation.
During reconciliation the respondent is provided with the information received
in both interviews and asked to determine what is the correct information.

f. The choice of mode. The choice is between telephone and face to face
interviews. If the purpose of the reinterview is to estimate response variance or
reliability the questions are repeated exactly, the responses are not reconciled,
and the mode is the same as in the origina interview. When estimating bias,
however, the purpose is to obtain the "true" response. Here, the reinterview
design should include the most experienced interviewers and supervisors.
Likewise, reinterviews designed to measure response bias should target the
most knowledgeable respondent, not necessarily the origina respondent. If
estimating response bias, the questions can be modified to elicit more accurate
responses, reconciliation is used, and the mode of data collection need not be

the same as the original interview.

3.2. Multiple Indicators Studies

Groves (1989) describes multiple indicators studies as another approach
that uses replicated measures to estimate measuement error, but it uses
multiple measurements of the same characteristic in a single survey. In this
approach measurement error associated with a particular method of data

collection and/or a particular question can be assessed. Measurement error,
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here, is defined as a component of variance in the observed value of indicators,

not corresponding to variability in the true values of the underlying measures.

3.3. Record Check Studies

Record check studies are used to estimate response bias. As described
in the section on reinterview studies the measurement of response bias
theoretically requires the existence of data from which the true value may be
estimated. When these data do not exist, reinterview studies frequently use
reconciliation. When these data do exist and are available, record check studies
are possible. Such a study generally assumes that information contained in the
records is without error, that is, the records contain the true values on the
survey variables.

Groves (1989) describes three kinds of record check study designs: the
reverse record check study, the forward record check study, and the full design
record check gudy. The different designs are based in part on the relation of
the survey sample to the external source of data providing the comparisons.

In the reverse record check study, which Groves also refers to as the
retrospective design, the researcher goes back to the records which were the
source of the sample to check the survey responses. That is, the survey sample
is drawn from a record file considered to contain accurate data on a trait or
characteristic under study, and the survey includes some questions on
information already in the records. The survey data are compared with the
record data to estimate measurement error.

The weakness of reverse record check studies is that they cannot by

themselves measure errors of overreporting (falsely reporting an event). They
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can only measure what portion of the records sample correspond to events
reported in the survey and whether the characteristics of the events are the
same on the records as in the survey report.

In a forward record check study, the researcher obtains the survey data
first and then moves to new sources of record data for the validity evaluation.
Thus, in this design, the sample is drawn from a separate frame. Once the
survey responses have been collected, the researcher searches for relevant
records containing information on the respondents and makes comparisons.
Some surveys may be designed to include questions asking about where
records containing similar information on the sample person can be found.

Forward record check studies work well for measuring overreports in a
survey, but they are not commonly used. They generally entail contacting
several different record-keeping agencies and may require asking the
respondents for permission to access their record files from the different
agencies. They are also limited in their measurement of underreporting:

The full design record check study combines features of the reverse and
forward record check designs. The survey sample comes from a frame covering
al persons of the population (reverse record check design) and researchers
seek records from all sources relevant to those persons (forward record check
design). Thus, researchers measure survey errors associated both with
underreporting and overreporting by comparing all records corresponding to
the respondent. However, this design requires a data base that covers al

persons in the target population and al events corresponding to those persons.



All validity evauation designs share three limitations. As mentioned
earlier, there is the assumption that the record systems do not contain errors of
coverage, nonresponse, or missing data. Second, it is also assumed that the
individual records are complete and accurate, without any measurement errors.
The third limitation involves matching errors (difficulties matching respondent
survey records with the administrative records) and these could affect the

estimation of measurement errors.

3.4. Cognitive Studies

Forsyth and Lessler (1991) contend that "if we are to understand the
sources of survey measurement error and find ways of reducing it, we must
understand how errors arise during the guestion-answering process. This will
allow usto develop better questions that will yield more accurate answers. The
primary objective of cognitive laboratory research methods is not to merely
study the response process, but through careful analysis to identify questioning
strategies that will yield more &curate answers'. As Nolin and Chandler
(1996) explain, the methods of cognitive research can be used to increase
understanding of the ways that respondents comprehend survey instructions
and questions, recall requested information, and respond to the influence of
word and question order.

Cognitive research draws on three different literatures. research in
cognitive psychology on memory and judgment, research in social psychology
on influences against accurate reporting, and evidence from survey
methodology research regarding response errors in surveys. Literature in

survey methodology concentrates on models of measurement of response
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errors, rather than on explaining their presence. For example, survey
methodology has documented response errors and identified respondent groups
and response tasks that are more prone to these errors.

Theories of cognitive psychology have been applied to survey
measurement to gain insight into how the respondent's attributes and actions
may affect the quality of survey data. These theories focus on how people
encode information in their memories and how they retrieve it later. Socia
psychological literature, on the other hand, emphasizes the influences on
communication of answers to survey guestions.

Researchers generally agree on five stages of action relevant to survey
measurement error:

a. Encoding of information: how the respondent obtains, processes, and
stores information in memory

b. Comprehension: how the respondent assigns meaning to the
interviewer's question

C. Retrieval: how the respondent searches for memories of events or
knowledge relevant to the question

d. Judgement of appropriate answer: how the respondent chooses from
alternative responses to the question

e. Communication: How the respondent answers through all the other
personal characteristics and social norms that might be relevant (Groves, 1989)

Beyond acceptance of these five stages, cognitive research takes
different paths. Forsyth and Lessler (1991) conducted a literature review of

cognitive research methods used to study the survey questionanswering
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process and discussed the topic with others who have conducted cognitive
research. They concluded that no guidelines were available for choosing one
cognitive research method over another. While a number of response models
have been developed, there is yet little consensus on how the models are
implemented.

Oksenberg and Cannell (1977) and Tourangeau (1984) models assumed
a basic sequence that respondents followed when answering a question, but
there is no corsensus on the procedural details of these methods. Forsyth and
Lesder "believe that this lack of consensus may be due, in part, to a lack of
theoretical and empirical work that explores how methodological details can
affect cognitive laboratory results' (Forsyth and Lessler, 1991). Nonetheless,
they offer a summary of four general sets of methods that have been
implemented: Expert evaluation methods, Expanded interview methods,
Targeted methods, Group methods.

All of these methods provide more information about the question
answering process than can be obtained through simply asking the survey
guestions and recording the answers. The methods differ according to their
timing and the amount of control the researcher has over what is observed. The
task timing may be either concurrent, immediately after the respondent answers
the questions, delayed, or unrelated. Either the respondent decides what
information will be observed, as in concurrent think-aloud interviews, or
response data are independently processed by the researcher as in behaviour
coding. All cognitive laboratory methods are basically qualitative studies even

though some of the methods do collect quantitative information.
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CHAPTER 4

SOURCES OF MEASUREMENT ERRORS

Measurement error comes from four primary sources (Biemer et al.
1991). These four sources are the elements that comprise data collection. While
generally these sources are addressed separately, they can also interact.

These are:

a. Questionnaire: The questionnaire is the presentation of the request
for information.

b. Data Collection Method: The data collection mode is how the
guestionnaire is delivered or presented.

C. Interviewer: The interviewer is the deliverer of the questionnaire.

d. Respondent: The respondent is the recipient of the request for

information.

4.1. Questionnaire Effects

The questionnaire is designed to communicate with the respondent in
an unambiguous manner. It represents the survey designer’s request for
information. Questionnaires to be compared may differ in question wording,
guestion order, response categories, and so on. If an independent data source

were available, then results from the two questionnaire versions could be
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compared to the external data source to determine the “best” version.
Otherwise, the result from the two groups could be compared to each other to
determine the extent of any differences in reporting. As another variation, the
same group of respondents can be asked similar versions of the same questions
a a different point of time, but the questions asked must be those for which
answers are expected to remain the same over time.

a. Soecification problems: At the survey planning stage, error can occur
because the data specification is inadequate or inconsistent with what the
survey requires. Specification problems can occur due to poorly worded
guestionnaires and survey instructions, or may occur due to the difficulty of
measuring the desired concept. These problems exist because of inadequate
specifications of uses and needs, concepts, and individual data elements.

b. Question wording: The questionnaire designer attempts to carefully
word questions so s’he will communicate unambiguously. The designer wants
the respondent to interpret the question as the designer would interpret the
question. Words, phrases, and items used in gquestionnaires are subject to the
same likelihood of misunderstanding as any form of communication. The
guestionnaire designer may not have a clear formulation of the concept she is
trying to measure. Even if slhe has a clear concept, it may not be clearly
represented in the question. And, even if the concept is clear and faithfully
reproduced, the respondent may not interpret the request as intended.

c. Length of the questions. The questionnaire designer is faced with the
dilemma of keeping questions short and simple while assuring sufficient

information & provided to respondents so they are able to answer a question
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accurately and completely. Longer questions may provide more information or
cues to help the respondent remember and more time to think about the
information being requested. The effect of question length may be measured if
an independent source of data is available by randomly assigning sample units
to one of two groups, one receiving a “short” version of the questions and the
other group receiving the “long” version of the questions. Responses for each
group can then be compared with the “known” values for these questions.

d. Length of the questionnaire: A questionnaire of excessive length can
cause errors resulting from fatigue or boredom of the respondent or the
interviewer. Length of the questionnaire may also be related to nonresponse
error, discussed briefly in chapter 2. If an independent data source is available,
the impact of questionnaire length may be tested using a designed experiment.
In this experiment, the questions are split into two halves. The question sets
appear in reverse order on the two questionnaires.

e. Order of questions: Question order can affect the responses when it
affects recal or creates confusion. Asking questions may affect how
respondents answer later questions, especialy in attitude and opinion surveys,
where researchers have observed effects of the question order. Respondents
may also use information from previous items about what selected terms mean
to help answer subsequent items. The effect of question order can be assessed
by administering alternate forms of a questionnaire to random samples.

f. Open and closed formats. Question formats in which respondents are
asked to respond using a specified set of options (closed format) may yield

different responses than when respondents are not given categories (open
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format). The closed format may remind respondents of something they may not
have otherwise remembered to include. The response options to a question cue
the respondent as to the level or type of responses considered appropriate.

g. Questionnaire format: For the self-administered guestionnaire the
design and layout of the instrument may help or hinder accurate response. The
threat is that a poor design may confuse respondents, lead to a
misunderstanding of skip patterns, fatigue respondents, or contribute to their
misinterpretation of questions and instructions. Cognitive research methods

provide information to asses the design and format of questionnaires.

4.2. Data Collection Mode Effects

Various methods or modes are available for collecting data for a survey.
Lyberg and Kasprzyk (1991) present an overview of different data collection
methods along with the sources of measurement error for these methods.

a. Face-to-face interviewing: Face-to-face interviewing is the mode in
which an interviewer administers a structured questionnaire to respondents.
Using a paper questionnaire, the interviewer completes the questionnaire by
asking questions of the respondent. Although this method is generaly
expensive it does alow a more complex interview to be conducted. This mode
also alows the use of a wide variety of visua aids to help the respondent
answer the questions.

One problem for face-to-face interviewing is the effect of interviewers
on respondents’ answers to questions, resulting in increases to the variances of

survey estimates. Another possible source of measurement error is the presence
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of other household members who may affect the respondent’s answers. In
situations where multiple respondents are required to complete a questionnaire,
the interaction of the group of respondents can cause differences in the reported
values. Thisis especially true for topics viewed as sensitive by the respondents.
Measurement error may also occur because respondents are reluctant to report
socially undesirable traits or acts.

b. Telephone interviewing: This mode is very smilar to face-to-face
Interviewing except interviews are conducted over the telephone rather than in
person. Telephone interviewing is usualy less expensive and interviews often
proceed more rapidly. However, this mode aso provides less flexibility. This
mode can be conducted from the interviewers homes or from centralised
telephone facilities. Centralised telephone interviewing makes it possible to
monitor interviewers performance and provide immediate feedback. Since the
interviewer plays a central role in telephone interviewing as well, the sources
of measurement error are very similar to those in face-to-face interviewing
although the anonymity of the interviewer may improve reporting on sensitive
topics by providing adequate “ distance” between interviewer and respondent.

c. SHf-administered surveys: Any survey technique that requires the
respondent to complete the questionnaire him/herself is referred to as a self-
administered survey. The most common ways of distributing these surveys are
through the use of mail, fax, newspapers/magazines, and increasingly the
internet, or through the place of purchase of a good or service (hotel,

restaurant, store).



A considerable advantage of the self-administered survey is the
potential anonymity of the respondent, which can lead to more truthful or valid
responses. Also, the questionnaire can be filled out at the convenience of the
respondent.  Since there is no interviewer, interviewer error or bias is
eliminated. The cost of reaching a geographically dispersed sample is more
reasonable for most forms of salf-administered surveys than for personal or
telephone surveys, athough mail surveys are not necessarily cheap. In most
forms of self-administered surveys, there is no control over who actualy fills
out the questionnaire. Also, the respondent may very well read part or the
entire questionnaire before filling it out, thus potentially biasing higher
responses.

Self administered mail surveys are the most commonly used data
collection mode for economic surveys. In mail surveys, the questionnaires are
mailed to the ultimate sampling. The respondents complete and mail back the
guestionnaire. Mail surveys have different sources of measurement error than
face-to-face and telephone interviewing. Self administered mail surveys have
no interviewer effects and less risk of “social desirability” effects. However,
this mode is more susceptible to misreading and misinterpretation of questions
and instructions by the respondents. Good questionnaire design and formatting

are essentia to reduce the possibility of these problems.

d. Diary surveys. Diary surveys are usually conducted for topics that
require detailed behaviour reporting over a period of time. The respondent uses
the diary to enter information about events soon after they occur to avoid recall
errors. Interviewers are usually needed to contact the respondent to deliver the

diary, gain the respondent’s co-operation and explain the data recording
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procedures, and then again to collect the diary and, if it is not completed, to
assist the respondent in completing the diary.

Lyberg and Kasprzyk (1991) identify a number of sources of
measurement error for this mode such as, respondents giving insufficient
attention to recording events and then failing to record events when fresh in
their memories; the structure and complexity of the diary can present
significant practical difficulties for the respondent; and respondents may
change their behaviour as aresult of using adiary.

e. Direct observation: Direct observation is a method of data collection
where the interviewer collects data by direct observation using his’her senses
(vision, hearing, touching, testing) or physica measurement devices. This
method is used in many disciplines. An inaccurate counter, a faulty scale, or
poorly calibrated equipment may cause measurement errors.

Measurement errors may be introduced by observers in ways similar to
the erors introduced by interviewers, for example, observers may
misunderstand concepts and misperceive the information to be recorded, and
may change their pattern of recording information over time because of
complacency or fatigue.

f. Mixed data collection mode: Two or more nodes of data collection
are used for some surveys to save money, improve coverage, improve response

rates, or to reduce measurement errors.

4.3. Interviewer Effects

Because of individual differences, each interviewer handles the survey

Stuation in a different way, that is, in asking questions, probing and recording
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answers, or interacting with the respondent, some interviewers appear to obtain
different responses from others. Interviewers may not ask questions exactly as
worded, follow skip patterns correctly or probe for answers nondirectively.
They may not follow directions exactly, either purposefully or because those
directions have not been made clear enough. Interviewers may vary their
inflection, tone of voice, etc. without even knowing it.

To the extent these errors are large and systematic, a bias, as measured
in the mean squared error of the estimate, will result and this is caled the
interviewer effect. Another potential source of interviewer effects is respondent
reaction to characteristics of the interviewer, such as age, race, sex, or to
attitudes or expectations of the interviewer.

a. Interviewer characteristics. Groves (1989) reviewed a number of
studies and concluded, in general, demographic effects appear to apply when
the measurements are related to the characteristics but not otherwise. That is,
there may be an effect based on the race of the interviewer if the questions
asked were related to race. Other interviewer factors may also play arole in
interviewer-produced error, such as voice characteristics and interviewing
expectations.

Three different means to control interviewer errors are: training,
supervision or monitoring, and workload manipulation. Standardisation of the
measurement process especially as it relates to interviewers tasks leads to a
decrease in interviewer effects. One way to accomplish standardisation is
through a training program of sufficient length to cover interview skills and

techniques as well as information on the specific survey



Supervision and performance monitoring are essentia ingredients of a
quality control system. Developing good supervisory practices is essential
because the supervisors are often the first level a which problems are
recognised or corrected. Supervisors can help interviewers understand their job
better, provide additional training, and assure that workload does not impact
the quality of the work. Reinterview programs and field observations are
conducted to evaluate individual interviewer performance. Observations in the
field are conducted using extensive coding lists or detailed observers guides
where the supervisor or monitor checks whether the procedures are properly
followed.

A third way to control interviewer effects is to change the average
workload; interviewer variance increases as average workload increases. The
Issue is to find the optimal average workload. Optimal workload as a function
of interviewer hiring and training costs, interview costs, and size of intra
interviewer correlation.

b. Correlated interviewer variance: In the early 1960’ s attention turned
to estimating the size of the interviewer effect and three different approaches
were suggested (Hansen, Hurwitz, and Bershad (1961), Kish (1962), and
Fellegi (1964)). Even apparently small interviewer intraclass correlations can
produce important losses in the precision of survey statistics. For practical and
economic considerations, each interviewer usualy has a large workload. An
interviewer who is contributing a systematic bias will thus affect the results

obtained from several respondents and the effect on the variance is large.



4.4. Respondent Effects

Respondents may contribute to error in measurement by failing to
provide accurate responses. Groves (1989) indicates that both traditional
models of the interview process and the cognitive science perspectives on
survey response identify the following five sequentia stages in the formation
and provision of answers by survey respondents:

a. Encoding of information: involves the process of forming memories
or retaining knowledge.

b. Comprehension of the survey question: involves knowledge of the
words and phrases used for the question as well as the respondent’ s impression
of the purpose of the survey, the context and form of the question, and the
interviewer’ s behaviour in asking the question.

c. Retrieval of information from memory: involves the respondent’s
attempt to search her/his memory for relevant information.

d. Judgement of appropriate answer: involves the respondent’s
choosing from the alternative responses to a question based on the information
that was retrieved.

e. Communication of the response: involves the consideration of
influences on accurate reporting that occur after the respondent has retrieved
the relevant information as well as the respondent’s ability to aticulate the
response.

There are many aspects of the survey process that can affect the quality
of the respondent’ s answers resulting from this five-stage process.

a. Respondent rules. One survey factor related to the response process



IS the respondent rules. For surveys collecting information for the sample unit,
the specific respondent’s knowledge about the answers to the questions may
vary among the different eligible respondents. Surveys collecting information
for individuals within the sample unit (e.g., persons within households,
employees within businesses, and students and teachers within schools) may
use salf-reporting or proxy reporting. Self versus proxy reporting differences
vary by subject matter.

b. Questions. The respondent’s comprehension of a question is affected
by the wording and complexity of the question, and the design of the
guestionnaire. The respondent’s ability to recall the correct answer is affected
by the type of question asked and by the difficulty of the task in determining
the answer. The respondent’s willingness to provide the correct answer to
guestions is affected by the type of question being asked, by the difficulty of
the task in determining the answer, and by the respondent's view concerning
the social desirability of the responses.

c. Interviewers. The respondent’s comprehension of the question is
affected by the interviewer's visua clues as well as audio cues. The
interviewer reads the question incorrectly, does not follow the appropriate skip
pattern, misunderstands a misapplies the questionnaire, or records the wrong
answer.

d. Recall period: The longer the time period between an event and the
survey the more likely it is respondents will have difficulty remembering the

activity the question is asking about. Survey designers need to identify the



recall period that minimises the total mean squared error in terms of the
sampling error and possible biases.

e. Telescoping: Telescoping occurs when respondents report
occurrences within the recall period when they actually accurred outside the
recall period.

f. Timing of the interview: The timing of an interview can also impact
respondent error. Interviews soon after the end of a business cycle, tax
preparation, or other reporting period may improve recall, while interviews

during busy times may result in rushed responses.
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CHAPTER 5

SURVEY COSTS

In survey work, one generally seeks to use a sample design that has two
properties. a satisfactory level of information capacity, and costs that are
consistent with available budgets and that make reasonably efficient use of
resources. Information capacity is generally measured by the variances of the
estimators of selected population quantities that are considered to be of
principal interest.

The costs of survey activities often act as limiting influences on efforts
to reduce survey errors. A classica problem in survey research is how to
optimize sample design with respect to variance and cost. Survey costs and
errors are reflections of each other; increasing one reduces the other.

Determining an optimum allocation requires assumptions about the
variance of survey estimators and about the nature of survey costs. The
variance model can be derived explicitly, depending on the type of design and
the population value being estimated from the sample. Furthermore, estimates
of the important parameters of the variance nodel are easily estimable and can
be obtained from published reports.

However, unlike the variance model, which can be mathematically

derived given the statistical implications of the sampling design, identification



of the functional form of the cost model is a less rigorous process. The model
reflecting survey costs is largely dependent on how one views the survey
protocol and the amount of complexity one alows in its formulation.

The ideal cost model should have three characteristics: First, it must
realisticaly represent the way in which costs are incurred in an actual survey
operation. Second, the formulation should be simple enough so that the
optimum solution is tractable. Third, unit costs, which constitute the
parameters of the cost model, should be sufficiently straightforward in
interpretation so that they can be easily understood by operations staff to
develop useful estimates for calculating optimum allocations.

The selection of design parameters is based on an examination of costs
and on an understanding of the error structure. To solve the optimisation
problem cost model needs to be developed which contains terms that are also
present in the error model. Each of the units which acts to improve the quality
of the survey statistics also brings with it a cost.

In addition to the matter of choosing an appropriate functional form for
acost model, one is faced with the problem of obtaining good estimates of unit
costs, the parameters of the model that is chosen. By combining the cost
models and error structures, an optimisation problem is posed. This
optimisation problem involves one of the following optimisation criteria:

a. Minimise the total cost for required variance,

b. Minimise the variance for a given total cost,

. Minimize the product of the variance and the total cost.
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To the extent that the variance models are good approximations of
reality, the method of negotiating the total cost of a survey ensures that the
analyses that can be supported by the information content of the resulting
survey data base are consistent with pre-survey expectations. Some questions
have been asked about the practicality of cost and error modelling at the survey
design stage. Fellegi and Sunter (1974) offer a set of criticisms of attempts to
address multiple sources of error and cost to guide design decisions:

a There are practical constrains to feasible alternatives open to the
researcher.

b. Mgjor aternative survey designs do not present themselves within a
fixed budget.

¢. Components of cost function may not be continuous, over the whole
range of possible designs. The discontinuities in the cost models imply that
partial derivatives do not exist.

d. In acomplex design the error reduction functions will be complex.

e. Termsin error function may interact in some unknown way.

f. Important interaction may exist between different surveys.

g. Mgor surveys are seldom designed to collect only one item of
information. A single optimum design for a multipurpose survey may not be
identified.

h. A survey is seldom designed to measure variables at asingle level of

aggregation; subclass statistics are aso important.

i. The time constraint of the survey may inject another set of



considerations very much related to the balance between different sources of
error.

- The method spends part of budget to obtain data on costs errors of
components of the design, yet it offers no guidance on how much money to
spent on those evaluation activities.

Most of the time the cost-return (return in terms of precision)
relationship for each error type will be such that the marginal contribution of
expenses made on improvement of the processes incurring errors of this type
decrease as the total expense made on these processes increase.

Consider the cost model that separates costs of a cluster from costs of

each sample element in the cluster (Groves, 1989):

Total cost = Fixed cost + Cluster costs + Element costs 5.11)
C=C,+C,a+Cpb; o

where C, denotes the fixed costs of doing the survey, independent of the
number of sample clusters or sample elements per cluster; C, denotes the cost

of selecting, and locating of each cluster, independent of the number of sample
elements for each cluster; a denotes the number of sample clusters, C,
denotes the cost of selecting, contacting, and interviewing a single sample
element from a cluster; bisthe number of sample elements per cluster.

For the sampling error of the estimated population mean and the cost

model specified above, the optimal number of elements per cluster would be

C_(1- roh)
b = [—2——=. 512
ot \’ C,roh (12)
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That is, large numbers of sample elements should be taken from clusters that
exhibit internal homogeneity on the survey variable, small cluster sizes should

be taken with low homogeneities.
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CHAPTER 6

MEASUREMENT ERROR MODELS

Data that are collected from individuals by personal interview are
known to be subject to response error. Response errors, sometimes called
measurement errors, have long been recognised as one of the mgor problems
in surveys. The effect of response errors can be quite severe in statistical data
anaysis.

In defining the concept of error it is necessary to postulate a true value.
It is generally assumed thet a true value of characteristics under study exists for
each individual. Hansen, et al. (1953) suggest three criteriafor the definition of
the true value for an individua:

a. It must be uniquely defined;

b. It should be defined in such a manner that the purposes of the survey
are met; and

c. It should be defined la terms of operations which can be carried
through, even though it might be difficult or expensive to perform the
operations.

For a situation in which survey response for a given individual canbe
considered as coming from a population of conceptual responses for that
individual, it may be appropriate to define the individual true value as the

expected response obtained under certain well-defined survey conditions.



Individual true value is a useful ideal at which to aim and the consideration of
departures from its value is helpful in assessing the methods by which we
obtain information.

The basic approach to the analysis of the individua response errors
depends on an understanding of the measurement process and the way in which
the conditions under which the survey is carried out may affect the results of
the survey. It is useful to distinguish between two components of response
error. One can define an expected survey value as the expected value under the
essential survey conditions. The difference between this value and the true
value is the response bias. In addition to this there are random fluctuations
about the expected value. These variable errors contribute to the response
error, in the form of response variance. The response variance is a measure of
variability between different responses on different trials.

Cochran (1968) gave a short description of the experiments conducted
by Pearson (1902) in a review paper on measurement errors. From these
experiments, Pearson (1902) observes that

a. The mean errors differed significantly from zero;

b. For a given measurer, the size of the bias varied throughout the series
of trials.

c. The errors were not, in general, normally distributed; and

d. The errors of two apparently independent observers in measuring the
same quantity were positively correlated.

The measurement of response errors requires that they be represented

by a mathematical model. A number of alternative models have been proposed,



often to accommodate special situations. The variations in the response error
models which have been developed depend upon the survey itself. Survey
factors which must be considered by the model formulation include the
existence of, or ability to obtain, "correct” values for units in the survey, the
complexity of estimation given the sample design, the ability to make re-
measurements under reasonably fixed conditions, one of the most difficult
conditions to achieve, the ability to randomize work assignments, budget
constraints for these costly measurement studies.

Cochran (1968) reviews the various types of mathematical models to
represent errors of measurement. In his discussion, the following models are

mentioned:

Let y, denote the recorded measurement on the tth trial for the j-th

unit in the sample (j=1,2,....,n), and the symbol m denotes the correct or true

measurement. The error of measurement on the fth unit on the tth trid is

d,=Yy;- m. d,is cdled the individua response error. The subscript t will
refer to the t-th trial or repeated measurement

Ye=m +d;, (6.1.1)
where, both y, and d, have a frequency distribution for each member of the

population. m is assumed fixed for any specific member of the population.

The simplest model is one in which



E(d, 1) =00 E(d] 1) =5 % B, 0,9=0 (119
E(d,.dlj.j9=0(j* |9 .
In the above modd the errors assume zero mean and constant variance,

they are uncorrelated with the true values, with one another on different units,

and on different trials for the same unit. It is possible to make a modification
by assuming E(d} |j)=s ji, meaning that measurements on different units
involve differing precision.
Incorporating anoverall bias of amount a in the measurement process
into the model we get
y,=m+a+d; . (6.1.3)
The next stage is to introduce a variable bias term a;, and to make the

additional assumption that a;‘s are uncorrelated with the true values m;

Y =m+a +dy

E(a;,m) =0;

E(dy 1) =0, E(d} [ ])=s3; (6.1.4)
E(d; .dj)=0 (t*t9;

E(d,die 1,i9=0(j* j9 .

It is also possible to assume that a; and m are correlated;

i =m+a +dy;

E(a;.m)* 0

E(d; 1))=0; E(d}])=sg; (6.1.5)
E(d, .d,)=0 (t* t9;

E(d,die1,i9=0(j* j9 .



It is often convenient to combine the terms m and a; by writing

nmfF=m +a,, since mogt of the times no feasible method of measuring the true

vaueis available.
Another modification of the model (6.1.4) involves the situations where

the relation between the variable bias a; and the true vaue m can be
expressed as alinear regression of a; on m with regression coefficient g ;

Y, =a +bm +a, +d;, E(a;)=0, Cov(a,m) =0, (6.1.6)

where b =1+g.

With binomial data y takes only the values 0 and 1. Hansen, Hurwitz
and Bershad (1961) presented the consequences of model (6.1.4) in case of
Binomial data and also for interval data. It is customary to study the effect of
measurement errors in the context of estimating a population total (or a mean).

They presented their response model in the context of estimation of the

N

proportion (p :%é_ m) of individuals that belong to a given class of afinite

j=1
population.

An observation on the j-th unit in the t-th trial isdesignated by y;, .

Yy, =1, if thej-th unit is assigned to the particular class
under consideration on the t-th trial
=0, otherwise.
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Let, m denote the correct or true measurement for the j-th unit, and a,

be the variable bias term. The measurement error model that will be considered

Is of the following form:

Y =m+a +dy; E(a;,m) =0
E(d; | ])=0; E(d} |j):S§j2 E(d,.d,) =0 (t td;
E(d de 11,1920 (j1 9.

For aunit for which m =1if y, =1, there is no measurement error for
this unit on this tria. Let y,, =0 on acertain proportion ¢, of tridls. q; isthe
probability of misclassification for this unit. Thus, in the model (6.1.4) with
m =1, we have a;=-q,, and d, is a binomia variates with variance
sf:qj(l-qj). Similarly, for a unit for which m =0 with probability of
misclassification for this unit is f;, we have a; =f, and d, is a binomial
variable with variance s 7 =f ,(1- f ).

P=p{1- E(q; Im =1} +(- p)E(f,;Im=0)

6.1.
=p(L-q)+df , e40

where q =E(;|m =1) is caled the probability of fase negative, and
f =Ef;|m =0) is caled the probability of false positive. Also, vy, is

binomially distributed.

The sample proportion p, =

S|

a v, is distributed like the mean of a

=1
binomial sample of size n with parameter P . Here, p is abiased estimate of

P(1- P)
n

p, and the bias amountsto - pg + (1- p)f . Varianceof p, is , and




p(- p)
n

variance of p is . Errors of measurement cause an increase in

varianceonly if P is nearer % than p.

The expected value of p, is the average value taken over all possible

trials including al possible samples and all possible responses under the

general conditions:

1 n
P=E(p)= E(ﬁé Yie) - (6.1.8)
=1
Biasof p is
B, =E(p,- p)=P- p. (6.1.9
Varianceof p is,
s: =E(p,- P)*. (6.1.10)
MSEof p is
MSE, =E(p,- p)’=s . +B: . (6.1.11)

The expected value of the observation on the j-th unit is,
mt=m+a,=E(y,). (6.1.12)
The response deviation (the difference between the observed value of
the j-th unit on the t-th trial and the expectation of observation on the t-th unit)
IS

d,=y;-ng. (6.1.13)



For each element the response can be expressed as

Yi=m+ (njﬂ" n]) +(yjt . mj¢) ' (6.1.14)

a; djt

where m istheindividua true value, a; = (m¢- m) istheindividual response
bias, and (y, - nf) is the individua response deviation. The true value does

not effect the response variance, but only the response bias.
Similarly, the estimator obtained from the survey can also be divided

into components as

p=p+(p,- P)+(P- p), (6.1.15)
where pis the true population proportion, (P- p) is the response bias, and
(p,- P) is the response deviation. The response deviation consists of

fluctuations about the expected value and produces the total variance.

The total variance of the survey is,

S ; = E( P - P)z
= E(p,- m+ mi- P)? (6.1.16)
= E(p,- m)* +2E(p,- my(n® P)+ E(nt P)*

response variance: s 2 Cov(_d ,p) sampling variance of p:s ﬁ

dt

where,

(6.1.17)

Qo
2

T



E(p, - n_ﬂz is defined as the response variance contribution to the total
variance of p, .
sZ=E(p,- M)’
:E%éﬁfléwy
=a%éﬁwpnpr (6.1.18)
=EG4 d,7
n;
=E(d:)?=Var(di)=s .
2E(p - F@(ﬁﬂ‘» P) is twice the covariance of d: and i, the
covariance between response and sampling deviations. Koch (1973) calls this
component as the interaction variance. When P=mt (when n=N or
repetitions are defined on a fixed sample) this covariance term becomes zero.
E(p, - m)(me P)=Cov(d:,mj . (6.1.19)
E(m) = P where the expectation is taken over all possible samples (and
trials). E(p, - n_ﬂ = E(Ht) and the expectation of d:over all possible samples
and all possible trials equal to 0. E(d: - 0)(m¢ P) taken over all possible
samples and all possible trials equals to Cov(d:, m) . This term is excluded in
Hansen, Hurwitz and Bershad (1961) discussion.
s.= E(mt P)? is the sampling variance of p, . This variance is only
due to sampling. For simple random sampling with replacement s f) is

g2 =S (6.1.20)
=l 1
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where s 2, is the population variance of the .
In case of a complete census or a simple random sample of units of

analysis, the response variance, s 3! , can be restated in the following form:

) —2

s =E(di)
1 1

=Zs’ 2, N-2 rs (6.1.21)
n n

=Lsz1er (n- 1),
n

where
14
s§=E(d}) =4 B, (6.1.22)
=

is the simple response variance, and

E(d.d
r= % (forjt k), (6.1.23)

d

Is the intraclass correlation among the resporse deviations in a trial.

s =E(d)
& 5 d,)’
= n—E(Gnl d)’ (6.1.24)

——a E(dJI )+— a E(d,d,), forj* k
n j= n i

n n(n- 1
n’

=—E®d*)+

n2

E(d,d,), forj® k;

since E(d,d,)=rs¢,

(6.1.25)
:%s [A+r(n-1).
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From the examination of (6.1.21), one can see that the possible impact
of even avery small intraclass correlation can be substantial when the sample
gzeis large. In case of continuous variates, the consequences of the model

(6.1.4) would be similar to the consequences presented for Binomial data.



CHAPTER 7

DECOMPOSITION OF THE SURVEY ERROR

Asit was stated before the total variability of estimates obtained from a
survey is the sum of the sampling variability and the non-sampling variability.
O’Muircheartaigh (1982) partitions the total variance of estimators into four

components, each of which has a different implication for the survey design.

7.1. Simple Sampling Variance
Consider the following mode:
Y =m+dg, (7.1.2)
where, as before, y,, denotes the observation on the j-th unit on t-th tria, m
denotes the true vaue for element j, and d; denotes the variable response

error (or response deviation) obtained for element | at trial t. The response
biases are excluded from this model. The specification of the model involves
the specification of the distribution of d; . Suppose that we want to estimate

the population mean

N

m=14m . (7.1.2)
N =1

The sample mean of the observationsis

Y, :ﬁa Yii - (7.1.3)



Sampling error is an error of nonobservation. Survey estimates are
subject to sampling error because not all members of the population are
measured. The particular units which happen to be selected into a particular
sample depends on chance, the possible outcomes being determined by the
procedures specified in the sample design. This means that, even if the required
information on every selected unit is obtained entirely without error, the results
from the sample are subject to a degree of uncertainty due to these chance
factors affecting the selection of units. Sampling variance is a measure of this
uncertainty.

Sampling variance of a survey statistic, y , can be described as average
squared deviations of individual sample values of the statistics and its own

average value:

E[y, - E(y,)I, (7.1.4)
where y, isasample statistic on the r-th distinct sample of the sampling design
and E(y,) isthe expected value of y, over al samples of the given design.

The sampling variance is thus a feature of a distribution over al possible
samples that could be drawn with a particular design. Each observation in that
sampling distribution is the result of one sample of the given design.

There are three types of distribution that should be kept conceptually
distinct when considering sampling error. The first is the distribution of
characteristic to be measured in the survey in the population. Population
distribuions of elements form this first kind of distribution; they have N
points, for each N elements in the population. The second type of distribution

Is the sample distribution. It mimics the corresponding population distribution,



but it is based on smaller number of elements. The third type of distribution is
the sampling distribution of a sample statistic. Sampling error concerns the
variability of values of statistics over different samples that could be drawn.

Sampling variance is the variability of a datistic over al possible
samples using the same design, but the maority of surveys are conducted
once, using only one sample. When probability samples are drawn with two or
more independent selections, the sampling variance of many statistics can be
estimated from only implementation of the design. A probability sample is one
for which al members of the population have a known, nonzero chance of
selection.

To illustrate the estimation of sampling variance of a survey statistic
from a single probability sample, consider the case of a smple random sample
with replacement of size n. The statistics of interest is the mean for a variable,

y . If the true values, m, were observed in this survey, the only variability in
the estimator would arise from the fact that only a sample from the population
is observed. The variance of the sample mean ?t (assuming m is observed for

al j inthe sample) will be

2

Var(y,) = STm , (7.1.5)

2 m - m)?® is the population element variance of the true

where sm:i
N

Qo=
~

j=1

values. In case of simple random sample without replacement the variance
formula for the sample mean is complicated by the finite population correction

(1- ¢, where f¢::|' L




The population element variance, s 2, is a property of the population
that was sampled. It is not a property of the sample design. The sample designs
In practice are rarely a smple random sample, it is however possible to obtain
a good estimate of s? in such stuaions. In practice an acceptable

approximation can be obtained by treating the sample observations as though

they had arisen from a smple random sample.

7.2. Simple Response Variance

Another source of variation of the estimator is caused by the response

deviations, d, . If we assume that the response deviations are not correlated
with the true values or with each other, the model (7.1.1) becomes
Yie=m+d;
E(d; 1)) =0
E(d? )=s2 =s&;
E(d,.d,) =0 (fort® t@andj? jg .

(7.2.1)
it

The component of the variance contributed by these uncorrelated
response deviations is

2
Sda

n

Var(d:) = (7.2.2)

The variance component in (7.2.2) is called the ssimple response variance and it
Is a function of the sizes of response deviations and the sample size. The sum

of simple sampling variance, and simple response variance can be called the
simple total variance (s 3, ). This is the variance of the mean of the sample of

size n from the population when the response deviations are uncorrel ated.
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s2 = l(s 2+s2). (7.2.3)
n

The simple total variance is estimated by taking the observed variance

of the observations. Ignoring the finite population correction factor
Sy_.2_ 1,5 2
E(F) =S4 _H(Sm-'-S d) ’ (724)

where

Qo

C (yjt - ?lt)2
SZ =]1T . (725)

Hansen, Hurwitz and Pritzker (1964) defined the index of inconsistency
as the ratio of the simple response variance to the total variance of individual
response; that is

S4
2 2 "
S,,tSy

(7.2.6)

Index of inconsistency (I) is a relative measure of random response
variability and is defined as the ratio of simple response variance to simple
total variance per element.

The estimation procedure for the simple response variance and index of
inconsistency where we have two observations on the same units obtained in
two independent trials is simple. The simple response variance can be

estimated by the gross difference rate (GDR), where GDR is

(7.2.7)

Thus, the gross difference rate is the average squared difference between the

origina interview and the reinterview responses.



Observing that the difference of response deviations in the two trias is
the difference between thetwo y,, values observed. That is,
(djl'djz) = (yjl'yjz)- (7-2-8)
Its variance is expressed Ssmply as

(djl_djz)z
n

, g (yjl'yj2)2

=a =GDR. (7.2.9)
j

Since by definition, with r , as the correlation between the two trials

S %6~ 8 4,75 %, 2 25 4,5 g, (7.2.10)

and furthermore, since the two variances in trials under the same conditions are
aso the same, we have

S de:% 5.(1-I’12); Withs ; =s4,=S4- (7.2.11)
Finally, smple response variance can be estimated from the above on the
assumption that the correlation r,, is zero, that is the two trids are

independent
21 . ith 2., = 212
Sd—ES wit .12—0. (7 1)

That is, it is one-half the mean squared deviation between values on the same
units obtained in the two independent trials.

The assumption of independence between repetitions of the survey is
usually not valid, because the second measurement is often influenced by the
first: the respondent and/or the interviewer may remember and try to be

consistert with the response given earlier. This tends to make r , positive, and

hence the independence assumption to result in underestimation of response

variance.
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With binomia data, the estimators are often presented in a very simple

table showing the original and reinterview estimates (or counts if the design is

simple random sampling), which the information on the cross tabulation is

given in Table 1:

Table 1.: Cross Tabulation of responses for Original Interview and Reinterview

Original Interview

Number of cases
with characteristics

Number of cases
without
Characteristics

Reinterview Number of
cases with a b a+b
characteristics
Number of
cases without c d c+d
Characteristics
Total a+c b+d n=a+b+c+d

For tables formatted in this fashion, the GDR takes a very simple form:

GDR=
n

b+c

(7.2.13)

The GDR is the proportion of cases that were reported differently in the

original and reinterview surveys. It is equal to the proportion of cases reported

as having a characteristic in the original interview but not having it in the

reinterview, plus the proportion of cases reported as not having the

characteristic in the origina interview but having it in the renterview.

Similarly, from the table, the index of inconsistency also takes on avery smple

form:




b+c

=——, wherep is arc . (7.2.14)
2np(1- p) n

7.3. Correlated Sampling Variance

Although sampling error is partly a function of variability in the
population studied, the sampling error in a statistic is under control of sample
designer. The sample design features which are most important in this regard
are:

a. Sratification: Stratification is the sorting of the population into
separate subgroups (strata) prior to selection. Each element of the population
belongs to one and only one stratum. After groups are identified, separate
samples are selected from each group. Stratification tends to reduce sampling
error.

Consider apopulation of N units. If H differert strata are constructed,

let N, be the number of elements in the hth stratum, where h=1,2,...,.H . In

this case the popul ation mean would be

_ 18 N= & —
Y==3 -, =Wy, (7.3.1)
Nia N h=t

where W, = % IS the proportion of the population in the hth stratum, and \Th

Is the mean of the hkth stratum. If simple random samples were drawn from

each of the H strata separately, then one estimator of the sample mean is
- 8
y=aw,y, . (7.3.2)

The sampling variance of the sample mean is
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2 Lwase, (7.3.3)

h=1 nh
where W, is the proportion of the population in the h-th stratum;s is the

population element variance in the h-th stratum; H is the total number of
strata; and n,, is the sample size in h-th stratum.

b. Assignment of probabilities of selection to different kinds of elements
in the population: A simple random sample assigns equal probabilities of
selection to each element in the population. Sometimes there are practical
reasons to depart from this design. The costs of measuring some members of
the population may be very high, lower probabilities of selection is often
assigned to these members of the population. There may be a desire to study a
subgroup of the population intensively, with smaller sampling errors. The
members of such a subgroup may be assigned higher probabilities of selection
than other members of the population. In some infrequent cases, there may be
prior information about the within-strata variability on survey measures. In
such cases oversampling the strata with higher element variarces can reduce
the sampling error in the estimator relative to a design using equal probabilities
of selection the same total sample size.

c. Clustering: Sometimes selection of groups (clusters) of elements
together instead of independent selection of separate elements is preferred.
Cluster sampling involves selecting a sample in a number of stages. The units
in the population are grouped into convenient, usually naturally occurring
clusters. These clusters are nonoverlapping, well-defined groups which

usually represent geographic areas.
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In practice, cluster samples tend to produce higher sampling errors for
statistics than element samples of the same size. The loss of precision arises
because most natural groupings of persons contain persons who are similar to
one and another on the variables that are measured. Despite the loss of
precision for survey statistics from cluster samples, the reason for the frequent
use of cluster samples is the desirable cost features they are likely to have.
Generaly, Cluster samples cost less than element samples.

The sampling variance of the estimated population mean for a cluster
sample is inflated by two factors: the correlation of values among persons in

the same clusters, and number of sample elements chosen from a cluster.

s ’[1+roh(b- 1)]

Var(Y/) = -

(7.3.4)

where s? is the population element variance; roh is the intracluster
correlation coefficient; b is the number of sample persons chosen from each
cluster; and n isthe total number of personsin the entire sample.

The intracluster correlation measures covariation of pairs of personsin
the same cluster, calculated by deviations from the overall mean. If elementsin
the same cluster have similar deviations from the population mean, then roh
will be positive, and the sampling variance of the estimated mean from a
cluster sample will be inflated over that from an element sample of the same
Sze.

d. Sample size: The fourth feature in the control of the survey designer
Is the sample size itself. Sample size has an impact on sampling variance as a
function of the number of independent selection at each stage of the sample

and the relative within and between unit variability at each stage.



In practice smple random samples are very rarely used. Most sample
designs are stratified multistage designs and the sampling variance of such
designs is normally greater than the sampling variance of a simple random
sample of the same size. The term design effect is used to describe the variance
of sample estimates for a particular sample design relative to the corresponding
variance of a simple random sample with the same sample size.

The concept of design effect was popularised by Kish (1965) to deal
with complex sample designs involving stratification and clustering.
Stratification generaly leads to a gain in efficiency over simple random
sampling, but clustering usually leads to deterioration in the efficiency of the
estimate due to positive intracluster correlation among the subunits in the
clusters. In order to determine the total effect of any complex design on the
sampling variance in comparison to the aternative smple random sampling,
one calculates a ratio of variances associated with an estimate, namely

sampling variance of a complex sample

deff = :
sampling variance of asimple random sample

(7.3.5)

Thisratio is called the design effect deff of the sampling design for the
estimate which is based on the same sample size. This ratio measures the
overal efficiency of the sampling design and the estimation procedure utilised
to develop the estimate.

In cluster samples, the ratio is typically larger than one, expressing the
losses due to clustering. If subsamples of size b are selected randomly from
equal clusters, the design effect is

deff =[1+roh(b- 1), (7.3.6)



where roh, the coefficient of intraclass correlation, is a measure of the

homogeneity within clusters.

In case of unequal clusters, the design effect can be approximated by

deff =[1+roh(b- 1)], (7.3.7)
_an

where b=2=1— s the average number of individuals interviewed in each
a

cluster. The intraclass correlation coefficient gives an indication of relative
smilarity of individuals within a cluster compared to the similarity of
individuals in the population as a whole. The more similar individuas are to

one and another within a cluster, the larger the value of roh will be.

roh takes on vaues within the interva [- ﬁ,l]. The highest

possible value of roh means all elements comprising any cluster have the
same vaue. The lowest possible value of roh indicates that there is zero
variance between cluster means. If the variable is distributed completely at
random among clusters roh takes on the value zero, and the design effect
becomes unity. Generaly, roh tends to be greater than zero, and even a
relatively small positive roh can have a large effect on the variance if the
average cluster sizeislarge.

The sampling variance formula in (7.1.5) underestimates the total
sampling variance in the presence of intraclass correlation within clusters. A

more realistic sampling variance formula can be obtained by incorporating the



design effect into the analysis. Again, if we assume that only the true vaues,
m , were observed in a survey:

2

Var(y,) = S—r;“[l +roh(b- 1), (7.38)

1

N (m - ﬁ1)2 is the population variance of the true values as
j=1

Qo=

where s 2 =

before. The increase in the variance over simple sampling variance given by

(7.15) is

2

S —

—[roh(b- 1)], (7.3.9)
n

and may be called the correlated sampling variance.

7.4. Correlated Response Variance

A mathematical model which assumes independent responses of all
individuals will not represent a survey which uses interviewers unless the
interviewer is assumed to have no influence on the response. If we assign at
random a different interviewer to each individual, the effect of the interviewer
on the responses would be uncorrelated for any two obtained responses.
However, a given interviewer usually obtains responses for a number of
individuals, and often the errors made by a particuar interviewer are
correlated.

The important contributions to response variance are likely to arise
from the factors involving correlated response deviations. The analysis of
response deviations is complicated when we want to take into account of the

possible correlations among the response deviations. The smple model in



(7.2.1) can be modified to take the possibility of such correlations, namely the
correlated response deviations.

The simple response variance s based on independence assumption,
while correlated response variance is based on dependence in these models.
The correlated response variance reflects the part of total response variance due
to a common influence on a group of respondents. It reflects the correlations
among response deviations of different units in a given sample and a given
trial. It has been long recognised that the results obtained by the same
interviewer on different sampling units may be positively correlated, thus the
correlated response variance is often interpreted as the interviewer effect. In
order to analyse the effect of interviewer variance consider the following

model
Yie =M +d,,, (7.4.2)

where m is the true value for the fth individua, and d;, represents the

ijt

response deviation for the i-th interviewer on the j-th unit. We make the

following assumptions on the mode!:

E(d,,) =0and Var(d,,)=s , for dl j;
Cov(d,,dge) =T 5 ¢, for i=f (7.4.2)
Cov(d,,,d¢)=r S¢, foritic

In (7.4.2), r, denotes the intra-interviewer correlation coefficient. It

represents the ratio of the correlation between the response deviations for
individuals interviewed by the same interviewer to the simple response

variance
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_ Cov(dijt’ditm)
sS4

, for i=i¢. (7.4.3)

1

r,,in (7.4.2), denotes the between interviewer correlation coefficient.

It represents the ratio of the correlation between the response deviations for
individuals interviewed by the different interviewers to the smple response

variance

_ Cov(dijt 'di¢¢)

2 2
Sd

Jforitic (7.4.4)

In case of a simple random sample of size n, where there are k
interviewers each obtaining m randomly assigned interviews (n=km), the
contribution of the response deviations to the total variance of the sample mean

will be

k
o)

Var(d) =Var (-8 & d,)

i=1 j=1
1 g &

=—{var(a a d;)}
n i=1 j=1

:iz{nVar(dm) +km(m- 1)Cov(d,,,d,) + m’k(k - 1) Cov(d,d,,)} (7.4.5)
n LA A

fori=i¢ foritic

=%{HS ¢ +km(m- Ds Ir .+ m*k(k- Ds gr ,}

2
=STd{1+ r(m- 1 +r,mk- 1)} .
Typicdly, r, will be negligibly small; ignoring r,, (7.4.5) becomes
Var(d,) ==%[1+r (m- 1)] . (7.4.6)
n
When the interviewer workloads is not constant, substituting the

. . — N : .
average interviewer workload, m= K for m in the above formula provides a



good approximation. The increase in the variance over simple response
variance is given by

S¢_S4

ﬁ[1+r1(m- D- —==—r,(m- 1)], (7.4.7)
n n n

and is called the correlated response variance. One can observe from (7.4.7)
that, as the size of the average interviewer workload increases, the effect of
correlated response variance becomes greater.

Consider a two stage sampling plan, where the first stage involves
simple andom selection of a clusters from a total of A clusters in the
population. On the second stage, from each selected cluster of size B, b
subunits are selected by simple random sampling again. The observation on the
chosen n = ab subunitsare made by k interviewers each having a workload of

m subunits (n = km). The total variance can be written as

Var(y) =—+—%
n n

d +?[1 +roh(b- 1)] +S—r;’2[1+ r(m-1)].(7.4.8)
The implications of each of these components are different in terms of survey
design and execution. The total variance given by (7.4.8) cannot be eliminated
completely but can be cortrolled to a certain amount. Each error type can be
reduced by improving the measurement processes that cause these errors.
Improvement of processes involves costs.

The simple sampling variance can be effected only by changing the
sample size. The sample gze can be increased by incurring additional costs,
increased sample size increases the precision. The correlated sampling variance
can be modified by the choice of sample design. The intracluster correlation

coefficient is determined by the choice of clusters for the design: the more
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homogeneous the clusters the larger the clustering effect. The average
subsample size within the selected clusters is the other determining factor, and
for a given sample size depends on the number of clusters included in the
sample.

A similar argument goes with the smple response variance and the
correlated response variance. The contribution of simple response variance can
be effected only by changing the sample size. The correlated response
variance, however, can be modified by the choice of sample design. Assuming
that the quality of the interviewers is not effected by increasing their number,
reduction of the average interviewer workload will decrease the effect of the
correlated response variance on the total variance. Employing additional
interviewers in a survey will have a positive effect on the total precision;
reducing the effect of correlated interviewer variance on the total measurement

variance.

7.5. Estimates of Response Variance

The method of measuring response variance involves formulating a
response error model, postulating that the survey is repeatable under some
fixed set of identical conditions, and measuring the components of variability
among the repetitions. There are two alternative methods to obtain approximate
estimates of the response variance or of the specified components of the
response variance, athough none of these methods provide unbiased or
consistent estimates of them (Groves, 1989).

a. The Replication method: One way of estimating the resporse

variance under a set of conditions is to replicate the survey procedure on the
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same sample. Suppose that a ssimple random sample of size n is selected from
the population; Assume that the survey is taken twice. Let 91 be the sample

mean obtained in the first trial, and 92 be the sample mean obtained in the

second trial. We might use

(V.- ¥)°
B (7.4.9)

as an estimate of the smple response variance. The expected value of

eguation (7.4.9) is approximately,

di do dido— dy d2’ (7410)

2

if, infact m; and m, are approximately the same for al j . Thus if 5321 =Sz

and the correlation term, r IS zero equation (7.4.9) is an unbiased estimate

@
of the simple response variance, with one degree of freedom. The number of
degrees of freedom can be increased by increasing the number of replications.
The principal disadvantages of the replication method lies in the
necessity of making the assumption that the correlation is zero. If this

correlation is positive then (7.4.9) will be an underestimate of the ssmple
response variance by a factor of (1- r35 ) on the average. Another limitation
Is that the second or subsequent trials have to be conducted at a later point in
time, and therefore to the extent that the change in time changes the essential

survey conditions of the subsequent trias, the differences between m; and m,

will increase.
b. The method of interpenetrating samples. In order to estimate the

correlated response variance due to interviewers the survey design must be
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modified. ldeally, to assess the impact of interviewers on correlated
measurement errors, we would use a design in which subsamples of the
sample segments are randomly assigned to interviewers so that no systematic
difference between the workloads of the interviewers can contaminate the
comparison of the results of the interviewers. This procedure of random
alocation of workloads to interviewers is called interpenetration and is due to
Mahalanobis (1946).

Suppose that a simple random sample of size n=km is selected from
the population; the sample is partitioned into k equal subsamples of size m-
(s,S,,---»S.)- Each subsample is allocated to a single interviewer. The label
(i,j) is used to indicate that individua | belongs to the workload of
interviewer i .

From the data we can calculate two linearly independent sums of

squares. the betweeninterviewers sums of sguares (C), and the within

interviewer sum of squares (F) .

ko -
C:rrnla (yl - y)2 '
L (7.4.12)
—_ o O ) _l )
F_k(m- l)glaJlﬁ(Ml y|)

The expected vaues of the mean squares, C and F , will be

E(C):Sri‘FS §{1+ (m' 1)r1' n(k' 1)r 2} )

(7.4.12)
E(F)=sp+sq-r1,).

Since r, can generally be assumed to be small relativeto r,, wecan

use %(C- F) as a possible estimator of s ir,. As an negligibly unbiased



estimator of the total simple variance, %(C- F)+F , can be used.

%(C- F)+F will underestimate the total simple variance, sZ+s?, by an

amount s r, . Interpenetrating subsamples provide a valid estimate of the total
variance of an estimated total in the presence of measurement errors. But such
designs are not often used due to cost and operational considerations.

On a response model which was similar to that of Hansen, Hurwitz and
Bershad (1961), Fellegi (1964) used a sampling design involving both
interpenetration and replication. A sample design which involves both re-

enumeration and random alocation of respondents makes it possible to

estimate both the simple and correlated response deviations.
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CHAPTER 8

CLUSTER SAMPLING AND VARIANCE DECOMPOSITION

The similarity of the formulas for correlated response variance in
(7.4.7) and the correlated sampling variance in (7.3.9) stems up from the fact
that the sampling design caused by the interviewer assignments induces a type
of clustering effect. Each interviewer’s workload generates a cluster.

Consider the case where, a cluster sample is drawn and one interviewer
is assigned at random to each sample cluster. Each interviewer completes all
interviews in the assigned cluster. The interviewer assignment and the sample
cluster will be completely equal in this case, and the traditional cluster sample
standard error computation will reflect both sampling and response error
variance associated with different interviewers. For example, with large-cluster
sampling where one or more interviewers will work in only a single primary
unit, the traditional sampling error estimate of the total variance will fully
reflect the measurement error variance contribution associated with the
interviewers to the total variance.

However, most data collection and sample designs do not lead to
complete correspondence between the interviewer workload and the sampling
units. For those cases, only a proportion of interviewer variance is reflected in
the sampling variance calculations. Sampling error calculations reflect some

portion of the interviewer variance, but not all.
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8.1. Cluster sampling

Suppose that from a population of A clusters of equal size, a sample
clusters are selected with equal probability. In the selected clusters, al B
elements are included in the sample which contains aB =n dements. The

equal probability selection of any of the N = AB population elementsis
fze—=—=— . (8.1.1)

The sample mean of n elements in the sample serves to estimate the

population mean. It is also the mean of the a cluster means:

a

n 1 a B 1 _
Ay, =—aavs=-aVY. (8.1.2)
j=1 aB i1 A

In order to analyse the effect of interviewer variance for this case, let

V.o D€ the measurement made by the i-th interviewer on the b -th element in
cluster a ; the index t is used to denote that vy, IS arandom variable. Also

consider afinite population of interviewersindexed by i =1,2,...,K . Following
Lessler and Kalsbeek (1992);
Let,

_1Lif thea-th cluster is selected for the sample

U, =i :
10, otherwise

a

_11,if thei-thinterviewer is selected for the survey
' 710, otherwise
_1 Lif thei-thinterviewer is assigned tothe a -th cluster

Ci=i .
10, otherwise .

ai

Now assume each interviewer is assigned at random to c clusters. Each of the

selected k =a/c interviewers completes al interviews in the assigned clusters.
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The sample mean of nelements in the sample, given in (8.1.2), can be

rewritten as
- 15 & 18
yt :_a a (\/anCai _a yabit) . (813)
a i=la=1 B b=1
— 18 — .
Let y,, denote Ea Yaoi » then y, in(8.1.3) can be written as
b=1
- 1§ & —
V=28 & (VU.C, Var) (8.14)

la=1

Q
1l

As before, let y,, . bewritten asthe sum of two components

Yabit = My + Aapic (8.1.9)
where the first component denotes the individua true vaue for the b -th

element of the a -th cluster, and the second term denotes the individual

response error for the b -th element of the a -th cluster on the observation by

the i-th interviewer on trial t. By replacing v,,, with the equivalent sum we

can rewrite y,,, as

- 18
Yait —Ea (M, +dapi)
b=

1

~Llam, +18d (8.16)
Bb:l b Bb:l abit re-
:_rna +aait .

Assuming E,(d,,,) =0, the expected value of an observation on b -th
element of the a -th cluster is

E (Vi) = E(My, +d,p)

=E(m, 1 E @.pie) (8.17)
—_— —
M 0
=My, .
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Since E,(d,,,,) =0, E,(dait) = E[(ié d,.)=a E(d,,)=0 fordl a,sowe

B b=1 b=1
can rewrite the expected value of y,, as

E(Yai) = E (Var U.V.C, =1)
=E,(m, |U,V,C,; =1) + E(dai |U,V,C,, =1)
= Et(ﬁ |UaViCai :1)
:EL ,

(8.1.8)

We can define the sample mean of the expected cluster means for the aclusters

included in the sample as

13 8w.c m, . (8.1.9)

i~ aai
i=1l a=1

The expected value of §/t IS

E(Y,) = E.E,(Y,)

18 & —
= EsEtls[ga a (U aViCai yait)]
izl a=1
JyS — (8.1.10)
Es[a a (U aViCai Et(yait MUaCia = 1)]

i=la=1

a a E(Vu,C,)m, .

i=la=1

Y |k

Since we assume single random selection of clusters and interviewers
without replacement, and the assignment of clusters to interviewers is aso

without replacement so that each cluster is assigned to a single interviewer

—p=2
PrU, =1)= A
Pr(v =1)=% , (8.1.11)

Pr(C, =1|U, =1 V =1) =<
a

where ¢ =a/k isthe number of clusters assigned to each interviewer. Thus,



VUC )=——""="—"_, 8.1.12
E.(VU.Ca) = AKa AK ( )

E(y,) becomes

-, 158
E(yt) =—aa ES(\/IUa a|)rr!11

a-i=1a=1
1§ & a—

iz1a=1 AK (8.1.13)

Under the assumption of no interaction between sampling and
measurement errors, we can write the variance of y, as the sum of a
measurement and a sampling variance component

Var(y,) = E(y, - m2+E(m- m)? . (8.1.14)

Expanding the first term in (8.1.14), we get

- = 15 8 - 1& é‘
E(yt - n.b =E(_a aVan Céi Yait - —aA a. a alnl)
Ai=1a=1 Ai=1a=1
18 & —
:E[_aa a al(yalt rr!:l)]z
a-i:l a=1
1.§ 8
:_2{aa. VI a al)E[[(da't) |VUa al_l]}
ai I;l a;l (8115)
+>{a @ E(U,U,MC, G )E[(dan)(h) 1U,U, MG o=
i=lala¢
1.6 ¢
+¥{a a. (U VV¢Ca|Ca|¢)E [(da't)(da'q) |U ] a|¢ 1}
itica=1
1.5 ¢
+¥{a a E( a a¢| Ipalcam)E[(dalt)(dam) |UaUaMVpaiCa¢¢=l} .
iti¢ara¢

Under the above assumptions about the selection of clusters and

interviewers and assignment of clusters to interviewers, we have
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Pr(Ua _1)__a
PrU, =1, U, ==& 11
k
PrV, =1) =—,
N K
k k-1
Pr =1V.=1 =——)
V=t V= = (8.1.16)
Pr(Cai :1|Ua: 1 V| :1) :g,
cc-1
Pr(C. =1 C..=1|lU.U_.=1,V =1)===—,
=t Cop =Y ')aa-l
PHC. =1 C.o=1|UU =1 VV,=1)=S_°_
ai ate aYat iVie 2 a. 1,
Pr(Cai =11 Cai¢:1|Ua :1' \/I\/|¢:1) :O .
Thus, the expression in (8.1.15) becomes
E(y, - m*==[-—a a Var,(da)
a i=la=1
- K A o
023 a 8 Cov,(dait daw) (8.1.17)
A(A' 1)K i=laltat¢
_ K A _ _
k"D 8 & Cov(dr,dece)] .

A(A- DK(K - 1) iZicarae
The first term of (8.1.17) is the variance of the measurementson a -th cluster
mean by the i -th interviewer given that both a -th cluster and i -th interviewer
are selected for the survey and a -th cluster is assigned to i-th interviewer.
The second term is the measurement covariance between the cluster means
measured by the same interviewer. Finaly, the last term in the expression, is

the between cluster between interviewer covariance.
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If we further make the following assumptions on the distribution of
abit ;

Var,(d,,)=sZ foradla,b,i
Cov,(d,,;, ,d.p,x)=rsi fordla,i,andal b b¢
Cov,(d,,,,d.,)=r, s’ fordli,andal b inata¢

Cov,(d,, .0, 45) =TS 5, foral b whereit i¢ a ? at,

(8.1.18)

where r s ? is the intra-interviewer intra-cluster covariance of the individual
response deviations; r,s? is the intra-interviewer between-cluster covariance

of the individual response deviations; and rs is the betweeninterviewer

betweent cluster covariance of the individual response deviations, the variances

and covariances in expression (8.1.17) becomes

- £ £
Var, (da) =Var, (= & dy) = == Var (4 dyy,)
Bp=1 B b=1
1
?[BVar (d,,;) +B(B-DCov,(d,; .dup )]

[EEN

=—[sq+(B-rs]

o

=250+ (8- Ir ]

Cov (da|t ,da¢t) COV ( a. dab|t’ a. daﬁ)lt)

bl Bbl

1
B COV(a Aapics adabn)_ Brzsd_rzsd’

b=1 b=1

COVt(aait,aacm) = COVI (Eé. dabit’ a. dablt)

b=1 Bb =1

1 _ _ 2
B — Cov, (a e a d;eie) = B rSg= d* (8.1.19)

b=1 b=1



The expression in (8.1.17) then becomes

E(y, - Y’ ——[Réa}g{s +(B-Irsg)

¢l 2&rs:

A(AC(DK])—lalac ) (8.1.20)
AA- DK (K- Dﬁ%‘?‘ac Sl

ZE[E{Sng(B- Drs d+(c-Yrs +ok-Drsi.

+

Similarly, expanding the second term in (8.1.14), we get

T RN U 3 S
E(m' W)ZZE(—a a.vluacaerL _aa\/luacai )2
a =1 a=1 Aixga=1
1 OK é\ — = 2
= E[_a aV|UaCai(m,1 - m)]
a i=1 a=1
1.8 ¢
:_z[aa. EN| a a|)(rnal m)2 (8121)
a i=l a=1
K A _ = __ =
+a a E(U,U,¥C,Co)(m, - m(m,- m)
i=lala¢
K A _ = __ =
+a a E(U,U, YNNG, Cp) (M, - m(m,e- m)] .
i=1lata¢

The above expression can be rewritten as

E(m- 7 =218 (m -
L s 2" (8.1.22)
a- o
+A(A 1)£¢(ma m(mye- M .
Letting
- 14 = =,
Var(m,) =—-a (m, - my,
adt (8.1.23)

1
- m),foratatc,
A 1)aamana m(m,e- m),

COV(EL EL 0=

we can rewrite (8.1.22) as

81



E(m- m? =§[\/ar(ﬁ1a) +(a- DCov(m, my].  (8.1.24)

8.2. Subsampling Within Clusters

Introducing a random sub-sample of cluster elements, will complicate
both error formulas: When the sampling fraction is less than one, from the true
values of the randomly selected cluster elements only, we can not achieve

perfect accuracy in estimating the true value of the cluster parameters. When

sub-sampling within clusters, we can estimate ﬁ with some precision error

not equal to zero. The precision error of 9ait will be, then, complicated further
by a sampling error within the cluster. Error was only due to measurement
before, now, we must also consider the sampling error within clusters.
Assuming that errors resulting from measurement and sampling are
uncorrelated, true value of an element within cluster is uncorrelated with error
of interviewer, and selection of sample elements from clusters is smple
random sample without replacement and independent of true value of elements,

we can use a single linear additive model to conceptualise these two kinds of
errors. The sub-sampling fraction is f, :g. b selected elements from each

selected cluster is observed by arandomly assigned interviewer.

Let, vy, denote the observation for the b -th element of the a -th

cluster on the observation by the i-th interviewer on trial t, and vy, denote

the observation on the s-th sample from the a -th cluster; by the i-th

interviewer, on the t-th trial. The error due to measurement is still viewed as



being caused by the interviewer. As before, vy, , is the sum of two components;

however, y, ., isthe sum of three components:

Yoo = Mo * G » (8.2.1)

Yast =M, + g+ dait
where m, is the true vaue of the b -th element of the a -th cluster, d_,, is
the b -th element of the a -th cluster on the observation by the i -th interviewer
ontria t, m, is the tre mean of the a -th cluster, h,, is the error due to a
selection of the s-th sample not the whole cluster, dair is the mean of the
measurement errors made on the b elements of the cluster.

Taking the expectation of §lagt involves two kinds of expectations. the

expectation taken over different trials, and the expectation taken over different
subsets of elements within the cluster. Since it has been assumed that

interviewer errors are uncorrelated with the true value of eements and the

inclusion of different elements in the sample, d.iis only due to interviewer.

The same is true with h,, this error is only due to sampling. Expectation of
h,.+da: over al samples and trials will be the sum of each components

expectations. Assuming that both expectations are zero, the expectation of flasn

iIssmply,

Eq(Yag) =M, - (8.2.2)



With fixed a , taking the expectation over either s or t will require

conceptualising one error term as variable and the other as fixed:

Eq (M. +dair) = Ey () + daie = dai;
EEy (W, + dat) = EEy (W) + E(dai) =0,
Eyp(hus + dait) =h, o + By (dai) =y
E.Eo(h. +dai) = E(h,.) + EE (dat) =0.

(8.2.3)

So, with the above assumptions, the order of taking the expectations leads to
identical results. Since, in most rea life situations, the identification of the
sample units is done before the measurements made on those sampled units,
when inferring on the population parameters, the ordering of the expectations
will follow the reverse order here, first over trials and then over samples.
Doing the other way shall not give different results.

Variance of the cluster mean estimator can be decomposed into
components. variance resulting from sampling within cluster and variance
resulting from the interviewer error. For any cluster, the sampling variance
within the cluster and the measurement variance for the interviewer assigned to
this cluster will be summed to give the total variance of the estimator of that

cluster.
Var (h,, +dai) =Var,(h,,) +Var, (dai) . (8.2.4)

Let VI be an estimate of the population mean obtained at t-th trial

1§ &
ga a (\/|Uaca| yasit) . (825)



The expected value of §/t IS

E(Y,) = E.E,(Y,)

15 ¢ .
= ESEtls[ga a UVC, Vas)]

i=la=1

1_ & & N
=_E5[a a Ua\/icaiEﬂs(yas't)]

i=la=1

Es[é é (Ua\/icaiEt(ﬁ]a + has +aait UaViCia =1)]
e (8.2.6)

A

a E,(VU,C,)E.(m +h,,)

1a=1

Q

1
V|, O ]
: Qo

o
Qo
J
=2
c
fe
3

1
N
QD
I
AN

1
I
=[S
1| o
: o>
S

Under the assumption of no interaction between sampling and
measurement errors, we can write the variance of y, as the sum of a

measurement and a sampling variance component

Var(y,) =E(y,- m? +E(m- m)? . (8.2.7)



Expanding the first termin (8.2.7), we get
By, - P =EE. (%~ nY

s & - 186 )
= Eﬁs(_aaaWa c;i yasi'[ - _aa aWac;i ”;l)

i=la=l i=la-l

=I§ﬁs[5ééwac;<‘yagt-@)]2

~HAAEVUGENE L +Ad G =1 828)
168

+{aa HUUMGCRMh. ), Ch +hih, +hi b U UMC, G =3

QA BUMNGG T, Hithtch + e UV VG G

K A

18 BUUVNG BN, Hhert taf bl U UMG G -

ititatac¢

Since we assumed independence of sampling and measurement errors,

the expectation of the cross terms involving both h, . and dair Will disappear.
Taking the necessary expectations the equation in (8.2.8) ssimplifies further:

EQ,- B = AN ) V@)

c-1 § & -
AKAD E_il aiaact[Cws(Qsm)+Oo4(dan, Cher)] (8.2.9)

=+

ak-) 58 _
A DR L A0 ) +00 (G e}



If we let adl variance and covariance terms in the above sum be same
for different units;
Var(h,,)=s? for al a;

_ b
Var, (dai) = Var, = d,..)
Dy
1
= F[bvart(dabit) +b(b- 1)Cov,(d, i »dape )]

2
:S‘Td[1+(b- Dr, ] forala, and alli; (8.2.10)

Cov,(h,,he) =r.sy;foralata¢
Cov,(dait dawr) =1 s i foraliforatat
CoV,(dair,dass) =1 s 2 foraliti¢and a tat¢,

where s’ is the within-cluster sampling variance of the cluster mean
estimator; s ? isthe interviewer variance of the individual response deviations;
rsls,f is the betweencluster sampling covariance of the cluster mean

estimator; rdlsj is the intra-interviewer intra-cluster covariance of the

individual response deviations; r dzsj is the intra-interviewer between-cluster

covariance of the individual response deviations; and r d35d2 is the between

interviewer between-cluster covariance of the individual response deviations,

the expression in (8.2.10) becomes

E(y, - )’ “{Raa[s e [1+(b Ir ]

i=1 a=1

c-1 § ¢ r s? s]
KA(Al)?}alaamh

L dk-D S
K(K - 1)A(A J)%E@[r SitT S}

(8.2.11)

=5{s§+§[1+(b- Dr l+(@- Dr s +C-Yr s +cok-Dr sz}
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The second part of the equation (8.2.7) is calculated as in the first data

collection and sample design in the previous section of this chapter; we get

E(m- m? =§[var(ﬁ) +(a- DCov(m, .mJ)]. (8212

8.3. Proposed Models

Most data collection and sample designs need a specific variance
decomposition model. The am of this chapter was to build a variance
decomposition model which will adequately reflect the variance generating
processes involved by the specific data collection and sample design
considered.

The literature on this subject usually considers basic data collection and
sample designs. Complex designs are usually considered when they are
actually needed and these models are generally not suitable for generalising in
a direct fashion, because they often involve the particular data collection and
sample design.

When a cluster sample is drawn this is often done to reduce the costs of
the data collection process and thus the assignment of interviewers to clusters
Is made to get advantage of the cost features involved with cluster samples. An
assignment scheme which randomly assigns interviewers to actual sampling
units is no more preferable. The cost model in (5.1.1) explains the cost features
of acluster design (Groves, 1989):

Total cost= Fixed cost + Cluster costs + Element costs
C=C,+Ca+Cpb



where C, denotes the fixed costs of doing the survey, independent of the

number of sample clusters or sample elements per cluster; C, denotes the cost
of selecting, and locating of each cluster, independent of the number of sample
elements for each cluster; a denotes the number of sample clusters, C,
denotes the cost of selecting, contacting, and interviewing a single sample
element from a cluster; b is the number of sample elements per cluster. The
model explains why a different assignment scheme which is not random may
reduce costs.

Assigning only one interviewer for each cluster generates a different
variance then assigning interviewers randomly to sampling units. A different
assignment and sample design is often used to reduce the aosts of the survey
but it also changes the variance structure. The sections 1 and 2 of this chapter
deal with decomposition of the variance of two similar sample designs and
assignment schemes. The first covered design is a specia case of the second
one. However, here the aim was moving dightly from the theory built for
simple random sampling designs and simple assignment schemes to a more
complex one; and the first design provides a step between.

Lessler and Kalsbeek (1992) provide a variance decomposition model
which takes into account of the measurement errors generated by the
interviewers. Their model is provided for a case where the sample design is
simple random sample and inclusion and assignment of interviewers is done
smilarly in a random fashion. From a pool of interviewers, an interviewer is
selected randomly for the interview and assigned randomly to a sampling unit

included in the sample. The model by Lesser and Kalsbeek (1992) has been



chosen as a starting point since it involved indicator functions which made it
suitable for taking into account of the changes in the variance structure as a
result of modifications in the assignment and sampling design.

The first design proposed in this chapter is only dightly different from
the one used by Lessler and Kalsbeek (1992). In this paper, their model has
been used at a different level: the clusters are thought of as creating a different
level then the sampling units. The model proposed by Lessler and Kalsbeek
(1992) is used in this paper to capture the variance structure at the cluster level;
in other words, here the clusters take the place of the sampling units in the
model proposed by Lessler and Kalsbeek (1992). In the first model al cluster
elements for chosen clusters are observed. Selection of all cluster elementsin
the sample simplifies the solution; the mean obtained from the observation of
al units in the cluster does not involve sampling error but only measurement
error. Making the necessary calculations one arrives at the following total
variance formula

Var(y,) = E(y, - M’ +E [m- my
:i[%{sj +(B-Drs 3+(c- Yr s3+ck- Yrsi] (83.1)

+§[\/ar(ﬁ;) +(a- DCov(m,,m] .

A random sub-sample of cluster elements is considered in the next
section. Sampling error within the cluster complicates the precision error of the
cluster mean estimator. Here, within a cluster two kinds of error are present:
sampling error and measurement error made by the interviewers. These two
errors have been assumed to be independent, and a linear additive modd is

used to illustrate their total effect. At the sampling unit level there is only



measurement error, but when we move from sampling units to clusters

sampling error must also be considered.

Yavir =My +piy
;lasit = _rna + has + aait '

where m, is the true vaue of the b -th element of the a -th cluster, d_,, is
the b -th element of the a -th cluster on the observation by the i -th interviewer

ontria t, m, isthe true mean of the a -th cluster, h,, is the error due to a

selection of the s-th sample not the whole cluster, dair is the mean of the
measurement errors made on the b elements of the cluster.
Making the necessary calculations one arrives at the following total

variance formula
Var (y,) = E(y, - M+ E(m ny?
=§{S§+S—5[l+(b- DrJ+@-Dr.s +C-Yr s, +ok-Jr s} (8.3.2)
+ZVa(m) +(a- 30, M.

One can observe that letting b= B in (8.3.2) gives the same result asin (8.3.1)

since s will be zerofor b=B.
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CHAPTER 9

CONCLUSIONS

The basic objective of asurvey isto provide information on the basis of
survey variables, the measurement error problem should be studied with this
am in mind. The survey variables can be measured with a certain precision,
and the knowledge on this precision is very important for both utilisationof the
infformation and arriving at more precision. Trying to understand the
mechanism of our measurements and their variance structure will surely be
fruitful.

In this study the concentration was on response variance components.
Literature on the subject has been reviewed and major contributions have been
presented. The different perspectives of various disciplines on measurement
error is considered in Chapter 2. Three mgjor languages of error which appear
to be applied to survey data are overviewed. They are associated with three
different academic disciplines and illustrate the consequences of groups
addressing similar problems in isolation of one another. The three disciplines
are statistics (especially statistical sampling theory), psychology (especially
psychometric test and measurement theory), and economics (especialy
econometrics). In Chapter 3, some techniques for evaluating and controlling
measurement error in surveys are discussed. The methods discussed are
reinterview studies, multiple indicators studies, record check studies, and.
cognitive studies. Four sources of measurement errors (questionnaire, data

collection method, interviewer, and respondent) which are the elements that
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comprise data collection are considered in Chapter 4. The costs of survey
activities often act as limiting influences on efforts to reduce survey errors.
This subject is considered in Chapter 5. The measurement of response errors
requires that they be represented by a mathematical model. A number of
alternative models have been considered in Chapter 6. Decomposition of the
variance by O’Muircheartaigh (1982) is discussed in chapter 7.
O’Muircheartaigh (1982) partitions the total variance of estimators into four
components, each of which has a different implication for the survey design:
simple and correlated response error, simple and correlated sampling error.

A lot has been done by the survey theorists on interviewers
contribution to the measurement error. Correlated response variance
component is used to capture the correlated effect of interviewers contribution
to the total variance. Most data collection and sample designs need a specific
variance decomposition model. As data collection and sample design methods
move from simple to complex, isolating the interviewer contribution from the
total error gets more complicated.

When a cluster sample is drawn this is often done to reduce the costs of
the data collection process and thus the assignment of interviewers to clusters
IS made to get advantage of the cost features involved with cluster samples.
Assigning only one interviewer for each cluster generates a different variance
then assigning interviewers randomly to sampling units. A different assignment
and sample design is often used to reduce the costs of the survey but it also
changes the variance structure.

The Sections 1 and 2 of Chapter 8 deal with decomposition of the

variance of two similar sample designs and assignment schemes. The first
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covered design is a special case of the second one. However, here the aim was
moving dightly from the theory built for simple random sampling designs and
simple assignment schemes to a more complex one;, and the first design
provides a step between.

In the first model, al cluster elements for chosen clusters are observed.
Selection of all cluster elements in the sample simplifies the solution; the mean
obtained from the observation of al units in the cluster does not involve
sampling error but only measurement error. Utilising a general measurement
error model for a survey with interviewers given by Lesder and Kasbeek
(1992) the variance decomposition is obtained.

A random sub-sample of cluster elements is considered in the next
section. Sampling error within the cluster complicates the precision error of the
cluster mean estimator. Within a cluster two kinds of error are present:
sampling error and measurement error made by the interviewers. These two
errors have been assumed to be independent, and a linear additive moddl is
used to illustrate their total effect. This secord data collection and sample
design involved further complexities but the proper use of the mode for the
first data collection and sample design made the solution possible.

However, first of al, the identifiability and the estimability of the
parameters of the model have to be worked out for the estimation of unknown
parameters of the models. For a future study this may be considered as a
subject. Also, for a future recommendation we propose the use of the
decomposition models obtained in this thesis in determining an optimum

dlocation in existence of measurement errors.
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