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ABSTRACT

RECONSTRUCTION OF A 3D HUMAN HEAD MODEL FROM IMAGES

Hassanpour, Reza Zare

Ph.D., Department of Computer Engineering

Supervisor: Assoc.prof. Dr. Volkan Atalay

August 2003, 90 pages

The main aim of this thesis is to generate 3D models of human heads from

uncalibrated images. In order to extract geometric values of a human head,

we find camera parameters using camera auto calibration. However, some im-

age sequences generate non-unique (degenerate) solutions. An algorithm for

removing degeneracy from the most common form of camera movement in face

image acquisition is described. The geometric values of main facial features are

computed initially. The model is then generated by gradual deformation of a

generic polygonal model of a head. The accuracy of the models is evaluated

using ground truth data from a range scanner. 3D models are covered with

cylindrical texture values obtained from images. The models are appropriate for

animation or identification applications.

Keywords: camera auto calibration, degenerate motion, human face modeling,

Delaunay triangulation
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ÖZ

GÖRÜNTÜLERDEN 3B INSAN KAFASI MODELI GERIÇATIMI

Hassanpour, Reza Zare

Doktora, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Assoc.prof. Dr. Volkan Atalay

Ağustos 2003, 90 sayfa

Bu tezin başlıca amacı ayarlanmamış görüntülerden üç boyutlu insan kafası

modelleri üretmektir. Bir insan kafasının geometrik deǧerlerini çıkartabilmek

amacıyla öncelikle kamera parametreleri kendi kendine ayarlama ile bulunmak-

tadır. Ancak, bazı görüntü dizileri birden fazla çözüm üretmektedir. Yüz

görüntüleri alınırken bu tür sorunu ortadan kaldıran bir algoritma sunulmak-

tadır. Yüz özelliklerinin geometrik deǧerleri öncelikle hesaplanmakta ve ardından

kafa modeli jenerik bir poligona dayalı kafa modelinin deformasyonu ile elde

edilmektedir. Üretilen modellerin doǧruluǧu bir derinlik tarayıcıdan alınan yer

bilgileri kullanılarak degerlendirilmektedir. 3B modeller görüntülerden çıkartılan

silindirik doku deǧerleriyle de kaplanmaktadır. Modeller canlandırma ve kimlik

belirleme uygulamalarında kullanıma uygundur.

Anahtar Kelimeler: kamera kalibrasyonu, Dejenere hareket, insan kafasini mod-

elleme, Delaunay triangulasyonu
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R A rotation matrix
K Intrinsic camera parameters matrix
f Focal length of camera
λ aspect ratio
γ skew
F Fundamental matrix
E Essential matrix
e epipole
πe epipolar plane
RMS Root Mean Square
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CHAPTER 1

Introduction

1.1 Motivation

There is a significant body of work on three dimensional (3D) analysis of images

in recent years. Many application areas such as computer animation, medical

imaging and visualization, and teleconferencing require 3D information of the

environment that can be simulated on our machines. The first step in 3D anal-

ysis is modeling objects. This step, in general has been proven to be a difficult

task to accomplish. The reason for the difficulty is the need for very sensitive

and reliable measurements that can either be obtained by means of complicated

measuring devices such as range scanners to find the depth information or by

developing algorithms to extract this information from two dimensional (2D) im-

ages. In addition, these measurements are very sensitive to the environmental

parameters such as lighting and noise. Furthermore, intrinsic complexity avail-

able in natural and deformable objects can intensify the problem. To deal with

these problems most researchers have restricted the 3D objects to be modeled

to a limited class of natural or artificial entities. This restriction makes possible

to incorporate the knowledge about the class of objects into the system.

One of the 3D modeling applications is the identification, synthesis and ani-
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mation of human faces. By human face, we mean the frontal part of the head

including facial features, but in modeling sometimes we need other parts of

the head such as hair. Nevertheless, in this manuscript we use head and face

interchangeably. Most of the face recognition, expression understanding and

animation algorithms developed so far work on 2D images. However, the use

of a 2D model limits the range of face orientations that can be handled. For

large variations of face orientation, 3D properties of the face is needed to be

modeled. Many popular face recognition techniques operate on 2D face images

and their performance can deteriorate quickly as a result of light variations and

geometric transformations (scaling and 3D rotation) in the image formation pro-

cess. Feature-based techniques and template matching are widely used to detect

facial features. Available facial feature or face detection algorithms illustrate a

good performance when illumination, scale and head orientation are controlled.

However, tilt, rotation, scaling and unknown poses can cause several major prob-

lems for these approaches to work properly. Several methods are reported which

demonstrated some ability to reduce these sensitivities. An alternative is to gen-

erate a 3D model of the face and accomplish the recognition in any given pose.

In this study, following the latter approach, we develop an algorithm to model

a specific human face in 3D so that it is possible to use the model in different

applications such as computer animation for games or educational purposes and

identification.

1.2 Problem Definition and Assumptions

3D face modeling is a special case of the general problem of 3D object represen-

tation. A 3D head model should include geometric and non-geometric properties

of the object. Geometric properties of the faces may be obtained from the images

taken from different viewpoints. This approach brings with itself the problem

of determining location of a point in 3D space using the information available

in the 2D images. This process which is referred to as 3D reconstruction needs

2



accurate knowledge about the physical properties of the camera by which the

images are captured. Obtaining the physical properties of the camera is called

camera calibration. In the absence of any knowledge related to camera param-

eters, we refer to the images as uncalibrated images. Incorporating properties

of any specific camera in the 3D modeling algorithm restricts the method to a

specific set of camera. Determining the physical properties of the camera by

the user is also prone to error and it is a complex process for an ordinary user.

Considering the problems in determining physical properties of the camera, we

add this part as an integrated part of the algorithm.

The main aim of this thesis is generating 3D face models from uncalibrated im-

ages. Basic steps and the flow of the system are given in Figure 1.1. In the

first part, the camera auto calibration is accomplished. This part starts with

matching points from different views. In the matching step, a set of feature

points provided by the user, is used to reduce erroneous correspondence. Using

the physical parameters of the camera, a set of points in the form of a 3D cloud

of random points is generated in the second part. These points are used in

deforming the generic mesh. Final step is adding texture values to the model.

Some restrictions on the image acquisition process and facial feature extraction

are imposed. The restriction considered in our algorithm are listed below.

• All images are taken from the same elevation as the face and no tilt to

left, right, forward or backward is present in the face position.

• No occluding object like eyeglasses, scarf etc. should cover the face totally

or partially.

• Illumination should be consistent in all images.

• Hair should not cover the forehead.

• Face should have a neutral expression and no movement should exist form

one image to the other.

3



The segmentation of the face and locating facial features are not considered

as an integrated part of this thesis. The user provides the location of some

feature points in the images manually. The location of the facial features given

by the user are refined further to increase accuracy of the generated model.

Neutral expression assumption is added here because our basic aim is generating

a neutral model which can be later used in animation and exhibiting expressions.

In addition, the rigid object and scene assumption is necessary in all camera

calibration algorithms. Hence we assume that the face experiences no movement

during image acquisition.

4



Figure 1.1: Basic steps and the flow of the system.
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1.3 Contribution and Organization of the Thesis

The main aim of this thesis is generating 3D head models from uncalibrated

images. The main contributions of the thesis can be stated as follows.

• A solution for the degeneracy in auto calibration when the camera rotation

is about a single axis or parallel axes.

• Experimental and comparative study of the sensitivity of reconstruction

and auto calibration algorithms to improper assumptions in intrinsic cam-

era parameters.

• Devising an algorithm for mesh deformation using a cloud of 3D points

and local refinements.

• Applying Delaunay triangulation method to local enhancements of human

face model.

• Devising an algorithm for solving degeneracy in applying Delaunay trian-

gulation to 3D meshes.

• Developing an integrated system for modeling human faces from uncali-

brated images.

The details of methods and algorithms are discussed in 6 chapters as follows.

Chapters 1 and 2 discuss projective and epipolar geometries and camera auto

calibration. Chapter 3 provides the details of our solution for degeneracy in

auto calibration and sensitivity of auto calibration to inaccurate assumptions

in intrinsic camera parameters. The content of this chapter correspond to the

auto calibration part of the system diagram in Figure 1.1. Chapter 4 presents

face modeling basics and Chapter 5 includes the details of our mesh deforma-

tion algorithm. This chapter presents the details of mesh deformation part of

the system diagram. Chapter 6 illustrates the experimental results and finally

Chapter 7 concludes the thesis.
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CHAPTER 2

Projective and Epipolar Geometries and

Camera Model

In this chapter, we first introduce basic definitions of projective geometry which

defines the image formation process and describes the necessary transformations

for retrieving scene structure. Then, we proceed with epipolar geometry which

elaborates on the relationships between images taken form the same scene at

different view points. Another effective factor in relating images and recon-

structing the scene is the physical properties of the camera. This chapter also

presents the simple camera model and describes the relationships between cam-

era properties and the images taken from a scene using projective and epipolar

geometries. Gradual retrieving of camera parameters are presented in a stratified

form. Furthermore, the basic properties of conics and quadrics are described.

These properties play a significant role in determining camera parameters. The

background information given in this chapter is used as a basis for the rest of

the manuscript.
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2.1 Introduction

Geometries are defined by their objects of study. Euclidean geometry is naturally

preoccupied with distance and angle. Projective geometry studies properties

unchanged by projections. Under a projection from one plane to another in

2D, a straight line stays a straight line. However, the distance between points

or angle between two lines can vary. Even more disconcertingly, parallel lines

may project to lines which meet. A good example is a straight railway track.

The image formation process is a projective mapping form a 3D space to a 2D

plane. A camera maps the real world points to image points. This projection

can be modelled mathematically in homogeneous coordinate systems. However,

the modeling depends on the specifications of the camera. These specifications

are divided into two as intrinsic and extrinsic parameters. Intrinsic parameters

define the physical properties of the camera. Extrinsic parameters specify the

location and orientation of the camera. Images taken with different extrinsic

camera parameters are related to each other. The relationship between multiple

views of a scene from different view points is given by the epipolar geometry.

The material presented in this chapter is based on the studies of Faugeras[1],

Hartley[2].

2.2 Basic Definitions in Projective Geometry

The definitions of basic concepts in projective geometry are given below.

A point in projective n-space Pn is given by an (n+1)-vector of coordinates.

These coordinates are called homogeneous coordinates. At least one of these

coordinates should be different from zero. Given any two points x1 and x2, if

there exist a nonzero scalar λ so that x1 = λx2 then the two points are equal to

each other. If the last coordinate of a point is zero, then the points is said to be

at infinity.

A projective line may be viewed as a projective space of dimension one (P1).

8



A line in a projective plane is the set of points [x, y, z] satisfying a homogenous

linear equation ax + by + cz = 0. If the last coordinate of a point is zero, it lies

on the line at infinity. A point on the line at infinity is called a vanishing point.

A projective plane is defined using P2. A point in this space is represented

by its three coordinates [x, y, z]. The projective plane can be defined as an

extension of the the Euclidean plane. If E is the set of points in P2 with non-

zero last coordinates, then dividing by the last coordinate, any point can be

written uniquely as [x, y, 1]. The point obtained this way can be identified with

the point (x, y) in Euclidean plane. In a projective plane, every two distinct lines

intersect at a unique point. The locus of points at infinity is the plane at infinity

which is denoted by π∞. The plane at infinity has the following properties.

• Two planes are parallel if and only if their line of intersection is on π∞.

• A line is parallel to another line or a plane if the point of intersection is

on π∞.

The concepts defined for projective spaces P1 and P2 have analogies in projective

space P3. A point x in 3-space is defined by the homogenous coordinates x =

[x, y, z, w]. A point in P3 with w = 0 lie on π∞. A transformation is a general

non-singular linear transformation of homogenous coordinates. A projective

transformation projects every geometric object into a projectively equivalent

object leaving all of its projective properties invariant. The class of invariants

under each transformation is the basis for their classification. This classification

and the invariants under each class of transformations are discussed in Section

2.4.

A collineation is a mapping that preserves collinearity which means if some

points are on a straight line, they are mapped to a straight line. If the mapping

is from an n-space into an m-space then the collineation is given by an (n+1)×
(m + 1) matrix H.
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A homography is a transformation in the projective plane which is denoted

by a mapping P2 → P2. A homography is an invertible mapping from points in

P2 to points in P2 such that a group of points xi i = 1, . . . , N lie on a line if and

only if their transforms do.

2.3 Conics and Quadrics

A conic C is a curve in P2 defined using a second order equation. In the ho-

mogenous coordinates, a conic is given by ax2 + bxy + cy2 + dx + ey + f = 0.

The equation can be written in matrix form as

xTCx = 0 (2.1)

where C is given as

C =




a b/2 d/2

b/2 c e/2

d/2 e/2 f




Using the above definition a conic in P2 is defined as the locus (the set of all

points usually forming a curve or surface, satisfying some condition) of all points

x satisfying Equation 2.1. Multiplying righthand side of Equation 2.1 by a scalar

does not affect the equation. This means that a conic is defined only up to some

scale and therefore it has five degrees of freedom. A degenerate conic has a

defining matrix which is not of full rank.

A dual conic is the locus of all lines l tangent to the conic C. The equation

defining a dual conic can be given as lTC∗l. C∗ is the adjoint of C which in real

matrices is equal to C−1.

A quadric Q in the locus of points X in P3 satisfying the homogenous

quadratic equation

XTQX = 0 (2.2)

where Q is a 4× 4 symmetric matrix defined up to some scale factor. Similarly

dual quadric Q∗ is the locus of planes π satisfying the following homogenous
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equation.

πTQ∗π = 0 (2.3)

If Q is real then Q∗ = Q−1.

Absolute conic is a degenerate conic on π∞ denoted by ω∞. The points on

ω∞ satisfy 



x2
1 + x2

2 + x2
3 = 0

x4 = 0
(2.4)

x4 = 0 indicates that all points belonging to the absolute conic should be on

π∞. For the points on π∞ we have

[
x1 x2 x3

]
I
[

x1 x2 x3

]T

= 0

which means ω∞ = I and a conic of pure imaginary points. On π∞, ω∞ can be

interpreted as a circle of radius i =
√−1.

Dual of the absolute conic ω∞ is a degenerate dual quadric in P3 called absolute

dual quadric and denoted by Ω∗
∞. Any plane tangent to Ω∗

∞ is also tangent to

ω∞. Ω∗
∞ is represented by a 4× 4 homogenous matrix of rank 3.

2.4 Stratification of Transformations

Each transformation in projective geometry leaves some properties of geomet-

ric objects invariant. An invariant is a property whose value is unchanged by

a particular transformation. The transformations can be classified into three

groups based on their invariants. The most general group in this classification

belongs to projective transformations. This group has the least number of in-

variants. Second group is the group of affine transformations. This group may

be considered as a restricted form of projective class. The last group is the

group of Euclidean (metric) transformations and a subclass of affine class. The

hierarchical relationship between the transformation classes has created the il-

lusion of a stratification and hence the name stratum is used for each class. The
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Figure 2.1: Stratification of the transformations.

relationship between the transformation classes is illustrated in Figure 2.1. The

stratification and invariants in each stratum is discussed below.

2.4.1 Projective stratum

The projective stratum is defined by the class of projective transformations.

These transformations are general non-singular linear transformations of homo-

geneous coordinates. In 3D space, the transformation is given by a 4× 4 matrix

which is defined up to some non-zero scale factor and has 15 independent ele-

ments. Invariants under a projective transformation are collinearity, tangency,

order of contact and cross-ratio. Collinearity states that if a set of points lie on a

line, they also remain on a line after transformation. Tangency refers to the fact

that if a line is tangent to a curve, this state is preserved after transformation.

If a line contacts a curve in several points, the transformation preserves order

of these contacts.This is referred to as order fo contact. Cross ratio is defined

as follows. Assuming that four points x1,x2,x3 and x4 are given, cross ratio of

these points is defined as

Cross(x1,x2,x3,x4) =
|x1x2||x3x4|
|x1x3||x2x4| (2.5)
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where

|xixj| = det


 xi1 xj1

xi2 xj1




The values of the cross ratio is independent from the homogenous representation

chosen.

2.4.2 Affine stratum

The main difference between a projective transformation and an affine transfor-

mation lies in the concept of the plane at infinity π∞. This plane is not part of

the affine space and the points contained in π∞ can not be expressed through

the non-homogenous 3-vector coordinates. An affine transformation is usually

written as a non-singular linear transformation followed by a translation. In 3D

space, affine transformation is given as follows.




x′

y′

z′


 =




a11 a12 a13

a21 a22 a23

a31 a32 a33







x

y

z


 +




a14

a24

a34


 (2.6)

In homogeneous coordinates this transformation is given by

TA =




a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

0 0 0 1




(2.7)

In addition to all invariants under projective transformation an affine transfor-

mation includes three more invariants.

• Parallel lines. Parallel lines intersect at a point on the plane at infinity.

In an affine transformation, this point is mapped to some other point on

π∞ preserving parallelism.
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• Ratio of lengths of parallel line segments. Since affine transforma-

tions preserve parallelism, scaling magnitudes remain invariant in parallel

lines.

• Ratio of areas. Variations in the areas depends on the product of scaling

values in two directions. This factor is cancelled out when taking ratios.

2.4.3 Metric stratum

Metric stratum corresponds to the group of transformations which are a com-

bination of orthogonal transformations and translations followed by a uniform

scaling. The transformation matrix can be written as

 sR t

0 1


 (2.8)

where s is the scale factor, R is a 3× 3 rotation matrix and it has the following

properties.

RRT = RTR = I and R−1 = RT

t is the 3 × 1 translation vector. The invariants under metric transformations

are ratio of lengths and angles beside to all invariants under affine and projective

transformations.

2.5 Camera Model

Before discussing how 3D information can be obtained from images, we show

how images are formed. First, the pinhole camera model is introduced and then

some important relationships between multiple views of a scene are presented.

A digital camera samples light intensity over a physical area and produces an

array of numbers. The physical area is discretised into a two dimensional (2D)

rectangular array which is mapped onto the output array. The most common

digital cameras are charge-coupled devices referred to as CCD cameras. Light
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Figure 2.2: Image formation in a simple camera.

photons incident on the semiconductor light sensors generate a series of charges

on the CCD array. These charges are transferred to an output register either

directly one line at a time or the whole frame via a temporary storage area. In

any case, the image formation process in a camera can be viewed as a mapping

from the three dimensional (3D) world onto a 2D image. In the simplest form

where the projection center is placed at the origin of the world frame and the

image plane is at distance Z=f from this center, the projection process of a 3D

point X to 2D point x can be modelled as follows.




x

y

1


 =




f 0 0 0

0 f 0 0

0 0 1 0







X

Y

Z

1




(2.9)

3D world points in homogeneous coordinates are related to image points via

Equation 2.9. The projection process in this simple camera model is illustrated

in Figure 2.2.

A pinhole camera is the simplest form of a projective camera which is mod-

elled by its optical center C and its image plane. A 3D point X is projected into
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an image point x given by the intersection of image plane with the line contain-

ing C and X. The line containing C and orthogonal to the image plane is called

the principal axis and its intersection with the image plane is the principal point

(x0, y0). The distance between C and the image plane is the focal length f. In

Equation 2.9, it is assumed that the principal point lies at the origin of coor-

dinates in the image plane. In general, this may not be true. Furthermore, in

Equation 2.9 it is assumed that the image coordinates are Euclidean coordinates

having equal scales in both directions. In a CCD camera, there is the additional

possibility of having non-square pixels. If the image coordinates are measured

in pixels, this has the extra effect of unequal scale factors. Considering these

features, a projective camera is defined using five parameters. These parameters

are

• focal length f which defines the distance between the camera center to

image plane,

• ratio of pixel width to pixel height λ which is called the aspect ratio,

• skew value γ which counts for the amount of deviation from a rectangular

pixel,

• the location of principal point (x0, y0) on the image plane.

The transformation into the image coordinates is given by a matrix containing

all camera properties. This matrix is called intrinsic camera matrix denoted

by K and the parameters are referred to as intrinsic camera parameters. The

intrinsic camera matrix is given in Equation 2.10.

K =




αx γ x0

0 αy y0

0 0 1


 (2.10)

where αx and αy are the focal length in terms of pixel width and pixel height

respectively. Note that λ = αx

αy
is called aspect ratio. The focal length f is
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implicitly given by αx and αy. Motion of the scene points from one position

to another one also affects the image formation process. This motion can be

modelled as follows. 
 R t

0 1


 (2.11)

where R is a 3× 3 matrix showing the camera rotation and t a vector defining

the translation of camera center. This relation defines a conversion between

two Euclidean coordinate frames which are the world coordinate frame and the

image coordinate frame. The translation and rotation of the camera are called

extrinsic camera parameters. Combining intrinsic and extrinsic camera matrices

with the relation given in Equation 2.9 which defines the mapping of the world

points into image plane we get




x

y

1


 =




αx γ x0

0 αy y0

0 0 1







1 0 0 0

0 1 0 0

0 0 1 0





 R t

0 1







X

Y

Z

1




(2.12)

which can be written as

x = KR [I| − t]X (2.13)

or

x = PX (2.14)

Note that in Equation 2.13 the notation [I|−t] is used to show the concatenation

of a 3× 3 matrix I with a 3× 1 vector t which gives a 3× 4 matrix. The 3× 4

matrix P is called camera projection matrix.

2.6 Epipolar Geometry

Images of a scene taken from different views are not completely independent

[14]. Given a point x in the first image and camera parameters, the location of
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Figure 2.3: Epipolar plane and viewing cameras.

the point in the second image can be found. The reverse order is also possible.

Given the images of a world point X in two images as x1 and x2, and the camera

parameters, the world point X may be found. Even if the images are taken

with different cameras having dissimilar internal parameters, a transformation

relating the images to each other exists. Given sufficiently many matching point

pairs, the relation from the first image to the second one can be determined. To

show the nature of this transformation, consider two cameras C1 and C2 and a

world point X which is mapped as x1 and x2 on the image plane of the cameras,

respectively. The configurations are shown in Figure 2.3.

As it is clear form Figure 2.3, world point X, image points x1 and x2 and

camera centers C1 and C2 are coplanar. This plane is called epipolar plane

and denoted here with πe. The line connecting the camera centers is called

baseline and the image of each camera center on the image plane of the other

camera is called epipole and denoted by e and e’ respectively. Epipoles are also

intersection points of the baseline with image planes. Given an image point x

and the camera centers, the other image point lies on the intersection of πe with

second image plane. This intersection gives a line which is known as epipolar
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line.

2.6.1 Fundamental and Essential Matrices

Epipolar geometry can be represented in a mathematical form using a trans-

formation which maps any point x on the first image to the epipolar line l2

in the second image [21]. Any point matching the point x should lie on this

line. This mapping is represented by a matrix called fundamental matrix. The

fundamental matrix F is a 3× 3 of rank 2 homogenous matrix which satisfies

xTFx = 0 (2.15)

for all corresponding points x1 and x2. Most important properties of the funda-

mental matrix can be expressed as follows.

• If F is the fundamental matrix between a pair of images I1 and I2, then

FT is the fundamental matrix between I2 and I1.

• Fx1 gives the epipolar line corresponding to point x1 in the second image

and FTx2 is the epipolar line in the first image.

• All epipolar lines contain the epipole point. Thus e′T (Fx) = (e′TF)x = 0

and e′TF = 0 which means that epipoles are right and left null spaces of

the fundamental matrix.

• Since fundamental matrix is a 3×3 homogenous matrix and its determinant

is zero, that is DetF = 0, F has 7 degrees of freedom.

• Since DetF = 0, one of its eigenvalues is zero and the other two are not

equal in general.

In addition, it is important to note that the camera matrices depend on the

image coordinate system and the world coordinate system. The reason lies in

the role of camera matrices in relating 3D world measurements to image mea-

surements. However, F does not depend on the choice of the world coordinate
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system and it remains unchanged under any projective transformation.

Mapping world points to image points is directly affected by the internal camera

parameters. This effect can be removed by normalizing coordinates when the

intrinsic matrix K is known. If for each image point x, we apply inverse of the

intrinsic camera matrix, we obtain x̂ = K−1x where x̂ is the normalized image

point. Equation 2.14 is now given as x̂ = [R|t]X. The fundamental matrix

corresponding to the normalized camera matrices is called essential matrix. Es-

sential matrix E may be considered as the calibrated form of the fundamental

matrix F. The relationship between essential matrix and fundamental matrix is

given by

E = KTFK (2.16)

where K is the camera intrinsic matrix. Essential matrix is a 3 × 3 rank 2

matrix with equal singular values [2]. An essential matrix is the product of a

3× 3 orthogonal matrix, U, and a 3× 3 skew-symmetric matrix, S.

E = US

In 3D Euclidean space, a translation and rotaion transformation is associated

with an essential matrix.

2.6.2 Computing Fundamental Matrix

Equation 2.15 gives the definition of the fundamental matrix. Given a set of

matching points we may obtain F using Equation 2.15. For two points (x, y, 1)

and (x′, y′, 1) from Equation 2.15, we have:

x′xf11 + x′yf12 + x′f13 + y′xf21 + y′yf22 + y′f23 + xf31 + yf32 + f33 = 0
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where fij are elements of F. If we consider f as a vector made of elements of F

in row order, then for a set of n points we will have:

Af =




x′1x1 x′1y1 x′1 y′1x1 y′1y1 y′1 x1 y1 1

x′2x2 x′2y2 x′2 y′2x2 y′2y2 y′2 x2 y2 1
...

...
...

...
...

...
...

...
...

x′nxn x′nyn x′n y′nxn y′nyn y′n xn yn 1




f = 0

This equation shows a homogeneous equation which means A has at most rank

8. However, due to noise in finding points, it may be of rank 9. It means

that the measurements are not exact and therefore, a least squares solution

should be sought in solving this equation. The least square solution for f is the

singular vector corresponding to the smallest singular value of A. This vector is

computed by decomposing A using SV D(A) = UDVT where D is a diagonal

9 × 9 matrix and U and V are orthogonal 9 × 9 matrices. This decomposition

finds f subject to ‖f‖ = 1. Fundamental matrix F is a 3 × 3 matrix of rank

2 with Det(F) = 0, but the solution we get from SV D(A) is not of rank 2.

To impose this constraint again singular value decomposition method is used.

This time SV D(F) = UDVT is found. D is a diagonal matrix as diag(r, s, t)

satisfying r >= s >= t where diag(r, s, t) indicates a 3 × 3 diagonal matrix

having r, s and t as its diagonal elements. F′ found by assigning zero to t in

matrix D satisfies the constraint.

F′ = U diag(r, s, 0) VT

This method is called 8 points algorithm [10]. The important matter in 8 point

algorithm is proper normalization of the input data which leads to a large im-

provement in the solution and stability of the result. The normalization is a

translation and scaling of each image points so that the centroid of the points is

at the origin and the root mean squares (RMS) distance of the points from the

origin is
√

2. The second point in this algorithm is that generally we get a large

number of point pairs from interest point detection and matching. Some of these
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points may have errors in computing the locations and in yet some others there

may be false matches. To find the best approximation for fundamental matrix

different improvements have been proposed. The following algorithm which is

a slightly modified form of RANSAC [2] algorithm is used here. Our algorithm

modifies original RANSAC algorithm by using 8 point algorithm instead of 7

point algorithm. This modification prevents generation of more than a single

solution for F since 7 point algorithm generates 3solutions while 8 point algo-

rithm generates a unique solution. After determining F epipoles can be found.

Algorithm 1 Computing fundamental matrix

1 Choose 8 points from the matching point set randomly.

2 Find the Fundamental matrix F.

3 For each point, find its distance form epipolar line and group the points as

inliers and outliers using a threshold on the computed distance.

4 Repeat steps 1 through 3 for n times.

5 Choose the output with maximum number of inliers as the most reliable out-

put and recompute the fundamental matrix using inliers of this iteration.

Epipoles e and e′ which are the images of camera centers in the image plane

of the other camera are left and right null vectors of the fundamental matrix.

Epipoles which are used in estimating camera matrices are defined as

Fe = 0

e’F = 0

and can be found by singular value decomposition of F. Epipoles are used in

computing camera projection matrices.
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CHAPTER 3

Approaches in Auto Calibration

The main goal of all 3D reconstruction algorithms is to obtain 3D coordinate

values of any point in the scene from its images. The reconstruction however, is

not always in the Euclidean frame which we naturally take for evident. With-

out any knowledge about the scene or the intrinsic camera parameters, we may

reach only up to a projective reconstruction. In fact when the intrinsic camera

parameters are not known, fundamental matrix F is the only available relation-

ship between the image points. Any information about the scene or camera may

be used to upgrade a projective reconstruction to a higher level. Upgrading a

reconstruction using only a-priori partial knowledge about the intrinsic camera

parameters is called auto calibration. Any knowledge about the camera intrinsic

parameters can be used to upgrade a reconstruction from projective to metric.

This knowledge can be in the form of known and/or unknown but constant val-

ues for camera parameters. Auto calibration methods may be divided into two

basic groups. First group considers general motion of the camera while second

group restricts camera movement to some specific forms such as planar move-

ment, pure translation or pure rotation. Each group is reviewed separately in

the following sections. The scene knowledge such as parallel or vertical edges of
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the objects can be used in a stratified method for upgrading the reconstruction

from projective to affine and metric. Furthermore, images of a known calibrated

grid can be used for camera calibration. In this chapter, the major approaches

in auto calibration are discussed in a comparative manner.

3.1 General Motion Algorithms

In a general motion auto calibration algorithm, it is assumed that the camera

motion is unrestricted [7, 4, 19]. This corresponds to a camera which freely

moves around. An example for a general motion is a hand-held camera. This

means that no a-priori knowledge about the camera position, translation or

rotation is assumed in the algorithm. However, some special motions may result

in degenerate solutions. Degeneracy and the motions causing it are discussed

in Chapter 4. Here, we assume that the general motions do not cause any

degeneracy.

3.1.1 Auto Calibration using Kruppa Equations

Kruppa equations are originally introduced by the work of Faugeras, Luong and

Maybank [5]. These equations are considered to be the first solution to auto

calibration problem. Kruppa equations are based on the epipolar restriction.

They state that the epipolar lines corresponding to epipolar planes tangent to

the absolute conic, should be tangent to its projection in both images. These

epipolar planes which are passing through both camera centers C1 and C2 are

tangent to ω∞ on the plane at infinity π∞. Kruppa equations imposes that the

epipolar planes should also be tangent to the images of ω∞ in the image planes

of the cameras. This situation is illustrated in Figure 3.1. We assume that ω

and ω′ are the images of a world conic Ω and ω∗ and ω∗
′
are their duals. Let H

show the homography matrix from first image to the second one , we have [1]

[e′]×ω∗
′
[e′]× = H−T [e]×ω∗[e]×H

−1 (3.1)
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Figure 3.1: Epipolar constraint of Kruppa equations.

where [e]× is a skew-symmetric matrix defined as

[e]× =




0 −e3 e2

e3 0 −e1

−e2 e1 0


 (3.2)

Equation 3.1 is valid because [e′]×ω∗
′
[e′]× is a degenerate point conic. However,

using Equation 2.6.2 the right hand side of Equation 3.1 is equal to Fω∗FT . On

the other hand, from the properties defined for ω∗∞ in Chapter 2, we know that

ω∗∞ is fixed under any similarity homography. Therefore, 3.1 is written as

[e′]×ω∗
′
∞[e′]× = Fω∗∞FT (3.3)

Considering the relationship between ω∗
′
∞ and intrinsic camera parameters K,

auto calibration can be performed using Equation 3.3. This relation gives the

basic idea behind Kruppa equations. It worths noting that no projective re-

construction is necessary in this method which means that computing camera

projective matrices is not necessary. Assuming constant internal parameters in

all views, which can be achieved if all images are taken using the same camera,
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Kruppa equations provide two constraints on the intrinsic parameters. Given

three images and finding F between each pair, six constraints are obtained which

are sufficient to solve the equations. One disadvantage of Kruppa equations is

that they provide no constraint when there is no translation between images.

This is clear from the Equation 3.3 because in case of no translation we have

F = [e′]×. Another disadvantage of using the Kruppa equations is the com-

plexity of the solutions [6]. However, when there are only one pair of images,

Kruppa equations are the only constraint available.

3.1.2 Modulus Constraints

The plane at infinity can be used to find camera parameters. The property of

the homographies of the plane at infinity are used for this purpose [15]. Infinity

homography H∞
ij from view i to view j can be written as [15]:

H∞
ij = KRT

ijK
−1 (3.4)

where Rij is the rotation matrix that describes the relative orientation of the

jth camera with respect to the ith one. From Equation 3.4 it is clear that H∞
ij

is conjugated with a rotation matrix which implies that its eigenvalues have the

same moduli. Writing the characteristic equation of H∞
ij we have:

Det(H∞
ij − λI) = l3λ

3 + l2λ
2 + l1λ + l0 (3.5)

The necessary condition for the roots of Equation 3.5 to have the same moduli

is given as

l3l
3
1 = l32l0 (3.6)

With three images, three pairs of constraints of the type given in the Equation

3.6 on the parameters of π∞ are obtained. This yields a limited number of

solutions. Some of these can be omitted considering only real valued cases.

Having located the plane at infinity, image of dual absolute conic can be found
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as follows.

ω∗∞ = H∞1iKKTHT
∞1i (3.7)

Camera parameters are found from Cholesky decomposition of ω∗∞.

ω∗∞ = KKT (3.8)

3.1.3 Auto Calibration using Absolute Dual Quadric

Since the absolute conic is constant under Euclidean transforms, its images are

also invariant under a moving camera if the intrinsic camera parameters are

constant. This is the main idea used in some auto-calibration methods. Triggs

[17] proposes to determine absolute dual quadric by assuming that images of the

absolute conic are constant in all cameras. The problem here is that the relations

are homogeneous and therefore the equalities satisfy only up to some unknown

scale factor. Triggs solve this problem by considering the cross product of the

ratio. This gives a set of quadratic equations which provides intrinsic camera

parameters. The absolute dual quadric Ω∗
∞ is a symmetric 4 × 4 degenerate

matrix of rank 3. Ω∗
∞ projects to ω∗∞ by the following equation.

ω∗∞ = PΩ∗
∞PT (3.9)

ω∗∞ is related to intrinsic camera parameters via Equation 3.8 which means that

if intrinsic camera parameters are constant in all images, ω∗∞ is the same in all

projections and the right hand side parts in Equation 3.9 are equal up to some

unknown scale factor. Since Ω∗
∞ is symmetric, there are only 10 unknowns and

given at least three images taken with constant intrinsic parameters, they may

be determined. The method is easily extendable to cases where only some of the

intrinsic parameters are constant or some of them are known. This feature is

very important when the images are taken with the same camera with different

focus settings. To solve the scale factor problem Triggs proposes using cross

product to eliminate scale factor as follows.

‖ω∗∞(ab) ∧ (PiΩ
∗
∞PT

i )(cd)‖2 = 0 (3.10)
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where ab and cd refer to an element at row a, column b, and row c, column

d, respectively. ∧ denotes cross product so A(12) ∧ B(34) = A(12) × B(32) −
A(34)×B(12). Triggs minimizes 15m equations of this type arising from bilinear

quadratic projection constraints given by Equation 3.10 subject to Det(Ω∗
∞) = 0.

Here m is the number of views. Heyden and Äström [41] propose a similar

method but they consider scale factors as unknown parameters and assume that

the first camera matrix is P1 = [I3×3|0]. If the position of the principal point is

known, the method can be simplified to a set of linear equations. If we assume

the principal point to be at the origin of the coordinate system, then Ω∗
∞ is

defined is terms of intrinsic camera parameters as follows.

Ω∗
∞ =




α2
x + γ2 γαy 0

γαy α2
y 0

0 0 1


 (3.11)

This equation turns out to be a set of linear equations. However, since the

image measurements are subject to noise and inaccuracy in matching points

in the images, a least squares solution is preferred which can be found using

singular value decomposition.

3.1.4 Auto Calibration using Essential Matrix

Essential matrix is the calibrated form of the fundamental matrix which is re-

lated to fundamental matrix by Equation 2.16. Since fundamental matrix F

has rank 2, one of the eigenvalues is zero. E also is of rank 2 but the non-zero

eigenvalues are equal. This puts a constraint for computing the camera intrinsic

parameters from F. Auto calibration by means of essential matrix is used by

Hartley [31], Faugeras [26], Luong [25] to find K. The method is first introduced

by Hartley where he uses only two images. He shows that using two images,

it is only possible to extract at most two parameters of the intrinsic camera

matrix. The method is later extended to a larger image sequence by Mendonça

and Cipolla[35] which makes possible to extract all camera parameters and to
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increase stability of the algorithm. Assuming similar internal parameters in all

cameras, a cost function can be defined as follows.

C(K) =
n∑

i=1

n∑
j=i

wij
1σij − 2σij

1σij + 2σij

(3.12)

where wij is a coefficient showing the degree of confidence in the computation

of fundamental matrix and 1σij and 2σij are two non-zero singular values of E

in descending order between images i and j. Assuming all internal parameters

fixed but unknown means that we should have at least three different images

taken from different views. This fact has been pointed by Hartley [2] as:

n× nk + (n− 1)× nf = 8 (3.13)

where n is the number of views, nk the number of known parameters and nf num-

ber of fixed but unknown parameters. Mendonça and Cipolla in their algorithm

have considered a large sequence of images to increase stability and robustness

but assumed λ = 0. A slightly different implementation of this method and

experimental results are also given by Fusiello [27].

3.2 Restricted Motion Algorithms

Any knowledge about the type of camera motion can be incorporated into the

calibration algorithms. Among camera motions some restricted motions are of

interest. Restricted motions can make camera calibration algorithms simpler.

However, in some of these motions, all camera parameters can not be found.

Yet, in some other group of restricted motions, camera calibration is possible

but scene reconstruction can not be done. In addition, the motions in real

world applications are not exactly restricted motions, but near to them which

means a new source of inaccuracy is being added to the algorithms. However,

the simplicity and speed of computation makes these algorithms attractive for

the applications where high accuracy is not required. Furthermore, the results

obtained from these algorithms may be used as initial values for other methods.
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3.2.1 Pure translation

Van Gool [37] shows that when the camera moves only in a pure translation

form, the camera matrices become P1 = [I3×3|0] and P2 = [I3×3| − t]. He also

shows that P1 = [I3×3|0] and P2 = [I3×3|e] give an affine reconstruction. The

latter result is easily obtained by noting that these camera matrices are found

from metric ones through an affine transformation. A world point X is projected

to these images as:

s1x1 = K[I|0]X

s2x2 = K[I| − t]X (3.14)

s2x2 = s1x1 + se

Considering the above equations, a homography from the first image to the sec-

ond image is given by H∞
12 = I3×3 and therefore, this method can not provide

any constraint to find K and a metric reconstruction. Armstrong modified this

method by adding new views with rotation. He first finds the affine reconstruc-

tion from pure translation and then upgrades to metric reconstruction by using

additional views [24].

3.2.2 Pure rotation

In the case of pure rotation, the camera matrices become P1 = [I|0] and Pi =

[Ri|0]. A world point X = [xT w]T is projected to the first image as x1 = Kx

and to image i as xi = KRix. This gives the relationship between the image

points with a homography such as H1i = KRiK
−1. This relation is valid for

points at infinity and can be written as x∞i = KRix. On the other hand form

the definition of the dual of the absolute conic ω∗∞ we have:

ω∗∞ = H∞
ij ω∗∞H∞T

ij (3.15)

This relation can be used to find the camera intrinsic parameters K. However, it

should be noted that images of the world point X are independent from the last
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coordinate component w. This means that despite possibility of auto calibration

in this type restricted motion, 3D reconstruction is not possible.

3.2.3 Planar motion

Planar motion can be described as a translation in a plane and a rotation about

an axis normal to this plane. If all motions in a sequence are planar and rotation

axes are parallel, then it is called a planar motion sequence. The plane at infinity

and the absolute conic are invariant in auto calibration methods. These two

invariants are used in all auto calibration methods to find the camera parameters.

In planar motions, two more invariants are added which are used in finding the

plane at infinity. These points are the vanishing point of the rotation axis and the

vanishing points of the motion plane. The intersection points of the vanishing

line of the motion plane or horizon with the absolute conic are also fixed. To

extract these points, it is necessary to find the fixed points. The horizon is the

image of the plane through all centers of projections. The vanishing point is

located as the intersection of the images of all rotation axes. Planar motion has

been used for camera calibration by different groups such as Armstrong et al

[24], Agapito et al [23], Oliensis [36] and Triggs [39].
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CHAPTER 4

Auto Calibration with Single Axis Rotations

and Small Translations

Auto calibration in the general motion case is subject to some difficulties arising

from its intrinsic limitations [38]. In some specific classes of motions, camera

parameters can not be recovered. These classes of motions and the related diffi-

culties are independent from the auto calibration methods. In these cases which

are referred to as degenerate cases, either no solution can be found for a camera

parameter or the solution is not unique. One of these degenerate cases which fre-

quently happens in human face modelling applications, is having rotations about

parallel axes. This type of degenerate motion makes camera calibration and 3D

reconstruction impossible. Small translation also deteriorates the reconstruction

phase, because the intersection point of the image lines are far from the image

plane and hence subject to computation error. This chapter gives an insight

into the degeneracy problem and the solution adopted for face reconstruction

application. The reliability of the solution is also verified experimentally.
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4.1 Degenerate Motions

In Equation 3.8, we show that the intrinsic camera parameters are related to a

degenerate point conic called absolute conic. The absolute conic is an imaginary

conic lying on the plane at infinity and has a fixed projection in all images. The

degeneracy problems occur when the absolute conic is not the only conic having

a fixed projection in all images. In this case, there is no way to determine which

conic corresponds to the real absolute conic and the motion sequence is called

critical motion with respect to auto calibration. The term critical motion is

used because the degeneracy caused in this way is independent from the internal

camera configuration.

Any proper imaginary conic on π∞ is given by a 3×3 symmetric matrix C. The

image of C in view i is given by ci = RiCRT
i where R is the rotation matrix.

To have the identical images of a conic, we should have ci ' cj where ' stands

for equality up to a scale factor. This means that we should have

RiCRT
i = RjCRT

j (4.1)

where the ' sign has changed to = because R is a rotation matrix and therefore

its determinant is equal to 1. From Equation 4.1 the critical motions can be

found as [1]:

• a rotation of angle zero (pure translation);

• an arbitrary rotation around a fixed axis r;

• a 180◦ rotation around an axis normal to a fixed direction r.

In the first case, cameras are translated with respect to each other and all proper

imaginary conics in π∞ have same images in all views. In the other two cases,

the conics are given as a family of parametric matrices

C = λI3 + µrrT
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where λ and µ are arbitrary parameters and we end up with several solutions.

Considering R = RT
j Ri as the relative rotation between views i and j we may

have the following relation from Equation 4.1.

RC = CR (4.2)

This equation imposes the restriction that R should leave the eigenvalues of C

invariant. To satisfy this restriction, the potential absolute conic lying on π∞

should belong to one of the following groups considering its eigenvalues.

1. Three equal eigenvalues.

2. Two equal and one distinct eigenvalues.

3. Three distinct eigenvalues.

Only the real absolute conic itself corresponds to the first case, which is therefore

not a degenerate case. In the second case, the eigenspace corresponds to a plane

and a line orthogonal to that plane. An arbitrary rotation around that line,

or, a rotation of 180◦ around a line in the plane which is incident to the other

line, leaves the image of the conic unchanged. In the third case, the eigenspace

consists of three mutually orthogonal lines. The rotations of 180◦ around one of

these lines leave the image of the conic unchanged. We may classify this group

of critical motions as follows.

1. Motion sequences for which all rotations are by an arbitrary angle about

an axis on a plane or by 180◦ about an axis normal to the plane.

2. Motion sequences for which all rotations are by 180◦ about mutually or-

thogonal axes.

3. Motion sequences for which all rotations are by 180◦ about an specific axis.

4. Motion sequences for which no rotation takes place at all.
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The above groups of degenerate motions have practical importance, since some

of the critical motion sequences are often used for acquiring images. One of the

cases in practice is translating arbitrarily while rotating about a fixed direction.

This is the case when we are taking images of human faces from different views.

Next section describes our solution for this kind of degeneracy [12].

4.2 Removing Degeneracy

Auto-calibration methods discussed in Chapter 2 are applicable if there are

rotations about at least two non-parallel axes. The ambiguity can be described

as follows: since absolute conic lies on the plane at infinity, its images on the

different views are related to each other by a planar infinite homography Hi
∞.

ω∗∞ = Hi
∞ω∗∞HiT

∞ (4.3)

However, Hi
∞ is related to internal and external parameters by Equation 4.4.

Hi
∞ = KRiK

T (4.4)

Assuming dr to be the unit eigenvector of R, we have Rdr = dr and the eigen-

vector of Hi
∞ is v = Kdr. This means that a one-parameter family of solutions

such as ω∗∞(µ) = ω∗∞+µvvT satisfy Equation 4.3 and the solution is degenerate

and not unique. To obtain a unique solution, two more restrictions are added

which are: skew γ = 0 and aspect ratio λ = 1. These restrictions are reason-

able assumptions in most real imaging systems. Assuming γ = 0 gives a unique

solution when the rotation is about an axis which is not parallel to one of the

axes of the camera. On the other hand, if the rotation is about an axis parallel

to x axis, assuming γ = 0, ω∗∞ becomes:

ω∗∞ =




α2
x(1 + µ) + x2

0 x0y0 x0

x0y0 α2
y(1 + µ) + y2

0 y0

x0 y0 1


 (4.5)
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where x0 and y0 are camera principle point coordinates and αx and αy are the

camera resolution in the unit of length in x and y directions respectively. In

general, if the rotation axis is parallel to one of the camera axes, the solution is

parametric in µ and the ambiguity becomes as given in Table 4.1

Table 4.1: The relation between ambiguity and rotation axis

rotation axis ambiguity
x-axis αx can not be determined
y-axis αy can not be determined
z-axis αx and αy can not be determined

Therefore in the first two cases, the second restriction, that is assuming λ = 1

leads to a unique solution. However, when the rotation is about z axis, since

two values are parametric, a unique solution is not possible.

4.3 Sensitivity of Internal Camera Parameters

To evaluate the results obtained from any camera calibration algorithm and ver-

ify the effect of different assumptions in solving the calibration problem, an error

evaluation method is described in this section. In this method, we assume that

the intrinsic and extrinsic camera parameters are known for evaluation purposes.

Random points from a unit sphere in front of the cameras are generated and

their images are mapped by the cameras from different view points. The images

are then used as input to the auto-calibration algorithms and their 3D values

are recovered considering the global scale which is available and compared with

their true values. The main advantage of this testing method is that we can

change the intrinsic camera parameters freely and consider the reconstruction

error caused by these modifications. Furthermore, it is possible to consider the

effect of initialization or some degenerate values in the convergence of the algo-

rithms. We also consider the effect of noise in the detection and matching the

points by adding a zero mean Guassian noise with different standard deviation

values to the position of points in the images. n different cameras are generated
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by assuming the first camera at the center of the coordinate system and the

others translated by ti and rotated by Ri . The camera matrices therefore are:

P1 = [I3×3|0] and Pi = K[Ri|ti] i=2,..,n. Images of a set of 3D points (X)

are generated from xi = PiX where the subscript i refers to the camera being

used. The reconstruction of the points is done by finding intrinsic parameters K

and homography H matrices and then computing 3D coordinates of the points

by triangulation [2]. Since true values of coordinates of the points are known,

overall scaling of the scene is straightforward. The method is used in:

1. evaluation of the auto-calibration method used to find intrinsic parameters,

2. evaluation of the effect of some assumptions such as vanishing skew, aspect

ratio=1 or principal point at the origin,

3. reconstruction errors due to the assumptions in intrinsic parameters,

4. reconstruction errors due to the mismatches in finding point pairs.

First group of experiments which includes nine cases tests the sensitivity of each

method to the assumptions concerning internal camera parameters. We consider

assumptions on skew, aspect ratio, and location of the principal point. For each

parameter, three different tests with different levels of error in the assumed

parameter are conducted. Second group of experiments examines the sensitivity

of each method to noise in image points. Gaussian noises with three different

standard deviation values are examined. Each test case is carried out using 100

random points from a unit sphere in front of five viewing cameras. The results

are drawn by repeating the test cases with different random points for 100 times

and getting their average values. Tables 4.2 to 4.10 demonstrate the results of

the first group of tests. If Xi −X ′
i is the difference between computed and true

values, Root Mean Square of Reconstruction Error RErms is defined as:

RErms =

√√√√ 1

n

n∑
i=1

(Xi −X ′
i)

2
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Table 4.2: Effect of a wrong assumption in skew (γ = 0 assumed, true value
γ = 10).

Method True values Error in (%) RErms

αx γ λ x0 y0 αx γ λ x0 y0

Linear
UsingΩ∗∞
UsingE

800 10 1 0 0
800 10 1 256 256
800 10 1 256 256

6.20 − 2.24 0.00 0.00
2.30 − 0.31 3.18 2.12
1.67 − 0.61 4.33 0.11

0.11
0.02
0.04

Table 4.3: Effect of a wrong assumption in skew (γ = 0 assumed, true value
γ = 30).

Method True values Error in (%) RErms

αx γ λ x0 y0 αx γ λ x0 y0

Linear
UsingΩ∗∞
UsingE

800 30 1 0 0
800 30 1 256 256
800 30 1 256 256

13.20 − 8.3 0.00 0.00
4.80 − 0.29 4.10 3.12
6.90 − 0.70 5.40 5.86

1.02
0.05
0.14

Table 4.4: Effect of a wrong assumption in skew (γ = 0 assumed, true value
γ = 50).

Method True values Error in (%) RErms

αx γ λ x0 y0 αx γ λ x0 y0

Linear
UsingΩ∗∞
UsingE

800 50 1 0 0
800 50 1 256 256
800 50 1 256 256

23.16 − 12.71 0.00 0.00
13.10 − 7.30 3.20 3.15
19.23 − 6.80 17.18 11.32

1.97
1.54
1.72

Table 4.5: Effect of a wrong assumption in aspect ratio ( λ = 1 assumed and
true value λ = 1.05 ).

Method True values Error in (%) RErms

αx γ λ x0 y0 αx γ λ x0 y0

Linear
UsingΩ∗∞
UsingE

800 0 1.05 0 0
800 0 1.05 256 256
800 0 1.05 256 256

7.01 26.20 − 6.10 7.30
4.14 12.30 − 1.30 1.19
6.08 33.00 − 1.10 2.30

0.60
0.35
0.43

Table 4.6: Effect of a wrong assumption in aspect ratio ( λ = 1 assumed and
true value λ = 1.1 ).

Method True values Error in (%) RErms

αx γ λ x0 y0 αx γ λ x0 y0

Linear
UsingΩ∗∞
UsingE

800 0 1.1 0 0
800 0 1.1 256 256
800 0 1.1 256 256

37.10 12.60 − 4.23 3.92
12.03 11.40 − 3.11 1.12
24.25 15.25 − 1.56 2.50

1.63
0.91
1.42
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Table 4.7: Effect of a wrong assumption in aspect ratio ( λ = 1 assumed and
true value λ = 1.3 ).

Method True values Error in (%) RErms

αx γ λ x0 y0 αx γ λ x0 y0

Linear
UsingΩ∗∞
UsingE

800 0 1.3 0 0
800 0 1.3 256 256
800 0 1.3 256 256

89.4 9.10 − 19.29 11.68
63.20 12.90 − 6.18 2.15
95.10 8.10 − 0.58 0.21

2.87
1.97
2.54

Table 4.8: Effect of a wrong assumption in the location of principal point (x0 =
0,y0 = 0 assumed and true values x0 = 10,y0 = 10).

Method True values Error in (%) RErms

αx γ λ x0 y0 αx γ λ x0 y0

Linear
UsingΩ∗∞
UsingE

800 0 1 10 10
800 0 1 10 10
800 0 1 10 10

7.23 8.10 5.10 − −
1.10 0.90 0.23 − −
2.30 0.80 0.75 − −

1.14
0.71
0.98

Table 4.9: Effect of a wrong assumption in the location of principal point (x0 =
0,y0 = 0 assumed and true values x0 = 25,y0 = 25).

Method True values Error in (%) RErms

αx γ λ x0 y0 αx γ λ x0 y0

Linear
UsingΩ∗∞
UsingE

800 0 1 25 25
800 0 1 25 25
800 0 1 25 25

16.1 17.8 15.30 − −
6.90 2.10 1.22 − −
9.10 3.90 0.96 − −

2.12
1.62
1.93

Table 4.10: Effect of a wrong assumption in the location of principal point
(x0 = 0,y0 = 0 assumed and true values x0 = 50,y0 = 50).

Method True values Error in (%) RErms

αx γ λ x0 y0 αx γ λ x0 y0

Linear
UsingΩ∗∞
UsingE

800 0 1 50 50
800 0 1 50 50
800 0 1 50 50

29.65 28.10 12.10 − −
16.40 0.70 5.30 − −
18.50 0.30 7.38 − −

5.91
2.29
2.50
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The results present the sensitivity of reconstruction error to wrong assump-

tions in each internal camera parameter. The results show that invalid assump-

tions in the skew parameter smaller error effects in the reconstruction values

and in the estimation of the other parameters. Assumptions on the principal

point location are generally less reliable. This is particularly evident from the

results of the linear method. The results given above are the average of the

values obtained in 100 tests however, the cases where the algorithm does not

converge have not been considered. These cases happen when the noise effect or

improper assumption on camera parameters makes data inconsistent for metric

reconstruction. Second group of testing cases are related to the impact of noise

in the image points. Tables 4.11 to 4.13 show the reconstruction and calibration

errors due to a Gaussian noise added to the image points. The results show that

matching error is relatively important in finding RMS reconstruction error.

Table 4.11: Effect of a Gaussian noise with δ = 0.5.

Method True values Error in (%) RErms

αx γ λ x0 y0 αx γ λ x0 y0

Linear
UsingΩ∗∞
UsingE

800 10 1 0 0
800 10 1 256 256
800 10 1 256 256

8.13 3.20 2.90 0.00 0.00
2.13 0.38 0.67 0.03 0.01
4.38 1.48 0.39 0.01 0.10

3.12
0.75
2.18

Table 4.12: Effect of a Gaussian noise with δ = 1.0.

Method True values Error in (%) RErms

αx γ λ x0 y0 αx γ λ x0 y0

Linear
UsingΩ∗∞
UsingE

800 10 1 0 0
800 10 1 256 256
800 10 1 256 256

12.29 4.19 3.82 0.00 0.00
2.35 0.39 0.02 1.90 1.02
6.21 3.10 0.11 3.90 6.64

3.71
0.91
2.94

Table 4.13: Effect of a Gaussian noise with δ = 1.5.

Method True values Error in (%) RErms

αx γ λ x0 y0 αx γ λ x0 y0

Linear
UsingΩ∗∞
UsingE

800 10 1 0 0
800 10 1 256 256
800 10 1 256 256

34.48 12.10 1.78 9.54 1.35
3.68 1.71 0.12 2.30 2.41
11.99 2.85 0.90 2.91 5.75

4.86
1.45
3.21
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4.4 Discussion

We present experimental results on the sensitivity of reconstruction error to the

assumptions on intrinsic camera parameters and to the noise in the input images.

The significance of this experience is an experimental verification of the method

that we propose for degeneracy. To study the sensitivity, three auto-calibration

methods are used: auto-calibration using absolute quadric in linear and non-

linear cases, and auto-calibration using essential matrix. We consider the effect

of change in each camera parameter separately. The results show that a small

deviation from zero in skew parameter has no major effect in the reconstruction

and in estimating the remaining camera parameters. This fact is important, for

several reasons. First, in most of the contemporary physical cameras, the skew is

either zero or very close to zero; therefore assuming this parameter to be zero is

safe and even in rare cases where it is not zero, the reconstruction error is small.

Second, Triggs showed that a vanishing skew value could help in solving some

degenerate cases due to critical motions [32]. Finally, given sufficient number of

images, auto-calibration may be performed using only known skew parameter

[33]. On the other hand, invalid assumptions in the values of aspect ratio and

position of principal point generally cause major errors in the reconstruction.

This is clear from the results obtained by linear method, which is based on the

assumption that principal point is at the origin. Our conclusions conform to

the theoretical discussion given by Hartley and Kaucic [29] where they report

that the assumed position of the principal point may have a large effect on the

reconstruction. From the application point of view, incorporating additional

assumptions in all of the methods considered in this study is possible without

difficulty. Linear method needs no initial values; however it is more sensitive to

the input data. We have even experienced cases in which this method generated

no feasible solution. Each method can be implemented by using various algo-

rithms. There exist several solution methods to auto-calibration using essential

matrix and we have adopted the method proposed by Cipolla [35] . Similarly
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for the method based on absolute quadric, Triggs in [17] reports the results from

two different methods used for solving the non-linear equation. Furthermore,

Hartley mentions a method based on minimizing geometric error for calibrating

a camera using absolute quadric [2]. However, we can state that in general the

rate of sensitivity in the calibration parameters remains the same whatever the

implementation method is. The output from these methods can be used as an

initial point in iterative geometric error minimization methods such as bundle

adjustment [16]. The relationship between the assumptions on camera parame-

ters and reliability of the computed initial points for bundle adjustment can be

verified in a similar method. In addition the evaluation method discussed here

can be extended to include the effects of other physical properties of the camera

such as distortions generated by camera lens.
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CHAPTER 5

Face Model Generation and Refinement

Approaches

5.1 Introduction

Appropriate combinations of geometric descriptors, surface texture and anima-

tion capabilities permit modeling of human faces. This chapter investigates

modeling of human faces. Across the human population, the faces of individuals

exhibit a lot of variation in their appearance, but they all still have a good deal

of structure in common. Human faces are the most important feature distin-

guishing people from each other. They also play an important role in a wide

range of applications. Graphical modeling of faces has obvious applications in

the entertainment industry for character animation and in simulations involv-

ing people. Man-machine interaction benefits from the face tracking and the

ability to monitor a user’s attention and reactions automatically. Other ap-

plications range from interactive entertainment to security. In this chapter, a

literature survey about the techniques for 3D modeling such as mesh deforma-

tion and Voronoi-Delaunay diagrams are presented. We also discuss some of

the available methods for geometric description of faces. Each modeling method
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is considered from two aspects: ability to support facial motions and ease of

visualization.

5.2 Model-based techniques

Using high quality and high fidelity models is a challenging task for computer

vision. In the absence of knowledge about the objects being observed, vision

techniques often extract information for each image pixel. Improvements to this

individual pixel view exploit the spatial coherency expected in most situations.

Of course, such assumptions carry with them the added complexity of segmenta-

tion and finding the boundaries of coherent regions in space. Meanwhile, in the

presence of knowledge concerning the observed objects, such as membership in a

particular class of objects, model-based vision techniques extract information for

each degree of freedom of a particular model. However, the use of model-based

techniques introduces a new set of problems. The most significant one is the

problem of maintaining alignment of the model with the image. Even though

an accurate observation model might be available, if its current state does not

correspond with the current state of the observed object, the advantage of using

a model is lost. Another difficulty arises from dependencies between parameters.

This problem becomes more important as model complexity increases. As a re-

sult, information extracted in a model-based framework must be used carefully,

and combined in a way that considers these dependencies. The model-based

technique described in this thesis is applied to faces. Face identification in 3D

is a particularly natural test bed for our research.

5.3 Face modeling

Various methods have been employed in applying model based techniques to

human faces. Each method however, should consider geometry, appearance and

motion capabilities of the resulting model. In this section we discuss each part
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separately and introduce some of the methods used in them. 3D face modeling

involves three basic parts:

1. geometrical modeling

2. surface modeling

3. deformation modeling

Geometrical modeling defines the outer boundaries of the space occupied by the

head and face being modeled. Three different geometric modeling methods have

been used for facial applications. These methods involve:

1. using a group of discrete 3D points sampled from the outer surface of the

head and face,

2. using a set of primitive geometric shapes like cylinders and spheres,

3. using a parametric mathematical model such as NURBS or B-Splines that

defines the surface of the head and face.

In the first group of methods, 3D sample points are grouped into polygons (gen-

erally triangles) and the head is given by a mesh of these polygons. The main

advantage of using a mesh is its simplicity of implementation and availability

of hardware display facilities for effective rendering. These meshes also provide

linear interpolated values for unavailable data points. This group of methods

are discussed in more detail in Section 4.4

Primitive geometric shapes generally referred to as constructive solid geometry,

(CSG), are too simple to produce a complicated shape like human face reason-

ably so in most cases the applications of this method are restricted to simple

games or animations. Among the applications of CGS in shape modeling, we

may mention medical volume visualizations. Voxels from medical images such as

MRI are used for shape representation but due to their high resolution, rendering

and animation are computationally intensive. Animation of the models created
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by this way is complex when the motions include structural changes. However,

some techniques such as marching cubes algorithm can be used to extract the

outer surface of the model defined by the voxels. Parametric models have the

advantage of creating a smooth surface which is determined using only a limited

number of control points. However, in locations with high density details such

as eyes and mouth, they suffer from a loss of accuracy. The parametric models

can be grouped as implicit surfaces and parametric surfaces. An implicit surface

is defined by a function such as F (x, y, z) which assigns a scalar value to each

point in 3D space. The surface defined by such a function is the set of points

satisfying F (x, y, z) = 0. An example can be a sphere centered at (0, 1,−1) with

unit radius and defined using the following function.

F (x, y, z) = x2 + (y − 1)2 + (z + 1)2 − 1

Polynomial functions may be used to describe implicit surfaces. The implicit

surfaces defined this way can be also combined by blending them. Adding con-

straints to the functions used for implicit surface definition lets us define complex

surfaces however; low degree of user control over them makes their usage in fa-

cial animation difficult. Parametric surfaces are generated by three functions of

two parametric variables, one function for each of the spatial dimensions. These

functions are generally based on quadratic or cubic polynomials and are usually

defined in terms of control values and basis functions. Most famous functions

in this group are B-splines, Bezier and NURBS. A general expression for these

functions can be

S(u, v) =
∑

i

∑
j

VijBik(u)Bjm(v)

where S(u, v) is the parametric surface, Vij are the control values, and Bik(u)

and Bjm(v) are the basis functions of polynomials of orders k and m respectively.

To add these details hierarchical B-Splines have been used. Surface modeling

refers to adding color and texture values to each point on the surface defined by

geometric modeling.
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Deformation modeling in used to specify the type of surface and geometry

changes due to expressions such as anger and laugh or activities like talking

and eating. These changes are the basic part of animation systems. Form, size

and location of head bones and muscles and the joints connecting them are

among the features which should be considered in deformation modeling.

5.4 Geometric modeling using 3D sample points

Geometric models of head and faces may be acquired from 3D sample points.

[34, 40, 47] These points may be found from direct measurements on the head

and face such as by range scan data, or obtained from the images taken by

digital cameras. In both cases, the number of the sample points is not sufficient

for creating a smooth detailed surface and an interpolating process is necessary.

To accelerate the rendering process, sample points are generally converted into

a triangular mesh, which at the same time plays the role of interpolating step.

One of the major problems here is that in range scanned data, large number of

points makes rendering process and animation unacceptably slow. On the other

hand, number of sample points obtained from 2D image is generally low. This

is partially due to lack of texture and partially due to low quality of images

or illumination problems. In addition, defining the boundaries of face features

especially in concave regions can make artifacts. A generic mesh with a limited

number of vertices can solve the problems in both cases. Assuming a generic

mesh and deforming it using the data obtained from range scanners or 2D images

implies that all face and head models are geometrically similar to each other

and the differences are very slight. However, the correlation between the face

features and the relationships in the geometric properties of the vertex points

makes the morphing of a generic mesh into a specific one a difficult task. This

is the main argument in favor of the methods, which prefer creation a new mesh

to deforming a generic one. Considering the above discussions, we may group

face modeling algorithms using 3D sample points as:
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1. generic mesh deforming algorithms,

2. interpolating algorithms,

3. mesh creating algorithms.

In the first group, the locations of vertices in the generic mesh are changed by

moving them towards the sampled points. Remaining vertices are adjusted using

either an interpolation algorithm or simulating deformations as external forces.

Akimoto et al have used a generic mesh, which includes two types of vertices:

feature vertices and non-feature vertices [42]. Feature vertices are moved to

their new positions obtained from a frontal and a profile images. Non-feature

vertices are displaced as much as a vector unit computed by interpolating the

displacement vectors of feature vertices. A coefficient value function is used in

the interpolation, which gives large values for small distances between vertices.

This function emphasizes on the importance of nearby feature vertices. Luo and

King deform a generic mesh in two stages [43]. The first stage includes fixing

the location of boundary vertices and displacing inner vertices by interpolating

their location values. In the second stage, the vertices from the boundaries of

face features are found and adjusted. Yan et al have considered a mesh with

springs connecting the vertices to each other [44]. Deformation in their algo-

rithm is done in two levels. In the first level which they call it as coarse level,

a set of vertices are allowed to move. This may consist of an organ or part of

an organ. The movement then is propagated in the relative area. In the fine

level, a single vertex of the mesh is moved to a new place. The 3D coordinates

of the neighboring vertices are computed by deformation algorithm as in the

coarse level. Tang and Huang used a generic mesh and two images of a person

in frontal and profile positions to create the 3D model of a person. They deform

the mesh by first globally mapping it to fit the face boundaries. Then each facial

feature is mapped locally to fit the feature points. They finally combined face

models mapped to different views of the face images and got a complete 3D face
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model.

Second group argues that a specific head is a weighted average of a group of

base head models. The only unknown part here is the estimation of weight coef-

ficients. Generally these methods are restricted to a limited form of faces like a

specific race. Among this group Zhang [20] and Vetter [45] have carried out the

most popular studies. Zhang defines a face as a linear combination of a neutral

face and some number of face metrics where a metric is a vector that linearly

deforms a face in certain way, such as to make the head wider or the nose bigger.

A triangular mesh gives the neutral face. In fitting the face model, a search is

done for both the pose of the face and the metric coefficients to minimize the

distance from the reconstructed 3D points to the face mesh.

Third group is based on the argument that a mesh can always be created when-

ever a set of 3D vertices is available. Generally these groups of algorithms use

generic surface modeling methods such as Delaunay triangulation. The main

disadvantage of these methods when applied to human face modeling with pas-

sive data acquisition is the uncertainty in locating main feature vertices. This

is generally compensated for by starting from a generic mesh and using the 3D

coordinates of the vertices from the generic mesh whenever no data is available

about a feature point. In this group we may mention the work by Thalman et

al [46], Fua et al [9]. Thalman et al start with mapping the vertices of a generic

mesh on a 2D plane. Some of these points corresponding to main features of

the face are picked which are called control points. A Delaunay triangulation

is created and non-control points are expressed using their local barycentric co-

ordinates. Next step in their algorithm is moving the control points to their

correct locations found in previous steps. When the control points are placed,

the displacements of non-control points are interpolated according to their lo-

cal barycentric coordinates. This algorithm assumes accurate detection of the

location of control points. It also suffers from the problem of losing accuracy in

highly detailed areas. Fua et al start with an initial mesh, which is given by tri-
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angulating the depth map provided in the previous step. Then they iteratively

refine the initial mesh by minimizing an energy function consisting of an internal

term and an external term. The external term is derived from the stereo infor-

mation assuming that the projections of a 3D point on 2D image planes have the

same intensities. This minimizes the intensity difference between the projections

of the face. The internal term tends to minimize the deviation of the mesh from

its regular form by minimizing the global curvature of the surface. However since

the parameter space of the energy function is too large, they simplify the mesh

by finding the direction of minimum and maximum curvatures and increasing

the length of the edges of the new mesh in the direction of minimum curvature.

This algorithm is based on the assumption that initial locations of the points

are accurate enough to provide the reliable values for curvatures in the initial

mesh.

5.5 Voronoi-Delaunay diagrams

In all of the methods dealing with meshes, artifacts due to improper location of

vertices, overlapping or encroaching of edges, existence of skinny polygons, etc

can deteriorate the models. A well known and mathematically sound method

for modeling is given by Voronoi-Delaunay diagrams [48]. Voronoi-Delaunay

diagrams have significant importance in generating 3D models. In this section,

the basic underlying theory is introduced. The section includes the necessary

definitions, theorems and algorithms for creating, modifying and updating De-

launay meshes. The theoretical concepts provided here are used in describing

our mesh deformation algorithm in Chapter 6.

Let P = {p1, p2, · · · , pn} be a set of points in Euclidean 2D space. These

points are called sites and the plane is partitioned so that each point is assigned

to its nearest site. All points assigned to each partition such as p form the

Voronoi region or Voronoi polygon
∨

(p). The set of all points that have more

than one nearest neighbor is called Voronoi diagram for the set of sites. Given
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a set P = {p1, p2, · · · , pn} of n points in the plane and the Voronoi diagram
∨

(p), an undirected graph can be created by using points of P as vertices of

the graph and connecting vertex pi to vertex pj iff the regions Vi and Vj share

an edge. The resulting graph is a triangulation of the convex hull of P having

P as its set of vertices. This definition can be extended to any set of points in

Rm where the convex hull of the set is associated with its set of vertices. Let E

be any normal affine space. Given any n+1 affinely points a0,· · ·,an in E , the

n-simplex or simplex defined by a0,· · ·,an is the convex hull of these points. n is

called the dimension of the simplex and a0,· · ·,an are its vertices. A simplicial

complex or in short a complex in Em is a set K consisting of a set of simplices

in Em satisfying the following conditions:

• every face of a simplex in K also belongs to K

• for any two simplices σ1 and σ2 in K if σ1

⋂
σ2 6= ∅ then σ1

⋂
σ2 is a

common face of both σ1 and σ1

Second condition guarantees that the various simplices forming a complex are

connected nicely.

A polytope is the geometric realization of some simplicial complex. A polytope

of dimension one is called a polygon and a polytope of dimension two is called a

polyhedron. It can be shown that each region of a Voronoi diagram is a convex

polytope. Figure 5.1 shows a Delaunay triangulation. It is clear from Figure

5.1 that Delaunay triangulation of a set of points in Em is also the convex hull

of them. This property and two other important properties of Delaunay trian-

gulations can be formally stated as follows.

The boundary of the Delaunay triangulation of a set of points such as P is also

their convex hull.

A triangulation T associated with P is the Delaunay triangulation of P iff ev-

ery (m-1)-open ball circumscribed about an m-simplex contains no other point

from P. A Delaunay triangulation maximizes the minimum angle of the trian-

51



Figure 5.1: A sample Delaunay triangulation.

gles involved in any triangulation of a set of points P. Voronoi and Delaunay

diagrams have many applications such as motion planning, finding minimum

spanning trees, finding largest empty cycles and mesh generations.

5.5.1 Mesh Refinement

Adaptive mesh refinement places more grid points in areas where the error in

the solution is known or suspected to be large. Local error estimates based on a

solution computed on an initial mesh are known and can be used to determine

which elements should be refined. One approach to mesh refinement iteratively

inserts extra vertices into the triangulation, typically at edge bisectors or triangle

circumcenters which is the center of a triangle’s circumcircle. Insertion may be

followed by mesh smoothing. This approach gives a finer mesh, but not an edge

conforming refinement of the original mesh. A mesh refinement is called edge

conforming if it includes the boundaries of the original triangles. To compute

such a refinement, another approach is used. This approach splits triangles in
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need of refinement, by adding the midpoints of sides. The algorithm below gives

the overall approach.

Algorithm 2 Triangle splitting algorithm.

1 k = 0

2 estimate the error on each triangle in initial mesh T0

3 while maximum error on a triangle is larger than the given tolerance do

3.a based on error estimates, mark a set of triangles Sk to refine

3.b divide the triangles in Sk, and any other triangles necessary to form

Tk+1

3.c re-estimate error on each triangle of Tk+1

3.d k = k + 1

4 end while

There are a number of alternatives for step 2, in which the current mesh

Tk is adaptively refined. In regular refinement, the midpoints of the sides of a

marked triangle are connected, as in Figure 5.3, to form four similar triangles.

Unmarked triangles that received two or three midpoints are split in the same

way. Unmarked triangles that received only one midpoint are bisected by

connecting the midpoint to the opposite vertex as in Figure 5.3. Before the

next iteration of the algorithm, bisected triangles are connected together and

marked for refinement; this precaution guarantees that each triangle in Tk+1 will

either be similar to a triangle in T0 or be the bisection of a triangle similar to

a triangle in T0. Hence regular refinement, regardless of the number of times

through the refinement loop, produces a mesh with minimum angle at least half

the minimum angle in T0.
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Figure 5.2: Splitting a triangle by four.

Figure 5.3: Splitting a triangle by two.
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Figure 5.4: Smoothing algorithm applied to a mesh.

5.5.2 Mesh Smoothing

Mesh smoothing adjusts the locations of mesh vertices in order to improve ele-

ment shapes and overall mesh quality. Mesh smoothing has a certain advantage

over other mesh improvement methods. In mesh smoothing the topology of the

mesh remains invariant, therefore it preserves important data structures. Lapla-

cian smoothing is the most commonly used smoothing technique. This method

sweeps over the entire mesh several times, repeatedly moving each adjustable

vertex to the arithmetic average of the vertices adjacent to it. A variation weighs

each adjacent vertex by the total area of the elements around it. Laplacian

smoothing is computationally inexpensive, but it does not in general guarantee

improvement in element quality. In fact, Laplacian smoothing can even invert

an element, unless the algorithm performs an explicit check before moving a

vertex.

Another class of smoothing algorithms uses optimization techniques to determine

new vertex locations. Both global and local optimization-based smoothing offer

guaranteed mesh improvement and validity. Global techniques simultaneously

adjust all unconstrained vertices; such an approach involves an optimization

problem as large as the number of unconstrained vertices is computationally

expensive. Local techniques adjusts vertices one by one or an independent set of

vertices in parallel resulting in a cost more comparable to Laplacian smoothing.

Figure 5.4 shows the results of a local optimization-based smoothing algorithm

applied to a mesh generated adaptively. The mesh on the left is generated using

the bisection algorithm for refinement; the edges from the coarse mesh are still

evident after many levels of refinement. The mesh on the right is generated by

a similar algorithm, only with vertex locations optimized after each refinement

step.
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CHAPTER 6

Generating Human Face models

Head modeling should be considered as a special case in the general problem of

3D object modeling. The reason is two fold. On one hand the symmetric form

of human face and the subtle anthropological relations between facial features

makes even slight deformations unacceptable. On the other hand, the geomet-

ric properties of human faces are very near to each other. This means that

creating the face model of a specific person needs very accurate measurements.

One solution to this problem which makes use of the similarities between differ-

ent faces and their anthropological properties is starting with a generic model.

This model may be considered as the average geometric model of distinct faces.

Our algorithm takes advantage of this fact and tries to deform a generic model

to a specific face. The deformation process requires local re-triangulation in

the areas with high curvatures. This is achieved by locally applying Delaunay

triangulation method.

6.1 Geometric Head Modeling

This section describes in detail the proposed algorithm for geometric modeling

of human faces [11]. Our algorithm has the following features.
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Input:

• Two sets S1 and S2 of 3D points from the surface of the face. First group

of points are labelled with the identification number of the related facial

feature and the position of the point in the feature. As an example a point

in this group may be given as p(Nose, T ip). Second group of points are

not labeled.

• A generic model of the human face in the form of a 3D mesh.

• Texture values given in cylindrical format.

Output: Textured 3D model of a specific face.

The input points are obtained in two stages. In the first stage 9 points of the

facial features are located in the images and their 3D positions are obtained.

These points are shown in Figure 6.1. The points in set S1 are:

1. p(Forehead, Top)

2. p(LeftEye, LeftCorner)

3. p(LeftEye, RightCorner)

4. p(RightEye, LeftCorner)

5. p(RightEye, RightCorner)

6. p(Nose, T ip)

7. p(Lips, LeftCorner)

8. p(Nose, RightConer)

9. p(Chin, T ip)
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Figure 6.1: Location of feature points.
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This step involves locating and matching the feature points and their recon-

struction. Locating the feature points is done manually in two images and then

these locations are refined by searching in a 7×7 window around each point and

finding best matches using normalized cross-correlation. The normalized cross

correlation of the points in each iteration is found from Equation 6.1.

∑
x,y[f(x, y)− fu,v][g(x− u, y − v)− gu,v]

{∑x,y[f(x, y)− fu,v]
2
∑

x,y[g(x− u, y − v)− gu,v]
2}0.5

(6.1)

Second set of input points S2 are random points from facial areas in the images.

The points in this group are obtained by applying an interest point detector

(Harris corner detector) and then finding the corresponding point in the second

image and reconstructing the 3D point. Harris corner detector [49] is given in

Equation 6.2.

R = Det(M)− kTrace(M)2 (6.2)

Here R is the corner response value which shows the possibility of existence of a

corner point at each pixel, K is a constant which is fixed by Harris to k = 0.05

and M is a 2× 2 matrix defined as



∂I
∂x
⊗W ∂I

∂x
∂I
∂y
⊗W

∂I
∂x

∂I
∂y
⊗W ∂I

∂y
⊗W




where W is a sliding window, I is the image and ⊗ denotes convolution operation.

The geometric deformation of the generic mesh is done in five steps. In the first

two steps the generic mesh is scaled so that each face segment between facial

features corresponds to the size of the same region in the images. Step 3 and 4

deforms features and face surface and step five refines the mesh. The five steps

in details are as follows.

1. Global scaling the generic mesh.

2. Local scaling the generic mesh.

3. Coarse deformation.
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Figure 6.2: Global scaling (Step one).

4. Fine deformation.

5. Mesh smoothing.

Since the mesh model and the input points may be in different sizes, the first step

performs a scaling operation based on the maximum and minimum coordinate

values of the points in the input set. No local displacement of the facial features

is done here. Figure 7.4 illustrates this step.

Facial feature sizes and locations are different in each face case. The generic

mesh is divided into four layers which are separated by the corners of lips, nose

tip, and corners of eyes. The vertices corresponding to these boundary points are

displaced to match their true values. The locations of the remaining intermediate

vertices are computed by interpolating over the displacement of the boundary

vertices. The values of the boundary vertices are given as the first input set of

3D points. Local scaling carried out in this step is shown in Figure 7.5. In this

step the 3D points from the first group are used to deform the generic mesh.

In this step since the points are labeled, we displace the corresponding feature

vertices and bring them to the locations given by these input points. Two main

issues are considered in this displacement:

1. Anthropological relationship between face features should be preserved.
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Figure 6.3: Local scaling (Step two).

2. Displacing a vertex should not create unrealistic warps such as corners

with sharp curvatures.

To impose both restrictions we are considering the mesh as an interconnected

set of vertices in which displacing a vertex affects other (specially neighboring)

vertices. Therefore moving a facial feature or one of its vertices in a direction

imposes a force on all vertices connected to it drawing them in the same direction.

This force is simulated by considering the links connecting the vertices as mass-

less spring in equilibrium states. Total force generated by the springs, ξ around

a vertex determines its new position. Our aim by introducing the spring term

is avoiding sharp sparks in locations with high rate of change and small edges.

However, unwanted warps in the mesh can not be avoided by just considering

the spring like connections between vertices. In this specific mesh deformation

application we have the advantage of knowing the general form of the face a-

priori. Therefore to preserve the topology of the mesh we have added a second

restriction using the principal curvatures at a given point on a surface which

measures the maximum and minimum bending of the surface at that point. To

find out the principal curvatures, we compare the normals to facets about a

vertex and the minimum and maximum angles between these normals define

the curvature (ζ).

ζ = Max(Diff(ni, nj))
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Figure 6.4: Degeneracy due to encroaching an edge by another one.

Where nk is a normal about vertex n. Considering the both issues mentioned

above, a cost function is defined to adjust the location of other vertices in the

mesh whenever a vertex is moved to a new position. The cost C function is

defined as:

C = ∆(ζ) + ∆(ξ)

Drawing a vertex to a new position may cause encroaching on a link by another

one. This makes small concave holes and artificial crease lines when mapping

texture to facets. Figure 6.4 shows this type of degeneracy.

Our solution to this degeneracy is the a gradual displacement of each node

and propagating the displacement to the neighboring nodes. For each point in

the second set of the 3D points, a similar deformation is necessary. However in

this step we are not sure about the vertex correspondences between new points

and mesh vertices. Furthermore there may be no corresponding vertex for a 3D

point at all. The latter case requires a re-triangulation in that part of the mesh.

Therefore this step starts with a search for finding the nearest vertex to the po-

sition of a 3D point from the second set. In this step, we do not expect a drastic

change in the form of the generic mesh because it has been already undertaken

three deformation steps and the new points should add slight modifications. We

are considering a threshold in the distance between the 3D point and the nearest

vertex. This threshold value bans large changes in the mesh. If the 3D point

is within the open ball B(k, t) defined by the nearest vertex k and threshold
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t, then the vertex is moved towards the 3D point using the same algorithm as

used in step 3. However, the point may be near to the outer surface of the mesh

but far from any vertex in it. This generally happens when a surface with low

curvature has been linearly approximated by a large facet which gets far from

the real surface in mid parts of the facet. Hence the new 3D points aim at

refining the surface by a better approximation of the volume space occupied by

the mesh. In these cases we are inserting the new point as a new vertex to the

mesh. The insertion however, considers several possible cases depending on the

location of the vertex and topology of the mesh in that region. The algorithm

to add a vertex to the mesh includes:

Algorithm 3 Finding Delaunay cavity.

1 For each 3D point t do

1.a Find all facets k which includes the mapping of t in their diametral

ball D(k) defined as the open ball of minimal diameter containing the

vertices of k.

1.b Find the Delaunay cavity form the union of the facets obtained in

step 1.a when the common edges are removed.

2 End For

Figure 6.5) shows the Delaunay cavity. Re-triangulation of the mesh is

done by adding edges ¡t,m¿ where m is a vertex from the Delaunay cavity. This

triangulation preserves the slight changing rate in the curvature value when

the new vertex is an almost plain area as mentioned above. In the case of

the regions with high frequency, a threshold value is used to reject points far

from the surface of the mesh. This threshold value is defined using radius-edge

ratio of the facets falling in the Dealunay cavity of that point. Radius-edge

ratio of a facet k is defined as the ratio of the length of the radius of D(k) to
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Figure 6.5: Delaunay cavity.

the length of the shortest edge of k. Two main degenerate cases may happen

in this type of triangulations. The first degenerate case has been shown in

Figure 6.6. This case occurs when an edge added during re-triangulation of a

Delaunay cavity encroaches on a boundary edge of the cavity. It happens when

the vertex is not visible from the new vertex. This can be stated as follows. If

an empty ball B contains n points in its boundary then the n-simplex formed

from their convex hull is present in their Delaunay triangulation. However in

degenerate cases the empty ball criterion does not determine a triangulation

of the input points. Instead it defines decomposition as a unique collection

of Delaunay protopes. Second case happens when the sight line from t to a

cavity boundary vertex pierces the facets of the cavity area. This case has

been shown in Figure 6.7. For the first group of degenerate cases we have

changed the definition of Delaunay cavity to include only those points in its

boundary that does not cause an edge encroaching while triangulation. This

also preserves the relationship between convex hull and the Delaunay cavity.

The modified cavity and re-triangulation are shown in Figure 6.8. Second
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Figure 6.6: Degeneracy in re-triangulating Delaunay cavity .

Figure 6.7: Degeneracy due to piercing a polygon by an edge.
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Figure 6.8: Modified Delaunay cavity to remove degeneracy.

case of degeneracy affects the topology of the mesh. Re-triangulation in this

case violates the boundaries of the local deformations. Most unwanted effect

of these deformations is creating concave areas in a convex sub-region. Our

definition of the 3D Delaunay cavity also prohibits this type of degeneracy. An

edge in Delaunay triangulation can not be encroached by edges of the mesh.

Figure 6.9 shows an example of this case and our re-definition of the Delaunay

cavity. Re-triangulation and displacing vertices may create some small and

skinny facets. Skinny and small facets affects deformation algorithm and slows

down rendering process. This step tries to eliminate these facets. To detect

skinny facets the radius-edge ratio is used. This criteria is defined as the ratio

of the length of the radius of diametral ball of each triangle to its shortest edge.

Last processing done is a Laplacian smoothing applied to the deformed mesh

to improve its quality. We have modified the Laplacian smoothing algorithm to

also impose restrictions which define a Delaunay triangulation. This restriction

can be impose by adjusting the location of each vertex through the barycentric

its coordinates.
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Figure 6.9: Removing second case of degeneracy.

6.2 Texture Mapping

Texture mapping is the last part of the human face modeling. Impressive visu-

alization and realistic appearance of the model are dependent on this step. On

the other hand a mesh is a linear estimation of a nonlinear volume and there-

fore non-realistic artifacts may be visible in the edges connecting faces to each

other. We use an approach similar to Pighin et al.s method [50] to generate a

view independent texture map. We also construct the texture map on a virtual

cylinder enclosing the face model. For each vertex on the face mesh, we compute

the blending weight of each image based on the angle between surface normal

and the camera direction. If the vertex is invisible, its weight is set to 0.0. The

weights are then normalized so that the sum of the weights over all the images

is equal to 1.0. We then set the colors of the vertexes to be their weights, and

use the rendered image of the cylindrical mapped mesh as the weight map.
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CHAPTER 7

Experimental Results

In this chapter the experimental results of applying human face modeling al-

gorithm which is introduced in Chapter 6 are given. The main steps of the

algorithm are followed using a sample sequence of images and the deformations

undertaken by the generic mesh are exhibited. Three more 3D models of human

faces are displayed as the results of applying the algorithm to input images.

7.1 Mesh Deformation

The geometric model of a person in generated by gradual deformation of a

generic mesh. The deformation is carried out using a cloud of 3D points obtained

from a sequence of images. Figure 7.1 shows a sample sequence of input images.

The 3D points used in deformation step are grouped as labeled points set S1

Figure 7.1: A sample sequence of input images.

and random points set S2. S1 includes points from basic facial features. These
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points are provided manually, however, their exact locations are obtained using

corner detection and cross correlation as explained in Chapter 6. Figure 7.2

illustrates the set of labeled 3D points. To obtain second set of 3D points, Harris

Figure 7.2: Labeled set of 3D points.

corner detector is applied to the sequence and matching point pairs are found

considering the disparity consistency and maximum cross correlation values [49].

Figure 7.3 illustrates the result of applying corner detection and matching the

points. We use the 3D points obtained from the matching and reconstruction

Figure 7.3: Corner points and matched points pairs.

steps in deforming a generic mesh. We apply the deformation to two different

meshes. The first mesh is a coarse one with 168 vertices and 275 faces. The

dense mesh includes 1355 vertices and 1739 faces. The generic mesh should be

scaled before any deformation. The uppermost and lowermost points from set

S1 are used in scaling the generic mesh. The scaled generic mesh superimposed

on the front and side views in the sequence is shown in Figure 7.4. It is
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Figure 7.4: Scaling the generic mesh.

important to note that scaling does not bring the facial features to their proper

locations. This stems from the fact that facial areas have different extent in

different people. Drawing the facial features to their suitable locations and

expanding and contracting facial areas such as forehead, chicks or chin are carried

out in the next step. The 3D points from set s1 are used for local scaling facial

areas and interpolating the location of vertices in each area. The result of local

scaling of the generic mesh is shown in Figure 7.5. After local scaling the

Figure 7.5: Local scaling and interpolating facial areas.

mesh, each facial feature is in its suitable location but still the size of facial

features in in images and the generic mesh may differ. Pulling the main vertices

of the facial features towards their locations in the input images and reshaping

them is accomplished in the following step. The deformations are imposed to
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the mesh by pulling or pushing neighboring vertices when a vertex is dislocated.

Second set of 3D points are applied to the generic mesh causing displacement of

available vertices and introduction of new ones. The deformed mesh is illustrated

in Figure 7.6. In this experience we use the coarse mesh. The total number of

Figure 7.6: Refined mesh superimposed on front and side views.

points obtained form point pair matching step is different in each case. In this

experience, 274 point pairs are detected but 31 points are rejected during the

deformation due to their distance from the generic mesh. Only 29 points causes

a face split in this experience. This number depends on the threshold value

used in displacing a vertex and the density of vertices in the mesh. Last step in

face modeling is covering the polygons with texture values. This step is the last

step in 3D model generation. The textured model from different view points are

shown in Figure 7.7. A second sequence of views from a model generated using

our algorithm is illustrated in Figure 7.8.

7.2 Reliability of Deformation Algorithm

The generated 3D models presented in the mesh deformation section of experi-

mental results, do not provide an objective reliability criteria for assessment of

the algorithm. In this section we are considering the 3D data obtained from

range scanning two different faces as ground truth and verifying the correctness
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Figure 7.7: Textured model shown from different views.
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Figure 7.8: Textured model views (Second example).
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Figure 7.9: Textured model views (Third example).
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of the results of our algorithm against them. The details of our method and

numerical results are given in the following subsections.

7.2.1 Range Scan Data

The data obtained form range scanning two human faces are available in the form

of a PLY file. A PLY file include both 3D values of vertices and polygons which

relate vertices to each other. The files we are using here have 302948 vertices,

605086 polygons and 303380 vertices, 605902 polygons respectively. The range

scan data of these faces have been rendered in Figures 7.10 and 7.11.

7.2.2 Test Setup

Our mesh deformation algorithm is based on two sets of 3D points. The first set

S1 includes labeled set of facial feature points, and the second set S2 includes

random points. In the testing process, these two sets of points are obtained by

clicking on some points in the window of a developed rendering program and

obtaining the coordinates of the vertices nearest to the mouse cursor tip. The

generic mesh is deformed using these two sets of points. To verify the accuracy of

deformation depth values of some points from different facial areas are compared

in our model and range scanned data. To avoid any error in comparison we are

connecting points form the first set S1 to each other and then dividing the

connecting line by 4 and obtaining x and y coordinates of the testing points.

The z coordinate values of these points are found from our model and range

scan data and compared to each other. Figure 7.12 shows the location of testing

points on the first sample image. The average error in each facial region is

given in Table 7.1.

In these experiments we scale the y coordinate values of the vertices in the generic

mesh to range between -1 and 1. x and z coordinates are scaled using the same

factor. Considering this fact, 0.01 in error values means that the displacement
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Table 7.1: Average error in face modeling using Cyberware data

Eyes Region Mouth Region Cheeks Region
First Image 0.016 0.012 0.025

Second Image 0.014 0.013 0.017

is 1
200

times of head height. The error values are higher in the first image. Since

the generic mesh represents the face model of a male, it may be justified by

the need for larger changes in the mesh compared to the second image. The

reconstructed faces using the dense mesh are displayed in Figures 7.13 and 7.14

The experiments are also repeated for the total vertices. In this case, for each

vertex from the cyberdata using its x and y coordinates, we map the point on

the generic mesh and find the z value. The computed z values are compared

with the ground truth value from the cyberdata. In this experiment we have

the following considerations:

• Since some of the vertices from cyberdata which belong to hairs, nostrils,

eyebrows and so on are not reliable, we have applied a threshold value to

reject a point if the difference of its z with the z value coming from the

mesh is too high. This threshold is obtained from the average difference

of z values in the cheeks regions and is rounded up giving 0.03.

• The head model in generic mesh contains only the frontal part and there-

fore we are rejecting all points from cyberdata with a z value less than

0.25. This guarantees the elimination of the back side of the head.

• To prevent the cancellation of the values, we are considering the square of

the differences. This has the benefit of closeness to a standard error metric

namely RMS error.

The results of the second experiment are given in Table 7.2

77



Table 7.2: Average error in face modeling using Cyberware data

Average Squared Error RMS
First Image 3.15 ×10−4 1.775 ×10−2

Second Image 3.23 ×10−4 1.797 ×10−2

Figure 7.10: First example of range scan data.

Figure 7.11: Second example of range scan data.
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Figure 7.12: Location of testing points.

Figure 7.13: Reconstructed model of the first example.

Figure 7.14: Reconstructed model of the second example.
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7.3 Discussion

The deformation method represented in this chapter is based on the assumption

that the generic mesh is an average geometrical representation of a human face.

The threshold values therefore are adjusted so that large deviations from this

model are rejected. However, since the generic mesh gives the face model of

a male white person, this assumption may not be true in some cases. Among

these cases we may mention faces belonging to African black male and females,

young children (below 5 years old), Asian faces, and some female face. To show

the effect of our assumption in the above mentioned cases, the 3D face model

of an Asian child is represented. Figure 7.15 shows the original image. The

Figure 7.15: Original image of an Asian child.

reconstructed model of the Asian child from different views is given in Figure

7.16. The main problems in creating the 3D model of an Asian child can be

listed as below:

1. The forehead in a child is much more wider than an adult. This fact inten-

sifies the local deformation step and causes other facial features to get far

from the expected average value and therefore rejected during deformation

step. The forehead regions of a child and an adult are compared in Figure

7.17.
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Figure 7.16: 3D model of an Asian child.

2. Nose is shorter and wider in a child than an adult 7.17.

3. In Asian people, due to the different form of the eyes, the distance between

eyes and eyebrows is wider.

4. Lower half of the head is thinner than the upper half in a child. This

means the head is quite large in a child compared to an adult.

The effect of wide eyelids is clear from reconstructed models 7.16. In this exam-

ple we have also a smile in the face of the child. The profile image of the child

shows that the deformation of the lips are not as much as we expect from the

frontal views.
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Figure 7.17: Comparison a child and an adult facial areas.
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CHAPTER 8

Conclusion and Future Work

In this thesis, we describe a method for 3D human face modeling using uncali-

brated images. Having uncalibrated images as input makes the method generic

and applicable for any system setup on one hand but introduces the degeneracy

problem in estimating internal camera parameters and camera motions on the

other hand. We describe a solution to the degeneracy problem in camera cal-

ibration for the most common case. This case of degeneracy occurs when the

camera motion is about a single axis or parallel axes. The single axis degener-

acy in image acquisition happens very frequently, because the most important

information about the texture and geometry of human head in provided by front

and side views. The second main issue in describing geometry of human faces is

complexity of the shape and existence of poor texture on the facial skin. This

makes finding sufficiently many point matches and their reliable reconstruction

difficult. Our solution for the reliable reconstruction of facial geometry is based

on a generic model. This model may be considered as an average geometric

model of a large number of faces and therefore not far from any of them. In this

thesis we use a generic model for all cases however, a more reliable and accurate

geometric approximation for a face can be found if the anthropological features
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of human faces are considered. Different races show different anthropological

and physical properties. Generic model which averages over the examples from

a given race or nation could provide a better approximation. Same argument is

valid when we consider gender and age. This better geometric estimation has

the cost of race, gender or age estimation from images during reconstruction

phase to choose the most appropriate model.

Generic model differs from any specific face model slightly. To obtain the

geometry of any particular face we have to deform the generic model. The defor-

mation should be restricted to a limited local area to make them manageable.

On the other hand the symmetry existing in human faces and anthropologic

relationship between facial features create dependency between facial feature

deformations. However, relating deformation in facial features to each other

decreases geometric accuracy of the model. To propagate the movement of a

vertex to its neighboring vertices in a controlled manner, we consider the links

connecting vertices to be massless springs reacting to forces applied to them.

The springs are in the equilibrium state at the beginning and after any change

in the location of a vertex they gain the equilibrium state again. We also ap-

ply the well known and mathematically sound Delaunay meshing algorithm to

human face modeling. This application makes possible to increase mesh density

locally by inserting new vertices and keeping the consistency in the model. Our

method has the following features not available in other methods.

• Camera calibration and 3D face model generation are integrated in a single

algorithm.

• We are not considering any specific polygonal mesh and the algorithm can

be implemented with different order of complexity in meshes.

• Degenerate motions do not deteriorate the system.

• The amount of reliability of the algorithm due to invalid assumptions in

camera parameters are predictable.
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We have introduces a solution for the degeneracy in auto calibration when the

camera rotation is about a single axis or parallel axes. In the similar systems,

either camera calibration is done before modeling [20], or no calibration is car-

ried our and the model is approximated by bundle adjustment [9]. We have

described an experimental and comparative study of the sensitivity of recon-

struction and auto calibration algorithms to improper assumptions in intrinsic

camera parameters which has not been studied in the literature. We also de-

scribe an algorithm for mesh deformation using a cloud of 3D points and local

refinements. In this algorithm, we apply Delaunay triangulation method to local

enhancements of human face model. Applying Delaunay algorithm in 3D causes

some degeneracies. We describe an algorithm for solving degeneracy in applying

Delaunay triangulation to 3D meshes. We have also developed an integrated

system for modeling human faces from uncalibrated images. In our modeling

method we use a generic mesh which has also the benefit of fast rendering and

easy establishing facial expressions in animation. Generally facial expressions

such as smiling, anger, fear, etc are added to the model by displacing some of the

vertices which are important in displaying these expressions. To add the effect of

these displacements or deformations on the other parts of the face, facial muscles

are simulated. These muscles can be implicitly given by the coefficients of the

springs connecting vertices to each other in the generic mesh. This means the

model generated using spring based mesh is suitable for animation applications.

Another application for the 3D face models generated using this method is

pose independent identification. Most of the systems developed for identification

are based on image acquisition from a predefined view (generally front view).

These systems fail to identify a person when the image in taken from a different

view. A solution for this problem is establishing a database of 3D models and

identifying the persons by rotating the model to the same pose and performing

the comparison.
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