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ABSTRACT

SCHERK-SCHWARZ REDUCTION OF EFFECTIVE STRING THEORIES

IN EVEN DIMENSIONS

Özer, Aybike (Çatal)

Ph.D., Department of Physics

Supervisor: Assoc. Prof. Dr. Ays.e Karasu

October 2003, 113 pages.

Scherk-Schwarz reductions are a generalization of Kaluza-Klein reductions in

which the higher dimensional fields are allowed to have a dependence on the

compactiifed coordinates. This is possible only if the higher dimensional the-

ory has a global symmetry and the dependence is dictated by this symmetry.

In this thesis we consider generalised Scherk Schwarz reductions of supergravity

and superstring theories with twists by electromagnetic dualities that are sym-

metries of the equations of motion but not of the action, such as the S-duality of

D = 4, N = 4 super-Yang-Mills coupled to supergravity. The reduction cannot

be done on the action itself, but must be done either on the field equations or on a

duality invariant form of the action, such as one in the doubled formalism in which

potentials are introduced for both electric and magnetic fields. The resulting the-

ory in odd dimensions has massive form fields satisfying a self-duality condition

dA ∼ m ∗ A. We apply these methods to theories in D = 4, 6, 8, and obtain new

gauged supergravity theories with massive form fields, with Chern-Simons like
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couplings and with a scalar potential in D = 3, 5, 7.

Keywords: Superstring, Supergravity, Duality, Scherk-Schwarz Reduction
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ÖZ

ÇİFT SAYIDA BOYUTA SAHİP UZAYLARDA EFEKTİF SİCİM

KURAMLARININ SCHERK-SCHWARZ İNDİRGEMESİ

Özer, Aybike (Çatal)

Doktora, Fizik Bölümü

Tez Yöneticisi: Assoc. Prof. Dr. Ays.e Karasu

Ekim 2003, 113 sayfa.

Scherk-Schwarz indirgemeleri Kaluza-Klein indirgemelerinin yüksek boyuttaki

alanların sıkıştırılmış koordinatlara bağımlı olmasına izin verilen bir genelleştirilmesidir.

Bu ancak yüksek boyuttaki kuramın global bir simetrisi varsa mümkündür ve

bağımlılık bu simetri tarafından belirlenir. Bu tezde süperkütleçekim ve süpersicim

kuramlarının, aksiyonun değil haraket denklemlerinin simetrisi olan elektromanyetik

düalitelerle burkulmuş, ki D = 4, N = 4 süperkütleçekime eşlenmiş süper-Yang-

Mills kuramının S-düalitesi buna bir örnektir, genelleştirilmiş Scherk Schwarz

indirgemelerini inceliyoruz. İndirgeme aksiyonun kendisi üzerinde değil, ya alan

denklemleri üzerinde ya da hem elektrik hem de manyetik alanlar için potensiyal-

lerin kullanıldığı çiftlenmiş formalizmde olduğu gibi aksiyonun düalite altında

değişmeyen bir formu üzerinde yapılabilir. Elde ettiğimiz tek sayıda boyuta

sahip uzaydaki kuram, dA ∼ m ∗ A kendine düal şartını sağlayan kütleli form

alanlarına sahiptir. Bu yöntemleri D = 4, 6, 8 boyutlardaki kuramlara uygu-

luyor ve D = 3, 5, 7 boyutlarda ayarlı, kütleli form alanlarına, Chern-Simons
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tipi etkileşimlere ve skalar potansiyele sahip yeni süperkütleçekim kuramları elde

ediyoruz.

Anahtar Sözcükler: Süpersicimler, Süperkütleçekim, Düalite, Scherk-Schwarz

İndirgemesi
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CHAPTER 1

INTRODUCTION

One of the biggest challenges in theoretical physics is the unification of the four

fundamental forces in nature. Three of them, the electromagnetic, the weak and

the strong nuclear forces are successfully described by the Standard Model (SM),

a non-abelian gauge theory with SU(3) × SU(2) × U(1) gauge group. Although

this model passes many experimental tests, it has several shortcomings, which

points out to the possibility that there might be a more fundamental theory

describing the nature, of which the SM is only a low-energy approximation.

For example, in the SM there are 17 parameters whose values cannot be

determined theoretically. Also the gauge group is not determined by the dynamics

of the theory. Another point that the SM fails to explain is that there are three

fermion generations in nature. There is no theoretical ground for this number in

the SM.

SM, being a gauge theory, describes massless particles. However, in particle

physics, almost all the particles that we know have mass. Then one has to

find a way to break (some of) the non-abelian gauge symmetry so that one can

describe the massive particles in a consistent way. The mechanism through which

this becomes possible is the Higgs mechanism. Here one introduces a scalar

field with a nonzero vacuum expectation value, which is called the Higgs field.

Then the ground state of the theory is not invariant under the whole symmetry

group, say G but is invariant only under a subgroup of it, say H and this leads

to the breaking of the symmetry G down to the subgroup H. This type of
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symmetry breaking is known as spontaneous symmetry breaking. The breakdown

of any continuous symmetry gives rise to massless bosons, the so-called Goldstone

bosons, which parametrize the coset space G/H. These massless bosons are eaten

by the gauge fields, which means that their degrees of freedom are absorbed by

the gauge fields so that the gauge fields now have the right degrees of freedom

for a massive field. This is how the SM particles acquire their masses and the

fact that the masses predicted by the theory are in very good agreement with the

values we measure experimentally is a big success for the theory. However, the

Higgs sector is introduced in an ad hoc way, rather than being determined by the

gauge principles alone. Moreover, the Higgs particle, whose existence is required

by this mechanism has never been observed and its mass cannot be predicted by

the theory.

One of the main reasons that one should seek to go beyond the SM, in spite

of its experimental success is that it is not possible to incorporate gravity, the

fourth fundamental force in nature into SM. The SM is a quantum field theory

and all the attempts that have been made to unify gravity with the other three

forces of nature in the framework of quantum field theory have failed since all

such theories are non-renormalizable. The short-distance singularities become so

severe that the usual perturbative methods of quantum field theory are not valid

anymore and calculations of physical quantities, such as scattering amplitudes,

based on these methods diverge. In other words, the General Relativity theory

of Einstein, which describes the large-scale physics in a successful and beautiful

way, and the quantum field theory of the SM, which describes the atomic-scale

physics in a satisfactory way, cannot be brought together. The gravitational

effects are negligible above the scale of Planck length ∼ 10−33 cm (or below

the energy scale ∼ 1019GeV)1, much smaller than the scale of particle physics

1 The Planck energy Mp is the characteristic scale of any theory which includes gravitation
in a relativistic and quantum mechanical setting. It depends on the speed of light c, the Planck’s
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∼ 10−16 cm (∼ 100GeV), and this explains why the SM of particle physics is

so successful experimentally. However, the ultimate theory of nature should be

capable of explaining all the large and small phenomena in nature in a consistent

way, so one should not be satisfied with the SM and General Relativity and seek

for a more fundamental theory, which is sometimes referred to as the “Theory of

Everything”. The appropriate limits of this theory should give us the SM and

the General Relativity. Then one would expect from this theory to unify the

four fundamental forces and also to cure the problems of the SM that were listed

above.

Many attempts have been made in this direction. One attempt is to study

Grand Theories(GUTs), where one considers that the gauge group of the SM is

in fact embedded in a larger gauge group at higher energy scales, which breaks

down to the SU(3) × SU(2) × U(1) at the SM scale. In some of these models

the 15 fermions in the three generations (5 fermions in each generation) can be

put in a single multiplet and some of the arbitrary parameters can be fixed. The

possible gauge groups that give the correct particle multiplets at low energies are

SU(5), SO(10) and E6. For such theories to make sense the coupling strengths

α1, α2, α3 associated with the groups SU(3), SU(2) and U(1) should meet at a

single value at the energy scale at which the gauge group is assumed to be a

simple group. By studying the renormalization group equations for the coupling

strengths and feeding in the measured values of them, it is seen that this occurs

only when the theories are supersymmetric (and when supersymmetry is broken

at the TeV scale). We will talk about supersymmetry below.

Introduction of extra dimensions to the space-time has been another fruitful

approach in the attempt of unifying the fundamental forces of nature and curing

the problems of the SM. In this approach one considers a space-time with 4 + d

constant h̄, and the Newton’s constant G as Mpc
2 = (ch̄/G)1/2c2 ∼ 1019 GeV.

3



dimensions, where the extra d dimensions curl up into a too small volume to be

observed. This idea was first introduced by Kaluza [1] and followed up by Klein,

who showed that pure gravity theory in five dimensions with a circular dimension

of the order of 10−33cm gives rise to gravity + electromagnetism in four dimen-

sions [2]. This idea was also used for justifying the unnatural Higgs sector of the

SM [3]. In these models one identifies the Higgs field with the components of the

4 + d-dimensional field strength in the compacitifed directions. In this way one

can predict the Weinberg angle and the mass of the Higgs particle. The early

models in this direction gave contradicting results with the experiments. How-

ever, recently, realistic models have been constructed by using the machinery of

noncommutative geometry of Connes. In this case the extra dimensions are taken

to be coordinates of a non-commutative manifold. By choosing an appropriate

noncommutative space-time manifold, Connes successfully reproduced the SM

with the right gauge symmetry and the right field content, with no arbitrary free

parameters [4]. Also, in such models the Higgs sector arises on the same footing

with the Yang-Mills sector and the Higgs mass can be predicted. In [5] we applied

these ideas to the electroweak model (SU(2) × U(1) gauge theory unifying the

electromagnetic and the weak nuclear forces). By taking the noncommutative

space as the manifold corresponding to the C∗ algebra C∞(V ) ⊗M3(C), we ob-

tained the 4D electroweak model with the Higgs sector appearing naturally and

with a prediction of 130 GeV for the Higgs mass. Here C∞(V ) is the space of

continuous functions on the 4 dimensional Riemannian manifold V and M3(C) is

the space of 3 × 3 complex matrices.

Supersymmetry, which is a symmetry that relates bosons and fermions, is

another suggestion for beyond-the-standard-model physics. According to super-

symmetry every boson has a fermionic partner and vice versa, that is, they are

4



in the same irreducible multiplet of the supersymmetry. The minimal supersym-

metric extension of the SM (the MSSM) allows the prediction of the Higgs mass.

Einstein’s theory of gravity can be combined with supersymmetry and such the-

ories are called supergravity theories. We will talk about supergravity in the

forthcoming paragraphs.

Supersymmetry is not observed in nature (otherwise the fermions and the

bosons would have the same masses) so it must be a broken symmetry. How-

ever, it is difficult to break global supersymmetry. Fortunately, in supergravity

and superstring theories, which are of main interest in this thesis, supersym-

metry is a local symmetry and there are various mechanisms through which it

can be broken. For example, there is a supersymmetric version of the Higgs

mechanism, the superHiggs mechanism, where the spin-3/2 gravitino (the gauge

fermion of supergravity) becomes massive by eating the goldstino (the Goldstone

fermion). We will mainly be interested in one of these mechanisms, namely the

Scherk-Shwarz mechanism, although our main concern will not be the breaking

of supersymmetry.

The most successful theory which attempts to unify gravity with the SM is,

so far, string theory [6]. It is very remarkable that string theory contains all the

important previous ideas that we have described above briefly: grand unification,

extra dimensions and supersymmetry. Every string theory has a massless spin-2

particle, which behaves like a graviton, the gauge particle of general relativity,

or in other words every string theory contains gravity. The non-renormalizability

problems are cured and there are no arbitrary free parameters like in the SM. Also

the gauge groups appearing in these theories are determined by the dynamics of

the theory, unlike in the SM. These are all very attractive features, all coming

from a single theory. So, what is string theory?

The underlying idea in string theory is very simple: the elementary particles
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are regarded as strings rather than as points. Strings can vibrate and the normal

modes are determined by the tension of the string. Each vibrational mode cor-

responds to an elementary particle whose mass is determined by the vibrational

frequency of the mode. These strings are very small, of the order of 10−33cm

long, 1020 times smaller than the diameter of the proton. So at the energy scales

that our contemporary accelerators can reach, they look like points, the stringy

structure cannot be probed into.

In classical mechanics, the motion of a point particle in Minkowski space is

described by the following action

S =
1

2

∫

dτ
∑

ij

ηij
dX i

dτ

dXj

dτ
. (1.1)

Here ηij is the Minkowski metric, τ is an arbitrary parameter along the trajectory

(which can be taken to be the proper time) and X i(τ) is the position of the

particle. The solutions of the equations of motion of (1.1) are straight lines, the

geodesics of the Minkowski space.2 A point particle is a zero dimensional object

and its motion is described by its one dimensional trajectory, its world line.

The natural analogue of (1.1) for the 1-dimensional string is:

S =
1

2α′

∫

d2σ
∑

ij α

ηij
dX i

dσα

dXj

dσα
. (1.2)

The string sweeps out a two dimensional manifold (a surface), the world sheet,

and the parameters σα = (σ, τ) parametrize this surface. It is useful to think of τ

as a time-like evolution parameter and σ parametrizes the string. Then X i(σ, τ)

specifies the position of the string at given values of σ and τ . The parameter

σ is taken to run from 0 to π. If we take periodic boundary conditions, i.e.

X i(0, τ) = X i(π, τ) then the string is closed. If the endpoints of the string can

move freely in spacetime, then it is an open string.

2 This is complemented with the constraint that the geodesics are light-like if the particle
is massless.
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The constant α′ in (1.2) ,with the units of length2 (where one chooses to work

in ’natural units’ h̄ = c = 1) is called the Regge slope (α′ ∼ (10−32cm)2) . It

is related to the string tension T and is a new fundamental constant measuring

the “stringiness” of a physical system. Analogous to the fact that the Planck’s

constant h̄ controls the passage from classical to quantum physics, α′ controls the

passage to stringy physics.

The action (1.2) describes a non-linear sigma model on the worldsheet. The

functions X i take values in the target space, the D dimensional space-time in this

case. The metric ηij is the metric on this target space. The symmetries of (1.1)

are the diffeomorphism invariance (reparametrization invariance) and the Weyl

invariance (a local rescaling) of the world-sheet and the D dimensional Poincaré

invariance of the target space.3 Classical free string theory can be consistently

formulated for any space-time dimension D. However, after quantization, the

requirement of having a ghost-free spectrum constrains the dimension of the

space-time to be D = 26. This is the bosonic string theory (the coordinates

X i transform as bosonic fields from the target-space point of view). But this

theory has several shortcomings. The obvious one is that it does not include

the fermions and there are tachyonic states (negative-mass states) in the theory.

The resolution is to introduce world-sheet supersymmetry that relates X i(σ, τ) to

fermionic partners ψ(σ, τ). This gives a consistent string theory, free of tachyons,

but only when the space-time dimension is D = 10. One can also obtain tar-

get space supersymmetry by truncating the spectrum with a method called the

Gliozzi-Scherk-Olive (GOS) projection.

Let us recall the Feynman diagrams in quantum field theory. In Feynman’s

sum-over-histories approach one regards a (point) particle moving from space-

time event x to the space-time event y as having taken all the possible paths

3 From the two dimensional world sheet point of view, this is a local symmetry since its
action on the fields depend on σ and τ .
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Figure 1.1: A 1-loop Feynman diagram contributing to a 4-particle amplitude,
the interactions occurring at p,q,r,s

between the events x and y and the propagator is calculated by integrating over

all these paths, with a weight factor derived from the classical action for this path.

Similarly, for a system of interacting particles, the interactions are represented in

a Feynman diagram by the branching and rejoining of the particles’ worldlines and

the scattering amplitude is found by summing over all such possible arrangements.

For example, the diagram in Figure 1.1 represents two incoming and two outgoing

particles interacting at the space-time events p,q,r and s. It is evident from the

diagram that such interactions are likely to lead to divergent quantities. The

points at which the interactions take place are singularities when the Feynman

diagram is regarded as a one dimensional manifold. Indeed when the space-time

events p,q,r and s in Figure 1.1 nearly coincide potential infinities arise in the

integration. Non-renormalizable theories, such as the quantum theory of gravity,

are the theories for which such infinities cannot be renormalized away.

Feynman’s approach carries over to string theory with particles being replaced

by strings and the wordlines being replaced by worldsheets. Now one sums over

all possible surfaces that join the initial and the final state of a string or a set of

interacting strings. An h-loop string theory Feynman diagram is represented by

a genus h Riemann surface and contains a factor of g2h
s , where gs is the string

coupling constant. Then a diagram of the form Figure 1.1 takes the form in

8



Figure 1.2: Counterpart of figure 1.1 for closed strings

Figure 1.2. This is a smooth manifold, pointing to the possibility that the di-

vergences appearing in quantum field theory of point-like particles can be cured.

This does indeed happen most of the time and moreover there is only one single

Feynman diagram at each order of perturbation expansion in string theory, unlike

in quantum field theory. This, combined with the fact that, every string theory

must contain a spin-2 particle which behaves like a graviton at long distances4,

explains why string theory is so promising as a quantum theory of gravity. Per-

haps, this is the right place to mention that one should not expect to understand

string theory merely by perturbative methods as in, for example QED, because

the string coupling constant gs is not necessarily small. In fact gs is determined

dynamically by the vacuum expectation value of a scalar field, called the dilaton

field. So one also needs non-perturbative methods which we will discuss when we

talk about dualities.

As a candidate theory for being the unified theory of nature, the string theory

should contain the Yang-Mills fields and gauge symmetries along with gravity.

Indeed the spin-0 gauge particles for the other forces and also spin-0 and spin-1/2

particles are included in the massless spectrum of both the open and closed string

theories. The way Yang-Mills gauge symmetries appear are, however, different

4 Strictly speaking, this is true only for the closed string. Particles associated with the
vibrational modes of the open string does not include the graviton. However every theory of
open strings contains also closed strings since open strings can join to form closed strings.
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for the open and the closed string cases. In the open string case, Yang-Mills

group quantum numbers are introduced by attaching charges at the end of the

open strings, by what is known as the Chan-Paton method. At the classical level

any group is allowed, however after quantization only the gauge group SO(32)

is possible. The closed strings have no free ends, therefore some other way must

be found to incorporate gauge symmetries. In the closed string, the right-moving

modes and the left-moving modes decouple, that is, they move independently.

So, it is possible to think that they are of different types. By taking the right-

moving modes as those of a superstring theory living in 10 dimensions and the

left-moving modes as those of a bosonic string living in 26 dimensions, one can

incorporate gauge symmetries. That the right-moving modes are supersymmetic

ensures immediately that there are fermions and no tachyons in the theory. The 16

extra dimensions of the left-moving modes are interpreted as internal dimensions

and are associated to an even self-dual 16-dimensional lattice. On the other hand,

there are two Lie groups, SO(32) and E8 × E8 which have rank 16 and whose

weight lattices correspond to even self-dual 16 dimensional lattices, so these are

the only gauge groups that can appear in this way. Such a type of string is

called the heterotic string. It is quite remarkable that these two Lie groups had

been singled out previously by Green and Schwarz as they showed that any 10

dimensional chiral theory containing gravity should also include either of these

groups as Yang-Mills gauge symmetry in order to lead to chiral theories in lower

dimensions without any anomalies.

As we have seen, consistent superstring theories live in 10 dimensions which

does not agree with our “real world”, which is only 4 dimensional. This is where

the Kaluza-Klein type of ideas enter string theory. One contemplates that the

remaining six dimensions have been curled up into a very small volume to be

observed. This is not an unnatural idea for a theory containing gravity, such as
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string theory, since in general relativity the space-time is a dynamical, geometric

object. In string theory, there are severe constraints on the type of the manifold

on which the extra dimensions compactify. These constraints come from, for

example, supersymmetry and the diffeomorphism invariance of the worldsheet.

It turns out that this manifold should be a very specific type of manifold, what is

known in mathematics as the Calabi-Yau manifolds. We will have many occasions

in this thesis to talk about compactification methods.

We have talked about three different types of strings: the open, closed and

heterotic strings. In mid 80s, string theorists believed that there were 5 different

consistent superstring theories: type I, type IIA, type IIB, E8 ×E8 heterotic and

SO(32) heterotic. The type I is based on unoriented open and closed strings,

whereas all the others are based on oriented closed strings. The type IIA is

non-chiral, i.e., parity conserving and the others are chiral, i.e. parity violating.

This was a quite disturbing situation for a theory claiming to be the fundamental

theory of nature. However, later it was realized that all these seemingly distinct

superstring theories are actually equivalent under the so-called duality symme-

tries. The best understood dualities are the T dualities, which relates string

theories compacitifed on T-dual manifolds. For example, type IIA string theory

compacitifed on a circle S1 of radius R is T-dual to type IIB compactified on

a circle with radius 1/R. In a similar way heterotic E8 × E8 (HE) is T-dual to

heterotic SO(32) (HO). Also type I theory on a circle of radius R is obtained

from type IIA on a line interval I with size proportional to 1/R, or on a cir-

cle of radius 1/R by acting with P , where P is the world sheet parity operator

(I = S1/P )5. So, when T-duality is taken into account the number of distinct

superstring theories is now two, not five.

T-dualities are perturbative duality symmetries. In string theory, there are

5 This, in turn, means that type I is obtained from type IIB by the action of P. This relation
is also true in 10 dimensions by taking R to infinity.
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Figure 1.3: The M-theory moduli space

also non-perturbative symmetries, which are the generalizations of the duality

symmetry in Maxwell’s electromagnetic theory, under which the electric field is

exchanged with the magnetic field. This type of duality is called S-duality and

relates the weak-coupling regime of one superstring theory to the strong coupling

regime of another (or the same) superstring theory. S-duality relates type I

theory to SO(32) heterotic theory and the type IIB theory is self-dual under S-

duality. The strong coupling limit of type IIA theory comes as a big surprise.

In this case one obtains a theory in eleven dimensions and the interpretation is

that the type IIA is a theory in eleven dimensions with the eleventh dimension

being a circle whose radius becomes large at strong coupling, i.e., the eleventh

dimension decompactifies at strong coupling. There is a similar story for the

E8 × E8 heterotic string theory as was shown by Horava and Witten. This 11

dimensional theory is related to all the five superstring theories with various

dualities [7]. So the new picture arising is that the five superstring theories,

which look different perturbatively are, in fact, different limits of an underlying,

non-perturbative theory, which is called the M theory 6. More precisely, the five

6 Sometimes the 11 dimensional theory discussed above is referred to as the M-theory.
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superstring theories and the new eleven dimensional theory are the vacua of M-

theory which correspond to consistent perturbative theories that are related by

duality symmetries. This is depicted in Figure 1.3. Note that both the radius of

the compactification circle R and the string coupling constant gs arise as vacuum

expectation values of some fields, so these duality symmetries correspond to a

motion in the moduli space rather than to a change in the parameters of the

theories.

We have seen that the correct description of the “Theory of Everything”

should be non-perturbative. In the non-perturbative theory, there are new p-

dimensional extended objects, called p-branes, which are of fundamental impor-

tance since they are states in the duality multiplets. However we won’t go into

that.

Historically, string theory had been first proposed as a theory of strong nuclear

interactions but lost its charm soon afterwards as it turned out that the latter

is described very successfully by QCD, the quantum chromodynamics. Then

in 1974, inspired by the fact that the massless spectrum of every string theory

includes a spin-2 particle, Jöel Scherk and John Schwarz proposed string theory

as a theory of quantum gravity [8]. However, string theory didn’t become popular

among theoretical physicists until mid80s, when most of the discoveries that

we mentioned above were made. This period is known as the first superstring

revolution. The developments in non-perturbative string theory started in 1994

and this date is known as the beginning of the second superstring revolution.

In the spring of 1976, two years after the proposal of Scherk and Schwarz,

the supersymmetric extension of Einstein’s theory of gravity, supergravity theory,

was formulated by Freedman, van Nieuwenhuizen and Ferrara [9] and a simplified

version was presented by Deser and Zumino soon after [10]. The formalism of

[10], the so-called “first-order formalism” also implied that in any supersymmetric
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theory coupled to gravity, supersymmetry must be a local symmetry. Many

achievements in supergravity theory had already been made by the end of 1976,

such as the matter coupling to Maxwell theory, to Yang-Mills theory, and the

first formulation of extended [N = 2] supergravity. Although these theories are

beautiful, in the sense that all the couplings are dictated almost in a unique way

by the symmetries, they cannot be proposed as a quantum theory of gravity since

it turns out that they are non-renormalizable already at the one loop level.

String theory contains gravity and it should be supersymmetric for consis-

tency, so one would expect a relation between string theory and supergravity

theory. In fact supergravity is the low energy effective field theory of superstring

theory and the massless modes of string theories are governed by a 10 dimen-

sional supergravity. As we had mentioned before, each vibrational mode of the

string corresponds to a particle whose mass is determined by the frequency of the

vibration, which is then determined by the tension of the string. Since string the-

ory is to contain gravity, the tension of the string must be related to the Planck

energy, and hence the energy gap between the normal modes of the vibration of

the string must be huge. In fact, the lowest energy modes correspond to massless

particles and the other vibrational modes are very heavy (the next vibrational

mode corresponding to ∼ 10−5g). When these heavy modes are integrated out,

one is left with the massless modes, which include the graviton, the spin-0 gauge

particles and the spin-1/2 fermions that are described by supergravity in the limit

α′ → 0.

In this thesis, our main interest will be in reduction of supergravity and su-

perstring theories. A theory in d dimensions with global symmetry G can be

compactified on a circle with fields not periodic but with a G monodromy around

the circle, and the monodromy introduces masses into the theory and breaks some

of the symmetry. Such type of compactifications were first introduced by Jöel
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Scherk and John Schwarz in 1979 and they are called twisted toroidal compacti-

fications or Scherk-Schwarz (SS) reductions [11]. Almost around the same time,

Scherk and Schwarz introduced the SS compactification, it was understood that

supergravity theories possess non-compact global symmetry groups. We will see

that these are inherited from the duality symmetries in string theories, as would

be expected. These duality symmetries can be used to give twists in the SS re-

ductions and this has been studied extensively in the literature [11-27]. In almost

all of the cases, the symmetry that is used is a symmetry of the action. The

purpose here is to generalise such compactifications to the case in which G is a

symmetry of the equations of motion only, not of the action. A standard example

is S-duality in 4-dimensions. The heterotic string compactified to four dimensions

has a classical SL(2, IR) symmetry which acts through electromagnetic duality

transformations and so is only a symmetry of the equations of motion [28]. In

this case, we consider a circle reduction with a monodromy in SL(2, IR). In the

quantum theory, the symmetry is broken to SL(2, Z) [28] and in that case the

monodromy must be in SL(2, Z) [15]. We generalise this to other dimensions,

and discuss examples in d = 4, 6 and 8 dimensions.

Many supergravity theories in d = 2n dimensions have a set of n form field

strengths H i
n where i = 1, ..., r labels the potentials, which typically satisfy a

generalised self-duality equation of the form

H i
n = Qi

j(φ) ∗Hj
n, (1.3)

where Qi
j is a matrix depending on the scalar fields φ and ∗ is the Hodge dual in

d dimensions [29]. For any n, consistency requires that (Qi
j(φ)∗)2 = 1, so that

if (∗)2 = −1, as in Lorentzian space of dimension 4m, then Q2 = −II and Q is a

complex structure, while if (∗)2 = 1, as in Lorentzian space of dimension 4m+ 2,

then Q2 = II and Q is a product structure. In the theories we will consider, the

H i
n transform in an r-dimensional representation of a rigid duality group G. In
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d = 4, N = 8 supergravity, there are r = 56 2-form field strengths transforming

as a 56 of the duality group G = E7 [30]. These split into 28 field strengths

F = dA and 28 dual field strengths F̃ = ∗̂F + . . ., with Q a complex structure on

IR56. In d = 6, N = 8 supergravity, there are 5 3-form field strengths which split

into 5 self-dual ones and 5 anti-self dual ones, and these 10 transform as a 10 of

G = SO(5, 5) [31]. The 10 3-form field strengths Ĥ i
n with i = 1, ..., 10, satisfy

(anti) self-duality constraints of the form (1.3) with Q related to the SO(5, 5)-

invariant metric. In d = 8 maximal supergravity, there is a 3-form potential,

and its field strength and its dual combine into an SL(2, IR) doublet, satisfying

a constraint of the form (1.3) with Q = iσ2.

Our main interest is in reductions in which the monodromy M ∈ G is a

symmetry of the equations of motion but not of the action, acting on the field

strengths Ĥ i
n via transformations involving Hodge or electromagnetic dualities, so

that they cannot be realised locally on the fundamental n− 1 form potentials. In

all of the cases that we will consider, it will be possible to construct a manifestly

G-invariant Lagrangian such that the field equations derived from this Lagrangian

are equivalent to those of the original one when a constraint of the type (1.3) is

imposed. In this formalism, the dual fields are regarded as new fields and the

number of degrees of freedom is conserved by the imposition of the constraint.

This formalism is called the doubled formalism.

As the global symmetry G is extended to the level of the action, one can now

perform the Scherk-Schwarz reduction of the action on a circle. As mentioned

above, the fields are not independent of the circular coordinates in such twisted

reductions, since they have a G monodromy around the circle. This dependence is

characterized by a Lie algebra element M in the reduction ansatz, which is called

the mass matrix. The mass matrixM introduces mass parameters into the theory,

and fields in non-trivial representations of the group G typically become massive
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with masses given in terms of M , or are “eaten” by gauge fields that become

massive in a generalised Higgs mechanism. In particular, the scalar fields will

obtain a scalar potential given in terms ofM . The mass matrixM generates a one

dimensional subgroup L of G, which becomes a gauge symmetry of the reduced

theory, so that such a reduction of a supergravity gives a gauged supergravity

[16, 19, 20, 21].

In the doubled formalism the auxiliary Lagrangian should be supplemented

with a constraint as discussed above and so one should also consider the Scherk-

Schwarz reduction of this constraint. We find that (in the case in which M

is invertible) the field strengths Ĥ i
n satisfying the constraint (1.3) give rise to

n − 1 form potentials Ai
n−1 in 2n − 1 dimensions satisfying massive self-duality

constraints of the form

DAn−1 = M̃ ∗ An−1, (1.4)

where D is a gauge-covariant exterior derivative, ∗ is the Hodge dual in D dimen-

sions and the matrix M̃ ∝ QM . Such odd-dimensional self-duality conditions

were first considered in [32] and often occur in odd-dimensional gauged super-

gravity theories, and follow from a Chern-Simons action with mass term of the

form

L = PijA
i ∧DAj + M̂ijA

i ∧ ∗Aj, (1.5)

where M̂ = PM̃ and Pij is a suitably chosen constant matrix. In the general case

in which M is not invertible, some of the gauge fields remain massless.

As a result, by considering the Scherk-Schwarz reductions of supergravity

theories in 4, 6, 8 dimensions, we obtain new gauged/massive supergravities in

3, 5, 7 dimensions with massive gauge fields which satisfy a generalized self-duality

condition of the type (1.4).

The outline of this thesis will be as follows. In chapter 2 we will give a gen-

eral review of the Kaluza-Klein and Scherk-Schwarz dimensional reductions. This
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chapter will introduce the main concepts along with some useful formulas that

will be needed subsequently. In chapter 3, we will give a detailed discussion of

the origin and structure of the duality symmetries appearing in string and super-

gravity theories. Chapter 4 will be a preliminary chapter, where we will introduce

some useful concepts that will be needed in chapter 5. The doubled formalism,

the Stückelberg mechanism and the idea of self-duality in odd dimensions will

be discussed in this preliminary chapter. Chapter 5, which is the main chapter

of this thesis, will be devoted to the applications of the tools developed in the

previous chapters to several supergravity theories. We will give all the calcula-

tional techniques and will present the new gauged/massive supergravity theories

obtained in dimensions 3, 5 and 7. We will finish with conclusions and discussions

for future directions.
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CHAPTER 2

KALUZA-KLEIN AND SCHERK-SCHWARZ

COMPACTIFICATION

2.1 The Kaluza-Klein Philosophy

It was Kaluza who first came up with the idea of extra dimensions. He started

with pure gravity in five dimensions. Reducing the metric gMN , a degree two

symmetric tensor, which he took to be independent of the fifth coordinate, he

obtained in 4 dimensions a metric gµν , a one-form Aµ = gµy and a scalar φ = gyy.

Here M is the 5 dimensional index and it splits as (µ, y), where µ is the 4 di-

mensional index and y is the fifth coordinate. In fact, the appearance of a scalar

field was first regarded as an unwanted feature and hence φ was set to a constant

value. This was because the four dimensional theory, without the scalar field, is

a pure Einstein-Maxwell theory. But later it was realized that setting φ to a con-

stant value was inconsistent with the higher dimensional field equations [33, 34].

Kaluza was able to show that splitting the five-dimensional Einstein equation

RMN = 0 gives in four dimensions the coupled Einstein-Maxwell equations for

the metric gµν , and the one-form Aµ [1]. Hence he identified the one-form Aµ

with the photon. Thus starting from pure gravity in five dimensions one obtains

gravity plus electromagnetism in four dimensions, which seems like a very ap-

pealing mechanism. But of course the question is, if there exists a fifth dimension

why can we not observe it? Another question is as to why we should suppress

the y dependence of the five dimensional fields.
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The answer to these questions came from Oskar Klein in 1926 [2]. He admitted

the existence of a fifth dimension but assumed that it had a circular topology.

This means that y is periodic, 0 ≤ y ≤ 2πR, where R is the radius of the circle

S1. Thus the space has topology IR4×S1. The periodicity in y allows a harmonic

expansion for the fields gµν(x, y), Aµ(x, y) and φ(x, y) on the circle. Thus for

example, the metric gµν can be expanded in the form

gµν =
∞
∑

n=−∞
gµνn(x)einy/R (2.1)

So a Kaluza-Klein theory describes an infinite number of four-dimensional fields.

The n = 0 modes in the expansions of the fields gµν(x, y), Aµ(x, y) and φ(x, y)

are just the graviton, photon and dilaton respectively. The n 6= 0 modes cor-

respond to massive fields. An easy way to illustrate this fact is to consider the

compactification of a massless scalar field ψ̂ in flat D + 1-space on a circle. It

satisfies

2̂ψ̂ = 0, (2.2)

where 2 = ∂M∂M . If we compactify the coordinate y and then Fourier expand

the field ψ̂ so that

ψ̂ =
∞
∑

n=−∞
ψn(x)einy/R (2.3)

we see that the lower dimensional field ψ satisfies the wave equation for a scalar

field of mass |n|/R:

2ψn − n2

R2
ψn = 0. (2.4)

What Klein suggested is that the compactification radius R should be as small

as the order of the Planck’s length (∼ 10−33cm) so that the masses of the non-

zero modes are of the order of the Planck’s mass (1019GeV), way beyond the

range of contemporary accelerators. This answers both of the questions Kaluza

left unanswered: 1) We cannot see the fifth dimension because it is too small to
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observe, 2) There is no dependence of the fields on the extra coordinate y because

we truncate to the massless n = 0 modes which have no y-dependence.

The 5 dimensional Einstein theory is invariant under general coordinate trans-

formations

δx̂M = −ξ̂M , δĝMN = (Lξ̂ĝ)MN (2.5)

Here ξ = ξ̂Mdx̂M , M = 1, · · · , 5 are arbitrary functions of all the 5 coordinates.

The transformations that preserve the form of the Kaluza-Klein ansatz (see (2.7))

is

ξ̂µ = ξµ(x), ξ̂y = cy + λ(x), (2.6)

where c is a constant and λ(x) is an arbitrary function depending only on the

4 dimensional coordinates xµ. It can be seen that the parameters ξ(x) describe

the general coordinate invariance of the 4-dimensional theory, whereas the local

parameter λ(x) describes a local U(1) invariance for the Kaluza-Klein vector field.

In fact U(1) is the isometry group of S1 and this is the reason why it arises as

the local gauge group of the lower dimensional theory. c is a constant parameter

which describes a shift symmetry for the scalar and the vector fields.

It is possible to generalize this mechanism to more general compactification

manifolds. The first straightforward generalization is to that of a torus T k =

S1×S1× . . .×S1. This might be considered as doing k circular compactifications

subsequently. In this case, the gauge group is G = [U(1)]k, which is the isometry

group of the torus T k, instead of the U(1) gauge group of the Maxwell theory.

In d = 4 + k dimensions the graviton (spin-2) has (4 + k)(1 + k)/2 degrees of

freedom and this matches with the number of degrees of freedom of massless

modes in dimension four: 1 spin-2 (2 degrees of freedom), k spin-1 (2k DOF) and

k(k+1)/2 spin-0 (k(k+1)/2 DOF). The number of scalars is given by the moduli

of T k and they parametrize the non-linear σ-model GL(k,R)/SO(k).

It is obvious that it is not possible to obtain realistic four dimensional physics
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by compactifying higher dimensional theories, such as string theory or supergrav-

ity theories, on a circle or a torus. One reason is that realistic four dimensional

models should have non-abelian Yang-Mills gauge invariance whereas we have

seen that the only gauge group we can obtain by compactification on a torus

is the abelian [U(1)]k. A second obvious problem is that the spectrum of the

particles we observe in four dimensions contain massive particles, such as elec-

tron, proton, etc. However in the Kaluza-Klein mechanism, in order to have

consistency, we should truncate to the n = 0 modes which leave us with massless

particles only. Hence if we start with massless theories like string theory and su-

pergravity, we cannot expect to have massive fields in four dimensions. As we will

discuss below one resolution to these problems is to consider compactification on

more general, abstract manifolds. Another realistic resolution will be discussed

later in the context of Scherk-Schwarz mechanism [11].

Consider the Kaluza-Klein compactification of a higher dimensional theory

on some general compact manifold M with isometry group G. It turns out that

the massless fields in the lower dimensional theory include the Yang-Mills gauge

bosons of the isometry group G. One possibility is that M is the group manifold

of G which implies that dimM = dimG. A more economical choice would be that

M is a coset space M = G/H in which case dimM = dimG/H = dimG−dimH.

However it is not always guaranteed that such compactifications are consistent.

Here consistency means that the solutions of the lower dimensional field equations

should also be solutions of the higher dimensional theory. One should also ensure

that the lower dimensional action and the transformation laws be independent

of the extra coordinates. For a discussion of the consistency problem in the

compactification of supergravity and string theories, see [35] and the references

therein.
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One way to remedy the consistency problem is to consider spontaneous com-

pactifications [36]. Here one takes the vacuum state to be a product manifold

IR4 ×M , that is, one looks for stable ground state solutions of the field equations

for which the metric describes a product manifold IR4 ×M . In the case of sphere

reductions in supergravities one usually finds a vacuum solution of the form Anti

de Sitter space ×Sn. The physical fluctuations might not respect this form of

the vacuum but studying the vacuum state gives a lot of information on the low

energy excitations. It was shown in [37] that it is not enough to start with pure

gravity to achieve a satisfactory compactification. The higher dimensional theory

should also contain matter fields.

In [38] Freund and Rubin showed that in eleven dimensional supergravity the

existence of the 3-form gives a dynamical mechanism by which a spontaneous

compactification is possible. Then it was shown by Duff and Pope that eleven

dimensional supergravity may yield ground-state solutions of the form AdS4×S7,

where AdS4 is the 4 dimensional Anti de Sitter space [39]. The seven dimensional

sphere S7 has 8 Killing spinors and has isometry group SO(8). Therefore the

resulting theory in D = 4 has N = 8 supersymmetry and enjoys SO(8) gauge

invariance. Similarly, by the reduction of the 11 dimensional supergravity theory

on S4, one obtains in D = 7 a SO(5)-gauged supergravity theory [40].

In order to obtain realistic 4-dimensional theories from string theory compact-

ifications, the internal manifold should be a Calabi-Yau 3-fold, i.e. a compact,

complex, Kähler manifold which has SU(3) holonomy (See [41] for a review). In

M-theory, this manifold should be a seven dimensional manifold with G2 holon-

omy [42].

In the section below we will give the computational details of the Kaluza-Klein

compactification on the circle, which we will need in the forthcoming sections

(for more about Kaluza-Klein theory see [43, 44]). Then in the next section
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we will give a detailed description of the Scherk-Schwarz mechanism, which is a

generalization of the Kaluza-Klein mechanism. In this formalism, one does not

insist on the assumption that the fields do not depend on the extra coordinates

but still obtains consistent compactifications with a specific ansatz.

2.2 Kaluza-Klein Compactification on the Circle: Computational Details

2.2.1 Reduction of the Metric

Let ĝMN(x, y) be the metric in D + 1 dimensions, a degree two symmetric

tensor. Here the index M runs from 1 to D + 1. From the D dimensional point

of view, this index splits as M = (µ, y). Thus we denote the components of

the metric ĝMN by ĝµν , ĝµy, ĝyy which, from the D dimensional point of view,

look like a metric, a 1-form and a scalar field, respectively. Instead of identify-

ing ĝµν , ĝµy, ĝyy with the D-dimensional fields gµν ,Aµ and φ, we prefer a better

parametrisation, namely we prefer to work in the Einstein frame, which make the

calculations much easier. We write the D+ 1 dimensional metric in terms of the

D dimensional fields as follows:

dŝ2 = e2αφds2 + e2βφ(dy + A)2 (2.7)

where A = Aµdx
µ and α, β are constants. We fix the values of α and β such

that the reduced Lagrangian is in the Einstein-Hilbert form, i.e., the term R ∗ 1

has constant coefficient 1 and the kinetic term for the scalar field φ is in the

canonical form, i.e. it appears as − 1
2
dφ ∧ ∗dφ. It turns out that the right choice

which ensures the above form of the reduced Lagrangian is

α2 =
1

2(D − 1)(D − 2)
, β = −(D − 2)α. (2.8)
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All the fields on the right hand side of (2.7) are independent of the extra coordi-

nate y. For the metric components, (2.7) implies that

ĝµν = e2αφgµν + e2βφAµAν , ĝµy = e2βφAµ, ĝyy = e2βφ. (2.9)

A convenient choice of the vielbein is

êa = eαφea, êy = eβφ(dy + A). (2.10)

Here the Latin letters a, b, etc denote tangent-space indices in D dimensions. For

the spin connection one finds that

ŵab = wab + αe−αφ[(∂bφ)êa − (∂aφ)êb] − 1

2
Fabe(β−2α)φêy (2.11)

ŵay = −ŵya = −βe−αφ(∂aφ)êy − 1

2
Fa

be
(β−2α)φêb, (2.12)

where ∂aφ means Eµ
a∂µφ, and Eµ

a is the inverse of the D dimensional vielbein

ea = ea
µdx

µ. Also, F = dA. These formulas can be achieved by using (2.10) and

the relation

2wab = −iadeb + ibde
a + (iaibdec)e

c (2.13)

Now from the formula

Rab = dwab + wacw
c
b, (2.14)

(2.8) and (2.11), one can calculate the components of the Ricci tensor

R̂ab = e−2αφ(Rab −
1

2
∂aφ∂bφ− αηab2φ) − 1

2
e−2DαφF c

a Fbc,

R̂ay = R̂ya =
1

2
e(D−3)αφ∇b(e−2(D−1)αφFab), (2.15)

R̂yy = (D − 2)αe−2αφ
2φ+

1

4
e−2DαφF2,

where F2 means FabFab. Now one can calculate the Ricci scalar R̂ = ηABR̂AB =

ηabR̂ab + R̂yy:

R̂ = e−2αφ(R− 1

2
(∂φ)2 + (D − 3)α2φ) − 1

4
e−2DαφF2. (2.16)
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The last thing to calculate is the determinant of the metric ĝ in terms of the

determinant of g, which can be done easily by using (2.9) and the result is

√

−ĝ = e(β+Dα)φ√−g = e2αφ√−g. (2.17)

Putting all the results together one finds that the lower-dimensional La-

grangian coming from the reduction of the Einstein-Hilbert term in higher di-

mensions is

L =
√

−ĝR̂ =
√−g(R− 1

2
(∂φ)2 − 1

4
e−2(D−1)αφF2) (2.18)

where we have dropped the 2φ term in (2.18) since it’s a total derivative.

In coordinate free notation, (2.18) can be written as:

L = R ∗ 1 − 1

2
dφ ∧ ∗dφ− e−2(D−1)αφ 1

2
F ∧ ∗F . (2.19)

2.2.2 The Reduction of the n-Form Field Strength

Suppose the higher dimensional theory contains an n-form field strength F̂n =

dÂn−1. In terms of indices we can see that the reduction of the (n − 1)-form

Ân−1 = Âµ̂1···µ̂n−1
dx̂µ̂1···µ̂n−1 gives in D dimensions another (n − 1)-form with

indices Aµ1···µn−1
and an (n − 2)-form with indices Aµ1···µn−2y. This is expressed

as

Ân−1(x, y) = An−1(x) + An−2(x) ∧ dy. (2.20)

Then for the field strength we have

F̂n = dAn−1 + dAn−2 ∧ dy.

For computational simplicity we again prefer to work in the Einstein-frame and

then

F̂n = dAn−1 − dAn−2 ∧ A + dAn−2 ∧ (dy + A)

≡ Fn + Fn−1 ∧ (dy + A) (2.21)
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where A is the Kaluza-Klein vector potential that comes from the metric reduc-

tion. Thus the D-dimensional field strengths are

Fn = dAn−1 − dAn−2 ∧ A, Fn−1 = dAn−2. (2.22)

Now it is easy to find how the kinetic term − 1
2
F̂n ∧ ∗̂F̂n reduces to D di-

mensions. Of course one should also calculate the relation between the D + 1-

dimensional Hodge operator ∗̂ and the D-dimensional Hodge operator ∗ which

is

∗̂(Xn ∧ (dy + A1)) = e2(D−n)αϕ ∗Xn (2.23)

∗̂Xn = e−2(n−1)αϕ ∗Xn ∧ (dy + A1)

Here Xn is an n−form living in D dimensions. Then the final result is

−1

2
F̂n ∧ ∗̂F̂n → [−1

2
e−2(n−1)αφFn ∧ ∗Fn − 1

2
e2(D−n)αφFn−1 ∧ ∗Fn−1] ∧ dy. (2.24)

2.3 Scherk-Schwarz Compactification

Twisted toroidal compactifications or Scherk-Schwarz reductions are a useful

way of introducing masses into supergravity and string compactifications, gen-

erating a potential for the scalar fields [11-27]. A theory in D + E dimensions

with global symmetry G can be compactified on a manifold of dimension E with

fields which have a particular dependence on the extra coordinates, determined

by the symmetry G. The choice of this dependence must be such that the fields

define fiber bundles that are continuous on the compact space. The non-trivial

topology of the space-time (e.g. IR4 × S1 in the circle reduction) allows one to

give a twist on the fibers, that is, the fields need only be continuous on the co-

ordinate patches. Scherk and Schwarz were able to show that with their ansatz

the y dependence 1 cancels out of the Lagrangian and the transformation laws of

1 Here we denote the extra coordinates collectively by y.
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the resulting low dimensional theory and the compactification is consistent. The

picture that emerges from such a compactification scheme is as follows:

• The y dependence of the fields introduce mass parameters into the theory.

The fields in non-trivial representations of the group G typically become

massive.

• It leads to a scalar potential in the lower dimensions which, when applied

to supergravity, provides a mechanism for the breaking of local supersym-

metry. This was actually the main motivation of Scherk and Schwarz.

• With this mechanism one can construct new massive and gauged super-

gravities and corresponding string compactifications.

In their original work Scherk and Schwarz started with a supergravity theory

in D + E dimensions and compactified it to D dimensions on an internal space

which they took to be a compact E dimensional manifold on which a special

E dimensional noncompact group acted. In fact they identified the y’s with the

coordinates on the manifold of a Lie group G having E generators. (This does not

necessarily mean that the internal manifold is the group manifold of G. Actually

the internal manifold is compact whereas the group is usually noncompact.) This

was an example of reduction with internal symmetries, symmetries which involved

space-time properties of the D + E-dimensional manifold.

It is also possible to use external symmetries to give twists in the Scherk-

Schwarz reduction. As an example consider the case in which the theory has a

U(1) global symmetry under which a scalar field S(x, y) transforms as S → eiαS.

Such a scalar field can be expanded in terms of the D dimensional scalar fields

Sn as follows

S(x, y) = eimy/R
∞
∑

n=−∞
einy/RSn(x). (2.25)
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This field is not single-valued on the D + 1 dimensional space-time manifold.

However the fields define a fiber bundle on the circle and are continuous on

the coordinate patches. This makes sure that the lower dimensional theory is

independent of the extra coordinate y. The idea in SS mechanism is to keep

m fixed as R → 0 and then to truncate to the lightest sector as in standard

Kaluza-Klein mechanism. A short-hand description of this procedure is to say

that S(x, y) = eimy/RS(x). Note that the D-dimensional field S0 has mass m.

In this work we will study supergravity theories in D + 1 dimensions and

consider SS compactifications of them on a circle to D dimensions. The theories

in consideration have a global, external symmetry group G, which is usually

inherited from the compactification of a higher dimensional theory in D + E

dimensions to D + 1 dimensions. Our main interest will be in constructing new

massive and gauged supergravities.

Massive supergravity theories appear basically in three different ways in the

compactification of ungauged supergravities. The first way is the Scherk-Schwarz

compactification that we discuss in detail here. A well-known example is the

Salam and Sezgin’s D = 8 SU(2)-gauged supergravity which is obtained by com-

pactifying the 11 dimensional supergravity theory by using the SU(2) group as

the global symmetry group [45].

The second way is the compactification in non-trivial manifolds, such as spon-

taneous compactification on spheres. We have already given the example of

N = 8, D = 4, SO(8)-gauged supergravity obtained by compactifying 11 di-

mensional supergravity on S7 [39]. Other examples are N = 4, D = 7, SO(5)-

gauged supergravity and N = 8, D = 5, SO(6)-gauged supergravity which are

obtained by compactifying the 11d supergravity on S4 and N = IIB,D = 10

supergravity on S5, respectively [40, 46]. This is related with the Scherk-Schwarz

compactification. For example, Salam and Sezgin’s eight dimensional theory can
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be considered as having been obtained on the sphere S3 which is the group man-

ifold of SO(3). Such theories are not only gauged, but also massive, because

one has to introduce mass parameters along with the gauge parameters. We will

discuss this in detail in section 4.2.

Thirdly, massive supergravity theories appear in compactifications with non-

trivial p-form fluxes (see e.g. [21, 22, 47, 48]). This is also related with the SS

compactification, as we will see in subsection 2.3.3.

In the subsection below we will describe the method of Scherk-Schwarz gen-

eralized dimensional reduction, leaving the explicit calculations to chapter 5. For

simplicity we will consider reductions on a circle but the results can be extended

to more general compactification manifolds.

2.3.1 The Formalism

Consider a D + 1 dimensional supergravity with a global symmetry G. An

element g of the symmetry group acts on a generic field ψ as ψ → g[ψ]. Consider

now a dimensional reduction of the theory to D dimensions on a circle of radius

R with a periodic coordinate y ∼ y + 1. In the twisted reduction, the fields

are not independent of the internal coordinate but are chosen to have a specific

dependence on the circle coordinate y through the ansatz

ψ(xµ, y) = g(y) [ψ(xµ)] (2.26)

for some y-dependent group element g(y) [15]. An important restriction on g(y)

is that the reduced theory in D dimensions should be independent of y. This is

achieved by choosing

g(y) = exp(My) (2.27)

30



for some Lie-algebra element M . The map g(y) is not periodic around the circle,

but has a monodromy

M(g) = g(1)g(0)−1. (2.28)

For the maps of the form (2.27), the monodromy is

M(g) = expM. (2.29)

The Lie algebra element M in (2.27) is called the mass matrix and it gener-

ates a one dimensional subgroup L of G, which becomes a gauge symmetry of

the reduced theory, so that such a reduction of a supergravity gives a gauged

supergravity [16, 20, 21]. We will see that, for a field ψ transforming in some

representation of G such that δψ = λM̄ψ, with λ being an infinitesimal parame-

ter and M̄ being the matrix through which M acts on ψ, the derivative becomes

a covariant derivative Dψ = dψ + AM̄ψ. Thus L is indeed the local symmetry

group and the gauge field is the graviphoton A. The mass matrix M deter-

mines not only the gauge couplings but also the mass parameters (as the name

would suggest) and the scalar potential, as we will discuss shortly. So the lower

dimensional theory is determined completely by the mass matrix M .

Now the question arises as to how many distinct theories we can obtain in lower

dimensions. Suppose that we use another element g′(y) in the same conjugacy

class with g(y) to give a twist in the SS reduction. Then g ′(y) = h−1g(y)h for

some group element h. This means that the ansatz (2.26) changes as hψ(x, y) =

g(y)hψ(x). But this is just a field redefinition for the field ψ as ψ → hψ. Hence

two group elements in the same conjugacy class give equivalent reductions up to

field redefinitions [15].

In quantum string theory, a global group of the classical theory typically be-

comes a discrete gauge symmetry G(Z) [50] and for such theories the monodromy

must be in G(Z), giving quantization conditions on the mass parameters, and the
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distinct theories are determined by the monodromy M ∈ G(Z) up to G(Z) con-

jugation.

The geometrical picture that arises is as follows. The fields ψ are sections of a

principal fiber bundle P (MD+1, G), where the base manifold MD+1 is the D+ 1-

dimensional Minkowski space and the structure group is the global symmetry

group G. Before compactification this bundle is trivial because the Minkowski

space can be covered with one coordinate chart. After the compactification the

base space is MD × S1 (this discussion can be readily extended to more general

compactification manifolds), so the bundle is not trivial any more. Thus the

sections, i.e. the fields, need not be globally defined over the circle S1 and it is

enough that they are related by some element of G as they go from one chart to

another. M is this group element. We can see this as follows. Suppose that we

parametrize the circle with y ∼ y+1. We can cover the circle with two coordinate

charts A and B and 0 ∼ 1 should be in A ∩ B. Hence ψ(1) and ψ(0) should be

related by a group element, which is in fact the monodromy M = g(1)g(0)−1 =

ψ(x, 1)ψ(x, 0)−1. Recall that the monodromy is the holonomy of a connection

around a loop on the base space in the fiber bundle language. Roughly speaking,

it measures how much a loop on the base space deviates from being closed when

horizantally lifted to the bundle. A non-trivial monodromy means a non-trivial

twist in the fibers. The question of how many distinct reductions there are can

also be answered easily in this geometric framework. Two such bundles with

monodromy in the same conjugacy class are equivalent.

We have just discussed that the distinct lower dimensional theories are classi-

fied by the conjugacy classes of the monodromy matrix M. We had also discussed

that the mass matrix M determines completely the couplings, mass parameters

and the scalar potential in the lower dimensions. This seems to give rise to a

paradox because for a given monodromy matrix M there exists infinitely many
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mass matrices M . As an example consider the case of trivial twist M = II which

corresponds to the standard KK compactification. It is obvious that there are

infinitely many M satisfying eM = II and each M is supposed to give a different

supergravity action in lower dimensions. To resolve this paradox consider the

example in (2.25). Note that the mass matrix is the 1 × 1 matrix M = im/R

and the monodromy matrix is2 M = e2πim. For the trivial reduction the mode

expansion is

S(x, y) =
∑

n

einy/RSn(x) (2.30)

whereas the twisted mode expansion is

S(x, y) =
∑

n

ei(n+m)y/RS̃n(x) (2.31)

In the trivial reduction case the modes Sn(x) have mass mn ∝ n/R and the zero

mode S0 is a massless field as usual. In the twisted case the modes S̃n(x) have

mass m̃n ∝ (n + m)/R and the zero mode is a massive field of mass m/R. If

m is an integer, one would expect the two mode sums in (2.30) and (2.31) to

be equivalent since they both correspond to the monodromy matrix M = II. In

fact they are equivalent when all of the massive Kaluza-Klein states are kept. If

one truncates to the mode S̃−m = S0 instead of S̃0 one again obtains a massless

field. Similarly, two non-integral choices of mass m = m1,m = m2 which differ

by an integer would give equivalent Kaluza-Klein spectra. The reduced theory

is different only after the truncation to the n = 0 mode is made. In general, for

a given monodromy matrix M the corresponding mass matrices M all give the

same KK spectra but can give distinct truncations to the “zero-mode” sector.

However the zero-mode does not give the truncation to the lightest fields any

more. In supergravity theories it is important to truncate to the mode which

gives the lightest states because the effective theory is to define the lightest states.

2 Note that here the identification is as y ∼ y + 2πR.
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Hence the correct method should be to truncate to the mode for which |m + n|
is minimum, i.e. for which the field S̃n has the minimum mass [21].

2.3.2 The Scherk-Schwarz Potential

In this section we will describe the form of the scalar potential that appears

in lower dimensions, again leaving the explicit calculations to the main chapter.

The existence of such a potential is perhaps the most interesting feature in SS

compactifications. Suppose that one starts with a theory in D + 1 dimensions,

performs a standard KK compactification on the circle and then gauges the global

symmetry that appears in D dimensions. The theory that is obtained is the same

with the theory that would be obtained if one performed SS reduction on the

D + 1-dimensional theory3 except for one difference. In the first case the scalar

potential does not appear naturally and is introduced in an ad hoc way due to,

for example, requirements coming from supersymmetry. In the second case a

non-trivial SS potential appears naturally which gives mass to some of the scalar

fields, which provides a mechanism for supersymmetry breaking and which can

be used to fix the moduli space [21].

Our main interest in this thesis will be in the reduction of supergravity and

superstring theories. Extended supergravity theories typically have a global sym-

metry G and the scalars take values in the coset space G/H where G is a non-

compact group and H is the maximal compact subgroup of G. The theory can

be formulated with a local H symmetry as well as a global G symmetry. The

scalars in the coset space G/H can be represented by a vielbein V(x) ∈ G which

transforms under global G and local H transformations as

V → h(x)V , h(x) ∈ H,

3 However, note that one cannot gauge the theory with any given group G, see [49] for a
discussion.
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V → V g, g ∈ G. (2.32)

The Lagrangian is

L = −1

2
tr[dVV−1 ∧ ∗dVV−1]. (2.33)

In this formulation there are an extra dim(H) non-physical scalars which can be

gauged away using the localH symmetry. Here V , g, h can be taken to be matrices

in some representation of G. We will present our results for real representations of

G such that the representatives of H are orthogonal matrices hTh = II so that δab

is an invariant, but the generalisation to other representations is straightforward.

An alternative formulation that does not involve extra scalars is to use a metric

K on G/H instead of a vielbein, transforming as (for a real representation of G)

K → gTKg. (2.34)

Such a metric can be constructed from the vielbein as Kij = δabVa
iVb

j, where i

and a are the curved and flat indices, respectively. K is invariant under local H

transformations as hTh = II. This means that the non-physical scalars drop out in

this formulation, without any need for gauge fixing. (For complex representations

with h†h = II, we would use the hermitian metric K = V †V transforming as

K → g†Kg.) The Lagrangian can be written in terms of K as

L =
1

4
tr[dK−1 ∧ ∗dK]. (2.35)

As will be seen in chapter 5, the y-dependent ansatz (2.26) on the scalar fields

gives the following scalar potential in D dimensions:

V (Φ) = eαφtr[M 2 +MTK(Φ)MK−1(Φ)]. (2.36)

Now the question is whether the potential has any stable minima and which

moduli acquire mass at these minima. Define M̃ = VMV−1. The potential takes

the form

V (Φ) = eαφtr[M̃2 + M̃TηM̃η−1]. (2.37)
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Now it is easy to see that the scalar potential (2.37) has stable minima for the

values M̃ = M̃0 for which

tr[M̃0(M̃0 + η−1M̃T
0 η)] = 0. (2.38)

We mentioned above that when K is compact, the case of our interest, η = II.

Then the scalar potential can be written in the form

V (Φ) =
1

2
eαφtr(Y 2) (2.39)

where Y is the real symmetric matrix, Y ≡ [M̃ + M̃T ]. Y is a diagonalizable

matrix with real eigenvalues, so tr(Y 2) is the sum of the squares of the eigenvalues.

Thus the potential (2.39) is manifestly positive. Suppose that Y = 0 for some

value of the moduli Φ = Φ0. Then it is obvious that the scalar potential vanishes

at this point. At such a point M̃(Φ0) = −M̃T (Φ0) so M̃(Φ0) = M̃0 equals a

rotation generator. Also since V (Φ) ≥ 0, the point Φ0 is a global minimum that

is stable or at least marginally stable. The corresponding value V0 of the vielbein

V at the point Φ = Φ0 is determined by the relation M̃0 = V0MV−1
0 . As a result,

the only critical points of the potential for finite φ are the stable minima where

the potential vanishes and where M̃(Φ0) is a rotation generator.

2.3.3 Twisted Tori and Flux Compactification

Scherk-Schwarz compactifications or twisted toroidal compactifications are re-

lated with flux compactifications. The low energy limit of a string theory com-

pactification, with some flux turned on, is the Scherk-Schwarz reduction of the

corresponding supergravity theory [15, 21, 22, 47, 48]. We will demonstrate this

with a simple example.

In this thesis we are mainly interested in compactifications with SL(2, IR)

twists. SL(2, IR) is the mapping class group of the torus T 2 and such a com-

pactifications can be regarded as a compactification on T 2 followed by a twisted
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reduction on S1. This is equivalent to reducing on a fiber bundle with T 2 fiber

over S1, where the T 2 geometry varies as it traverses around the circle and returns

to its original form after one cycle, up to an SL(2, IR) transformation [15]. Let

E be the 3 dimensional manifold which is the total space of this torus bundle.

Then its metric is

ds2
B = (2πR)2dy2 +

A

τ2
|dx1 + τ1(y)dx2|2 (2.40)

where A is the constant area modulus and τ(y) = τ1(y) + iτ2(y) is the complex

structure of the torus, which depends on the circular coordinate y. The fiber

T 2 has periodic coordinates x1, x2, xi ∼ xi + 1. This space E is an example

of a twisted torus. The y dependence of τ(y) is given by (2.26), where g(y)

is as in (2.27). Now choosing an appropriate Lie algebra element M , we have

τ(y) = τ1 + iτ2 + my where m is the mass parameter in the mass matrix M 4.

Then the metric is

ds2
B = (2πR)2dy2 +

A

τ2
(dx1 + ω)2 + Aτ2dx

2
2 (2.41)

where ω = (τ1 +my)dx2. This space can also be regarded as a circle bundle over

a 2-torus with fiber coordinate x1, connection 1-form ω and first Chern number

m. Now we T-dualize along the fiber direction x1. We use the Buscher rules [51]

gx1x1
=

1

jx1x1

,

gx1α = −Bx1α

jx1x1

,

gαβ = jαβ − 1

jx1x1

(jx1αjx1β − Bx1αBx1β), (2.42)

Bx1α = − jx1α

jx1x1

,

Bαβ = Bαβ − 1

jx1x1

(jx1αBx1β − Bx1αjx1β).

4 In fact this is equivalent to choosing M as the representative of the parabolic conjugacy
class of SL(2, IR). See (5.6) for the explicit form of M .
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Here g and j are the metrics on E and the T-dual of E, respectively; α, β refers

to any coordinates except x1 along which the dualization is being performed, Bαβ

is the B-field on the space E and B is the B-field on the T-dual space. As a result

we find that the metric of the T-dual space is

ds2 = (2πR)2dy2 +
τ2
A
dx2

1 + Aτ2dx
2
2. (2.43)

This is a torus metric on T 3, which means that the bundle E has been untwisted.

However now a B-field has been turned on with field strength H = mdx1∧dx2∧dy
corresponding to a constant H-flux over T 3. This generalises to the reductions

with SL(n, IR) twists. A twisted reduction on a p torus in which all monodromies

are in SL(n, IR) corresponds to a compactification on a bundle space for which

the base is T p and the fibers are T n.

We have discussed that in a SS reduction, the extra coordinates yi can be

regarded as a system of coordinates on the manifold of a Lie group G. This man-

ifold is called the twisted torus, although in general it doesn’t have the topology

of a fibered torus as above. G is usually a non-compact group, so this manifold

is not a group manifold. This also means that one cannot use the usual Cartan

metric as a metric on this manifold, since it is degenerate. However, the invariant

matrix of G can be used as a metric to lower and raise indices.

From this point of view a twisted torus can be defined as a parallelizable

manifold with a well defined nowhere vanishing basis of vielbein one-forms as

ηa, a = 1, · · · , n such that it is related to the holonomic basis as

ηa = (g(y))a
αdx

α, (2.44)

where g(y) is as in (2.26). Then the vector fields La which are dual to the 1-forms

ηa, i.e., La(η
b) = δb

a are related to the holonomic coordinate vector fields as

La = (g−1)α
a∂α. (2.45)
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They satisfy the following commutation relations

[La, Lb] = f c
abLc, (2.46)

where

f c
ab = (g−1)α

a (g−1)β
b (∂βg

c
α − ∂αg

c
β). (2.47)

An important criterion for the twisted torus is that the structure constants f c
ab

are constants and they correspond to flux parameters.

It is easily seen that (2.46) implies that the vielbein one forms ηa satisfy

dηa = −1

2
fa

bcη
b ∧ ηc. (2.48)

The Bianchi identity d2ηa = 0 implies

fa
b[cf

b
de] = 0, (2.49)

where the square bracket denotes antisymmetrization of the enclosed indices.

Now when g(y) is of the form (2.27), using (2.47) we find that

f c
ab = M c

aδ
1
b −M c

b δ
1
a. (2.50)

Here one thinks that the n × n matrix M has been embedded in a (n + 1) ×
(n + 1) matrix whose first row and column are zero. f c

ab are indeed constants,

as intended.

Now we go back to the example we considered at the beginning. There the

mass matrix M is in the parabolic class, so g(y) is of the form

g(y) =
1√
Aτ2















√
Aτ2

2πR
0 0

0 1 −(τ1 +my)

0 τ2 0















. (2.51)

Then we see that

L1 =
1

2πR

∂

∂y
, L2 =

1√
Aτ2

(
∂

∂x2

− (τ1 +my)
∂

∂x1

), L3 =
1

√

A/τ2

∂

∂x1

, (2.52)
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and the vielbein one-forms are

η1 = (2πR)dy, η2 =
√

Aτ2dx2, η3 =
1

√

A/τ2
(dx1 + (τ1 +my)dx2). (2.53)

We see that these vielbein one-forms indeed give the metric in (2.41).

Note that L3 in (2.52) is an isometry since it satisfies LL3
g = 0, but L1 and

L2 are not isometries. The La satisfy the commutation rules

[L1, L2] ∼ −mL3, [L1, L3] = 0, [L2, L3] = 0. (2.54)

Note that these are the commutation rules for the Heisenberg algebra.
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CHAPTER 3

DUALITY

Supergravity and string theories possess global, (mostly) non-compact symme-

tries which can be used in employing SS compactification. In this chapter we will

discuss the structure and the origin of these symmetries.

In the first section we will describe electric-magnetic duality and its general-

izations. This will serve several purposes. Firstly, the idea of S-duality, which is a

conjectured non-perturbative symmetry of string theory has its origins in electric-

magnetic duality. Secondly, it was argued in [52, 53] that the non-compact sym-

metries in string theory are inherited from the duality rotations on the two dimen-

sional world sheet of the string. These duality rotations are similar in structure

to electric-magnetic duality rotations. In the second, third and fourth sections we

will describe the perturbative T-duality and the non-perturbative S and U dual-

ities of string theories. In the last section we will discuss how these symmetries

can be understood by studying the duality symmetries of supergravity theories.

3.1 Electric-Magnetic Duality and Its Generalizations

3.1.1 Electric-Magnetic Duality

Consider the Maxwell equations

~∇ · ~E = ρe
~∇ · ~B = 0,

~∇× ~B − ∂ ~E

∂t
= ~Je

~∇× ~E +
∂ ~B

∂t
= 0. (3.1)
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When ρe = ~Je = 0 these equations are invariant under the duality transformations

~E → ~B, ~B → − ~E. (3.2)

This can be generalized to U(1) duality rotations parametrized by an arbitrary

angle φ:

( ~E + i ~B) → eiφ( ~E + i ~B). (3.3)

The duality symmetry in (3.2) is a Z2 subgroup of the U(1) in (3.3). If we write

the Maxwell equations in the covariant form

dF = 0 d ∗ F = 0, (3.4)

where F 0i = −Ei and F ij = −εijkBk, the duality transformation (3.2) takes the

form F → ∗F . The duality symmetry is broken by the presence of the electric

source terms. In this case (3.4) take the form

dF = 0, d ∗ F = j, (3.5)

which is obviously not symmetric. If we want to restore the symmetry we should

include magnetic source terms so that dF = k. However this requires the exis-

tence of a magnetic monopole. If the existence of a magnetic charge is assumed

then the duality transformations (3.2) take the form

~E → ~B, ~B → − ~E

Qe → Qm, Qm → −Qe, (3.6)

where Qe and Qm are the electric and magnetic charges, respectively. Because of

the Dirac charge quantization condition, the form of these charges should be as

Qe = neg, Qm =
nm

g
, (3.7)
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where ne and nm are integers and g is the electric coupling constant g = e2/4π,

e is the unit electric charge. The transformation of Qe and Qm then implies

ne → nm, nm → ne, g → 1

g
. (3.8)

The last transformation shows that we have a strong-weak coupling duality.

Note that this symmetry is a symmetry of the field equations. However it is

not a symmetry of the Lagrangian

L = Re( ~E + i ~B) · ( ~E + i ~B) = E2 −B2. (3.9)

It is possible to include a topological term θg
2π
~E · ~B in the action (4.48), which

does not alter the field equations. Now the action itself is invariant under the

duality transformation SL(2, Z) which is generated by the two transformations

Z2 : τ → −1

τ
, ne → nm, nm → ne, (3.10)

θ−shift : τ → τ + 1, ne → ne + nm, nm → nm. (3.11)

Here τ is a complex parameter

τ =
θ

2π
+

4πi

e2
. (3.12)

The two transformations (3.10) and (3.11) generate the group SL(2, Z) under

which we have the following transformations

τ → aτ + b

cτ + d
, (3.13)







ne

nm





 =







a b

c d













ne

nm





 , (3.14)

where a, b, c, d ∈ Z and ad− bc = 1.

When θ = 0 we have only the Z2 symmetry (4.49) which corresponds to the

strong-weak coupling duality
e2

4π
→ 4π

e2
. (3.15)
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Hence this is a non-perturbative symmetry which cannot be checked order-by-

order in the coupling parameter e. This extension of electric-magnetic duality

to SL(2, Z), which maps the strong coupling regime of the theory to the weak

coupling regime, is usually referred to as S-duality.

This strong coupling-weak coupling duality, which was first conjectured by

Montonen and Olive [54] is realized by N = 4 supersymmetric Yang-Mills theory

[55]. One special feature of this theory is charge non-renormalization (the β

function vanishes), i.e. the coupling constant e does not run with the energy scale

of the theory and hence there is no asymmetry between e and g. Another feature

is that a topological θ term can be added without spoiling the renormalizability

of the theory and without changing the field equations [56]. Seiberg and Witten

generalized the duality also to N = 2 SYM, for which β 6= 0 [57].

3.1.2 Duality Rotations for Interacting Fields

The duality rotations F → ∗F of the free Maxwell theory that we considered

above can be extended to the case when the electromagnetic fields interact with

other fields [58](See also [59] for a recent review).

In this section we will consider the duality symmetries in even dimensional

theories, including M (n − 1)-form gauge fields AI (D = 2n) interacting with

other fields φi(x). We will consider Lagrangians of the form

L = L(F I , φi, ∂µφi). (3.16)

Here F I = dAI . The gauge potentialsAI appear only through their field strengths.

Lagrangians of supergravity theories are also of this form. Note that in even di-

mensions we have

∗ ∗ F = εF, ε =











+1 for D = 4k+2,

−1 for D = 4k.
(3.17)
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For AI the equations of motion and the Bianchi identities are

dGI = 0 dF I = 0 (3.18)

where

GI =
∂L
∂F I

. (3.19)

For the free Maxwell theory we have G = ∗F and more generally we have G =

f(φ) ∗ F + g(φ)F , for some functions f and g depending on the fields φi. (3.18)

are invariant under the transformations

δ







F

G





 =







a b

c d













F

G





 , δφi = ξi(φ), (3.20)

where a, b, c, d are constant n× n matrices and ξi(φ) are functions of φi.

One can find the conditions on these matrices from the covariance of the defi-

nition (3.19) and from the covariance of the equations of motion for φi under the

duality transformation (3.20). It turns out that the duality group is Sp(2M, IR)

in the D = 4k, ε = −1 case and SO(M,M) in the D = 4k+2, ε = +1 case [58]. In

the case when there are no scalar fields in the theory only compact subgroups are

possible as duality symmetries without introducing ghosts. The maximal com-

pact subgroup of Sp(2M, IR) and SO(M,M) are U(M) and SO(M) × SO(M)

respectively.

An interesting case is when D = 2. Strings are one dimensional objects

which sweep out two dimensional world sheets and hence can be described by

two dimensional σ-models with fields taking values in the d-dimensional target

space for a string theory in d dimensions. Evidence is given in [52] and [53] that

the non-compact symmetries of string theories, in particular the T-duality, are

inherited from the duality symmetries of the kind discussed above, realized on

the world sheet of the string.
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3.2 T-duality

Target Space Duality Symmetry, T-duality, is a perturbative symmetry ap-

pearing in string theory compactifications [60]. It is the geometrical symmetry

group of the manifold of compactification, plus some discrete translational sym-

metries. The simplest case is when the compactification manifold is a circle. In

this case T-duality implies that compactification on a circle with radius R is the

same with compactification on a circle with radius 1/R. So, a small compactifi-

cation radius is equivalent to a large compactification radius to the string, and

this points out to the existence of a minimal length in string theory.

In order to see how this R ↔ 1/R duality appears in circle compactifications

first consider the string world sheet action:

S =
1

4
πα′

∫

dτdσ(∂iX
µ)(∂iX

ν)Gµν(X). (3.21)

Here Xµ are the parameters of the space in which the string propagates, (σ, τ)

are the world sheet parameters such that each τ = constant denotes the string at

a given time. Gµν is the world-sheet metric. i runs over the σ and τ directions.

The compactification is defined by the periodic identification

X ≈ X + 2πRm, (3.22)

where m is an arbitrary integer.

When Gµν = ηµν , that is, when the string propagates in flat space-time, the

fields Xµ on the world-sheet satisfy free wave equations and admit a decomposi-

tion in terms of left- and right-movers as

X(σ, τ) = XR(σ − τ) +XL(σ + τ). (3.23)

Solving the free field equations for X we have

∂LX
µ =

∑

n

αµ
−ne

−in(τ+σ),
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∂RX
µ =

∑

n

α̃µ
−ne

−in(τ−σ). (3.24)

The zero modes of the oscillators correspond to the center of mass motion and

thus α0 (α̃0) gets identified with the left-moving (right-moving) momentum of

the center of mass. In particular for the center of mass we have

X = α0(τ + σ) + α̃0(τ − σ), (3.25)

where we identify

(α0, α̃0) = (pL, pR). (3.26)

So the mode expansion of the world-sheet fields X is

XR(σ − τ) = xR −
√

α′

2
pR(σ − τ) + i

√

α′

2

∑

l 6=0

1

l
αle

+il(σ−τ)

XL(σ + τ) = xL −
√

α′

2
pL(σ + τ) + i

√

α′

2

∑

l 6=0

1

l
αle

−il(σ+τ) (3.27)

The normal ordered Hamiltonian reads

H = L0L + L0R (3.28)

where

L0R =
1

2
p2

R +
∞
∑

l=1

α−lαl

L0L =
1

2
p2

L +
∞
∑

l=1

α̃−lα̃l (3.29)

These results are irrespective of whether one of the dimensions is compactified

or not. Compactifying on a circle and thus imposing the periodicity condition

(3.22) has two effects. First, string states must be invariant under this iden-

tification. This means, the operator exp(2πiRp) which translates strings once

around the periodic dimension must leave states invariant, so the center of mass

momentum is quantized

k =
n

R
, n ∈ Z. (3.30)
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This is what would happen in field theory as well. The second effect is completely

a stringy effect. A closed string may now wind around the compact direction,

X(σ + 2π) = X(σ) + 2πRw, w ∈ Z. (3.31)

Here the integer w is the winding number and it counts the number of times the

string wraps around the circle.

For the closed string we have pL = pR = k, where pL, pR are as in (3.26), and

k is the center of mass momentum of the string because X is periodic in σ. This

is true for the non-compact dimensions. For compact dimensions we have

pL ≡
√

2

α′α0 =
n

R
+
wR

α′

pR ≡
√

2

α′ α̃0 =
n

R
− wR

α′ (3.32)

Notice that in this case L0L and L0R in (3.29) are invariant under the transfor-

mation

R√
α′

→
√
α′

R
, w ↔ n. (3.33)

Under (3.33), pR transforms into −pR, whereas pL is invariant. The oscillators

αn, α̃n also transform in a simple way:

αn → −αn, α̃n → α̃n. (3.34)

Hence, there is a R ↔ 1/R symmetry of the closed string theory when compact-

ified on a circle. This is the simplest example of T-duality. This is a stringy

property which is due to the fact that the string can wrap around the circle.

What happens when we compactify more than one dimensions? Consider the

case when there are d periodic dimensions

Xm ≈ Xm + 2πR, 26 − d ≤ m ≤ 25. (3.35)
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Spacetime is now Mk × T d where k = 26 − d. The actual geometry of the

d-torus depends on the internal metric Gmn. With more than one dimension

the antisymmetric tensor also has scalar components Bmn. The total number of

scalars from both sources is then d2 (d(d+1)/2 degrees of freedom for the metric

and d(d− 1)/2 degrees of freedom for Bmn).

In this case one can show that (pL, pR) belong to a 2d dimensional lattice with

signature (d, d). This lattice should be integral, self-dual and even. Self-dual

means that any vector which has integral product with all the vectors in the

lattice sits in the lattice as well. Even means that p2
L − p2

R is even for each lattice

vector. All the torus compactifications can be obtained by doing an SO(d, d)

Lorentz boost on (pL, pR) vectors of a given torus compactification. Rotating

(pL, pR) by an O(d) × O(d) transformation does not change the spectrum of the

string states, so the totality of such vectors is given by

SO(d, d)

SO(d) × SO(d)
. (3.36)

This is the moduli space of the compactification torus and the d2 scalars that

we discussed above parametrize this coset space [61]. The action of O(d, d) on

this moduli space is such that it takes one string theory to another one. A

discrete subgroup O(d, d;Z) takes a string theory into an equivalent one because

the Lorentz boosts sitting in this group do not change the lattice of the torus. So

the space of inequivalent compactifications is given by

SO(d, d)

SO(d) × SO(d) ×O(d, d;Z)
. (3.37)

The O(d, d;Z) generalizes the T-duality considered in the 1-dimensional case.

In the discussion above we considered only the bosonic fields. When fermionic

fields are taken into account the discussion divides into two cases. In the first case

of N = 2 supersymmetric theories (IIA and IIB), the moduli space of the toroidal
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compactifications is as in (3.37) and the T-duality group is again O(d, d;Z)1. In

the second case of N = 1 supersymmetric theories (type I and heterotic) the

moduli space of toroidal compactifications is

SO(16 + d, d)

SO(16 + d) × SO(d) × SO(16 + d, d;Z)
(3.38)

and the T-duality group is SO(d+ 16, d;Z).

3.3 S-duality

Two theories A and B are called S-dual if theory A at strong coupling is

equivalent to theory B at weak coupling and vice versa. This means that for each

physical observable fA(g) in theory A there is a corresponding observable fB(g)

in theory B such that fA(g) = fB(1/g), where g is the coupling constant. Thus it

is a symmetry which cannot be checked order-by-order in the coupling constant,

i.e. it is a non-perturbative symmetry.

In the string theory setting the first proposal of S-duality was for heterotic

string toroidally compactified to four dimensons, by Font et al [62]. It was shown

by Cremmer, Ferrara and Scherk that N = 4, D = 4 supergravity theory has a

global SL(2, IR) symmetry [63]. Font et al conjectured that the SL(2, Z) sub-

group of this symmetry group should be an exact symmetry of the full 4d heterotic

string theory [62]. Strong evidence for this conjecture was given in [64]. A Z2

subgroup is an electric-magnetic duality in which the string coupling constant

is inverted and hence it relates the strong coupling limit to a weakly coupled

description. Thus this proposal extends the Montonen-Olive duality conjecture

for supersymmetric gauge theories.

In string theory S-duality is a transformation which acts on the complex scalar

1 Type IIA and Type IIB are equivalent below ten dimensions. In fact, e.g., IIA compactified
on a circle of radius R is T-dual to IIB compactified on a circle of radius 1/R.
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field S:

S = S1 + S2 = χ+ ie−φ (3.39)

where χ is the axion field and φ is the dilaton field. In this case vacuum expec-

tation values of χ and φ play the roles of the vacuum angle θ and the coupling

constant e respectively:

< χ >=
θ

2π
(3.40)

e2

4π
=< eφ >=

8G

α′ (3.41)

Here G is the Newton’s constant and 2πα′ is the inverse string tension.

As mentioned above, the heterotic string theory compactified to four dimen-

sions on a flat torus T 6 is conjectured to have an SL(2, Z) symmetry. Another

case in which the group SL(2, Z) appears as a duality symmetry is the type IIB

string theory in 10 dimensions. This is a self-duality of the theory which takes it

to itself, at another coupling. The conjectured self-duality of IIB string implies

the conjectured duality of Montonen and Olive within D = 4, N = 4 gauge

theory. SO(32) type I and SO(32) heterotic at D = 10 are also interchanged by

weak-strong coupling duality. (See [65, 66] and references therein.)

Since S-duality is a strong-weak coupling duality it cannot be checked in per-

turbative string theory. However there is strong evidence for it coming from the

analysis of BPS states and studying the constraints of supersymmetry on the low

energy effective action. (See e.g. [66].)

3.4 U-duality

So far we have seen two types of string dualities: the perturbative T-duality

and the non-perturbative S-duality. Although these dualities look like very differ-

ent ideas, in fact they are essentially tightly related. Both the coupling constant
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of the string theory and the radius of the compactification circle (in the S1 reduc-

tion case) are determined by the expectation value of some scalar field (it is the

dilaton for the coupling constant). Hence the definitions of T-duality (R → 1/R)

and S-duality (g → 1/g) depend on the choice of these scalar fields among the

many scalars parametrizing the moduli space. Pursuing this analogy, Hull and

Townsend conjectured in 1995 the existence of a symmetry group which combines

these two symmetries and gave it the name U-duality [50]. (See also [67].)

In the late 70s it was realized that compactified supergravity theories possess

non-compact global symmetries, say G [30, 68, 69, 70]. In 1990 it was conjectured

that some discrete subgroups of these symmetries should be promoted to T-

duality or S-duality symmetries of corresponding string theories [53]. (See also

[71].) The U-duality group conjectured by Hull and Townsend is the maximal

integer subgroup of G. The conjecture is that this subgroup extends as the

symmetry of the full string theory, just as the extension of some smaller subgroups

to the T- and S-duality symmetries of the full string theory.

All these conjectures rely on the idea that the duality symmetries of the

string theories should be understood by studying the corresponding supergravity

theories. In fact this is a very natural idea since supergravity is the low energy

effective action of string theory and the form of the low energy effective action is

completely determined by supersymmetry and the spectrum of massless states in

the theory. Hence it does not receive any quantum corrections. Thus a symmetry

of the string theory should also be a symmetry of the corresponding supergravity

theory.

So, before giving the list of the U-duality groups appearing in type II and

heterotic string compactifications, we will first discuss how duality symmetries

appear in compactified supergravity theories.
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3.5 Duality Symmetries from Compactification of D=11 SUGRA

In this section we will consider the classical, internal, global symmetries of

the bosonic sector of various maximal supergravities in dimensions D ≤ 11 which

are obtained from eleven dimensional supergravity by toroidal compactification.

The Lagrangian for the 11d supergravity is

L11 = R ∗ 1 − 1

2
F4 ∧ ∗F4 +

1

6
F4 ∧ F4 ∧ A3. (3.42)

Here F4 = dA3. Suppose now that we compactify on a torus T n with coordinates

yi. This can be regarded as doing n subsequent circle compactifications. At each

step one obtains Kaluza-Klein vectors Ai and Kaluza-Klein scalars (dilatons) φi

coming from the reduction of the metric and also 0-form potentials, or axions

Ai
(0)j coming from the reduction of the Kaluza-Klein vectors, obtained in a pre-

vious step. It is obvious that one should have i < j. In addition one obtains the

potentials A(3), A(2)i, A(1)ij , A(0)ijk coming from the reduction of the 3-form po-

tential A3 in 11 dimensions. The indices i, j, k, · · · correspond to torus directions

and they are antisymmetrised. The Lagrangian for the resulting supergravity

theory can be found in [44].

The resulting supergravity theory in D dimensions has GL(N, IR)× IRq sym-

metry in its scalar sector. Here N = 11−D and q = 1
6
(11−D)(10−D)(9−D).

The GL(N, IR) part of the symmetry is due to the compactification of the grav-

itational sector of the theory. In fact we can only be sure of the SL(N, IR) part

and the last generator of the GL(N, IR) gives an internal R symmetry in dimen-

sions D > 2. The IRq part comes from the local abelian gauge symmetry of the

antisymmetric tensor field strength in the original 11 dimensions.

If one first reduces to D dimensions on a torus and then dualises all the field

strengths whose degree exceeds 1
2
D, then the SL(N, IR) × IRq symmetry above

extends to a global E(11−D)(11−D) internal symmetry [30, 68, 69, 70]. Here En(n)
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is the maximal noncompact form of the exceptional group En and for brevity we

shall write them simply as En.

It is important to note that the global symmetry can depend on the choice of

dualisation and it might not be possible to dualise all the fields in a given theory.

A sufficient condition is that the fields appear in the action purely through their

field strengths. In some cases it might still be possible to dualise a field which

appears in the field equations and Bianchi identities through its field strength even

if this is not the case in the action. The symmetry E11−D appears only when we

dualise all the fields. If, for example, we dualise the R-R fields only and keep the

NS-NS gauge potentials undualised, the symmetry group is O(10−D, 10−D)×IRq

for D ≤ 6 where q = 29−D. When D ≥ 7, the duality group is still E11−D since it

is only the R-R potential that suffers dualisation in these dimensions.

In the case when we dualise all the fields in the theory the scalar sector of

the Lagrangians are sigma models on the symmetric spaces E11−D/K(E11−D)

where K(G) is the maximal compact subgroup of G. The axionic scalars in the

fully dualised theory are in one to one correspondence with the positive roots

of the E11−D algebra. Using this fact one can give a simple parametrisation

of the E11−D/K(E11−D) scalar manifold, which is the Borel or upper triangular

parametrisation. In this parametrisation, the axionic scalars are the parame-

ters in the exponentiation of the positive roots and the dilatonic scalars are the

parameters in the exponentiation of the Cartan generators.

Can this symmetry of the scalar sector be extended to the full theory? In

other words, do the other terms in the Lagrangian involving the higher degree

fields also share this symmetry? The answer is affirmative in the odd dimensional

case, the full Lagrangian can be shown to be invariant under the symmetry of its

scalar sector. In even dimensions the symmetry can be extended to the level of

the field equations only, involving an electric-magnetic type duality. However, by
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Table 3.1: Symmetries and matter content of (the bosonic sector of) maximal
supergravities

Global Local
D Duality Group Symmetry Matter Content
9 GL(2, IR) SO(2) 1er

µ, 1A3, 2A2,
3A1, 3 A0

8 E3(3) = SL(3, IR) × SL(2, IR) SO(3) × SO(2) 1er
µ, 1A3, 3A2,
6A1, 7A0

7 E4(4) = SL(5, IR) SO(5) 1er
µ, 5A2, 10A1,

14A0

6 E5(5) = SO(5, 5) SO(5) × SO(5) 1er
µ, 5A2, 16A1,

25A0

5 E6(6) USp(8) 1er
µ, 27A1, 42A0

4 E7(7) SU(8) 1er
µ, 28A1, 70A0

3 E8(8) SO(16) 1er
µ, 128A0

using a formalism one can implement this symmetry at the level of an auxiliary

Lagrangian which is equivalent to the original Lagrangian, as it yields the same

field equations. The name of this formalism is “Doubled Formalism” and we will

describe it in chapter 5.

The matter content and the symmetries of maximal supergravities in dimen-

sion D ≤ 9 after full dualisations are given in Table 3.1. In [50] it was conjec-

tured that after quantisation a discrete subgroup becomes the U-duality symme-

try group of the toroidally compactified type II quantum string theories.

3.6 Duality Symmetries from Type II and Heterotic Compactifications

Consider type II string theory compactified on a torus. It doesn’t matter

whether we start with the IIA or IIB since their compactifications are the same.

The resulting low energy field theory is a D-dimensional supergravity theory

with global symmetry group G. This global symmetry G is a symmetry of the

action if the theory is in odd dimensions and in even dimensions it is a symmetry
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of the field equations only. The group G has a O(10 − D, 10 − D) subgroup

which is broken to the discrete T-duality group O(10 − D, 10 − D,Z). Also, as

mentioned in the previous section, the type IIB string theory in ten dimensions

has a conjectured SL(2, Z) symmetry. This SL(2, Z) symmetry commutes with

the T-duality symmetry of the lower dimensional type IIB string theory and

together they generate the U-duality group conjectured by Hull and Townsend

[50].

Consider the interesting and well understood case of D = 4. When com-

pactified on the torus T 6, the type II string theory gives the N = 8, D = 4

supergravity effective action. This theory has E7 symmetry as was noticed by

Cremmer and Julia [30]. This symmetry is at the level of field equations as in

other even dimensions. The 70 scalars in the theory parametrize the coset space

E7(7)/[SU(8)/Z2]. The symmetry group E7(7) contains SL(2, R) × O(6, 6) as a

maximal subgroup. In [50], it was shown that certain quantum mechanical ef-

fects break E7(7) to a discrete subgroup which they called E7(Z). This implies the

breaking of the maximal SL(2, IR) × O(6, 6) subgroup to SL(2, Z) × O(6, 6, Z).

The O(6, 6, Z) factor extends to the full string theory as the T-duality group and

it was conjectured in [62] that the SL(2, Z) extends to the full string theory as the

S-duality group. In [50] it was conjectured that the full E7(Z) group also extends

to the full string theory as a new unified duality group, namely the U-duality.

The low energy effective field theory of heterotic string theory is 10 dimen-

sional supergravity theory coupled to 16 Yang-Mills vector fields. When com-

pactified on a torus T n, it has a duality group G which contains O(10−d, 26−d)
as a subgroup, where d = 10 − n. The discrete subgroup O(10 − d, 26 − d, Z)

is the T-duality group of the corresponding string theory. The conjecture of [50]

is that a discrete subgroup of G extends to the corresponding string theory as a

unified symmetry.
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Again consider the D = 4 case. In this dimension the theory has a 2-form

field which can be dualised to a scalar field. Together with the dilaton field

they parametrize a SL(2, IR)/SO(2) coset and after this dualisation the theory

has a SL(2, IR) symmetry realized at the level of field equations. The discrete

subgroup SL(2, Z) is conjectured to be a symmetry of the corresponding string

theory [72, 73]. So the conjectured U-duality group, SO(6, 22, Z) × SL(2, Z) of

the 4 dimensional heterotic string theory unifies the T and S dualities.

Let G and G′ be the supergravity symmetry groups in d and d′ dimensions

respectively, where d′ < d. The dimensional reduction from d to d′ dimensions

gives an embedding of G in G′ and G(Z) is a subgroup of G′(Z). The reason for

this is that G does not act on the d-dimensional space-time and hence survives

dimensional reduction. So one can see that, for dimensions d > 4, the U-duality

group G must be a subgroup of E7(Z) in the type II case and a subgroup of

SO(6, 22, Z) × SL(2, Z) in the heterotic case. So, in these dimensions, one can

define the U-duality group as E7(Z) ∩ G for type II and as G ∩ [O(6, 22, Z) ×
SL(2, Z)] for heterotic string theory.

Below we present the tables for the duality symmetries for the type II and the

heterotic string theories compactified to d dimensions [50].
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Table 3.2: Duality symmetries for type II string compactified to d dimensions

Space-time Supergravity Conjectured
Dimension d Duality Group G String T-duality Full String Duality

10A SO(1, 1)/Z2 1 1
10B SL(2, IR) 1 SL(2, Z)
9 SL(2, IR) ×O(1, 1) Z2 SL(2, Z) × Z2

8 SL(3, IR) × SL(2, IR) O(2, 2, Z) SL(3, Z) × SL(2, Z)
7 SL(5, IR) O(3, 3, Z) SL(5, Z)
6 O(5, 5) O(4, 4, Z) O(5, 5, Z)
5 E6(6) O(5, 5, Z) E6(6)(Z)
4 E7(7) O(6, 6, Z) E7(7)(Z)
3 E8(8) O(7, 7, Z) E8(8)(Z)
2 E9(9) O(8, 8, Z) E9(9)(Z)
1 E10(10) O(9, 9, Z) E10(10)(Z)

Table 3.3: Duality symmetries for heterotic string compactified to d dimensions

Space-time Supergravity Conjectured
Dimension d Duality Group G String T-duality Full String Duality

10 O(16) × SO(1, 1) O(16,Z) O(16, Z) × Z2

9 O(1, 17) × SO(1, 1) O(1,17,Z) O(1, 17, Z) × Z2

8 O(2, 18) × SO(1, 1) O(2, 18, Z) O(2, 18, Z) × Z2

7 O(3, 19) × SO(1, 1) O(3, 19, Z) O(3, 19, Z) × Z2

6 O(4, 20) × SO(1, 1) O(4, 20, Z) O(4, 20, Z) × Z2

5 O(5, 21) × SO(1, 1) O(5, 21, Z) O(5, 21, Z) × Z2

4 O(6, 22) × SL(2, IR) O(6, 22, Z) O(6, 22, Z) × SL(2, Z)
3 O(8, 24) O(7, 23, Z) O(8, 24, Z)

2 O(8, 24)(1) O(8, 24, Z) O(8, 24)(1)(Z)
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CHAPTER 4

A PRELIMINARY CHAPTER

In the previous chapters we gave a description of the Scherk-Schwarz dimensional

reduction mechanism and also discussed the symmetries present in supergravity

and string theories, which we can employ in this mechanism. In the next chapter,

where we will introduce the original part of this thesis work, we apply these

methods to specific models. The purpose of the present chapter is to introduce

some preliminary material which will be needed for the next chapter.

The specific models that we study are such that the global symmetries that

we employ are realized only at the level of field equations rather than the action

itself. In the next section, we will describe a formalism, called the “Doubled

Formalism” [29], which enables us to realize the symmetry at the level of an

auxiliary Lagrangian that yields the same field equations as those of the original

Lagrangian.

In order to construct such an auxiliary Lagrangian one has to impose a con-

straint in the higher dimensional theory. This constraint, when reduced with the

SS method, implies a self-duality condition for some of the gauge fields in lower

dimensions. In each case one starts with an even dimensional theory, reduces on

a circle, and hence ends up with an odd dimensional theory. In the second section

of this chapter we discuss what it means to be “self-dual” in odd dimensions [32].

In the last section we the Stückelberg Mechanism will be described. This is a

mechanism that appears during the dimensional reduction process and it is this

very mechanism that lets some of the gauge fields acquire mass.
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4.1 Doubled Formalism

Typically a D = 2n dimensional supergravity theory has a global symmetry

group G which can be realised at the level of field equations but not the action,

as G acts on n-form field strengths H = dA through electric-magnetic duality

transformations. In such cases it is possible to construct a manifestly G-invariant

Lagrangian that depends on the potentials A and dual potentials Ã. The dual

fields are regarded as independent fields, but the field equations are supplemented

with aG-covariant constraint relating the n-form field strengths dÃ to dA, keeping

the number of independent degrees of freedom correct. The new Lagrangian is

equivalent to the original one as the two yield equivalent field equations when the

constraint is taken into account.

In this section we will describe this formalism which was introduced in [29]

where it was called the ‘doubled formalism’. We will first consider the case

G = SL(2, IR) and then give the general case in the following subsection.

4.1.1 G = SL(2, IR) Case

Consider the following Lagrangian in D + 1 = 2n dimensions

L = −1

2
dφ ∧ ∗dφ− 1

2
e2φdχ ∧ ∗dχ− 1

2
e−φFn ∧ ∗Fn − 1

2
χFn ∧ Fn (4.1)

Here Fn = dAn−1 and φ and χ are scalar fields. The scalar fields parametrize the

coset space SL(2, IR)/SO(2). (Recall the discussion in chapter 2.) For a theory

in which the scalar fields parametrize a coset space G/H, where H is the maximal

compact subgroup of G, the kinetic term for the scalars can be written in the

form (2.33) or (2.35). In the present case G = SL(2, IR), H = SO(2) and we

have

V = heφ/2







e−φ 0

−χ 1





 (4.2)
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where h is an SO(2) matrix

h =







cos θ sin θ

− sin θ cos θ





 . (4.3)

Then

K = eφ







e−2φ + χ2 −χ
−χ 1





 (4.4)

and is independent of θ.

The field equations of this Lagrangian have an SL(2, IR) S-duality invariance

(for even n) acting on F through electromagnetic duality transformations, as we

now discuss.

Defining a new n-form Gn by

Gn =
δL
δFn

= −e−φ ∗ Fn − χFn (4.5)

the lagrangian (4.1) can be written as

L =
1

4
Tr(dK ∧ ∗dK−1) +

1

2
Fn ∧Gn (4.6)

The Bianchi identity and the equation of motion for the n-form field strength Fn

are

dFn = 0

dGn = d(e−φ ∗ Fn + χFn) = 0 (4.7)

which can be combined as

dHn = 0 (4.8)

where Hn is the SL(2, IR) doublet

Hn =







Fn

Gn





 . (4.9)
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The field equations are manifestly SL(2, IR) invariant but the Fn ∧ Gn term in

the Lagrangian (4.6) is not invariant. However, an invariant Lagrangian can be

constructed as in [29] if the field equation dGn = 0 is solved by introducing a

dual potential Ãn so that Gn = dÃn, which can be combined with An to form an

SL(2, IR) doublet, with field strengths H (i)
n given by

Hn =







dAn

dÃn





 . (4.10)

It is useful to define the field strength

F̃n = dÃn−1 − χdAn−1. (4.11)

Now consider the following Lagrangian which includes both the original field

strength Fn and the new one F̃n:

L′ = −1

2
dφ ∧ ∗dφ− 1

2
e2φdχ ∧ ∗dχ− 1

2
e−φFn ∧ ∗Fn − 1

2
eφF̃n ∧ ∗F̃n (4.12)

The Bianchi identities and the field equation for Fn and F̃n are as below:

dFn = 0, d(F̃n + χFn) = 0

d ∗ (eφF̃n) = 0, d ∗ (e−φFn − χeφF̃n) = 0. (4.13)

The Lagrangian L′ includes two potential fields An−1 and Ãn−1 whereas the La-

grangian L in (4.1) has only one potential field An−1. If we want these two

Lagrangians to be equivalent we should impose a constraint on the potential

fields in L′ so that the number of degrees of freedom are halved. The following

constraint, which we will call a “twisted duality condition” is consistent with the

field equations (4.13):

F̃n = e−φ ∗ Fn. (4.14)

Note that this constraint implies

dÃn−1 = −e−φ ∗ Fn − χFn, (4.15)
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which, according to (4.5), is equivalent to imposing dÃn−1 = Gn.

Now it is easy to see that the Lagrangian L′ has the same set of equations

of motion and Bianchi identities with those of (4.1) after imposing the relation

(4.14). In fact there is an interchange between the Bianchi identities and equa-

tions of motion. So we are on half way to our goal. We have been able to write

down an auxiliary Lagrangian which, after imposing some constraint, yields the

same field equations as those of the original one. Now the question is whether

this new Lagrangian L′ is manifestly SL(2, IR) invariant or not. In fact it is, as

can be seen by writing it in the form

L′ =
1

4
tr(dK ∧ ∗dK−1) − 1

4
H i

nKij ∗Hj
n. (4.16)

Here i, j = 1, 2 are SL(2, IR) indices. It is crucial to note that H (2)
n = Gn only

after we impose the constraint (4.14). One first varies the action, then imposes

the constraint (4.14) and only then the field equations are equivalent with those

of (4.1). If, instead, the constraint equation is imposed on the Lagrangian (4.16)

before varying the action, then the HTM∗ H part of the Lagrangian vanishes.

This observation will be crucial in the next section where we introduce the general

formalism.

The invariance of the Lagrangian (4.16) under the following SL(2, IR) trans-

formation can be seen manifestly

Hn → Λ−1Hn K → ΛTKΛ, Λ ∈ SL(2, IR). (4.17)

The relation (4.14) can also be written in a manifestly SL(2, IR) covariant

form:

H(i)
n = J i

j ∗H(j)
n , (4.18)

where J is the SL(2, IR) matrix

J = ΩikKkj. (4.19)
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Here Ω is the SL(2, IR) invariant matrix

Ω =







0 1

−1 0





 . (4.20)

Note that the matrix J in (4.19) satisfies J 2 = −II, so that this constraint is

consistent in 2n dimensions with even n for which (∗)2 = −1. The general case

including odd n will be discussed in the next subsection.

Of course one should also study the other sectors of L and L′ and be able to

show that the field equations for the other fields (the scalar fields and the metric

in this case) are also equivalent. Rather than doing the explicit calculations here

we will give a general proof that this holds in the next section where we discuss

the general formalism.

4.1.2 The General Formalism

The doubled formalism of the last section can be generalised [29]. Consider

the following Lagrangian in 2n dimensions

L = −1

2
RIJF

I
n ∧ ∗F J

n − 1

2
SIJF

I
n ∧ F J

n + L(Φ) (4.21)

where F I
n = dAI

n−1 with I = 1, ..., k are k field strengths and Φ denotes all the

remaining fields, including the scalars. The matrices RIJ , SIJ are functions of the

scalar fields and they satisfy RIJ = RJI and SIJ = (−1)n−1SJI . It is useful to

define GI
n as

GI
n =

δL
δF I

n

(4.22)

so that the action can be written as

L =
1

2
F I

n ∧GI
n + L(Φ) (4.23)

The field equations and the Bianchi identities can be combined as

dHn = 0 (4.24)
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where Hn is

Hn =







F I
n

GI
n





 . (4.25)

with r = 2k components.

Such systems arise in supergravity theories, and typically the field equations and

Bianchi identities have a global symmetry G under which Hn transforms as a

2k-dimensional representation of G, and L(Φ) is G-invariant. In 2n dimensions,

the group G will have an invariant Ωij, where i, j = 1, ..., 2k are indices for the

2k representation of G. This is symmetric if n is odd and anti-symmetric if n is

even

Ωij = (−1)n−1Ωji (4.26)

As before we introduce potential fields ÃI
n−1 with GI = dÃI to form

Hn =







dAI
n

dÃI
n





 (4.27)

transforming in the 2k representation of G. Then the system can be described

by the G-invariant Lagrangian

L′ = −1

4
HT

n K ∧ ∗Hn + L(Φ), (4.28)

together with a constraint

Hn = Q ∗Hn (4.29)

where Qi
j is a 2k × 2k matrix given in terms of the scalar fields by

Qi
j = ΩikKkj. (4.30)

Here Kij is given in terms of RIJ , SIJ by

K =







R + SR−1ST −SR−1

−R−1ST R−1





 . (4.31)

65



In the supergravity applications we will be considering, the scalars take values in

a coset G/H and Kij is the symmetric matrix representing the scalar fields. Note

that

Q2 = (ΩK)2 = (−1)n−1II (4.32)

so that the constraint (4.29) is consistent as for 2n-dimensional Lorentzian space-

time ∗ ∗Hn = (−1)n−1Hn.

The field equations that are derived from the Lagrangian (4.21) are equivalent

to those derived from the Lagrangian (4.28) when supplemented with the con-

straint (4.29). This is easy to verify for the potential fields. Their field equations

and Bianchi identities obtained by varying the Lagrangian (4.21) are

dF I
n = 0, dGI

n = 0 (4.33)

Now look at the field equations of the Lagrangian (4.28) which are

d(K ∗Hn) = 0, dHn = 0. (4.34)

Now we impose the constraint (4.29) and use (4.32) to obtain K ∗ H = ΩH; so

after we impose the constraint, the equations (4.34) are truncated to

dHn = 0. (4.35)

In order for these equations to be equivalent to those in (4.33), we should have

dÃI
n−1 = GI

n. In order to check whether this really holds, we should study in more

detail what the constraint (4.29) means. For simplicity let’s call dÃI
n−1 = F̃ I

n for

the time being. Then the constraint imposes the following relation between F I
n

and F̃ I
n :







F I
n

F̃ I
n





 =







A(φ) B(φ)

C(φ) D(φ)













∗F I
n

F̃ I
n





 . (4.36)
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Here

Q =







A(φ) B(φ)

C(φ) D(φ)





 (4.37)

and hence A,B,C,D are k × k matrices depending on the scalar fields. Solving

this equation and using (4.32) one obtains

F̃ I
n = B−1 ∗ F I

n +DB−1F I
n . (4.38)

Now using (4.31), it is easy to show that (4.38) is equivalent to saying GI = F̃ I =

dÃI . Hence when one varies the Lagrangian L′ with respect to the potential

fields and then imposes the twisted-duality constraint, the field equations that

are obtained are equivalent to those of the Lagrangian L, as claimed.

Now we will study the field equations for the other fields which we collectively

denote by Φ. First we make the observation that if the solution (4.38) for dÃI
n−1

is substituted into Hn, we have

HT
n K ∧ ∗Hn = 0. (4.39)

This can be seen easily by observing that when one substitutes the constraint

(4.29) in HT
n K∗Hn, one obtains HT

n ∧ΩH which vanishes in D = 2n dimensions.

Varying (4.39) with respect to Φ we get

1

2
HT

n

δK
δΦ

∧ ∗H +
δHT

δΦ
K ∧ ∗H = 0. (4.40)

Then we have

1

2
HT

n

δK
δΦ

∧ ∗H = −δH
T

δΦ
K ∧ ∗H = +

δHT

δΦ
Ω ∧H = − δ

δΦ
(F I

n ∧GI
n). (4.41)

where we have used (4.29) in writing the second equality and the form of Ω and

the fact that δF/δΦ = 0 in the last equality.

Thus it is indeed true that the Lagrangians L and L′ are equivalent because

they yield the same field equations after imposing the constraint (4.29) on the

field equations of L′.
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4.2 Self-duality in Odd Dimensions

In D = 2n dimensions it is possible to define self-duality via the Hodge duality

operator ∗. In such dimensions an n-form Fn is called self-dual if it satisfies

Fn = ∗Fn. (4.42)

Since the degree of the form ∗Fn is equal to 2n − n = n, it is consistent to talk

about such an equality. However, in odd dimensions D = 2n− 1, the Hodge dual

of an n-form is of degree (2n− 1) − n = n− 1 and hence an equation like (4.42)

does not make sense in odd dimensions.

The question as to how self-duality might be defined in odd dimensions was

first investigated in [32]. The original motivation for this investigation was from

D = 7, N = 4 SO(5)-gauged supergravity. The ungauged theory has a rigid

G = USp(4) invariance. The abelian gauge fields form the 10 representation of

G, whereas the two-form fields form the 5 representation. In the gauged theory

the 2-form fields should couple to the 1-form fields but this violates the antisym-

metric tensor gauge invariance. They cannot transform simultaneously under

their massless p-form gauge transformations and the new gauge transformations.

This problem can be resolved if an explicit antisymmetric tensor mass term is

added, since this mass term eliminates the requirement of massless p-form gauge

invariance. However, incorporating a mass term raises a new problem– additional

modes are propagated and this destroys the balance of bosons and fermions, thus

violating supersymmetry. The problem is resolved by dualising the 2-form fields

to 3-form fields and then a mass term for the 3-form fields is incorporated by

the self-duality mechanism. A similar situation occurs also in D = 5, N = 8

SO(6)-gauged supergravity. So, what is this mechanism?

Consider first the case D = 3 for simplicity. The Proca equation for a massive
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vector field in this dimension is

d ∗ F(2) +m2 ∗ A(1) = 0. (4.43)

The subscript refers to the degree of the form. Here F(2) is the field strength of

the vector field A(1), F(2) = dA(1). (4.43) implies the Lorentz condition

d ∗ A(1) = 0, (4.44)

which means that only two of the three components of A(1) are independent.

(4.43) and (4.44) imply that these two components satisfy a free field wave equa-

tion with wave operator (2 −m2).

It is possible to find a kind of “square root” of (4.43) for which only one mode

is propagated:

F(2) = m ∗ A(1). (4.45)

This equation implies both (4.43) and (4.44) . It can be derived from the following

Lagrangian

L = −m2A(1) ∧ ∗A(1) +mA(1) ∧ dA(1). (4.46)

This Lagrangian propagates only one degree of freedom. We can see this as

follows. We will restrict ourselves to the case when A(1) is a homogenous field, that

is we will assume that the space derivatives ∂1 and ∂2 vanish. The independent

components will be taken to be A1 and A2; we will eliminate the A0 component

(we have dropped the subindex (1) referring to the degree of the form to avoid

complication). Then, in components, the Lagrangian (4.46) takes the form

L(∂i = 0) = −m2(Ai)
2 −mεijAiȦj (4.47)

where i, j = 1, 2 and a dot refers to time derivative. Now we will break the

manifest SO(2) rotational symmetry and rewrite (4.47) so that only A2 occurs
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through its time derivative1:

L(∂i = 0) = −m2(A2
1 + A2

2) − 2mA1Ȧ2 + total time derivative. (4.48)

Since A1 does not appear through its time derivative it is an auxiliary field and

hence we can eliminate it using its Euler-Lagrange equations 2 and obtain

L(∂i = 0) = Ȧ2
2 −m2A2

2, (4.49)

which is of canonical form for a single mode of mass m. So the Lagrangian

(4.46), which yields the massive self-duality condition (4.45), has indeed halved

the degrees of freedom being propagated. In the two next subsections, we will give

generalizations of this, first for the D = 4k− 1 case and then for the D = 4k + 1

case.

4.2.1 Generalizations to D = 4k − 1

There is a direct generalization of the discussion above to D = 4k − 1 di-

mensions. Now the field A(2k−1) is a 2k − 1-form with a 2k-form field strength

F(2k) = dA(2k−1). The massive self duality condition is again

F(2k) = m ∗ A(2k−1). (4.50)

Since A(2k−1) is an odd form as before, all the arguments in the previous subsection

are valid here too.

Note that the number of modes propagated by a massless (2k − 1)-form in

D = 4k − 1 dimensions is







(4k − 1) − 2

2k − 1





 =
(4k − 3)!

(2k − 1)!(2k − 2)!
(4.51)

1 Here one uses mA2Ȧ1 = ∂t(mA2A1) − mA1Ȧ2.
2 d

dt
∂L
∂Ȧ1

− ∂L
∂A1

= 0 ⇒ −mȦ2 − m2A1 = 0 ⇒ A1 = − 1
m Ȧ2.
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whereas for a massive (2k − 1)-form it is







(4k − 1) − 1

2k − 1





 =
(4k − 2)!

[(2k − 1)!]2
(4.52)

which is exactly twice the number of the modes in (4.51). Hence the self-duality

condition reduces the number of massive modes propagated by A to exactly the

number of massless modes propagated by the same field. Thus with this mecha-

nism we can incorporate a mass term without changing the number of degrees of

freedom.

4.2.2 Generalizations to D = 4k + 1

In this dimension, in order for the self-duality equation F = m ∗ A to make

sense we should have A a 2k-form field and F = dA a 2k+ 1-form field. However

the formalism that has been described above cannot be generalized to dimensions

D = 4k+1. To understand why, first have a closer look at what sort of an equation

the self-duality condition implies for the field A(2k). First note that3

dA = F = m ∗ A⇒ ∗dA = −mA ⇒ d ∗ dA = −mF = −m2 ∗ A

⇒ ∗d ∗ dA = +m2A. (4.53)

Now remember the form of the Laplace operator, which is 4 = (dd† +d†d) where

d†A = ∗d ∗ A when A is of odd degree and d†A = − ∗ d ∗ A when A is of even

degree4. In a Lorentzian space with metric convention (−,+, · · · ,+), we have

2 = +45. Then 2A = +d ∗ d ∗ A + ∗d ∗ dA when A is of odd degree and

2A = −d ∗ d ∗ A − ∗d ∗ dA when A is of even degree. The first term vanishes

3 Note that ∗ ∗ ωn = (−1)n(D−n)+t where t is the number of time-like coordinates which is
1 since we are in Lorentzian space-time. So when D is odd ∗ ∗ ωn = −ωn for all n-forms ωn.

4 Recall d†ωn = (−1)D(n+1)+1+t ∗ d∗, where t is as before.
5 We can understand this by considering the action of 4 on a zero-form f : 4f = − ∂2

∂t2 +∇2.
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because of the Lorentzian condition (4.44) and the second term gives simply

±m2A according to (4.53). As a result we have

(2 −m2)A = 0 (4.54)

for D = 4k − 1 and

(2 +m2)A = 0 (4.55)

for D = 4k + 1. In the second case we have a tachyonic wave operator. This

problem may be avoided by inserting a factor of i into the self-duality equation:

F = im ∗ A (4.56)

which requires that the field A is a complex field. This equation can be derived

from the Lagrangian

L = m2A∗ ∧ ∗A+ imA∗ ∧ dA. (4.57)

Here ∗ refers to complex conjugation. Since A is a complex field it can be written

in the form A = A1 + iA2. When we insert this into (4.57) we obtain

L = m2(A1 ∧ ∗A1 + A2 ∧ ∗A2) +m(A2 ∧ dA1 − A1 ∧ dA2)

+im(A1 ∧ dA1 + A2 ∧ dA2). (4.58)

The term in the second line is a total derivative since Ai are even forms. Also

note that A1 ∧ dA2 = −dA1 ∧ A2 + total derivative. Thus the Lagrangian (4.57)

is equivalent to

L = m2(A1 ∧ ∗A1 + A2 ∧ ∗A2) + 2mA2 ∧ dA1. (4.59)

There are no derivative terms for the field A2 so it can be eliminated through its

Euler-Lagrange equation which gives

A2 =
1

m
∗ dA1. (4.60)
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Inserting (4.60) in (4.59) we see that the Lagrangian L takes the form

L = F 1 ∧ ∗F 1 +m2A1 ∧ ∗A1, (4.61)

where F 1 = dA1. Varying this Lagrangian gives the Proca equation d ∗F −m2 ∗
A = 0. So in D = 4k + 1 dimensions the self-duality condition (4.56) is merely

a rewriting of the Proca equation and it does not halve the number of degrees of

freedom.

4.3 Stückelberg Mechanism

Massive spin-1 particles obey equations which generalise Maxwell equations,

known as Proca equations. A massive theory cannot be gauge invariant so neither

can be the Proca equation. In this section we will describe a mechanism intro-

duced by Stückelberg, which restores the gauge invariance broken by the mass

term (See [74] for a recent review and references). The idea is to introduce an

auxiliary field which couples to the theory in such a way that the Lagrangian is

now manifestly gauge invariant and also is equivalent to the Proca Lagrangian in

a fixed gauge, when the auxiliary field has been gauged to zero.

Consider the Proca equation

(2 −m2)An−1 = 0. (4.62)

This equation is derived from the Lagrangian

L = Fn ∧ ∗Fn +m2An−1 ∧ ∗An−1, (4.63)

This Lagrangian is not gauge invariant under the antisymmetric tensor gauge

invariance of the field An−1:

δAn−1 = dλn−2. (4.64)
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To recover the gauge invariance we introduce an auxiliary field Bn−2 in the action

such that the Lagrangian is now

L = Fn ∧ ∗Fn +Hn−1 ∧ ∗Hn−1 (4.65)

where

Fn = dAn−1

Hn−1 = dBn−2 −mAn−1. (4.66)

Now the action is invariant under the following ”massive gauge transformations”:

δAn−1 = dλn−2, δBn−2 = mλn−2. (4.67)

Note that the field Bn−2 is a pure gauge and it can be gauged away. In this case

the Lagrangian (4.65) is equivalent to the Lagrangian (4.63).

Now consider the field equations of (4.65). They are

d ∗ F +m ∗H = 0, d ∗H = 0, If n is odd

d ∗ F −m ∗H = 0, d ∗H = 0, If n is even. (4.68)

When we fix the gauge to Bn−1 = 0, they give the following equations:

d ∗ Fn −m2 ∗ An−1 = 0, If n is odd

d ∗ Fn +m2 ∗ An−1 = 0, If n is even. (4.69)

Note that these equations yield the Proca equation (4.62).

As a result, we have rewritten the Lagrangians in a gauge invariant way and

in the fixed gauge for which Bn−2 = 0, it is equivalent to the original Proca

Lagrangian. The field Bn−1 is called the Stückelberg field.
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CHAPTER 5

COMPACTIFICATIONS WITH S-DUALITY TWISTS

Our main interest in this thesis is in reductions in which the monodromy M ∈ G

is a symmetry of the equations of motion but not the action, acting on the field

strengths Ĥ i
n via transformations involving Hodge dualities, so that they cannot

be realised locally on the fundamental n − 1 form potentials. In dimensionally

reducing a theory with a twist that is a symmetry of the equations of motion

and not of the action, one needs to reduce the equations of motion, not the

action in general. However, for the cases of interest here one can use the doubled

formalism of [29], which we described in the previous chapter. The doubled action

can then be dimensionally reduced in the standard way with a twist by the duality

symmetry. This greatly simplifies the calculations.

In this chapter, we apply these results to the reduction of supergravity theories

in 4, 6, 8 dimensions, giving rise to supergravity theories in 3, 5, 7 dimensions with

massive self-dual forms [75]. This constructs new supergravity theories in these

dimensions and gives a higher-dimensional origin for theories in 3, 5, 7 dimensions

with Chern-Simons actions. In particular, for D = 3, A is a vector field and this

gives a higher dimensional origin for 3-dimensional gauged supergravity theories,

of the type discussed in [76] with Chern-Simons actions for some of the gauge

fields.

The plan of this chapter is as follows. In the first section we will consider the

twisted reduction of gravity coupled to scalars and gauge potentials which are used

in later sections. In section 2 we perform a twisted dimensional reduction in the
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doubled formalism, and hence obtain the Lagrangian for dimensional reductions

with S-duality twists. Finally, in section 5, we apply our results to the reduction

of supergravity theories in 4, 6, 8 dimensions.

5.1 Scherk-Schwarz Reduction

An example which will play a central role in what follows is a theory of gravity

coupled to scalars in the coset G/H and a set of r n − 1 form gauge potentials

Ai
n−1 with n-form field strengths H i

n = dAi
n−1 (where i = 1, ..., r) transforming

in a real r-dimensional representation of the symmetry group G. We take the

vielbein V on the coset spaceG/H to be an r×r matrix acting in the r-dimensional

representation of G and consider the theory in D + 1 dimensions and work with

the metric Kij = V a
i V b

j δab. The Lagrangian is

L = R ∗ 1 +
1

4
tr(dK ∧ ∗dK−1) − 1

2
HT

n K ∗Hn (5.1)

The action is invariant under the rigid G symmetry

δA→ L−1A, δK → LTKL (5.2)

where Li
j is a G-transformation in the r representation, and the spacetime metric

is invariant. In later sections, we will be particularly interested in the case in

which D + 1 = 2n, but for now we will keep D,n arbitrary.

We now reduce the Lagrangian (5.1) on a circle with a twist given by a mon-

odromy M = eM ∈ G with the ansatz (2.26). The metric is invariant under the

global symmetry group so we use the standard Kaluza-Klein ansatz (2.7) so that

the Einstein-Hilbert term in (5.1) reduces to (2.19).

From (2.26) and (5.2) the ansatz for the scalar fields and the 3-form fields is

K̂(x, y) = λT (y)K(x)λ(y) (5.3)

Ân−1(x, y) = λ−1(y)[An−1(x) + An−2(x) ∧ dy]. (5.4)

76



We have distinguished the D+ 1-dimensional fields from the D-dimensional ones

by a hat. Here λ(y) = eMy, where M is the mass matrix in (2.27).

In chapter 2 we argued that the lower dimensional theory is completely de-

termined by the mass matrix M and the distinct reductions are classified by the

conjugacy classes of the monodromy matrix M = eM [15]. So one has to know

the conjugacy classes of the duality group G, used to give twist in the reduction.

For example in the case G = SL(2, IR) there are three conjugacy classes, namely

the hyperbolic, elliptic and parabolic conjugacy classes. So one can employ three

distinct reductions by choosing three different mass matrices M corresponding

to the three conjugacy classes of SL(2, IR). All the other choices of M give

rise to equivalent theories up to field redefinitions. The hyperbolic, elliptic and

parabolic monodromy matrices are given below together with the corresponding

mass matrices:

Mh =







em 0

0 e−m





 , Me =







cosm sinm

− sinm cosm





 , Mp =







1 m

0 1





 .

(5.5)

Mh =







m 0

0 −m





 , Me =







0 m

−m 0





 , Mp =







0 m

0 0





 . (5.6)

As we discussed in chapter 2 these matrices generate one-parameter subgroups

of SL(2, IR) and this subgroup will be the gauge group in the lower dimensional

theory. Thus compactification with Me will give the compact gauging SO(2)

whereas compactification with the Mh and Mp will give rise to SO(1, 1)-gauged

lower dimensional theories.

Now we will give the explicit calculations for the reduction of the scalars and

the (n− 1)-form potentials in two separate subsections.

77



5.1.1 Reduction of the Scalar Fields

It is easier to deal with the reduction of the scalar kinetic term 1
4
tr(dK̂∧∗dK̂−1)

when we write it in the following form:

1

4

√

−ĝtr
[

(∂µ̂K̂)(∂ν̂K̂−1)ĝµ̂ν̂
]

(5.7)

Here ĝµ̂ν̂ is the inverse of the metric ĝµ̂ν̂ in D+1 dimensions and we gave in (2.9)

how it reduces to D dimensions. We have

ĝµ̂ν̂ =







e−2αφgµν −e−2αφAµ

−e−2αφAµ −e−2αφAµAµ + e−2βφ





 (5.8)

If we had the standard KK ansatz the kinetic term for the scalar fields would

simply reduce to 1
4
tr(dK ∧ ∗dK−1). However now K̂ depends on the internal

coordinate y so the ∂yK̂ terms also contribute. To see the form of the terms

coming from the y-dependence of K̂, we substitute (5.8) in (5.7). Also using

(2.17) we find

1

4
e2αφ√−gtr

[

(∂µK̂)(∂νK̂−1)(gµνe−2αφ) − (∂µK̂)(∂yK̂−1)(Aµe−2αφ)

−(∂yK̂)(∂νK̂−1)(Aνe−2αφ) + (∂yK̂)(∂yK̂−1)(−e−2αφAµAµ + e−2βφ)
]

(5.9)

Using (5.3), now one can show that the y-derivative terms bring the following

contributions:

tr
[

(∂µK̂)(∂yK̂−1)Aµ
]

= −tr
[

(∂µK)(MK−1 + K−1MT )Aµ
]

tr
[

(∂yK̂)(∂νK̂−1)Aν
]

= tr
[

(MTK + KM)Aµ(∂µK−1)
]

tr
[

(∂yK̂)(∂yK̂−1)
]

= −2tr
[

M2 +MTKMK−1
]

. (5.10)

So we find that the reduction of the scalar kinetic term 1
4
tr(dK̂ ∧ ∗dK̂−1) in

D + 1 dimensions gives a kinetic term for D-dimensional scalar fields plus a
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scalar potential in D dimensions, as promised in chapter 2. These terms can be

read from above to be:

Ls =
1

4
tr(DK ∧ ∗DK−1) + V (φ) (5.11)

where we have defined

DK = dK − (MTK + KM)A (5.12)

DK−1 = dK−1 + (MK−1 + K−1MT )A

and the scalar potential V (φ) is

V (φ) = −1

2
e2(D−1)αϕtr(M 2 +MK−1MTK) ∗ 1 (5.13)

5.1.2 Reduction of the (n− 1)-Form Potentials

We first write the ansatz (5.4) for the reduction of the (n− 1)-form potential

field in the Einstein frame as

Ân−1(x, y) = e−My[An−1(x) − An−2(x) ∧ A + An−2(x) ∧ (dy + A)] (5.14)

Taking the derivative of both sides we obtain

dÂn−1 = e−My[dAn−1 − dAn−2 ∧ A + dAn−2 ∧ (dy + A)]

−Me−My((−1)n−1An−1 ∧ dy) (5.15)

Adding and subtracting a term (−1)n−1Me−MyAn−1 ∧ A we obtain

dÂn−1 = e−My{dAn−1 − [dAn−2 − (−1)n−1MAn−1] ∧ A} (5.16)

−Me−My{(−1)n−1An−1 ∧ (dy + A)} + e−MydAn−2 ∧ (dy + A)

As a result we get for Ĥn = dÂn−1 the following

Ĥn(x, y) = e−MyHn(x) + e−MyHn−1(x)(dy + A) (5.17)
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where the D-dimensional field strengths are

Hn−1(x) = dAn−2 − (−1)n−1MAn−1, Hn(x) = dAn−1 −Hn−1 ∧ A. (5.18)

The reduction of the kinetic term can be done easily by using (2.23):

ĤT
n K̂ ∧ ∗̂Ĥn → [e−2(n−1)αϕHT

n K ∧ ∗Hn + e2(D−n)αϕHT
n−1K ∧ ∗Hn−1] ∧ dy. (5.19)

The field strengths (5.18) are invariant under the following massive gauge trans-

formations:

δAn−1 = dΛ, δAn−2 = (−1)n−1MΛ. (5.20)

This allows for the following gauge transformation

An−1 → An−1 + (−1)n−1M−1dAn−2. (5.21)

After this gauge transformation the D-dimensional field strengths become

Hn = DAn−1 = dAn−1 − (−1)nMAn−1 ∧ A (5.22)

Hn−1 = (−1)nMAn−1. (5.23)

Then An−2 disappears from the theory, and the term Hn−1 ∧ ∗Hn−1 is a mass

term for An−1. The degrees of freedom represented by the r fields An−2 have

been absorbed by the r (n − 1)-form fields An−1 which have become massive.

Now Hn = DAn−1 is a gauge covariant derivative where the gauge group is

the subgroup of G generated by M and the corresponding gauge field is the

graviphoton A.

Recall that a massive theory which is not gauge invariant can be made gauge

invariant by the Stückelberg mechanism where one adds an auxiliary field (see

section 4.3). Then the original field and the Stückelberg field are invariant under

massive gauge transformations of the form (5.20) and in a fixed gauge where the

auxiliary field is gauged away we recover the original theory. In the present case,
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the field An−2 plays the role of a Stückelberg field which carries auxiliary degrees

of freedom. By performing the gauge transformation (5.20) we go to a gauge

in which this field is set to zero and hence the auxiliary degrees of freedom are

removed. However, since the number of degrees of freedom should be invariant,

now the fields An−1 should carry extra degrees of freedom and indeed they do by

becoming massive. We say that the fields An−1 have ‘eaten’ An−2 and become

massive by analogy with the Higgs mechanism.

Note that the gauge transformation (5.21) is allowed only whenM is invertible.

When M is not invertible it is useful to work with flat indices Ha = Va
iH

i. Then

Ha = DAa = dAa + ωa
bA

b where ω is the connection 1-form ωa
b = Va

i(dV−1)i
b.

We also introduce H̄a = (Ω−1)abH
b and Mab = Ma

cΩ
cb. Here Ω is the G-invariant

matrix which is symmetric if n is odd and anti-symmetric if n is even

Ωab = (−1)n−1Ωba. (5.24)

Now one has

Ha
n−1 = DAa

n−2 + (−1)n−1MabĀ(n−1)b, H̄(n)a = DĀ(n−1)a (5.25)

where we have dropped the coupling terms to the graviphoton A.

Note that M = eM and MT Ω−1M = Ω−1 since M ∈ G and Ω is G-invariant.

(For complex representations, the condition is M†Ω−1M = Ω−1.) So the mass

matrix M satisfies:

MT Ω−1 + Ω−1M = 0. (5.26)

From (5.24) and (5.26) it follows that M is a symmetric matrix if n is even and

antisymmetric if n is odd:

Mab = (−1)nM ba. (5.27)

Let the dimension of ker(M) be l. Now the matrix M ab can be brought into the
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canonical form

Mab =







0 0

0 mα′β′





 (5.28)

where mα′β′

is an invertible, (r− l)× (r− l) matrix which is diagonal if n is even

and skew-diagonal if n is odd. Here we have split the indices a → (α, α′) where

α runs from 1 to l and α′ runs from l + 1 to r. Similarly the gauge fields A can

be written in the block form

A =







A0

A1





 (5.29)

where A0 = (Aα) is the projection into ker(M), so that MA = MA1. Now

performing the gauge transformation

Ā(n−1)α′ → Ā(n−1)α′ + (−1)n−1(m−1)α′β′DAβ′

n−2 (5.30)

one sees that the r− l fields Ā(n−1)α′ become massive, having eaten the r− l fields

Aα′

n−2, while Aα
n−2 and Ā(n−1)α both remain in the theory as massless gauge fields,

with l of each. Now the field strengths for the (n−2)-form fields in (5.25) become

Hα′

n−1 = (−1)nmα′β′

Ā(n−1)β′ , Hα
n−1 = DAα

n−2. (5.31)

In the G = SL(2, IR) case the parabolic mass matrix Mp is not invertible,

and has a one-dimensional kernel, i.e. r = 2, l = 1, so that α and α′ both take

only one value and Aa = (A1, A1′). In this case the matrix mα′β′

in (5.28) is the

1× 1 matrix (−m) and from the gauge transformation (5.30) it can be seen that

the (n − 1)-form Ān−1 1′ eats the (n − 2)-form A1′

n−2 and becomes massive. The

remaining n− 1 form Ān−1 1 and n− 2 form A1
n−2 gauge fields remain massless.
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5.1.3 The D-Dimensional Lagrangian

Collecting all the results in the previous subsections we can now write down

the D-dimensional Lagrangian LD:

LD = Lg + Lb + Ls (5.32)

where

Lg = R ∗ 1 − 1

2
dϕ ∧ ∗dϕ− 1

2
e−2(D−1)αϕF2 ∧ ∗F2 (5.33)

Lb = −1

2
e−2(n−1)αϕHT

n K ∧ ∗Hn − 1

2
e2(D−n)αϕHT

n−1K ∧ ∗Hn−1

Ls =
1

4
tr(DK ∧ ∗DK−1) − 1

2
e2(D−1)αϕtr(M 2 +MK−1MTK) ∗ 1

Here the field strengths Hn and Hn−1 are as in (5.18). When M is invertible one

can perform the gauge transformation (5.21) after which they become as in (5.22)

and (5.23) and the second term in Lb is a mass term for the gauge fields An−1.

When M is not invertible, one can do the gauge transformation (5.30) and the

field strengths are now as in (5.31). Then the Lb term in (5.33) can be replaced

by the following Lagrangian:

Lb = −1

2
e−2(n−1)αϕδαβH̄(n)α ∧ ∗H̄(n)β − 1

2
e−2(n−1)αϕδα′β′

H̄(n)α′ ∧ ∗H̄(n)β′ (5.34)

−1

2
e2(D−n)αϕδαβDAα

n−2 ∧ ∗DAβ
n−2 −

1

2
e2(D−n)αϕ(mTm)α′β′

Ā(n−1)α′ ∧ ∗Ā(n−1)β′ .

Here we have chosen the normalisation of Ω so that ΩacΩbdδcd = δab.

5.2 Reduction with Duality Twist

The theory given by the Lagrangian (5.1) has a global symmetry G of the

equations of motion which acts via duality transformations. In this section we

will dimensionally reduce on a circle from D + 1 = 2n to D dimensions with a

twist that has monodromy M in G. For some choices of monodromy M in G,
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this is in fact a symmetry of the action and this is a standard Scherk-Schwarz

reduction, as in section 2. If it is only a symmetry of the equations of motion,

then we use the doubled formalism of chapter 4 with action (4.16) supplemented

by the constraint (4.29). The action (4.16) is of the same form as (5.1), so the

Scherk-Schwarz reduction of the action proceeds as in the previous section. This is

supplemented by the constraints arising from the dimensional reduction of (4.29).

The field equations in 2n− 1 dimensions are then those from the reduced action

together with the reduced constraints, and we go on to seek an action in 2n− 1

dimensions that gives both the constraints and the reduced field equations.

5.2.1 Dimensional Reduction in the Doubled Formalism

The Lagrangian (4.16) in the doubled formalism is of the same form as (5.1),

but with an extra factor of 1/2 in the normalisation of the gauge field kinetic

term. The Scherk-Schwarz reduction of a Lagrangian of this form was already

discussed in the previous section, where we showed that it yields the Lagrangian

(5.33) in D dimensions. Just as the action (4.16) should be supplemented by the

D+1 dimensional constraint (4.29) in order to give the correct D+1 dimensional

field equations, the D dimensional Lagrangian (5.33) should be supplemented by

a constraint, which is to be obtained by the dimensional reduction of (4.29). In

this section we will describe the SS reduction of the D+1-dimensional constraint

(4.29). Note that it is G-covariant, so the y dependence of the fields in the ansatz

(2.26) cancels out in the reduction.

Using the ansatz (5.3), (5.4) the D + 1 dimensional constraint (4.29) reduces

to the D-dimensional constraint:

Hn = e2(D−n)αϕQ ∗Hn−1 (5.35)

where Q is as in (4.30) and K is given by (4.31). The constraint (5.35) can be
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rewritten in flat indices as

H̄(n)a = e2(D−n)αϕδab ∗ (DAb
n−2 + (−1)nM bcĀ(n−1)c). (5.36)

As a result, the n-form field strengths are dual to the n− 1-form field strengths.

For an untwisted reduction (i.e. one with M = 0, so that it is a standard

reduction) this constraint can be used to eliminate the 2k potentials An−1 so that

the theory can be written in terms of the 2k potentials An−2 (or alternatively the

potentials An−2 can be eliminated and the theory written in terms of the An−1,

or more generally in terms of s potentials An−2 and 2k − s potentials An−1). In

the twisted case with invertible M , one can go to the gauge in which the fields

AI
n−2 are set zero, as was discussed in section 2. In this gauge the field strengths

Hn and Hn−1 are given in (5.22) and (5.23) so that the duality condition (5.35)

is:

DAn−1 = (−1)ne2(D−n)αϕM̃ ∗ An−1 (5.37)

where M̃ = QM . This is a massive self-duality condition for the 2k potentials

An−1. Such self-duality conditions in odd dimensions were introduced in [32]

and occur certain odd dimensional gauged supergravity theories. The self-duality

constraint (5.37) implies the massive field equation (suppressing non-linear terms)

∗D ∗DAn−1 = e4(D−n)αϕM̃2An−1 + . . . (5.38)

with mass matrix proportional to M̃2. However, the constraint (5.37) halves the

number of degrees of freedom of a massive n− 1 form field.

It is instructive to check the number of physical degrees of freedom. In d

dimensions a massless p form gauge field Ap has cd−2
p degrees of freedom, where

csp =
(s)!

p!(s− p)!

while a massive p form gauge field has cd−1
p degrees of freedom. The k gauge fields

AI
n−1 in 2n dimensions have kc2n−2

n−1 degrees of freedom, which can be represented
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by the 2k gauge fields Ai
n−1 (with 2kc2n−2

n−1 degrees of freedom) together with k

constraints (4.29) that halve the number of degrees of freedom again. In an

untwisted reduction, each massless n− 1 form gauge field in 2n dimensions gives

rise to a massless n − 1 form gauge field and a massless n − 2 form gauge field,

and the number of degrees of freedom is correct as

c2n−2
n−1 = c2n−3

n−1 + c2n−3
n−2

However, the number of degrees of freedom of a massive p-form in d−1 dimensions

is cd−2
p , which is the same as the number of degrees of freedom of a massless p-form

in d dimensions, and in the twisted reduction with invertibleM , all the n−1 forms

in 2n dimensions give rise to massive n− 1 forms in 2n− 1 dimensions. We have

2k massive gauge fields Ai
n−1 in 2n − 1 dimensions which have 2kc2n−2

n−1 degrees

of freedom, but the self-duality constraints (5.37) remove half of the degrees of

freedom, leaving kc2n−2
n−1 degrees of freedom, as required.

When M is not invertible, the field strengths are given by (5.31). Then the

constraint (5.36) takes the form (dropping the coupling to the graviphoton again)1

DĀ(n−1)α′ = (−1)ne2(D−n)αϕδα′β′ ∗mβ′γ′

Ā(n−1)γ′ (5.39)

DĀ(n−1)α = e2(D−n)αϕδαβ ∗ DAβ
n−2 (5.40)

Before imposing the constraint, the r− l fields Ā(n−1)α′ are massive, having eaten

the r−l fields Aα′

n−2, while Aα
n−2 and Ā(n−1)α both remain in the theory as massless

gauge fields, with l of each, as was seen in section 2. So before imposing the

constraint the total number of degrees of freedom is

(r − l)c2n−2
n−1 + lc2n−3

n−2 + lc2n−3
n−1 = rc2n−2

n−1 = 2kc2n−2
n−1

Imposing the constraint imposes self-duality on the massive fields Ā(n−1)α′ , halv-

ing the number of degrees of freedom, and relates Ā(n−1)α to Aα
n−2, so that half of

1 Note that the α appearing in the exponential function is the constant in (2.8), not an
index.
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them can be eliminated (e.g. Aα
n−2 can be eliminated leaving Ā(n−1)α, or Ā(n−1)α

can be eliminated leaving Aα
n−2). Thus one is left with kc2n−2

n−1 degrees of freedom,

as required.

The field equations from the D-dimensional action (5.33) (noting that the

factors of 1/2 in Lb should be replaced by 1/4, since we are reducing the doubled

Lagrangian) are supplemented by the D dimensional constraint (5.35). This

implies that the field strengths Hn and Hn−1 in (5.33) are not independent but

are related via the duality condition (5.35). Note that if this constraint were

applied to the action, it would make the Lb part of (5.32) vanish. This was to

be expected as the twisted self-duality condition (4.29), from which the duality

condition (5.35) is obtained, implies the vanishing of the gauge kinetic term in

the D+ 1-dimensional doubled Lagrangian (4.16). Thus it is important that one

first varies the action corresponding to (5.33) and then imposes the constraint

(5.35).

It is straightforward to verify that the field equations derived from Lb for the

potentials Aa
n−1 are consistent with the D dimensional constraint (5.35). This

field equation is

d(e−2(n−1)αϕKaj ∗H(j)
n ) + (−1)n(e−2(n−1)αϕM i

aKij ∧ ∗H(j)
n ) ∧ A

+(−1)ne2(D−n)αϕM i
aKij ∧ ∗H(j)

n−1 = 0. (5.41)

where a, i, j = 1, · · · 2k are G indices. Now we insert the constraint (5.37) and we

obtain

−ΩakM
k
ldA

l
n−1 −M i

aΩil[H
l
n +H l

n−1 ∧ A] = 0. (5.42)

Hence consistency is possible if the following is satisfied:

ΩakM
k
l = −M i

aΩil. (5.43)

for all a and l. This is equivalent to the equation (5.26), which we showed to hold

for all mass matrices in subsection 4.1.2.
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5.2.2 Lagrangian for Reduced Theory

The odd dimensional massive self-duality condition can be obtained from a

Chern-Simons action of the form (1.5). In this section we will seek an action of

this form from which the D-dimensional constraint (5.37) and the D dimensional

field equations can be obtained. In the case in which M is invertible, the D-

dimensional constraint (5.37) follows from the following Lagrangian:

L′
b =

1

2
(Ω−1M)ij[(−1)n−1A

(i)
n−1 ∧DA(j)

n−1 + e2(D−n)αϕM̃ j
kA

(i)
n−1 ∧ ∗A(k)

n−1]. (5.44)

We can see this as follows. Consider the variation of (5.44) with respect to the

field Aa
n−1:

1
2
(−1)n−1[(Ω−1M)aj + (−1)n(Ω−1M)ja]dA

j
n−1

+1
2
[(Ω−1M2)aj + (−1)n−1(Ω−1M2)ja]A

j ∧ A

+1
2
e2(D−n)αϕ[(Ω−1MM̃)aj + (Ω−1MM̃)ja] ∗ Aj

n−1 = 0. (5.45)

So the conditions that we should have are:

1. (Ω−1M)T = (−1)n(Ω−1M)

2. (Ω−1M2)T = (−1)n−1(Ω−1M2)

3. (Ω−1MM̃)T = (Ω−1MM̃).

The first and the second conditions can be shown to hold easily by using (5.26) and

(5.24). For the third condition, one uses the facts that Ω−1MM̃ = −MT Ω−1M̃ =

−MT Ω−1ΩKM = −MTKM and the matrix K is symmetric. As a result we have

δAL′
b = (Ω−1M)ajDA

j + (−1)n−1e2(D−n)αϕ(Ω−1MM̃)ak ∗ Ak = 0. (5.46)

Multiplying both sides with (Ω−1M)la, which is possible when M is invertible,

we obtain the constraint (5.37).
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Now consider the Lagrangian

L′
D = Lg + Ls + L′

b (5.47)

where Lg and Ls are as in (5.33). Our claim is that this Lagrangian L′
D is

equivalent to the Lagrangian LD in that they yield the same field equations. The

field equations for the potential fields An−1 have already been discussed. Below

we will discuss the field equations for the other fields, that is, for the metric and

the scalar fields.

First consider the field equations for the metric. We have to show that

δgLb = δgL′
b (5.48)

when the reduced equation of constraint (5.35) is imposed. First note that in a

given coordinate chart we have

HT
n K ∧ ∗Hn = Kij

√−gH(i)
µ1···µn

H(j)µ1···µn

= Kij

√−g gµ1ν1 · · · gµnνnH(i)
µ1···µn

H(j)
ν1···νn

. (5.49)

Using the relations

δ
√−g =

1

2

√−ggµνδgµν (5.50)

δgµν = −gµαgνβδgαβ (5.51)

one can show that

δ

δgαβ
(HT

n K ∧ ∗Hn) = Kij

√−g(−nH(i)αµ1···µn−1

n H(j)β
n µ1···µn−1

+
1

2
gαβH(i)µ1···µn

n H(j)
n µ1···µn

(5.52)

Now it easily follows that the variation of the Lagrangian Lb with respect to the

metric consists of the two terms below:

1

4n!
e−2(n−1)αϕKij

√−g
(

nH(i)αµ1···µn−1

n H(j)β
n µ1···µn−1

− 1

2
gαβH(i)µ1···µn

n H(j)
nµ1···µn

)

(5.53)
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+
e2(D−n)αϕ

4(n− 1)!
Kij

√−g
(

(n− 1)H
(i)αµ1···µn−2

n−1 H
(j)β
n−1 µ1···µn−2

− 1

2
gαβH

(i)µ1···µn−1

n−1 H
(j)
n−1µ1···µn−1

)

(5.54)

Now we will insert the constraint (5.35), which can be written in the component

form as

H(i)
n µ1···µn

= (−1)ne2(D−n)αϕ 1

(n− 1)!
M̃ i

kε
λ1···λn−1

µ1···µn
A

(k)
n−1 λ1···λn−1

(5.55)

Here we have used (5.23). Using the relation2

1

(N −m)!m!
εa1···amr1···rN−mεb1···bmr1···rN−m

= (−1)t δa1···am

[b1···bm] (5.56)

one can show that

δLb

δgαβ
=

e2(D−n)αϕ

2(n− 1)!

√−gKijM
i
kM

j
l

(

(n− 1)A
(k)ασ1···σn−2

(n−1) A
(l)β
(n−1)σ1···σn−2

−1

2
gαβA

(k)
(n−1)σ1···σn−1

A
(l)σ1···σn−1

(n−1)

)

(5.57)

= −1

2
e2(D−n)αϕ δ

δgαβ

(

KijM
i
kM

j
l A

(k)
n−1 ∧ ∗A(l)

n−1

)

=
δL′

b

δgαβ
.

In the last line we have used the equality Ω−1MM̃ = −MTKM , as we discussed

before.

Now we check the field equations for the scalar fields. Let κ represent any of

the scalar fields in the theory except for the Kaluza-Klein field ϕ. Then

δκLb = −1

4
e−2(n−1)αϕHT

n

δK
δκ

∧ ∗Hn − 1

4
e2(D−n)αϕHT

n−1

δK
δκ

∧ ∗Hn−1

= −e
2(D−n)αϕ

4
AT

n−1M̃
T δK
δκ
M̃ ∧ ∗An−1 −

e−2(n−1)αϕ

4
AT

n−1M
T δK
δκ
M ∧ ∗An−1

In the second line we have imposed the constraint (5.35). The first term is equal

to the second term. One can see this as follows:

M̃T δK
δκ
M̃ = MTKT ΩT δK

δκ
ΩKM = MTKT ΩKΩ

δK
δκ
M

= MTKTK−1ΩΩ−1 δK
δκ
M = MT δK

δκ
M. (5.58)

2 Here t is the number of timelike coordinates and t = 1 in our case.
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Above we have used the following: a)KT ΩK = Ω, b)KT = K, c) δK
δκ

ΩK =

(−1)n−1KΩ δK
δκ

, d)ΩT = (−1)n−1Ω and e)Q2 = (ΩK)2 = (−1)n−1II

As a result we get

δκLb = −1

2
e2(D−n)αϕAT

n−1M
T δK
δκ
M ∧ ∗An−1 = δκL′

b (5.59)

where the last equality follows from the fact that Ω−1MM̃ = −MTKM .

The last thing to be checked is the equality of the field equations of LD and

L′
D for the Kaluza-Klein field ϕ:

δϕLb =
1

2
(n− 1)α[e−2(n−1)αϕHT

n K ∧ ∗Hn − e2(D−n)αϕHT
n−1K ∧ ∗Hn−1]

= −(n− 1)αe2(D−n)αϕHT
n−1K ∧ ∗Hn−1

= −(n− 1)αe2(D−n)αϕAT
n−1M

TKM ∧ ∗An−1 = δϕL′
b. (5.60)

In the second line we imposed the constraint (5.35) and used the fact that

M̃TKM̃ = MTKM . In the third line we used (5.23). Finally in the forth line we

used the fact that D − n = n− 1.

As a result we have a new D-dimensional Lagrangian which yields the D-

dimensional field equations and also the constraint:

LD = R ∗ 1 − 1

2
dϕ ∧ ∗dϕ− 1

2
e−2(D−1)αϕF2 ∧ ∗F2 (5.61)

+
1

2
(Ω−1M)ij[(−1)n−1A

(i)
n−1 ∧DA(j)

n−1 + e2(D−n)αϕM̃ j
kA

(i)
n−1 ∧ ∗A(k)

n−1]

+
1

4
tr(DK ∧ ∗DK−1) − 1

2
e2(D−1)αϕtr(M 2 +MK−1MTK) ∗ 1.

If M is not invertible, there is a similar action with a Chern-Simons action

for the massive n − 1 form gauge fields, and a standard action for the massless

gauge fields. First note that the Lagrangian (5.44) can be written in flat indices

as

L′
b =

1

2
Pab[(−1)n−1Aa

n−1 ∧ D̃Ab
n−1 + e2(D−n)αϕM̃ b

cA
a
n−1 ∧ ∗Ac

n−1], (5.62)
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where Pab = Pij(V−1)i
a(V−1)j

b = (Ω−1)acM
c

b and M̃a
b = M̃ i

jVa
i(V−1)j

b. Note

that one has P ab = PcdΩ
caΩdb = (−1)n−1Mab. When M is not invertible, Aα

n−1

drops out from this Lagrangian, which is now just a Lagrangian for Ā(n−1)α′ :

L′
b1 =

1

2
mα′β′

[Ā(n−1)α′∧D̃Ā(n−1)β′+(−1)n−1e2(D−n)αϕδβ′γ′mγ′ρ′Ā(n−1)α′∧∗Ā(n−1)ρ′ ].

(5.63)

Here we have used that M̃ = QM = ΩKM so that M̃a
b = ΩacδcdM

d
b. Note that

mα′β′

= (−1)nmβ′α′

because of (5.27) and mα′β′

δβ′2(D−n)αϕ′m2(D−n)αϕ′ρ′ is always

symmetric, as it should be. It is easy to see that the field equations of (5.63) for

the gauge fields Ā(n−1)α′ does indeed give the constraint (5.39). The Lagrangian

for Aα arises from (5.34) (with an extra factor of 1/2):

Lb2 = −1

4
e−2(D−n)αϕδαβH̄(n)α ∧ ∗H̄(n)β − 1

4
e2(D−n)αϕδαβDAα

n−2 ∧ ∗DAβ
n−2 (5.64)

subject to the constraint (5.40), which can be used to eliminate either Aα
n−2 or

Aα
n−1. Choosing the first, the Lagrangian for Aα

n−1 is

L′
b2 = −1

2
e2(D−n)αϕδαβDĀ(n−1)α ∧ ∗DĀ(n−1)β. (5.65)

Then the total Lagrangian is

L′
D = Lg + Ls + L′

b1 + L′
b2 (5.66)

where Lg and Ls are as in (5.33). It is straightforward to show that these give

the right field equations, by an argument similar to that in the invertible case

above.

5.2.3 G = SL(2, IR) Case

In this subsection we will consider the case G = SL(2, IR). In this case the

matrices K and Ω are as in (4.4) and (4.20). There are three distinct reductions

corresponding to the three conjugacy classes of SL(2, IR) as discussed in section
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2. The mass matrices representing the three conjugacy classes are given in (5.6).

Now we will give the reduced Lagrangians for each mass matrix Me, Mh and Mp.

• Me:

There are two massive, (n− 1)-forms in the theory which we will call A1 and

A2. This is a SO(2)-gauged theory since Me generates the SO(2) subgroup of

SL(2, IR). This is the only case when the theory has a stable minimum of the

potential [21]. The global minimum of the potential is at χ = φ = 0. The

Lagrangian is:

LD = R ∗ 1 − 1

2
dϕ ∧ ∗dϕ− 1

2
e−2(D−1)αϕF2 ∧ ∗F2 (5.67)

+
1

2
m{(−1)n−1A1 ∧DA1 + (−1)n−1A2 ∧DA2 −me2(D−n)αϕeφ[A1 ∧ ∗A1

+(e−2φ + χ2)A2 ∧ ∗A2 + 2χA1 ∧ ∗A2]}

+
1

4
tr(DK ∧ ∗DK−1) − 2e2(D−1)αϕm2[sinh2 φ+ χ2(2 + e2φ(2 + χ2))] ∗ 1.

• Mh:

There are two massive, (n− 1)-forms in the theory which we will call A1 and

A2, as before. The gauge group is SO(1, 1) in this case. The Lagrangian is:

LD = R ∗ 1 − 1

2
dϕ ∧ ∗dϕ− 1

2
e−2(D−1)αϕF2 ∧ ∗F2 (5.68)

+
1

2
m{(−1)n−12A1 ∧DA2 −me2(D−n)αϕeφ[χA1 ∧ ∗A1

+χA2 ∧ ∗A2 + (e−2φ + χ2 + 1)A1 ∧ ∗A2]}

+
1

4
tr(DK ∧ ∗DK−1) − 2e2(D−1)αϕm2[1 + χ2e2φ] ∗ 1.

• Mp:
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There is one massive (n− 1)-form field Ā1, one massless (n− 1)-form field Ā2

and one massless (n− 2)-form field B2. However one can eliminate B2 by using

the reduced constraint (5.40), as was discussed in the previous subsection. The

gauge group is SO(1, 1) in this case.

LD = R ∗ 1 − 1

2
dϕ ∧ ∗dϕ− 1

2
e−2(D−1)αϕF2 ∧ ∗F2 (5.69)

+
1

2
m[Ā1 ∧ DĀ1 + (−1)n−1e2(D−n)αϕmĀ1 ∧ ∗Ā1] −

1

2
e2(D−n)αϕDĀ2 ∧ ∗DĀ2

+
1

4
tr(DK ∧ ∗DK−1) − 1

2
e2(D−1)αϕm2(e−φ + eφχ2)2 ∗ 1.

5.3 Supergravity Applications

In this section, we will apply our results to the twisted reduction of super-

gravity theories in d = 4, 6, 8 dimensions to D = 3, 5, 7.

5.3.1 Reduction of d = 8 Maximal Supergravity

The N = 2 D = 8 maximal supergravity [45] can be obtained from 11-

dimensional supergravity by toroidal compactification and has field equations in-

variant under the duality group SL(2, IR)× SL(3, IR). The bosonic fields consist

of a metric, a 3-form gauge potential A3, 6 vector fields in the (2,3) represen-

tation of SL(2, IR) × SL(3, IR), 3 2-form gauge potentials in the (1,3) repre-

sentation of SL(2, IR) × SL(3, IR), and scalars taking values in the coset space

SL(3, IR)/SO(3) × SL(2, IR)/SO(2). The gauge potential A3 combines with the

dual gauge potential Ã3 to form a doublet under SL(2, IR) and SL(3, IR) is a

symmetry of the action whereas SL(2, IR) is a symmetry of the field equations

only, as it acts through electromagnetic duality on the 3-form gauge fields.

There is a consistent truncation of this theory where only the SL(3, IR) sin-

glets are kept and all the other fields are set to zero [77]. Then the truncated

theory consists of a metric, a 3-form gauge potential and scalars taking values
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in SL(2, IR)/SO(2), with an SL(2, IR) S-duality symmetry. This truncated the-

ory is precisely of the form (4.1) with n = 4 and the twisted reduction with an

SL(2, IR) twist gives three distinct reduced theories corresponding to the three

conjugacy classes, with Lagrangians (5.67), (5.68) or (5.69).

This can be extended to the full theory, as the reduction of the fields that are

not SL(3, IR) singlets is a standard Scherk-Schwarz reduction. However, there are

some complications resulting from the Chern-Simons interactions of the d = 8

theory [78]. There are three distinct classical theories, while the distinct quantum

theories correspond to the distinct SL(2, Z) conjugacy classes.

5.3.2 Reduction of d = 4, N = 4 Supergravity

The Lagrangian for N = 4 supergravity coupled to p vector multiplets has an

O(6, p) symmetry of the action and an SL(2, IR) S-duality symmetry of the equa-

tions of motion. The vector potentials AI
1 (I = 1, 2, ..., 6+p) are in the fundamen-

tal 6+p representation of O(6, p) and combine with dual potentials ÃI
1 to form

6+p doublets AmI
1 transforming in the (2,6+p) of SL(2, IR)×O(6, p), where m =

1, 2. The scalars take values in the coset SL(2, IR)/SO(2)×O(6, 22)/O(6)×O(22).

The scalars in O(6, 22)/O(6)×O(22) can be represented by a metric NIJ on the

coset space while the 2 scalars φ, χ in SL(2, IR)/SO(2) can be represented by a

metric on the coset space Kmn which is of the same form as (5.87).

The Lagrangian can be written as [28, 79, 80]:

L = R ∗ 1 +
1

4
tr(dK ∧ ∗dK−1) +

1

4
tr(dN ∧ ∗dN−1) − 1

2
e−φF I

2NIJ ∧ ∗F J
2

−1

2
χF I

2LIJ ∧ F J
2 (5.70)

where L is the O(6, p) invariant metric and the matrices N and L satisfy

N T = N , N TLN = L. (5.71)
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Now the field equation can be written as dG2 = 0 where

GI
2 = (L−1)IJ δL

δF J
2

= −e−φRI
J ∗ F J

2 − χF I
2 (5.72)

and the matrix R is defined as

LPIRI
J = NPJ . (5.73)

Note that R2 = 1. Now we can write

L′ = R ∗ 1 +
1

4
tr(dK ∧ ∗dK−1) +

1

4
tr(dN ∧ ∗dN−1) (5.74)

+
1

2
F I

2LIJ ∧GJ
2

As before, the field equations dG2 = 0 imply the existence of dual potentials Ã1,

with GI
2 = dÃI

1. Then the full set of vector fields Ai
1 in the doubled formalism is

AmI
1 = (AI

1, Ã
I
1) where i = 1, ..., 2(6 + p) becomes the composite index mI. The

field strengths are the 6 + p SL(2, IR)-doublets:

HI
2 =







dAI
1

dÃI
1





 . (5.75)

We also impose the twisted self-duality constraint

HmI
2 = Jm

nRI
J ∗HnJ

2 , (5.76)

where Jm
n is as in (4.19). So the matrix Q in (4.29) is now the 12 + 2p× 12 + 2p

matrix

Q = J ⊗R, (5.77)

which satisfies Q2 = −1 since J2 = −1 and R2 = +1. One can show that the

doubled Lagrangian

L = R ∗ 1 +
1

4
tr(dK ∧ ∗dK−1) +

1

4
tr(dN ∧ ∗dN−1) (5.78)

−1

4
NIJH

mI
2 Kmn ∧ ∗HnJ

2 .
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gives the same field equations as those of (5.70) when the constraint equation

(5.76) is imposed. This Lagrangian is of the same form as (4.16), with Kij given

by

KmI nJ = KmnNIJ .

So the Scherk-Schwarz reduction of (5.78) can be performed as before and the

three dimensional Lagrangian that one obtains is:

L′
3 = R ∗ 1 − 1

2
dϕ ∧ ∗dϕ− 1

2
e−2ϕF2 ∧ ∗F2 +

1

4
tr(dN ∧ ∗dN−1) (5.79)

−1

4
e−ϕNIJH

I
2K ∧ ∗HJ

2 − 1

4
eϕNIJH

I
1K ∧ ∗HJ

1

+
1

4
tr(DK ∧ ∗DK−1) − 1

2
e2ϕtr(M 2 +MK−1MTK) ∗ 1.

This Lagrangian is to be supplemented by the reduced constraint

HmI
2 = eϕJm

nRI
J ∗HnJ

1 . (5.80)

When M is invertible, this becomes

DAmI
1 = eϕJm

nRI
JM

n
p ∗ ApJ

1 , (5.81)

after gauging the Stückelberg fields away, as in subsection 5.1.2.

As before one can find a three dimensional Lagrangian from which the field

equations and the constraint can be derived. This Lagrangian is (for invertible

M):

L3 = R ∗ 1 − 1

2
dϕ ∧ ∗dϕ− 1

2
e−2ϕF2 ∧ ∗F2 +

1

4
tr(dN ∧ ∗dN−1) (5.82)

+
1

2
(Ω−1M)mn(−LIJA

mI
1 ∧DAnJ

1 + NIJe
ϕM̃n

pA
mI
1 ∧ ∗ApJ

1 )

+
1

4
tr(DK ∧ ∗DK−1) − 1

2
e2ϕtr(M 2 +MK−1MTK) ∗ 1.
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5.3.3 Reduction of d = 4, N = 8 Supergravity

The d = 4, N = 8 theory has E7 duality symmetry of the equations of motion.

There are 70 scalars taking values in the coset E7/SU(8), and 28 vector fields

AI which combine with their duals to give Ai transforming as a 56 of E7. The

bosonic action can be written as (4.28) with the constraint (4.29) where Q is as

in (4.30) and Ωij is the symplectic invariant of E7 [30]. Now K is the matrix

which parametrizes the scalar coset E7/SU(8). The theory can be reduced to

3-dimensions using any mass matrix M in the Lie algebra of E7. Naively, this

introduces 133 mass parameters, but these theories are not all independent and

the independent theories correspond to the distinct conjugacy classes; the classi-

fication of conjugacy classes in this case is not known. The matrix M ab = Ma
cΩ

cb

introduced in subsection 5.1.2 is a symmetric matrix since n = 2 in (5.27), so by

choosing a suitable basis, it can be brought into the diagonal form:

Mab =















m1 ©
. . .

© m56















(5.83)

For example, consider performing the Scherk-Schwarz reduction with the Lie

algebra element Mab of the form:

Mab = m















0l ©
1p

© −1q















(5.84)

where l + p + q = 56. Then one obtains a 3-dimensional theory with one mass

parameter with p massive, self-dual vector fields, q massive, anti-self-dual vector

fields and l massless vector fields which are dual to the l massless scalar fields

coming from the reduction of the vector field in the 4-dimensional theory.
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5.3.4 Reduction of d = 6 Supergravity

The D = 6 theory of [81], obtained from the compactification of a truncation

of type IIB supergravity, has an

SO(2, 2) ≡ SL(2, IR)EM × SL(2, IR)IIB (5.85)

symmetry of the equations of motion. The SL(2, IR)IIB is inherited from the

SL(2, IR) symmetry of type IIB in ten dimensions and is a symmetry of the

action in the six dimensional theory. However SL(2, IR)EM is a symmetry of the

field equations only. The Lagrangian is:

L = R ∗ 1 +
1

4
tr(dK ∧ ∗dK−1) +

1

4
tr(dN ∧ ∗dN−1)

−1

2
κ2F

INIJ ∧ ∗F J − 1

2
κ1F

IΩIJ ∧ F J . (5.86)

Here F I = dAI
2 are the two 3-form field strengths and I, J = 1, 2 are SL(2, IR)IIB

indices. We also introduce SL(2, IR)EM indices m,n = 1, 2. There are two

SL(2, IR)/SO(2) scalar cosets in the theory. κ1 and κ2 parametrize the scalar

coset SL(2, IR)EM/SO(2), represented by the matrix K:

Kmn =
1

κ2







| κ |2 −κ1

−κ2 1





 (5.87)

where

κ = κ1 + iκ2 =
1

4
D +

3

2
ie2G,

D and G are as defined in [81]. There are two more scalars in the theory, l and

φ, parametrizing the scalar coset SL(2, IR)IIB/SO(2) represented by the matrix

NIJ =
1

λ2







| λ |2 −λ1

−λ2 1





 (5.88)

where

λ = λ1 + iλ2 = l + ie−φ.
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The invariant matrices are Ωmn, ΩIJ .

The Lagrangian (5.86) is of the same form as (5.70) where now I ranges from 1

to 2 and the O(6, p) invariant LIJ has been replaced by the SL(2, IR)IIB invariant

matrix ΩIJ . So (5.86) is equivalent to the doubled Lagrangian (5.78) (now with

3-form field strengths H3) when supplemented by the constraint (5.76). Note

that the matrix Q in (5.77) now satisfies Q2 = +1 as it should in 6 dimensions,

since now R2 = −1, whereas R2 = +1 and hence Q2 = −1 in the 4-dimensional

case.

By performing the Scherk-Schwarz reduction of the doubled Lagrangian one

obtains the following auxiliary five-dimensional Lagrangian:

L′
5 = R ∗ 1 − 1

2
dϕ ∧ ∗dϕ− 1

2
e−4ϕ/

√
6F2 ∧ ∗F2 +

1

4
tr(dN ∧ ∗dN−1)(5.89)

−1

4
e−2ϕ/

√
6NIJH

I
3K ∧ ∗HJ

3 − 1

4
e2ϕ/

√
6NIJH

I
2K ∧ ∗HJ

2

+
1

4
tr(DK ∧ ∗DK−1) − 1

2
e4ϕ/

√
6tr(M 2 +MK−1MTK) ∗ 1

This is to be supplemented by the five-dimensional reduced constraint

HmI
3 = e2ϕ/

√
6Jm

nRI
J ∗HnJ

2 . (5.90)

When M is invertible one can gauge the Stückelberg fields away and in this gauge

the constraint in (5.90) takes the form

DAmI
2 = −e2ϕ/

√
6Jm

nRI
JM

n
p ∗ ApJ

2 . (5.91)

The five dimensional reduced Lagrangian from which the reduced constraint

(5.91) and the field equations of (5.89) can be derived is obtained by using the

techniques of the previous sections:

L5 = R ∗ 1 − 1

2
dϕ ∧ ∗dϕ− 1

2
e−4ϕ/

√
6F2 ∧ ∗F2 +

1

4
tr(dN ∧ ∗dN−1)(5.92)

+
1

2
(Ω−1M)mn(ΩIJA

mI
2 ∧DAnJ

2 + NIJe
2ϕ/

√
6M̃n

pA
nI
2 ∧ ∗ApJ

2 )

+
1

4
tr(DK ∧ ∗DK−1) − 1

2
e4ϕ/

√
6tr(M 2 +MK−1MTK) ∗ 1.
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5.3.5 Reduction of d = 6, N = 8 Supergravity

The maximal supergravity in six dimensions has noncompact global symmetry

SO(5, 5) which can be realized at the level of field equations only [31]. There are

five 3-form field strengths which split into five self-dual ones and five anti-self

dual ones, and these ten transform as a 10 of SO(5, 5). There are 25 scalar fields

in the theory and they parametrize the coset space SO(5, 5)/SO(5)×SO(5). The

bosonic Lagrangian can be written as (4.28), plus terms which we will not give

explicitly here involving the vector fields, with the constraint (4.29) where Q is

as in (4.30) and Ωij is the symplectic invariant of SO(5, 5) [29]. Now K is the

matrix which parametrizes the scalar coset SO(5, 5)/SO(5)×SO(5). The theory

can be reduced to 5-dimensions using any mass matrix M in the Lie algebra of

SO(5, 5). The number of distinct reductions is given by the number of conjugacy

classes of SO(5, 5).

Consider the matrix M ab = Ma
cΩ

cb introduced in subsection 5.1.2. It is an

anti-symmetric matrix since n = 3 in (5.27). So in a particular basis it can be

brought into the skew-diagonal form:

Mab =





























0 m1 ©
−m1 0

. . .

© 0 m5

−m5 0





























(5.93)
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Consider a mass matrix of the form

Mab = m



































0l

0 1

−1 0
. . .

0 1

−1 0



































(5.94)

where there are l zero eigenvalues and the number of skew-diagonal blocks is

(10 − l)/2. On reduction, one obtains, in five dimensions, a gauged theory with

one mass parameter including 10− l massive self-dual 2-form fields and l massless

2-form fields, which could be dualised to l massless 1-form fields.
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CHAPTER 6

CONCLUSIONS AND FUTURE DIRECTIONS

In this thesis we have considered twisted reductions of even dimensional super-

gravity theories, where the twist is given by a duality symmetry which is a sym-

metry of the field equations only. In this way we have obtained new gauged and

massive supergravity theories in 3, 5 and 7 dimensions. All of these theories are

such that the fields which are in non-trivial representations of the duality group

G acquire masses. Also the scalar fields obtain a potential, which leads to super-

symmetry breaking or as has been considered in [21], to moduli stabilisation. We

have also seen that all the new supergravity theories we obtain in odd dimensions

include gauge fields which exhibit self-duality in the generalized sense of [32].

This work can be generalized in several directions. Recall that in the 8 and 6

dimensional cases we considered truncated versions of the supergravity theories

rather than the full theory itself. This is mainly because in the full version there

are Chern-Simons type interactions which make the realization of the doubled

formalism difficult. If these difficulties can be sorted out then one can perform the

Scherk-Schwarz reduction of the full theory and obtain new gauged supergravity

theories in 7, 5 dimensions with more gauge fields and couplings than present.

In this thesis we mainly focused on reductions with SL(2, IR) twists. Exploring

the twisted reductions with larger duality groups such as En(n) or SO(p, q) would

be interesting since such duality groups, having more conjugacy classes, are likely

to give rise to richer structures. However, the classification of the conjugacy

classes of these groups are not known. A more tractable project would be the
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consideration of the SL(3, IR) conjugacy classes. d = 8 maximal supergravity has

an SL(3, IR) duality symmetry of the action and its Scherk-Schwarz reduction

with a SL(3, IR) twist would give rise to new gauged supergravity theories in 7

dimensions.

In chapter 3 we have seen the relation between the twisted reductions and

flux compactifications. Twists with larger duality groups may correspond to

compactifications with more flux. On the other hand, we have the experience from

string theory that appearance of background fields with non-trivial flux might

turn on noncommutativity [82]. It would be very interesting to see if the manifold

structure of the twisted torus can be understood in terms of noncommutative

geometry. In fact the structure that we described in subsection 2.3.3 is similar to

the manifold structure that was considered in [5]. There we perform Kaluza-Klein

reduction of a noncommutative type, where the compact space corresponds to the

C∗ algebra M3(C). Pursuing this similarity, it might be possible to understand

the structure of the twisted torus and the relation with flux compactifications

better.

It is interesting to note that the Lagrangian (5.33) maintains G-invariance

under the transformations (5.2) when the mass matrix M transforms as

δM → L−1ML. (6.1)

The mass matrix M defines not only the mass parameters but also the structure

constants of the non-abelian gauge group of the lower dimensional theory. Hence

the transformation (6.1) should be regarded as a pseudo-duality [83], i.e. the dual-

ity transformation of the coupling constants (see [22] for a discussion). Assuming

this transformation of the mass parameters, one can now perform a second S1

reduction of (5.33) with a G-twist. In [15], the SS reduction of type IIB string

theory with an SL(2, IR) twist had been interpreted as the compactification of

104



the 12 dimensional F-theory on the total space B, where B is defined as in sub-

section 2.3.3. A second twisted reduction on S1 would give an F -theory origin

for the resulting 8 dimensional theory. Now the total space is C, with fiber space

B and the base space S1(y) where y is the parameter of the circle on which the

first twisted reduction had been performed. This means

T 2 −→ B B −→ C

↓ ↓

S1 S1(y)

For two subsequent twisted S1 reductions the mass matricesM1 andM2 should

commute in order to assure the independence of the resulting theory of the com-

pactified coordinates y.

We believe that all these ideas deserve further investigation.
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[5] A. Çatal and T. Dereli, “Non-commutative geometry and the Higgs masses,”
Phys. Rev. D 63 (2001) 075006 [arXiv:hep-th/0011084], A. Çatal-Özer
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Mathematics in 1997 at Bilkent University. She acquired her MSc degree in High

Energy Physics in 2000 at METU, with the thesis title Electroweak theory and

Noncommutative Geometry. Her research interests are Supergravity Theories,

String Theory and Noncommutative Geometry.

113


