DERIVING A DYNAMIC PROGRAMMING ALGORITHM
FOR BATCH SCHEDULING
IN THE REFINEMENT CALCULUS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

IREM AKTUG

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE
IN
THE DEPARTMENT OF COMPUTER ENGINEERING

JULY 2003

Approval of the Graduate School of Natural and Applied Sciences.

Prof. Dr. Canan Ozgen
Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of
Master of Science.

Prof. Dr. Ayse Kiper
Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science.

Assist. Prof. Dr. Halit
Oguztiiziin
Supervisor

Examining Committee Members

Prof. Dr. Faruk Polat

Assoc. Prof. Dr. Ali H. Dogru

Assoc. Prof. Dr. I. Hakk: Toroslu

Assist. Prof. Dr. Halit Oguztiiziin

Assist. Prof. Dr. Andreas Tiefenbach

ABSTRACT

DERIVING A DYNAMIC PROGRAMMING ALGORITHM
FOR BATCH SCHEDULING
IN THE REFINEMENT CALCULUS

Aktug, Irem
MS, Department of Computer Engineering

Supervisor: Assist. Prof. Dr. Halit Oguztiiziin

July 2003, 57 pages

Refinement Calculus is a formalization of stepwise program construction. In this
approach a program is derived from its specification by applying refinement rules. The
Refinement Calculator, developed at TUCS, Finland, provides tool support for the Re-
finement Calculus. This thesis presents a case study aiming to evaluate the applicability
of the theory and the performance of the tool. The Refinement Calculator is used for
deriving a dynamic programming algorithm for a single-machine batch scheduling prob-
lem. A quadratic algorithm is derived by refining a formal specification of this problem
into executable code. The need for stronger support for relevant domain theories and

abstraction mechanisms in the target language have been noted.

Keywords: Formal Methods, Refinement, Program Synthesis

iii

Oz

TOPLU IS CIZELGELEME ICIN BIR DINAMIK PROGRAMLAMA
ALGORITMASININ INCELTME KALKULUSUNDE TURETIMI

Aktug, Irem
Yiiksek Lisans, Bilgisayar Mithendisligi Boluimi
Tez Yoneticisi: Assist. Prof. Dr. Halit Oguztiiziin

Temmuz 2003, 57 sayfa

Inceltme Kalkiiliisi adim adim program olugturan bir formalizasyondur. Bu
yaklagimda, bir program belirtiminden inceltme kurallar1 uygulanarak tiretilir.
Inceltme Kalkiilatérii TUCS, Finlanda’da geligtirilmig olup, Inceltme Kalkiiliisii'ne
ara¢ destegi saglamaktadir. Bu tez teorinin uygulanabilirligini ve aracin performansini
Olgmeyi amaclayan bir ornek olay incelemesi sunmaktadir. Inceltme Kalkiilatorii tek-
makinada toplu ig cizelgeleme icin dinamik programlama algoritmas: tiiretiminde kul-
lanilmigtir. Kuadratik bir algoritma bu problemin formal belirtiminin ¢aligtirilabilir
koda inceltilmesiyle turetilmigtir. ilgili tanim bolgesi teorilerine ve hedef dilde soyut-

lama mekanizmalarina daha fazla destegin geregi farkedilmigtir.

Anahtar Kelimeler: Formal Metodlar, Inceltme, Program Sentezi

v

To my grandmothers

ACKNOWLEDGMENTS

I owe my deepest gratitude to my supervisor - Halit Oguztiiziin. Despite his busy
schedule, he has always managed to find time for discussions on various aspects of my
research. Without his continuous encouragement and friendly support combined with
invaluable expert advice, this thesis would have never been finished.

I would like to thank Linas Laibinis from TUCS, Finland, for providing me the
software, and giving continuous support throughout this study.

I would like to thank our system administrators Ersan and Barig for helping me
install the software and always being there when I need help.

I thank my parents for their ongoing support despite my ongoing mistakes.

I thank all my friends who have cheered me up through phone calls, chats and

e-mail whether they be in the room, or in Canada.
Finally, my admiration goes to my love, Barig, for the happiness that he has given

me. I will remember a lifetime and more.

vi

TABLE OF CONTENTS

ABSTRACT . . . o o e iii

[0 /72 v

DEDICATION . . . e e e e e e s e v

ACKNOWLEDGMENTS e e e s e s vi

TABLE OF CONTENTS e e vii

LIST OF TABLES e e e s s ix

LIST OF FIGURES e s s X
CHAPTER

I INTRODUCGCTION e e 1

1.1 Refinement Calculus. 1

1.2 Refinement Calculator 2

1.3 Thesis Overview o o i i i e e e e e e e e e 2

I BACKGROUND e e e e s s e e e, 4

I1.1 Refinement Calculus., 4

11.2 Refinement Calculator 5

I1.3 The Syntax of the Language 7

11.4 Extensions e e e e 8

II.5 Refinement Extension o .. 8

I1.6 Correctness Extension 13

I1.7 Array Theory In The Refinement Calculator 14

I1.8 Related Work 14

IIT DERIVATION o e e e e s s e s e s 15

IIT.1 TheProblem 15

II1.2 General Points oo 17

ITI1.3 The Cost of Individual Batches 19

vii

II1.4 Computing the Start of Next Batch 29

IV. CONCLUSION e e e e e 40
IV.1 Discussion e 40

IV.2 Future Worko 42
REFERENCES . . . _ . . . e e 44
APPENDICES 46
A NOTATION INDEX e 46

B PREDICATES AND FUNCTIONS 47
B.1 Definitions of Array Theory 47

B.2 User Defined Functions and Predicates 47

C THEOREMS i 53
C.1 Auxiliary Theorems 53

viii

Al

Notation Index

LIST OF TABLES

ix

LIST OF FIGURES

II.1 The Refinement Calculator Interface 6
II.2 Top subwindow before loop introduction 10
11.3 Top subwindow after loop introduction 10
III.1 Example partition o o e 18
IT1.2 Array c after the execution of the first stage of the algorithm 20
IT1.3 First Part of the Algorithm 28
II1.4 Final values of costn and next arrays 30
IIL.5 Final partition 30
II1.6 The execution of the innerloop 36
II1.7 The Second Part of the Algorithm 39

CHAPTER 1

INTRODUCTION

I.1 Refinement Calculus

Formal methods emerged as a result of the failure of traditional testing to prevent
software errors. They aim to guarantee error-free software by proving mathematically
that the software being developed will function as expected. Furthermore, these expec-
tations are expressed as mathematical expressions. This adds to the predictability of
the system, since mathematical formulation requires more precision as to requirements

expressed in natural language.

Program verification and program refinement are two different methods to develop
correct software. In verification, a complete program is proven to accomplish what was
expected by the specification. Whereas, in the refinement approach, the specification
is transformed into a correct implementation. The result of each refinement step is
proved to be consistent with the previous program and this can be traced back to the

initial specification.

Stepwise program refinement was formalized into the Refinement Calculus by Back
[4, 3]. He introduced the central notions of the calculus like the refinement relation be-
tween programs and using specifications as program statements. Morgan extended the
calculus by miraculous statements and published an influential book that established
the applicability of the calculus to practical programming problems by presenting a
number of case studies. Back and Wright published the complete higher-order logic

formalization of the calculus in [5].

I.2 Refinement Calculator

Even for small programs, the proofs involved in derivations are often long and involved.
Refinement Calculator was developed at TUCS, Finland [6, 7] to aid the user with
program construction proofs. It records proofs and ensures the soundness of refinement
steps. The refinement calculus theory was written in the proof assistant HOL [2] as a
theory. The calculator provides a user-friendly interface which is comprised of options

linked to functions implemented as a part of this theory.

1.3 Thesis Overview

In this thesis, our aim is to derive a dynamic programming algorithm for a one machine
batching problem using the Refinement Calculator. Our motivation is to evaluate
performance of the tool and the approach in this derivation effort.

We have used the the Refinement Calculator for deriving a dynamic programming
algorithm for a single-machine batch scheduling problem. First, a formal specification
of this problem is formulated. Then, the specification is refined by applying to it the
rules available in the Calculator. As a result, executable code version of a quadratic
algorithm has been derived. The need for stronger support for relevant domain theories
and abstraction mechanisms in the target language have been noted.

The rest of the thesis is organized as follows. Chapter II gives some background on
refinement calculus theory, especially on the refinement relation. Then the Refinement
calculator is introduced. Its interface, the syntax of the language that it provides and
the rules that have been used in the scope of the study are briefly explained. Some
details of the array theory, which has been used in the study, are also presented in this
chapter.

Chapter IIT begins with the statement of the batch scheduling problem and the
algorithm. It goes on to explain some general points about the derivation. Next, the
derivation phase is explained in two stages. Each stage result in a the part of the aimed
algorithm.

A mini dictionary of user-defined predicates and functions including the HOL def-
initions are given in Appendix B. A list of theorems that have been used is given in
Appendix C.1.

Chapter IV concludes with discussion on implementational aspects of the tool. Pos-

sible future work on deriving algorithms for the particular problem is suggested in the

Future Work section.

CHAPTER II

BACKGROUND

I1.1 Refinement Calculus

The stepwise refinement method for construction achieves the derivation of an exe-
cutable program from its specification by a series of transformations (refinements). Re-
finement calculus is a formalization of the method of stepwise refinement to construct

programs. Refinement is a preorder relation between programs:

SSCSC..CS,

Here S is being refined by S; and so on. This sequence establishes Sy C S;, because
of transitivity.

Refinement can be used to achieve different purposes. Sy may represent a specifi-
cation and S, an executable code, or Sy may be a program which is in NP while S,
is one in P. Thus program construction and optimization can both be considered as
refinements.

The calculus is based on Dijkstra’s weakest precondition semantics for programs
[8]. The meanings of program statements are defined using predicates over program
states (given by the value assignments to program variables). The weakest precondition
semantics defines the weakest initial predicate (a precondition) from which it is guar-
anteed that the intended result (a postcondition) is reached by the given statement.
Therefore, program statements are modeled as functions that map postconditions to

preconditions.

The refinement relation is defined in terms of weakest preconditions of the related
programs. The weakest precondition of program S with respect to postcondition P
(wp(S, P)) is a predicate that selects all the initial states from which it is possible to
reach, running S, the states selected by P, provided S terminates.

Program Sy is refined by S; iff S; establishes every postcondition P that is estab-
lished by Sp:

VP. Wp(S(), P) - Wp(SlaP)

The above formula, states that S; takes all the states that Sy takes to P, and
possibly more. The rules of refinement are extracted using this underlying definition.

A program is almost never refined as a whole, which would be very complex. Instead,
each refinement can be applied on some component of the program and replaces this
component with a refined one. The correctness of the whole program is guaranteed in
such a case, since all statement constructors of the refinement calculus language are

monotonic with respect to refinement. For example, we can show the following holds:

ST S AS,C S
S1;82 C S1; 5%

i.e. sequential composition is monotonic in both arguments. Using this property, one
can advance by focusing on small components and refining them in isolation from the

context.

I1.2 Refinement Calculator

The Refinement Calculator has been developed at TUCS, Finland [6, 7] to aid users
with program construction proofs in Refinement Calculus. Since the logical basis of
the refinement calculus is a classical higher-order logic, a tool could be built on any
such environment. HOL [2] was chosen as the base because it supplies the means for a
transformational reasoning style and subderivations involved in refinement proofs. In
order to provide a more user-friendly environment, the calculator has been built upon a
general graphical user interface that communicates with HOL itself, TkWinHOL [10].

To make refinement proofs, the refinement calculator theory extension is loaded
onto TkWinHOL. Other extensions make it possible to carry on correctness and data

refinement proofs, work with procedures, with general logic and lattice theories, etc.

o (FoLHS 5 5| o) THELD
Stack Wndow Transfonm fie

Rekation: Proof level:

E L
HHH 0aeg LL
o0 0

HEEHHI 0o b LiL
i

ExecutaSelection

2 Editur
File Edit

Figure II.1: The Refinement Calculator Interface

The interface (II.1) has three windows. The Focus window is the one where the
derivation occurs, and is composed of 3 subwindows. The top subwindow contains the
term that is the current focus. This can be the whole proof statement or any subterm
of it. The middle subwindow lists context information, conjectures (proof obligations),
and lemmas (statements of conjectures that have been proved). The bottom subwindow
shows the current window theorem. The interface also contains the HOL window for
executing HOL commands, loading extensions or previous work in the form of sml files,
and the Editor window consisting of a simple text editor.

The TkWinHOL interface specifically works with window interface. The work in-
volved in proofs usually consists of selecting some information on the Focus window
by clicking, choosing a transformation rule from the pull-down menus to apply to the
selection, and possibly entering various arguments needed by the rule using the key-
board. For example, for the Cond Introduction rule (see below) the guard condition G is
entered from the keyboard. The application of a rule may give rise to proof obligations
that must be proved for the derivation to be complete.

For making subderivations, it is possible to focus on subterms before applying rules
on them. This means that only this specific subterm is seen in the top subwindow.
Surrounding context is hidden, except the listing of the assumptions that it allows, in

the middle subwindow. These assumptions can also be highlighted in order to be used

in transforming the focus. After application of desired rules to the term in focus have
been completed, the previous focus can be reached by closing the selection.

When the derivation is finished, the result is a conditional theorem of the form :
®F Sy C S, in the HOL logic. In this theorem, Sy is the original specification, S, a
refinement of it and @ is a sequent with undischarged proof obligations as assumptions.
If all of the obligations that has arised in the course of the derivation have been proved,
® is empty and the result is a theorem. Each refinement done on a subterm is reflected

on the whole program.
TCT
SiT] E Si[T"]

I1.3 The Syntax of the Language

The theory focuses on imperative state-based programs. So the basic programming
constructs of this paradigm are included in the language of the tool. The syntax of the
language of the tool appears below.

Prog ::= program Name var v: Type . Com

Com ::= Com;Com (sequential composition)

| {BooleanTerm} (assertion)

| v 1= Term (assignment)

| v := v’. BooleanTerm (nondeterministic assignment)

| do BooleanTerm — Com od (while-do statement)

| |[var w: Type . Com]| (block with local variable)

Here variable name v may represent a list of variable names. Type denotes any
HOL type, T'erm represents any HOL term, and BooleanT erm represents any boolean-
valued HOL term.

The interesting part of the syntax is the abstract statements it allows for speci-
fication purposes. In this language, assertions and the nondeterministic assignments
comprise the precondition and postcondition respectively.

The assertion is a boolean term that is expected to hold in the program execution
at that point. It usually contains conjuncts making some statement about the current
value of a program variable. The nondeterministic assignment is the expression of a
parallel assignment to the list of variables on the left hand side, the corresponding values

on the right hand side respectively. These values are represented by the primed version

of the corresponding variable and they satisfy the postcondition that appears after the
dot. The postcondition may also contain unprimed versions of the variables on the
left hand side, which signify the values of those variables before the assignment. The
nondeterministic assignment lets us set some condition on the final values of variables

without determining the exact value.

I1.4 Extensions

The extensions of the Calculator that have been used in the scope of this study are
Refinement, Correctness, and General Logic. Each extension is loaded to produce a pull
down menu of choices in the Focus window. In addition to these commands, the options
that the interface offers in the Transform menu are also used.

Of these extensions, only Refinement and Correctness are based on Refinement Cal-
culus and are explained in detail below. The Transform menu offers general rules like
Beta Conversion, and rules to transform the focus using some theorem (e.g. Rewrite).
The General Logic menu adds to this list logical options like universal elimination, ex-

istential introduction, distribution and transitivity.

I1.5 Refinement Extension

For a comprehensive list of refinement rules offered in The Refinement Calculator,
please see the appendix of [11]. The most important rules as used in the scope of this
study are presented below. The first four rules are for introducing program constructs.
The next two serve to propagate context information in assertions. The last one is for

adding specification constants.

Add Assignment

x not free in post

Fv:=v .post C x:=E;v:=v.post

A leading assignment is added before an assignment statement.

Example:

fsum,c,k:= fsum’,c’,k’.(fsum’= (sigma 1 n)) /\
(contains_batch_cost ¢’ n s)

C

k,fsum:=n, 1;
fsum,c,k:= fsum’,c’,k’.(fsum’= (sigma 1 n)) /\
(contains_batch_cost ¢’ n s)

Cond Introduction
S C if GG then S else S

The conditional construct is introduced.

Example:

costn:= update costn k (minvalue2 k m)

c
if ((lookup costn m) < (lookup costn k))
then

costn:= update costn k (minvalue2 k m)
else

costn:= update costn k (minvalue2 k m)

Block Introduction

x not free in post

F {pre};v :=+v'.post C |[varx :T . pre;v,x := v/, x' . post]|
A new variable x of type T is introduced to the environment.

Example:

{ ((asize c) = (n + 1)) };
fsum,c:= fsum’,c’.(fsum’= (sigma 1 n)) /\
(contains_batch_cost ¢’ n s)

C

| [var k:num.
{ ((asize ¢) = (n + 1)) };
fsum,c:= fsum’,c’.(fsum’= (sigma 1 n)) /\
(contains_batch_cost ¢’ n s)

11

Loop Introduction

F pre = inv
F (inv/\G/\t = e) << Body >> (inv/\0 < t/\t < e)
F (=G /\inv) = post[v' := v]
v not free in post
{pre};v :=v'.post Cdo G — Body od

Here t is the termination function or the variant. While the invariant inv must
be preserved, the variant ¢ is required to decrease. The variant is essential so as to
guarantee the termination of the loop in cases where the guard G never becomes false.

In the Calculator, after the execution of the Loop Introduction command, the three
proof obligations for the refinement appear in the middle window, under the title ”Con-
jectures”. They may be discharged or left as is, in which case they will be added as
assumptions to the resulting refinement theorem. In order to discharge these assump-
tions, subderivations may be started by selecting a proof obligation from the middle
window, and choosing Establish from the Windows menu. This will bring the proof obli-
gation into Focus and hide the refinement proof until the subderivation is completed.

In figures (I1.2) and (IL.3), the top portion of the Focus window is shown before and

after loop introduction.

o (Focus =a%
Stack Window Transform Refine Correctness General-Trans Logic-Trans

Relation: ref Proof Level: 0

{ ((asize c) = (k + 1)) A\
((13. (3 < tk + 1)) ==> ((asize (lookup c j)) = (k + 2))) A\
((Fsum' = 0) /\ (n=K))) };
k,fsum, c := k’, fsum’, c’.
(fsum’ = (sigma 1 n (lookup factors))) /\
{contains batch cost ¢’ (lookup times) (lookup factors) n s)

Figure I1.2: Top subwindow before loop introduction

. (Focus 2%
Stack Window Transfoorm Refine Correctness General-Trans Logic-Trans

Relation: ref Proof Level: 0

dok >0 ->
{ tk <=n} /A
((fsum = (sigma (SUC k) n (lookup factors))) /\
({contains_batch costi ¢ (lookup times) (lookup factors) n s
k) /A

(ig?s_ize c) = (n+ 1)) /A

J(] < (n+ 1)) ==> {{asize (lookup c j)) = (n + 2))) /A
(k >00)))) 3;
fsum := sigma k n {lookup factors);
C i=c’.
(contains_batch costi ¢’ (lookup times) (lookup factors) n s
(k- 1)) /A
((asize c’) = (n + 1)) /\
(3. (3 < (n + 1)) ==> (({asize (lookup c’ j)) = (n + 2)));
=k-1

!

|ud;

Figure I1.3: Top subwindow after loop introduction

10

Example:

guard: k > 0

body: fsum := (sigma k n);
¢ := c¢’.(contains_batch_costi ¢’ n (k-1));
k := k-1

invariant:
(k <= n) /\
(fsum= (sigma (SUC k) n)) /\
(contains_batch_costi ¢ n k)

variant: k

Conjecture 1:

var k:num,fsum:num,n:num,c:num.
('s0. ('m0. ('x.
(n = n0) /\
(k <= n) /\
(fsum = (sigma (SUC k) n)) /\
(contains_batch_costi ¢ n k) /\
(k>0 /\ & =x))
<< fsum := sigma k n;
¢ := c¢’.(contains_batch_costi ¢’ n (k - 1));
k :=k -1 >
(n = n0) /\
(k <= n) /\
(fsum = (sigma (SUC k) n)) /\
(contains_batch_costi ¢ n k) /\

(k < x))))

Conjecture 2:

('n0. ('cO. T ==>

(n0 <= n0) /\

(0 = (sigma (SUC n0) n0))) /\
(contains_batch_costi cO n0 n0))

Conjecture 3:

('n0. ('k0. ('cO.

(" (k0 > 0)) /\ (k0 <= n0) /\
(contains_batch_costi c0 n0 k0) /\

==>

((sigma (SUC k0) n0) = (sigma 1 n0)) /\
(contains_batch_cost cO0 n0 s0))))

Refinement:
{ ((fsum = 0) /\ (n =k)) };
k,fsum,c := k’,fsum’,c’.

(fsum’ = (sigma 1 n)) /\
(contains_batch_cost c’ n)

11

C

dok >0 —>
{ (k <=n) /\
(fsum = (sigma (SUC k) n)) /\
(contains_batch_costi ¢ n k) /\
(kx > 0) };
fsum := sigma k n;
¢ := c¢’.(contains_batch_costi ¢’ n (k - 1));
k:=k -1

od;
{ (k <=n) /\
(fsum = (sigma (SUC k) n)) /\
(contains_batch_costi ¢ n k) /\

 &>0) 3}

Push Assert

{pre} ; vi= E C v:=E; {pre A v=E}
or

{pre} ; if G then S else T C if G then {pre A G}; S else {pre A = G};T

This rule propagates an assertion forward. The target is a sequential composition
of an assert and assignment/conditional.

Example to the first rule:

{ ((asize ¢) = (n + 1)) };

k,fsum := n,
c
k,fsum := n, O

{ ((asize ¢) = (n + 1)) /\ (fsum = 0) /\ (k =n) }

Drop Assert

{pre} ; SCS
or

S; {pre} C S

This rule drops an assertion, provided that the target is a sequential composition, with
an assertion as the first or last component.

Example to the first rule:

12

{ &k <=n) /\ (k >0)
(fsum = (sigma (SUC k) n)) /\
(contains_batch_costi ¢ n s k) };
fsum := sigma k n

C

fsum := sigma k n

Use Specification Constant
The argument of this rule ¢ is of the form of (x = zo) A (y = yo) A... where z,y,... are
program variables and zg, yo, . .. are fresh variables (specification constants). The new
focus has the form {(z = zo) A (y = yo) A...}; S where S is the old focus. The aim is
to transform this new focus into a focus S’ which does not mention the specification
constants. At this point Close Window closes the subderivation and transforms the

original focus S into S’. The inference rule justifying this operation is

provided zy does not occur free in ®, S or S’ (the rule of specification constant
elimination).
Example: The specification constant NEXT is introduced.

next := next’. (!'i. ((k < i) /\ (i < (asize next’))) ==
((lookup next’ i) = (lookup next i)))

M1

{next = NEXT};
next := next’. (!'i. ((k < i) /\ (i < (asize next’))) ==
((lookup next’ i) = (lookup next i)))

I1.6 Correctness Extension

Note that a term of form pre << P >> post, as used in the Loop introduction rule is
used to denote a total-correctness assertion, meaning that the program P is guaran-
teed to establish the postcondition (post), when executed in an initial state satisfying
the precondtion (pre). These assertions correspond to usual verification of a program

segment.

13

I1.7 Array Theory In The Refinement Calculator

The array theory includes the definitions of a new type array, and functions that
operate on the values of this new type. These functions serve to: query the size of a
given array (asize), access the value of an element (lookup), and change the value of
an element (update).

Variables of type array contain values of type array. A value of type array is deter-
mined by its size and lookup function. Changing the element of an array corresponds
to modifying its lookup function. Therefore, the usual notation of selectively updating
the elements is not used, instead the updated value of the array variable is assigned to
itself. Instead of array[i] := 5, array := (update array i 5) is used.

The elements of an array of size n are referred to by using indexes from 0 to n-1.
Updates to indexes that are out of bounds return undefined array values, and similarly
lookups return arbitrary values.

The array theory is loaded to the Calculator as a separate file.

I1.8 Related Work

Since the formalization of the stepwise refinement method into the refinement calculus
[3], the theory has been extended on various sides. First, data refinement techniques
have been studied [15, 16]. In recent years, the theory has been applied for the stepwise
derivation of parallel and reactive programs [12], [13], object-oriented programs [14],
and probabilistic programs [17]. The case study undertaken in this thesis, however,
does not require the use of such extensions.

As the development of the Refinement Calculator is quite recent, case studies on it
are rare. The examples of finding the maximum element of an array in [6], and array

sorting in [6] and [9] are the only ones to be found in the literature.

14

CHAPTER III

DERIVATION

IT1I.1 The Problem

In the batch scheduling problem, there is a queue of N jobs that are to be processed
in that same order, on one machine. The queue must be partitioned into batches and
a partition that has the minimum overall cost is sought. For each job j, its execution
time (¢;) and cost factor (f;) are given. There is a constant batch startup time S. All
the jobs in a batch are output at the same time, after all of them have been executed.
To calculate the cost of job j, the time elapsed since the start of the first batch to the
completion of the jobs in the batch containing j, is multiplied with the cost factor of
job j.

The following example will be used for demonstration throughout this chapter.
Assume a queue of 6 jobs, with execution times (4, 2, 2, 1, 1, 3), and cost factors (1,
5, 3, 2, 1, 2), which are to be run on a machine with setup time S=1. If the jobs are
partitioned into the three batches {1, 2}, {3}, {4, 5, 6}, then the output times of the
jobs will be (7, 7, 10, 16, 16, 16), and the cost of the jobs will be (7, 35, 30, 32, 16, 32),

respectively. The overall cost of the partition is the sum of the costs of the jobs, 152.

Supposing it contains the jobs k through m, the processing time of the b** batch

equals:

m
time, =S+ Y t; (IIL.1)
j=k

And the cost of job j at b** batch equals:

15

b
cost; = fj* Z time, (I1.2)

v=1

Finally, the overall cost of a partition with K batches is calculated using the formula:

K N Tpgp1—1
overallcost = (Z i) (S + Z t;) (IT1.3)
b=1 j—ip =i

where i, represents the first job of batch b and so the batch b contains the jobs i
through ip11 — 1. (ix 41 is set to N+1 by convention)

Albers and Brucker (1993) reduce this problem to a shortest path problem in di-
rected graphs: The edges represent the batches, and the length of an edge represents
the cost of running the corresponding batch. Thus, each partition is represented by a
path from the first job to the (IV + 1)%!, which is inserted as a placeholder.

Let F; be the length of a shortest path from j to N+1, F;(k) be the length of a
shortest path from j to N+1 which contains (j,k) as the first edge, and c;; be the length

of the edge from i to j.

Then they observe:

N j—1
Cij = (Z fo)(S + Z tv) (IIL.4)
Fj = min{F;(k)|j <k <N +1} (I11.6)

The cost of the path starting from the first node (F}) is the required result.
It is possible to extract the following dynamic programming algorithm from this

formulation as a solution of the shortest path problem:

FactorsSum := 0
for i=N downto 1
FactorsSum := FactorsSum + factors][i;

TimesSum:=0;

16

for j=i+1 to N+1
TimesSum := TimesSum + times[j-1];
cost[i][j] := FactorsSum * (S + TimesSum)
endfor

endfor

F[N+1] :=0;
for i=N downto 1
F[i]:= cost[i][i+1] + F[i+1];
next|i]:=i+1;
for j=i+2 to N+1
if (F[i] > cost[i][j]+F[j])
then F[i]:= cost[i][j]+F][j];
next[i]:=j;
else skip;
endif

endfor

endfor

Arrays factors and times are of size (N + 1) which are the input of the algorithm.
Initialization for the arrays cost, F' and next are unnecessary since any element of these
arrays that is accessed is computed by the algorithm beforehand.

The first part of the algorithm computes the cost of a batch containing the jobs i
through j-1 using (I11.4). In the second part, the minimum cost of reaching from i to j
is computed using the same information for i+1 to j, i+2 to j and so on. The first edge
in the minimally costed path is stored , in addition to the cost of this path. The node
that is visited next in the path is stored in the next array, while the corresponding cost

is stored in the F array. The running time of this algorithm is O(N?).

I11.2 General Points

Prior to deriving the algorithm, it is necessary to write a formal specification of the

corresponding part of the problem as a HOL expression. These specifications usually

17

consist of a precondition in the form of an assertion and a postcondition in the form
of a nondeterministic assignment, and are fed to the Refinement Calculator using the
Begin Derivation command.

To keep the specification concise, some auxiliary predicates/functions have been
defined. These definitions are recorded in a file that is loaded to the calculator before
any derivation begins (See B for HOL definitions). The definitions are expanded at the
points of use.

Partitions have been represented as arrays of type num. (Although in the problem
statement, the term ”partition” has been used for a sequence of batches that cover all
the jobs in the queue, from now on the term will have a broader meaning that will
include partitionings of jobs starting from any given job in the queue) If there are k
batches in a partition, the array representing the partition is of size (k + 2).

In each index position from 1 to k, the first job of some batch is stored. Notice that
the sequence of numbers stored in this range is strictly increasing. For any two jobs
and j, if ¢ < 7, ¢ has to run before j and so can not be in a batch that runs after the
batch containing j. The last element of the array is always N + 1, which is a dummy
job to mark the end of the last batch. The 0 element of the array is never used by
convention. The example partition given in the previous section that consists of the

batches {1,2},{3},{4,5,6}, would be represented with the following array:

0O 1 2 3 4
X11|3,4]7

Figure III1.1: Example partition

The specification of our problem can be formulated as below:

var times:(num) array; factors:(num) array; s:num; n:num;
next: (num) array; costn:(num) array.

{ (@>= 1) /\

((asize next) = (n+1)) /\

((asize costn) = (n+2)) };

next,costn := next’, costn’.

(?(p: (num) array). (contains_partition next’ 1 n p) /\
(sub_min_cost_p (lookup times) (lookup factors) 1 n s p) /\
((lookup costn’ 1) =

(overallcost (lookup times) (lookup factors) n s p))
)

18

The arrays times and factors are the arrays that contain the execution times and
cost factors for each of the n jobs. The batch startup time is s. The arrays next and
costn (which correspond to next and F' in the forementioned algorithm) will contain
the desired partition and its cost after the execution of the program.

The precondition states that there is at least one job in the queue and the sizes of
next and costn are assumed to be (n+1) and (n+2), respectively.

The postcondition states that of the declared variables, only the values of the arrays
next and costn will change. A partition p will be created as a result. The conjunct
containing the predicate contains partition requires that this partition be encoded
in the final value of next. This partition is to include all the jobs from 1 to n, and to be
the minimum-costed among all such partitions by the definition of the sub_min cost_p
predicate. The function overallcost computes the cost of a partition. The last conjuct
requires that the cost of partition p be assigned to the first position of array costn.

The algorithm has been derived in two stages, due to the limitations of the Calcu-
lator. For these parts, two different specifications have been formulated, which can be
sequentially composed to give the specification above.

In the first stage, the edge lengths (c;;’s) in Albers and Brucker’s algorithm are
calculated. These correspond to the cost of a single batch specified by its first and last
elements. The second stage computes, for every job j, the cost of the minimum costing
partition of jobs from j to N, and the first job of the second batch in such a partition.
The resulting partition containing all the jobs can be extracted from this computation.

These separate programs are united into a single one simply by sequential compo-
sition. The first program outputs an array that contains the individual batch costs,
while the second one uses the entries of this array as edge lengths when computing
the cost of a path. The second program produces a next batch array which implicitly

contains the resulting partition and another array which contains its cost.

IT1.3 The Cost of Individual Batches

The specification for this part is:

program costeval
var times:(num) array; factors:(num) array; s:num; n:num;
c:((num) array) array.

{ ((asize c) = (n+1)) /\

19

('j. ((j < (n+1)) ==> ((asize (lookup ¢ j)) = (n+2)))) };
c:= c¢’. (contains_batch_cost c’
(lookup times) (lookup factors) n s)

The contains batch_cost predicate selects 2D arrays such that when ¢ < j, the
arrayli][j] holds the cost of the batch consisting of the jobs i to — 1. Since the jobs are
numbered from 1 to n, ¢ should contain n+1 rows , while there are n+2 columns, since
the cost of a batch that contains the n™ job would be stored in the (n+ 1)” column.
The array does not need any initialization, since all the entries that will be used in the
second program are updated in this program, one by one.

As per equation (II1.4) for every batch cost, two sums are to be computed: one for
execution times, the other for cost factors. In order to keep the algorithm O(N?) these
two should be computed incrementally. Therefore, two loops are needed for filling c:
the outer loop calculates the first sum which depends on ¢ only, while the inner one
calculates the second sum which depends on both 7 and j. These two sums are kept in
the variables fsum, and tsum respectively; the product thereof is assigned to c[i] [j]

(see figure II1.2).

0 1 2 3 4 5 6 7
O/X | X X |X|X|X X X
1/ X | X | 70| 98|126/140 154 196
2/ X | X | X | 39|65 78| 91|130
3/ X |x | X |X |24/32/40 64
4/ X | X | X |X |X|10|15 30
5/X | X |X |[X|X|X|6]|15
6/ X | X | X| X X|X|X |8

Figure II1.2: Array c after the execution of the first stage of the algorithm

When refining, the outer loop is introduced first. As a preparation, a loop variable
k and fsum are to be introduced. Multiple variable introduction causes problems in the
Calculator when using these variables in loops, so the variables have to be introduced
by separate blocks. In order to introduce a variable, first the assertion-assignment pair

is brought to focus. Since assertions can not be carried into (push through) blocks and

20

loops by the Calculator, the assertion about the size of ¢ should be stated explicitly at
the introduction of the block. Block Introduction from the Refinement menu is chosen,

and the below is entered as argument.

| [var fsum:num.
{ ((asize ¢) = (n + 1)) /\

(1j. (j < (mn + 1)) ==> ((asize (lookup c j)) = (n + 2))) };
fsum,c:= fsum’,c’.(fsum’= (sigma 1 n (lookup factors))) /\
(contains_batch_cost ¢’ (lookup times) (lookup factors) n s)

11

This refinement preserves the information in the previous focus. Additionally, it
states that a new variable (fsum) has been added to the environment and its value will
be changed to the sum of the elements of array factors as a result of the nondeterministic
assignment. The function sigma aims to implement the) operator. It takes two num
type arguments for the lower and upper bounds of the sum and one num — num type
function argument, for which the sum will be calculated. In this case, fsum will be
equal to Z,],V:l factors[v].

The loop variable k is introduced in the same manner, by first focusing on the
current assertion-assignment pair and then choosing Block Introduction with the below

block as argument.

| [var k:num.
{ ((asize ¢) = (n + 1)) /\
('j. (j < (n + 1)) ==> ((asize (lookup ¢ j)) = (n + 2))) };
fsum,c,k:= fsum’,c’,k’.(fsum’= (sigma 1 n (lookup factors))) /\
(contains_batch_cost c’ (lookup times) (lookup factors) n s)

11

Although no condition on the final value of k is included in the nondeterministic
assignment, it is necessary to state that k will have some (possibly different) value k’
at the end of the assignment, in order to enable any change to the value of k in further
refinements of this assignment.

Next k and fsum need to be initialized to n and 0 respectively. For this, we focus
on the nondeterministic assignment. Next, Add Assignment from the Refinement menu
is chosen and k,fsum:=n, 1 is entered as argument. As a result, this parallel assign-
ment is added to the program, above the nondeterministic assignment statement. The
assignments do not have to be in parallel. This feature merely saves the user from

making consecutive Add Assignment refinements. The loop which is introduced after

21

these initializations has to access the information about the values of these variables
after the initialization. The present assertion should be extended to contain this new
information. For this purpose, the assertion-initialization pair is brought to focus and
Push Assert from the Refinement menu is chosen.

Before the introduction of the loop, the program is as below from the highest proof

level:

program costeval
var times:(num) array; factors:(num) array; s:num; n:num;
c:((num) array) array.
| [var fsum:num.
| [var k:num.
k,fsum := n, 0;
{ ((asize c) = (n + 1)) /\
('j. (j < (n + 1)) ==> ((asize (lookup c j)) = (m + 2))) /\
(fsum = 0) /\ (k = n) };
k,fsum,c := k’,fsum’,c’.
(fsum’ = (sigma 1 n (lookup factors))) /\
(contains_batch_cost ¢’ (lookup times) (lookup factors) n s)
11
11

In order to introduce the loop, first we focus on the assertion and nondeterministic
assignment pair. Then, Loop Introduction is chosen from the Refinement menu with the

following arguments:

guard: k > 0
body: fsum := (sigma k n (lookup factors));

¢ := c¢’. (contains_batch_costi ¢’

(lookup times) (lookup factors) n s (k-1)) /\
((asize ¢’) = (n + 1)) /\
(3. G <@+ D) ==
((asize (lookup ¢’ j)) = (n + 2)));
k := k-1

invariant: (k <= n) /\
(fsum= (sigma (SUC k) n (lookup factors))) /\
(contains_batch_costi ¢
(lookup times) (lookup factors) n s k) /\
((asize ¢) = (n + 1)) /\
('j. (j < (n + 1)) ==> ((asize (lookup c j)) = (n + 2)))
variant: k

The predicate contains batch_costi is has the same definition with

contains_batch_cost predicate but has a smaller scope, testing if the rows from k

22

to n (where k is the last argument to the predicate) contains the corresponding batch
costs.

The nondeterministic assignment to ¢ in the body states that at every execution,
the range of the part of ¢ that contains correct values will be extended by one row, and
in the meanwhile, the size of ¢ will be preserved. By the guard, the last execution will
occur when k equals 1 and so the first row will be updated last.

Three conjectures are produced by the introduction of this loop.

((k <= n) /\
(fsum = (sigma (SUC k) n (lookup factors))) /\
(contains_batch_costi ¢ (lookup times)

(lookup factors) n s k) /\
((asize ¢) = (n + 1)) /\

(1j. G <+ 1)) ==
((asize (lookup c j)) = (n + 2)))) /\

(kx > 0) /\

(k = x)

<<

fsum := sigma k n (lookup factors);
c :=¢c’.

(contains_batch_costi ¢’ (lookup times)

(lookup factors) n s (k - 1)) /\
((asize c¢’) = (n + 1)) /\
('j. (5 < (@ + 1)) ==> ((asize (lookup c’ j)) = (n + 2)));

k =k -1
>>
((k <= n) /\

(fsum = (sigma (SUC k) n (lookup factors))) /\
(contains_batch_costi ¢ (lookup times)
(lookup factors) n s k) /\
((asize c) = (n + 1)) /\
(. G < @+ 1) ==
((asize (lookup ¢ j)) = (n + 2)))) /\
(k < x)

The correctness conjecture that the body of the loop establishes the invariant at
each step is trivial since the same predicate is used in both the nondeterministic as-
signment and the invariant. Therefore, this conjecture can be established easily. It is
converted into a logical formula using the Sequence and Step commands of the Cor-
rectness extension and these formulas are proved using the Simplify option of the same

extension.
(((asize c) = (n + 1)) /\

23

(j. G < @m+ 1)) ==
((asize (lookup c j)) = (n + 2)))) ==
((n <=n) /\
(0 = (sigma (SUC n) n (lookup factors))) /\
(contains_batch_costi ¢ (lookup times)
(lookup factors) n s n) /\
((asize ¢c) = (n + 1)) /\
('j. G < @m+ 1)) ==
((asize (lookup ¢ j)) = (n + 2))))
The conjecture pre — inv can be established by simplifying the right hand side
of the implication, expanding the definition of the sigma operator which returns 0
if the upper bound is less than the lower one. Finally expanding the definition of
contains_batch_costi also reduces this formula trivially to true, since there is no

row after row n.

&k >0) /\
((k <= n) /\

(contains_batch_costi ¢ (lookup times)

(lookup factors) n s k) /\
((asize ¢) = (n + 1)) /\
(tj. (G <@+ 1)) ==
((asize (lookup ¢ j)) = (n + 2)))) ==
((sigma (SUC k) n (lookup factors)) =
(sigma 1 n (lookup factors))) /\

(contains_batch_cost ¢ (lookup times) (lookup factors) n s)

The conjecture (—Guard Ainvariant) = postcondition is satisfied since all the rows
of ¢ are completed when k reaches 0** row, which is dummy. When its last argument
is 0, the predicate contains batch _costi becomes equal to contains batch cost.

Before going on to the implementation of the filling in of a single row, the value
to be assigned to fsum must be computed by the algorithm. Although the assignment
is a deterministic one, the value to be assigned is still calculated by a mathematical
function that does not have a direct counterpart in our programming language. Notice
that by the invariant, the value of fsum at the beginning of each loop execution equals
to (sigma (k + 1) n (lookup factors)). To use this fact when computing the new
value of fsum, (sigma k n (lookup factors)) isrewritten as (Lookup factors k)
+ (sigma (k + 1) n (lookup factors)) usingthe theorem sigma2_-THM. After this,
the second term of the addition is replaced by the previous value of fsum.

The second loop is introduced as a refinement of the assignment to ¢ in the first

loop. This inner loop implements the assignment of a set of values to one row of c

24

by making an individual assignment to a single entry of the row with each execution.
Similar to the way k and fsum were handled in the outer loop, a loop variable m and

tsum are introduced and initialized to k+1 and 0 respectively.

guard: m <= (n+1)
body: tsum := (sigma k (m-1) (lookup times));
¢ := update ¢ k (update (lookup ¢ k) m
(batchcost k m (lookup times) (lookup factors) n s));
m := (m+1)
invariant:
(k> 0) /\ (k <=n) /\
(fsum= (sigma k n (lookup factors))) /\
(m> k) /\ (m <= (n+2)) /\
(tsum= (sigma k ((m-1)-1) (lookup times))) /\
(contains_batch_costi ¢ (lookup times)
(lookup factors) n s k) /\
(contains_batch_costrowj ¢ (lookup times)
(lookup factors) n s k (m-1)) /\
('j. (G <@+ 1)) ==
((asize (lookup ¢ j)) = (n + 2))) /\
((asize ¢) = (n + 1))
variant: (n+2) - m

In the body, the k™ row of c is accessed, and after its m* element is updated, the
resulting row replaces the old one. The function batchcost is equation (II1.4) expressed
in terms of HOL functions. This time, the invariant states that the entries of the k**
row up to column m contain the correct values. When m reaches n+1, the whole row has
been filled.

The invariant contains a new predicate contains_batch_costrowj which is an even
smaller ranged version of contains batch_cost. It checks the positions of a single row,
in this case k, from k+1 upto and including its last argument, in this case (m-1), for
storing the cost of corresponding batches.

The invariant also contains information about the range of the outer loop variable
k in addition to the range of m, the rows that have been filled previously, the size of ¢
and the value of fsum which is not changed in the loop. While some of this information
may seem redundant and not directly related to the loop, actually all are necessary for
the proofs of the conjectures that are produced by the loop.

Since the correctness conjecture that appears below exceeds the sizes of the Tcl
structures, the focusing mechanism of the Calculator fails. In order to advance, manual

focusing is done by entering a HOL command and refreshing the display using Show

25

Stack.

(((k >0) /\ (k <=mn)) /\
(fsum = (sigma k n (lookup factors))) /\
((m > k) /\ (m <= (n + 2))) /\
(tsum = (sigma k ((m - 1) - 1) (lookup times))) /\
(contains_batch_costi ¢ (lookup times)
(lookup factors) n s k) /\
(contains_batch_costrowj ¢ (lookup times)
(lookup factors) n s k (m - 1)) /\
(j. (G < (m+ 1)) =
((asize (lookup c j)) = (n + 2))) /\
((asize ¢) = (n + 1))) /\
(m<=(m+ 1)) /\
((n +2) -m) = x)
<<
tsum := sigma k (m - 1) (lookup times);
¢ := update ¢ k (update (lookup ¢ k) m
(batchcost k m (lookup times) (lookup factors) n s));
m:=m+ 1
>>
((k > 0) /\ (k <=mn)) /\
(fsum = (sigma k n (lookup factors))) /\
(m > k) /\ (m <= (n + 2))) /\
(tsum = (sigma k ((m - 1) - 1) (lookup times))) /\
(contains_batch_costi ¢ (lookup times)
(lookup factors) n s k) /\
(contains_batch_costrowj ¢ (lookup times)
(lookup factors) n s k (m - 1)) /\
('j. (G < (n+1) ==
((asize (lookup ¢ j)) = (n + 2))) /\
((asize ¢c) = (n + 1))) /\
(((n +2) -m) <x)

The challenging part of the proof of this correctness conjecture results from the
assignment to ¢. Because the whole 2D array is captured in one value of type ((num)
array) array, the change of even a single element means the change of the whole value
of the array, and we need the theorems of the array theory in order to relate these two
values. First of all, it is to be proven that the rows k+1 through n of the array still
contain the same values. For this purpose, the theorem update_lookup2 is used. This
theorem states that the entries of the new array, excluding the one that has been
updated, are equal to their previous values. The same theorem is used for proving that
the previous range of the contains batch_costrowj is preserved as elements (k+1) to

m-1 of the k" row.

26

The extension in the range of this predicate,i.e. the case of the newly updated

element, is handled separately. The theorem update_lookup1 is used to prove that when

lookup function is applied to the updated element, the new value is returned. Finally,

that the size of the updated array c is the same as the original one is proved using the

theorem update_asize.

(n >= k) /\
(contains_batch_costi ¢ (lookup times)
(lookup factors) n s k) /\

((asize ¢) = (n + 1)) /\
(3. G <@+ 1)) ==

((asize (lookup c j)) = (n + 2))) /\
(k> 0) /\
(fsum = (sigma k n (lookup factors))) ==
(& >0) /\ (k <=n)) /\
(fsum = (sigma k n (lookup factors))) /\
((x+1) >k /\ (k+1) <= (@+2))) /\
(0 = (sigma k¥ (((k + 1) - 1) - 1) (lookup times))) /\

(contains_batch_costi ¢ (lookup times)

(lookup factors) n s k) /\

(contains_batch_costrowj ¢ (lookup times)

(1.

(lookup factors) n s k ((k + 1) - 1)) /\

(G < (+ 1)) ==

((asize (lookup c j)) = (n + 2))) /\

((asize c) = (n + 1))

The only new conjunct in the invariant is the one with the predicate

contains_batch_costrowj. This reduces trivially to true because the lower and upper

bound are the same, there exists no element for the predicate to apply.

(" (m<=(n+ 1)) /\

(((k > 0) /\ (k <=mn)) /\
(fsum
(m > k) /\ (m <= (n + 2))) /\

(contains_batch_costi ¢ (lookup times)

(sigma k n (lookup factors))) /\

(lookup factors) n s k) /\

(contains_batch_costrowj ¢ (lookup times)

(15.

(lookup factors) n s k (m - 1)) /\

(j < (n+ 1)) ==>

((asize (lookup c j)) = (m + 2))) /\

((asize ¢) = (n + 1))) ==>
(contains_batch_costi ¢ (lookup times)

(lookup factors) n s (k - 1)) /\

((asize c) = (n + 1)) /\
G < @+ 1) =>

(1.

((asize (lookup c j)) = (n + 2)))

27

At the completion of the execution of the loop, m equals n+2, which can be inferred
from the information the negated guard and invariant provide together on the left hand
side. Using this substitution, contains_batch_costrowj tells us that all the elements
between k and n+1, including this last entry, now contain the values we need. In the
proof, after the substitution of the value of m, the definitions of the predicates that talk
about ¢ on both sides of the implication are expanded. Then the terms that result
from the expansion of contains batch costi that occurs on the right hand side is
brought to focus. The case for rows numbered greater than k are already contained
in the expansion of the same predicate on the left hand side. For the k' row, the
information that comes from contains batch_costrowj that the whole row has been

filled in is used.

The algorithm that has been driven for the first stage is shown below.

var times:num array,factors:num array,s:num,n:num,C:num array array.
| [var fsum:num | T .
| [var k:num | T .
fsum := 0;
k := n;
dok >0 ->
fsum := (lookup factors k) + fsum;
| [var tsum:num | T .
| [var m:num | T .

tsum := 0;

m:=k + 1;

dom<= (n+ 1) >
tsum := (lookup times (m - 1)) + tsum;
c :=

update ¢ k (update (lookup c k) m
(batchcost k m (lookup times)
(lookup factors) n s));
m:=m+ 1

od;
11
11

Figure ITI1.3: First Part of the Algorithm

28

II1.4 Computing the Start of Next Batch

The precondition of the second stage of the algorithm assumes the 2D array ¢, which
is the product of the first stage. Two new arrays are declared: next and costn, which
correspond to next and F' in the algorithm mentioned in III.1. (The name F could not
be used since the keyword F is reserved to represent the logical false in HOL)

program computeXtoNcost
var times: (num) array; factors:(num) array; sS:num; n:num;
c:((num) array) array; next:(num) array; costn:(num) array.

{

(n >=1) /\

(contains_batch_cost ¢ (lookup times) (lookup factors) n s) /\
((asize next) = (n+1)) /\

((asize costn) = (n+2))

};
next,costn := next’, costn’.

(?7p. (contains_partition next’ 1 n p) /\

(sub_min_cost_p (lookup times) (lookup factors) 1 n s p) /\
((lookup costn’ 1) =

(overallcost (lookup times) (lookup factors) n s p))
)

The postcondition is comprised of a nondeterministic assignment to the two arrays
next and costn. The quantification in this condition signifies the existence of a parti-
tion, in association to these arrays, satisfying the property of being minimum-costed.
After the execution of the algorithm, the 15* element of the array costn should contain
the cost of the partition p with the desired properties. This value is guaranteed to be
minimal by the sub_min_cost_p predicate.

Our algorithm computes minimum-costed partitions for not just the first job but for
all the jobs in the queue. So the next step is to refine the nondeterministic assignment

as:

next,costn := next’, costn’.
('x. (1 <=x) /\ (x <=n)) ==
(?p. (contains_partition next’ x n p) /\
(sub_min_cost_p (lookup times)
(lookup factors) x n s p) /\
((lookup costn’ x) =
(overallcost (lookup times) (lookup factors) n s p))

))

The predicate contains partition checks that for each job x in the queue, a

partition starting from x is embedded in the final value of next. Each such partition is

29

also required to have minimum cost amongst the others that contain the jobs x through
n, by the sub_min_cost_p predicate. This predicate selects upto the time and cost factor
functions, minimal costed partitions that start with a certain job. Meanwhile, all the
properties of being a partition are also checked. In addition to starting with x, the
elements of the partition should be strictly increasing and the last job of the partition
is to be n+1. The function overallcost merely calculates the cost of one partition,
adding up the cost of each batch. Hence, the final value of costn will contain the
minimal cost of executing jobs from x to n in the position x and in the same position
of array next the start of the second batch of such a partition will be stored.

Next an assignment is added prior to the one in the specification. 0 is stored in the
(n+ 1)5t position of the costn array, as the cost of reaching from job (n+1) to again
job (n+1). This represents the cost of an empty partition which is trivially contained
in the next array.

For the example mentioned in section III.1, the arrays in figure II1.4 would be
produced by the algorithm. The corresponding partition that includes all the jobs is
shown in figure IIL.5.

01 2 3 4 5 6 7 01 2 3
X 11448546/ 23/14| 8 | O X33 /5|6|67
costn next

Figure II1.4: Final values of costn and next arrays

Figure II1.5: Final partition

The following loop implements the above specification using the following dynamic
programming idea: The cost of a partition from k to n+1 is formed using a known
partition from some kk to n+1 , where kk > k. New partitions are created by adding a
new job to the head of an old one and so the cost of a new partition is calculated from the

cost of an old one by the function computecost defined as (\ (kk:num). (batchcost

30

j kk times factors n s) + (mincostf kk)) which corresponds to equation (IIL.5).
Before the introduction of the loop, a loop variable k is introduced, and initialized

to n. This is because n is the start of the first partition that has to be constructed.

guard: k > 0
body: next,costn := next’, costn’.
(min_costed_next (lookup costn) times factors k n s
(Lookup next’ k)) /\
((asize next’) = (asize next)) /\
('i. ((k < i) /\ (1 < (asize next’))) ==
((Lookup next’ i) = (lookup next i))) /\
(min_cost (lookup costn) times factors k n s
(lookup costn’ k)) /\
((asize costn’) = (asize costn)) /\
(ti. ((k < 1) /\ (4 < (asize costn’))) ==
((1ookup costn’ i) = (lookup costn i)));
ki=k -1
invariant:
(contains_batch_cost ¢
(lookup times) (lookup factors) n s) /\
(k <= n) /\
(!'x. (((SUC k) <= x) /\\ (x <= n)) ==
(?7p. (contains_partition next x n p) /\
(sub_min_cost_p (lookup times)
(lookup factors) x n s p) /\
((lookup costn x) =
(overallcost (lookup times)
(lookup factors) n s p)))) /\
((1ookup costn (n+1)) = 0) /\
((asize next) = (n+1)) /\
((asize costn) = (n+2))
variant: k

With each execution of the body of the first loop, the two arrays next and costn will
change so that their k** entries satisfy the predicates min_costed next and min_cost,
respectively. The k** entry of costn will hold the minimum value that the computecost
function can take in the range (k < kk) / (kk <= n+1), and next[k] will hold the
index kk where this minimum value is obtained. Here mincostf is intended as a
function that yields for kk in the range (k < kk) / (kk <= n+1), the overall costs of

the minimum costed partitions from kk to n. In fact, the array costn contains these

costs.

(contains_batch_cost c0
(lookup times0) (lookup factors0) n0O sO) /\

31

((asize next0) = (@m0 + 1)) /\
((asize costn0) = (n0 + 2)) /\
((Lookup costn0 (SUC n0)) = 0) ==>

(n0 <= n0) /\
(Ix.
(((8UC n0) <= x) /\ (x <= n0)) ==
(?p.

(contains_partition next0O x n0 p) /\
(sub_min_cost_p (lookup timesO)
(lookup factors0) x n0 sO p) /\
((lookup costn0 x) =
(overallcost (lookup timesO)
(lookup factors0) nO sO p))
)) /\

((lookup costn0 (n0 + 1)) = 0) /\
((asize next0) = (n0 + 1)) /\
((asize costn0) = (n0 + 2))

The precondition implies the invariant because before any execution of the loop, no

partitions which contain jobs are expected to be embedded in the next array.

(k0 > 0)) /\
(contains_batch_cost cO (lookup timesO)
(lookup factors0) nO s0) /\
(X0 <= n0) /\
('x.
(((sUC k0) <= x) /\ (x <= n0)) ==>
(7p.
(contains_partition next0 x n0 p) /\
(sub_min_cost_p (lookup timesO)
(Lookup factors0) x n0 sO p) /\
((Lookup costn0 x) =
(overallcost (lookup timesO)
(lookup factors0) nO sO p)))) /\
((lookup costn0 (n0 + 1)) = 0)) /\
((asize next0) = (n0 + 1)) /\
((asize costn0) = (n0 + 2)) ==>
(!x.
((1 <= x) /\ (x <= n0)) ==>
(7p.
(contains_partition nextO x n0 p) /\
(sub_min_cost_p (lookup timesO)
(lookup factors0) x n0 sO p) /\
((1ookup costn0 x) =
(overallcost (lookup timesO)
(lookup factors0) nO sO p))))

When the guard becomes false, k is 0 and so partitions starting with the jobs n0

32

through 1 has been constructed by the loop. And the costs of these minimally costed
arrays have been stored in costn.

Instead of the correctness conjecture that is produced by this loop, the theorem
which is the key to its proof will be given here. This theorem implicitly contains the
proof of the shortest-path algorithm and is the most challenging proof in this study.

If we consider the correctness conjecture, it will ask for a new minimum costed
partition at the end of each loop containing the jobs k through n. In the algorithm,
this is accomplished by the creation of a new partition from an old one (one that is
already embedded in the next array). The choice of this old partition is done according
to the computecost function that has to be minimized and the new partition is formed
by just adding the currently considered job to the beginning of the old partition. These
observations lead to the formation of the theorem below.

(' (k:num). (!(times:(num) array). (!(factors:(num) array).
(!'(s:num). (!(n:num). (!(next:(num) array).

(! (costn: (num) array).

(min_costed_next (lookup costn) (lookup times)

(lookup factors) k n s (lookup next k)) /\
(min_cost (lookup costn) (lookup times)

(lookup factors) k n s (lookup costn k)) /\
(contains_partition next (lookup next k) n p) /\
(sub_min_cost_p (lookup times)

(lookup factors) (lookup next k) n s p) /\
((lookup costn (lookup next k)) =

(overallcost (lookup times)

(lookup factors) n s p)) /\
('x?. (((SUC k) <= x’) /\ (x’ <= (n+1))) ==
(?p. (contains_partition next x’ n p) /\
((sub_min_cost_p (lookup times)
(lookup factors) x’ n s p) /\
((lookup costn x’) =
(overallcost (lookup times)
(lookup factors) n s p))))) /\
(k <=mn) /\ (k >0) /\ (x=k) /\
((lookup costn (n + 1)) = 0) /\
((asize next) = (n + 1)) /\
((asize costn) = (n + 2))
(?7p’. (contains_partition next k n p’) /\
(sub_min_cost_p (lookup times)
(lookup factors) k n s p’) /\
((lookup costn k) =
(overallcost (lookup times)
(lookup factors) n s p’)) /\

33

(p’ = (addp k p)I)ININ

Consider the point after the nondeterministic assignment in the loop body. The k™
positions of the two arrays now satisfy the predicates min costed next and min cost
as is expressed in the first two conjuncts of the left hand side. Since the job that is
stored in position k of next has index larger than k, by the invariant, we can safely
assume a corresponding minimal costed partition. The overall cost of this partition
would be stored in position lookup next k of the costn array. Other partitions that
belong to jobs of larger indexes can also be assumed relying on the invariant, except
the (n + 1)** one.

A partition exists for this job also. But it is not produced by the loop. Such a
partition would have size 2, consisting of the Oth element that is not used and the first
and last element would be (n + 1). We call it the empty partition since it contains no
jobs. This partition is necessary solely for the creation of a partition with one element.
Since it contains no batches it is trivially contained in the next array and its cost is
stored in the (n+ 1)** position of costn as is required of other partitions.

The right hand of the implication is clear except the last conjunct. This conjunct
serve to relate the partition that runs from lookup next k to n to the new partition
that starts with k. The function addp takes a job number and a partition as arguments
and adds a batch starting from the given job to the beginning of this partition. Notice
that for the result to be a valid partition, it is necessary and sufficient for the given job
to be numbered smaller than the first job of the partition.

In order to prove this theorem, a constructive proof was done. The new partition
has been created by applying the addp function to an old partition, and it is proven that
this new partition satisfies the necessary properties of being embedded in next array,
being a valid partition and having minimum cost amongst all other valid partitions
that begin with the job k.

The property of being embedded in next array requires a rearrangement of indexes,
since all the positions of the heads of batches in the old partition has been shifted by
one position. The fact that k > (lookup next k), combined with the properties of
the old partition p enable us to prove that the new partition p’ is a valid one.

The minimality proof which is the heart of the whole algorithm is related with the

second conjunct. Like most minimality proofs, a partition q with a smaller cost than

34

p is supposed to exist. q also starts from job k. Since we know it contains at least two
elements, (k and n+1), q can not be the empty partition and so it can be imagined as
a composite partition like p.

At this point, the counterpart of addp, the subp function is introduced. This func-
tion erases the first batch from its argument (a partition) as long as this argument is
not the empty partition.

So q is considered as being equal to (addp (lookup q 1) (subp q)) using the
theorem addp_subp. (subp q) is a partition in its own right, which is captured in the
theorem subp_vsp. The cost of q can be rewritten using the theorem addp_overallcost
which computes the cost of a composite partition from its parts.

The overall cost of g is given by:

((overallcost (lookup times) (lookup factors) n s (subp q)) +
(batchcost k (lookup (subp q) 1) (lookup times) (lookup factors) n s))

Suppose (subp q) is a minimally costed partition starting from job (lookup (subp
q@) 1) or else its minimality would be in question since it would be replaced by a
partition starting with the same job but having minimum cost. So its cost is stored
in position (lookup (subp q) 1) of costn array. This allows us to rewrite the above
sum as:

(lookup costn (lookup (subp q) 1)) +
(batchcost k (lookup (subp q) 1) (lookup times) (lookup factors) n s))

Because of the partition properties, we know (lookup (subp q) 1) isin the range

(k, (n + 1)] and so must have been considered for the k'

position of next array. The
fact that it has not been chosen means that the above sum yields a higher one than
the same sum for p. So we have reached a contradiction.

Finally the conjunct about costn is left. The predicate min_value requires the
existence of an element in the domain that produces the minimum cost but does not
specify which element it is, in the meanwhile it is known by the min_costed_next pred-
icate that (Lookup next k) is one such minimizing element. Through the observation
that minima is unique in a certain range (theorem uniquel) , the cost yielded by the
(lookup next k) and (lookup costn k) are found to be equal.

The nondeterministic assignment in the body of the loop is refined as an inner loop,

which satisfies the predicates min _costed next and min_cost by updating the corre-

sponding k* entries. Before any execution, the number of the first job of the next batch

35

is set as the next one in the queue, (k+1), and the minimal cost of such a partition,
where the first batch consists of the first job only, is assigned to costn[k]. Since the
initial values (unprimed) of both arrays occur in the postcondition, immediate addition
of these assignments would change the relation between the final and initial values set
by the postcondition. In order to be able to add these assignments, the values of the
arrays before the nondeterministic assignment is captured in two constants named NEXT
and COSTN, using the Use Specification Constant option. The equalities nextn = NEXT
and costn = COSTN are then added to the assertion. Using these equalities, the un-
primed occurrences of these variables are replaced by constants in the nondeterministic

assignment. Finally, the following leading assignment is added:

m,costn,next:=

k+2,

(update costn k
((batchcost k (k+1) (lookup times) (lookup factors) n s) +
(lookup costn (k+1)))),

(update next k (k+1))

The inner loop introduced below scans the upper part (from index k+2 to n+1)
of the job queue for the start of the next batch that produces the minimum costed

partition. Tracking the inner loop on our example where for k = 3 is shown in I11.6

K2 x| x/x 4 66 7 X| X| X|47/ 2314 8 0
KB x| x x5 66 7 X X X|46 2314/ 8| 0
K2 x| x x5 66 7 X | X| X |46/ 2314 8| 0
KB x| x x5 66 7 X X X|46 2314/ 8 0

next costn

Figure II1.6: The execution of the inner loop

guard: m <= (n+1)
body: costn,next:=
update costn k

36

(minvalue2
(computecost costn times factors n s k)
(lookup next k) m),
update next k
(minimizes?2
(computecost costn times factors n s k)
(lookup next k) m);
m := m+l
invariant: (m <= (n+2)) /\ (m > (k+1)) /\
(contains_batch_cost ¢
(lookup times) (lookup factors) n s) /\
(minvalue (computecost costn times factors n s k)
(\(kk:num) . (kk>k) /\ (kk <=(m-1))) (lookup costn k)) /\
(minimizes (computecost costn times factors n s k)
(\(kk:num). (kk>k) /\ (kk <=(m-1))) (lookup next k)) /\
((asize next) = (asize NEXT)) /\
('i. ((k < i) /\ (i < (asize next))) ==
((lookup next i) = (lookup NEXT i))) /\
((asize costn) = (asize COSTN)) /\
(ti. ((k < 1) /\ (4 < (asize costn))) ==
((Lookup costn i) = (lookup COSTN i))) /\
((1ookup costn (n+1)) = 0) /\
((asize next) = (n+1)) /\
((asize costn) = (n+2)) /\
(k <=mn) /\ (k > 0)
variant: (n+2) - m

The invariant merely extends the range of jobs that have been considered as the start
of next batch, one job at a time. The functions minvalue2 and minimizes?2 consider two
jobs for the starter of the next batch. They both evaluate the computecost function at
the two points. The smaller of these evaluated values is returned by minvalue2, while
minimizes2 returns the job which has yielded this smaller value. One interesting fact
in the invariant is the preservation of the values in the indexes higher than the one
considered k < i. Since only one position (k) is considered in the inner loop, no other
positions of the two arrays are altered. But it is enough to state that the upper indexes
of the initial values (NEXT, COSTN) have not changed.

The correctness conjecture produced by this loop is proved using the relationship
between minvalue-minvalue2 and minimizes-minimizes2. While the former members
of these pairs apply to a range, the latter compare only two arguments. The minimum
values of the range are computed by comparing a new element with the minimum of
the group, and hence enlarging the group which has been considered.

The body of the second loop is further refined taking into consideration the follow-

37

ing points. First, after the definitions of minvalue2, minimizes2 and computecost are
expanded in the above algorithm, it is seen that several computations may be omit-
ted. For example, batchcost j kk times factors n s is rewritten as c[j][kk]| in the
definition of computecost function using the information about ¢ that has been propa-
gated in the assertion through the two loops. Second, when comparing the costs of the
already stored index in next and the new candidate m, the result of the previous cost
computation stored in costn can be used. Thus avoiding duplicate cost computations.

The definitions of the former two predicates as HOL conditionals naturally bring
about the introduction of the conditonal contruct. The following guard is entered to

Cond Introduction.

((Lookup (lookup c k) m) + (lookup costn m)) <
((Lookup (lookup ¢ k) (lookup next k)) +
(lookup costn (lookup next k)))}

k! entries of next

Finally, in case the minimals have not changed, the update of
and costn by their previous values can be refined to the skip statement using update_id
theorem of the array theory.

The final algorithm appears in figure II1.7.

We have proceeded by introducing two loops, one in the body of the other. The
outer loop determines the partition for each job in the queue, while the inner loop
chooses the start of next batch for a particular job by scanning the upper part of the

array. A conditional construct is introduced in the body of the inner loop to compare

two values and act according to this comparison.

38

var times:num array,factors:num array,s:num,n:num,
c:num array array, next:num array,costn:num array.
{(n>= 1) /\
(contains_batch_cost ¢ (lookup times)
(lookup factors) n s) /\
((asize next) =
(((asize costn)

(n+1)) /\
= (n+2))};

costn:= update costn (SUC n) 0;
| [var k:num | T .

k := n;

do k >0 ->

| [var m:num | T .
m,next,costn :=

k + 2, update next k (k + 1),
update costn k

(lookup (lookup c k) (k + 1));

do m <= (SUC n) —>
if (((lookup (lookup c k) m) +
(lookup costn m))
< (lookup costn k))

then
costn :=
update costn k
((Lookup (lookup c k) m) +
(lookup costn m));
next := update next k m
else
skip
fi;
m:=m+ 1
od
115
k:=k-1
od

Figure II1.7: The Second Part of the Algorithm

39

CHAPTER IV

CONCLUSION

IV.1 Discussion

In this study, Refinement, Correctness and General Logic extensions were used. Most
of the menu options of these extensions have been applied. While the backbone of the
system remains intact as long as the size of the expression in focus is not very large,
various focusing and highlighting errors occur. For example, sometimes the tool can
not correctly determine the assumption that is currently selected and the user is forced
to do this manually on the "HOL side” by extracting the necessary information from

the stack information kept by the Calculator.

Another problem is the error messages given by Tcl/Tk because of various synchro-
nization problems between the interface and HOL. Most of these messages can be safely
ignored. However, since the steps that cause errors are not recorded, such derivations
can not be restored. What is more, from time to time as a result of synchronization
problems, the Focus window gets distorted. In this case, the Focus window should be
refreshed manually using the Show Stack option. The problem is a persistent one, the
need to manually refresh recurs at each step thereafter, and hence the derivation slows

down.

But as the proof obligations get larger and more complicated, the problems get too
severe to ignore. Tcl can not handle the necessary information and so the focusing
mechanism fails altogether. Fortunately, the information is kept intact in HOL struc-

tures, and the user can continue the derivation by manually focusing on some subterm.

40

This fixes the focusing mechanism by reducing the size of the information handled by
the interface. In order to manually focus on a subterm, the user has to know about the
complex encoding used to address terms in the focus by the Calculator. This type of
problem may be prevented to some extent by dealing with proof obligations as they are
produced instead of accumulating them, and by expanding predicate definitions only at
points of need. These precautions would help control the amount of information load
on the interface.

Transformational reasoning is very suitable for making refinements and so keep
the derivation phase tidy and clear. The representation of context information in the
middle window which appears when one focuses on a subterm immediately after an
assertion, especially enables a clear view of the situation.

However, the calculator is weak in the support it provides for proving obligations for
the refinements. The greater portion of the time used to make derivations is spent on
these proofs while actually they are mostly trivial from the mathematical standpoint.
The process requires the user to have a strong background on HOL, in spite of the
options provided by the General Logic extension. Particular HOL theorem names must
be known and usually knowledge of functions to modify these theorems are also needed.

Many improvements are possible to overcome this shortcoming. For example, in
the proof statements that result from correctness conjectures, two values occur for each
variable (The initial value of variable a is represented by a0 and the final value by a?).
If the value of a variable has not changed after the execution of the program segment in
question, equations of the form (a’ = a0) appear. the difference in the representation
of the two values and the redundant equations serve only to decrease readability. A
simplification of the proof statement before it is displayed to the user is desirable.

Some of the power of the Simplify command could be distributed to other menu
choices that transform the focus using theorems (e.g. Transform with Theorem, Condi-
tional Rewrite) which currently require exact pattern matching.

Another major drawback of the tool is the insufficient information provided by the
error messages and the lack of detail in the manual [7]. The only distinguishable errors
are of syntax and even these do not guide the user on what should be done. The
manual has on average three sentences for each menu option which forces the user to
a guessing-trial-error loop. Various information about each option, like the arguments

it expects, conditions for a successful application and its result, should be documented

41

in detail.

As for programming features, there is more to do in issues of abstraction. It is not
possible to achieve data abstraction using the Calculator interface. As for functional
abstraction, there are problems about blocks and procedures. It is not possible to
introduce multiple variables at once and use them in loops. Similarly, problems occur
when introducing loops in procedures. This has ruled out the possibility of a recursive
implementation for the problem.

Using the advantages of transformational reasoning so well, the the use of the Cal-
culator in practical applications is not a far fetched idea. This study stregthens the
idea that the theory is an effective one. However, stronger support for domain spe-
cific theories like graph theory, and programming constructs like blocks and procedures

remains crucial.

IV.2 Future Work

It is possible to further refine this study in various aspects. The lack of a ”partition”
theory necessitated the modeling of partitions as num arrays. Although partitions are
comprised of a sequence of numbers, they have additional constraints like being strictly
increasing, starting with a given number (the first job) and ending with N+1, where
N is the number of jobs to be partitioned. The semantics of the partition would also
suggest referring to the elements with batch numbers, i.e. starting from 1, whereas the
elements of the array are accessed starting from 0. Due to these additional properties
of partitions, implementing them as a datatype would be desirable.

The datatype would be complete with functions that solely operate on partitions:
addp and subp. Basic theorems like the preservation of partition properties with respect
to these functions would also be included in the theory.

The ”partition” datatype would clarify the representation, and the theorems in-
cluded about functions would simplify the proof of the minimality theorem.

For the correctness conjecture that results from the introduction of the first loop
of the second stage includes the implicit proof of the shortest path algorithm. A
formulation of the proof of this conjecture to use the shortest path proof as a theorem
would make the derivation more elegant. This type of reuse is to be the key to the

derivation of algorithms for problems that can be reduced to another.

42

This study aims to evaluate the applicability of the approach and the performance of
the tool in deriving dynamic algorithms. The derivation of the quadratic algorithm may
be followed by the linear one mentioned in [1]. Derivation of the quadratic algorithm
has already pointed the major shortcomings of the calculator that need to be remedied
in future releases, as well as showing the methodology to be effective. The derivation
of the linear algorithm would enable an evaluation of deriving algorithms of different

characteristics.

43

1]

[9]

REFERENCES

S. Albers, P. Brucker The complexity of one-machine batching problems, Discrete
Applied Mathematics 47,pp. 87-107, 1993

M. J. C. Gordon, T.F. Melham. Introduction to HOL: A Theorem Proving Envi-
ronment for Higher-order Logic. Cambridge University Press, 1993

R. J. Back. On correct refinement of programs, Journal of Computer System Sci-
ences, 23(1):49-68, Feb 1981

R. J. Back. On the correctness of refinement in program development, PhD Disser-
tation, Department of Computer Science, University of Helsinki, 1978

R.J. Back, J. von Wright Refinement Calculus: A Systematic Introduction.
Springer-Verlag. 1998

M.J. Butler, J. Grundy, T. Langbacka, R. Ruksenas, J. von Wright. The Refinement
Calculator: Proof Support for Program Refinement Proceedings of Formal Methods
Pacific '97, Wellington, New Zealand, Springer-Verlag, July 1997

M.J. Butler, T. Langbacka, R. Ruksenas, J. von Wright The Refinement Calculator
Tutorial and Manual. Available upon request from the authors, 2003

E.W. Dijkstra A Discipline of Programming. Prentice-Hall Series in Automatic
Computation. Prentice Hall. 1976

L. Laibinis Mechanised Formal Reasoning About Modular Programs, PhD Disser-
tation, TUCS, Finland, April 2000

[10] T. Langbacka, R. Ruksenas, J. von Wright TkWinHOL: A tool for doing window

inference in HOL Higher Order Logic Theorem Proving and Its Applications, LNCS
971, Springer-Verlag, 1995

[11] C.C. Morgan Programming from Specifications (2nd Edition). Prentice Hall, 1994

[12] R. J. Back. Refinement Calculus, part II: Parallel and reactive programs REX

Workshop for Refinement of Distributed Systems, LNCS 430, Springer-Verlag, 1989.

[13] R. J. Back, K. Sere Stepwise refinement of action systems The Mathematics of

Program Construction, LNCS 375, pg. 17-30, Springer-Verlag, 1989.

[14] M. Utting, K. Robinson Modular reasoning in an object-oriented refinement cal-

culus In R.Bird, C.C. Morgan and J. Woodcock (Eds.), Mathematics of Program
Construction, LNCS 669, 334-367, Springer-Verlag, 1993.

44

[15] C.C. Morgan Data Refinement by miracles Information Processing Letters, 26:243-
246, 1988.

[16] P.H. Gardiner, C.C. Morgan Data refinement of predicate transformers Theoret-
ical Computer Science, 87(1):143-162, 1991.

[17] C.C. Morgan, A.K.Mclver, K. Seidel Probabilistic predicate transformers ACM
Transactions on Programming Languages and Systems, 18(3):325-353, 1996.

45

APPENDIX A

NOTATION INDEX

Table A.1: Notation Index

‘ Math Notation ‘

HOL Notation

Explanation

1—1 PRE(1) Predecessor Operator
1+1 SUC(1i) Successor Operator
A /\ Conjunction
v \/ Disjunction
— ==> Implication
= = Equality
Vte T.P(t) It T . (P t) | Universal Quantifier
It € T.P(t) 7t T . (P t) | Existential Quantifier
if ¢ then s else u =>s | u Conditional Term
A \ t T . (F t) | Lambda abstraction

46

APPENDIX B

PREDICATES AND FUNCTIONS

B.1 Definitions of Array Theory

init_array (x:’a) s =
ABS_array ((\(j:num). (j < s =>x | (@y.T))),s)

init_array('a — (num — (('a)array))) returns an array of size s, all the elements
in the range 0 to s-1 are initialized to x. The indexes out of bounds may contain any

element of type (’a).

B.2 User Defined Functions and Predicates

addp (first:’a) (a:(’a)array) = ABS_array
((\j:num. (j > 1) => lookup a (j-1) |
((j=1) => first | lookup a 0)),(asize a+1))

addp(‘a — ((("a)array) — (("a)array))) returns an array which has first inserted
in the first position of a. The elements of a in indexes 1 and higher have been shifted
one position right. The value stored in position 0 is not changed. The size of the array

returned is one more than the size of a.

batchcost fjob nextfjob (times:num->num) (factors:num->num) (n:num)
(s:num)=
(sigma fjob n factors) * (s + sigma fjob (nextfjob-1) times)

batchcost(num — (num — ((num — num) — ((num — num) — (num —
(num — num)))))) returns the cost of a batch which contains the jobs fjob through

(nextfjob-1) (nextfjob is the first job of the next batch). The execution times and

47

cost factors of the n jobs in the queue can be found using the functions times and

factors. It is I11.4 in HOL notation.

computecost (mincostf:num array) (times:num array) (factors:num array)
(n:num) (s:num) (job:num)=
\ (nextjob:num) .
((batchcost job nextjob (lookup times) (lookup factors) n s) +
(lookup mincostf nextjob))

computecost((numarray) — ((numarray) — ((numarray) — (num — (num —
(num — (num — num))))))) returns the function that given a job numbered higher
than job, it calculates the minimum cost of a partition consisting of jobs job through
n, and that has nextjob as the start of the second batch. (It is assumed that minimum

path costs are stored in the array mincostf for these higher numbered jobs.)

contains_batch_cost (carray:(num array) array) (times:num->num)
(factors:num->num) (n:num) (s:num)=
(tij. <) /N(Ci<j)/\N(G<= (@)) ==
((lookup (lookup carray i) j) = (batchcost i j times factors n s))
)

contains_batch_cost((((num)array)array) — ((num — num) — ((num —
num) — (num — (num — bool))))) returns true if carray[i][j] contains the cost
of the batch containing the jobs 7 through (5 — 1) when i < j. Since they correspond to
job numbers, j can not be greater than n+1, and ¢ should be greater than 0. In order

for these positions to be defined, it is enough that carray is a matrix of size n x (n+1).

contains_batch_costi (carray:(num array) array) (times:num->num)
(factors:num->num) (n:num) (s:num) (k:num)=
(ij. (k<1 /ANCi<j) /\(G<= (D))) ==
((lookup (lookup carray i) j) = (batchcost i j times factors n s))
)

contains_batch_costi((((num)array)array) — ((num — num) — ((num —
num) — (num — (num — (num — bool)))))) returns true if carray[i][j] contains
the cost of the batch containing the jobs 7 through (j —1) where i < j, and k < i. Since
it corresponds to a job number, j can not be greater than n+1. The predicate checks

the rows numbered greater than k, of the matrix carray of size, at least, n x (n+1).

contains_batch_costrowj (carray:(num array) array) (times:num->num)
(factors:
num->num) (n:num) (s:num) (k:num) (m:num)=

48

(j. (<G /N (G <=m) =
((lookup (lookup carray k) j) = (batchcost k j times factors n s))

contains_batch_costrowj ((((num)array)array) — ((num — num) — ((num —
num) — (num — (num — (num — (num — bool)))))) returns true if carray|k][/]
contains the cost of the batch containing the jobs k through (5 — 1) where 5 > k and
j < m. It checks the portion to the right of the diagonal of the row k of the matrix
carray.
contains_partition (next:(num) array) (j:num) (n:num) (p:(num) array)=
((asize p) > 1) /\ (lookup p 1 = j) /\
('x. (1 < x) /\ (x < (asize p)))

==>
((lookup p x) = (lookup next (lookup p (x - 1)))))

contains_partition(((num)array) — (num — (num — (((num)array) —
bool)))) returns true if next contains the partition p encoded as is indicated by the
last conjunct. In order to find the start of a batch of p, we access the next array using
the first job of the previous batch. p contains the jobs j through n and so contains j

in first postition and has size more than 1.

init_partition (n:num) = (init_array (n+1) 2)

init_partition(num — ((num)array)) returns the empty partition which contains
no jobs. The array returned has n+1 in its first position, and has size 2.
min_costed_next (mincostf:num->num) (times:num->num) (factors:num->num)
(j:num) (n:num) (s:num) (z:num)=

minimizes (\(k:num). (batchcost j k times factors n s) + (mincostf k))
(\(k:num). (k>j) /\ (k <=(n+1))) z

min_costed_next((numarray) — ((num — num) — ((num — num) — (num —
(num — (num — (num — bool))))))) returns true if z yields the minimum value of
the function (\(k:num). (batchcost j k times factors n s) + (mincostf k))
in the range (k>j) /\ (k <=(n+1)).
min_cost (mincostf:num->num) (times:num->num) (factors:num->num)
(j:num) (n:num) (s:num) (z:num) =

minvalue (\(k:num). (batchcost j k times factors n s) + (mincostf k))
(\(k:num). (k>j) /\ (k <=(n+1))) =z

49

min_cost((numarray) — ((num — num) — ((num — num) — (num — (num —
(num — (num — bool))))))) returns true if z is the minimum value that the function
(\(k:num). (batchcost j k times factors n s) + (mincostf k)) takes in the
range (k>j) /\ (k <=(n+1)).

minvalue (f:’a->num) (s:’a->bool) (x:num)=

?7(j:’a). (s) /\ (x=(f 7)) /\ (M(k:’a). ((s k) ==> (x <= (f k)))))

minvalue (('a = num) = (('a — bool) — (num — bool))) returns true if there is
an element in the range determined by predicate s that yields the minimum value of

function f in the same range and x is this value.

minimizes (f:’a->num) (s:’a->bool) (j:’a)=

(s j) /\ (M(k:’a). (s k) ==> ((f j) <= (f k)))

minimizes (('a — num) — ((a — bool) — ("a — bool))) returns true if j is
the element that yields the minimum value of function f in the range determined by
predicate s.

minvalue2 (f:’a->num) (a:’a) (b:’a) =
(f(®) < f(a) => f(b) | £(a))

minvalue2(('a — num) — ("a = (‘la — num))) returns £ (o) if £(b) is less than
f(a), returns f (a) otherwise.

minimizes2 (f:’a->num) (a:’a) (b:’a)=
(f(®) < f(a) =>0b | a)

minimizes2 (('a = num) — ('a = (‘a =’ a))) returns b if £(b) is less than f(a),
returns a otherwise.
overallcost (times:num->num) (factors:num->num) (n:num) (s:num)
(partition:num array)=
(sigma 1 ((asize partition)-2) (* for each batch *)

(\batchno. batchcost (lookup partition batchno)
(lookup partition (batchno+1)) times factors n s))

overallcost ((num — num) — ((num — num) — (num — (num —
((num)array — mnum)))))returns the overall cost of partition by adding the cost
of each batch. Batches are determined by the first job, so the last element of the

partition, which is always n+1, does not determine a batch.

50

val num_Axiom = theorem "prim_rec" "num_Axiom";
val sigma2_DEF = new_recursive_definition
{name= "sigma2_DEF", fixity= Prefix, rec_axiom= num_Axiom,
def= ——‘(sigma2 0 i r = (r 1)) /\
(sigma2 (SUC k) i r = (r (i+k)) + (sigma2 k i r))
{__};
(sigma i j (r:num->num) = ((i <= j) =>
(sigma2 (j-i) i r) | 0))

sigma(num — (num — ((num — num) — num) computes Zf r. sigma2 is the
primitive recursive equivalent of it, which is needed since HOL only accepts recursive
functions in primitive recursive form.
strictinc (lowb:num) (upb:num) (f:num->num) =

(k. (lowb<=k /\ k < (upb - 1)) ==
(f k) < (f (kx+1)))

strictinc(num — (num — ((num — num) — bool))) returns true if the function
f is strictly increasing in the range [Lowb, upb).
sub_min_cost_p (times:num->num) (factors:num->num) (j:num) (n:num)

(s:num) (spartition:num array)=
minimizes (overallcost times factors n s) (vsp j n) spartition

sub_min_cost_p((num — num) — ((num — num) — (num — (num — (num —
((num)array — bool)))))) returns true if spartition is a partition containing

returns true if spartition has the minimum overallcost amongs all the valid par-
titions containing the jobs j through n.

subp (a:(’a)array) =
(ABS_array ((\j:num.(j > 0) => lookup a (j+1)| lookup a 0),((asize a)-1)))

subp((‘a)array — (‘a)array) returns the array a with the element in the first
position deleted. The elements in indexes 2 and higher have been shifted one position
left. The value stored in position 0 is not changed. The size of the array returned is
one less than the size of a.
vsp (j:num) (n:num) (spartition:num array) =
((asize spartition) > 1) /\
((lookup spartition 1) = j) /\

((Lookup spartition ((asize spartition)- 1)) = (SUC n)) /\
(strictinc 1 (asize spartition) (lookup spartition))

51

vsp(num — (num — ((num)array — bool) returns true if spartition is a parti-
tion containing the jobs j through n. For this, the size of the array must be greater than
1, the element in the first postition must be j, the last element must be n+1 and the

elements of the array should be strictly increasing in the range [1,(asize spartition)-

1)].

52

APPENDIX C

THEOREMS

C.1 Auxiliary Theorems

Automatically Proven Theorems

nthm : !(n:num). ~((n+1) <= n) /\ ~((a+1) < (n + 1))
LESSEQNOTER : 'a. (!'b. (a <= b) ==>"(a = (b+1)))
GREADD1 : '!a. (!b. (a > b) ==>((a+1) > b))
LESSNOTEQ : 'a. (!b. (a > b) ==>"(a = b))
LESSEQLESSEQ : 'a. (!b. (a <= b) ==>((a+1) <= (b+1)))
LESSEQLESS : !a. (!b. (a <= b) ==>(a < (b+1)))

GRE10 : 1>0

GREEQ21 : 2>=1

LESS12 : 1<2

GRE21 : 'a. (a =12) ==> (a > 1)

GRELESSGRE10 : !a. (a > 1) ==> ((a-1) > 0)
GRE1GREEQSUB1 : !a. (a > 1) ==> ((a-1) >= 1)
GRELESSGRE21 : !a. (a > 2) ==> ((a-1) > 1)
GRELESSGRE2RW : 'a. (a > 2) = ((a-1) >= 2)

GREGRE21 : 'a. (a > 2) ==> (a > 1)

GREGREEQ : 'a. (!b. (a > b) = (a >= (b+1)))

INT_CONJ : 'a. a=a /\ a

GRELESS : '!a. (!b. (a > b) = (b < a))

53

ADDIGRE : !a. (a < (a+1))

NOTGREOTHENO : 'a. “(a > 0) = (a=0)

LESS_EQ_TRANS : !a. (!b. ('c. ((a =Db) /\ (c < a))==>(c < b)))
EQORLESSEQ : !(k:num). (!(n:num).

(!(a:num). ((a<=(n+1)) ==> (((k=(n+1)) \/ ((a <= k) /\ (k<=n))) =
((a <= k) /\ (k<=(n+1)))))))

GRELESSEQNOTEQ : !(a:num). (!(b:num). (!(c:num).

((@>b) /\ (@a<=¢)) ==> ("(c =b))))

GRE1GRE1 : !a. !b.

((@a+1)<=((+1))=(a<=D)

GREOSUCSUB : !a. a > 0 ==> (a = SUC(a-1))

GRE1ADDISUB : 'a. a > 1 ==> (a = ((a-1)+1))

GRE1SUB1SUB2 : !a. (a - 1) > 1 ==> (((a-1) -1) = (a-2))
SUB1GREOSUB1 : !a. !b. 0 < (a-1) ==> ((a < b)= ((a-1) < (b-1)))
GRE1SUB1SUBL : !a. !b. a > 1 ==> ((a < b)= ((a-1) < (b-1)))

ALLIMPT : !t. t ==> T
Theorems of the Array Theory

update_asize:

la: (’a)array. !i x. (asize (update a i x) = asize a)
update_lookupl:'!a:(’a)array. !i x.

(i < asize a) ==> (lookup (update a i x) i = x)
update_lookup2:!a:(’a)array. !i x j.

“(j = i) ==> (lookup (update a i x) j = lookup a j)
update_id:!a:(’a)array. !i. update a i (lookup a i) = a
array_EQ: !a:(’a)array. !b. (a = b) =

(asize a = asize b) /\

('i. i < asize a ==> (lookup a i = lookup b i))
Theorems Proven In the Scope of The Study

merge : !(a:bool). !(b:bool). !(Z:bool).
((@a==>2Z) /\ (b ==>172)) =
(@ \/ b) ==> 7)

54

converter2_THM :

! (n:num) (next:(num) array) (times:num->num)
(factors:num->num) (s:num).

((((contains_partition next (n+1) n (init_partition n)) /\

(sub_min_cost_p times factors (n+1) n s (init_partition n)))/\

((overallcost times factors n s (init_partition n))=0)) =

('k. (k= (n+1)) ==>

(((contains_partition next k n (init_partition n)) /\

(sub_min_cost_p times factors k n s (init_partition n)))/\

((overallcost times factors n s (init_partition n))=0)

)))

uniquel : !(a:num). !(b:num). !(c:num). !(d:num).
(((C(c>a) /\ (c<=Db)) /\ (d>a)) /\ (d<=Db)) ==>
(! (f :num->num) .
'(k:num) . ((k > a) /\ (k <= b)) ==>
((((f c) <= (£ k) /\ (£ d) <= (fk))
==>
((f c) = (f D))
)

Conjectures involving the addp and subp functions

addp_asize : !a:(’a)array. !(j:’a). (asize (addp j a)) = ((asize a)+1)

addp_lookupl : l!a:(’a)array. !(j:’a). (lookup (addp j a) 1 = j)

addp_lookup2 : 'a:(’a)array. !(i:num). !(j:’a).
((i > 1) ==> ((Lookup (addp j a) i) = (lookup a (i-1))))

addp_overallcost :
'a: (num)array. !(times:num->num). !(factors:num->num).

'(n:num). !(s:num). !(j:num).

55

((overallcost times factors n s (addp j a)) =
((overallcost times factors n s a)

+ (batchcost j (lookup a 1) times factors n s))

addp_0 : l!a:(’a)array. !(j:’a).
(lookup (addp j a) 0) = (lookup a 0)

1]
U
v

subp_0 : l!a:(’a)array. (asize a > 2)

((1ookup (subp a) 0) = (lookup a 0))

subp_asize : l!a:(’a)array.

((asize a > 2) ==> ((asize (subp a)) = ((asize a)-1)))

subp_lookup : l!a:(’a)array. !(i:num).
((asize a > 2) /\ (1 > 0)) ==

((Lookup (subp a) i) = (lookup a (i+1)))

subp_vsp2 : !a:(num)array.
(asize a > 2) ==>
(!(n:num). ((vsp (lookup a 1) n a) ==>

(vsp (lookup (subp a) 1) n (subp a))))
addp_subp : !a:(’a)array.
((asize a > 2) ==> (a = addp (lookup a 1) (subp a)))

Theorems involving the minimizes, minimizes2, minvalue and minvalue2

predicates

1(f:?’a->num) (s:’a->bool) (a:’a) (m:’a).
(minimizes f s a ==>
minimizes £ (\k. (s k) \/ (k=m)) (minimizes2 f a m))

1(f:’a->num) (s:’a->bool) (a:’a) (m:’a).

56

(minimizes f s a ==>

(minvalue f (\k. (s k) \/ (k=m)) (minvalue2 f a m)))

sigmal _THM : !(i:num). !(j:num). !(r:num->num).
(j >= 1) ==>

((sigma i j r) = (r i) + (sigma i (j-1) r))

sigma2_THM : !(i:num). !(j:num). !(r:num->num).

(j >= 1) ==> ((sigma i j r) = (r i) + (sigma (i+1) j r))

strictinc_THM : !a. !b. !'c. !(f:num->num).
(((strictinc a b £) /\ (c >= a)) /\ (c <= (b-1))) ==>
((f c) <= (f (b-1)))

strictinc_btw2_THM : 'a. 'b. !'c. !(f:num->num).
(((strictinc a b f) /\ (a <= c)) /\ (c < (b-1))) ==>
(((f c) < (£ (-1))) /\ ((f a) <= (f c)))

(M(k:num). (!(times:(num) array). (!(factors:(num) array).
('(s:num). (!(n:num). (!(next:(num) array). (!(costn:(num) array).
(min_costed_next (lookup costn)

(lookup times) (lookup factors) k n s (lookup next k)) /\
(min_cost (lookup costn)

(lookup times) (lookup factors) k n s (lookup costn k)) /\
(contains_partition next (lookup next k) n p) /\
(sub_min_cost_p

(lookup times) (lookup factors) (lookup next k) n s p) /\
((lookup costn (lookup next k)) =

(overallcost (lookup times) (lookup factors) n s p)) /\
('x?. (((SUC k) <= x’) /\ (x’ <= (n+1))) ==>

(?7p. (contains_partition mext x’ n p) /\

((sub_min_cost_p

(lookup times) (lookup factors) x’ n s p) /\

o7

((Lookup costn x’) =
(overallcost (lookup times) (lookup factors) n s p))))) /\

(k <=mn) /\ &k >0) /\ (x=5k /\
((1ookup costn (n + 1)) = 0) /\
((asize mnext) = (n + 1)) /\
((asize costn) = (n + 2))

==>

(?7p’. (contains_partition next k n p’) /\

(sub_min_cost_p

(lookup times) (lookup factors) k n s p’) /\

((lookup costn k) =
(overallcost (lookup times) (lookup factors) n s p’)) /\

(p’ = (addp k p)))))N)))

58

