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abstract

orthogonal polynomials and
moment problem

Topkara, Mustafa

M.Sc., Department of Mathematics

Supervisor: Prof. Dr. Aydın Aytuna

Co-Advisor: Prof. Dr. Vyacheslav Zaharyuta

January 2004, 66 pages

The generalized moment of order k of a mass distribution σ is given by∫ +∞
−∞ λk dσ(λ) for a natural number k. In extended moment problem, given

a sequence ( sk )∞k=0 of real numbers, it is required to find a mass distribution

σ whose generalized moment of order k is sk. The conditions of existence

and uniqueness of the solution obtained by Hamburger are studied in this

thesis by the use of orthogonal polynomials determined by a measure on R.

A chapter on the study of asymptotic behaviour of orthogonal functions on

compact subsets of C is also included.

Keywords: Orthogonal polynomials, moment problem.
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öz

ortogonal polinomlar ve
moment problemi

Topkara, Mustafa

Yüksek Lisans, Matematik Bölümü

Tez Yöneticisi: Prof. Dr. Aydın Aytuna

Yardımcı Danışman: Prof. Dr. Vyacheslav ZAHARYUTA

Ocak 2004, 66 sayfa

Bir kütle dağılımı σ için k’inci dereceden genelleştirilmiş moment∫ +∞
−∞ λk dσ(λ) ifadesiyle verilir. Genişletilmiş moment probleminde, bir reel

sayılar dizisi ( sk )∞k=0 verildiğinde k’inci dereceden genelleştirilmiş momenti

sk olacak şekilde bir σ kütle dağılımı bulunması gerekmektedir. Bu tezde

Hamburger tarafından bulunmuş olan çözümün varlığı ve tekliği koşulları

incelenmiştir. Ayrıca C’nin kompakt alt kümeleri üzerindeki ortogonal poli-

nomların asimptotik davranışları üzerine bir bölüm de içerilmektedir.

Anahtar Kelimeler: Moment problemi, Ortogonal polinomlar
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öz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

chapter

1 the space L2
σ and mass distributions . . . . . . . . . . . . . 1

1.1 Mass Distributions . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 L2
σ and the Linear Subspace C[λ] . . . . . . . . . . . . . . . . 4

2 orthogonal polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1 The Moment Problem . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Positive Sequences and Jacobi Matrices . . . . . . . . . . . . . 9

2.3 The Recurrence Formula . . . . . . . . . . . . . . . . . . . . . 17

2.4 Truncated Moment Problem . . . . . . . . . . . . . . . . . . . 20

2.5 The Quadrature Formula . . . . . . . . . . . . . . . . . . . . . 24

2.6 Solvability Criteria for the Extended Moment Problem . . . . 29

3 uniqueness of moment problem solution . . . . . . . . 33
3.1 Investigations for a Condition . . . . . . . . . . . . . . . . . . 33

3.2 Construction of Moment Problem Solutions . . . . . . . . . . 36

3.3 Conditions for Uniqueness . . . . . . . . . . . . . . . . . . . . 41

vi



4 asymptotic behaviour of orthonormal polyno-

mials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.1 Potential Theoretic Preliminaries . . . . . . . . . . . . . . . . 49

4.2 Weight Measures and Carriers . . . . . . . . . . . . . . . . . . 54

4.3 Orthogonal Polynomials in L2
µ . . . . . . . . . . . . . . . . . . 57

4.4 Asymptotic Behaviour of Pn(z) and Its Leading Coefficients . 61

references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

vii



chapter 1

the space L2
σ and mass

distributions

Any bounded non-decreasing function σ : R → R defines a Borel measure

on R for which measure of an interval [a, b] is given by

lim
α→a−

β→b+

[ σ(β)− σ(α) ].

Considering functions f, g : R → C to be equivalent if the set {x : f(x) 6=
g(x)} is of dσ−measure zero, an inner product is defined on the following

linear space:

L2
σ =

{
f : R → C

∣∣ f is dσ-measurable,

∫ +∞

−∞
| f(λ) |2 dσ(λ) < ∞

}
by

( f, g )σ =

∫ +∞

−∞
f(λ)g(λ) dσ(λ).

The space L2
σ is complete with respect to the given scalar product. The

proof of completeness is similar to the proof of completeness of the space L2,

which is defined as

L2 =

{
f : R → C

∣∣ f is Lebesgue measurable,

∫ +∞

−∞
| f(λ) |2 dλ < ∞

}
with the scalar product

( f, g ) =

∫ +∞

−∞
f(λ)g(λ) dλ .
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The proof may be found in standard textbooks on functional analysis

(for example [1, Section I.10] ). Since L2
σ is complete, it follows that if L2

σ is

infinite dimensional then it is a Hilbert space.

Note that the function σ has at most countably many points of disconti-

nuity since the total variation of the function σ is finite. Thus the values of

the function σ at points of discontinuity does not affect the measure defined

by σ. Besides, the function σ + c yields the same measure as σ.

1.1 Mass Distributions

Let C[λ] and R[λ] denote the set of polynomials with complex and real

coefficients, respectively. We will restrict our investigation to the case when

C[λ] ⊂ L2
σ and any two polynomials represent different elements of L2

σ, i.e.

C[λ] sits in L2
σ as a vector subspace. Under these assumptions it is guaranteed

that L2
σ is a Hilbert space.

Any polynomial p(λ) ∈ C[λ] can be written uniquely in the form p(λ) =

p1(λ) + ip2(λ) where p1(λ), p2(λ) ∈ R[λ]. Thus C[λ] sits in L2
σ as a vector

subspace if and only if R[λ] ⊂ L2
σ and any two distinct polynomials with real

coefficients represent different elements of L2
σ.

Note that R[λ] ⊂ L2
σ if and only if∫ +∞

−∞
[ p(λ) ]2 dσ(λ) < ∞ (1.1)

for any polynomial p(λ) ∈ R[λ] and any two polynomials with real coefficients

represent different elements of L2
σ if and only if∫ +∞

−∞
[ p(λ) ]2 dσ(λ) > 0 (1.2)

for any nonzero polynomial p(λ) ∈ R[λ]. By an increase point of σ, we mean

a point t such that σ(a) < σ(b) whenever a < t < b.
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Proposition 1.1.1. R[λ] ⊂ L2
σ and any two distinct polynomials in

R[λ] represent different elements of L2
σ if and only if

∫ +∞
−∞ λk dσ(λ) exists,

|
∫ +∞
−∞ λk dσ(λ)| < ∞ for any k ∈ N and σ has infinite number of increase

points.

Proof. First we prove that R[λ] ⊂ L2
σ if and only if

∫ +∞
−∞ λk dσ(λ) exists

and |
∫ +∞
−∞ λk dσ(λ)| < ∞ for any k ∈ N. If R[λ] ⊂ L2

σ then (λk, 1)σ =∫ +∞
−∞ λk dσ(λ) exists and is finite for any k ∈ N. The converse follows directly

by linearity of the integral.

Now we claim that the inequality (1.2) is satisfied for any nonzero poly-

nomial in R[λ] if and only if the function σ has infinite number of increase

points. First assume that σ has n points λ1, . . . , λn of increase, where the

jumps at these points are µ1, . . . , µn respectively. Then for any function f(λ)

which is integrable with respect to measure dσ we have∫ +∞

−∞
f(λ) dσ(λ) =

n∑
k=1

f(λk)µk . (1.3)

Choosing f(λ) = [ p(λ) ]2 for p(λ) =
∏n

k=1(λ− λk), it follows that∫ +∞

−∞
[ p(λ) ]2 dσ(λ) =

∫ +∞

−∞

n∏
k=1

(λ− λk)
2 dσ = 0

and we have proved the necessity of the condition.

To prove sufficiency, let σ have infinite number of increase points. Any

polynomial p(λ) has a finite number of zeroes so p(λ) is nonzero at some

increase point t of σ. Since [ p(λ) ]2 is continuous, there is a neighborhood

(a, b) of t and a real number m > 0 for which [ p(λ) ]2 > m for any λ ∈ (a, b).

Therefore ∫ +∞

−∞
[ p(λ) ]2 dσ(λ) ≥

∫ b

a

[ p(λ) ]2 dσ(λ) (1.4)

≥ m ( σ(b)− σ(a) ) > 0.

Thus we have reached the class of functions we will deal with:
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Definition 1.1.1. A non-decreasing function σ : R → R is called a mass

distribution on R if the integrals∫ +∞

−∞
λk dσ(λ) (k ∈ N)

exist and are finite, if σ has infinite number of increase points and if

limu→−∞ σ(u) = 0. Two mass distributions are said to be equivalent if they

differ in only the values at points of discontinuity.

Note that equivalent mass distributions yield the same measure.

1.2 L2
σ and the Linear Subspace C[λ]

In this section we will investigate when the linear subspace C[λ] of poly-

nomials is dense in L2
σ.

Orthonormalizing the sequence
(
λk
)∞

k=0
by Gram–Schmidt process we

obtain a sequence ( Pk(λ) )∞k=0 of polynomials with real coefficients such that

degree of Pn(λ) is n.

Given an element ( xk )∞k=0 of the Hilbert space l2, consider the sequence

( fn(λ) )∞n=0 where

fn(λ) =
n∑

k=0

xkPk(λ).

For m, n ∈ N, it follows by orthonormality of the polynomials Pk(λ) and

linearity of integral that

‖ fn − fm ‖2
σ =

∫ +∞

−∞
| fn(λ)− fm(λ) |2 dσ(λ)

=
n∑

i,k=m+1

xix̄k

∫ +∞

−∞
Pi(λ)Pk(λ) dσ(λ)

=
n∑

k=m+1

|xk |2
∫ +∞

−∞
( Pk(λ) )2 dσ(λ) =

n∑
k=m+1

|xk |2 .
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The series
∑∞

k=0 |xk |2 converges so

lim
m,n→∞

||fn(λ)− fm(λ)||σ = 0

and hence the sequence ( fn(λ) )∞n=0 is Cauchy in L2
σ. Then it converges to a

function f(λ) in the space L2
σ since this space is complete. The convergence

in the space L2
σ will be denoted by

l. i. m.
n→∞

fn(λ) = f(λ).

An operator U can be defined from the Hilbert space l2 to L2
σ by

Ux = l. i. m.
n→∞

n∑
k=0

xkPk(λ) =:
∞∑

k=0

xkPk(λ)

where x = ( xk )∞k=0 .

Proposition 1.2.1. The operator U is isometric, i.e. ( Ux, Uy )σ = ( x, y )l2

where x,y are elements of l2 .

Proof. For x = ( xk )∞k=0 and y = ( yk )∞k=0 let fn(λ) =
∑n

k=0 xkPk(λ) and

gn(λ) =
∑n

k=0 ykPk(λ). Then

| ( Ux, Uy )σ − ( fn, gn )σ |

= | ( Ux− fn, Uy ) + ( Ux, Uy − gn )− ( Ux− fn, Uy − gn ) |

≤ ‖Ux− fn‖σ‖Uy‖σ + ‖Ux‖σ‖Uy − gn‖σ + ‖Ux− fn‖σ‖Uy − gn‖σ

which yields

lim
n→∞

( fn, gn )σ = ( Ux, Uy )σ .

Thus

( Ux, Uy )σ = lim
n→∞

( fn, gn )σ = lim
n→∞

(
n∑

k=0

xkPk,
n∑

k=0

ykPk

)
σ

= lim
n→∞

(
n∑

k=0

xk,
n∑

k=0

yk

)
l2

= ( x, y )l2 .
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Since the operator U is unitary, it is one-to-one. So the inverse operator

U−1 is defined on the image of U which will be denoted by ∆U .

Proposition 1.2.2. If the function f(λ) ∈ ∆U then

U−1f =

(∫ +∞

−∞
f(λ)Pn(λ) dσ(λ)

)∞
n=0

Proof. Let f = Ux where x = ( xn )∞n=0. For m > n(
m∑

k=0

xkPk, Pn

)
σ

= xn

by orthonormality of {Pk(λ) }∞k=0 . Then we conclude that

xn = lim
m→∞

(
m∑

k=0

xkPk, Pn

)
σ

= ( f, Pn )σ =

∫ +∞

−∞
f(λ)Pn(λ) dσ(λ).

∆U is complete and it is a Hilbert subspace of L2
σ since U is an isometric

operator. It is generated by C[λ] and {Pk(λ) }∞k=0 is a complete orthonormal

system in ∆U . Thus any element f(λ) ∈ L2
σ can be written uniquely in the

form f(λ) = f1(λ)+f2(λ) where f1(λ) ∈ ∆U and f2(λ) ⊥ ∆U . The projection

operator Π : L2
σ → ∆U is defined for any f(λ) ∈ L2

σ by

Πf(λ) = f1(λ) =
∞∑

k=0

( f, Pk )σPk(λ).

The function Πf is the nearest element to f among the elements of ∆U in

the metric defined by σ. We have

∞∑
k=0

| ( f, Pk )σ |
2 = ‖f1‖2

σ ≤ ‖f‖2
σ =

∫ +∞

−∞
| f(λ) |2 dσ(λ)

for any f(λ) ∈ L2
σ. The inequality

∞∑
k=0

| ( f, Pk )σ |
2 ≤

∫ +∞

−∞
| f(λ) |2 dσ(λ) (1.5)
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is called Bessel inequality. The equality holds for only the functions f(λ) =

Πf(λ), i.e. the functions f(λ) ∈ ∆U . Thus ∆U = L2
σ if and only if the

equality holds for all functions f(λ) ∈ L2
σ. We conclude that:

Proposition 1.2.3. Polynomials are dense in L2
σ if and only if

∞∑
k=0

| ( f, Pk )σ |
2 =

∫ +∞

−∞
| f(λ) |2 dσ(λ)

for any f(λ) ∈ L2
σ .
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chapter 2

orthogonal polynomials

2.1 The Moment Problem

Mass distribution

Let a mass distribution σ be given. Then the inner product on the linear

space R[λ] is determined uniquely by the sequence ( sk )∞k=0 where

si+k =
(
λi, λk

)
σ

=

∫ +∞

−∞
λi+k dσ(λ).

Given a mass distribution σ, the total mass on R equals to the Stieltjes

integral ∫ +∞

−∞
dσ(u) = lim

λ→∞
σ(λ)− lim

λ→−∞
σ(λ).

The physical quantity called the static moment of a mass distribution σ

with respect to point u = 0 is given by∫ +∞

−∞
u dσ(u)

and the moment of inertia with respect to point u = 0 is∫ +∞

−∞
u2 dσ(u).

The name generalized moment of order k is given to the quantity

sk =

∫ +∞

−∞
uk dσ(u).
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Any mass distribution gives a sequence ( sk )∞k=0 of generalized moments.

Moment problem is about the converse: Given a sequence ( sk )∞k=0, can we

obtain a mass distribution σ such that for any k ∈ N, generalized moment of

order k of σ is sk? Apart from existence, the conditions for uniqueness, up

to equivalence in the sense of definition 1.1.1, of the solution is of interest.

Note that if s0 = 0 then only possible solution is σ(λ) ≡ 0. If sk = 0 for

all k ∈ N, then this is the solution indeed. If sk 6= 0 for some k, then we have

no solution. From now on, we will not consider this trivial case and assume

that s0 6= 0.

While dealing with the problem, we loose nothing if we divide each term

of the sequence ( sk )∞k=0 by a positive number c since we can recover the

solution for the original problem by just multiplying the solution for ( csk )∞k=0

by c−1. So from now on we may assume that the given sequence ( sk )∞k=0 is

normalized, i.e. s0 = 1.

Remark. In the moment problem above, the mass distribution is given on

the whole real axis. The problem could be posed on some other subset of

R as well by allowing existence of mass only on that set: on the half real

line [0,∞), on a finite interval, on several intervals, or some other arbitrary

subset. Historically, the moment problem on the half real line [0,∞) is the

oldest. It is first mentioned and the related questions about solution of the

problem are answered by T. Stieltjes on 1894 [13]. The moment problem on

the whole real line is thus called the extended moment problem, which is first

discussed by H. Hamburger on 1920-1921 [12], after whom the problem is

usually named.

2.2 Positive Sequences and Jacobi Matrices

Positive sequences and orthogonal polynomials

Let a normalized sequence ( sk )∞k=0 be given. Using this sequence, a linear

functional Γ can be defined on R[λ], the space of polynomials with real

9



coefficients, by

Γ(x0 + x1λ + x2λ
2 + . . . xnλ

n) = x0s0 + x1s1 + x2s2 + · · ·+ xnsn (2.1)

characterized by the property Γ(λk) = sk and linearity. We will use Γλ

instead of Γ whenever it is necessary to indicate the variable.

Using this functional, a bilinear symmetric form can be defined on R[λ]

by

(p(λ), q(λ)) = Γ(p(λ)q(λ)). (2.2)

For this form to be positive definite, ( p(λ), p(λ) ) = Γ ( [p(λ)]2 ) should be

positive for any nonzero polynomial p(λ). More explicitly, for any n ∈ Z and

any x0, x1, . . . , xn ∈ R at least one of which is nonzero, we should have

0 < Γ

(( n∑
k=0

xkλ
k

)2
)

= Γ

( ∑
0≤i,k≤n

xixkλ
i+k

)
=

∑
0≤i,k≤n

xixksi+k . (2.3)

By linear algebra (for example, see [11]), we have that this condition on

the sequence ( sk )∞k=0 is equivalent to the positivity of the following determi-

nants: ∣∣∣∣∣∣∣∣∣∣∣∣∣

s0 s1 s2 . . . sn

s1 s2 s3 . . . sn+1

s2 s3 s4 . . . sn+2

...
...

...
. . .

...

sn sn+1 sn+2 . . . s2n

∣∣∣∣∣∣∣∣∣∣∣∣∣
> 0 (∀n ∈ N ) (2.4)

Definition 2.2.1. A sequence ( sk )∞k=0 is called positive if it satisfies the

property (2.4).

Given a sequence ( sk )∞k=0, an inner product is defined on R[λ] by (2.2) if

and only if the sequence is positive. We also have the following equivalence:

Proposition 2.2.1. The sequence ( sk )∞k=0 is positive if and only if

Γ ( q(λ) ) > 0 for any nonzero polynomial q(λ) satisfying q(u) ≥ 0 for all

u ∈ R .

10



Proof. Assume Γ takes positive values for any nonzero polynomial q(λ) such

that q(λ) ≥ 0 for all λ ∈ R . Then in particular Γ ( (p(λ))2 ) = ( p(λ), p(λ) ) >

0 for any nonzero p(λ) ∈ R[λ], thus ( sk )∞k=0 is a positive sequence by equation

(2.3).

To prove the converse, let ( sk )∞k=0 be a positive sequence and let p(λ) be

a polynomial satisfying p(λ) ≥ 0 for any λ ∈ R. The polynomial p(λ) is of

the form

p(λ) = c
n∏

k=1

[
( λ− λk )( λ− λk )

]
= c

n∏
k=1

( λ− ak − ibk )
n∏

k=1

( λ− ak + ibk )

for a positive c ∈ R and for some real numbers ak and bk. Let
∏n

k=1( λ −
ak − ibk ) = p1(λ) + ip2(λ) where p1(λ), p2(λ) ∈ R[λ] . Then

p(λ) = c ( p1(λ) + ip2(λ) ) ( p1(λ) + ip2(λ) ) = c
[
( p1(λ) )2 + ( p2(λ) )2 ] .

So it follows that

Γ ( p(λ) ) = Γ
(
c
[
( p1(λ) )2 + ( p2(λ) )2 ] )

= c Γ
(
(p1(λ))2

)
+ c Γ

(
(p2(λ))2

)
> 0,

which is the desired result.

Orthonormalizing the sequence
(
λk
)∞

k=0
by Gram–Schmidt process and

choosing the polynomials with positive leading coefficients in orthonormaliza-

tion, we obtain the polynomials Pn(λ) uniquely determined by the properties:

P1. deg(Pn(λ)) = n.

P2. leading coefficient of Pn(λ) is positive.

P3. (Pi(λ), Pj(λ)) = δij =

0, if i 6= j

1, if i = j
.

11



Any polynomial p(λ) ∈ R[λ] of degree less than n can be expressed in the

form

p(λ) =
n−1∑
i=1

ξiPi(λ) ( ξi ∈ R ) ,

so by bilinearity of inner product and property P3 of polynomials Pn(λ), it

follows that

(Pn(λ), p(λ)) = 0 (2.5)

whenever deg(p(λ)) < n.

Jacobi matrices

Multiplication of polynomials p(λ) by the indeterminate λ defines a linear

operator T on R[λ] by

T (p(λ)) = λp(λ).

The matrix corresponding to T in the basis
(
λk
)∞

k=0
is

0 0 0 . . .

1 0 0 . . .

0 1 0 . . .

0 0 1 . . .
...

...
...

. . .


.

Now let’s consider the matrix form J = (aij) of T in the basis

( Pn(λ) )∞n=1. We need to find the coefficients akj in the equations

λPk(λ) =
k+1∑
j=0

akjPj(λ). (2.6)

Inner product of both sides of the equation by Pi(λ) and linearity yields

( λPk(λ), Pi(λ) ) =
k+1∑
j=0

akj ( Pj(λ), Pi(λ) )

12



which proves that

( λPk(λ), Pi(λ) ) = aki.

by property P3 of polynomials Pn(λ). Observing the fact

( λPk(λ), Pi(λ) ) = Γ ( λPk(λ)Pi(λ) ) = ( λPi(λ), Pk(λ) ) ,

it follows that

aik = aki .

Also, for i < k − 1 we have

aki = ( λPi(λ), Pk(λ) ) = 0

by equation (2.5) since deg ( λPi(λ) ) < k.

The leading coefficients of both Pk+1(λ) and λPk(λ) are positive. So,

since deg( λPk(λ) − ak,k+1Pk+1(λ) ) is less than n+1, we have that ak,k+1 is

positive.

If we define

ak := ak,k , bk := ak,k+1 ,

equation (2.6) takes the form

λPk(λ) = bkPk+1(λ) + akPk(λ) + bk−1Pk−1(λ). (2.7)

Then the matrix J for T in the basis {Pk(λ) }∞k=1 is of the form

J =



a0 b0 0 0 0 . . .

b0 a1 b1 0 0 . . .

0 b1 a2 b2 0

0 0 b2 a3 b3

...
...

. . . . . . . . .


(ak ∈ R, bk > 0). (2.8)

Definition 2.2.2. Matrices of the form (2.8) are called Jacobi matrices.
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The correspondence

We have reached the result that given any positive sequence ( sk )∞k=0, we

can define an inner product on R[λ] satisfying (λi, λk) = si+k and with respect

to this inner product, we obtain a unique orthogonal basis {Pk(λ) }∞k=0 with

the properties P1, P2 & P3 and a Jacobi matrix J in this basis for the

operator T of multiplication by λ.

Now the question is, when we start with a Jacobi matrix J , can we obtain

a normalized positive sequence such that J will correspond to the multipli-

cation by λ operator in the basis {Pk(λ) }∞k=0 of orthonormal polynomials

which are determined uniquely by the inner product defined by equations

(2.1), (2.2) and the properties P1, P2 and P3.

For a Jacobi matrix J = (aij), we have

J



ξ1

...

ξk

0

0
...


=



γ1

...

γk

γk+1

0
...


(2.9)

since aij = 0 whenever i > j + 1.

Define ξik such that ξ00 = 1, ξik = 0 for i > k and

J k



1

0

0
...
...


=



ξ0k

...

ξkk

0
...


(2.10)

for i ≤ k.

For any k ∈ N we have bk > 0 in a Jacobi matrix, so ξi−1,i−1 and ξii have

the same sign. This yields that ξkk > 0 for any k.
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Let us define sk := ξ0k .

Now consider the triangular matrices C = (ξik) and its inverse C−1, which

of the form

C =


ξ00 ξ01 ξ02 · · ·
0 ξ11 ξ12 · · ·
0 0 ξ22

...
...

. . .

 , C−1 =


p00 p01 p02 · · ·
0 p11 p12 · · ·
0 0 p22

...
...

. . .

 .

We have that pkk > 0 for any k ∈ N since pkkξkk = 1 and ξkk > 0. Define

Pk(λ) := p0k +p1kλ+p2kλ
2 + . . .+pkkλ

k and define an inner product on R[λ]

by

( Pi(λ), Pk(λ) ) = δij (i, j ∈ N).

Define Ei to be the column matrix whose all entries are zero but the i’th,

which is 1. Consider the equation

C



p0k

...

pkk

0
...


= Ek .

So, C is the transition matrix from base {λn }∞n=0 to base {Pn(λ) }∞n=0 and

C−1 is the base transition matrix in the reverse direction.

By computation we get:

J kE0 = CEk ( for any k ∈ Z )

J CEk = J k+1E0 = CEk+1

C−1J CEk = Ek+1 . (2.11)
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By equation (2.11), the matrix C−1J C is of the form

C−1J C =



0 0 0 . . .

1 0 0 . . .

0 1 0 . . .

0 0 1 . . .
...

...
...

. . .


i.e. C−1J C is matrix of multiplication by λ operator in the basis

{
λk
}∞

k=0
.

Since C is the base transition matrix it follows that J is the matrix of mul-

tiplication by λ in the basis {Pk(λ) }∞k=0 .

Now we should prove that (λi, λk) = si+k . Indeed:

(λi, λk) =

(
i∑

n=1

ξniPn(λ),
k∑

m=1

ξmkPm(λ)

)
=

min(i,k)∑
n=1

ξniξnk = (J iE0)
TJ kE0

= ET
0 J iJ kE0 = ET

0 J i+kE0

= ET
0



ξ0,i+k

...

ξi+k,i+k

0
...


= ξ0,i+k = si+k .

Now it should be proved that ( sk )∞k=0 is a positive sequence. Given

x1, . . . , xn ∈ R at least one of which is nonzero, we have ξ1, . . . , ξn ∈ R
satisfying

n∑
i=1

xiλ
i =

n∑
i=1

ξiPn(λ).
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Computation yields

Γ

( n∑
k=1

xkλ
k

)2
 = Γ

( n∑
k=1

ξkPk(λ)

)2


Γ

( ∑
0≤i,k≤n

xixkλ
i+k

)
= Γ

( ∑
0≤i,k≤n

ξiξkPi(λ)Pk(λ)

)
∑

0≤i,k≤n

xixksi+k =
∑

0≤i,k≤n

ξiξk(Pi(λ), Pk(λ)) =
n∑

k=1

ξ2
k > 0

which means the positivity of the sequence ( sk )∞k=0, and also s0 = ξ00 = 1 by

definition. So the 1-1 correspondence between the Jacobi matrices and the

normalized positive sequences is established.

2.3 The Recurrence Formula and

the Polynomials of the Second Kind

The recurrence formula

The polynomials ( Pk(λ) )∞k=0 satisfy the finite difference relation

λyk = bkyk+1 + akyk + bk−1yk−1 (2.12)

as shown in equation (2.7), with initial conditions

P0(λ) = 1 , P1(λ) =
λ− a0

b0

.

Since the recurrence relation (2.12) is of degree 2 and the coefficient bk+1

of yk+1 is nonzero for any k ∈ N, any solution ( yk )∞k=0 of (2.12) is determined

by y0 and y1. Thus (2.12) has two linearly independent solutions, one of which

is seen to be the sequence ( Pk(λ) )∞k=0 .

The recurrence formula can be rearranged as

bkyk+1 = (λ− ak)yk − bk−1yk−1 . (2.13)
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Let ( yk )∞k=0 and ( zk )∞k=0 be solutions of the recurrence relation (2.12) with

parameters λ and µ, respectively. Then by equation (2.13)

bkyk+1zk = (λ− ak)ykzk − bk−1yk−1zk . (2.14a)

By symmetry it follows that

bkykzk+1 = (µ− ak)ykzk − bk−1ykzk−1 . (2.14b)

Subtracting (2.14a) from (2.14b) it follows that

bk ( ykzk+1 − yk+1zk ) = (µ− λ)ykzk + bk−1 ( yk−1zk − ykzk−1 )

or equivalently;

bk [ ykzk+1 − yk+1zk ]− bk−1 [ yk−1zk − ykzk−1 ] = (µ− λ)ykzk . (2.15)

Summing up equation (2.15) from k = m to n− 1, the important formula

bn−1 ( yn−1zn − ynzn−1 )− bm−1 ( ym−1zm − ymzm−1 )

= (µ− λ)
n−1∑
k=m

ykzk (2.16)

follows, which is an analogue of Green’s formula from the theory of differential

equations.

In equation (2.16), letting yk(λ) = Pk(λ), zk(µ) = Pk(µ), m = 1 yields the

so called Christoffel–Darboux formula:

(µ− λ)
n−1∑
k=0

Pk(λ)Pk(µ) = bn−1 [ Pn−1(λ)Pn(µ)− Pn(λ)Pn−1(µ) ] . (2.17)

The polynomials of the second kind

To make further use of analogue of Green’s formula, let yk(λ) = Pk(λ),

µ = λ and m = 1. Equation (2.16) transforms to

bn−1 [ Pn−1(λ)zn − Pn(λ)zn−1 ] = b0 [ P0(λ)z1 − P1(λ)z0 ]

= b0

[
z1 −

λ− a0

b0

z0

]
. (2.18)
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To simplify the equation, replace zk with Qk(λ) which is defined by the initial

conditions

Q0(λ) = 0 , Q1(λ) =
1

b0

. (2.19)

Then the equation (2.18) takes the form

Pn−1(λ)Qn(λ)− Pn(λ)Qn−1(λ) =
1

bn−1

. (2.20)

Proposition 2.3.1. For any sequence ( pk(λ) )∞k=0 of polynomials with real

coefficients satisfying the recurrence relation (2.12) and p0(λ) is a constant,

there exists unique c1, c2 ∈ R such that

pk(λ) = c1Pk(λ) + c2Qk(λ)

for any k ∈ R.

Proof. There exists unique c1 and c2 which are solutions of the linear equa-

tions

p0(λ) = c1P0(λ) + c2Q0(λ),

p1(λ) = c1P1(λ) + c2Q1(λ).

The sequence ( c1Pk(λ) + c2Qk(λ) )∞k=0 is a linear combination of ( Pk(λ) )∞k=0

and ( Qk(λ) )∞k=0, and thus it is also solution of the recurrence relation

(2.12). Now the result follows since the first two terms of the sequences

( c1Pk(λ) + c2Qk(λ) )∞k=0 and ( pk(λ) )∞k=0 are the same.

The polynomials Qk(λ) are called polynomials of the second kind, and

the polynomials Pk(λ) are called polynomials of the first kind . Consider the

polynomials

qk(λ) = Γµ

(
Pk(λ)− Pk(µ)

λ− µ

)
(k ∈ N).

The first two terms are

q0(λ) = Γµ

(
1− 1

λ− µ

)
= Γµ(0) = 0,

q1(λ) = Γµ

(
λ−a0

b0
− µ−a0

b0

λ− µ

)
= Γµ

(
1

b0

)
=

1

b0

. (2.21)
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The sequence ( qn(λ) )∞k=0 also satisfies the recurrence relation (2.12). Indeed,

for k ≥ 1 we have:

λqk(λ) = λΓµ

(
Pk(λ)− Pk(µ)

λ− µ

)
= Γµ

(
λPk(λ)− λPk(µ)

λ− µ

)
= Γµ

(
λPk(λ)− µPk(µ)

λ− µ
+

µPk(µ)− λPk(µ)

λ− µ

)
= Γµ

(
bk

Pk+1(λ)− Pk+1(µ)

λ− µ
+ ak

Pk(λ)− Pk(µ)

λ− µ

+ bk−1
Pk−1(λ)− Pk−1(µ)

λ− µ

)
+ Γµ( Pk(µ))

= bkΓµ

(
Pk+1(λ)− Pk+1(µ)

λ− µ

)
+ akΓµ

(
Pk(λ)− Pk(µ)

λ− µ

)
+ bk−1Γµ

(
Pk−1(λ)− Pk−1(µ)

λ− µ

)
+ (Pk(µ), 1)

= bkqk+1(λ) + akqk(λ) + bk−1qk−1(λ). (2.22)

The sequence ( qk(λ) )∞k=0 satisfies the same initial conditions with the se-

quence ( Qk(λ) )∞k=0 so:

Qk(λ) = qk(λ) = Γµ

(
Pk(λ)− Pk(µ)

λ− µ

)
(∀k ∈ N ). (2.23)

2.4 Truncated Moment Problem

Non-decreasing step functions

Consider an non-decreasing step function σ with increase points λ1 <

λ2 < · · · < λn. Then we cannot define an inner product on the space R[λ]

by the formula

(p(λ), q(λ))σ =

∫ +∞

−∞
p(λ)q(λ) dσ(λ) (2.24)

since there exists a nonzero polynomial p(λ) of degree n such that

(p(λ), p(λ))σ =
∫ +∞
−∞ ( p(λ) )2 dσ(λ) = 0 as shown in the proof of Proposi-
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tion 1.1.1 . Now let pn−1(λ) be a nonzero polynomial of degree less than n.

There exists an i such that pn−1(λi) 6= 0 since pn−1(λ) has at most n − 1

zeroes. Let the increase of σ at λk be µk for each k. We have∫ +∞

−∞
pn−1(λ)pn−1(λ) dσ(λ) =

n∑
k=1

(pn−1(λk))
2µk ≥ (pn−1(λi))

2µi > 0.

Let Rn−1[λ] denote the vector space of polynomials pn−1(λ) such that

deg pn−1(λ) < n. Equation (2.24) defines an inner product on Rn−1[λ].

Note that the inner product has also the property

p(λ)q(λ) = p̃(λ)q̃(λ) ⇒ (p(λ), q(λ))σ = (p̃(λ), q̃(λ))σ . (2.25)

Now a variant of moment problem arises: Given an inner product on Rn−1[λ]

satisfying equation (2.25), (how) can we recover a non-decreasing step func-

tion σn with n points of increase such that equation (2.24) holds?

The truncated moment problem

Recall that given a positive sequence ( sk )∞k=0, an inner product is defined

on R[λ] by equation (2.2) . For any n > 0 define an inner product ( , )n−1

on Rn−1[λ] characterized by(
λi, λk

)
n−1

:= si+k (i, k < n) (2.26)

and linearity. These inner product spaces R0[λ] ⊂ R1[λ] ⊂ · · · ⊂
Rn−1[λ] ⊂ . . . form an ascending chain with compatible inner products,

and all inner products are compatible with the inner product defined on R[λ]

by the sequence ( sk )∞k=0 as in (2.2):

(p(λ), q(λ))n−1 = (p(λ), q(λ)) (n > 0 ; p(λ), q(λ) ∈ Rn−1[λ] ). (2.27)

By equations (2.27) and (2.2) it follows that for p(λ), q(λ), p̃(λ), q̃(λ) satisfy-

ing p(λ)q(λ) = p̃(λ)q̃(λ) we have

( p(λ), q(λ) )n−1 = Γ(p(λ)q(λ)) = Γ(p̃(λ)q̃(λ)) = ( p̃(λ), q̃(λ) )n−1 .
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Thus the inner product ( , )n−1 satisfies the property (2.25) .

For a given sequence ( sk )∞k=0, the variant of moment problem stated above

of finding non-decreasing step function(s) σn with n increase points satisfying

equation (2.24) for the inner product on Rn−1[λ] defined by the sequence

( sk )∞k=0 via formula (2.26) takes the name ‘truncated moment problem of

order n’ .

Quasiorthogonal polynomials

To determine the candidates for the the solution σn of the truncated

moment problem of order n, it is reasonable to search the eventual places of

its increase points first.

Assume that we have such a solution σn with increase points λ1, . . . , λn.

Also let the jump of σn(λ) at λi be µi . Then for any p(λ), q(λ) ∈ Rn−1[λ]

we have ∫ +∞

−∞
p(λ)q(λ) dσn(λ) = ( p(λ), q(λ) )n−1 . (2.28)

Now consider an arbitrary polynomial

p̄(λ) = x0 + x1λ + · · ·+ x2n−2λ
2n−2

of degree at most 2n−2. Then by equations (2.26), (2.28) and (2.1) it follows

that∫ +∞

−∞
p̄(λ) dσn(λ) =

∫ +∞

−∞

(
n−1∑
i=0

xiλ
i +

2n−2∑
i=n

xiλ
i−(n−1)λn−1

)
dσn(λ)

=
n−1∑
i=0

xi

∫ +∞

−∞
λi dσn(λ) +

2n−2∑
i=n

xi

∫ +∞

−∞
λi−(n−1)λn−1 dσn(λ)

=
n−1∑
i=0

xi

(
λi, 1

)
n−1

+
2n−2∑
i=n

xi

(
λi−(n−1), λn−1

)
n−1

=
n−1∑
i=0

xisi +
2n−2∑
i=n

xisi =
2n−2∑
i=0

xisi = Γ(p̄(λ)) (2.29)
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Define

p(λ) :=
n∏

k=1

(λ− λi).

Then ∫ +∞

−∞
(p(λ))2 dσn =

n∑
i=1

( p(λi) )2 µi = 0.

Consider the orthonormal polynomials ( Pk(λ) )∞k=0 determined by the posi-

tive sequence ( sk )∞k=0 as in Section 2.2 . Since p(λ) is a polynomial of degree

n, it can be written in the form

p(λ) =
n∑

k=1

akPk(λ)

such that an is nonzero. Making use of equation (2.29) we have

0 =

∫ +∞

−∞

( n∑
k=1

akPk(λ)

)2

dσn(λ) =
∑

0≤i,k≤n

(
aiak

∫ +∞

−∞
Pi(λ)Pk(λ) dσn(λ)

)
=

∑
n−1≤i,k≤n

(
aiak

∫ +∞

−∞
Pi(λ)Pk(λ) dσn(λ)

)
+

∑
0≤i,k≤n

min(i,k)<n−1

(
aiak

∫ +∞

−∞
Pi(λ)Pk(λ) dσn(λ)

)

=

∫ +∞

−∞

[
a2

n(Pn(λ))2 + 2an−1anPn−1(λ)Pn(λ) + a2
n−1(Pn−1(λ))2

]
dσn(λ)

+
∑

0≤i,k≤n
min(i,k)<n−1

aiak(Pi(λ), Pk(λ))

=

∫ +∞

−∞
[ anPn(λ) + an−1Pn−1(λ) ]2 dσn(λ) +

n−2∑
k=0

a2
k .

Both of the values
∫ +∞
−∞ [an(Pn(λ)) + an−1(Pn−1(λ))]2 dσn(λ) and

∑n−2
k=0 a2

k

are non-negative so they should be zero.
∑n−2

k=0 a2
k = 0 means that ak = 0 for

k ≤ n− 2 and so p(λ) = anPn(λ) + an−1Pn−1(λ).
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The conclusion is, points of increase of σn are the zeroes of a polynomial

of the form anPn(λ) + an−1Pn−1(λ). This polynomial should have n zeroes

for such a solution σn to exist, and in Section 2.5 it will be proved that it

has indeed. Since the zeroes of a function is not affected if we multiply it by

a nonzero number and since an is nonzero, we have the following result:

Proposition 2.4.1. If σn(λ) is a solution of the truncated moment problem,

then all of its increase points are at the zeroes of the polynomial

Pn(λ, τ) := Pn(λ)− τPn−1(λ) (2.30)

for some real number τ . A polynomial of this form is named as quasiorthog-

onal polynomial of degree n .

Imitating the definition in equation (2.30), define

Qn(λ, τ) := Qn(λ)− τQn−1(λ).

By linearity of Γµ and equation (2.23) it follows that

Qk(λ, τ) = Γµ

(
Pk(λ, τ)− Pk(µ, τ)

λ− µ

)
( k ∈ N ). (2.31)

2.5 The Quadrature Formula

In this section, the zeroes of the functions Pk(λ, τ) will be examined and

the truncated moment problem will be solved.

Position of zeroes of Pk(λ)

Proposition 2.5.1. The zeroes of Pn(λ, τ) are real and simple.

Proof. Let

λ1 < λ2 < · · · < λm
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denote the real and simple zeroes of Pn(λ, τ) . Consider the polynomial

p(λ) =
∏m

k=1(λ− λk). Then Pn(λ, τ)p(λ) ≥ 0 for any λ ∈ R, thus

( Pn(λ, τ), p(λ) ) = Γ( Pn(λ, τ)p(λ) ) > 0

by Proposition 2.2.1 . But if we had m < n − 1 then we would also have

deg(p(λ)) < n− 1 and by equation (2.5) it would follow that

( Pn(λ, τ), p(λ) ) = 0.

Therefore m ≥ n− 1 and Pn(λ, τ) has at least n− 1 real and simple zeroes.

Then all of its n zeroes are simple; and being a polynomial with real coeffi-

cients, all of its zeroes are real.

Proposition 2.5.2. The zeroes of Pn(λ) and Pn−1(λ) alternate.

Proof. The Christoffel–Darboux formula (equation (2.17)) can be written in

the form

n−1∑
k=0

Pk(λ)Pk(µ)

= bk−1

(
Pn−1(λ)

Pn(µ)− Pn(λ)

µ− λ
− Pn(λ)

Pn−1(µ)− Pn−1(λ)

µ− λ

)
.

Taking limit of both sides of the equation as µ → λ yields

n−1∑
k=0

[Pk(λ)]2 = bn−1[Pn−1(λ)P ′
n(λ)− Pn(λ)P ′

n−1(λ)], (2.32)

so Pn−1(λ)P ′
n(λ) − Pn(λ)P ′

n−1(λ) > 0 for any λ . Let λi and λi+1 be two

consecutive zeroes of Pn(λ). Then

Pn−1(λi)P
′
n(λi) > 0 and Pn−1(λi+1)P

′
n(λi+1) > 0.

Since all the zeroes of Pn(λ) = Pn(λ, 0) are simple, the signs of P ′
n(λi) and

P ′
n(λi+1) are opposite. So the signs of Pn−1(λi) and Pn−1(λi+1) are opposite.
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Then the polynomial Pn−1(λ) has at least one zero in the interval ( λi, λi+1 ) .

The polynomial Pn(λ) has n distinct real zeroes so Pn−1(λ) has exactly one

zero between two consecutive zeroes of Pn(λ).

The quadrature formula

Consider the truncated moment problem of order n . Let a normalized

positive sequence ( sk )∞k=0 be given and let λ1 < · · · < λn be the zeroes of

Pn(λ, τ) for some τ ∈ R . We are to find positive µ1, . . . , µn such that

Γ(p2n−2(λ)) =
n∑

k=1

p2n−2(λk) µk (2.33)

for any polynomial p2n−2(λ) of degree at most 2n−2 . By division algorithm,

p2n−2(λ) can be represented as

p2n−2(λ) = Pn(λ, τ)qn−2(λ) + rn−1(λ)

where qn−2(λ) and rn−1(λ) are polynomials of degrees n − 2 and n − 1,

respectively. Since Pn(λ, τ) is orthogonal to any polynomial of degree less

than n− 1, we have Γ(Pn(λ, τ)qn−2(λ)) = (Pn(λ, τ), qn−2(λ)) = 0 and thus

Γ(p2n−2(λ)) = Γ(rn−1(λ)). (2.34)

Pn(λ, τ) = cn

∏n
k=1(λ− λk) for some constant cn. So its derivative is

P ′
n(λ, τ) = cn

n∑
j=1

(∏
i6=j

(λ− λi)

)

and at zeroes of Pn(λ, τ) it takes the form

P ′
n(λk, τ) = cn

∏
i6=k

(λk − λi)
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The Lagrange interpolation formula and the equality p2n−2(λk) =

rn−1(λk) at zeroes of Pn(λ, τ) yields

rn−1(λ) =
n∑

k=1

rn−1(λk)

∏
i6=k(λ− λi)∏
i6=k(λk − λi)

=
n∑

k=1

p2n−2(λk)
Pn(λ, τ)

P ′
n(λk, τ)(λ− λk)

.

Applying Γ to both sides and by Pn(λk, τ) = 0 we have

Γ(rn−1(λ)) =
n∑

k=1

p2n−2(λk)
Γ
(

Pn(λ,τ)−Pn(λk,τ)
λ−λk

)
P ′

n(λk, τ)
.

Using equations (2.31) and (2.34) yields

Γ(p2n−2(λ)) =
n∑

k=1

p2n−2(λk)
Qn(λk, τ)

P ′
n(λk, τ)

. (2.35)

The equation (2.35) is called the quadrature formula . By the quadra-

ture formula, the required µk’s in equation (2.33) are obtained if quantities

Qn(λk, τ)/P ′
n(λk, τ) are positive. To prove that they are positive, arrange

Pn(λk)− τPn−1(λk) = 0 as

τ =
Pn(λk)

Pn−1(λk)
(1 ≤ k ≤ n).

This yields

Qn(λk, τ)

P ′
n(λk, τ)

=
Pn−1(λk)Qn(λ)− Pn(λk)Qn−1(λ)

Pn−1(λk)P ′
n(λ)− Pn(λk)P ′

n−1(λ)
> 0 (2.36)

since the numerator is positive by equation (2.20) and the denominator is

positive by equation (2.32). Thus we can choose

µk =
Qn(λk, τ)

P ′
n(λk, τ)

. (2.37)
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Substituting equations (2.20) and (2.32) into equation (2.37), we have

µk =
1∑n−1

i=0 [Pi(λk)]2
.

Now let σ′(λ) be any solution to the truncated moment problem of order

n with the same increase points λ1, λ2, . . . , λn. Let the increase of σ′(λ) at

λk be ck . By equation (2.33), the numbers ck, 1 < k < n satisfy the system

of n linear equations

n∑
k=1

ckλ
i
k = Γ(λi) = si (0 < i < n− 1), (2.38)

where λ0
k = 1 for any k. The matrix

λ1
0 λ2

0 . . . λn
0

λ1
1 λ2

1 . . . λn
1

...
...

. . .
...

λ1
n−1 λ2

n−1 . . . λn
n−1


has nonzero determinant and the system of equations (2.38) has unique so-

lution. Thus ck = µk for any k, 1 ≤ k ≤ n . Combining these results with

Proposition 2.4.1, we obtain the following proposition:

Proposition 2.5.3. Given a positive sequence ( sk )∞k=0 and τ ∈ R, there

exists a unique solution στ
n(λ) of the truncated moment problem of order n

whose increase points λ1 < λ2 < · · · < λn are the zeroes of the quasiorthogo-

nal polynomial Pn(λ, τ) of order n and the increase of στ
n(λ) at λk is

µk =
Qn(λk, τ)

P ′
n(λk, τ)

=
1∑n−1

i=0 [Pi(λk)]2
(2.39)

for each k, 1 ≤ k ≤ n . Moreover, any solution of the truncated moment

problem of order n is of this form.
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2.6 Solvability Criteria for

the Extended Moment Problem

To obtain a solution of the extended moment problem, two theorems of

E. Helly will be used:

Theorem 2.6.1 (Helly’s Choice Theorem). Let ( σn )∞n=0 be a sequence of

uniformly bounded non-decreasing functions on R. Then it has a subsequence

( σni
)∞i=0 such that for some non-decreasing function σ : R → R,

lim
i→∞

σni
(λ) = σ(λ)

for any λ ∈ R .

Proof. Choose a sequence ( ak )∞k=0 of real numbers whose terms are dense

in R . The sequence ( σn(a1) )∞n=0 is bounded so it has a convergent subse-

quence ( σn1(a1) )∞n=0 . Similarly if we have a sequence ( σni(λ) )∞n=0 conver-

gent for λ = a1, . . . , ai then it has a subsequence ( σn,i+1(λ) )∞n=0 convergent

for λ = a1, . . . , ai, ai+1 . So the diagonal sequence ( σnn(λ) )∞n=0 converges for

any λ = ak , k ∈ N . Since the sequence ( ak )∞k=0 is dense in R, the sequence

( σnn(λ) )∞n=0 converges to a non-decreasing function σ′ for all but countable

number of real numbers. Repeating the diagonal construction on this count-

able set, the desired subsequence ( σni
)∞i=0 and the non-decreasing function

σ are obtained.

Theorem 2.6.2 (Helly’s Convergence Theorem). Let ( σn )∞n=0 be a se-

quence of uniformly bounded non-decreasing functions on a finite interval

[a, b] such that limn→∞ σn(λ) = σ(λ) for any λ ∈ [a, b] and let f(λ) be a

continuous function on [a, b]. Then we have

lim
n→∞

∫ b

a

f(λ) dσn(λ) =

∫ b

a

f(λ) dσ(λ).
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Proof. The function f(λ) is uniformly continuous on the compact set [a, b] ,

so given ε > 0 there exists δ such that if | t− t′ | < δ then | f(t)− f(t′) | < ε.

For any partition a = a0 < a1 < a2 < · · · < am = b of [a, b] with length of

subintervals less than δ , consider the Riemann–Stieltjes sums

Sn =
m∑

i=1

f(ai)[σn(ai)− σn(ai−1)] , S =
m∑

i=1

f(ai)[σ(ai)− σ(ai−1)]

and the integrals

In =

∫ b

a

f(λ) dσn(λ) =
m∑

i=1

f(ξni
)[σn(ai)− σn(ai−1)]

I =

∫ b

a

f(λ) dσ(λ) =
m∑

i=1

f(ξi)[σ(ai)− σ(ai−1)]

for any n, where the second equalities hold for some choice ξi, ξni
∈ (ai−1, ai)

by Mean Value Theorem. It follows that |Sn − In| , |S − I| < 2Mε where M

is the common bound for the functions σn, and hence also for their limit σ .

Since σn(ai) → σ(ai), we have that there exists Nε such that |Sn − S | < Mε

for any n > Nε . Thus n > Nε implies |I−In| < |I−S|+|S−Sn|+|Sn−In| <
5Mε , which completes the proof.

Now we can turn back to the extended moment problem.

Theorem 2.6.3. (Hamburger) Given a sequence ( sk )∞k=0 of real numbers,

there exists a mass distribution σ such that∫ +∞

−∞
λk dσ(λ) = sk (k ∈ N)

if and only if the sequence ( sk )∞k=0 is positive.

Proof. To prove necessity, let a mass distribution σ be given satisfying∫ +∞
−∞ λk dσ(λ) = sk and choose any nonzero p(λ) =

∑n
k=0 xkλ

k ∈ R[λ] . Then
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by the expression (1.4) we have

0 <

∫ +∞

−∞
[p(λ)2] dσ(λ) =

∫ +∞

−∞

(
n∑

k=0

xkλ
k

)2

dσ(λ)

=
∑

0≤i,k≤n

xixk

∫ +∞

−∞
λi+k dσ(λ) =

∑
0≤i,k≤n

xixksi+k .

This inequality is valid for any n ∈ N and any choice of x1, . . . , xn not all

zero. Thus positivity of the sequence ( sk )∞k=0 follows.

Now let a positive sequence ( sk )∞k=0 be given. Take a sequence ( σn )∞n=0

of functions such that σn(λ) is a solution of the truncated moment problem

of order n . Then by Helly’s choice theorem it has a subsequence ( σni
)∞i=0

converging to a non-decreasing function σ(λ) pointwise. For any k ∈ N
Helly’s convergence theorem yields the equality∫ b

a

λk dσ(λ) = lim
i→∞

∫ b

a

λk dσni
(λ)

for any finite interval [a, b] . If the integrals
∫ b

a
λk dσni

(λ) converge uniformly

with respect to the variable i then the equality∫ +∞

−∞
λk dσ(λ) = lim

i→∞

∫ +∞

−∞
λk dσni

(λ) = sk (2.40)

follows. To prove the uniform convergence, choose a and b such that a <

−1 , b > 1 and let 2r be an even number greater than k.
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∣∣∣∣ sk −
∫ b

a

λk dσni

∣∣∣∣ =

∣∣∣∣ ∫ +∞

−∞
λk dσni

(λ)−
∫ b

a

λk dσni
(λ)

∣∣∣∣
≤
∫ a

−∞

∣∣λk
∣∣ dσni

(λ) +

∫ +∞

b

∣∣λk
∣∣ dσni

(λ)

≤
∫ a

−∞

λ2r

−λ
dσni

(λ) +

∫ +∞

b

λ2r

λ
dσni

(λ)

≤ 1

| a |

∫ a

−∞
λ2r dσni

(λ) +
1

| b |

∫ +∞

b

λ2r dσni
(λ)

≤
(

1

| a |
+

1

| b |

)∫ +∞

−∞
λ2r dσni

=
s2r

| a |+ | b |
.

Thus the equation (2.40) is proved. For σ(λ) to be a mass distribution, it

should have infinite number of increase points. Assume that its only increase

points are λ1, . . . , λm . Consider the polynomial

p(λ) =
m∏

k=1

( λ− λk ) =
m∑

k=1

akλ
k.

But then we have

0 =

∫ +∞

−∞
( p(λ) )2 dσ(λ) =

∫ +∞

−∞

m∑
i,k=1

aiakλ
i+k dσ(λ) =

m∑
i,k=1

aiaksi+k ,

contradicting the positivity of the sequence ( sk )∞k=0 .
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chapter 3

uniqueness of moment

problem solution

3.1 Investigations for a Condition

Whenever we have a mass distribution σ, and hence a measure on R, the

integral of a function f : R → C of the form f(λ) = f1(λ) + if2(λ) with

respect to that measure is defined as∫ +∞

−∞
f(λ) dσ(λ) :=

∫ +∞

−∞
f1(λ) dσ(λ) + i

∫ +∞

−∞
f2(λ) dσ(λ)

whenever both f1(λ) and f2(λ) are integrable for the given measure.

If the function f : R → C is continuous and bounded then f1(λ) and

f2(λ) are continuous and bounded. Therefore both functions f1(λ) and

f2(λ) are dσ-integrable and hence f(λ) is dσ-integrable.

Let a positive sequence ( sk )∞k=0 be given. We examine the values of the

integral ∫ +∞

−∞

1

λ− z
dσ(λ)

for complex numbers z such that Im z 6= 0, where σ is a solution of the

moment problem. This integral exists for any such z since the function

f(λ) = 1
λ−z

is continuous and bounded.

Recall that if two mass distributions are equivalent in the sense of defini-

tion 1.1.1 then they yield the same measure. In particular, given a positive

sequence ( sk )∞k=0, if the related moment problem has a unique solution then
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for two solutions σ1 and σ2 of the moment problem and for any z /∈ R we

have ∫ +∞

−∞

1

λ− z
dσ1(λ) =

∫ +∞

−∞

1

λ− z
dσ2(λ).

The following theorem asserts that the converse is also true.

Theorem 3.1.1. Given two mass distributions σ1 and σ2, let∫ +∞

−∞
λk dσ1(λ) =

∫ +∞

−∞
λk dσ2(λ) (3.1)

for any k ∈ N.Then σ1 and σ2 are equivalent if and only if they satisfy∫ +∞

−∞

1

λ− z
dσ1(λ) =

∫ +∞

−∞

1

λ− z
dσ2(λ).

for any non-real complex number z. In particular, the moment problem for

a positive sequence has a unique solution if and only if for any z /∈ R, the

value of the integral ∫ +∞

−∞

1

λ− z
dσ(λ)

is the same for any solution σ of the moment problem.

Proof. Let ∫ +∞

−∞

dσ1(λ)

λ− z
=

∫ +∞

−∞

dσ2(λ)

λ− z
(∀ z /∈ R)∫ +∞

−∞
λk dσ1(λ) =

∫ +∞

−∞
λk dσ2(λ) (∀ k ∈ N).

Define the charge ω : R → R by

ω(λ) = σ1(λ)− σ2(λ).

For ω we get:∫ +∞

−∞

1

λ− z
dω(λ) = 0,

∫ +∞

−∞
λk dω(λ) = 0 (∀ z /∈ R, ∀ k ∈ N).
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The complex numbers z are of the form z = x + iy where x, y ∈ R, y /∈ R.

Then

1

λ− z
=

1

(λ− x)− iy
=

λ− x

(λ− x)2 + y2
+ i

y

(λ− x)2 + y2
.

Thus the integral
∫ +∞
−∞

dω(λ)
λ−z

takes the form∫ +∞

−∞

dω(λ)

λ− z
=

∫ +∞

−∞

λ− x

(λ− x)2 + y2
dω(λ) + i

∫ +∞

−∞

y

(λ− x)2 + y2
dω(λ).

Since the value of this integral is zero, its complex part is zero either; i.e.∫ +∞

−∞

y

(λ− x)2 + y2
dω(λ) = 0.

Thus for any points of continuity a, b of ω(λ)

0 =

∫ b

a

(∫ +∞

−∞

y dω(λ)

(λ− x)2 + y2

)
dx

=

∫ +∞

−∞

(∫ b

a

y dx

(λ− x)2 + y2

)
dω(λ).

By the substitution ξ = λ−x
y

, we obtain

0 =

∫ +∞

−∞

(
arctan

λ− a

y
− arctan

λ− b

y

)
dω(λ),

and applying integration by parts we get

0 =

(
ω(λ) arctan

λ− a

y
− ω(λ) arctan

λ− b

y

) ∣∣∣∣∞
λ=−∞

+

∫ +∞

−∞

(
yω(λ)

(λ− b)2 + y2

)
dλ−

∫ +∞

−∞

(
yω(λ)

(λ− a)2 + y2

)
dλ.

The function ω(λ) is bounded and limλ→∓∞ arctan(λ) = 0 so the equation

takes the form

y

∫ +∞

−∞

(
ω(λ)

(λ− b)2 + y2

)
dλ = y

∫ +∞

−∞

(
ω(λ)

(λ− a)2 + y2

)
dλ. (3.2)
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The function

u(x, y) =
y

π

∫ +∞

−∞

(
ω(λ)

(λ− x)2 + y2

)
dλ

is the solution of the Dirichlet problem on half plane for the function ω , i.e.

u(x, y) is a harmonic function such that

lim
(x,y)→(λ,0)

u(x, y) = ω(λ) (3.3)

whenever ω is continuous at λ [14, Section 4.5]. The equation (3.2) yields

u(a, y) = u(b, y)

for any non-zero y ∈ R. Then by property (3.3) of the function u(x, y) we

get:

ω(a) = lim
y→0

u(a, y) = lim
y→0

u(b, y) = ω(b)

Thus the function ω attains the same value at its points of continu-

ity. Since ω(λ) has at most countably many points of discontinuity and

limλ→−∞ ω(λ) = limλ→−∞ ( σ1(λ)− σ2(λ) ) = 0, it follows that ω(λ) =

σ1(λ) − σ2(λ) 6= 0 for only a countable number of points. Therefore σ1

and σ2 are equivalent.

3.2 Construction of Moment Problem

Solutions

Let a positive sequence ( sk )∞k=0 be given. For any τ ∈ R, the correspond-

ing truncated moment problem of order n has a solution σn(λ) = στ
n(λ) whose

increase points are the zeroes of Pn(λ, τ) by Proposition 2.5.3 . Degree of the

polynomial Qn(λ, τ) is n− 1, so by Lagrange interpolation formula we have

Qn(z, τ) = Pn(z, τ)
n∑

k=1

Qn(λk, τ)

P ′
n(λk, τ)(z − λk)

.

36



Let the increase of σn(λ) at λk be µk for each k, 1 ≤ k ≤ n. By equation

(2.39) it follows that

−Qn(z, τ)

Pn(z, τ)
=

n∑
k=1

µk

λk − z

=

∫ +∞

−∞

1

λ− z
dστ

n(λ). (3.4)

Now define the function wn(z, τ) by

wn(z, τ) = −Qn(z, τ)

Pn(z, τ)
=

∫ +∞

−∞

1

λ− z
dστ

n(λ).

Consider wn(z, τ) for a fixed z and let τ to vary. By the integral expression

of wn(z, τ) it follows that imaginary parts of z and wn(z, τ) have the same

sign. Since
Qn(z, τ)

Pn(z, τ)
=

Qn(λ)− τQn−1(λ)

Pn(λ)− τPn−1(λ)

is a linear fraction with respect to the variable τ , it follows that for a fixed

z, wn(z, τ) describes a circle which lies completely on the same side of the

real axis with z. We will denote this circle by Cn(z), and the union of Cn(z)

and the circular region bounded by it by Kn(z). From the equality

a− τb

c− τd
=

ad̄− bc̄

cd̄− dc̄
− ad− bc

cd̄− dc̄
· c̄− τ d̄

c− τd

it follows that radius of Cn(z) is

rn(z) =

∣∣∣∣∣ Qn(z)Pn−1(z)−Qn−1(z)Pn(z)

Pn(z)Pn−1(z)− Pn−1(z)Pn(z)

∣∣∣∣∣ .

If we let µ = λ in Christoffel–Darboux formula (2.17) for denominator and

use the equation (2.20) for numerator we obtain

rn(z) =
1

| z − z̄ |
∑n−1

k=0 |Pk(z) |2
. (3.5)
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For arbitrary w ∈ C, in equation (2.16) let m = 1, µ = λ̄, yk = wPk(λ) +

Qk(λ) and zk = yk . The equation takes the form

n−1∑
k=0

|wPk(λ) + Qk(λ) |2 − w − w̄

λ− λ

= bn−1 |wPn−1(λ) + Qn−1(λ) |2
Im wPn(λ)+Qn(λ)

wPn−1(λ)+Qn−1(λ)

Im λ
. (3.6)

Note that w ∈ Cn(z) if and only if there exists τ ∈ R such that w = wn(z, τ).

From the definition of the function wn(z, τ) it follows that

τ =
wn(z, τ)Pn(z) + Qn(z)

wn(z, τ)Pn−1(z) + Qn−1(z)
∈ R.

Thus w ∈ Cn(z) if and only if

n−1∑
k=0

|wPk(z) + Qk(z) |2 − w − w

z − z
= 0

since Pn−1(λ) and Qn−1(λ) does now vanish together and therefore

bn−1 |wPn−1(z) + Qn−1(z) |2
Im wPn(z)+Qn(z)

wPn−1(z)+Qn−1(z)

Im z
= 0

if and only if wPn(z)+Qn(z)
wPn−1(z)+Qn−1(z)

is real.

Now fix z and consider the function

ϕn(w) =
n−1∑
k=0

|wPk(z) + Qk(z) |2 − w − w

z − z
.

Expanding the function in the form

ϕn(w) = A |w |2 + Bw + Cw̄ + D,

it follows that

A =
n−1∑
k=0

|Pk(z) |2
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so limw→∞ ϕn(w) = ∞. Since ϕn is a continuous function on the half plane

at the side of the real axis which contains z, and since ϕn(w) = 0 if and only

if w ∈ Cn(z) on that half plane, it follows that

ϕn(w) =
n−1∑
k=0

|wPk(z) + Qk(z) |2 − w − w

z − z
> 0 (3.7)

for any w such that w /∈ Kn(z) and Im z = Im w. Now let w ∈ Cn−1(z).

Then

ϕn−1(w) =
n−2∑
k=0

|wPk(z) + Qk(z) |2 − w − w

z − z
= 0.

Thus ϕn(w) = |wPn−1(z) + Qn−1(z) | > 0 and so w ∈ Kn(z). Therefore we

have a chain

K0(z) ⊇ K1(z) ⊇ K2(z) ⊇ . . .

and so we have a limiting circle C∞(z) and a limiting circular region K∞(z),

both of which may degenerate into a point. We also have that the circles

Cn(z) and Cn−1(z) intersect since

wn(z, 0) = wn−1(z,∞)

by definition of the function wn(z, τ). Radius of the circle C∞(z) is the limit

of the radii of Cn(z), so it is equal to

r∞(z) =
1

| z − z̄ |
∑∞

k=0 |Pk(z) |2
(3.8)

by equation (3.5). Thus Cn(z) degenerates into a point if and only if∑∞
k=0 |Pk(z) |2 = ∞.

Proposition 3.2.1. For any w ∈ K∞(z) we have a solution σ of the moment

problem such that ∫ +∞

−∞

1

λ− z
dσ(λ) = w.
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Proof. First, choose a point w on C∞(z) . Since C∞(z) is the limit of

circles Cn(z) , we can choose a sequence ( τn )∞n=0 of real numbers so that

limn→∞ wn(z, τn) = w . By Proposition 2.5.3 and equation (3.4), for each τn

we have a solution σn(λ) to the truncated moment problem of order n such

that

wn(z, τn) =

∫ +∞

−∞

1

λ− z
dσn(λ).

By the proof of Theorem 2.6.3, ( σn )∞n=0 has a subsequence ( σni
)∞i=0 such that

limi→∞ σni
(λ) = σ(λ) for some solution σ(λ) of moment problem. Since 1

λ−z

is continuous, we can apply Helly’s Convergence Theorem 2.6.2 and get

lim
i→∞

∫ b

a

1

λ− z
dσni

(λ) =

∫ b

a

1

λ− z
dσ(λ)

for any a, b ∈ R. If a < −1 and 1 < b then∣∣∣∣ ∫ +∞

−∞

1

λ− z
dσn(λ)−

∫ b

a

1

λ− z
dσn(λ)

∣∣∣∣
=

∣∣∣∣ ∫ a

−∞

1

λ− z
dσn(λ) +

∫ +∞

b

1

λ− z
dσn(λ)

∣∣∣∣
≤
∫ a

−∞

∣∣∣∣ 1

λ− z

∣∣∣∣ dσn(λ) +

∫ −∞

b

∣∣∣∣ 1

λ− z

∣∣∣∣ dσn(λ)

≤ 1

| a |

∫ a

−∞

∣∣∣∣ λ

λ− z

∣∣∣∣ dσn(λ) +
1

| b |

∫ −∞

b

∣∣∣∣ λ

λ− z

∣∣∣∣ dσn(λ)

≤ 1

| a |+ | b |

∫ +∞

−∞

∣∣∣∣ λ

λ− z

∣∣∣∣ dσn(λ).

Since limλ→∓∞
∣∣ λ

λ−z

∣∣ = 1 and
∣∣ λ

λ−z

∣∣ is continuous, we have supλ∈R
∣∣ λ

λ−z

∣∣ =

M < ∞ . Hence∫ +∞

−∞

∣∣∣∣ λ

λ− z

∣∣∣∣ dσn(λ) ≤
∫ +∞

−∞
M dσn(λ) = Ms0

and we conclude that∫ +∞

−∞

1

λ− z
dσ(λ) = lim

i→∞

∫ +∞

−∞

1

λ− z
dσni

(λ)

= lim
i→∞

wni
(τni

, z) = w.
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Now let w be an arbitrary element of K∞(z). Then w is on a line segment

joining two points w1, w2 ∈ C∞(z) and so there exists t ∈ [0, 1] such that w =

tw1 +(1− t)w2. Let σ1(λ) and σ2(λ) be the solutions of the moment problem

corresponding to the points w1 and w2, respectively. Then σ = tσ1+(1−t)σ2

is a solution of the moment problem. Indeed, for any k ∈ N∫ +∞

−∞
λk dσ(λ) = t

∫ +∞

−∞
λk dσ1(λ) + (1− t)

∫ +∞

−∞
λk dσ2(λ)

= tsk + (1− t)sk

= sk.

We also have∫ +∞

−∞

dσ(λ)

λ− z
= t

∫ +∞

−∞

dσ1(λ)

λ− z
+ (1− t)

∫ +∞

−∞

dσ(λ)

λ− z

= tw1 + (1− t)w2

= w.

3.3 Conditions for Uniqueness

Proposition 3.3.1. Let a positive sequence ( sk )∞k=0 be given. For any non-

real z, consider the closed disc K∞(z) defined in previous section. Then we

have ∫ +∞

−∞

dσ(λ)

λ− z
∈ K∞(z)

for any solution σ of the moment problem.

Proof. Let w =
∫ +∞
−∞

dσ(λ)
λ−z

. To prove w ∈ K∞(z), by equation (3.7) it is

enough to prove that

∞∑
k=0

|wPk(z) + Qk(z) |2 − w − w

z − z
≤ 0.
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By the Bessel inequality ((1.5) of Chapter 1) it follows that∫ +∞

−∞

dσ(λ)

|λ− z |2
=

∫ +∞

−∞

∣∣∣∣ 1

λ− z

∣∣∣∣2 dσ(λ)

≥
∞∑

k=0

∣∣∣∣ ( 1

λ− z
, Pk(λ)

)
σ

∣∣∣∣2
=

∞∑
k=0

∣∣∣∣ ∫ +∞

−∞

Pk(λ)

λ− z
dσ(λ)

∣∣∣∣2

≥

∣∣∣∣∣
∞∑

k=0

∫ +∞

−∞

Pk(λ)

λ− z
dσ(λ)

∣∣∣∣∣
2

. (3.9)

The expression
∫ +∞
−∞

Pk(λ)
λ−z

dσ(λ) can be computed as∫ +∞

−∞

Pk(λ)

λ− z
dσ(λ) =

∫ +∞

−∞

Pk(λ)− Pk(z)

λ− z
dσ(λ) + Pk(z)

∫ +∞

−∞

1

λ− z
dσ(λ)

= Qk(λ) + wPk(λ).

On the other hand

1

|λ− z |2
=

1

( λ− z ) ( λ− z̄ )

=
1

z − z̄

(
1

λ− z
− 1

λ− z̄

)
and thus for

∫ +∞
−∞

dσ(λ)

|λ−z |2 we have∫ +∞

−∞

dσ(λ)

|λ− z |2
=

1

z − z̄

(∫ +∞

−∞

dσ(λ)

λ− z
−
∫ +∞

−∞

dσ(λ)

λ− z̄

)
=

w − w̄

z − z̄
.

Together with these results, the inequality (3.9) transforms into

w − w̄

z − z̄
≥

∞∑
k=0

|Qk(z) + wPk(z) |2 , (3.10)

which is the desired result.
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Proposition 3.3.2. For a positive sequence ( sk )∞k=0, the related moment

problem has a unique solution if and only if associated orthonormal polyno-

mials satisfy
∞∑

k=0

|Pk(z) |2 = ∞ (3.11)

for any z /∈ R.

Proof. Let condition (3.11) hold for any z /∈ R. Then each K∞(z) deforms

into a point. Thus by Proposition 3.3.1 above, the value of the integral∫ +∞
−∞

dσ(λ)
λ−z

is the same for any solution σ of the moment problem. By Theorem

3.1.1 this yields that the moment problem has a unique solution.

Now assume that the moment problem has a unique solution. Then by

Proposition 3.1.1 it follows that
∫ +∞
−∞

dσ(λ)
λ−z

is the same for any solution σ

of the moment problem. Using Proposition 3.2.1, this implies that K∞(z)

consists of a single point, thus

r∞(z) =
1

| z − z̄ |
∑∞

k=0 |Pk(z) |2
= 0

and hence
∑∞

k=0 |Pk(z) |2 = ∞.

In fact a much stronger form of Proposition 3.3.2 also holds. To prove it

we need some preparation.

Lemma 3.3.3. Let ( pk(z) )∞k=0 be a sequence of functions on C. Let∑∞
n=0 | pk(z0) |2 < ∞ for some z0 ∈ C. If there are numbers ank , 0 ≤ k < n,

satisfying
∞∑

n=1

n−1∑
k=0

| ank |2 < ∞

such that

pn(z1) = pk(z0) + ( z1 − z0 )
n−1∑
k=0

ankpk(z1) (3.12)

for some z1 ∈ C then
∑∞

n=0 | pk(z1) |2 < ∞.
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Proof. Let r = | z1 − z0 |. Choose some ε < 1. Then there exists m ∈ N such

that (
∞∑

n=m

n−1∑
k=0

| ank |2
) 1

2

≤ ε

r
,

(
∞∑

n=m

| pk(z0) |2
) 1

2

≤ ε.

Let N > m. By triangle inequality in l2, equation (3.12) yields that(
N∑

n=m

| pn(z1) |2
) 1

2

≤

(
N∑

n=m

| pk(z0) |2
) 1

2

+ | z1 − z0 |

 N∑
n=m

∣∣∣∣∣
n−1∑
k=0

ankpk(z1)

∣∣∣∣∣
2
 1

2

.

Keep ε and m fixed. We have

(
N∑

n=m

| pn(z1) |2
) 1

2

≤ ε + r

 N∑
n=m

∣∣∣∣∣
n−1∑
k=0

ankpk(z1)

∣∣∣∣∣
2
 1

2

≤ ε + r

(
N∑

n=m

(
n−1∑
k=0

| ank |2
n−1∑
i=0

| pi(z1) |2
)) 1

2

≤ ε + r

((
N∑

n=m

n−1∑
k=0

| ank |2
)(

N∑
i=0

| pi(z1) |2
)) 1

2

≤ ε + r
ε

r

(
N∑

i=0

∣∣ pi(z1)
2
∣∣) 1

2

= ε + ε

(
N∑

i=0

| pi(z1) |2
) 1

2

≤ ε + ε

(
N∑

i=0

| pi(z1) |2
) 1

2

+ ε

(
N∑

i=m

| pi(z1) |2
) 1

2

.

Thus we have (
N∑

n=m

| pn(z1) |2
) 1

2

≤
ε + ε

(∑m−1
i=0 | pi(z1)

2 |
) 1

2

1− ε
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for any N > m. Hence we have proved the convergence of
∑∞

n=m | pn(z1) |2.

Lemma 3.3.4. If the series
∑∞

k=0 |Pk(z0) |2 converges for some z0 ∈ C then

the series
∑∞

k=0 |Qk(z0) |2 also converges.

Proof. If
∑∞

k=0 |Pk(z0) |2 < ∞ then

r∞(z0) =
1

| z0 − z̄0 |
∑∞

k=0 |Pk(z0) |2
> 0

and thus K∞(z0) is a circle. Let w ∈ K∞(z0). By equation (3.10) we have

∞∑
k=0

|Qk(z0) + wPk(z0) |2 ≤
w − w̄

z0 − z̄0

< ∞

and thus ( Qk(z0) + wPk(z0) )∞k=0 ∈ l2. Since also ( Pk(z0) )∞k=0 ∈ l2, we have

( Qk(z0) )∞k=0 = ( Qk(z0) + wPk(z0) )∞k=0 − w ( Pk(z0) )∞k=0 ∈ l2

i.e.
∑∞

k=0 |Qk(z0) |2 converges.

Proposition 3.3.5. If
∑∞

k=0 |Pk(z0) |2 converges for some z0 ∈ C then the

series
∑∞

k=0 |Pk(z) |2 converges for any z ∈ C.

Proof. Note that Pn(z)−Pn(z0)
z−z0

is a polynomial of degree n−1, thus there exists

ank ∈ N for 0 ≤ k < n such that

Pn(z)− Pn(z0)

z − z0

=
n−1∑
i=0

aniPi(z). (3.13)
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Using orthonormality of the polynomials Pk(λ), we can compute each ank as

ank =

(
Pk(z),

n−1∑
i=0

aniPi(z)

)
=

(
Pk(z) ,

Pn(z)− Pn(z0)

z − z0

)
= Γz

(
Pk(z)

Pn(z)− Pn(z0)

z − z0

)
= Γz

(
[ Pk(z)− Pk(z0) ]

Pn(z)− Pn(z0)

z − z0

+ Pk(z0)
Pn(z)− Pn(z0)

z − z0

)
=

(
Pk(z)− Pk(z0)

z − z0

, Pn(z)

)
− Pn(z0)Γz

(
Pk(z)− Pk(z0)

z − z0

)
+ Pk(z0)Γz

(
Pn(z)− Pn(z0)

z − z0

)
.

Since deg Pk(z)−Pk(z0)
z−z0

= k−1 < n, the first term vanishes. Also using equation

(2.23) for other two terms we get

ank = Pn(z0)Qk(z0)− Pk(z0)Qn(z0).

Then the representation (3.13) of Pn(z)−Pn(z0)
z−z0

yields

Pn(z) = Pn(z0) + ( z − z0 )
n−1∑
k=0

[ Pn(z0)Qk(z0)− Pk(z0)Qn(z0) ] Pk(z).

Now observe that
∞∑

n=1

n−1∑
k=0

| ank |2

=
∞∑

n=1

n−1∑
k=0

|Pn(z0)Qk(z0)− Pk(z0)Qn(z0) |2

≤ 2

(
∞∑

n=1

n−1∑
k=0

|Pn(z0)Qk(z0) |2 +
∞∑

n=1

n−1∑
k=0

|Pk(z0)Qn(z0) |2
)

≤ 2

(
∞∑

n=1

|Pn(z0) |2
n−1∑
k=0

|Qk(z0) |2 +
∞∑

n=1

|Pk(z0) |2
n−1∑
k=0

|Qn(z0) |2
)

≤ 4
∞∑

n=1

|Pn(z0) |2
∞∑

k=0

|Qk(z0) |2 .
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The series |Qk(z0) |2 converges by Lemma 3.3.4 since
∑∞

n=1 |Pn(z0) |2 con-

verges, and thus
∑∞

n=1

∑n−1
k=0 | ank |2 < ∞. Therefore we can apply Lemma

3.3.3 for pk(z) = Pk(z) and conclude that
∑∞

n=1 |Pn(z) |2 converges.

Now the advanced version of Proposition 3.3.2 follows:

Theorem 3.3.6. For a positive sequence ( sk )∞k=0, the related moment prob-

lem has a unique solution if and only if

∞∑
k=0

|Pk(z) |2 = ∞ (3.14)

holds for some (and hence all) z ∈ C.

In fact, the Jacobi matrix corresponding to the moment problem deter-

mines whether the solution of a moment problem is unique. The relation is

formulated in the following theorem.

Theorem 3.3.7. Given a positive sequence ( sk )∞k=0 , let

J =


a0 b0 0 . . .

b0 a1 b1

0 b1 a2
. . .

...
. . . . . .

 (3.15)

be the corresponding Jacobi matrix and let z be a non-real complex number.

Then all solutions ( yk )∞k=0 of the recurrence relation

bk−1yk−1 + akyk + bk+1yk+1 = z yk

are in l2 , i.e.
∑∞

k=0 | yk |2 < ∞, if and only if the solution of the related

moment problem is not unique.

Proof. If every solution of the recurrence relation belongs to l2 then

∞∑
k=0

|Pk(z) |2 < ∞
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and thus by Theorem 3.3.6 the solution is not unique.

Now assume that the solution is not unique and thus
∑∞

k=0 |Pk(z) |2 < ∞,

i.e. ( Pk(z) )∞k=0 ∈ l2 . Then by Lemma 3.3.4 we have ( Qk(z) )∞k=0 ∈ l2. Also

P0(z) = 1, Q0(z) and Q1(z) 6= 0 implies that ( Pk(z) )∞k=0 and ( Qk(z) )∞k=0 = 0

are linearly independent solutions of the recurrence relation. Consequently,

any solution ( yk )∞k=0 of the recurrence relation is of the form ( yk )∞k=0 =

c1 ( Pk(z) )∞k=0 + c2 ( Qk(z) )∞k=0 and hence is in l2.
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chapter 4

asymptotic behaviour of

orthonormal polynomials

In this chapter, measures on C with compact support will be investigated

by use of orthonormal polynomials {Pk(z) }∞k=0 determined by the given mea-

sure. The final results of the chapter will be on bounds for the asymptotic

behaviour of the orthonormal polynomials, obtained by J. Ullman. First we

start with a restriction on the kind of measures we will work on:

We call a Borel measure µ on C to be a finite measure if µ(C) < ∞. Also

µ is said to be a unit measure if µ(C) = 1.

The support of a Borel measure µ is the set of points whose any neigh-

borhood has positive measure, denoted by supp(µ); i.e.

supp(µ) = { z ∈ C : U open in C and z ∈ U =⇒ µ(U) 6= 0 } .

The support of a measure is always closed [3, Thorem A.1.2] thus if supp(µ)

is bounded then it is compact.

4.1 Potential Theoretic Preliminaries

The main tool in the subject will be potential theory so we begin with

some potential theoretic definitions and facts.

Definition 4.1.1. Let a finite measure µ be given. Then its potential is the

function pµ(z) on C defined as

pµ(z) :=

∫
log | z − w | dµ(w).
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A function f : X → R is called upper semicontinuous if {x ∈ X | f(x) <

α} is open for any α ∈ R . Let D[z; r] denote the closed disc {w ∈
C : | z − w | ≤ r}.

Definition 4.1.2. Let U be an open subset of C . Then:

(i) An upper semicontinuous function f : U → [−∞,∞) is called subhar-

monic if for any z ∈ D there exists D[z; r] ⊂ D such that

f(z) ≤ 1

2π

∫ 2π

0

f(z + reit) dt.

(ii) A function f : U → R is called harmonic if it is continuous and for any

z ∈ D there exists D[z; r] ⊂ D such that

f(z) =
1

2π

∫ 2π

0

f(z + reit) dt.

Harmonic functions could equivalently be defined as the solutions of the

Laplace equation; i.e. a function f(z) on an open subset U of C is harmonic

if and only if f(z) ∈ C2(U) and

fxx + fyy = 0,

where we consider z = x + iy and the subscripts stand for partial derivatives

[3, Theorems 1.1.6 and 1.2.7]. It is obvious from definition that if a function

f(z) is harmonic then both f(z) and −f(z) are subharmonic. In fact, the

converse also holds [3, Corollary 2.4.2].

Proposition 4.1.1. Potential pµ(z) of a measure µ is subharmonic on C
and harmonic on C\supp(µ).

Proof. See [3, Theorem 3.1.2].

Definition 4.1.3. Let a finite measure µ on C be given. Energy of µ is

defined as

I(µ) :=

∫
pµ(z) dµ(z) =

∫ ∫
log | z − w | dµ(w) dµ(z).
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Proposition 4.1.2. Let µ and ν be unit measures with compact support. For

any c ∈ R, if

pν(z) + c ≤ pµ(z)

holds µ-almost everywhere then it holds for all z ∈ C.

Proof. See [4, Theorem 1.27].

Definition 4.1.4. Let E be a subset of C. The capacity of E is given by

cap(E) = sup
{

eI(µ) : µ is a unit measure, supp(µ) ⊆ E
}

.

A set E is said to be of capacity zero if cap(E) = 0. A property is said to

hold quasi everywhere (in short, q.e.) on a set S if the set of points in S for

which the property is not satisfied is of capacity zero.

Proposition 4.1.3. (a) If cap(S) = 0 then S is of Lebesgue measure zero,

i.e. quasi everywhere implies almost everywhere. Also µ(S) = 0 for any

finite measure µ with I(µ) > −∞.

(b) If cap(Sn) = 0 for any n ∈ N then cap(
⋃∞

k=0 Sk) = 0.

(c) Let B1 and B2 be Borel sets such that B1 ⊆ B2. Then cap(B1) ≤
cap(B2).

Proof. See [3, Theorems 3.2.3 and 5.1.2(a), Corrolaries 3.2.4 and 3.2.5 ].

Proposition 4.1.4. Let B be a Borel set and let cap(Z) = 0. Then

cap(B ∪ Z) = cap(B) = cap(B\Z).

Proof. If cap(B ∪ Z) = 0 then the statement follows immediately by Propo-

sition 4.1.3(c) and nonnegativity of capacity. Now let cap(B ∪ Z) > 0. Let

µ be any unit measure such that I(µ) > −∞ and supp(µ) ⊆ B ∪ Z. By

the second part of Proposition 4.1.3(a) it follows that µ(Z) = 0 since Z is of

capacity zero. Thus I(µ) = I(µ|B\Z) and hence cap(B∪Z) = cap(B\Z).
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Proposition 4.1.5. Let µ be a finite measure with compact support. Then

cap(Z) = 0 where

Z := { z ∈ C : pµ(z) = −∞} .

Proof. See [3, Theorem 3.5.1].

Proposition 4.1.6. Given a Borel set E there exists a unique unit measure

ωE satisfying

pωE
(z) ≥ log ( cap(E) ) on C,

pωE
(z) = log ( cap(E) ) q.e. on E.

We also have that supp(E) ⊆ Ē. The measure ωE is called the equilibrium

measure of E.

Proof. See [5, Appendix IV].

Proposition 4.1.7. Given a compact subset K of C, equilibrium measure

ωK of K is the unique unit measure with supp(µ) ⊆ K satisfying I(ωK) ≥
I(µ) for any unit measure µ. In other words, I(ωK) = log ( cap(K) ).

Proof. See [3, Theorems 3.3.2 and 3.3.4].

Proposition 4.1.8. Let B be a proper Borel subset of C with bounded com-

plement. Let E = C\B be of positive capacity. Then the function g∞B defined

as

g∞B (z) = pωE
(z)− log ( cap(E) ) (4.1)

is the unique function satisfying

i. g∞B (z) is non-negative and g∞B (z) = 0 q.e. on C\B.

ii. g∞B (z) is harmonic on int(B\ {∞}) and subharmonic on C.

iii. limz→∞ ( log | z | − g∞B (z) ) = log ( cap(E) ).

We also have that if B′ ⊆ B then g∞B′(z) ≤ g∞B (z).
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Proof. See [5, Theorem A2].

Definition 4.1.5. Let B be a Borel set in C with bounded complement.

Then the unique function g∞B (z) defined in Proposition 4.1.8 is called the

Green function of B at infinity. If complement of B is of capacity zero, then

set g∞B (z) ≡ ∞.

Definition 4.1.6. The sequence of measures ( µn )∞n=0 is said to converge

weakly to the measure µ if for every continuous function f we have

lim
n→∞

∫
f(z) dµn(z) =

∫
f(z) dµ(z).

Weak convergence is denoted as µn
∗−−→ µ.

Proposition 4.1.9. Let B be a Borel set. Then there exists a sequence

( Kn )∞n=0 of compact subsets of C such that

lim
n→∞

cap(Kn) = cap(B),

lim
n→∞

g∞C\Kn
(z) = g∞C\C(z) (∀z ∈ C),

ωKn

∗−−→ ωB.

Proof. See [5, page 8].

The following theorem is the version of Helly’s Choice Theorem (Theorem

2.6.1) for C :

Theorem 4.1.10. Let ( µk )∞k=0 be a sequence of unit measures with uniformly

bounded supports. Then it has a subsequence ( µki
)∞i=0 such that µki

∗−−→ µ

for some measure µ with compact support.

Proof. See [3, Theorem A.4.2].

We have the following relation between weak convergence and the poten-

tials of measures:
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Theorem 4.1.11. Let ( µk )∞k=0 be a sequence of unit measures with uniformly

bounded supports such that µk
∗−−→ µ. Then

pµ(z) = lim sup
k→∞

pµk
(z) q.e. on C.

Proof. See [4, Theorem 3.8].

4.2 Weight Measures and Carriers

Given a measure µ on C, a scalar product is defined on the linear space

L2
µ :=

{
f(z) : C → C

∣∣ f(z) is µ-measurable and

∫
| f(z) |2 dµ(z) < ∞

}
by

( f(z), g(z) )µ =

∫
f(z)g(z) dµ(z).

The space L2
µ is complete, which can be proved similarly as the complete-

ness of L2
σ, introduced in Section 1.1 . To force the linear space L2

µ to be a

Hilbert space, we introduce further restriction on the cardinality of supp(µ)

to ensure that L2
µ is infinite dimensional:

Definition 4.2.1. A unit measure on C is said to be a weight measure if

supp(µ) is compact (or equivalently, bounded) and has infinite number of

points.

With a proof similar to the one of Proposition 1.1.1 (only the intervals

should be replaced by appropriate discs), it follows that C[λ] is a subspace

of L2
µ and thus the space L2

µ is a Hilbert space with the given scalar product.

Definition 4.2.2. Let µ be a weight measure. A bounded Borel subset E

of supp(µ) is called a carrier of µ if

µ(C\E) = µ(supp(µ)\E) = 0.
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Obviously supp(µ) is a carrier of µ itself.

Definition 4.2.3. For a weight measure µ, the minimal carrier capacity cµ

of µ is

cµ := inf { cap(E) : E is a carrier of µ }

and the minimal carrier Green function of µ is

g∞µ (z) := sup
{

g∞C\E(z) : E is a carrier of µ
}

.

A carrier C ⊆ supp(µ) of µ is called a minimal carrier if cap(C) = cµ.

Proposition 4.2.1. For any carrier E of µ there exists a minimal carrier

C of µ such that C ⊆ E. In particular, there exists at least one minimal

carrier of µ.

Proof. Since cµ is the infimum of capacities of carriers, there exists a sequence

( En )∞n=1 of carriers such that limn→∞ cap(En) = cµ . Given a carrier E of µ,

set E0 := E. Then C =
⋂∞

n=0 En is a carrier of µ since C\C =
⋃∞

n=0 C\En

is a union of µ-measure zero sets so it is also of µ-measure zero. Thus

cap(C) ≥ cµ. Besides, C ⊆ En for any n so cap(C) ≤ cµ. Therefore C is a

minimal carrier of µ such that C ⊆ E.

Proposition 4.2.2. For any minimal carrier C of a weight measure µ we

have

g∞C\C(z) ≡ g∞µ (z).

Also

g∞µ (z) = 0 q.e. on C.

Proof. If cµ = 0 then for any minimal carrier C ′ of µ we have cap(C ′) = 0

and thus g∞C\C′(z) ≡ ∞. Hence g∞C\C(z) ≡ g∞µ (z) ≡ ∞. Second equation is

automatically satisfied since cap(C) = 0.
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Now assume cµ > 0. Let C1 and C2 be two minimal carriers. Let C0 :=

C1 ∩ C2. Then C0 is a carrier of µ, and so cµ = cap(C1) ≥ cap(C0) ≥ cµ

implies that C0 is a minimal carrier of µ. Since both functions g∞C\C1
(z) and

g∞C\C2
(z) satisfy all three defining properties of the Green function of C0, from

uniqueness it follows that

g∞C\C1
(z) ≡ g∞C\C2

(z)

and thus all Green functions for the complements of carriers are identical.

Since every carrier includes a minimal carrier by Proposition 4.2.1 and since

E ⊇ C ′ implies g∞C\E(z) ≤ g∞C\C′(z), by definition of g∞µ (z) it follows that

g∞µ (z) = g∞C\C(z) for any minimal carrier C. Now, g∞µ (z) = 0 q.e. follows

from g∞µ (z) = g∞C\C(z) and Proposition 4.1.8(i).

By the previous theorem and the uniqueness of equilibrium measure in

representation (4.1) of g∞µ (z), we have the following result:

Corollary 4.2.3. For a weight measure µ, all minimal carriers have the

same equilibrium measure, which will be denoted by ωµ. The minimal carrier

Green function is of the form

g∞µ (z) = pωµ(z)− log cµ . (4.2)

Proposition 4.2.4. Let µ and ν be unit measures and let c ∈ R. If pν(z) ≤ c

q.e. on a minimal carrier C of µ then

pν(z)− c ≤ g∞µ (z) (∀z ∈ C),

c ≥ − log cµ.

Proof. If cµ = 0 then g∞µ (z) ≡ ∞ and − log cµ = ∞, hence the result follows.

Let cµ > 0 and let Z ⊂ C denote the set of capacity zero for which pν(z) ≤ c

does not hold. Take an ascending sequence ( Kn )∞n=0 of compact sets in C

as in Proposition 4.1.9 such that cap(Kn) > 0 and limit relations hold for

the Borel set C. Denote the equilibrium measure of Kn as ωn. For any n we
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have ωn(Z) = 0 since the measures ωn are all unit. Then for z ∈ C\Z we

have

pν(z)− c ≤ 0 ≤ g∞C\Kn
(z) = pωn(z)− log cap(Kn)

and thus

pν(z)− ( c− log cap(Kn) ) ≤ pωn(z).

But then by Proposition 4.1.2 it follows that the inequality holds everywhere,

and passing to the limits we obtain the first inequality stated in the proposi-

tion. To obtain c ≤ − log cµ, consider the representation (4.2) of g∞µ (z) and

let z →∞.

4.3 Orthogonal Polynomials in L2
µ

Throughout the section, let {Pk(z) }∞k=0 denote a sequence of polynomials

with positive leading coefficients which are orthonormal in the space L2
µ and

deg Pn(z) = n. By the same considerations as in Section 1.2, if µ is a weight

measure then there exists such a sequence. Let γn be the leading coefficient

of Pn(z) and define

P̃n(z) :=
Pn(z)

γn

to be the corresponding monic polynomials. Define

Nn := ‖P̃n(z)‖

where the norm comes from the Hilbert space structure of L2
µ. Since norm

of Pn(z) is 1, we have the relation

Nn =
1

γn

.

Let p(z) be any monic polynomial of degree n other than P̃ (z). Then

p(z) can be represented as

p(z) = P̃n(z) +
n−1∑
k=0

cnPk(z)
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for some c0, . . . , cn−1 ∈ R at least one of which is nonzero. Then

‖p(z)‖2 = ( p(z), p(z) )

=
(

P̃n(z), P̃n(z)
)

+
n−1∑
k=0

c2
k ( Pk(z), Pk(z) )

= ‖P̃n(z)‖2 +
n−1∑
k=0

c2
k

> ‖P̃n(z)‖2.

Thus we have that the polynomial P̃n(z) is characterized by the property

that ‖P̃n(z)‖ ≤ ‖p(z)‖ for any monic polynomial p(z) of degree n . Using

this fact, we will prove:

Proposition 4.3.1. Zeroes of the all polynomials P̃n(z), and hence Pn(z),

are in convex hull of supp(µ) .

Proof. Assume that z0 is a zero of P̃n(z) such that z0 is not in convex hull

of supp(µ) . Then there is a straight line l ⊂ C separating supp(µ) and z0 .

Let U denote the part of plane, separated by l, which includes supp(µ) . Let

z′0 be the nearest point to z0 on line l. For any z ∈ U we have∣∣∣∣ z − z′0
z − z0

∣∣∣∣ < 1.

Also we have that

p(z) =
z − z′0
z − z0

P̃n(z)

is a monic polynomial of degree n since z0 is a zero of P̃n(z) . We have

| p(z) | ≤
∣∣∣ P̃n(z)

∣∣∣ for any z ∈ U and equality holds on U only at zeroes of

P̃n(z) in U . Since supp(µ) is infinite and P̃n(z) has only a finite number of

zeroes, inequality holds on a subset of supp(µ) of positive measure. But then

‖p(z)‖2 =

∫ ∣∣∣∣ z − z′0
z − z0

P̃n(z)

∣∣∣∣2 dµ(z) =

∫
U

∣∣∣∣ z − z′0
z − z0

P̃n(z)

∣∣∣∣2 dµ(z)

<

∫
U

∣∣∣ P̃n(z)
∣∣∣2 dµ(z) =

∫
P̃n(z)2 dµ(z) = ‖Pn(z)‖2,
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which contradicts with the minimality of the norm of P̃n(z) among monic

polynomials of degree n .

Let λ
(n)
1 , λ

(n)
2 , . . . , λ

(n)
nj be the distinct zeroes of Pn(z). With the use of

orthogonal polynomials, define the sequence of measures ( νk )∞k=0 such that

weight of νn is gathered at the zeroes of Pn(z), and the weight of νn at λ
(n)
i

is m
(n)
i /n, where m

(n)
i is the multiplicity of the zero λ

(n)
i of Pn(z). From the

definition it follows that νn is a unit measure for any n ∈ N. Integral of a

function f(z) with respect to the measure νn is∫
f(z) dνn(z) =

nj∑
i=1

m
(n)
i

n
f(λi).

Since supp(νn) consists of zeroes of Pn(z), by Proposition 4.3.1 we have that

the sets supp(νn) are uniformly bounded.

Lemma 4.3.2. Let µ be a weight measure. Then lim supk→∞ |Pk(z) |
1
k ≤ 1

on some carrier E of µ.

Proof. Let M =
∑∞

k=1
1
k2 < ∞. Then for any n ∈ N∫ n∑

k=1

|Pk(z) |2

k2
dµ(z) =

n∑
k=1

1

k2

∫
|Pk(z) |2 dµ(z) =

n∑
k=1

1

k2
≤ M.

Hence by Monotone Convergence Theorem it follows that the integral∫ ∑∞
k=1 |Pk(z) |2 /k2 dµ(z) converges. Therefore the sum

∑∞
k=0 |Pk(z) |2 /k2

converges on a complement of a set of µ-measure zero, and thus on a car-

rier E of µ. Thus there exists m such that |Pk(z) |2 /k2 ≤ 1 and hence

|Pk(z) | /k ≤ 1 for k > m. Therefore for z ∈ E we have

1 > lim sup
n→∞

∣∣∣∣ Pn(z)

n

∣∣∣∣ 1
n

=

lim sup
n→∞

|Pn(z) |
1
n

lim
n→∞

n
1
n

= lim sup
n→∞

|Pn(z) |
1
n .
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Lemma 4.3.3. Let the polynomials P̃n(z) and the unit measures νn be defined

relative to a sequence ( Pk(z) )∞k=0 of orthonormal polynomials as on page 59 .

Then for any n ∈ N
pνn(z) = log |P̃n(z)|

1
n .

Proof.

pνn(z) =

∫
log | z − w | dw(z) =

nj∑
i=1

m
(n)
i

n
log
∣∣∣ z − λ

(n)
i

∣∣∣
= log

nj∏
i=1

∣∣∣ z − λ
(n)
i

∣∣∣m
(n)
i
n

= log

∣∣∣∣∣
nj∏
i=1

(
z − λ

(n)
i

)m
(n)
i

∣∣∣∣∣
1
n

= log |P̃n(z)|
1
n .

Proposition 4.3.4. Let µ be a weight measure. Let ( Pki
(z) )∞i=0 be a sub-

sequence of ( Pk(z) )∞k=0 such that limi→∞ ( Nki
)

1
ki = L and νki

∗−−→ ν. Then

pν(z) ≤ log L q.e. on some carrier E of µ. Moreover, if cap(E) > 0 then

L > 0.

Proof. By Lemma 4.3.2 it follows that

lim sup
k→∞

|P̃ki
(z)|

1
ki = lim sup

k→∞
N

1
ki
k |Pki

(z)|
1
ki = L lim sup

k→∞
|Pki

(z)|
1
ki ≤ L (4.3)

on a carrier E of µ. Hence for any z ∈ E it follows by Lemma 4.3.3 that

lim sup
i→∞

pνki
(z) = log

(
lim sup

i→∞
|P̃ki

(z)|
1
ki

)
≤ log L.

Therefore by Theorem 4.1.11 we conclude that

pν(z) ≤ log L

q.e. on E.

Now assume cap(E) > 0. Let Z1 be the capacity-zero set such that

pν(z) ≤ log L on E\Z1. Let Z2 = { z ∈ C : pµ(z) = −∞}. By Theorem
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4.1.5 we have cap(Z2) = 0. Thus cap(Z1 ∪ Z2) = 0 and hence cap(E\(Z1 ∪
Z2)) = cap(E) > 0 by Proposition 4.1.4. Therefore E\(Z1∪Z2) is nonempty

and there exists a point z0 such pν(z0) ≤ log L and pν(z0) > −∞. We

conclude that

log L ≥ pν(z0) > −∞

and hence L > 0.

4.4 Asymptotic Behaviour of Pn(z)

and Its Leading Coefficients

The following theorem which gives an upper bound for the asymptotic

behaviour of the orthonormal polynomials is proved by J.L. Ullman in 1984

[8]:

Theorem 4.4.1. Let µ be a weight measure and let ( Pk(z) )∞k=0 be a sequence

of orthonormal polynomials such that deg Pn(z) = n. Then

lim sup
k→∞

|Pk(z)|
1
k ≤ eg∞µ (z). (4.4)

Proof. First of all, we may assume without loss of generality that the leading

coefficients of the orthogonal polynomials Pk(z) are positive real numbers

since we can obtain such a sequence by multiplying the polynomials with

complex scalars of norm one, which does not affect the absolute value of

the polynomials at any z and we still obtain a sequence of orthonormal

polynomials.

If cµ = 0 then g∞µ (z) = ∞ and the result follows trivially. Consider the

nontrivial case cµ > 0. Let { νk }∞k=0 be the measures defined on page 59

determined by the polynomials {Pk(z) }∞k=0 . Since supports of the measures

νk are uniformly bounded, by Theorem 4.1.10 the sequence ( νk )∞k=0 has a

subsequence ( νki
)∞i=0 such that νki

∗−−→ ν for some unit measure ν with com-

pact support. We may assume that the values ( Nki
)

1
ki converge to a value
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L (allow L = ∞) since if not, we may choose such a subsequence of ( νki
)∞i=0.

Then by Proposition 4.3.4 it follows that

pν(z) ≤ log L (4.5)

holds on E\Z where E is a carrier of ν and cap(Z) = 0. We also have L > 0

since cap(E) ≥ cµ > 0. Let C be a minimal carrier such that C ⊆ E. Then

equation (4.5) holds on C\Z. Then by Proposition 4.2.4 and representation

(4.2) of g∞µ (z) it follows that

pν(z)− log L ≤ g∞µ (z) = pωµ(z)− log cµ (4.6)

for all z ∈ C.

Now fix z ∈ C. If lim supk→∞ |Pk(z)| 1k = 0 then the claim of the theorem

follows immediately. Assume M := lim supk→∞ |Pk(z)| 1k > 0. Choose a

subsequence (νkij
)∞j=0 (which will be denoted as

(
νnj

)∞
j=0

for short) such that

limk→∞
∣∣Pnj

(z)
∣∣ 1

nj = M . We still have νnj

∗−−→ ν and limj→∞
(
Nnj

) 1
nj = L.

Using Lemma 4.3.3 it follows that

log M = lim
j→∞

log
∣∣Pnj

(z)
∣∣ 1

nj = lim
j→∞

log

∣∣∣ P̃nj
(z)
∣∣∣ 1

nj(
Nnj

) 1
nj

= lim
j→∞

(
log |P̃nj

(z)|
1

nj − log
(
Nnj

) 1
nj

)
= lim

j→∞
pνnj

(z)− log L.

Also applying inequality (4.6) and Theorem 4.1.11 we have

lim
j→∞

pνnj
(z)− log L ≤ pν(z) + g∞µ (z)− pν(z) = g∞µ (z)

and we conclude that

log M ≤ g∞µ (z).
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Given a compact subset S of C, let Ω(S) denote the unbounded compo-

nent of C\S. For a measure µ on C, let Ωµ = Ω(supp(µ)) and let conv(µ)

denote the convex hull of supp(µ). The following theorem gives a lower

asymptotic bound for the values |Pn(z)| 1n [5, Th. 1.1.4, eq. (1.7)]. (H. Widom

had proved this lower bound for a special kind of measures which he called

‘admissible measures’ in 1967 [10]) :

Theorem 4.4.2. Let µ be a weight measure and let ( Pk(z) )∞k=1 be a sequence

of related orthonormal polynomials such that deg Pn(z) = n. Then

lim inf
k→∞

|Pk(z)|
1
k ≥ e

g∞Ωµ
(z)

(4.7)

for z ∈ C\conv(µ).

For a compact subset S of C, let S∗ := C\Ω(S) and let ∂S denote the

boundary of the set S. Note that S∗ is the smallest simply connected set

including S as a subset. Since S ⊆ S∗ we have cap(S) ≤ cap(S∗). Besides,

supp(ωS∗) ⊆ ∂S∗ ⊆ S yields that cap(S) = eI(ωS) ≥ eI(ωS∗ ) = cap(S∗) by

Proposition 4.1.7. Thus we conclude that cap(S) = cap(S∗). We also have

that ωS∗ = ωS since supp(ωS∗) ⊆ S and I(ωS∗) = log ( cap(S) ). So, by

definition of Green function, we have

g∞Ωµ
(z) = pωS∗ (z)− log ( cap(S∗) )

= pωS
(z)− log ( cap(S) ) ,

where S = supp(µ).

If we let z → ∞ for the lower bound given by expression (4.4), for the

leading coefficients γn of Pn(z) we get

lim sup
k→∞

( γn )
1
n = lim

z→∞
lim sup

k→∞
|Pk(z)|

1
k

≤ lim
z→∞

eg∞µ (z) = lim
z→∞

(
epµ(z)

cµ

)
≤ 1

cµ

.
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Let S = supp(µ). Letting z →∞ in expression (4.7) yields

lim inf
k→∞

( γn )
1
n = lim

z→∞
lim inf

k→∞
|Pk(z)|

1
k

≥ lim
z→∞

e
g∞Ωµ

(z)
= lim

z→∞

(
epωS

(z)

cap(S)

)
≥ 1

cap(S)
.

If we put these two facts together and recall that
∫

P̃n(z) dµ(z) = 1
γn

, we

get that

cµ ≤ lim inf
k→∞

(∫
P̃n(z) dµ(z)

) 1
n

≤ lim sup
k→∞

(∫
P̃n(z) dµ(z)

) 1
n

≤ cap(S),

from which we have the following result:

Corollary 4.4.3. If cµ = cap(supp(µ)) then

lim
k→∞

( γn )
1
n =

1

cap(supp(µ))

and equivalently

lim
k→∞

(∫
P̃n(z) dµ(z)

) 1
n

= cap(supp(µ)).

The measures which satisfy the condition cµ = cap(supp(µ)) are named

as determined measures by J.L. Ullman [8].
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[12] H. Hamburger, Über eine Erweiterung des Stieltjesschen Momenten-

problems, Math. Ann. 81(1920) 235-319; 82(1921) 120-164; 82(1921)

168-187

[13] T. Stieltjes, Recherches sur les fractions continues, Anns. Fac. Sci. Univ.

Toulouse, 8(1894) J1-J122; 9(1895) A5-A47

[14] G.F.D. Duff and D. Naylor, Differential equations of applied mathemat-

ics, John Wiley & Sons, Inc., 1966

66


