
TOWARDS FINDING OPTIMAL MIXTURE OF SUBSPACES FOR DATA
CLASSIFICATION

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

MOHAMED ELHAFIZ MUSTAFA MUSA

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN

THE DEPARTMENT OF COMPUTER ENGINEERING

OCTOBER 2003

Approval of the Graduate School of Natural and Applied Sciences.

Prof. Dr. Canan Özgen
Director

I certify that this thesis satisfies all the requirements as a thesis for the degree
of DOCTOR OF PHILOSOPHY.

Prof. Dr. Ayşe Kiper
Head of Department

This is to certify that we have read this thesis and that in our opinion it is
fully adequate, in scope and quality, as a thesis for the degree of DOCTOR OF
PHILOSOPHY.

Assoc.Prof. Dr. Volkan
Atalay

Supervisor

Examining Committee Members

Prof. Dr. Neşe Yalabık

Prof. Dr. Uǧur Halıcı

Prof. Dr. Robert Duin

Assoc. Prof. Dr. Volkan Atalay

Dr. Dick de Ridder

ABSTRACT

TOWARDS FINDING OPTIMAL MIXTURE OF SUBSPACES FOR DATA

CLASSIFICATION

MOHAMED ELHAFIZ MUSTAFA MUSA

Ph.D., Department of Computer Engineering

Supervisor: Assoc.Prof. Dr. Volkan Atalay

October 2003, 85 pages

In pattern recognition, when data has different structures in different parts of the

input space, fitting one global model can be slow and inaccurate. Learning methods

can quickly learn the structure of the data in local regions, consequently, offering faster

and more accurate model fitting. Breaking training data set into smaller subsets may

lead to curse of dimensionality problem, as a training sample subset may not be enough

for estimating the required set of parameters for the submodels. Increasing the size of

training data may not be at hand in many situations. Interestingly, the data in local

regions becomes more correlated. Therefore, by decorrelation methods we can reduce

data dimensions and hence the number of parameters. In other words, we can find

uncorrelated low dimensional subspaces that capture most of the data variability. The

current subspace modelling methods have proved better performance than the global

modelling methods for the given type of training data structure. Nevertheless these

methods still need more research work as they are suffering from two limitations

• There is no standard method to specify the optimal number of subspaces.

• There is no standard method to specify the optimal dimensionality for each

iii

subspace.

In the current models these two parameters are determined beforehand. In this dis-

sertation we propose and test algorithms that try to find a suboptimal number of

principal subspaces and a suboptimal dimensionality for each principal subspaces au-

tomatically.

Keywords: Principal Component Analysis, Mixture Model, Expectation Maximization

algorithm.

iv

ÖZ

VERİ SINIFLAMA İÇİN EN İYİ ALTUZAY KARIŞIMLARININ BULUNMASINA

DOĞRU

MOHAMED ELHAFIZ MUSTAFA MUSA

Doktora, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Volkan Atalay

Ekim 2003, 85 sayfa

Örüntü tanımada, verilerin girdi uzayında değişik yapıları olduğunda, bu veriye

uygun tek bir genel model bulmak çok yavaş ve yanlış olabilir. Öte yandan öğrenme

algoritmaları yerel bölgelerdeki verinin yapısını çabucak öğrenebilir ve böylece daha

hızlı ve doğru model bulmaya yolaçabilirler. Öğrenme veri kümesini küçük altkümelere

bölmek, altkümedeki verinin büyüklüğü nedeniyle altmodelin parameter kümesini bul-

mak için yeterli olmayabilir. Birçok durumda da eldeki veri kümesi büyütülemeyebilir.

Yerel bölgelerdeki veriler ilginçtir ki birbirleriyle daha ilişkili olabilirler. Bu yüzden,

dekorelasyon yöntemleriyle verinin boyutunu ve böylece de parameter sayısını in-

dirgeyebiliriz Başka bir deyişle, verinin değişiminin çoğunu yakalayan kendi içinde ko-

rele olmayan alçak boyutlu altuzaylar bulabiliriz. Şu anda varolan altuzay modelleme

yöntemleri verilen bir öğrenme veri yapısı tipi için genel modelleme yöntemlerine gore

daha yüksek başarı göstermişlerdir. Bunun yanısıra, aşağıdaki sınırlamalardan dolayı

bu konuda araştırma yapılması gerekmektedir

• Optimal altuzay sayısını bulmak için standart bir yöntem mevcut değildir.

• Herbir altuzaydaki optimal boyutu bulmak için standart bir yöntem mevcut

v

değildir.

Şu andaki modellerde yukarıda bahsedilen her iki parametre de elle önceden saptan-

maktadır. Bu araştırmada suboptimal altuzay sayısını ve herbir altuzay için subopti-

mal boyutu otomatik bulmak için algoritmaların tasarlanması ve denenmesi önerilmektedir.

Anahtar Kelimeler: Temel bileşen analizi, Karışım modeli, Bekleme-eniyileme al-

gorıtması.

vi

To my mother and the soul of my father

vii

ACKNOWLEDGMENTS

This thesis could no have been produced without the support and assistance of nu-

merous people, for whom I would like to include this acknowledgement.

Most of all, I wish to thank my supervisor, Assoc. Prof. Volkan Atalay, for his

excellent guidance, his patience and extremely friendly and supportive attitude. I

would like also to thank all the colleagues in Computer engineering department in

METU.

Secondly I would like to express my gratitude to the great scientist Prof. Robert

Duin and Dr. Dick De Ridder who introduced me to the key concepts of the problems

involved in this thesis. They have given me valuable help and guidance when I was

with then in TUDelft and remotely after I came back to Ankara. I would like also to

thank all the colleagues in the pattern recognition group in TUDelft, especially the

neural network subgroup.

I am also grateful to my jury and follow-up committee members, our grand super-

visor Prof. Neşe Yalabık and Prof. Uğur Halıcı.

Thanks are also due to Prof. Turhan Alper for his encouragements and support

and the colleagues in Computer engineering department in Çankaya university.

Finally I would like to thank my wife Nagat Hassan for her patience and under-

standing.

viii

TABLE OF CONTENTS

ABSTRACT . iii

ÖZ . v

DEDICATON . vii

ACKNOWLEDGMENTS . viii

TABLE OF CONTENTS . ix

LIST OF TABLES . xii

LIST OF FIGURES . xiii

1 Introduction . 1

1.1 Overview . 1

1.2 Problem definition . 2

1.3 Contribution and organization 4

1.4 Notations and abbreviations 5

2 Principal subspaces . 7

2.1 Curse of dimensionality . 7

2.2 How to decrease the dimensionality? 8

2.2.1 Feature selection . 8

2.2.2 Feature extraction 9

2.3 Principal component analysis 9

2.3.1 Shortcomings of PCA 10

2.4 Nonlinear PCA . 11

2.5 Probabilistic PCA . 13

2.5.1 Advantages of probabilistic PCA 14

2.5.2 Latent variable approach 15

ix

2.5.2.1 The latent variable model 15

2.5.2.2 PCA as a latent variable model 15

2.5.3 Distance-based approach 17

2.6 Conclusions . 19

3 Mixture of local principal subspaces 20

3.1 Introduction . 20

3.2 Issues in clustering . 21

3.3 Hard clustering versus soft clustering 23

3.4 Mixture models (soft clustering) 25

3.4.1 Mixture of Gaussians 25

3.4.2 Mixture of Gaussians training 26

3.4.3 Expectation maximization algorithm 27

3.4.3.1 EM for MoG 28

3.4.3.2 Learning MoG with EM Difficulties . . . 29

3.5 Subspace clustering . 29

3.5.1 Mixtures of PCA . 30

3.5.2 Mixtures of PPCA 31

3.6 A complete greedy scheme for MPPCA training 31

3.6.1 Subspace dimensionality versus variability 32

3.6.2 Greedy EM for MPPCA training 33

3.6.3 Greedy hard clustering 35

4 Application: data classification . 40

4.1 Introduction . 40

4.2 Handwritten digit recognition 41

4.2.1 Results and discussion 43

4.3 Ionosphere signal classification 49

4.3.1 Results and discussion 50

4.4 Conclusions . 50

5 Application: texture image segmentation 55

5.1 Overview . 55

5.2 Texture image data set . 57

5.3 Results and discussion . 57

5.4 Conclusions . 58

x

6 Conclusions and future work . 64

6.1 Training set size dimensionality and number of subspaces . . . 67

6.2 Complexity issues . 68

REFERENCES . 70

APPENDICES

A Eigenvectors derivation for principal components 77

B Expectation maximization algorithm 80

B.1 Introduction . 80

B.2 EM definition . 80

B.3 Proof that the likelihood is nondecreasing at each iteration . . 81

B.4 Proof of equation B.3.1 . 82

B.5 Proof of equation B.3.2 . 83

C EM for MPPCA . 84

VITA . 85

xi

LIST OF TABLES

1.1 Notation and Abbreviation . 6

3.1 The average σ2, average retained variance α and average test error for
each of the 10 digit classes. This table is taken form the experiments
reported in Musa et al. (2001a) . 34

4.1 This table summarizes the six experiments. #Sub. and #Dim. are the
average number of subspaces and dimensionality per class. 42

4.2 Results for various classifiers on the NIST data set (de Ridder 2001,
Winson & Garris 1992). 43

4.3 Test results, as average error percentage and standard deviation, for the
six experiments on NIST handwritten digit data set. In all models, the
estimated covariance matrices C are regularized by adding 0.01 times
the identity matrix. 44

4.4 Test results for the six experiments using a regularization value of 0.20. 46
4.5 This table summarizes the result for suboptimal αOpt value, 0.77, result.

The second row shows the average number of subspaces for each class.
The third row shows the average subspace dimensionality for each class.
The fourth row shows the error for each class. The last column shows
the average for all classes. 46

4.6 Results for various classifiers on the ionosphere data set. 50
4.7 Test results, as average error in % and standard deviation, for the

four experiments on the ionosphere data set. #Sub. and #Dim. are
the average number of subspaces and dimensionality per class. For all
models, the estimated covariance matrices C are regularized by a value
of 0.1. 51

xii

LIST OF FIGURES

1.1 The red line shows the conventional PCA global linear 1-dimensional
subspace. The black curve represents the best fit difficult to find prin-
cipal curve. The green lines represent the state-of-the-art nonlinearity
approximation by a set of local linear principal subspaces 3

2.1 PCA does not define a proper density model in the data space; thus
a point far away form the data, but nonetheless near to the principal
subspace will have low reconstruction error. The two red data points
will have the same reconstruction error despite the fact one of them is
far from the bulk of the data. 12

2.2 A data point that falls near to class B (appears as stars) region and has
a lower reconstruction distance from class A (appears as circles) sub-
space than class B subspace, will be classified erroneously as belonging
to class A. 12

2.3 An autoassociative neural network for computing principal manifolds
x in the input space of y . 13

2.4 Space decomposition into Principal subspace F and orthogonal comple-
ment F . 18

3.1 Illustration of how 1-dimensional local principal subspaces capture dif-
ferent structure of digit “2” high dimensional space (256 dimensions). 22

3.2 Images generate from points in a 2-dimensional global principal sub-
space for digit “2” the original data space dimensionality is 256. . . . 23

3.3 (a) A scatter diagram for a well separated clusters. (b) Hard clustering
linear boundaries for the data set shown in (a). (c) A scatter diagram
for a an interfered clusters. (d) A mesh for a MoG trained on the data
set shown in (c). 38

3.4 (a) A triangle density model approximated by a MoG. (b) A uniform
density model approximated by a MoG. The red lines show the com-
ponent density functions of the mixtures and the blue line show the
Mixture density functions. 39

4.1 Examples for the misclassified digit “1” images in the first set of exper-
iments, In these experiments the estimated covariance matrices C are
regularized by adding 0.01 times the identity matrix. Note how most
of the digits have general reasonable shape with some noise presence. 45

xiii

4.2 Error (% of the test set classified incorrectly) as a function of the reg-
ularization value, for experiments I-VI. 47

4.3 (a) Error (average of test and training set classified incorrectly in the 5
experiments) as a function of the retained variance i.e. α. (b) Average
subspace dimensionality as a function of α. 48

4.4 Error (% of the test set classified incorrectly) as a function of the reg-
ularization value. 52

4.5 (a) Error (% of the test set classified incorrectly) as a function of α val-
ues. (b) Average dimensionality as a function of the retained variance
(α). 53

4.6 Some of subspace origins and the first two PC’s found in one of Exper-
iment VI on NIST digit data . 54

5.1 Segmentation results for VD-MPPCA model where the number of sub-
spaces is two in all experiments. Each row shows a different experiment
with different α values in the following order: 0.15 , 0.20 , 0.25 ,0.30,0.35
and 0.40. The average dimensionality for the subspaces is shown under
each image. 60

5.2 Segmentation results of two subspaces through ten subspaces. 61
5.3 Likelihood as a function of number of subspaces 62
5.4 The best number of subspace segmentation results based on maiximum

likelihood criterion. The number of subspace is indicated under each
segmented image. 63

xiv

CHAPTER 1

Introduction

1.1 Overview

In pattern recognition and related fields, each object is represented by a vector of d

features or measurements and it is viewed as a point in a d-dimensional space. For

instance, if we are dealing with a digitized n × n image, we convert it into (n × n)-

dimensional vector. Treating this high dimensional vector without any reduction in its

dimension is computationally infeasible. This is one of the reasons behind developing

the so called feature extraction methods. Principal component analysis (henceforth

PCA) is the most popular feature extraction method, that exploits data correlation,

for compression, visualization and classification (Jolliffe 2002).

PCA was introduced early in the past century (Pearson 1901). Nevertheless, it

still undergoes research and new extensions are found. Moreover, recently with the

emergence of neural networks, PCA has been cast as a neural network feature extrac-

tion approach (Haykin 1999). PCA finds a subspace, called principal subspace, inside

the data space in which the data is uncorrelated. This objective together with the

property of being the optimal reconstruction error linear transform, make PCA one of

the most popular techniques in many fields like pattern recognition, machine learning,

data mining and data compression.

When the underlying data have different structures in different regions of the

input space or the data is distributed near to a curve or a nonlinear manifold, a low

1

dimensional principal subspace can poorly fit it. Figure 1.1 illustrates this problem

and its possible solutions using a data set which has a banana shaped distribution. It

is clear form the figure that the principal subspace found by conventional PCA method

does not fit the given data set properly. This problem is a direct consequence of PCA

global linearity. Currently, there are two methods for dealing with this problem: [1]

by using one of the PCA nonlinear extensions—most of these extensions are neural

based— (Bailing et al. 2001, DeMers & Cottrell 1993, Petsche et al. 1996, Stanford &

Raftery 1997). [2] by modelling the data nonlinearity and heterogeneity by a mixture

of local linear principal subspaces model (Kambhatla 1995, Moghaddam & Pentland

1997, Sung & Poggio 1998, Tipping & Bishop 1999a). Figure 1.1 illustrates these

methods graphically. Furthermore, the result of many recent studies suggest that

mixtures of local subspaces can be more accurate and faster than a global nonlinear

methods (Kambhatla & Leen 1997, Moghaddam 2002).

1.2 Problem definition

A number of implementations of “mixtures of local PCA” (henceforth MPCA) have

been proposed in the literature, each defining a different algorithm or a variation. Dony

& Haykin (1997), Kambhatla & Leen (1997) all proposed a kind of Vector Quantiza-

tion (VQ)/PCA mixture models, which first partition the data into disjoint regions

by (VQ) and then perform a local PCA about each region center. In these studies,

the reconstruction error is employed as the relevant distortion measure for determin-

ing the partition. A turning study in the history of this model came from Hinton

et al. (1997), as their work is the first work that used one global expectation max-

imization (EM) training process in a pseudo-likelihood framework. All algorithms

proposed before this one have two separate processes; partitioning the data space by

hard clustering methods, followed by fitting a PCA for each cluster. Another ma-

jor enhancement came from Moghaddam & Pentland (1997), Roweis (1997), Tipping

& Bishop (1999a) through proposing the Probabilistic Principal Component Analyzer

(henceforth PPCA). By giving a probabilistic definition for PCA, the usage of the mix-

ture model and soft clustering to define the mixture of PPCA (henceforth MPPCA)

2

Figure 1.1: The red line shows the conventional PCA global linear 1-dimensional

subspace. The black curve represents the best fit difficult to find principal curve. The

green lines represent the state-of-the-art nonlinearity approximation by a set of local

linear principal subspaces

3

is straight forward.

All of the above models, while they provide many enhancements, they still have

many problems that need more studies. These problems can be summarized in the

following points

• The number of subspaces k must be specified beforehand.

• The dimensionality m for subspaces must be specified beforehand.

• EM Problems: EM is the standard method for mixture training. EM is highly

dependent on initialization. For this reason any EM-based learning scheme

should cater for this problem.

The main aim of this thesis is defining a complete greedy scheme for mixture of PCA

training that alleviates the problems mentioned above.

1.3 Contribution and organization

The main contributions of this thesis can be stated as follows

• Defining an EM-based greedy learning algorithm for the MPPCA model, that

finds suboptimal number of principal subspaces k automatically.

• Defining a greedy hard clustering initialization scheme, which can be incorpo-

rated seamlessly with the above EM-base scheme to alleviate EM initialization

problem and to speed up the model training process.

• Equip the scheme with a retained variance method for finding suitable dimen-

sionality m for each subspace, which allows all subspaces to retain the same local

variability, by keeping different local dimensionalities i.e., different value for m

in each subspace.

• Test the scheme on two classification problems: Handwritten digit classification

problem and Ionosphere signal classification problem.

• Test the scheme on texture image segmentation problem.

4

The thesis is organized as follows. Chapter 2 is devoted for explaining principal

subspace. This chapter starts by explaining the conventional way of learning the prin-

cipal subspace. The chapter then explains the major drawbacks of the conventional

PCA and the variant suggestions to overcome these problems. Chapter 2 gives con-

siderable part for explaining the probabilistic PCA, which enables a formal definition

for the PCA mixture model. Chapter 3 discusses the mixture of principal subspaces.

The chapter also explains the hard clustering methods and soft clustering methods

(mixture models). The chapter then gives detailed description for the MPPCA greedy

learning scheme’s algorithms. Chapter 4 and Chapter 5 present the experimental re-

sults of the model. As usual we devote Chapter 6 for conclusions and future work.

1.4 Notations and abbreviations

In general, throughout this thesis, scalar variable is denoted by lowercase italic letters,

e.g., i, while matrices and vectors are denoted by boldface letters, e.g., A. Further-

more, matrices are denoted by uppercase, e.g. C and vectors are denoted by lowercase,

e.g., y Table 1.1 below, list the notation and abbreviation adopted in this thesis.

5

Table 1.1: Notation and Abbreviation

Symbol Meaning
FA Factor Analysis
FD-MPPCA Fixed Dimensionality Mixture of Probabilistic

Principal Component Analyzers
EM Expectation Maximization
MoG Mixture of Gaussians
MPPCA Mixture of Probabilistic Principal Component analyzers
PC Principal Component
PCA Principal Component Analysis
PPCA Probabilistic Principal Component Analysis
VD-MPPCA Variable Dimensionality Mixture of Probabilistic

Principal Component Analyzers
A PCA projection matrix
C Model covariance matrix
D Training data set
d Dimension in data space
fk Mixture density function of k compnents
I Identity matrix
k Number of components in a mixture
m Dimension in principal subspace
N Number of data element in a training set
p Density function
P Probability function
S Data covariance matrix
x Vector in subspace
y Observed data vector
λ Eigenvalue
α Retained variance ratio
αopt Suboptimal retained variance ratio
θ Parameter vector
µ Mean
σ2 Noise in the PPCA model

6

CHAPTER 2

Principal subspaces

2.1 Curse of dimensionality

A simple table-lookup technique for classification (partitioning the feature space into

cells and associate each cell with a class label) requires the number of training data

points to be an exponential function of the feature dimension (Bishop 1995). Bellman

(1961) termed this phenomenon as “curse of dimensionality”. Of course, the technique

of dividing up the input space into cells and labelling them is inefficient. However,

even other complex and more efficient classifiers suffer from this problem. For instance,

consider the nearest mean classifier, which entails calculating means of all classes and

classifying a data point by measuring its distances from these means and assigning

it to the nearest mean class. If we need h data points to estimate the mean of a 1-

dimensional class, then we need hn data points to estimate the mean of n-dimensional

class. In other words, a plausible data size for an n-dimensional class mean estimation

is around O(2n). This is an astronomical figure for high dimensional data and no

practical training data set is expected to fulfil this requirement. It is well known

that the probability of misclassification of a decision rule does not increase as the

number of features increases, as long as the class-conditional densities are completely

known (or, equivalently the number of training samples is arbitrary large and therefore

representatives of the underlying densities). However, it has been often observed in

practice that the added features may actually degrade the performance of a classifier

7

if the number of training data points used to design the classifier is small relative to

the number of features (Jain et al. 2000). This paradoxical behavior is referred to as

the peaking phenomenon (Raudys & Pikelis 1980b, Raudys & Jain 1991). A simple

explanation for this phenomenon is as follows: the most commonly used classifiers

estimate the unknown parameters and use them in the place of the true parameters

in the class-conditional densities. For a fixed sample size, as the number of features

is increased (with a corresponding increase in the number of unknown parameters),

the reliability of the parameter estimates decrease. Consequently, the performance of

the resulting classifier, for a fixed sample size, may degrade with an increase in the

number of features. In such cases the classifier designer has two choices: increase the

sample size, which is impractical in most situations. The other alternative which is

more practical and common, is to reduce the dimensionality of the data, to arrive at

a dimensionality that (hopefully) gives the optimal result in accuracy and efficiency.

2.2 How to decrease the dimensionality?

A simple answer for this question, is by searching for features, which when removed

from the feature set the classification error does not increase or more interestingly,

the classification error decreases. Such methods, are called feature selection. In this

concern, it is important to make distinction between feature selection and feature ex-

traction. The term feature selection refers to algorithms that select the (hopefully)

most informative subset of larger set of original features. Methods that create new

features based on transformations or combinations of the original feature set are called

feature extraction methods. The choice between feature selection and feature extrac-

tion depends on the application domain and the specific training data at hand.

2.2.1 Feature selection

Although there are many algorithms for feature selection, we should make it clear: If

the goal is to find the optimal feature set, there is no substitute for trying them all

(all the possible combinations of features) and seeing how well the resulting classifier

works. This may be computationally intractable, and unless a large test set is available

8

it may be impossible to avoid selection effect of choosing the best of a large class of

classifiers on that particular test set and not for the population. To illustrate this

difficulty Ripley (1996) gave the following example: Consider a battery of diagnostic

tests T1, ..., Tm for a fairly rare disease, which perhaps around 5% of all patient tested

actually have. Suppose test T1 correctly picks up 99% of the real cases and has a very

low false positive rate. However, there is a rare special form of the disease that T1

cannot detect, but T2 can, yet T2 is inaccurate on the normal disease form. If we test

the diagnostic tests one at a time, we will never even think of including T2, yet T1 and

T2 together may give a nearly perfect classifier by declaring a patient diseased if T1 is

positive or T1 is negative and T2 is positive.

2.2.2 Feature extraction

Feature extraction methods determine an appropriate subspace of dimensionality m

(either in a linear or nonlinear way) in the original feature space of dimensionality

d (m < d). Linear transforms, such as PCA, factor analysis (FA), linear discrimi-

nant analysis, and projection pursuit have been widely used in pattern recognition

for feature extraction and dimensionality reduction. The best known linear feature

extractor is PCA (Jain et al. 2000). The following sections are devoted for the PCA:

its conventional derivation, shortcomings and recent extensions.

2.3 Principal component analysis

Principal component analysis (PCA) is one century old now. Nevertheless, it still

undergoes research and new extensions are found. Pearson (1901) is the first to

describe the technique. A description of practical computing methods came much

later from Hotelling (1933). Later, with the advent of electronic computers, the

technique achieved widespread use as the machine computational power increases the

dimension of the data that can be manipulated by many order of magnitudes.

The conventional derivation of PCA is in terms of a standardized linear projec-

tion which maximizes the variance in the projected space. For a set of observed

d-dimensional data vectors {yi}N
1 , the m principal axes Ak, k ∈ {1, ..., m} are those

9

orthonormal axes onto which the returned variance under projection is maximal. It

is well known that the vectors Ak are given by the m dominant eigenvectors of the

sample covariance matrix.

S =
∑

i

(yi − µ)T (yi − µ) (2.3.1)

Where µ is the sample data mean. The m principal components of the observed data

vector yi are given by the vector xi = AT(yi − µ), where A = (A1,A2, ...,Am).

Appendix A gives a complete PCA eigenvector based definition. PCA enjoys the

following important properties

i. The projection from and to the principal subspace are easy operations, since

only matrix multiplications is required.

ii. Model parameters can be computed easily; e.g. from the data covariance matrix

diagonalization.

iii. PCA is the optimal linear scheme for compressing, in terms of mean squared

error.

From the last property emerges an important function that has been used extensively

in classification, which known as squared reconstruction error. If y is a vector in

the data space and x is its projection into the principal subspace and the orthogonal

columns of A specify the principal subspace. We can reconstruct the data vector from

its image in the principal subspace using the formula ŷ = Ax + µ. How far this

reconstructed vector, ŷ, from the original vector is the squared reconstruction error

that can be defined as follows

Dre(y) =
∑

‖ y − ŷ ‖2 (2.3.2)

In training, a principal subspace is estimated for each class. In testing, the class that

gives the least squared reconstruction error for the testing pattern is the winner.

2.3.1 Shortcomings of PCA

PCA has three main limitations

10

i. The technique is globally linear. If the data seems to fall in some nonlinear man-

ifold (surface) PCA finds principal subspace that poorly fits the data. Figure 1.1

illustrates this problem graphically.

ii. A lack of a probabilistic or generative model. If we perform PCA on some data

and then ask how well the model fits new data points, the only criterion available

is the squared reconstruction error function given in Equation 2.3.2. A data point

far away form the training data but nonetheless near the principal subspace will

be assigned low squared reconstruction error. This fact is explained in Figure 2.1.

Figure 2.2 shows how this shortcoming may lead to misclassification. Moreover,

the lack of a generative model is a major drawback for development and testing,

as it is not possible to generate synthesized data set as a simple toy to test new

PCA-based methods.

iii. Naive training methods have troubles with high dimensional data and data

scarcity. The conventional method that entails the calculation of the covariance

matrix needs a large set of training data points for high dimensional data. For

high dimensional data the calculation of the covariance data matrix is computa-

tionally intensive O(Nd2), where d is dimensionality and N is training sample

size (Roweis 1997).

2.4 Nonlinear PCA

To overcome the PCA global linearity limitation, many extensions for defining a non-

linear principal manifolds have been proposed in the literature (DeMers & Cottrell

1993, Hastie 1984, Hsieh 2001, Karmer 1991). The defining property of these non-

linear principal manifolds or surfaces is that their projection in the original observed

space is typically a nonlinear (curved) low dimensional surface that passes through

the middle of the data. This can be thought of as nonlinear regression on the data.

An example of a principal curve is shown in Figure 1.1.

Autoassociative multilayer neural network, shown in Figure 2.3 is an example for

neural network implementation for nonlinear principal manifolds. The middle layer

11

Figure 2.1: PCA does not define a proper density model in the data space; thus a

point far away form the data, but nonetheless near to the principal subspace will have

low reconstruction error. The two red data points will have the same reconstruction

error despite the fact one of them is far from the bulk of the data.

Figure 2.2: A data point that falls near to class B (appears as stars) region and has

a lower reconstruction distance from class A (appears as circles) subspace than class

B subspace, will be classified erroneously as belonging to class A.

12

f(y)

x

g(x)

y

y

Figure 2.3: An autoassociative neural network for computing principal manifolds x in

the input space of y

(called “bottleneck”) forms a lower-dimensional manifold representation by means

of a nonlinear projection function (weighted sum of sigmoids), f(y). The resulting

principal components x has an inverse mapping with a similar nonlinear reconstruction

function g(x), which regenerate the input data as accurately as possible.

The current problem of all these nonlinear principal manifolds is that, these are

often hard to compute in high dimensional spaces and their algorithms cannot be

guaranteed to converge. This thesis follows the recent promising approach, of ap-

proximating these nonlinear manifolds using a mixtures of linear principal subspaces.

Chapter 3 we give a detailed description for principal subspaces mixtures.

2.5 Probabilistic PCA

The defect of the squared reconstruction error function in Equation 2.3.2 as being un-

normalized within the principal subspace led many researchers to develop probabilistic

13

model for PCA (henceforth PPCA). While the resulting models of those researchers are

generally the same, they have different approaches. We categorize these approaches as

latent-variable-based approach (Roweis 1997, Tipping & Bishop 1999a) and distance-

based approach (Moghaddam & Pentland 1997, Sung & Poggio 1998).

2.5.1 Advantages of probabilistic PCA

Deriving PCA from the perspective of density estimation would offer a number of

important advantages. Tipping & Bishop (1999a) summarize these advantages as

follows

• The corresponding likelihood would permit comparison with other density-estimation

techniques and facilitate statistical testing.

• Bayesian inference methods could be applied by combining the likelihood with

a prior.

• In classification, PCA could be used to model class-conditional densities, thereby

allowing the posterior probabilities of class membership to be computed.

• The value of the probability density function could be used as a measure of

the “degree of novelty” of a new data point, an alternative approach to that

of Petsche et al. (1996).

• The probability model would offer a methodology for obtaining a principal com-

ponent projection when data values are missing.

• The single PCA model could be extended to a mixtures of such models. This

advantage of particular significance for PCA mixture models as discussed in

Chapter 3.

14

2.5.2 Latent variable approach

2.5.2.1 The latent variable model

A latent variable mode seeks to relate a d-dimensional observed data vectors y to a

corresponding hidden m-dimensional vector of x.

y = f(x;a) + w (2.5.1)

where f(·; ·) is a function of the latent variable vector x with parameters a, and w

is independent noise process. Generally m < d such that the latent variables offer more

compressed description of the data. By defining a prior distribution over x, together

with the distribution of w, Equation 2.5.1 induces a corresponding distribution in the

data space, and the model parameters may then be determined by maximum likelihood

techniques. Such a model may also be termed ‘generative’, as data vectors y may be

generated by sampling from the x and w distributions and applying Equation 2.5.1.

2.5.2.2 PCA as a latent variable model

A linear latent variables model relates a d-dimensional observed data vector y to a

corresponding m-dimensional vector of latent variables x.

y = Ax + µ + w (2.5.2)

where A is d×m matrix, µ is the data mean. If both x and w are Gaussians

x ∼ N(0,B), w ∼ N(0,Q) (2.5.3)

then y is also Gaussian given by

y ∼ N(µ,ABAT + Q) (2.5.4)

and the model now is called linear Gaussian model. As there is a degeneracy between

the structure of B and A in (2.5.4), there is no loss of generality in restricting B to

be diagonal. Furthermore, there is an arbitrary sharing of scale between a diagonal

B and A: typically we either restrict the columns of A to be unit vectors or make B

the identity matrix to resolve this degeneracy. In what follows, we will assume B = I

15

without loss of generality. Secondly, if Q were not restricted, learning algorithm could

simply choose A = 0 and then set Q to be the sample covariance matrix of the data,

thus trivially achieving a maximum likelihood model by explaining all of the structure

in the data as noise. Now, if we restrict the shape of the noise -w- covariance by

constraining Q, we can avoid this trivial solution and more interestingly, force desirable

structure to appear in both A and Q as a result. If we restrict Q to be diagonal (

in other words the covariance ellipsoid of w is axis aligned) then we recover exactly

the statistical method factor analysis (henceforth FA). In FA the subspace defined by

the columns of A will generally not be corresponding to the principal subspace of the

data. Nevertheless certain links between FA and PCA have been noted (Basilevsky

1994, Hinton et al. 1997, Tipping & Bishop 1999a). If Q = σ2I, then PCA emerges

if the d−m smallest eigenvalues of the sample covariance matrix Equation 2.3.1, are

exactly equal. If this is the case, i.e., B = I and Q = σ2I then the model covariance

matrix, C, defined as ABAT + Q in (2.5.4) will be reduced to

C = σ2I + AAT (2.5.5)

and both A and σ2 may then be determined analytically through eigen-decomposition

of the data covariance matrix ,S, without resort to iteration as in FA. This is restric-

tive and rarely justified in practice. However, an exact covariance model for PCA

is generally undesirable. In practical application of PCA, we often do not require

and exact characterization of the covariance structure in the minor space, since this

information is effectively discarded in the dimensionality reduction process.

After this package of fruitful restrictions, the probabilistic (generative) model

(Equation 2.5.2) could be used to relate data space and principal subspace probabilis-

tically. This allows the following definitions of probability distributions over y-space

and x-space

p(y) = (2π)−d/2|C|−1/2 exp
(
−1

2
(y − µ)TC−1(y − µ)

)
(2.5.6)

p(y|x) = (2πσ2)−d/2 exp
(
−1

2
σ2‖y −Ax− µ‖2

)
(2.5.7)

p(x) = (2π)−m/2 exp
(
−1

2
xTx

)
(2.5.8)

16

And now we can define the log-likelihood under this model using Equation 2.5.6

for a set of observed data {yi}N
1 as follows

L =
N∑

i=1

ln(p(yi)) (2.5.9)

Tipping & Bishop (1999b) have shown that the log-likelihood (2.5.9) is maximum

when the columns of A span the principal subspace of the data. they have also show

that the maximum likelihood estimators for µ and σ2 are

σ2 =
1

d−m

d∑

k=m+1

λk (2.5.10)

µ =
1
N

N∑

i=1

yi. (2.5.11)

where {λk}d
m+1 are the d−m small eigenvalues.

2.5.3 Distance-based approach

Using a normalized distance instead of the squared reconstruction error distance —

which is Euclidean distance that considered normal distance for a very restricted

density, namely a density with a covariance matrix equal to the identity matrix, C =

I— should lead to accurate and extensible model. Assuming that the training data

has Gaussian distribution, then the normalized Gaussian distance i.e., the negative

log of the Gaussian formula Equation 2.5.6 should be adopted

Dmh(y) = d/2 log(2π) + 1/2 log |C|+ 1/2(y − µ)TC−1(y − µ) (2.5.12)

However, Moghaddam & Pentland (1997) have dropped the constant term d/2 log(2π)

and the term 1/2 log |C| gaining the advantage of being saved from the ramification of

the determinant of a poorly conditioned covariance matrix, C, and the disadvantage of

using not fully normalized distance. In other words, they have taken the Mahalanobis

distance as a sufficient statistics for their derivation. If µ is the data mean and

ỹ = y − µ, then the Mahalanobis distance could be given by

Dmh(y) = ỹC−1ỹ (2.5.13)

17

Figure 2.4: Space decomposition into Principal subspace F and orthogonal comple-

ment F

By factorizing the matrix C−1 to AΛ−1AT, where A and Λ are the eigenvectors

and eigenvalues of C respectively.

Dmh(y) = ỹT [AΛ−1AT]ỹ (2.5.14)

= xTΛ−1x

where x = ATỹ are new variables in the transformed space and since Λ is diagonal,

the Mahalanobis distance can also be expressed in terms of the sum

Dmh(y) =
d∑

i=1

x2
i

λi
(2.5.15)

If F = {Ai}m
1 is the principal subspace and F̄ = {Ai}d

m+1 is its orthogonal comple-

ment, we can decompose the distance as follows

Dmh(y) =
m∑

i=1

x2
i

λi
+

d∑

i=m+1

x2
i

λi
(2.5.16)

as the second term contains minor eigenvalues that are usually ignored by the conven-

tional PCA model and the term is summed up as reconstruction error, Moghaddam

18

& Pentland (1997) approximated the second term as Dre(y)/σ2 (Dre(y) is given by

Equation 2.3.2) and show that the optimal value for σ2 could be

σ2 =
1

d−m

d∑

i=m+1

λi (2.5.17)

i.e. the average of the eigenvalues outside the principal subspace and Equation 2.5.16

is now

Dmh(y) =
m∑

i=1

x2
i

λi
+ Dre(y)/σ2 (2.5.18)

The first factor in Equation 2.5.18 is named as Distance-inside-principal-subspace

(DIPS), and the second is named Distance-from-principal-subspace (DFPS). Fig-

ure 2.4 illustrate this decomposition graphically. Using Equation 2.5.18 we can ap-

proximate the Gaussian density function as a product of two marginal densities as

follows

p̂(y) = pF (y)p̂F (y) (2.5.19)

where pF (y) is the true marginal density in the principal subspace F -space and p̂F (y)

is estimated marginal density in the orthogonal complement F̄ -space. All probabilistic

reasonings on PCA are now forward using Equation 2.5.19.

2.6 Conclusions

PCA is the most widely used feature extraction method (Jain et al. 2000). PCA

generates uncorrelated, optimal-reconstruction-error subspaces. To widen its applica-

bility even more, solutions for its shortcomings should be found. PCA probabilistic

formulation avails all the advantages listed in Section 2.5.1. The price we pay for

adopting the probabilistic PCA is that we restrict the model to Gaussian data. In

Chapter 3 we explain how this price payed back by using the mixture of Gaussians

—rather than one Gaussian— which can model arbitrarily distributed data.

Recent studies show that mixture of local linear subspace models is faster and

more accurate than nonlinear PCA, specially for high dimensional data (Kambhatla

1995, Moghaddam & Pentland 1997). For this trend, the probabilistic definition of

PCA is very important as it facilitates formal way for defining and analyzing the PCA

mixtures model. This is the main topic of Chapter 3.

19

CHAPTER 3

Mixture of local principal subspaces

3.1 Introduction

In Chapter 2, the PCA main characteristics are explained with spacial emphasis on the

recent development of defining probabilistic model for PCA. As the major shortcoming

of PCA is its global linearity, in Section 2.4 we give an overview for the recent major

research done in order to formulate nonlinear PCA as a search for a curved manifold

(as opposed to linear subspace) that is close to the data. This thesis, follows the

alternative paradigm of capturing the data complexity and heterogeneity by a mixture

of local linear subspaces model. The idea is that, when it is difficult to find a global

linear subspace that fit the data, we may find a set of local linear principal subspaces

that fit the data in its local regions. As an illustration, we produce two figures for

a 256-dimensional digit “2” data set, Figure 3.1 and Figure 3.2. The first part of

Figure 3.1 shows a global 1-dimensional principal subspace for the given data set.

The middle image in this row of images is the mean, i.e., the origin of the subspace.

The last image is the principal vector of the subspace (designated with name 1.PC).

The other ten images, five on left of the mean and five on right of the mean are inverse

images for points on this 1-dimensional subspace at a multiple of constant distance

from the mean. The same data used in generating the global principal subspace is

partitioned into 10 clusters. For each one of these 10 clusters a local subspace is

generated. The second part of Figure 3.1 illustrates these local subspaces in the same

20

manner as in the first part. While the images in the first part look noisy and central to

digit “2” data space, the images in the second part characterize local regions of digit

“2” data space. Also, it is notable the principal vector for the global subspace tend

to be more general while the principal vectors of the local subspaces tend to specify

some of the different shapes exist in digit “2” data space.

Figure 3.2 shows inverse images from a 2-dimensional global data space. If one

compares these two figures, he can easily notice that: Increasing the dimensionality of

the global subspace fails dismally in producing better fit. Even with two dimensions

the subspace is still located in a central region in this high dimensional space and

its inverse images look very noisy, indicating that the subspace do not fit the data

well. Therefore, this global subspace fails to capture the different structures located

in regions far from the data space central region.

This chapter deals with formalizing and designing an autonomous scheme for find-

ing these local principal subspaces. This is an unsupervised problem in which we want

to find the optimal number of clusters in the given training data. In addition, we need

also to find the optimal dimensionality for each local principal subspace.

In this chapter, we introduce clustering methods. Section 3.3 explains the differ-

ence between hard clustering and soft clustering and shows that the former is a limiting

case of the latter. Section 3.4 defines the mixture model. This section also explains

the most widely used mixture model, namely, the Gaussian mixture model (henceforth

MoG). Section 3.5 explains the notion of subspace clustering. As PPCA is a Gaus-

sian model, in Section 3.5.2 we define the mixture of PPCA (henceforth MPPCA).

We then define a new greedy learning scheme in section 3.6, that autonomously finds

a suboptimal number of principal subspaces in the maximum likelihood framework.

The scheme finds subspaces with different dimensionalities and equal local variability.

The scheme also contains a new method for initializing the EM for MPPCA.

3.2 Issues in clustering

As there are many methods now for clustering, the term became a generic label for a

variety of procedures designed to find natural groupings, or clusters, in multidimen-

21

global principal subspace

-5 −4 −3 -2 -1 µ 1 2 3 4 5 1.PC

ten local principal subspaces

-5 −4 −3 -2 -1 µ 1 2 3 4 5 1.PC

Figure 3.1: Illustration of how 1-dimensional local principal subspaces capture differ-

ent structure of digit “2” high dimensional space (256 dimensions).

sional data, based on measured or perceived similarities. Several clustering algorithms

have been proposed in the literature and new clustering algorithms continue to ap-

pear (Hartigan 1975, Jain & Dubes 1988, Kaufman & Rousseeuw 1990). Clustering

is a very difficult problem because data can reveal clusters with different shape and

sizes. In general, a complete cluster scheme should deal with the following three basic

issues:

• How to estimate the number of clusters in the given training data.

• How to find a suitable clustering criterion for the given problem.

• How to estimate the parameters defining each cluster.

In some problems, we may not need to deal with the first issue, as the number of

clusters may be known beforehand. However, for some practical reasons we couldn’t

22

Figure 3.2: Images generate from points in a 2-dimensional global principal subspace

for digit “2” the original data space dimensionality is 256.

label the training data set. Dealing with unknown number of clusters problem is more

complex. This case is more common if we have a multi-mode class data set. Which is

type of problems considered in this thesis.

Its worth here, to mention the issues, that Jain et al. (2000) advice the clustering

algorithm user to keep in mind

i Every clustering algorithm will find clusters in a given dataset whether they

exist or not.

ii There is no best clustering algorithm. Therefore a user is advised to try several

clustering algorithms on a given dataset.

iii Issues of data collection, data representation, normalization, and cluster validity

are as important as the choice of clustering strategy.

3.3 Hard clustering versus soft clustering

Clustering could be categorized as hard clustering and soft clustering. The objective

of a hard clustering training is to define clusters in the given training data and to

23

assign each testing data point to only one cluster. We can view hard clustering as a

boolean function that takes as input a data point and a cluster label. For a given data

point the function returns true for only one cluster label and false for all other cluster

labels. On the other hand, the objective of a soft clustering method is to produce a

set of density functions that assign to a given data point probabilistic values for its

belongingness to each cluster. In general, in the literature the term clustering is used

for hard clustering and the term mixture models is used for soft clustering.

Hard Clustering entails assigning each data point in an unlabelled data set to

exactly one of k possible classes or clusters so that the points in each given cluster

are similar to one another. A loss function that penalizes dissimilar points within a

cluster is used in training. A commonly used hard clustering method is the k-means

algorithm (Kaufman & Rousseeuw 1990, Jain & Dubes 1988). It assigns points at

random to k classes and then computes the mean vector for each class. Points are then

reassigned to the classes with the nearest mean and the means are recomputed. This is

repeated until convergence. While hard clustering algorithm are often computationally

efficient, they fail to define a probability density function. Hard Clustering can be

thought of as a special case of a soft clustering that always gives one for one cluster

and zero for the other clusters. In fact, if the soft clustering method defines a mixture

of Gaussians with variances tending to zero, then it is effectively a hard clustering.

While hard clustering algorithms fail to define a probability density functions, they

are often computationally efficient and indeed provide useful initialization for soft

clustering methods. For illustration purposes, Figure 3.3 shows scatter diagrams for

two data sets. Figure 3.3a contains a relatively separated clusters, for which hard

clustering methods can give good result as shown in Figure 3.3b. The clusters shown

in Figure 3.3c are interfering. For such types of clusters hard clustering methods

gives different clustering results, especially for boundary points. Figure 3.3d shows

the results for training a mixture of Gaussians (see Section 3.4.1) on this data set.

24

3.4 Mixture models (soft clustering)

Mixture models are flexible and powerful probabilistic modelling tools. Mixtures offer

formal (i.e. model-based) approaches to clustering. Mixtures adequately model situ-

ations where each pattern is produced by one of a set of alternative (probabilistically

modelled) sources (Titterington et al. 1985, McLachlan & Peel 2000). Nevertheless,

it should be kept in mind that strict adherence to this interpretation is not required;

mixture can also be seen as a class of models that are able to represent arbitrarily

complex probability density functions.

If pj(y; θj) is the j-th component parameterized on θj, then a mixture density of

a random vector y assuming k components is

fk(y|θ) =
k∑

j=1

qjpj(y; θj) (3.4.1)

where θ comprises all parameters of the component densities pj(y;θj) and the

mixing weights qj which satisfy
∑

qj = 1 and qj ≥ 0.

3.4.1 Mixture of Gaussians

While components of a mixture could be non-Gaussian, Gaussian-based mixture den-

sity model has proven to be the most exceedingly popular mixture density model;

perhaps mainly due to its simplicity, general applicability and extendibility. A brief

history of the many uses of MoGs, spanning fields as varied as psychology, geology,

and astrophysics, has been compiled by Titterington et al. (1985). According to the

central limit theorem, the distribution of a sum of two independent random variables

usually has a distribution that is closer to Gaussian than any of the original random

variables. Therefore, in many situations, it is easier to find artificial Gaussian mix-

ture components than arriving at the intrinsic original non-Gaussian components, if

they exist. This is frustrating, if our practical goal is to find the intrinsic components.

However, in classification problems one seeks higher classification accuracy rather than

finding intrinsic components, i.e. artificial Gaussian components that increase classifi-

cation accuracy are highly appreciated. Furthermore, the main advantage of Gaussian

mixture modelling, is that given enough mixture components we can model (almost)

25

any density (as accurately as desired). Figure 3.4 reveals this fact.

A MoG is given by the weighted sum as in Equation 3.4.1, where the j-th compo-

nent pj(y; θj) is a d-dimensional Gaussian density:

p(y;θj) = (2π)−
d
2 |Sj|−

1
2 exp

(
−1

2
(y − µj)TSj

−1(y − µj)
)

(3.4.2)

parameterized on the mean, µj ∈ Rd, and the covariance matrix, Sj, collectively

denoted by the parameter vector θj. For the learning problem, we assume a training

set {y}N
1 data points, and the task is to estimate the parameters {qj , µj ,Sj} of the k

components that maximize the log-likelihood:

L =
N∑

i=1

log(fk(yi)) (3.4.3)

where fk(yi) is defined by Equation 3.4.1

3.4.2 Mixture of Gaussians training

For a unimodal model (i.e., the mixture has only one maxima and therefore, one

component which is by no way a mixture), the maximum likelihood framework offers

direct method for model parameters estimation (Schalkoff 1992).

However, direct method for multimodal (i.e., the mixture has more than one max-

ima and therefore, more than one component) does not exist. To illustrate this,

consider a MoG with covariance matrices of the restricted form, Sj = σ2
j I where I is

the identity matrix, which results in the following definition for the density function

p(y;θj) = (2πσ2
j)
− d

2 exp

{
−||y − µj||2

2σ2
j

}

To find maximum likelihood estimation for parameter vector θj. We can minimize

the negative log-likelihood function, which can be regarded as an error function

E = −L = −
N∑

i=1

log(
k∑

j=1

qjpj(y; θj)) (3.4.4)

with respect to the parameters µj, σ
2 and qj . Assume the only unknowns are the

mean vectors, µj, j = 1, 2, ...k. Thus

θ = {µj : j = 1, 2, ...k.} (3.4.5)

26

Now, by differentiating E with respect to µj we get

∂E
∂µj

=
N∑

n=1

P (j|yn; θj)
(yn − µj)

2σ2
j

(3.4.6)

and then by setting to zero we obtain

µ̂j =
∑

n P (j|yn; θj)yn

∑
n P (j|yn; θj)

(3.4.7)

Note that µj implicitly occurs in righthand side of Equation 3.4.7. As the term

P (j|yn; θj) is the posterior probability for component j given the data point yn, which

can be expressed using Bayes’ theorem as follows

P (j|y; θj) =
qjp(y|j; θj)

p(y;θj)
(3.4.8)

We cannot estimate the parameters from this set of highly non-linear coupled equations

directly. However, there are three approaches for dealing with this problem (Render

& Walker 1984). One approach is to employ the standard non-linear optimization

techniques (Bishop 1995). The second is a stochastic technique, based on the assump-

tion that the data point are arriving one at a time, and we have a sequential update

scheme that uses the data points one after the other to update the parameters (Tra-

ven 1991). The third approach, is based on the expectation maximization algorithm.

The expectation maximization algorithm has been by far the most commonly used

approach (McLachlan & Peel 2000) for fitting the MoG. Hence the focus in this thesis

is on fitting of MoG via the expectation maximization algorithm.

3.4.3 Expectation maximization algorithm

The Expectation Maximization algorithm (henceforth EM) is an iterative algorithm

for learning mixture density by attempting to maximize the likelihood. EM consists

of two main steps: expectation step (E-step) and maximization step (M-step). The

algorithm starts with some random initial values for the unknown parameters vector

θ. The E-step computes the posteriori probabilities for the training data set using the

given parameters set and hence the likelihood. The M-step then finds new values for

θ that maximize the likelihood. The algorithm iterates between these two steps until

27

Algorithm 1 Expectation Maximization Algorithm
initialize θ0, T, i = 0

repeat

i = i +1

E-step compute fk(y|θi)

M-step θi+1 = arg max fk(y|θi)

until fk(θi+1)− fk(θi) < T

RETURN θ̂ ← θi+1

a given criterion is satisfied. Algorithm 1 summarizes the EM algorithm. Appendix B

gives a detailed account for the algorithm including its convergence properties.

Aitkin & Aitkin (1994) noted that almost all the post-1978 (the year of EM

introduction) applications of mixture modelling reported in the books on mixtures

by Titterington et al. (1985) and McLachlan & Basford (1988) use the EM. This is

again revealed in the recent book by McLachlan & Peel (2000) and most recent pa-

pers (Figueiredo & Jain 2002). The study of fitting finite mixture models by maximum

likelihood appeared in many papers during 1960s and 1970s (Day 1969, Wolfe 1970).

However, it was the publication of the seminal paper of Dempster et al. (1977) on the

EM algorithm that greatly stimulated interest in the use of finite mixture distributions

to model heterogeneous data.

3.4.3.1 EM for MoG

As stated in Section 3.4.3, the algorithm starts with some initial values for the un-

known parameters vector θ, i.e., µj, Sj and the weight qj for the MoG. Using these

values, the algorithm computes the posteriori probabilities for the training data using

Equation 3.4.9 (E-step). In the second step the algorithm uses the recently calculated

posteriori probabilities and Equation 3.4.10, Equation 3.4.11 and Equation 3.4.12 to

calculate new estimation for the parameters vector θ. The calculation then, cycles

from expectation to maximization and from maximization to expectation, until the

revised estimate do not differ appreciably from the estimate obtained in the previous

iteration. Or alternatively, until some criterion met.

28

• E-step:

P (j|yi) =
qjp(yi; θj)

fk(yi)
(3.4.9)

• M-step:

qj =
1
n

n∑

i=1

P (j|yi), (3.4.10)

µj =
∑n

i=1 P (j|yi)yi∑n
i=1 P (j|yi)

, (3.4.11)

Sj =
∑n

i=1 P (j|yi)(yi − µj)(yi − µj)T

∑n
i=1 P (j|yi)

. (3.4.12)

3.4.3.2 Learning MoG with EM Difficulties

Learning a MoG using EM algorithm can be difficult because of the following reasons

• The true number of mixing components is usually unknown, and the algorithm

does not offer a proper accepted method to find this number. In fact as stated

by Jain et al. (2000) this is the most difficult problem in mixture modelling.

• EM algorithm can get stuck in one of the many local maxima of the likelihood

function.

• There is no generally accepted method of parameter initialization.

3.5 Subspace clustering

So for we have explained the k-means algorithm as the widely used clustering algo-

rithm. Generally, k-means offers only an estimate for the means of the clusters found.

However MoG overcomes the k-means deficiency by offering more information about

feature variability and correlation. The price we paid for this flexibility is the increase

of the parameters to be calculated. The main disadvantage of the MoG is the large

number of parameters needed, O(k×d2), where k is the number of components in the

29

mixture and d is the dimensionality. This problem promotes the subspace clustering

as a solution that goes beyond modelling clusters merely by their means, as well as

having far less parameters than what is needed for a MoG.

The simplest way of clustering data in subspaces is to use a variation on the

k-means algorithm (Devijver & Kittler 1982). The main difference with k-means al-

gorithm is that, while k-means only recalculate the cluster means in each iteration,

the k-subspaces algorithm recalculates the PCA projection matrix A as well. Further-

more, the distance measure used is a distance to a subspace e.g., Equation 2.3.2 rather

than a distance to a cluster center only. Almost all other subspace clustering methods

follow a similar scenario, i.e., integrating a clustering method like the k-means with a

dimensionality reduction method like the PCA.

3.5.1 Mixtures of PCA

A number of “mixtures of Principal Component Analyzers” (henceforth MPCA) have

been proposed in the literature before the mixtures of Probabilistic Principal Com-

ponent Analyzers (henceforth MPPCA). These methods necessitate a two-stage pro-

cedure: partitioning of the data space by a hard clustering algorithm followed by the

estimation the of principal subspaces within each partition (Sung & Poggio 1998,

Hinton et al. 1997, Kambhatla 1995). Hinton et al. (1997) have proposed an im-

portant turning model among these early studies. They considered the partition

assignments as missing data in an expectation maximization (EM) framework, and

thereby propose a soft clustering algorithm where instead of any given data point

being assigned exclusively to one principal component analyzer, the responsibility of

its generation is shared among all of the analyzers. The authors concede the absence

of a probability model for PCA is a limitation to their approach and propose that

the responsibility of the j-th analyzers for reconstructing data point yi can be given

by rij = exp(E2
j /2σ2)/{∑j′ exp(−E2

j′/2σ2)}, where Ej is the corresponding recon-

struction cost. This allows the model to be determined by the maximization of a

pseudo-likelihood function, and explicit two-stage algorithm is unnecessary. Unfortu-

nately, this also requires the introduction of a variance parameter σ2 whose value is

somewhat arbitrary and again no probability density is defined.

30

3.5.2 Mixtures of PPCA

Probabilistic PCA model facilitates the usage of the set of MoG equations given in

Section 3.4.3.1 to train a mixture of PPCA model. This can be achieved by calculating

eigenvectors of the covariance matrices, Sj, found by Equation 3.4.12 to calculate Aj.

σ2
j can be calculated by Equation 2.5.10 from the eigenvalues found. However, this

procedure is computationally intensive as it necessitates the calculation of the data

covariance matrix for each subspace and faster methods that can find the principal

components (i.e. Aj) without calculating the full covariance matrix using the EM al-

gorithm have been described in the literature (Roweis 1997, Tipping & Bishop 1999a).

Appendix C contains the formulas that we use in fitting the MPPCA which are found

by Tipping & Bishop (1999a).

3.6 A complete greedy scheme for MPPCA training

As discussed in the previous sections and summarized in Section 1.2, in training an

MPPCA model, the user faces a number of choices: the number of subspaces to

look for, the number of dimensions per subspace to use and the way in which the

EM algorithm is initialized, to avoid local minima. In this section we describe some

algorithms —which form together a greedy scheme for MPPCA training— which

alleviate these choices. Firstly, in Section 3.6.1 we illustrate our method for specifying

a variable local dimensionality m for each subspace by using a constant local variability

α in all subspace. Secondly, in Section 3.6.2 a greedy algorithm is discussed, which can

be used to determine a suboptimal number of variable dimensionality subspaces, by

incorporating the method described in Section 3.6.1. The last section (Section 3.6.3)

describes an EM initialization method which helps in preventing local minima. These

algorithms lead to an almost parameter-free MPPCA training method. The only

parameter left is the amount of variance to retain α— which used in choosing the

local dimensionality for each subspace.

31

3.6.1 Subspace dimensionality versus variability

In conventional PCA techniques, there are two approaches for specifying principal

subspace dimensionality : [1] to be specified by the user beforehand. [2] the user

can specify a retained variance value α, and the system calculates the dimensionality

that retains this variability ratio by finding the first m eigenvectors that satisfy the

following inequality

Σm
i=1λi/Σd

i=1λi > α (3.6.1)

Almost, all of the MPCA models described in the literature use the first approach.

Most of the early proposal was geometrically based model, this could be the main

reason behind the choice of the first approach. As the model shifted to be probabilis-

tically based with Tipping & Bishop (1999b), Roweis (1997), Moghaddam & Pentland

(1997) extensions, we think the choice in this issue should also shift to the second

approach. Moreover, there are many advantages in adopting the second approach for

PPCA model

• In many application fields, it seems more natural to look for a constant variability

ratio to be retained by all subspaces, rather than looking for a constant dimen-

sionality for all subspaces. For instance, in image compression, reconstructed

images from same-variability subspaces are expected to be more similar than im-

ages reconstructed from same-dimensionality and different-variability subspaces.

• Intuitively, the PPCA subspace model partitions the input space into subspace

of signal (principal subspace) and noise (the orthogonal complement of the minor

variability directions, see Figure 2.4). Since the noise is estimated as the average

of eigenvalues in the minor d−m dimensions (Equation 2.5.10), there is a trade-

off between subspace dimensionality and noise level estimation. Table 3.1 shows

the noise level (σ2), the classification error and the retained variance value (α) for

one of our experiments on handwritten digit classification. In these experiments

the dimensionality of all subspaces in fixed to ten (Musa et al. 2001b). Three

important remarks can be drawn from this table:[1] fixing the dimensionality

in all subspaces results in variant α and σ2 in the different classes [2] σ2 is

inversely proportional to α. [3] when σ2 value is too small for specific class this

32

class may suffer overfitting problem, see digit “1” (this problem is discussed in

Section 4.2.1 in more details). From these experiments, we concluded that Since

σ2 is inversely proportional to α a retained variance based model can be more

robust against overfitting by avoiding very high α values.

Meinicke & Ritter (2001) have given a similar suggestion. In their work, instead of

using a constant variability ratio they have used a constant noise value. they argued

that “A PPCA model that has a hypothesized noise level and estimated dimension-

ality is advantageous over the one that has a hypothesized fixed dimensionality and

estimated noise”. Meinicke & Ritter have shown that for a fixed noise level model,

variable dimension PPCA, the maximum likelihood estimation of the principal sub-

space dimensionality is given by

m̂ = |{λi : λi > σ2
fxd, i = 1, ..., d}| (3.6.2)

where σ2
fxd is a hypothesized constant value. In contrast with σ2, σ2

fxd is approximately

equal to λm+1.

In our MPPCA training sechme, we fixed α value and adjust all subspaces di-

mensionalities to retain this given variability ratio and hence we call this model VD-

MPPCA, VD for Variable Dimensionality. Moreover, as one of our primary goal is to

make the model training autonomous, the adoption for this retained variance approach

will be of much help in this direction. The simplest way to find α autonomously is

by validation methods (Duda et al. 2000). This may be computationally intensive,

however, exploitation of other speeding up methods like using some prior information

to limit the choices is open question.

3.6.2 Greedy EM for MPPCA training

Recent theoretical developments (Cadez & Smyth 2000, Lee & Barron 2000), have

shown that the log-likelihood of finite mixture models is approximately concave as a

function of k (number of components). Accordingly, we have developed and tested a

greedy EM for MPPCA training controlled by likelihood changes (Musa et al. 2001a).

As the model used in the experiments reported in Musa et al. (2001a) is a greedy FD-

33

Table 3.1: The average σ2, average retained variance α and average test error for each

of the 10 digit classes. This table is taken form the experiments reported in Musa

et al. (2001a)

Digit Avg. σ2 Avg. α Error %

0 0.18 0.73 1.99

1 0.06 0.91 4.99

2 0.25 0.65 0.79

3 0.22 0.66 2.79

4 0.20 0.73 1.48

5 0.24 0.63 1.75

6 0.16 0.65 1.92

7 0.14 0.74 3.00

8 0.22 0.65 2.36

9 0.13 0.75 4.10

PPCA (Fixed Dimensionality) model, and its performance is encouraging, we extend

it to be a greedy VD-PPCA for the reasons discussed above.

In addition to the encouraging result of our previous experiments, Verbeek et al.

(2003) have also investigated the problem of learning MoG using a greedy EM algo-

rithm. Finding good candidates for a new component is a primary concern in their

work. Since there are many local maxima in the data space, when searching for a new

component candidate, they have proposed a method for finding k×h candidates. First

the data is partitioned into k partitions, related to the current k Gaussians, and from

each partition h candidates are generated. To choose the best candidate they run the

EM algorithm partially for each candidate (by partially we mean updating only the

new candidate parameters). The candidate that generates the highest likelihood is the

winner. Their experimental results showed that their greedy EM outperforms stan-

dard EM. Our approach in finding new candidate is totaly different. In our method we

assume that the current k components represent part of the training data adequately

and therefore we want to avoid having the new candidate located in this well repre-

34

sented data points. Our scheme uses the membership (i.e., the posterior probability)

to the current components as a criterion for this well representation. By removing the

points which has higher level of membership to the current components, we arrive at

small subset of points. In this smaller subset of points we use a specialized algorithm,

Algorithm 3, described in Section 3.3, to find a new candidate.

Algorithm 2 outline our new greedy VD-PPCA training algorithm. In step 2 the

algorithm start by calculating a global principal subspace from the given training data

set D by direct eigenvector method. The input α value is used to select the first m

eigenvectors that retains α ratio from the global variability. In steps 6 we collect the

points that has higher membership to the recently found subspaces ∪Ni, i = 1..k. For

each subspace i, Ni contains the D/k points which have got the highest posterior

probability for this subspace. Step 7 calculates F as the complement of the set ∪Ni in

the training data set D, i.e., now F contains the points that have lowest membership

to the current k subspaces. In step 8, Algorithm 3 finds a new Gaussian in F . Form

this new Gaussian the algorithm calculate PPCA parameters with the dimensionality

determined by α and the local points (This is illustrated in Section 3.6.3). A sub-

space may change its shape during EM iterations, i.e., the membership of the points

change form iteration to another and this results in change in the local variability

and hence PCs directions. For this reason, after locating all subspaces we re-calculate

subspaces’ dimensionalities (step 11) and re-run the EM again (step 12) to ensure soft

fitting. With the addition of new subspaces, normally old subspaces lose some of their

points and hence become more local. Therefore, the process of re-estimating subspace

dimensionality in step 10 normally reduces subspaces’ dimensionalities.

3.6.3 Greedy hard clustering

An EM algorithm (soft clustering) initialized by a hard clustering algorithm is the

state of the art for mixture model training. However, which hard clustering method

and how to engage it with the EM algorithm is still an open question. However, a

suitable hard clustering method for a greedy EM might also be a greedy one. Among

the recently proposed Gaussian centers finding algorithm we found an algorithm that

works greedily, proposed by Dasgupta Dasgupta (1999). Dasgupta showed that to

35

Algorithm 2 Greedy Training Algorithm
1: input D (training data set) and α (ratio of variance to retain)

2: calculate one global MPPCA subspace with a subspace dimensionality that retains

α of the variability in D

3: k ← 1.

4: repeat

5: k ← k + 1.

6: ∀i,Ni = {y: y among the |D|/k points that have highest probabilities for sub-

space i}.
7: F = D\(∪Ni)

8: find a new subspace in F by algorithm 3

9: fit the k subspaces using the EM algorithm

10: until likelihood(k − 1) ∼= likelihood(k)

11: re-fit all subspace dimensionalities to retain α ratio of their local variability

12: fit the model using the EM algorithm

estimate the means of a Gaussian mixture with a common covariance matrix, we can

map the data to a random subspace of size O(log k) dimensions, where k is the number

of Gaussians, without collapsing the Gaussians together. In the reduced subspace the

Gaussians become more spherical and the number of training data points with respect

to the reduced subspace dimensionality is still relatively high. More importantly there

is no danger of collapsing Gaussians together, as long as we project to a subspace of

size O(log k) (Dasgupta 1999). The algorithm allocates the Gaussians one after the

other. A point with the smallest radius rx to enclose specific number of points, p,

in the projected space, is considered a clue for a Gaussian center. To find the other

Gaussian centers using the same criterion, the high-density points of the recently found

Gaussian are removed, this step is done by Algorithm 2 in our scheme. Moreover, as

our interest is to find one Gaussian to update our greedy EM, we reduce the algorithm

to allocate one Gaussian center. For the newly allocated Gaussian center and the old

k Gaussians, we run the nearest mean classification algorithm to find the set S′ which

contains the data points nearest to the new Gaussian center. From S′ we calculate

36

the initial estimation for the PPCA subspace parameters. Algorithm 3 describe the

proposed algorithm in an algorithmic fashion.

Note that the parameter k is determined by the current stage of algorithm 2.

Therefore the dimensionality of the projection subspace increases with k, and the

number of points within radius rx decreases with k. For the experiments reported in

this thesis we use a projection space of k + 1 dimensions, which is found by the first

k + 1 eigenvectors.

Algorithm 3 Initialization Algorithm: Greedy Hard Clustering Algorithm
1: input F (training data set), {µi}k

1 (existing subspace means) and α

2: project the whole data set F into a random subspace of O(log k) dimensions, let

S = projected data

3: set p ← |S|/k

4: ∀x ∈ S , let rx be the smallest radius such that there are ≥ p points within

distance rx from x

5: let µ* be the point x with the lowest radius rx

6: run the nearest mean algorithm for µ* and the existing k means ({µi}k
1) in original

data space to find the closest points to µ* (S′)

7: from S′ estimate one PPCA subspace parameters, with a subspace dimensionality

that retains α of the variability in S′

37

(a) (b)

(c) (d)

Figure 3.3: (a) A scatter diagram for a well separated clusters. (b) Hard clustering
linear boundaries for the data set shown in (a). (c) A scatter diagram for a an
interfered clusters. (d) A mesh for a MoG trained on the data set shown in (c).

38

(a) (b)

Figure 3.4: (a) A triangle density model approximated by a MoG. (b) A uniform
density model approximated by a MoG. The red lines show the component density
functions of the mixtures and the blue line show the Mixture density functions.

39

CHAPTER 4

Application: data classification

4.1 Introduction

This chapter describes our experiments for testing the performance of the proposed

greedy VD-MPPCA training scheme, on data classification problems. This section is

followed by two main parts, that describe two sets of experiments: handwritten digit

classification and ionosphere signal classification. Each part starts by describing the

data set and the results obtained so far using different classification methods. Each

part then reports and discusses the experiments result. Section 4.4 gives concluding

remarks. The experiments appear in a chronological order. Therefore, the earlier

experiments conclusions result in some modification for the later experiments setting.

To compare the performance of the greedy VD-MPPCA with its predecessors, we have

designed six experiments, summarized in Table 4.1 and explained below.

I. Training an MPPCA model with a fixed number of subspaces of fixed dimen-

sionality, using randomly initialized EM (Tipping & Bishop (1999a) MPPCA’s

EM).

II. Training an MPPCA model with a fixed number of subspaces of fixed dimen-

sionality, using our greedy hard clustering algorithm only, Algorithm 3; i.e. no

EM fitting.

III. Training an MPPCA model with a fixed number of subspaces of fixed dimen-

40

sionality.

IV Training an MPPCA model with a variable number of subspaces of fixed dimen-

sionality.

V Training a model with a fixed number of subspaces of variable dimensionality.

VI Training a model with a variable number of subspaces of variable dimensionality.

Experiment I is based on the standard EM for MPPCA, typically as described by Tip-

ping & Bishop (1999a). In Experiment II we report the performance of our greedy

hard clustering method, Algorithm 3. The basic goal of this hard clustering method is

the initialization of the greedy EM algorithm. However, if its performance is accept-

able it could be used as a stand alone classification method. In addition, reporting its

own performance may help in analyzing and comparing the results of the EM based

methods. In addition Experiments III through VI are initialized by our greedy hard

clustering algorithm. Experiment VI uses our greedy learning scheme as described in

Chapter 3. Experiments IV and V use simplified version of our scheme to stop the

irrelevant features. For the purpose of comparison, in Experiments V and VI we set

α to the average retained variances found by the models generated by Experiments

III and IV respectively. All the experiments are repeated five times with differently

drawn train and test sets. Experiment I is repeated three times for each pair of sets.

The classification is done by assigning each test pattern y the label of the class i′, for

which fk(y|θi) is highest.

i′ = argmax
i

fk(y|θi)

where fk(y|θi) is the mixture function given by Equation 3.4.1. During the training

phase, only patterns of one class are presented to the model generator program, i.e.

each class model is built separately.

4.2 Handwritten digit recognition

Handwritten digit recognition is a popular classification problem that is used ex-

tensively in testing relative density classification approaches as well as discriminative

41

Table 4.1: This table summarizes the six experiments. #Sub. and #Dim. are the

average number of subspaces and dimensionality per class.

Exp. Model fitting #Sub. #Dim. Initialization

I FD-MPPCA EM fixed fixed random

II hard clustering Algorithm 3 fixed fixed

III FD-MPPCA EM fixed fixed Algorithm 3

IV greedy FD-MPPCA EM variable fixed Algorithm 3

V VD-MPPCA EM fixed variable Algorithm 3

VI greedy VD-MPPCA EM variable variable Algorithm 3

approaches (Hinton et al. 1997). The popularity and the availability of large data sets

enable it to stand as a good benchmark for testing and comparing different classifica-

tion methods. Especially for our problem, there are some publications on handwritten

digit classification using mixtures of PCA (Bailing et al. 2001, Hinton et al. 1997, Kim

et al. 2002b, Tipping & Bishop 1999a).

The data set used in our experiments is extracted from the well-known NIST

handwritten digit database (Winson & Garris 1992). The original data set consists of

128x128 pixel binary images. In pre-processing, these images are normalized for posi-

tion, size, slant and stroke width, resulting in 16x16 pixel grey-value images (de Rid-

der et al. 1996). Furthermore, for the experiments described in our studies, PCA

was used on the entire data set to reduce the number of dimensions from 256 to 64.

The resulting data set was used to construct training and testing sets. The data set

has already been investigated using a number of methods (de Ridder 2001, Winson

& Garris 1992). Table 4.2 gives an overview of the results obtained thus far on a

training set of 1000 samples per class. 1000 patterns (images) per class (digit) have

been used for training and 1000 patterns (images) per class (digit) have been used for

testing. For experiments with fixed number of subspaces, each digit is modelled with

ten subspaces. For fixed dimensionality experiments each subspace has 10 PCs.

At first, in some of the experiments the EM algorithm did not converge. Therefore,

the covariance matrix C is regularized by adding a small constant value, 0.01, to the

42

Table 4.2: Results for various classifiers on the NIST data set (de Ridder 2001, Winson

& Garris 1992).

Type Classifier Error (%)

Bayes plug-in Nearest mean 15.88

Linear 9.84

Quadratic 4.70

Neural network LeNotre 4.87

LeNet 3.43

LeCun 2.32

1 hidden layer @ 256 units 2.44

1 hidden layer @ 512 units 1.99

Support Vector Classifier Polynomial, 5th degree 1.29

Radial basis, σ = 10 1.38

parameter σ2 in each iteration (see Equation 2.5.5).

4.2.1 Results and discussion

Table 4.3 summarizes the first testing results. The error in this table is the average

percentage of misclassified patterns in the test set. As an illustration, Figure 4.6 shows

some of the means and the PC’s found in Experiment VI.

The results of this first set of experiments show that the performance of all methods

of initialization and model fitting are nearly equal. Especially the fact that the hard

clustering method, Algorithm 3, performs as well as the EM algorithm is curious.

To investigate what caused this, we inspect the models found by each experiment.

It became then obvious that for some models, problems in estimating σ2, the noise

level, caused poor performance. The regularization value introduced to help the EM

algorithm converge, 0.01, seems to have been too small.

The technique, adopted by PPCA, of approximating the noise parameter σ2 by

the average of the minor eigenvalues as given in Equation 2.5.10, gives insight into this

problem. Equation 2.5.5 shows that the diagonal components of the model covariance

43

Table 4.3: Test results, as average error percentage and standard deviation, for the

six experiments on NIST handwritten digit data set. In all models, the estimated

covariance matrices C are regularized by adding 0.01 times the identity matrix.

Exp. Initialization #Sub. #Dim Error #Sub. #Dim.

I random fixed fixed 2.66 ± 0.21 10 10

II Algorithm 3 fixed fixed 2.66 ± 0.18 10 10

III Algorithm 3 fixed fixed 2.67 ± 0.13 10 10

IV Algorithm 3 variable fixed 2.60 ± 0.18 5.2 10

V Algorithm 3 fixed variable 2.41 ± 0.14 10 10

VI Algorithm 3 variable variable 2.60 ± 0.14 7.1 10

matrix C are dependent on σ2 in the minor eigenvector directions. This structure

makes the covariance matrix very sensitive to the actual value of σ2. For very small

values, C becomes singular and the whole model becomes undefined. However, even

when the matrix is non-singular and σ2 is very small, the model becomes prone to

overfitting. This can be seen by realizing that for small σ2, some elements of C−1

becomes very large. Now, normally the image elements which are multiplied by the

large values in C−1 (see Equation 2.5.6) are very small, as their variances are very

low. However, if in the data set, an image occurs which has some noise present in

pixel positions which normally have low variance, this noise will be blown up. It will

have a large effect on the estimate of the probability of the image and both training

(specifically, the E-step) and recognition will suffer.

This is the main reason that makes the clustering-only experiments (Experiment

II) give results comparable to the EM-based experiments (Experiments I,III,IV,V and

VI), as the noise has less influence on Algorithm 3 than on the EM algorithm. Table 3.1

shows the average σ2 (over all subspaces) and the recognition error for each class for

one of Experiment I. It is obvious from the table that digit “1” has one of the worst

results and the lowest value of σ2. This gives the insight that, σ2 can be used as

a clue for deciding on the optimal number of PCs for the PPCA model in general

and most importantly that regularizing σ2, e.g. by adding a larger regularization

44

Figure 4.1: Examples for the misclassified digit “1” images in the first set of experi-

ments, In these experiments the estimated covariance matrices C are regularized by

adding 0.01 times the identity matrix. Note how most of the digits have general

reasonable shape with some noise presence.

constant, could improve performance. Fig. 4.1 shows some of digit “1” images which

have got wrong classification, one can easily note that most of the images have general

reasonable shape with noise presence.

To verify this, i.e., the regularization value is small, we re-run all the experiments

seven times using different regularization values. In the first run, σ2 is calculated

by averaging the minor eigenvalues, as given in Equation 2.5.10, and adding a fixed

regularization constant of 0.05. We then iteratively increased the regularization con-

stant by 0.05 and repeated all experiments. For completeness, the σ2’s estimated by

Algorithm 3 (Experiment II) were also regularized in the same way before testing.

The results of these experiments, shown in Figure 4.2, show that an optimal regular-

ization value is expected to be around 0.2. Detailed results for the experiments run

with a regularization value of 0.2 are shown in Table 4.4. The experiments also show

that randomly initialized PPCA now performs quite good compared to the results

previously obtained using other classifiers (Table 4.2). It is also obvious that EM is

45

Table 4.4: Test results for the six experiments using a regularization value of 0.20.

Exp. Initialization #Sub. #Dim. Error #Sub. #Dim.

I random fixed fixed 1.91 ± 0.24 10 10

II Algorithm 3 fixed fixed 2.62 ± 0.13 10 10

III Algorithm 3 fixed fixed 1.74 ± 0.18 10 10

IV Algorithm 3 variable fixed 2.09 ± 0.35 4.5 10

V Algorithm 3 fixed variable 1.72 ± 0.11 10 10

IV Algorithm 3 variable variable 1.85 ± 0.12 7.2 10

Table 4.5: This table summarizes the result for suboptimal αOpt value, 0.77, result.

The second row shows the average number of subspaces for each class. The third row

shows the average subspace dimensionality for each class. The fourth row shows the

error for each class. The last column shows the average for all classes.

Class 0 1 2 3 4 5 6 7 8 9 Avg.

#Sub. 11 5 10 8 8 9 11 8 11 10 9

#Dim. 9 4 10 12 9 11 8 7 10 8 9

Error % 1.0 1.4 1.4 2.5 1.8 1.9 0.9 1.5 2.3 2.4 1.68 ± 0.17

better than our hard clustering method, Algorithm 3 alone. Using Algorithm 3 as

an initialization of the EM algorithm improves results somewhat. However, the most

interesting result is the fact that the number of subspaces found in experiment IV,

is significantly reduced at only a small increase in test error. The greedy algorithm,

Algorithm 2 found 5.5 subspaces for each class on average, where the models with

fixed number of subspaces used 10 for each class; it gave a test error of 2.07% on

average, versus 1.91% on average for the standard MPPCA algorithm.

To have insight into the relation between the retained variance values, α, subspace

dimensionality and classification performance, we re-run experiment VI for 15 different

α values. This set of experiments are repeated 5 times with differently drawn train

and test sets. Figure 4.3 shows the errors and the average dimensionality for all classes

for different α.

46

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

Regularization value

er
ro

r
%

Randomly Init. EM
Hard clustring only
Fixed #Subspace Fixed #Dim.
Variable #Subspace Fixed #Dim.
Fixed #Subspace Variable #Dim
Variable #Subspace Variable #Dim

Figure 4.2: Error (% of the test set classified incorrectly) as a function of the regular-

ization value, for experiments I-VI.

47

0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

er
ro

r
%

testing data error %
training data error %

0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

Returned Variance value

D
im

en
si

o
n

al
it

y

Figure 4.3: (a) Error (average of test and training set classified incorrectly in the

5 experiments) as a function of the retained variance i.e. α. (b) Average subspace

dimensionality as a function of α.

48

Figure 4.3 reflects the important aspect that there exists a suboptimal α (hence-

forth αopt), here at approximately 0.77. For α values less than αopt, classification

performance is proportional to subspace dimensionality. What is of real interest, is

that the performance is approximately the same for α values greater than αopt for

both training and testing data. In fact there is a very slight improvement that can

hardly justify the increase in dimensionality reflected in Fig. 4.3b.

Classes 1, 4 and 7 have the least number of subspaces: 5, 8 and 8, respectively

(Table 4.5). On the other hand, classes 0, 6 and 8 have the maximum number of sub-

spaces, 11 subspaces for each. This is impressive, as the latter have more curvature

in their shapes and their input space is more full of structure, i.e. more nonlinearity,

while the former are semi-straight lines, i.e. less nonlinearity. It shows that the algo-

rithm is not ad hoc in model selection Table 4.5 shows the results per class for the

suboptimal αopt of 0.77.

4.3 Ionosphere signal classification

This data set was obtained from the UCI repository, donated by V. Sigillito from the

applied Physics Laboratory in Johns Hopkins University (Blake & Merz 1998). The

data set consists of two classes of signals, “good” and “bad”. Each signal instance has

34 attributes. In accordance with previous experiments, of which results are reported

in Table 4.6, we have used 200 instances for training, 100 for each class. The testing

set consists of 123 “good” and 24 “bad“ instances. The previous results show that

“good” signal recognition is much better than the “bad” one.

As before, for Experiments V and VI, we set α to the variance retained by ex-

periments III and IV, respectively. We repeat the experiments 8 times for the same

regularization values set used in previous test. We eliminate Experiments I and II. We

fix the dimensionality to 5 in the fixed dimensionality experiments and the number of

subspaces fixed to 5 in the fixed number of subspaces experiments. We run the same

second experiment to see the performance of the model for α values, for which the

result is depicted in Figure. 4.5.

49

Table 4.6: Results for various classifiers on the ionosphere data set.

Classifier Error %

Linear perceptron 9.3

Nonlinear perceptron 8.0

Backpropagation ANN 4

Nearest neighbor 7.9

Ross Quinlan’s C4 6

IB3 (Aha & Kibler IJCAI-1989) 3.3

4.3.1 Results and discussion

Figure 4.4 and Figure 4.5 summarize the results for the given set of experiments

graphically. Since the model has its best average performance when the regularization

value is 0.1, Table 4.7 gives a detailed result at this regularization value. The figures

show that the performance in the 4 experiments is nearly same except for the small

regularization values. The performance of experiment VI is better. In Experiment

VI the model chooses to model class “good” with an average of 3 subspaces of 3

dimensions each. As these values are better for modelling the “good” class it helps

the model to be less vulnerable to noise than in the other experiments where the

number of subspaces and dimensionality are higher.

The “bad” class is not as well structured as the “good” class. The model reflects

this by choosing 6 subspaces of 8 dimensions each. Estimating 6 subspaces with

average dimensionality 8 using only 100 patterns in the training data set produce a

model that suffers from the curse of dimensionality problem.

Fig 4.5 shows the performance is almost the same, when α has a value which is

greater than or equal to 0.65. In fact this is needed by class “bad” as lower value is

quite enough for class “good”.

4.4 Conclusions

The results of this classification experiments show that the described model has good

performance, when compare with the previously attained results for the given data

50

Table 4.7: Test results, as average error in % and standard deviation, for the four

experiments on the ionosphere data set. #Sub. and #Dim. are the average number

of subspaces and dimensionality per class. For all models, the estimated covariance

matrices C are regularized by a value of 0.1.

Exp. #Sub. #Dim. Error % #Sub. #Dim.

“good” “bad” “good” “bad”

III fixed fixed 3.3 ± 1.1 5 5 5 5

IV variable fixed 2.9 ± 0.7 5 4 5 5

V fixed variable 3.4 ± 0.8 5 5 3 8

VI variable variable 3.4 ± 1.4 3 6 3 8

sets.

The PPCA model’s assumption (e.g., equal noise variance in all directions) some-

times cause training problems or poor final performance. To remedy this, simple

regularization was shown to improve results considerably. The experiments show that

a better regularization value can be found by validation methods. While the main

theme of this thesis is making MPPCA training autonomous, this result introduce

a new important parameter. Another method (beside validation, which is slow) is

needed for setting the regularization value autonomously.

The experiments show that the fixed retained variance value α is a suitable guid-

ance for the process of searching for a suboptimal subspace dimensionality. As α is

inversely proportional to the noise term σ2 and we regularize the model by adding a

small constant to σ2 this suggest that these two parameters should be studied together

and it seems that their suboptimal values need to be optimized in a single process.

Figure 4.2 and Figure 4.4 show that the models with variable dimensionality have

better performance for low regularization values. As the search for αopt and regular-

ization value in our experiments is not exhaustive, more closer to optimality values

could be found. The experiments show that αopt can be reached by validation method.

Optimizing α and regularization value together by validation methods only increases

the complexity quadratically, which may not be feasible for high dimensional data

51

0 0.1 0.2 0.3 0.4

0

5

10

15

20

 Regularization value
 class "good"

er
ro

r
%

Fixed #Subspace Fixed #Dim.
Variable #Subspace Fixed #Dim.
Fixed #Subspace Variable #Dim.
Variable #Subspace Variable #Dim.

0 0.1 0.2 0.3 0.4

10

20

30

40

50

 Regularization value
 class "bad"

er
ro

r
%

0 0.1 0.2 0.3 0.4
5

10

15

20

25

 Regularization value
 Weighted average error

er
ro

r
%

0 0.1 0.2 0.3 0.4

5

10

15

20

 Regularization value
 Average error

er
ro

r
%

Figure 4.4: Error (% of the test set classified incorrectly) as a function of the regular-
ization value.

sets. This is a subject of further theoretical as well as experimental research studies.

The experiments also show that increasing the number of subspaces iteratively

through the greedy training process, is effective in searching for the suboptimal number

of subspaces. The process of initializing the greedy EM algorithm by Algorithm 3 (the

greedy hard clustering algorithm) shows good results in making The greedy EM less

vulnerable to the problem of convergence towards singular estimate at the boundary

of the parameter space or stuck in local minimas.

52

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

5

10

15

20

Retained Variance

er
ro

r
%

Good class error %
Bad class error %
weighted average error %
average error %

(a)

0.5 0.6 0.7 0.8 0.9 1
1

2

3

4

5

6

7

8

9

10

Retained Variance

d
im

en
si

o
n

al
it

y

class "good" average dimensionality
class "bad" average dimensionality

(b)

Figure 4.5: (a) Error (% of the test set classified incorrectly) as a function of α values.
(b) Average dimensionality as a function of the retained variance (α).

53

Figure 4.6: Some of subspace origins and the first two PC’s found in one of Experiment

VI on NIST digit data

54

CHAPTER 5

Application: texture image segmentation

5.1 Overview

An image (or a patch of an image) is a function I(x, y) on a rectangular grid of pixel

positions. For application of pattern recognition techniques, the function values are

usually stored in a (x× y)-dimensional vector, by lexicographic ordering of the pixel

elements. Treating entire image in this way is computationally infeasible. Therefore,

images are normally represented as distribution of d-dimensional vectors (d = x× y).

The high dimensional space in which these vectors reside will never be entirely filled.

The set of images that make sense to human observer is only very small subset of

all possible image function values. Image neighboring pixels are normally highly cor-

related, and coherent regions in images (e.g., textures) can be better described by

individual local models in the high dimensional space. In other words a representa-

tion of images (or image patches) as vectors in a high dimensional space contains far

more parameters than needed. Lu et al. (1998) had shown that transformed versions

of an image patch all lie on an m-dimensional manifold in the d-dimensional space

spanned by all pixel values, where m is number of degrees of freedom represented in the

transformation. Although this manifold may be intrinsically low-dimensional, its likely

to be nonlinear and lie folded up in the d-dimensional space. A good representation

would therefore be one which describe this manifold using a small number of parame-

ters, thereby avoiding the estimation problems in high dimensional spaces. Nonlinear

55

subspace model are theoretically plausible for modelling this manifold. However as we

illustrate in Chapter 1, using mixture of linear local models (e.g., MPPCA, mixtures

of FA, mixtures of ICA) to approximate nonlinear manifolds is currently showing bet-

ter results and many recent publications reflect this trend (de Ridder et al. 2000b,

Moghaddam 2002, Hinton et al. 1997, Kim et al. 2002a, Kambhatla 1995, Leen 1997,

Sung & Poggio 1998).

Texture image can often be described in a much lower number of parameters than

the pixels in the original image, due to the large redundancy in ordinary images

and the fact that neighboring pixels are highly correlated. Therefore, it can more

naturally be represented by subspaces, with points in the subspace corresponding to

slightly translated, rotated, scaled etc. version of the same image. The subspace

then becomes an invariant description of an image (or image patch). Moreover, as

image normally contains more than one texture, its naturally to use a mixture of

subspaces to model it. A leading work in this concern is Kohonen et al. (1997b)’s

ASSOM (The Adaptive-Subspace Self-Organizing Map), which is an extension of the

standard SOM, that uses subspaces in each node instead of weights, that just represent

a point in the feature space. This representation enables each node to represent a

certain texture in a translation-, rotation- or scale-invariant manner. The result of

ASSOM is encouraging. However, as ASSOM need extremely long time for training

(Kohonen et al. 1997a), researchers’ interest is shifted to faster subspace mixture

model such as MPCA (de Ridder et al. 2000a,b). The experiments reported here is

a continuation for de Ridder et al. (2000b) experiments. de Ridder et al. (2000b)

have used a two 2-dimensional MPPCA model to model a a 2-texture images. As a

result of this continuation, we didn’t perform the package of experiments described

in Chapter 4 and instead we first repeat experiment de Ridder et al. (2000a) with a

variable dimensionality model (VD-MPPCA) with the number of subspaces fixed to

two. We then apply the greedy VD-MPPCA to allow the model represents each image

by more than one subspace.

56

5.2 Texture image data set

Natural texture images from the Brodatz album are artificially combined (using a

cross-shaped mask) to create 2-texture images and scaled to a range [0 1]. The images

are shown in the first row of Figure 5.1. The training data consists of 1500 image

batches extracted form the combined images, where the length of the batch side is 20

pixels. The entire data set is pre-processed by PCA to remove noise directions. 70

dimensions are left from the original 400 dimensions. The model covariance matrices

C are regularized by adding a value of 0.01 to σ2. The segmentation is done by

assigning each central pixel of an image batch the label of that subspace j for which

pj(y|θj) is highest. pj(y|θj) is the component density that represents subspace j in

the mixture function, given by Equation 3.4.1 . The performance of both ICA and

PCA mixtures on the same images is reported in de Ridder et al. (2000b), where each

model is containing two 2-dimensional subspaces.

5.3 Results and discussion

Figure 5.1 shows the resulting segmentations, found by two subspace VD-MPPCA

model. It is clear that the result is poor, even for higher α values; i.e., higher di-

mensionality, there is no obvious improvement. Some parts of the segmented images

show that the model subspaces tend to model general image features, such as light

intensity, rather than modelling the textures exist in the images, e.g., see Image 4.

Moreover, many textures seem to have more than one mode, and therefore need to be

modelled by more than one subspace. From these we infer that, restricting the num-

ber of subspaces to two is the main reason behind the poor performance. A model

with higher number of subspaces may satisfy the needs for more subspaces of some

textures and can have some subspaces localized to the common image features. To

test this, we re-run the experiments with the number of subspaces 3 through 10. As

the pervious set of experiments show no significance improvement by increasing the

retained variance ratio (α), in these experiments, we set α to 0.15.

Figure 5.2 shows the results of the second set of experiments. The third row

shows the result of the first experiment in which the number of subspaces is 3, the

57

fourth row shows the result of 4 subspaces, and then each subsequent row has one

additional subspace. It is clear that having more than 2 subspaces, the model succeeds

in segmenting some images, by having some subspaces localized to one texture in the

image. Image 2 shows interesting result as the white subspace marked the boundary

area clearly. In image 5, the red subspace localized to the dark area in the outer

texture, it is clear that this area has different mode than the other part of the texture

and need to be modelled by a separate subspace. For all the ten different subspace

settings, image 6, the most difficult image, shows almost the same bad segmentation

result.

To see the automatic performance of the model Figure 5.4 shows the best seg-

mentation result based on the highest likelihood criterion. In our data classification

experiments, we base the number of subspaces selection entirely on likelihood change

criterion.; i.e we stop increasing the number of subspaces when there is no signifi-

cance change in the likelihood. However, as our primary investigation showed that

the likelihood is not properly concave as a function of subspaces k for this data set,

see Figure 5.3, we decide to generate 9 models first and to select the one with the

highest likelihood.

It is clear the is an over segmentation not a proper segmentation. However by

some post processing steps one may produce a typical segmentation from this over

segmented images. A general scheme for these post processing steps might be: [1]

remove the subspaces that spreads all over the images and assign its points to some

neighboring subspaces. [2] combine the subspaces that seam to have the same locality,

e.g., by using some neighborhood measurement.

5.4 Conclusions

In this chapter, we apply the greedy VD-MPPCA model to the texture segmentation

problem. It is clear form the experiments that increasing the number of subspaces

beyond the number of textures in the image, is more efficient than increasing subspace

dimensionality. The manifold of one texture seems to be local and low dimensional.

However, there is no reason to consider it globally linear, i.e., we may need more

58

than one subspace to model one texture. Moreover, the common image features, like

illumination, and the boundary pixels also play great role in pushing one-subspace-

for-one-texture model to get suck in some local maximas. These are the main reasons

behind one-subspace-for-one-texture poor performance. However, the final result now

is over segmentation that need to be reduced to the proper segmentation. The ques-

tion of reducing this over segmentation into proper segmentation is a difficult and

interesting question that needs more studies.

59

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

160

180

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

160

180

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

160

180

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

160

180

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

160

180

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

160

180

Image# 1 2 3 4 5 6

#Dim 2 1 3 2 2 3

#Dim 3 2 3 3 3 5

#Dim 4 5 4 3 4 6

#Dim 5 4 4 5 4 9

#Dim 6 5 8 6 5 11

Figure 5.1: Segmentation results for VD-MPPCA model where the number of sub-

spaces is two in all experiments. Each row shows a different experiment with different

α values in the following order: 0.15 , 0.20 , 0.25 ,0.30,0.35 and 0.40. The average

dimensionality for the subspaces is shown under each image.

60

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

160

180

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

160

180

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

160

180

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

160

180

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

160

180

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

160

180

1 2 3 4 5 6

Figure 5.2: Segmentation results of two subspaces through ten subspaces.

61

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

image no. 1 image no. 2 image no. 3

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

image no. 4 image no. 5 image no. 6

Figure 5.3: Likelihood as a function of number of subspaces

62

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

160

180

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

160

180

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

160

180

image no. 1 image no. 2 image no. 3

Subspaces 9 Subspaces 6 Subspaces 9

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

160

180

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

160

180

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

160

180

image no. 4 image no. 5 image no. 6

Subspaces 10 Subspaces 7 Subspaces 9

Figure 5.4: The best number of subspace segmentation results based on maiximum

likelihood criterion. The number of subspace is indicated under each segmented image.

63

CHAPTER 6

Conclusions and future work

MPPCA is an interesting alternative for both PCA and MoG, as it alleviates the PCA

global linearity problem and the MoG needs for large number of parameters. This may

be the main reason behind the recent research done to enhance MPPCA and extend

its applicability. MPCA is the predecessor of MPPCA. MPCA partition the training

data into k hard clusters and find principal subspace in each cluster. Both MPCA and

MPPCA as described in the literature need the parameters k (number of subspaces)

and m (subspace dimensionality) to be set beforehand. The aim of this thesis is the

automation of the MPPCA training i.e., finding k and m autonomously. To fulfill

this goal, we describe a complete greedy training scheme which combines solutions for

automating the MPPCA training. As the new model has variable dimensionality in

the local subspaces, we give it the acronym VD-MPPCA.

Finding the optimal number of components in a mixture is a very difficult problem,

which is not completely solved yet (McLachlan & Peel 2000). As this is the situation

from a purely theoretical point of view, we adopt a simple yet effective and appealing

strategy for finding a suboptimal number of components. We set a goal of building

a mixture model that adequately represents almost all the training data points. To

fulfil this goal, we design a greedy scheme that increases the number of components

in the mixture iteratively. Each new component is found by a greedy hard clustering

method from a fraction of the training data points, which has the lowest probability

64

in the current mixture. Finding a new component in the low density regions, increases

the possibility of the EM convergence towards singular estimate at the boundary of

the parameter space (Figueiredo & Jain 2002). However, our greedy hard clustering

initialization method cater for this problem by finding the new component in the most

dense region in the given training data fraction.

To find a principal subspace, the user faces two choices: [1] to choose the principal

subspace dimensionality and [2] to choose the principal subspace variability. The ma-

jority of MPCA and MPPCA described in the literature follow the first choice (Bailing

et al. 2001, Dony & Haykin 1997, Hinton et al. 1997, Kambhatla & Leen 1997, Sung

& Poggio 1998). We highlight that as the model shifted from geometrically based to

be probabilistically based with Tipping & Bishop (1999b), Roweis (1997), Moghad-

dam & Pentland (1997) extensions, the model is expected to be more effective and

autonomous by shifting also to the second choice. Accordingly, in our schema we use a

fixed retained variance ratio α, for which the scheme chooses the dimensionality that

retains this fixed ratio in each local subspace. One may argue that, we still need to

specify the global parameter α beforehand. The simple solution for this problem, is to

use validation methods (Duda et al. 2000) for finding a suboptimal value αopt for α.

What worth mentioning here, is that, the retained variance approach has the advan-

tage of finding subspaces with different dimensionalities and consistent data variability

inside and out side the principal subspace.

The main theme of this thesis is making the MPPCA training autonomous. While

the greedy search for a suboptimal number of subspaces and the retained variance

technique show good results in this concern, unfortunately, the classification experi-

ments show that there is an important additional parameter, namely the regulariza-

tion, which has to be set. Generally, a regularization value that helps the model to

converge can easily be found. However, the experiments show that for some regular-

ization values, hard clustering method performs similar to soft clustering by EM-based

methods. This simply means that there is no need for soft fitting by a mixture model.

The experiments show that by validation method a better regularization value could

be found, for which EM-based methods outperform hard clustering.

The experiments show that the fixed retained variance value α is a reasonable

65

guidance for the process of searching for a suboptimal subspace dimensionality. As α

is inversely proportional to the noise term σ2 and we regularize the model by adding a

small constant to σ2 this suggest that these two parameters should be studied together

and it seems that their suboptimal values need to be optimized in a single process.

As the search for αopt and regularization value in our studies is not exhaustive, more

closer to optimality values could be found. Optimizing α and regularization value

together by validation methods only increases the complexity quadratically, which

may not be feasible for high dimensional data sets. An important question is how to

find faster method for optimizing these two parameters.

We test the model on data classification. In these experiments we have used two

well known data sets: [1] NIST handwritten digit and (Winson & Garris 1992) and

[2] UCI ionosphere data set (Blake & Merz 1998). The results of these experiments

show that the model has good performance in classification, when compared to the

previously attained classification results for these data sets using other (often dedi-

cated) classifiers. k and m values found autonomously by the model for each class in

the data sets look consistent. For instance, the model finds higher numbers for k and

m for “bad” ionosphere signals with respect to the “good” ionosphere signals. Similar

result also appears in the digit classification experiments. For instance, digit “1” k

and m values found by the model are the minimum among the digit classes, which is

very consistent when considering handwriting styles for different digits.

In the second classification problem (ionosphere data set) which is a two class

classification problem, the “bad” signal class has much higher error rates. It seems

that exploiting the natural rejection capability of the density models may leverage the

performance in such cases. In other words, it may be more efficient to train an MPPCA

model for the “good” signals only and to equip this one model with a probabilistic

threshold. If a test pattern has a probabilistic membership lower than the threshold

it should be rejected. In fact this is one of major benefits of the probabilistic model.

However, we think there is a deficiency in investigating this property with MPPCA

and therefore it is an important future work.

In the second set of experiments, we test our scheme on segmenting natural texture

images from the Brodatz album (Musa et al. 2003). While the result from a pattern

66

recognition point of view may be interesting, it is an over segmentation from an

image processing point of view. As the model finds more than one subspace for one

texture. In addition, some subspaces are spread all over the image i.e., not localized

to one texture. We think this occurs mainly because the natural texture manifolds are

nonlinear. A proper segmentation can be found by applying post processing method

on these over-segmented images. This post processing method need to remove the

subspaces that spread all over the image first and to combine the subspaces that

represent the same texture by using some neighborhood criterion.

One of the MPPCA and MPCA main goals is the approximation of the nonlinear

manifold. Local linear embedding (LLE) is a recent proposal for fining a global nonlin-

ear low dimensional projection space (Roweis & Saul 2000, Saul & Roweis 2003). The

most important properties of LLE is that it does not contain local minima . However,

LLE neither contains clustering nor a probabilistic model. Therefore, LLE is not a

stand alone alternative of MPPCA and combining LLE and MPPCA in one setting

may be efficient in finding a new powerful method. An interesting future work, may be

to investigate using LLE in the post processing step needed for reducing the texture

over-segmentation into proper segmentation.

6.1 Training set size dimensionality and number of subspaces

An important issue in statistical pattern recognition is the relation between the train-

ing set size, dimensionality and the number of parameters to be found (Krishnaiah &

Kanal 1982). Finiteness of the training set size is a factual constraint that cannot be

overcome in many practical situations. As a result in modelling a care should be taken

as many methods need relatively large training set while some methods show relative

tolerance to this problem (Krishnaiah & Kanal 1982, Raudys & Pikelis 1980a). VD-

MMPCA is a result of successive steps for enhancing the PCA. It seems that some of

these enhancements while solving some of PCA major drawbacks; it has the drawback

of requiring larger sample size. For instance, an MPCA model requires O(k) sam-

ple size as big as required by conventional PCA. Of course, a soft fitted mixture can

tolerate a sample size which is smaller than what is needed for hard fitted mixture.

67

However the number for both is still higher than what is needed for one global model

especially if the mixture contains high number of subspaces care for sample size is

crucial.

For FD-MPPCA the modeler can care for the finiteness of the available sample

size when choosing k (number of subspace) and m (local dimensionality). Therefore,

our greedy VD-MPPCA needs to have some automatic control that prevents it from

peaking by having many subspaces with high local dimensions for a relatively small

training data set. This problem is very obvious in the model generated for the “bad”

ionosphere signals. In the literature there many guidelines for setting some limits for

the relation between the training data size and the dimensionality like saying the num-

ber of sample per dimensions should be greater than 5 or 10. Many researchers argued

that the ratio of sample size to dimensionality should be inversely proportional to the

amount of knowledge about the class conditional densities (Kanal & Chandrasekaran

1971). Furthermore, for Gaussian distribution some researchers have designed some

tables to determine the optimal dimensionality for a given training data size (Krish-

naiah & Kanal 1982, Raudys & Pikelis 1980a). Generating or adjusting these tables

for PPCA is interesting and worth consideration. Therefore, the greedy VD-MPPCA

which search iteratively to find a mixture of Gaussians that fit the given training data

can be controlled by this PPCA table to stop increasing the number of subspaces

when the table shows that the model is about peaking. Moreover, this control may

also reduce the dimensionality when the model is about peaking i.e stopping α control

and reduce the model to be FD-MPPCA. These are very acute measurements that

need more intensive theoretical and practical studies.

6.2 Complexity issues

Almost all mixture training methods start by obtaining a set of candidate models

(usually generated by EM) for a range of values of k (from kmin to kmax) which is

assumed to contain the optimal k. The optimal k is then selected by some model

selection criterion. For the described greedy search method the range of models is

from k1 to kopt i.e. the model to be selected is the model with maximum number of

68

components. Therefore, the greedy search is considered more efficient because it does

not generate models with number of components greater than the suboptimal number

and this also makes it less vulnerable to peaking when the training set is small.

Starting the number of candidate models by a model which has only one component

slows down the training process, especially if the number of subspaces to be found is

high. As the greedy hard clustering algorithm can find more than one subspace at a

time, the model can be enhanced to start the training process by some kmin number

of hard clusters. The question is how to find this number kmin autonomously? This

is a subject for further research works on speeding up the training process.

One iteration in the EM training has the complexity of O(kNd2) where k is the

number of subspaces, N training size and d is the data dimension. Therefore the whole

greedy training process has the complexity O(k2Nd2). The greedy hard clustering

needs O(1
kN2d) to generate the distance matrix between all (1

kN2) data points and

O(N2logN) to sort them to find the smallest radius and O(1
kN) for nearest mean

algorithm, all these can be considered roughly O(N2d). Therefore the complexity of

the greedy VD-MPPCA can be considered quadratic in the number of components k,

data dimension d and the sample size N .

69

Bibliography

Aitkin, M. & Aitkin, I. (1994), ‘Efficient computation of maximum likelihood estimates

in mixture distributions with reference to over dispersion and variance components’,

Proceedings XVIIth International biometric conference pp. 123–138.

Bailing, Z., Minyue, F. & Hong, Y. (2001), ‘A nonlinear neural network model of

mixture of local principal component analysis: application to hahdwritten digit

recognition’, Pattern recognition 34, 203–214.

Basilevsky, A. (1994), Statistical factor analysis and related methods, John Wiley &

Sons, Inc.

Bellman, R. (1961), Adaptive Control Processes, Princeton University Press.

Bishop, C. M. (1995), Neural networks for pattern recognition, Oxford University

Press.

Blake, C. & Merz, C. (1998), ‘Uci repository of machine learning databases. depart-

ment of information and computer science’, University of California .

Cadez, I. V. & Smyth, P. (2000), ‘On model selection and concavity for finite mixture

models’, Symposium on Information Theory (ISIT) .

Dasgupta, S. (1999), ‘Learning mixtures of gaussians’, Proc. IEEE Symposium on

Foundation of Computer Science .

Day, N. E. (1969), ‘Estimating the components of a mixture of two normal distribu-

tion’, Biometrica 32, 363–474.

70

DeMers, D. & Cottrell, G. (1993), ‘Nonlinear dimensionality reduction’, Advances in

Neural Information Processing Systems 5.

Dempster, A. P., Laird, N. M. & Rubin, D. B. (1977), ‘Maximum likelihood from

an incomplete data via the em algorithm’, Journal of the Royal Satistical Society

39, 1–38.

Devijver, P. A. & Kittler, J. (1982), Pattern recognition, a statistical approach,

Prentice-Hall.

de Ridder, D., Hoekstra, A. & Duin, R. (1996), ‘Feature extraction in shared weights

neural networks’, Proceedings of the 2nd annual conference of the Advanced School

for Computing and Image Processing (ASCI) pp. 289–294.

URL: http://www.ph.tn.tudelft.nl/∼dick/publication.html

de Ridder, D., Kittler, J. & Duin, R. (2000a), ‘The adaptive subspace map for texture

segmentation’, Proceedings of the 15th IAPR International Conference on Pattern

Recognition 1, 216–220.

URL: http://www.ph.tn.tudelft.nl/∼dick/publication.html

de Ridder, D., Kittler, J. & Duin, R. (2000b), ‘Probabilistic pca and ica subspace

mixture models for image segmentation’, Proc. 11-th British Machine Vision Con-

ference (BMVC 2000) pp. 112–121.

URL: http://www.ph.tn.tudelft.nl/∼dick/publication.html

de Ridder, D. (2001), Adaptive methods of image processing, PhD thesis, Faculty of

Applied Science, Delft University of Technology.

URL: http://www.ph.tn.tudelft.nl/∼dick/publication.html

Dony, R. D. & Haykin, S. (1997), ‘Image segmentation using a mixture of principal

component representation’, IEE Proc. Visual Image Signal Process 144, 73–80.

Duda, R. O., Hart, P. E. & Stork, D. G. (2000), Pattern classification, Second edition,

John Wiley & Sons, Inc.

71

Figueiredo, M. A. T. & Jain, A. K. (2002), ‘Unsupervised learing of finite mixture

models’, IEEE transactions on pattern analysis and machine intelligence 24, 381–

386.

Hartigan, J. A. (1975), Clustering algorithm, John Wiley & Sons, Inc.

Hastie, T. (1984), Principal curves and surfaces, PhD thesis, Stanford University.

Haykin, S. (1999), Neural networks: A comprehensive foundation, Prentice-Hall.

Hinton, G., Dayan, P. & Revow, M. (1997), ‘Modeling the manifolds of images of

handwritten digits’, IEEE Transaction on neural networks 10, 65–74.

Hotelling, H. (1933), ‘Analysis of a complex of statistical variables into principal com-

ponents’, Journal of Educational Psychology 24, 417–441.

Hsieh, W. W. (2001), ‘Nonlinear principal component analysis by neural networks’,

Tellus 53A, 599–615.

URL: http://www.ocgy.ubc.ca/projects/clim.pred

Jain, A. K. & Dubes, R. C. (1988), Algorithms for clustering data, Prentice Hall.

Jain, A. K., Duin, R. P. W. & Mao, J. (2000), ‘Statistical pattern recognition: A

review’, IEEE Trans. Pattern Analysis and Machine Intelligence 22, 4–37.

Jolliffe, I. T. (2002), Principal component analysis, Springer.

Kambhatla, N. & Leen, Y. K. (1997), ‘Dimension reduction by local linear principal

component analysis’, Neural Computation 9, 1493–1516.

Kambhatla, N. (1995), Local models and Gaussian mixture models for statistical data

processing, PhD thesis, Oregon Graduate Institute of Science & Technology.

Kanal, L. & Chandrasekaran, B. (1971), ‘On dimensionality and sample size in statis-

tical pattern classification’, Pattern recognition 3, 225–234.

Karmer, M. A. (1991), ‘Nonlinear principal component analysis using autoassociative

neural networks’, American Institute of Chemical Engineering Journal 37, 233–243.

72

Kaufman, L. & Rousseeuw, P. J. (1990), Finding groups in data: An introduction to

cluster analysis, John Wiley & Sons.

Kim, H.-C., Kim, D. & Bang, S. Y. (2002a), ‘Face recognition using the mixture of

eigenfaces method’, Pattern Recognition Letters 23, 1549–1558.

Kim, H.-C., Kim, D. & Bang, S. Y. (2002b), ‘A numeral character recognition using

the pca mixture model’, Pattern Recognition Letters 23, 103–111.

Kohonen, T., Kaski, S. & Lppalainen, H. (1997a), ‘The adaptive-subspace self-

organizing map’, Neural Computation 11(2), 1321–1344.

Kohonen, T., Kaski, S. & Lppalainen, H. (1997b), ‘The adaptive-subspace self-

organizing map (assom)’.

URL: http://www.cis.hut.fi/wsom97/progabstracts/48.html

Krishnaiah, P. R. & Kanal, L. N. (1982), Handbook of statisics 2: classification, pattern

recognition and reduction of dimensionality, North-Holland.

Leen, T. (1997), ‘Image dimension reduction by nonlinear and local linear pca’, Web

page .

URL: http://www.cse.ogi.edu/ tleen/Research/faces.html

Lee, J. Q. & Barron, A. R. (2000), ‘Mixture density estimation’, Advances in Neural

Information Processing Systems .

Lu, H., Fainman, Y. & Hecht-Nielsen, R. (1998), ‘Image manifolds’, Applications of

artificial neural networks in image processing III, proceeding SPIE pp. 52–63.

URL: http://citeseer.nj.nec.com/Lu98image.html

McLachlan, G. J. & Basford, K. E. (1988), Mixture models: Inference and applications

to clustering, Marcel Dekker.

McLachlan, G. J. & Peel, D. (2000), Finite mixtures models, John Wiley & Sons, Inc.

Meinicke, P. & Ritter, H. (2001), ‘Resolution-based complexity control for gaussian

mixture models’, Neural Computation 13(2), 453–475.

73

Moghaddam, B. & Pentland, A. (1997), ‘Probabilistic visual learning for object

presentation’, IEEE Transactions on Pattern Analysis and Machine Intelligence

19(7), 696–710.

Moghaddam, B. (2002), ‘Principal manifolds and probabilistic subspaces for visual

recognition’, IEEE Transactions on Pattern Analysis and Machine Intelligence

24(6), 780–788.

URL: www.merl.com/papers/docs/TR2002-13.pdf

Musa, M. E. M., Duin, R. P., de Ridder, D. & Atalay, V. (2003), ‘Texture segmen-

tation using the mixtures of principal component analyzers’, Eighteenth Interna-

tional Symposium on Computer and Information Sciences (ISCIS XVIII), Antalya,

Turkey.

Musa, M. E. M., Duin, R. P. & de Ridder, D. (2001a), ‘An enhanced em algorithm

for mixture of probabilistic principal component analyzers’, ICANN 2001 workshop

on kernel & subspace methods for computer Vision.

Musa, M. E. M., Duin, R. P. & de Ridder, D. (2001b), ‘Modelling handwritten digit

data using probabilistic principal component analysis’, Pro 7th Annual conference

of the advance School of Computing and Imaging (ASCI) pp. 415–421.

Pearson, K. (1901), ‘On lines and planes of closest fit to systems of points in space’,

London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, Six

Series 2, 559–572.

Petsche, T., Marchatonio, A., Darken, C., Hanson, S., Kuhn, G. & Santoso, I. (1996),

‘A neural network autoassociator for induction motor failure predication’, Advances

in Neural Information Processing Systems 8, 924–930.

Raudys, S. & Jain, A. (1991), ‘Small sample size effects in statistical pattern recog-

nitions for practioners’, IEEE Trans. Pattern Analysis and Machine Intelligence

13, 252–264.

Raudys, S. & Pikelis, V. (1980a), ‘On dimensionality, sample size,classification error,

74

and complexity of classification algorithm in pattern recognition’, IEEE Transaction

pattern analysis and machine intelligence 23, 242–252.

Raudys, S. & Pikelis, V. (1980b), ‘On dimensionality, sample size, classification error,

and complexity of classification algorithms in pattern recognition’, IEEE Trans.

Pattern Analysis and Machine Intelligence 2, 243–251.

Render, R. A. & Walker, H. F. (1984), ‘Mixture densities, maximum likelihood and

the em algorithm’, SIAM review 26(2), 195 – 239.

Ripley, B. (1996), Pattern recognition and neural networks, Cambridge University

Press.

Roweis, S. & Saul, L. K. (2000), ‘Nonlinear dimensionality reduction by locally linear

embedding’, Science 290, 2323–2326.

URL: http://www.gatsby.ucl.ac.uk/∼roweis/publications.html

Roweis, S. (1997), ‘Em algorithm for pca and spca’, Advances in Neural Information

Processing Systems 10 .

URL: http://www.gatsby.ucl.ac.uk/∼roweis/publications.html

Saul, L. K. & Roweis, S. (2003), ‘Think globally, fit locally:unsupervised learning of

low dimensional manifolds’, Journal of Machine Learning Research 4, 119–155.

URL: http://www.gatsby.ucl.ac.uk/∼roweis/publications.html

Schalkoff, R. (1992), Pattern recognition statistical structural and neural approachs,

John Wiley and Sons, Inc.

Smith, L. (1998), Linear Algebra, Springer.

Stanford, D. & Raftery, A. E. (1997), ‘Principal curve clustering with noise’, Technical

Report 317, Department of Statistics, University of Washington .

URL: http://www.stat.washington.edu/raftery

Sung, K.-K. & Poggio, T. (1998), ‘Example-based learning for view-based human

face detection’, IEEE Transaction on pattern Analysis and Machine Intelligence

75

20(1), 39–51.

URL: ftp://publication.ai.it.edu/ai-publication/1500-1999/AIM-1521.ps.Z.

Tipping, M. E. & Bishop, C. M. (1999a), ‘Mixtures of probabilistic principal compo-

nent analyzers’, Neural Computation 11(2), 443–482.

Tipping, M. E. & Bishop, C. M. (1999b), ‘Probabilistic principal component analyzers’,

Journal of the royal statistic Society b 61, 611–622.

Titterington, D., Smith, A. & Makov, U. (1985), Statistical Analysis of finite mixtures

distributions, John Wiley & Sons, Chichester, U.K.

Traven, H. G. C. (1991), ‘A neural network approach to statistical pattern classifica-

tion by ’semiparametric’ estimation of probability density function’, IEEE Trans-

action on neural networks (2)3, 264–280.

Verbeek, J. J., Vlassis, N. & Krose, B. (2003), ‘Efficient greedy learning of gaussian

mixture models’, Neural computation 15(2), 469–485.

Winson, C. L. & Garris, M. D. (1992), ‘Handprinted character database 3’, National

Institute of Standards and Technology; Advanced Systems Division p. 43.

URL: http://www.nist.gov/srd/nistsd19.htm

Wolfe, J. H. (1970), ‘Pattern clustering by multivariate mixture analysis’, Multivariate

behavioral research 5, 329–350.

76

APPENDIX A

Eigenvectors derivation for principal components

Let y be a d-dimensional random vector, which has the covariance matrix Cy, let A

be d×m projection matrix and let x be an m-dimensional random vector defined as

the projection of y by A into some m-dimensional space.

x = ATy

Now the covariance Cx of x can be defined as follows

Cx = ATCyA

or in detailed forms

Variance(xi) = Ai
TCyAi

Cov(xi,xj) = Ai
TCyAj

x contains the first m principal components (PCs) of y if its elements are uncor-

related and whose variances are as large as possible. xi (PC1) is the linear combi-

nation A1
Ty with the maximum variance. That it maximizes the Variance(x1) =

A1
TCyA1. It is clear that Variance(x1) = A1

TCyA1 can be increased by multiply-

ing A1 by some constant. To eliminate this indeterminacy, it is convenient to restrict

attention to coefficient vectors of unit length. We therefore define

• x1 (PC1) = the linear combination AT
1 y that maximizes Variance(AT

1 y) subject

to AT
1 A1 = 1

77

• x2 (PC2) = the linear combination AT
2 y that maximizes Variance(AT

2 y) subject

to AT
2 A2 = 1 and Cov(AT

1 y,AT
2 y) = 0

• xi (PCi) = the linear combination AT
i y that maximizes Variance(AT

i y) subject

to AT
i Ai = 1 and Cov(AT

i y,AT
j y) = 0 for j < i.

Theorem

if Cy has the eigenvalue-eigenvector pairs (λ1, e1),(λ2, e2), ...,(λm, em) where

λ1 ≥ λ2 ≥ ... ≥ λm ≥ 0. then

A = e1, ..., em

and Cx is diagonal matrix with its diagonal elements satisfy Cxii = λi. If some λi,

are equal, the choices of the corresponding PCs are not unique.

Proof

As Cy is a positive definite matrix we can use the following positive definite matrix

properties

• Property 1

max
A1 6=0

AT
1 CyAT

1

AT
1 AT

1

= λ1 (attained when A1 = e1)

• Property 2

max
A1⊥e1,...ei

AT
j CyAT

j

AT
j Aj

= λi+1 (attained when AT
j = ei+1)

a proof for the above formulas can be found in many linear algebra text book

e.g., Smith (1998).

Since eT
1 e = 1 the eigenvector are normalized. thus using Property 1

max
A1 6=0

AT
1 CyAT

1

AT
1 A1

= λ1 = eT
1 CyeT

1 = Variance(x1)

Similarly, using Property 2 for the choice Aj = ek+1 with eT
k+1ei = 0 for i = 1, 2, ..., k

and k = 1, 2, ..., m− 1, we get

eT
k+1Cyek+1

eT
k+1ek+1

= eT
k+1Cyek+1 = Variance(xk+1)

78

But eT
k+1(Cyek+1) = λk+1eT

k+1ek+1 = λk+1 so Variance(xk+1) = λk+1. It remains

to show that ei perpendicular to ek (that is eT
i ek = 0, i 6= k) gives Cov(xi,xk = 0).

Now, the eigenvectors of Cy are orthogonal if all eigenvalues λ1, λ2, ..., λm are dis-

tinct. If the eigenvalues are not distinct. The eigenvectors corresponding to common

eigenvalues may be chosen to be orthogonal. Therefore, for any two eigenvectors ei

and ek,eT
i ek = 0, i 6= k. Since Cyek = λkek, pre-multiplication by eT

i gives

Cov(xi,xk) = eiCyek = eT
i λkek = λkeT

i ek = 0

for any i 6= k, and the proof is complete.

79

APPENDIX B

Expectation maximization algorithm

B.1 Introduction

The Expectation maximization (EM) algorithm is a parameter estimation method

which falls into the general framework of maximum likelihood estimation, and is ap-

plied in cases where part of the data can be considered to be incomplete, or “hidden”.

For instance, in mixture parameters estimation, the information that show to which

component in the mixture a data point belongs is unknown. Therefore, the absence

of this information makes the mixture training data incomplete. EM is essentially an

iterative optimization algorithm which, at least under certain conditions, will converge

to parameter values at a local maximum of the likelihood function.

Dempster et al. (1977) defined the EM algorithm, and proved certain properties, in

particular that at each iteration the loglikelihood of the observed data is guaranteed

to be nondecreasing. That is, if L(Θ) is the likelihood of the observed data given

parameter values Θ, and Θt , Θt+1 are the parameter values at the t’th and (t+1)’th

iterations respectively, then L(Θt+1) ≥ L(Θt).

B.2 EM definition

The EM algorithm assumes the following problem definition: we have two sample

spaces Z and Y , such that there is a many-to-one mapping y = f(z) from an obser-

80

vation y in Y to an observation z in Z. We define

Z(y) = {z : f(z) = y} (B.2.1)

z is the complete data, and y is the observed data. If the distribution f(z|Θ) is well

defined then the probability of y given Θ is

g(y|Θ) =
∫

Z(y)
f(z|Θ)dz (B.2.2)

EM attempts to solve the following problem: given a sample from y is observed,

but the corresponding z are unobserved, or hidden, find the maximum likelihood

estimate vecΘ which maximizes L(Θ) = log g(y|Θ). In general, log f(z|Θ) will have

an easily–defined, analytically solvable maximum, but maximization of L(Θ) has no

analytic solution. EM is an iterative optimization algorithm which defines a sequence

of parameter settings through a mapping Θt → Θt+1 such that L(Θt+1) ≥ L(Θt)

with equality holding only at stationary points of L(Θ). Thus EM is a hill-climbing

algorithm which, at least under certain conditions, will converge to a stationary point

of L(Θ).

The mapping Θt → Θt+1 is defined in two steps:

• The Estimation step. Define p̃(z) = p(z|y,Θt). Calculate

Q(Θ′,Θt) = E[log f(z|Θ′)|p̃(z] =
∫

p̃(z) log f(z|Θ′)dz (B.2.3)

• The Maximization step. Set Θt+1 = argmaxΘ′ , Q(Θ′,Θt).

The intuition is as follows: if we had the complete data, we would simply estimate

Θ′ to maximize log f(z|Θ′). But with some of the complete data missing we instead

maximize the expectation of log f(z|Θ′) given the observed data and the current value

of Θ.

B.3 Proof that the likelihood is nondecreasing at each iteration

A crucial property of the EM algorithm is that the loglikelihood L(Θ) = log g(y|Θ) is

non decreasing at each iteration. Formally, if we define the EM mapping as Θt → Θt+1

where Θt+1 = argmaxΘ′ Q(Θ′,Θt) then L(Θt+1) ≥ L(Θt). The proof rests on two

results:

81

• Define k(z|y,Θ) to be the posterior likelihood of the complete data given the

data y and the parameters Θ, so that k(z|y,Θ) = f(z|Θ)
g(y|Θ). If we define H(Θ′,Θ) =

E[log k(z|y,Θ′)|p̃(z)], (as before, p̃(z) = p(z|y,Θ)), then

L(Θ′) = Q(Θ′,Θ)−H(Θ′Θ) (B.3.1)

•

∀Θ′ H(Θ′, Θ) ≤ H(Θ,Θ) (B.3.2)

with equality iff log k(z|y,Θ′) = log k(z|y,Θ) almost everywhere.

Given B.3.1

L(Θt)−L(Θt+1) = {Q(Θt+1,Θt)−Q(Θt,Θt)}−{H(Θt+1,Θt)−H(Θt,Θt)} (B.3.3)

But Q(Θt+1,Θt)−Q(Θt,Θt) ≥ 0 (by the definition of the M step), and from B.3.2

H(Θt+1,Θt)−H(Θt,Θt)) , so clearly L(Θt+1)− L(Θt) ≥ 0).

B.4 Proof of equation B.3.1

By the rules of conditional probability,

k(z|y,Θ′) =
f(z|Θ′)
g(y|Θ′)

(B.4.1)

k(z|y,Θ′) = log f(z|Θ′)− log g(z|Θ′) (B.4.2)

We can now take expectations with respect to p̃(z) = p(z|y,Θ):

E[log k(z|y,Θ′) | p̃(z)] = E[log f(z|,Θ′) | p̃(z)]−E[log g(y|Θ′) | p̃(z)]

= E[log f(z|,Θ′) | p̃(z)]− log g(y|Θ′) (B.4.3)

(Note that E[log g(y|Θ′) | p̃(z)] = log g(y|Θ′) as log g(y|Θ) does not depend on z.)

So by the definitions of H , Q and L,

H(Θ′,Θ) = Q(Θ′,Θ)− L(Θ′) (B.4.4)

82

B.5 Proof of equation B.3.2

One thing to note is that H(Θ,Θ)−H(Θ′,Θ) is the Kullback-Liebler distance between

k(z|y,Θ) and k(z|y,Θ′), which is known to be ≥ 0 with equality only if the two

distributions are equal. A formal proof is through the following theorem. Let f(z) and

g(z) be nonnegative and integrable functions, and S be the region in which f(z) ≥ 0.

The theorem states that if
∫
S(f(z)− g(z))dz ≥ 0, then

∫
S(f(z) log f(z)

g(z)dz ≥ 0.

If we put f(z) = k(z|y,Θ) and g(z) = k(z|y,Θ′) then clearly
∫
S(f(z)−g(z))d|z ≥

0, as
∫
S f(z) = 1 and by the laws of probability

∫
S g(z)d|z ≤ 1. Hence

∫

S
f(z) log

f(z)
g(z)

dz =
∫

S
k(z|y,θ) log

k(z|y,θ)
k(z|y, θ′)

dz ≥ 0 (B.5.1)

But

H(Θ,Θ)−H(Θ′,Θ) = E[log k(z|y, θ) | p̃(z)]− E[log k(z|y, θ′) | p̃(z)] (B.5.2)

=
∫

S
k(z|y, θ) log k(z|y, θ)−

∫

S
k(z|y,θ) log k(z|y, θ′)

=
∫

S
k(z|y, θ) log

k(z|y,θ)
k(z|y, θ′)

≥ 0 (B.5.3)

83

APPENDIX C

EM for MPPCA

This Appendix contains the formulas that we use in fitting the MPPCA model by

the EM algorithm the complete derivations and proofs for these formulas are given

in Tipping & Bishop (1999a).

• E-step

Rij =
qjpj(yi|j)

fk(yi)

• M-step

q̃j =
1
N

∑

i

Rij

µ̃ =
∑

i Rij(yij)∑
i Rij

Ãj = SjAj(σ2
j I + M−1

j AT
j SjAj)−1

σ2
j =

1
d
tr(Sj − SjAjM−1

j Ã
T

j)

where

Sj =
1

q̃jN

N∑

i

Rij(yi − µ̃j)(yi − µ̃j)T

Mj = σ2
j I + AT

j Aj

where the symbol ∼ denotes “new” quantities

84

VITA

Mohamed Elhafiz Mustafa Musa was born in Omdurman Sudan 1963. He graduated

in 1989 with honours degree second class upper from the School of Mathematical

Sciences, University of Khartoum. He received his M.Sc. degree in 1996 from the

same institute. In 1998 he commenced his Ph.D. study at the Image Processing and

Computer Vision group in the Department of Computer Engineering, Middle East

Technical University under the supervision of Dr. Volkan Atalay. In 2000 he spent

6 month as a guest at Delft University of Technology, Faculty of Applied Physics,

Pattern Recognition group under the supervision of Prof. Robert Duin. He had

been an instructor in Ahlia higher college in Sudan from 1990 to 1993, and in Sudan

University of Science and Technology from 1993 to 1996. Since 2001 he is working

with Çankaya University. His main interest areas are pattern recognition, Principal

Component Analysis, mixture modelling and Arabic optical character recognition.

85

