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ABSTRACT

ON THE EFFICIENCY OF

AUTHENTICATION PROTOCOLS, DIGITAL

SIGNATURES AND THEIR APPLICATIONS

IN E-HEALTH: A TOP-DOWN APPROACH

Bıçakcı, Kemal

Ph.D., Department of Information Systems

Supervisor: Assoc. Prof. Dr. Nazife Baykal

September 2003, 164 pages

Choosing an authentication protocol or a digital signature algorithm becomes

more challenging when performance constraints are of concern. In this thesis,

we discuss the possible options in a top-down approach and propose viable al-

ternatives for the efficiency criteria.

Before all the technical discussions, we argue that identifying prerequisites,

threats and risks on an organizational context has utmost importance so that
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effective solutions can be delivered at a reasonable cost. For instance, one ap-

proach to solve the performance problem is to relax the security requirements if

it is allowable and use one-time passwords as the more efficient entity authen-

tication protocol. SCOTP is the first protocol proposed in this study which

improves the security and flexibility of one-time passwords.

After requirements are set up, another high-efficiency solution is based on

new designs of improved protocols. These new protocols might utilize the trade-

offs between efficiency of distinct system parameters such as communication

versus computational load. SAOTS is our new protocol designed to improve

the performance and increase the round efficiency of server-assisted signature

protocols.

With an example in e-health, we also demonstrate that efficiency can be pro-

vided on the implementation level as well, the last step in the chain. EVEREST

is the third proposal in this thesis which improves the real-time efficiency of

digital signatures concerning the fact that the medical images are huge in size

and to verify the signature a considerable amount of time is spent to compute

the hash of the image file.

Keywords: Cryptography, Network Security, Digital signature, Authentication,

Server assisted signature, One-time password, Teleradiology
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ÖZ

TANIMA PROTOKOLLERİ, SAYISAL

İMZALAR, VE BUNLARIN E-SAĞLIK

UYGULAMALARININ VERİMİ ÜZERİNE:

YUKARDAN AŞAĞIYA BİR YAKLAŞIM

Bıçakcı, Kemal

Doktora, Bilişim Sistemleri Bölümü

Tez Yöneticisi: Doç. Dr. Nazife Baykal

Eylül 2003, 164 sayfa

Bir tanıma protokolünün veya sayısal imza algoritmasının seçimi performans

kısıtlamaları söz konusu olduğunda daha da zorlaşmaktadır. Bu tezde, olası

tercihler yukardan-aşağıya yaklaşımı ile tartışılıp verim ölçütü için uygulanabilir

alternatifler önerilmektedir.

Teknik tartışmalardan önce, gereksinim, tehdit ve risklerin organizasyonel

bağlamda tespit edilmesinin çok önemli olduğu ve ancak bu şart ile etkin çözümlerin
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makul maliyetlerle sağlanabileceği belirtilmiştir. Mesela, performans problemini

çözmek için yaklaşımlardan bir tanesi eğer mümkünse güvenlik gereksinimini

biraz gevşetmek ve tek-zamanlı parolaları daha verimli kişi tanıma protokolü

olarak kullanmaktır. Tek-zamanlı parolaların güvenlik ve esnekliğini geliştiren

SCOTP bu çalışmada önerilen ilk protokoldür.

Gereksinimler saptandıktan sonra, verim için bir diğer uygulanabilir çözüm

yeni ve gelişmiş protokol tasarımlarına dayanmaktadır. Bu yeni protokoller

sistemdeki hesaba dayalı ve iletişimsel yük gibi farklı parametreler arasındaki

verim değiş-tokuşlarından yararlanabilir. SAOTS adını verdiğimiz yeni protokol

sunucu destekli imza protokollerinde gecikme ve basamak verimini arttırmak

için tasarlanmıştır.

E-sağlık’da verilen bir örnek ile verimin zincirdeki en son halka, gerçekleştirme

aşamasında da sağlanabileceği gösterilmektedir. Bu tezdeki üçüncü ve son öneri

olan EVEREST yine sayısal imzalarda gerçek-zaman verimini geliştirmektedir.

Fakat bu defa tıbbi imgelerin ebatça çok büyük olması ve imzanın doğrulanması

için hatırı sayılır bir sürenin imge dosyasının özetinin hesaplanması için har-

candığı gerçeğinden hareket edilmiştir.

Anahtar Kelimeler: Kriptografi, Ağ güvenliği, Sayısal imza, Tanıma, Sunucu

yardımlı imza, Tek-zamanlı parola, Teleradyoloji
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CHAPTER I

INTRODUCTION

Open, Sesame!

- Ali Baba and Forty Thieves

Privacy and anonymity might be important for our social and

business well-being, but authentication is essential for survival.

Authentication is about the continuity of relationships, knowing who

to trust and who not to trust, making sense of a complex world.

- Bruce Schneier

“Security” means to protect certain assets in spite of certain threats and

attacks. In security engineering, the focus is on threats caused by intelligent

adversary whereas accidental behaviors or statistical mistakes are more related

to scientific disciplines of safety or fault tolerance.

For centuries, we have protected our assets by traditional means such as locks,

fences, seals, spoken passwords etc. To a first approximation, online society is
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similar to offline society, digital threats mirror the threats in the physical world

and the analogs of traditional protection methods are applicable in this new

world. However three important unique characteristics of the cyberspace make

the security problem more horrifying and these are basically the reasons the

terms “computer security” and “network security” gain so much popularity in

recent years [1]:

• Automation: With computers, attacks that would not have been possible

or were too marginal to notice become a major threat.

• Action at a Distance: Attackers do not have to be near their targets.

• Technique Propagation: Attack tools can easily be propagated through

Internet.

Attacks are changing in nature and become much more dangerous, meanwhile

many of us are today critically dependant on the security of the surrounding

systems. The security measures implemented in these systems can be categorized

into three groups:

• Prevention

• Detection

• Reaction

Usually, reactions follow the detection. A simple example for reaction is

calling the police after you detect that something has been stolen.
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I.1 Information Security Targets

Before choosing the specific countermeasure, we should decide on our security

goal/target by answering the question, “what kind of security do we need?”

By examining how information assets can be compromised, another classic

list in the security world distinguishes three main information security targets

[2]:

• Confidentiality: prevention of unauthorised disclosure of information.

• Integrity: prevention of unauthorised modification of information.

• Availability: prevention of unauthorised witholding of information.

I.2 Authentication Protocols

One of the security goals is “authentication”, to establish the identity of a com-

munication partner.

You can ask “what happened to the authentication target? I could not see

in the list.”

- It is in the list, but I have made it invisible for security reasons...:)

Switching back to serious-mode, authentication is not in the list not because

it is unimportant but because it has relationships with all the security goals

listed. By a closer look to the list we see that there is a common word “unau-

thorized” in all the items. Only if we can securely authenticate someone, we can

decide on “authorization”, whether he is allowed or not. In other words “au-

thorization” follows “authentication”. That is why “authentication” is the key
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for information security and if the authentication mechanism is compromised,

the rest of the security measures are bypassed as well. In spite of military do-

main where sometimes security and secrecy might even be used as synonyms,

authentication becomes far more important than secrecy in modern business in

the information age we are living in.

There are two well-known types of authentication:

• Entity authentication: Gaining assurances that the identity of the claimant

is as declared, thereby preventing impersonation.

• Message authentication: While entity authentication typically involves no

meaningful message other than the claim of being a particular entity, mes-

sage authentication does [3].

Another major difference between these two is that message authentication

itself does not provide any timeliness guarantees whereas entity authentication

confirms the identity in real-time (while the verifying entity awaits).

Lastly, as with any protocol, a security protocol compromises a series of

predetermined steps designed to complete a task. Just like a communication

protocol designed to establish a communication between participating entities,

the task in an “authentication protocol” is to authenticate the user(s).

I.3 Digital Signatures

Handwritten signatures have long been used to authenticate the messages signed

but the means to provide digital signatures for computer communication that is
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roughly equivalent to handwritten signatures on paper documents became avail-

able with the advances in modern cryptography. Whether we use a handwritten

or a digital signature, other than authenticating the message signed, the signa-

ture also ensures the message integrity and solves the non-repudiation problem.

As we will see in the next chapter, in cryptography world, while there are other

tools like message authentication codes (MACs) to ensure data integrity and

authentication, digital signatures are better in one important respect. They are

the only ones addressing the issue of non-repudiation.

“Nonrepudiation” means blocking a sender’s false denial that he or she signed

a particular document, thus enabling the recipient to easily prove that the sender

actually did sign the document. Authentication is a prevention-type counter-

measure whereas nonrepudiation is an issue more related to reaction e.g., in case

of a dispute a digital signature can be submitted to the arbiter as a proof.

The concepts of message authentication and message integrity have close

meanings and are sometimes confused. Integrity is not concerned with the ori-

gin of the data but whether it has been modified or not [1] (It is different

than ”accuracy” which conveys the notion of precision). On the other hand, it

makes no sense to provide the message authentication without also guarantee-

ing integrity of the message. Our discussion about the relationships between

information security targets is summarized in Figure I.1.
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Authentication


Confidentiality


Integrity


Nonrepudiation


Availability


Figure I.1: Information Security Targets

I.4 Efficiency Considerations

Broadly speaking, in a security protocol, we can define three dimensions that

have to be considered:

• Security: The quality or state of being protected from unauthorized ac-

tions. Absolute security may in practice be impossible to reach; thus the

security ’quality’ could be relative.

• Efficiency: Skillfulness in avoiding wasted time, effort and other re-

sources.

• Others: In a security protocol one might desire other features such as

flexibility, scalability, survivability, user-friendliness etc.

We define some of the aforementioned other features which are relevant to

our future discussion as follows:

Survivability: Ability to continue to function in different conditions.
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Flexibility: Ability to adjust readily to different conditions in terms of secu-

rity and efficiency (In our definition a survivable inflexible protocol is the one

that becomes less secure and/or less efficient in a different condition).

User-friendliness: Ability to be easily used by non-specialists.

After the desired level of security is specified and the desired features are

determined, the goal in designing a security protocol is to provide all these in

the most “efficient” way.

In the early days of computers where saving a few clock cycles has a meaning

and available cryptographic tools are unoptimized and very slow, being ineffi-

cient might mean being unusable. Today we see that in spite of high-performance

computing and really fast cryptographic algorithms, efficiency still remains a re-

markable concern in designing a security protocol. This is because with more

efficient security protocols three important targets can be attained:

• Cost cuts are possible e.g., by buying a less expensive and less powerful

web server.

• “Pervasive computing” vision can be realized where computer applications

are hosted on a wide range of platforms, including many that are small,

mobile and regarded today as devices having only limited computational

capabilities.

• Security level can be increased e.g., by using a longer key length.

Traditionally, the word “efficient” without an affix is used to mean efficient

in terms of computational delay. For instance if one says Protocol A is more
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efficient than Protocol B, he means that executing Protocol A takes less time

than Protocol B. However considering only the delay-efficiency (sometimes called

real-time efficiency) might mislead us in some situations because there are other

constraints (e.g., battery power of mobile devices) we should take into considera-

tion when designing a security protocol. Moreover, most of the time when a new

efficient authentication protocol or a digital signature scheme is to be designed

we face trade-offs between efficiency of distinct system parameters such as com-

munication versus computational load. Hence throughout this thesis when we

refer to efficiency if we do not use it in its general meaning we will try to make

it clear what kind of efficiency we are talking about.

I.5 E-Health

Before explaining you what this thesis is all about, we would like to shortly

introduce one remaining term used in the thesis title; “e-health”.

Barely in use before 1999, the term e-health now seems to serve as a general

”buzzword,” in line with other “e-words” used to characterize not only ”Internet

medicine”, but also virtually everything related to computers and medicine [4].

The term was apparently first used by industry leaders and marketing people

rather than academics. Some feels that the term should remain in the realm of

the business and marketing sector and should be avoided in scientific medical

literature and discourse. However, the term has already entered the scientific

literature. As of 22 June 2003, 156 Medline-indexed articles contain the term

”e-health” in the title or abstract (two years ago this number was only 76 [4]).
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Consequently, the unstoppable rise of “e-health” stimulates us to prefer it

over other alternatives like telemedicine.

According to a recent study 1, if health organizations in United States had

spent $50 billion each year on information technology, they might have saved

$270 billion each year (Up to our knowledge, a similar study has not been done

for Turkey yet). Only these figures are sufficient to demonstrate why healthcare

industry is labeled as being desperately in need of the efficiencies provided by

information systems. However, security issues in e-health systems have taken

center stage in recent years and due to the importance and the complexity of

the problem most experts see it as one of the significant challenges to successful

e-health projects.

I.6 Scope of This Thesis

In this thesis, our aim is to discuss the “efficiency” dimension of authentication

protocols, digital signatures and their applications in e-health with some origi-

nally developed/designed examples in a top-down approach. More specifically,

as illustrated in Figure I.2 in a big picture we first identify three main options

in order to provide the efficiency required at any kind 2:

• Requirement Analysis: Before all the technical discussions, we argue

that identifying requirements (prerequisites, threats, risks etc.) on an

1 R. Wagner, “US Healthcare”, white paper, March 2001, Available from
http://www.pkiforum.org/pdfs/healthcarenote.pdf, Last access: September 17, 2003.

2 This classification is quite natural and very well-known in the software engineering disci-
pline however incorporating security engineering in software engineering process is a relatively
new concept. Refer to [5] for more information.
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Figure I.2: Alternatives for Efficiency

organizational context has utmost importance so that effective solutions

can be delivered at a reasonable cost. For instance, one obvious approach

to solve the performance problem is to relax the security requirements if

it is allowable.

• Design: After requirements are set up, another viable solution for the

efficiency is based on new designs of improved protocols.

• Implementation: By taking into account the unique characteristics of

the application and with some implementation tricks, efficiency can be

provided on the the last step in the chain as well.

The objective of this dissertation is to illustrate the viability of each of the

aforementioned alternatives with some originally developed examples as shown

on the righthand side of Figure I.2.
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First of all, we argue that “one-time passwords” can be used as an efficient

entity authentication protocol when in the requirement analysis phase we decide

that some sophisticated attacks are not of our concern. Then after proposing a

new construction called Signature Chain (Infinite Length Hash Chain) we design

the SCOTP (Signature Chain based One-Time Password) protocol to improve

the security and flexibility of one-time passwords 3.

Secondly, we design a new efficient server assisted signature protocol called

SAOTS (Server Assisted One-Time Signatures). We believe that SAOTS pro-

tocol is very promising since it is more computation, storage and power efficient

than previous verifiable server assisted signature protocols.

Thirdly, we have investigated that in real-time teleradiology (a branch of

e-health which involves digital radiographic images), a considerable amount of

time is spent to verify a digital signature since the image size is huge (tens of

megabytes). Motivated by this fact, we propose, implement and evaluate the

performance of a communication and delay-efficient methodology for verification

called EVEREST (Efficient VERification of Electronic (digital) Signatures in

real-time Teleradiology)

EVEREST is proposed primarily for teleradiology services whereas SAOTS

and SCOTP are for general use. Last but not the least, in this thesis we discuss

the applicability and benefits of SCOTP and SAOTS in e-health applications.

3 One-time passwords as a concept can provide efficiency, however improving the efficiency
is not the objective of SCOTP protocol. Don’t let that confuse you.
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I.7 Organization of This Thesis

In this introductory chapter, the basic concepts in security are presented, au-

thentication protocols, digital signatures and e-health systems are introduced

and the importance of efficiency is emphasized. The scope and the organization

of the thesis is provided.

Chapter 2 is for background information. However we prefer to provide the

background material in this chapter only when this material is a prerequisite

to understand two or more subsequent chapters. Otherwise the background is

given in the beginning of subsequent chapters. In addition, the related work and

literature survey is also included in the first sections of following three chapters.

Chapter 3 is about entity authentication and one-time passwords. We pro-

pose the construction of Signature Chain and introduce the SCOTP protocol

in this chapter. At the end possible solutions to establish a survivable authen-

tication framework in e-health systems including the one based on one-time

passwords are discussed.

To reduce the costs of generating digital signatures one viable method is to

employ a third party; the server. Chapter 4 introduces server assisted signatures

first and then presents SAOTS, our new design. Similar to Chapter 3, Chapter

4 also covers the benefits of SAOTS in e-health applications.

Chapter 5 is concerned with efficient verification of signatures in real-time

teleradiology applications. Our third proposal, EVEREST is proposed here.

In Chapter 6, we conclude by summing up our work and discussing future

possibilities for research. The conclusions and future works discussed in this
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Figure I.3: Organization of The Thesis

chapter restate the important points given in the summary sections of previous

three chapters and also present some other broader issues and open problems.

Figure I.3 illustrates the structure of the thesis and the dependency of its

chapters.
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CHAPTER II

BACKGROUND

In theory there is no difference between

theory and practice. In practice there is.

- Yogi Berra

Just as a doctor needs to understand physiology as well as surgery,

so a security engineer needs to be familiar with cryptology as well as

computer security (and much else).

- Ross J. Anderson

Cryptography is where security meets mathematics [6]. The field is an in-

credibly broad one, with a history spanning hundreds, even thousands of years.

Traditionally its main objective is to design ciphers to protect sensitive data and

make it utterly unintelligible to anyone but the intended recipient. More or less

this has continued until Diffie and Hellman invented the concept of public key

cryptography in 1976 [7].
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During the last 25-30 years, public academic research in cryptography has

exploded. Consequently security protocols that could perform the most fantas-

tical interactions become possible (e.g., digital cash, e-voting, online auctions

etc.)

In our opinion today the real problem is not what cryptography can do but

whether it is understood and applied correctly or not. For instance most people

are not aware of the danger of using “home-made crypto”. The reason is that no

matter how unskilled one can design a cryptographic primitive that he himself

cannot break. The question to ask them is that “if you do not know much of

the theory behind crypto, would you expect to do any better at designing than

the best cryptographic minds of World War II?”

In the implementation of protocols proposed in this dissertation, we use pub-

lished, well-used algorithms that has been well scrutinized by respected cryp-

tographers over a period of years e.g., DSA [8], SHS [9].

Since there are a bunch of very good introductory textbooks on cryptography

providing very detailed information especially about the succeeding two sections,

for the sake of brevity we provide only a short summary background information

here. This information is for describing how cryptographic tools can be used

rather than on the mathematical details of the algorithms. We defer to [1, 3, 6,

10, 11, 12, 13] for a comprehensive treatment of the subject.
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II.1 Basic Cryptographic Tools

Security protocols are built on lower level cryptographic tools. Six tools - sym-

metric encryption, public-key encryption, message authentication codes, random

number generators, one-way hash functions, and digital signature schemes- com-

prise the toolbox of cryptography consumers [1]. Anyone of these six tools may

be used in an authentication protocol and we will now introduce briefly each of

them:

II.1.1 Symmetric Encryption

Historically, cryptography has been used for one thing: to keep secrets. Suppose

there is a message, sometimes called the plaintext, that someone wants to keep

secure. Maybe the someone (we will call her Alice) wants to send it to someone

else (we will call him Bob). What she does not want is for anyone other than

Bob to be able to read the message. Let’s look at what must happen for Alice

to send a message to Bob securely:

1. Alice and Bob agree on a cipher (cryptosystem) e.g., DES [14], AES [15].

2. Alice and Bob agree on a key.

3. Alice takes her plaintext message and encrypts it using the encryption

algorithm and the key to form the ciphertext.

4. Alice sends the ciphertext message to Bob.

5. Bob decrypts the ciphertext message with the same algorithm and the

same key and reads it.
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One notable point here is that the security depends on the secrecy of the key

rather than the cipher itself. This is also the reason symmetric encryption is

also known as “secret key cryptography”. Keys relieve us of the need to worry

about the algorithm used. Which is more trustworthy? a secret algorithm or an

algorithm that would do its job even if everybody in the world knows exactly

how it works.

The concept of “key” also brings one of the fundamental problems in cryp-

tography known as “key distribution”. Once keys are distributed securely, the

rest is much more straight-forward. Suppose n users would like to securely com-

municate with each other using secret key cryptography then each user would

need to know n−1 keys, one for each other user. If a new user joins then n keys

need to be generated for that new user to have a shared secret with each of the

other users.

At this point, the concept of “key length” should be explained. To break a

cipher, one obvious thing that an attacker can do is to try every possible key.

Not using any intelligence at all, this attack is named as “brute force attack”.

The most secure (secret-key) cipher is the one which can not be broken by a less

effort than the brute force attack. The susceptibility of a cipher to a brute force

attack is directly related to the key length e.g., an algorithm with a 40-bit key

length can be broken by about a trillion trials. Of course the longer the key, the

harder to break the system by a brute-force attack, but on the other hand using

a key longer than what we need slows down the encryption/decryption and is

inconvenient to store and to transmit.
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The length of the key is a major design issue today. Computers are doubling

their speed every year and the ciphers, which were secure at the time of their

designs, are not secure anymore. For instance IBM’s original submission to NBS

(National Bureau of Standards) had a 112-bit key. By the time this became

a standard as Data Encryption Standard (DES) [14], that was reduced to a

56-bit key. Many cryptographers argued for the longer key. Their arguments

centered on the possibility of a brute-force attack. In 1977, it was argued that

a special-purpose DES-cracking parallel computer could recover the key in a

day at a cost of $20 million [12], which was out of reach for everybody except

organizations like the NSA (National Security Agency). Today, it is possible to

build such machines in a much cheaper way. The cost will drop by a factor of 5

every 10 years. DES will only become less secure as time goes on. As a result

NIST, National Institute of Standards and Technology, formerly the NBS has

recently developed a new standard, Advanced Encryption Standard (AES) [15],

which superseded DES as the government standard for secret-key encryption of

unclassified data.

The issue of key length for public key encryption algorithms and digital sig-

nature schemes are more complicated. Since the security of these algorithms

depend on the difficulty of a certain mathematical problem (e.g., integer fac-

torization for RSA [16], discrete logarithms for DSA [8]) the efficiency of the

algorithms solving these mathematical problems directly affects the borderline

of the key length to have the same level of security as secret key equivalents.

For instance for RSA and DSA, 1024-bit key length is recommended today to
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have the same security level of a 80-bit keyed secret-key algorithm [1].

Lastly, to have the same level of security in a MAC algorithm one needs to

choose the same key length of secret-key algorithms. However one-way hash

functions should have a length equal to twice the key length.

II.1.2 Public-key Encryption

To be able to send secret messages to people you have not met yet, and with

whom you have not agreed on a secret key, public-key (asymmetric) encryption

schemes (e.g., RSA [16]) have been introduced where there are two keys instead

of a single key that Alice and Bob share. One key is for encryption, the other

is for decryption and it is not possible to compute one key from the other. Now

Bob can generate a pair of these keys and publishes the one for encryption. Alice

can take the encryption (public) key and encrypt a message to Bob. Bob can

use his (private) decryption key to decrypt and read Alice’s message.

The key point here is that key distribution is much easier with public key

cryptography. Each user is responsible for knowing his own private key, and all

the public keys can be accessible in one place. If a new user joins, it is sufficient

to generate a private key and make the corresponding public key accessible (See

subsection II.2.2).

II.1.3 Message Authentication Codes

One of the biggest fallacies in applying cryptography is the thought that encryp-

tion provides data integrity. This belief is not correct since for instance for some

19



ciphers in some modes of their operations even some attacks that can modify

the data without turning it into garbage are practically possible (e.g., cut and

paste attacks).

Message authentication codes (MACs) do not provide secrecy but ensure

message authentication and integrity. MACs use a shared secret key, just like

symmetric encryption algorithms. When Alice wants to send a message to Bob,

she computes the MAC of the message using the secret key and appends it to

the message. Every message has a unique MAC for each possible key. When

Bob receives the message, he computes its MAC again using the same shared

secret key and compares it with the MAC he received from Alice. If they match,

then he knows two things: The message really does come from Alice and it is

complete and unaltered.

II.1.4 Random Number Generators

“Random number generators are least-talked-about cryptographic tool, but are

no less important than the others” [1]. Almost every security protocol that

uses cryptography requires random numbers (for keys, seeds, unique values etc.)

and the security of these protocols depends on the randomness of those random

numbers.

If the random number generator is insecure (i.e., does not generate good-

enough random numbers), it is not difficult to break the protocol no matter how

carefully it is designed.

20



II.1.5 One-way hash functions

“One-way functions” are functions that are relatively easy to compute but sig-

nificantly harder to reverse. That is, given x it is easy to compute f(x), but

given f(x) it is hard to find x
′

6= x such that f(x) = f(x
′

). Having been used for

computer science for a long time, “hash functions” take a variable-length input

and convert it to a fixed-length generally smaller output. And finally, one-way

hash functions are hash functions that works in one direction or in another view,

they are like digital fingerprints: small pieces of data that can serve to identify

much larger digital objects (e.g., MD5 [17], SHS [9]). They are public functions;

no secret keys are involved. The security is in their one-wayness. These func-

tions have an enormous range of applications in security as one of them is in

digital signature schemes as seen in Figure II.1 and we will see some one other

in section II.3.

II.1.6 Digital Signature Schemes

Like public-key encryption, digital signatures use a pair of keys but this time we

are going to reverse the order of operations applied as seen in Figure II.1 (On

the lefthand side the signing is performed by Bob and the private key used is

Bob’s whereas in public key encryption when Bob wants to send an encrypted

message to Alice, he uses Alice’s public key).

In practical implementations, algorithms are often too inefficient to sign mes-

sages. To save time, digital signatures are usually implemented with hashing

algorithms, which convert the message into a fixed length smaller output. This

21



Dear Alice, Did

you see
 Kemal's


thesis?...


Hashing

algorithm


One-way hash


Original data


Digital Signature


Network


Dear Alice, Did

you see
 Kemal's


thesis?...


Private key


Hashing

algorithm


Digital Signature


Public key


One-way hash


Received data


Signing

algorithm


Verifying

algorithm


YES

or


NO


Figure II.1: Digital Signatures with Public Key Cryptography
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one-way hash value not the message itself is signed and verified.

Digital signature algorithms have nothing to do with encryption and their

goal is not confidentiality as explained in section I.3. A common mistake is

to call the public key and private key operations in Figure II.1 as encryption

and/or decryption. As a matter of fact some people get confused and can not

distinguish signing and encrypting (or verifying and decrypting) simply because

one of the popular digital signature algorithm (RSA [16]) can be both used for

digital signatures and public key encryption. However in general this is not true

for other algorithms.

II.2 Public Key Certificates and Public Key Infrastruc-

ture

II.2.1 The Need for Public Key Certificates

With respect to digital signatures and signature based authentication protocols,

the use of public key cryptosystems raises the following crucial problem.

The public key of the signer is needed for the verification process. By the

use of the public key it can be justified whether the signature was generated by

the corresponding private key or not. However, it is not provable whether or

not a certain entity owns the public key.

Obviously, the authentic link between the public key and its owner is needed 1.

Such a link can be provided by “public key certificates” which are signed mes-

1 This link is necessary for public key encryption as well in order to use the correct
encryption (public) key.
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sages specifying an identity and the corresponding public key. Since each public

key corresponds to a particular private key, a binding of the private key to its

owner is given indirectly. If the public key is not bound to its legal owner,

attacks like the following become possible:

An adversary X generates his own key pair (PUBx, PRIVx) and publishes

the public key PUBx by claiming a wrong identity A. Afterwards, X is able to

forge signatures of an entity A. This is due to the fact that the verifier assumes

that the public key used for the verification process, belongs to its legal owner,

namely entity A.

Public Key Infrastructure (PKI) provides protocols, services, and standards

for public-key cryptography in order to employ the public key certificates to

securely and effectively use digital signatures and public key encryption.

The fundamental problem PKI tries to solve is to distribute public key cer-

tificates securely. More liberally, there are various ways for secure distribution

either employing PKI or not; we will summarize the most popular ones as fol-

lows:

1. Out-of-band Distribution: Before sending someone a digitally signed

document, we can pass on the public key offline (by out-of-band channels).

More specifically, we can distribute the public key over an insecure chan-

nel and only the hash of the public key over a secure channel, such as a

telephone.

It is evident that this approach has some practical limitations i.e., out-

of-band channels are not always available. Other than that, the third
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feature of digital signatures, ability to solve the nonrepudiation problem

requires the public key to be certified by a third party. One also might

think that in this way there is no advantage of public key cryptography

over secret key cryptography where the secret key needs to be distributed

in a similar way. However with out-of-band distribution using public keys

has still some advantages over using a secret key because for instance you

no longer worry about the risk of eavesdropped (public) key which you

distribute to other parties.

2. Public Key Infrastructure: In a PKI, a trusted third party usually

called the certificate authority (CA) generates public key certificates which

are signed messages specifying a name and the corresponding public key.

Now all users are required to get securely the CA’s public key so that they

can verify the signature on certificates. Then, you might ask: “what is

the deal? If I can get securely a public key why am I not get the public

key of the user himself in the first place?” The answer is that obtaining

CA’s public key has an advantage since it is the only one required to verify

signatures generated by a number of users.

In the most basic form of this model, all users in the world choose a single

CA. The public key of that CA is embedded in all software and hardware

[10].

In a more practical PKI trust model, instead of preconfigured with a single

key, the products (e.g., web browsers) come configured with many CAs and
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a certificate issued by anyone of them is accepted.

There is also the delegated CA model where a top level CA issues certifi-

cates to other lower level CAs. Users can then obtain certificates from one

of these delegated CAs. To verify a certificate, Alice processes a chain of

certificates from the top-most level (root) CA to Bob’s name.

3. Web of Trust Model: This model does not require a CA and trust is

established at a user level as opposed to higher-level CAs. This model has

been popularized by the encryption software PGP (pretty good privacy)

[18]. In the PGP model, the user initially trusts some set of other users.

Therefore, he will trust the public keys associated with these users. From

the initial set of public keys that the user stores in a key file, “transitive

trust” may be used to trust other public keys. For example, if you trust

Alice in your key file and Alice trusts Bob, you can choose to trust Bob

and add Bob’s public key into your key file.

II.2.2 The Components of a Public Key Infrastructure

As we have mentioned, CAs are the well-recognized entities to serve as trusted

third parties to produce an authentic link between an individual’s identity and

his public key. However on the behind scene, a PKI involves a collaborative

process between several entities: the CA, a registration authority, a certificate

directory and key recovery server [13]. In this subsection we discuss each of

these components in short.

• Certificate Authority: If we think of a certificate as being similar to a
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driver’s licence, CA operates as a kind of licencing bureau analogous to

Directorate of Security. The CA is ultimately responsible for the authen-

ticity of its end users. CA’s fall into two categories: private and public.

Private CAs are usually for closed networks on the other hand public CAs

operate via Internet, providing services to the general public.

• Registration Authority: A registration authority (RA) can serve as an

intermediate entity between a CA and its end users, assisting the CA in its

day-to-day functions such as accepting and verifying registration informa-

tion about new registers, generating keys on behalf of end users, distribute

hardware devices such as smartcards etc. In general CAs can delegate their

authority to accept registration information to a local RA (not a local re-

search assistant!) when it becomes geographically dispersed. However

RAs are different than delegated CAs discussed previously because the

end user sees a single certificate instead of a chain of certificates when

RAs are employed

• Certificate Directory: Certificates must be stored for later use after

they are generated. End users can store the certificates on local ma-

chines but CAs often utilize a certificate directory as a central storage

location. X.500 standard and LDAP (lightweight directory access proto-

col) becomes widely accepted in implementations [13]. Note that because

of self-verifying nature of certificates, these directories themselves do not

necessarily have to be trusted.
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• Key Recovery Server: As the name implies, the key recovery server

gives the end users the oppurtunity to recover their lost private keys. The

loss might result from hardware failure, forgotten password etc.

II.3 Hash Chains

The idea of “hash chain” was first proposed by Lamport [19] in 1981 and sug-

gested to be used for safeguarding against password eavesdropping. However

being an elegant and versatile low-cost technique, the hash chain construction

finds alot of other applications ranging from micropayments [20] to server as-

sisted signature protocols [21]. Despite the fact that the concept is not difficult

to grasp and can be explained in a few sentences, it is better to present it in a

separate section due to its importance and widespread use.

A hash chain of length N is constructed by applying a one-way hash function

h() recursively to an initial seed value (s).

KN = hN(s) = h(h(h(...h(s)...)))
︸ ︷︷ ︸

N times

The last element KN resembles the public key in public key cryptography

(i.e., by knowing KN , KN−1 can not be generated by those who does not know

the value s). This property of hash chains has been directly evolved from the

property of one-way hash functions.

In most of the hash-chain applications, first KN is securely distributed and

then the elements of the hash chain is spent one by one by starting from KN−1

and continuing until the value of s is reached (at this point the hash chain has
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been exhausted and a new hash chain needs to be generated to proceed). For

instance in the micropayment scheme, KN−i corresponds to the ith payment

(e.g., worth of one cent) from the user to the vendor.

II.4 Formal Methods

So far, we have discussed the basic cryptographic tools and some supporting

technologies. At the end of this chapter we would like to introduce another im-

portant tool that is widely used in designing/analyzing authentication protocols.

Authentication is not an easy problem. Needless to say, using secure cryp-

tographic tools is not sufficient to design a secure authentication protocol. In

the security literature many protocols have been published and at a later time

weaknesses and flaws were discovered in them. This leads security scientists to

establish better guidelines for protocol design and analysis.

The most popular approach to analyze authentication protocols is through

the use of logic. The first and the most popular one is the BAN logic, named after

its inventors Mike Burrows, Martin Abadi, and Roger Needham [22]. The BAN

logic provides a formal method of reasoning about the beliefs of participants

in a security protocol. It reasons about what is reasonable for a participant to

believe, given sight of certain messages.

BAN logic has been used succesfully to find the flaws in some security pro-

tocols e.g., CCITT X.509 protocol [23]. On the other hand it has also its own

limitations. According to Meadows [24], ”it is unlikely that any formal method

will be able to model all aspects of a protocol, and thus it is unlikely that any
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formal method will be able to detect or prevent all types of protocol flaws”.

We do not want to go into the details but refer to some references for these

limitations [6] [24].

What we would like to do here instead is to give a short background infor-

mation on the BAN logic. For a more comprehensive treatment we recommend

the original papers [22, 25].

The key idea in BAN logic is that we will believe that the identity of the

claimant is as declared when a received message is fresh and encrypted with a

relevant key. Notice that this belief is only true when the underlying crypto-

graphic algorithms are secure. It also demonstrates the difference between the

motivations of protocol analyzer and crypto-analyst.

The constructs of the logic are expressed using the following notations:

A| ≡ X: A is entitled to believe X.

A| ∼ X: A once said X.

A| ⇒ X: A has jurisdiction over X (A is authority on X and is to be trusted).

A / X: A sees X.

]X: X is fresh.

XK: X is encrypted using the key K.

→K A: K is A’s public key (K−1 is only known by A).

These constructs can be manipulated by using the following postulates:

Message-meaning rule (for public key cryptography): States that if
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A sees a message encrypted under K−1 and K is the public key of B, then A

will believe that the message was once said by B.

A / XK−1, A| ≡→K B

A| ≡ B| ∼ X

Nonce-verification rule: States that if a participant once said a message

and the message is fresh, then that participant still believes it.

A| ≡ ]X, A| ≡ B| ∼ X

A| ≡ B| ≡ X

Jurisdiction rule: States that if a participant believes something and is an

authority on that matter, then he or she should be believed.

A| ≡ B| ⇒ X, A| ≡ B| ≡ X

A| ≡ X

Note that the statements on the top are the conditions and the one on the

bottom is the result. There are a number of further postulates but the most

important ones given here will be sufficient to make the analysis of the protocols

proposed in the following two chapters.

Finally, using the BAN logic, the analysis of protocols will be performed in

three steps:

• The idealized protocol is derived from the original one.

• The goals of the authentication protocol are formalized and assumptions

about the initial state are written.

• The postulates of the logic are applied to discover the beliefs held by the

participants.
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CHAPTER III

ENTITY AUTHENTICATION AND

ONE-TIME PASSWORDS

A donkey with a golden saddle still remains a donkey.

- Turkish Proverb

Why do you security people always speak of compromise as

if it’s a bad thing. Good engineering is all about compromise.

- overheard at a project review [10]

Just after the introductory and background information provided in the first

two chapters, our detailed discussion on the “efficiency” issue starts with this

chapter where we argue that one-time passwords can be an efficient alternative

for entity authentication when looser security requirements are allowable. In

addition, our new protocol called SCOTP which improves the security and flex-

ibility (not the efficiency) of previous one-time password protocols is proposed

here.
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As we have discussed in section I.2, entity authentication 1 is the process by

which a system can determine whether or not a given user is the one who he

claims to be. When the authentication mechanism is compromised, the rest of

the security measures are bypassed as well therefore one can hardly imagine any

security without having a secure means of establishing authentication.

It is widely accepted that authentication uses either one of the following (or

a combination).

• Something you have (smart cards, smart tokens etc.)

• Something you are (biometrics)

• Something you know (passwords)

The last alternative, the passwords are the most widely used method for

authentication. This is due to its low cost and convenient usage. While the

others depend on specialized hardware devices, this method can be fully utilized

by using only software techniques. This is why sometimes it is called ”software

authentication”. Other than inconvenience and cost, the first two alternatives

have their own problems. We do not explain these but refer instead to some

references [1, 6, 26].

Authentication by using only passwords is a well-known problem in security

area and a large number of papers have been published trying to solve the

weaknesses of the previous ones. Due to the importance of the problem, section

III.1 is reserved for the introductory information and literature survey about

1 In the rest of this chapter we will use “authentication” in short to refer to entity
authentication.
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software authentication techniques and their weaknesses. Next we introduce

one-time password (OTP) schemes, which offer a viable alternative but have

some deficiencies with respect to flexibility and security they provide. In section

III.2 we also explain how and when one-time password protocols can provide the

efficiency we are looking for.

Before going into the details of our proposal, we briefly explain our contribu-

tion in section III.3. We will answer the question of how not to store a secret on

the server side in one-time password (OTP) schemes in section III.4. In Section

III.5, to overcome the limitations of hash chains, we will propose the concept

of Signature Chain. In Section III.6, by designing a new protocol we will show

how this new idea can be employed in OTP operation. Section III.7 will analyze

SCOTP, our new authentication protocol that uses Signature Chain. In Section

III.8 possible solutions to establish a survivable authentication framework in

e-health systems including the one based on one-time passwords are discussed.

Section III.9 provides the security analysis of one-time password protocols (in-

cluding SCOTP). We will look at some practical issues in Section III.10. Section

III.11 concludes the chapter with the summary and possible future works.

III.1 Overview of Software Authentication Techniques

and Their Vulnerabilities

The classical way of authentication via passwords in early protocols like telnet

is composed of 4 steps:

1. User enters the name and the password.
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2. The client machine sends the name and the password across the network.

3. Server uses the password to authenticate user’s identity.

4. Server authorizes access for authenticated identity.

Since in these primitive protocols, the password is transmitted across the

network in plaintext (without any encryption), anybody that can intercept the

password can use it later for impersonation. This simple attack was the initial

motivation behind the design of one-time passwords (OTPs). Nowadays, for the

sake of security, system administrators are switching their computer systems

from telnet to secure shell (SSH) [27]. In SSH where the password is transmitted

in an encrypted channel across the network, ”eavesdrop and replay” kinds of

attack are impossible and therefore at first glance one might think that having

the elegant solution of SSH, using OTPs becomes obsolete and is not more than

an inconvenience for the user. We will show why this is not the case but first

let us finish our discussion of authentication methods in general.

We first try to categorize the hacking attacks trying to break into the au-

thentication method in use. There are various ways to hack an authentication

system. Figure III.1 shows the classification of attacks depending on the place

that is susceptible of:

• Network Attacks: We have already mentioned one simple example of

passive network attacks in protocols like telnet. In systems where the

password is transmitted in an encrypted channel, this attack is still possible

if the encrypted channel has not been designed carefully. Active network
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Figure III.1: Classification of Hacking Attacks

attacks are more sophisticated attacks in which the attacker does not only

listen to the network but also he has the capability to delete, change or

insert the authentication packets in real time. Examples are ”man-in-the-

middle” attacks, ”hijacking connection” attacks etc. (Active attacks are

mostly beyond the capabilities of most attackers and one-time passwords

are not sufficient for these active attacks, one needs to use more advanced

methods like SSH to safeguard against.)

• Social attacks: Maybe the easiest of all four types is the social attack

if you can somehow persuade the untrained user to disseminate his pass-

word e.g., by introducing yourself as the system admin over the phone.

This type of attacks does not only consist of this simple case only but in-

cludes more intelligent and sophisticated techniques e.g., Lally and Hardy

conducted a survey to get an idea of password reuse and the results show
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that passwords are reused often 2. In this survey, a fair amount of people

reused a ”real” password as the ”survey” password. Not being difficult to

set up a malicious web site, it is very easy to learn one’s password if he

reuses it.

The applicability of the remaining two attacks depends on the authentication

method in use therefore we would like to first partition software authentication

methods into two major groups:

• Authentication methods based on shared secret between the server and

the user.

• Authentication methods, which do not need shared secrets.

In the first group, the server and the user shares a secret and that secret

is mostly called the password. The secret is unknown to anybody else and

the user needs to prove that he knows the secret in order to be authenticated.

The procedure how the user proves that he knows the secret differentiates with

respect to method in use. In telnet and SSH’s current password authentication

method 3 for instance, the user proves by simply sending it (across the open or

encrypted channel). Today, more sophisticated methods are available in which

the user does not need to send the secret but in a number of rounds both sides

exchange some messages serving the purpose of proving that both sides know the

2 M. Lally and S. Hardy, “Pitfalls of Password Reusage”, Available at
http://www.ece.wpi.edu/∼sunar/ee579r/password.ps, Last access: September 17, 2003.

3 In SSH after the encrypted tunnel is set up, it is possible to use either the mostly preferred
method; password authentication or another widely-used one; public-key authentication that
will be explained shortly [27].

37



secret without revealing it. These methods are usually called ”zero-knowledge

proofs” [3, 11]. We do not go into the details of these more advanced methods

but as stated next, in all of these methods there are two properties in common

and two corresponding attacks are possible:

• The user should enter the same password in each authentication.

• The server requires to store the secret information in a protected file to

authenticate its users.

Let’s turn back to our discussion on the types of attack:

• Attacks to the Client Machine: There are several ways in which your

password may be snooped directly on the client machine e.g., someone with

root access may maliciously have installed a ”wiretap” device driver in the

kernel, or a trojan horse version of an application program. If a system

administrator installing the software is not malicious but careless enough

not to check that he has an unmodified version of software distribution, a

“keyboard-trapping” routine inside the modified version of authentication

software can again capture the password when you are typing and forward

it to the attacker’s machine. Since the password used in each authenti-

cation is the same one, the password stolen can easily be used later for

impersonation.

• Attacks to the Server Machine: The second property above, storing

the password in a file causes another serious vulnerability. The server can
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leak that secret to third parties accidentally or maliciously. For instance if

the server is also a web server, the attacker can utilize the CGI vulnerabil-

ities to steal the password file. The passwords are not listed in plaintext

in the password file where password is hashed and the hash value is stored

but since it is not practical for a user to choose a difficult-to-guess (high-

entropy) password, (off-line) dictionary attacks are generally powerful to

compute the password from its hash value. So this method is practically

same as storing the password.

In the authentication methods, that do not need to share a secret with the

server, the user has two options:

• In protocols like Kerberos [28], he shares a secret with a trusted third

party (TTP).

• By using public key algorithms, which is based on two keys named public

key and private key, the user does not need to share a secret with any

other party. The server does only know the public key of the user, which

is available to anybody. The private key should be kept secret and known

only to its owner. An algorithm should be in operation to allow the user

to prove that he knows the private key corresponding to the public key.

In both of these, the server does not need to store any secret information

eliminating any attacks on the server side. For the sake of brevity, we will not

explain here how the protocol Kerberos works, but for our purposes note that

offline dictionary attacks are still possible, now the TTP is vulnerable instead of
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the server. At this point to keep our word we will explain in a simplified fashion

how traditional public-key authentication process works in protocols like SSH.

The simplified protocol involves three steps:

1. The server sends a randomly generated number called ”challenge” to the

user.

2. The user digitally signs the challenge by his private key and sends back

the digital signature.

3. The server uses the user’s public key in order to verify the signature of the

challenge. If the signature is good, then authentication is done. Otherwise,

authentication fails.

This method has another advantage that is the password is never transmit-

ted over the network thereby eliminates attacks on the encrypted channel to

intercept the password.

In software authentication, generally user’s private key is stored on the client

machine protected with a password (this is why this method can also be stud-

ied under the umbrella term ”authentication via passwords” as far as software

authentication is concerned). The user again needs to enter his password to the

client machine to sign the challenge. To safeguard against attacks in stealing

the private key from the client machine one can argue that the user would type

his private key instead of the password to sign the challenge however the attack

we have mentioned on the client machine with a wiretap device or a trojan horse
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program is still possible in this case. Only the difference is that the attacker

now steals the private key instead of the password.

III.2 One-Time Password Schemes

In summary, so far we have shown that none of the software authentication

methods we have seen safeguards against the attacks on insecure client machines

where it is always possible someone to steal the password when the user types

in. There are two possible countermeasures for this attack:

• Making sure that the client machine is secure so that it does not allow

someone to snoop the secret when the user types in.

• We can employ one-time passwords for authentication purposes. Since

each password we use is valid for only one time, the password that is

snooped is not useful afterwards.

The first option is acceptable when the user is an expert with the full ad-

ministrative rights of the client machine used. This is not realistic however in

most cases where for instance the user travels frequently and should use insecure,

untrusted and even hostile machines for reaching his home machine.

One-time password (OTP) schemes, where each password is used only once

offers a viable alternative or a supplement to traditional password schemes. OTP

schemes’ advantages depend on which mode of operation is used. Two modes

of operation for OTPs are possible and their corresponding advantages are as

follows [10]:
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• Workstation environment: In this first mode of operation, to facilitate

user-friendliness, each user has only (and need to memorize) one password

just like traditional password schemes. This password is used to authenti-

cate the user to the client machine and this machine generates the one-time

password to be authenticated by the server. On the network between the

client and server machine only the one-time password is transmitted and

hence safeguards only from ”eavesdrop and replay” kinds of attack.

• Human and paper environment: For the applications that require

stronger security, it is possible to have the user enter the one-time pass-

words without getting any help from the system. In this case not only

”eavesdrop and replay” attacks are impossible but also the other problems

of traditional passwords are avoided.

If one-time passwords are used in the first mode of operation, just after user is

authenticated by entering his password to the client machine, the client machine

transmits already prepared/calculated one-time password through the network

hence no computation needs to be carried out in the client machine. For the sake

of reducing number of rounds, one-time passwords can be implemented in a way

where the user’s name and one-time password together are transmitted to the

server. This results a protocol running in one-round only. As a result, one-time

passwords are the most real-time efficient (for the client) and communication-

efficient protocol that can ever be designed (you can not do better than a one

round protocol that requires no computation on the client side). In addition it

is computational efficient with respect to server’s computation as well i.e., only
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one hash operation or public key operation (if our new protocol is preferred) is

required.

On the other hand SSH protocol works at least in three rounds:

• Client encrypts a random number (session key) with Server’s public key.

• Server decrypts session key, sends an encrypted confirmation to Client.

• Client is authenticated to Server using the encrypted tunnel e.g., by pass-

word authentication (safeguard against both active and passive attacks).

Notice that in the first round above the client should perform public key

operation (a heavy operation especially when constraint devices are of concern).

After this discussion it becomes clear that one-time passwords operating

in workstation environment are much more computational and communication

efficient with respect to SSH (and other public-key protocols including more

advanced ones based on zero-knowledge proofs). However they are not good for

active network attacks. Our conclusion is that if active network attacks are not

of concern but “eavesdrop and replay” kinds of attacks should be avoided then

OTP protocols has a tremendous efficiency advantage over other alternatives.

Let’s turn back to the human and paper environment. In this mode, of

course we cannot expect someone memorizes all these one-time passwords. In

a practical situation, mostly these passwords are written down on a piece of

paper and carried in the pocket (alternatively, mobile devices such as PDA

and cellular phone can be used for storing the OTP list). This is somehow

an inconvenience for the user but in most situations demanding high level of
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security, that inconvenience is worth. Note also that for secure authentication,

the user should keep the OTP list secure.

Variations of OTP schemes [3] include “sequentially updated OTPs” where

there is initially only a single secret password that is shared and the user cre-

ates and transmits the new password while he is being authenticated with the

previous one and “shared lists of OTPs” where the user and the system use a

set of secret passwords (each valid for a single authentication and distributed as

a pre-shared list).

As we discussed in section II.3, the idea of hash chain was first proposed by

Lamport in 1981 [19]. ”OTP sequences based on hash chain” is a more elegant

design and has more attractive properties than the other two variations. First

of all, this method is more efficient with respect to bandwidth than sequentially

updated OTPs. Sequentially updating also becomes difficult when communica-

tion failures occur. Second, shared lists have the drawback of maintaining and

distribution of the list.

OTP schemes based on hash chain (Lamport’s idea) operates in three steps

[29]:

1. Preparatory Step:

The server and the user agree on a shared secret (the password). The

server sends a seed in clear text to the user. The user concatenates the

password with the seed so that the user can use the password more than

once by changing the seed. The result of the concatenation is called s on

the generation and verification steps.

44



2. Generation Step:

By applying the one-way hash function sequentially to s, a sequence of

one-time passwords (pi) is produced. The initial one-time password is

produced by applying the one-way hash function h() N times:

P0 = hN (s) (III.1)

The next one-time password is generated by applying the one-way hash

function N − 1 times.

P1 = hN−1(s) (III.2)

And, the general formula is:

Pi = hN−i(s) (III.3)

By knowing Pi, Pi+1 cannot be generated because hash function is a one-

way function.

3. Verification Step:

First of all the initial one-time password P0 is calculated by the host.

Before a user tries to be authenticated, the current value of i and the seed

are passed to him, so that the user enters the next one-time password

(the first password to be used for authentication would be P1). The server

applies the one-way hash function to it:
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Pi = h(hN−i−1(s)) = h(Pi+1) (III.4)

If it is the same as the one stored on the server side, the user is authenti-

cated and the one-time password is saved for the next authentication.

III.3 Our Contribution in a Nutshell

Lamport’s idea of hash chains has been widely employed in popular OTP soft-

ware packages 4 [29, 30]. But we are not aware of any further study to improve

his idea. One exception is [31] where the authors extend Lamport’s idea to more

general access mechanisms by combining it with zero-knowledge techniques.

More recent studies 5 [32] recommend other OTP schemes (not based on

hash chains) to overcome the limitations of Lamport’s idea but as discussed

in the previous section, they have their own limitations. In [32], the author

proposes a new OTP scheme with a shared list of passwords predistributed.

Their contribution is to allow the server decreases the storage requirements for

this list by cryptographic techniques. However, secure distribution of this long

list is problematic in most environments and the encryption of the shared secret

by a master key does little on protecting the secret in the server where the

master key is the new secret and can be compromised. The proposition in [?] is

also a shared list approach and will be discussed more in the next section. This

4 ”OPIE, One-time Password In Everything”, Available at http://inner.net/opie/, Last
access: September 17, 2003.

5 M. Kuhn, “OTPW - A One Time Password Login Capability”, Available at
http://www.cl.cam.ac.uk/∼mgk25/otpw.html, Last access: September 17, 2003, Last update:
September 1, 2003.
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study [33, 34] is the first one trying to improve the security and flexibility of

Lamport’s idea.

Currently in all of the available one-time password software systems, the

server stores a secret. This makes the server side vulnerable to attacks i.e., steal

the password file and make a dictionary attack (there are various tools available

in the Internet to easily perform these attacks 6 7). Our first contribution is

the design of a one-time password based authentication method, which does not

need to store a secret on the server side while still has the capability of defending

against client-side attacks.

Our second contribution is a chain-based scheme in which from any in-

correctly revealed one-time password, unspent passwords cannot be calculated

therefore for secure operation our scheme does not assume the user is careful

enough to enter the correct password in each authentication. (it is obvious that

without chaining, with a cost of increased storage, this is easily supported in a

shared list of independent passwords). Our last contribution at this subject is

to allow using one-time passwords without a need to reinitialize the system after

a certain number of authentication. As having an infinite length, in contrast to

current method in use, the chain in our proposition is more flexible and facil-

itates using the protocol without the complexity and communication overhead

of restarting.

6 John the ripper - password cracker homepage, Available at
http://www.openwall.com/john/, Last access: September 17, 2003.

7 S/KEY patch for the ”John the rip-
per” program, Available at http://www.monkey.org/ dugsong/john-1.6.skey.patch-1/, Last
access: September 17, 2003, Last update: January 26, 2000.
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III.4 How not to Store a Secret in OTP Schemes

At a first glance, one might thing that there is no stored secret on the server’s

side in Lamport’s OTP scheme in [30] i.e., the server needs to store only the

last element in the hash chain at start and the previous one-time password

while in operation. In the reality this is not the case; first of all, hash chains are

constructed from the concatenation of a password and a seed (transmitted to the

user in cleartext). The password is the shared secret and is stored on the server

side in current implementations. Second, even if the password is destroyed after

the hash chain is generated (any further chains can not be generated), the server

is susceptible to attacks since the password might probably be a guessable one

and an off-line dictionary attack to the hash chain is very powerful just like in

the traditional password scheme [10, 3]. As a result, in current implementations

of Lamport’s OTP the system is vulnerable since practically we store a secret

on the server side.

There are a couple of ways not to store a secret on the server in OTP schemes

and therefore not having the problem of server side attacks like the off-line

dictionary attack:

1. The user does not start the construction of hash chain from a guessable

password but from a random number using a secure random number gen-

erator. He then passes securely this random number to the server. This

can be accomplished offline or require the user go somewhere in person.

Other than the inapplicability in some environments of this off-line pro-

cess we encounter in traditional password methods as well, we have one
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more problem specific to OTP methods. In traditional password methods,

it is sufficient to store the hash of the secret whereas since we need to

construct other hash chains when the first hash chain is totally spent, in

OTP schemes the server cannot delete and need to store the secret without

hashing in order to generate succeeding hash chains. The alternative way,

separate random numbers passed to server offline for each hash chain will

be an increased inconvenience for the user.

2. Again, the user starts the construction of hash chain from a random num-

ber using a secure random number generator and in one of the following

ways he passes the last element of hash chain to the server:

• This process can be off-line just like in the previous method. The

deficiencies in this case are similar to the ones explained above.

• The user might have already been authorized to have an access to

his account (he was authenticated previously by any other means).

He can store the last element of the chain in his account so that the

server will be able to look it up for the later authentications by OTP.

The deficiency in this case is that the assumption of having already

other authentication methods available will result in storing secrets

not for OTP operation but for the other methods e.g., traditional

password authentication.

• The user cannot send to the server this last element in plain (trans-

mitted in the network). Remember our discussion in subsection II.2.1.
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Similarly there would be a security problem when an authentic link

is not established between the last element of the hash chain and the

user himself. The solution to this problem is the well-known digital

signature that is the user signs this last element so that nobody can

forge it.

3. The user needs to use public key cryptography to sign. Public-key cryp-

tography is not a silver bullet and one might be very careful for a secure

implementation (The most important issue that needs great care has been

discussed in section II.2 and II.3). But if public key cryptography is to be

used anyhow, the third and the last alternative the ”signature chain” ap-

proach which will be discussed next has much more attractive properties.

III.5 Signature Chains

In this section we propose the Signature Chain as an alternative to Lamport’s

hash chain. Next section will show how to employ this new idea in OTP schemes.

Our proposition uses public-key cryptosystems very similar to digital sig-

nature schemes. The only difference is that in digital signatures generally the

algorithm is performed on the hashed version of the message, this is because

most of the times the message is too long to be processed by the public-key

algorithm. In our case we do not need to bother with this kind of pre-processing

if we are careful enough in choosing the digital signature scheme to be used.

We have previously claimed that in our proposition unlike hash chains, the

previous passwords cannot be generated from the (incorrectly entered) later
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passwords. In Lamport’s hash chain, think for instance instead of the first OTP,

the last OTP is entered by the careless user. Then all the previous passwords

can be generated from it by applying the (public) hash function recursively. For

instance the first OTP is generated by applying the hash function n times (n

is the length of the chain) to the last OTP. If an appropriate digital signature

scheme is used in our ”signature chain” construction, then this attack will not

work in our proposal. The property the digital signature scheme should not

have is called ”message recovery” property [3] which will be explored in the next

subsection but first let’s define the ”signature chain”.

III.5.1 Definition

We define “Signature Chain (SC)” as follows:

Definition: Signature chain is a chain where the elements in the chain are

the signatures obtained by applying the signing algorithm recursively starting

with an initial input message.

The notation Si(x) is used for ith element in the signature chain and it is

the result of applying the signing algorithm (S) i times starting with the input

message x. The length of the chain can be legitimately increased infinitely

thereby facilitate using it without restarting or bootstrapping.

We explain below how we can construct such a signature chain:

Construction: Let algorithm S be a signing algorithm in a signature scheme

(e.g., RSA [16], DSA [8]) where d is the private key and V is the correspond-

ing verification algorithm with the corresponding public key e. Let x and y
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constitute a pair such that

Sd(x) = y

Vd(x) =







true if y = Sd(x)

false if y 6= Sd(x)

SN
d (x) denotes that we apply the signing algorithm S recursively N times

to the initial input message (seed) x using the private key d. As seen below,

recursive applications result in an (infinite length) signature chain originated

from the initial input message x:

x, Sd(x), S2

d(x), S3

d(x), . . . SN−1

d (x), SN
d (x), SN+1

d (x) . . . (III.5)

III.5.2 The Message Recovery Property

In the ”signature chain” construction defined above, the attacker cannot gener-

ate OTPs from incorrectly entered later OTPs only if the verification algorithm

in the chosen digital signature scheme does not have the message recovery prop-

erty. We can briefly summarize this property as follows:

Definition: If the message itself is not required as input to verify the dig-

ital signature or in other words if the original message can be recovered from

the signature itself, then the digital signature scheme has the property called

”message recovery”.

Assuming that the signature is a good one, then an attacker can generate

the message (previous OTP) from the signature (later OTP) by employing this
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property. Now, we will demonstrate how this attack can be performed on RSA,

which has the property of ”message recovery”.

In RSA signature scheme where n and b constitute the public key and a is

the private key, a signature for a message x is composed by

y = Sa(x) = xa mod n (III.6)

and the corresponding verification works as follows

Vb(x, y) = true if x = yb mod n (III.7)

As seen above, the verification computation does not involve the message x

and the output of this computation is compared with the message x in the end.

Suppose we choose RSA in constructing a signature chain, then the first

three OTPs can be constructed as follows by using s as the initial seed:

P1 = sa mod n, P2 = P a
1 mod n, P3 = P a

2 mod n

Suppose also the user entered P3 incorrectly instead of P1 for the first au-

thentication, then an attacker can compute P2 and P1 by using P3 and the public

key as follows:

P2 = P b
3 mod n, P1 = P b

2 mod n

In order to safeguard against this attack, hashing the password before signing

it should be performed:

P1 = [h(s)]a mod n, P2 = [h(P1)]
a mod n, P3 = [h(P2)]

a mod n
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Then P2 can not be generated from P3 (The attacker can generate h(P2) but

not P2).

On the other hand, Digital Signature Standard [8] scheme, which does not

have the ”message recovery” can safeguard against the concerned attack without

a need to bother with hashing. In Appendix A, we demonstrate how DSA can

be used to construct a signature chain.

III.6 SCOTP Protocol Proposed

Having defined the signature chain above, let’s see how we utilize this idea in

generating one-time passwords. Suppose the public key e is transmitted to the

server securely and s is the seed to be used. Then the first one-time password

can be constructed by

Sd(s) = P0 (III.8)

When this password is received by the server, it can be verified by applying

Ve(s, P0) = true (III.9)

The general formula for the ith one-time password is

Pi = Si
d(s) (III.10)

or

Pi = Sd(Pi−1) (III.11)
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Note that just like ordinary one-time passwords, by knowing Pi−1, Pi cannot

be generated because d is unknown to the server.

And the verification of the ith one-time password is done by applying

Ve(Pi−1, Pi) = true (III.12)

since Pi−1 is already received.

In this scheme, unlike Lamport’s hash chain, the value s does not need to be

a secret value. It should be generated randomly (for security reasons) and agreed

on before the first authentication takes place. For instance the user computes

the hash of his public-key or public-key certificate to generate the seed and

the server repeats the same computation to have the same seed to start with.

Another method is that server signs the value of s and sends it to the user

initially (e.g., when the user registers to the system). We will summarize the

initialization and operation of SC based OTP (SCOTP) protocol below.

SCOTP Authentication Protocol:

Initialization:

1. The user generates a public key-private key pair, registers himself to the

server and sends securely his public key to the server.

2. The server and the user agree on the seed value to be used.

3. The server keeps a table for each user which stores

• user’s ID

• user’s public key
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• OTP sequence number (initially zero)

• Previous OTP (initially the seed value)

4. The user generates any number of OTPs he wishes from the seed value by

constructing a SC using his private key and prints out them in a piece of

paper. The user can update his OTP list anytime he wishes by computing

more elements in the infinite length SC e.g., when the OTPs are about to

finish.

Operation:

1. The user sends his ID to the server.

2. The server finds the entry for the ID the user has entered in the authen-

tication file and sends the current value of OTP sequence number to the

user.

3. The user enters the OTP with the sequence number the server has re-

quested.

4. The server verifies the OTP by the user’s public key, if it is correct then

authentication succeeds, it updates the previous OTP with the one the user

has entered and also increment the OTP sequence number. If the OTP

is not correct then the authentication fails, it sends a warning message to

the user (possible precautions the user needs to take if he has carelessly

revealed the later OTPs will be discussed in subsection III.10.2).
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III.7 Features of SCOTP

In section III.2, we have shown why one-time passwords are preferable when we

should use insecure client machines to be authenticated. Our proposition, OTP

with SC has some other nice features which traditional one-time passwords lack.

These are:

1. Since our chain is constructed by using public-key techniques only, no

shared secret is needed for the correct operation just like the other authen-

tication methods based on public keys. This important property eliminates

the possibilities of attacks on the server side (it was already mentioned that

the system also protects the user from the client side attacks in contrast

to other software authentication methods based on public-keys).

2. By utilizing a signature scheme, which does not have the ”message recov-

ery” property, it was shown that from any incorrectly revealed one-time

password, unspent one-time passwords could not be calculated therefore

for secure operation our scheme does not assume the user is careful enough

to enter the correct one-time password in each authentication.

3. Figure III.2 shows the comparison between OTP schemes based on hash

chain and SC. In this figure, each rectangle demonstrates an OTP and the

line connecting these rectangles shows that hash operation for the hash

chain and signing operation for SC are applied respectively each started

from the seed value. As seen, we have much more flexibility in using the

SC because infinite number of authentications can take place by using a
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single SC 8. Contrarily, in Lamport’s one-time password scheme, the user

will be able to be authenticated by the system at most N times. For

the (N + 1)th authentication, the system should be restarted or in other

words the preparatory step should be repeated (i.e., in S/Key system a

special command ”keyinit” should be executed [29]). If the computer used

to generate the passwords was not connected to the network for security

reasons, to be able to get the new seed value from the server, the connection

needs to be re-established. By using SC, the user can generate OTPs in

his secure (home) machine in any number he wishes and prints out in

a piece of paper to be used later on to be authenticated from insecure

client machines. As being paranoid, to protect the private key used in

generating the OTPs, the user can disconnect the computer to be used

from the network.

There is one attack left which is both effective on OTP with or without SC.

This attack is called ”hijacking connection” attack, which we have mentioned

in section III.1. All one-time password schemes are vulnerable to connection

hijacking. Once the user/service has authenticated itself, their connection can

be taken over. We will say more on this issue in subsection III.10.3.

8 For secure operation every element of the SC should have a distinct value and we assume
that the length of elements of the SC is chosen to be long enough to avoid the SC to repeat
itself.
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spending is in this direction
�

seed 1 NN-1

(a) based on hash chain

seed123

(b) based on SC

Figure III.2: Comparison of One-Time Password Schemes

III.8 Survivable Authentication for E-health Systems

Since passwords by itself does not provide the security level most systems require,

NIST defines a strong authentication to be characterized by the use of at least

two kinds of evidence at least one of which is resistant to replay [35]. This

motivates us to use special hardware for the authentication framework for e-

health systems since the only method not relying on special hardware resistant

to replay is OTPs that is not so convenient to use.

At last year’s WETICE workshop, Ahn and Shin [36] presented a token-based

architecture for e-health systems. Their main contribution was the design of

framework to make the authentication service scalable for adopting smart tokens

using different technologies. However, we claim that “survivability” is more

important than “scalability” in a e-health systems where there is a significant

risk in locations where there is no smartcard reader available such as on an

airplane or in a foreign country. For instance, suppose that a minister gets sick
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while he is in a formal visit to Angola, his doctor traveling with him needs

to reach his patient record but there is not any smart card reader to use for

authentication.

This problem is precisely the topic of this section. We have first investigated

that there are several ways to overcome this limitation of smartcard-based au-

thentication and make the system more survivable:

1. Off-line override: The doctor calls the system admin of patient record

database and asks him for information about the minister. The main

limitation of this method is its susceptibility of attacks known as social

engineering (attacks). This attack on medical record privacy usually comes

from a private detective who phones with a plausible tale asking about a

person’s record claiming that there is an emergency situation. This kind

of attack is usually so successful that in both United States and Britain

there are people who earn their living doing it [37].

2. Password-only method: Using only password authentication when there

is no smart card reader has serious drawbacks. First, the system needs to

distinguish when there is no smart card reader available in order to safe-

guard against password replay attacks. Second, there is also a risk of

making smartcard-based authentication disused since ordinary users will

find using only their passwords more convenient.

3. Cryptographic calculators: A cryptographic calculator is like a smart

token that it performs cryptographic calculations using a key that it will
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not disclose [10]. It is unlike a smart token in that it requires no electrical

connection to the terminal. It has a display and a keyboard, and all

interaction is through the user. One way it could work is by simulating

a smart card; The user enters a PIN to unlock the device; the computer

wishing to authenticate the user generates a random challenge and displays

it to the user; the user types it into the calculator; the calculator encrypts

the value and displays the result; the user enters the result on the terminal;

the computer does the same calculation and compares the result.

The disadvantages of using cryptographic calculator is two-folds. First,

it is economically infeasible to spend money on two separate hardware

devices (smart token and calculator) for the authentication service while

people find expensive only one of them. Second, carrying a second device

and interact with it manually is not much more convenient than using

one-time passwords.

4. One-time passwords: The last alternative for the supplement to have

a survivable authentication system is one-time passwords (OTP) already

introduced. The system then would work as follows:

OTPs are written down on a piece of paper and carried in the pocket. In

order to be authenticated using devices without a proper smart card reader,

users enter the correct OTP manually. This is somehow an inconvenience

for the user but that inconvenience is worth in order to be authenticated

and reach critical information in most medical emergency scenarios. The

61



inconvenience of OTPs in fact is useful to facilitate secure authentication

using smart tokens in usual procedure.

In e-health systems, there is one more advantage other than the general ad-

vantages in using SCOTP protocol instead of Lamport’s traditional OTP as the

supplement of smart-token based authentication. That is, integrating SCOTP

to the smart-card based authentication is simple and seamless. Moreover it does

not require the user to communicate with the authentication server beforehand

in his preparation of using OTPs.

III.9 Security Analysis of OTP Protocols

Yet one other external assumption and a limitation of BAN logic explained

in section II.4 is that we assume the password is not available to anyone who

might use it in an unauthorized manner. However as we have discussed, there

are several ways in which your password may be snooped directly on the client

machine while you are typing. Remember that no matter how sophisticated they

are, none of the software authentication methods based on traditional passwords

can safeguard against the attacks on insecure client machines where the only way

to be authenticated securely is through the use of one-time passwords.

Our goal in this section is to analyze one-time password (OTP) protocols

using BAN logic. The most popular one-time password protocol, S/KEY system

[29] built on top of Lamport’s hash chain idea [19] will be analyzed shortly after

a required extension to the logic is proposed.
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The second viable OTP approach, the signature chain based one-time pass-

word (SCOTP) protocol [34] is analyzed first.

III.9.1 Security Analysis of SCOTP

The analysis of SCOTP protocol will be performed in three steps:

• The idealized protocol is derived from the original one.

• The goals of the authentication protocol are formalized and assumptions

about the initial state are written.

• The postulates of the logic are applied to discover the beliefs held by the

participants.

We can express the SCOTP protocol in standard notation as follows:

Message 1: A → S : IDA

Message 2: S → A : SEQA

Message 3: A → S : (RSEQA
)KA

−1

In BAN logic, the cleartext communication is omitted. So the protocol in

idealized form can be written as:

A → S : (NA)KA
−1
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The goal of SCOTP protocol is S| ≡ A| ≡ NA (one-way authentication only,

not a mutual authentication). It is important to realize that this is a weaker

goal than most other authentication protocols in which the protocol is completed

when two parties agreed on the value of a secret key K.

As the assumptions, first it makes sense to accept that the server (S) has

received securely (and therefore believes) the public key of A. In BAN notation,

this is written as S| ≡→KA A.

Secondly we assume that the user A did not previously sign the value NA

and therefore NA can be accepted as fresh. SCOTP protocol ensures that in the

previous runs of the protocol user A did not sign the current value of NA but it

is also vital to ensure this in a situation where the same public key is reused for

other purposes. We will say more on this issue in subsection III.9.3.

The final step is very straigtforward. By applying the message-meaning rule

we can show S| ≡ A| ∼ NA. Then we can apply the nonce-verification rule and

prove that S| ≡ A| ≡ NA.

As stated previously, SCOTP protocol does not protect against active attacks

such as ”man in the middle” and ”hijacking connection” attack. We observe that

this is due to the weaker goal the protocol accomplishes. To safeguard against

these more sophisticated attacks we need stronger achievements: e.g., S and A

should believe in sharing the same secret key K so that all the communication

between them can be performed in an encrypted tunnel thereby eliminates the

risk of hijacked connection.
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As the final note of this subsection, we agree with [34] in the recommenda-

tion of complementing SCOTP (or any other one-time password protocol) with

protocols like SSH [27] to be protected against active network attacks.

III.9.2 Security Analysis of S/KEY

In S/KEY [29], a hash chain of length N is constructed by applying recursively

a hash function h() to a initial seed value (s).

KN = hN(s) = h(h(h(...h(s)...)))
︸ ︷︷ ︸

Ntimes

The last element KN resembles the public key in public key cryptography

so the message-meaning rule and the nonce-verification rule of the BAN logic

can be restated as follows (note: the parameter i can take value between 1 and

N − 1):

A / Ki, A| ≡→KN

B

A| ≡ B| ∼ K i

A| ≡ ]K i, A| ≡ B| ∼ K i

A| ≡ B| ≡ K i

Now similar to SCOTP protocol, the authentication goal (S| ≡ A| ≡ K i)

can be proved by applying message-meaning rule and nonce-verification rule

successively.

III.9.3 Secure Integration of SCOTP with Smartcard Authentication

Once the necessity to integrate smartcard authentication with one-time pass-

words is brought up (in section III.8), we should handle the issue of chosing the

best method to accomplish it.
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One-time password alternatives for the integration are as follows:

• use S/KEY in its original form.

• sign the last element of the hash chain in S/KEY.

• use SCOTP protocol.

The first alternative is based on a shared secret between the user and the

server and has some security wekanesses such as off-line dictionary attacks. (the

hash chain is derived by using the password (shared secret) as the seed value.)

Most smartcard based authentication protocols use public key cryptography

where the greatest advantage is to avoid shared secrets between participants.

The server uses only the user’s “public” key for verification therefore the risk

of compromised or hostile servers is eliminated. Since we have a public key in-

frastructure available used for smartcart based authentication, it is a reasonable

idea to use the same infrastructure for one-time passwords as well.

While both of the last two alternatives provides a secure solution, SCOTP

protocol is a more convenient one since it can generate infinite number of OTPs

without requiring the user to interact with the server. As previously mentioned

another advantage of SCOTP is; from any incorrectly revealed OTP, unspent

OTPs cannot be calculated therefore for secure operation the protocol does not

assume the user is careful enough to enter the correct OTP in each authentica-

tion.

In [38], one of the principles for public key protocols was: “avoid using

the same key for two different purposes”. The reason for this principle is best
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illustrated by an example in [6]. Let us adapt the attack in that example to our

case [39].

Suppose we use the same key for smartcard authentication and for generating

the signature chain. In smartcard authentication, usually the server asks the user

to sign a random challenge to identify him. If an attacker asks the user to sign

the OTP that was just used, then he can get a valid OTP to be useful for the

next authentication (if the Lamport’s hash chain is used instead and the attacker

gets the user to sign the last element of the hash chain, then the situation is

worse; the attacker gets a list of valid OTPs).

The easiest solution to this attack is the one which Anderson and Needham

recommended [38]; use different keys for these two different tasks.

If we need to use the same key for these two tasks for some reasons (e.g., to

save users having to carry two different cards or to save the server to store two

public keys for the same user), then the following guidelines will help for secure

operation:

1. Choose a signature scheme which does not have the message recovery prop-

erty and do not apply hash algorithm before signing in constructing the sig-

nature chain. In smartcard authentication the random challenge is hashed

before signing so any signature the attacker can get is not useful in the

SCOTP protocol.

2. If the public key (or the certificate) is to be used as the seed value (then

of course we need hashing before signing), the first valid OTP should be

the second element in the signature chain because the first element can be
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obtained by the attacker by getting the user sign the hash of the public

key. However, the second element can not be obtained if the first guideline

is conformed.

III.10 Practical Considerations

In this section, we will look at different issues that are considered to be important

for putting our new authentication method in practice.

III.10.1 Signature Chain in Workstation Environment

As stated in section III.2, there are two modes of operation in OTP schemes.

As opposed to human and paper environment, in workstation environment the

workstation does calculate the OTP on behalf of the user after the user enters

his traditional password to the system. This is a more convenient approach since

the user does not need to carry OTPs and enter them manually. In this mode,

other than attacks on insecure client machine, there is an attack called “small n

attack” [10], where an intruder after impersonates himself as the server asks the

workstation for a future OTP (with a smaller value of n) so that he can generate

a list of valid OTPs by using the hash chain’s one-way property. Signature chains

are also effective to safeguard against this kind of attack since it was already

shown that from any incorrectly revealed one-time password, unspent one-time

passwords could not be calculated.

In workstation environment (as well as in human and paper environment),

it is also possible to design the protocol so that the server asks for a one-time
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password with a randomly determined sequence number of n. The goal here is

to make the attacker not guess the time correctly to use an incorrectly revealed

password for impersonation. However, if this design is preferred in a workstation

environment, we have now a more serious performance problem than the one

that will be mentioned in subsection III.10.5. For instance if the server asks

for the 100th OTP and currently the 10th OTP is stored on the workstation, in

the previously proposed signature chain construction, the workstation needs to

perform 90 public key operations in real time, which is of course not so practical.

For this problem to generate OTPs, we propose the following alternative method

what we call “counter method”:

1. The server and the user agrees on the seed value (let’s call s) just like in

our original proposal.

2. However now if the server asks for the hundredth OTP, the workstation

computes the signature on the value of s+100 and returns this signature

as the OTP.

Notice that in this method, always only one public key operation is required.

There is an interesting analogy between the two alternatives we have proposed

to generate OTPs using public-key cryptography and the modes of operation in

block ciphers (secret key cryptography), which specifies how a block cipher can

be extended to process messages of arbitrary length [6]. While the signature

chain construction we proposed is the analogue of “output feedback mode”, the

method we proposed in this subsection is very similar to the “counter encryption
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mode” in block ciphers. We defer to [6] for more information on modes of

operation in block ciphers.

III.10.2 Incorrectly Revealed Passwords in SCOTP Protocol

As we have already stated, in SCOTP protocol an attacker cannot generate

unspent OTPs from the incorrectly revealed one. However there is still the risk

to use the revealed OTPs for impersonation if the attacker can somehow guess

when the OTP at hand is good for. If the proposed signature chain construction

is used, it is easy to see that an attacker has no choice other than blindly trying

the OTP from time to time however in counter method we observe that the

attacker can find out the sequence number of the OTP at hand. As a result it

is evident that signature chain construction is more secure than counter method

when incorrectly revealed passwords are concerned. To eliminate the risk of

revealed OTPs totally, the SCOTP protocol can be extended so that the user

can choose to enter more than one password at any time. Now the user who

is aware of revealing can enter the incorrectly revealed password just after the

previous OTP in a single authentication process so that the OTP at attacker’s

hand is useless forever (the next OTP after the revealed one in the list is required

for the next authentication).

III.10.3 Hybrid Usage

It is possible to combine two authentication methods, SSH [27] and OTP to

benefit the strengths of both. Session hijacking is one of the active network
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attacks in which the one-time passwords are not sufficient for. So to protect the

user from these kinds of attack, SSH can be used with OTP. Another reason

why one chooses to use such a combination might be the need of confidentiality

of data exchanged. Since it is possible to secure the machine we have the root

privileges and routine checks for malicious software are performed, then we may

choose not to use OTPs in this machine (only use SSH). So the inconvenience

in using the OTPs is left to other machines which we do not trust.

III.10.4 Length of One-Time Passwords in SCOTP

With the present state of the art in cryptanalysis, a security level of 280 is recom-

mended (an attacker should perform 280 operations to break the cryptosystem).

There is a well-known attack called ”birthday attack” on hash algorithms which

finds two inputs producing the same output in n1/2 operations where n is the

length of output. While this attack is of concern when we use the one-way hash

function before signing, it is of no value in hash chain constructions. So to

have a security level of 280, one can employ a secure hash algorithm like SHS

[9] producing 160 bits output and folding the output of SHS with exclusive-or

to produce a 80 bit output (like in [30] where they use MD4 [40] as the hash

function which is considered to be insecure today). Therefore the OTPs using

the hash chain construction has a length of 80 bits.

As illustrated in Appendix A, in SC construction the signatures in DSA

scheme (therefore the OTPs) are 320 bits in length. We cannot decrease this

length similarly by folding since the server requires the signature in plain in order
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to verify it. Of course, this increase in the size of OTPs is an inconvenience for

the users when they need to manually enter the OTPs. Fortunately we can

utilize the new results of research on decreasing the length of signatures while

offering the same level of security. In [41], the authors proposed a new digital

signature QUARTZ, which has a length of 128 bits offering a security level of

280. The progress in cryptography research is fascinating, recently, the shortest

signature ever known was provided by [42] where the signatures are only 81 bits

in length and they offer a security level of 280. So only a small increase in the

size of OTPs is possible if we use this new short signature scheme in constructing

the SC. However, the difficulty to employ these new short signature schemes in

SC is the increased verification time and increased public-key length.

III.10.5 Performance Evaluation

To compare the performances of signature chain and hash chain, we have con-

ducted an experiment on a PC with an 800 MHz Pentium III and a 128 MB

memory. The library used was MIRACL version 4.7 9 and the compiler was

Microsoft Visual C++ Version 6.0. SHS and DSA with a key length of 1024 bits

were chosen to generate the hash chain and signature chain, respectively. Our

implementation results show that using public-key algorithms instead of hash

functions does result in a degradation of the performance in verification of one-

time passwords (hash functions are designed to be very fast, only 0.028 msecs

is sufficient to perform one hash operation). However we claim that verification

9 Shamus Software Ltd, “MIRACL Library”, Available at http://indigo.ie/∼mscott/, Last
access: September 17, 2003.
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is sufficiently quick (around 6 ms) and does not produce a significant problem

considering that the server that verifies OTPs is generally a powerful device.

III.11 Summary

In this chapter, we first show that one-time passwords as a concept can be used

as an efficient entity authentication protocol when active network attacks are

not of our concern.

Secondly, using public-key techniques we have provided a method called Sig-

nature Chain (SC) as an alternative to hash chain to improve the security and

flexibility of one-time passwords. The main disadvantage of signature chain is

the larger verification time with respect to hash chain based approaches 10.

The use of wide-ranging authentication services based on public key cryptog-

raphy including the one we have presented in this chapter becomes practical if

it is complemented by a trustworthy mean to manage and distribute the public

keys. We believe that our method will be more useful when public key infras-

tructure deployment reaches its true potential. As a future work it is promising

to implement a fully functional OTP scheme using the SC idea and integrate

it with SSH for hybrid operation. Another future work is experimenting with

different signature schemes to make the operation of our protocol more efficient.

10 For the sake of clearness, we restate that improving the efficiency is not the objective of
SCOTP protocol.
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CHAPTER IV

IMPROVED SERVER ASSISTED

SIGNATURES

Forged in USA.

- engraved on a screwdriver claiming to be of brand Craftsman [10]

Hand is superior to hand.

- Turkish Proverb

This is the second chapter in a series of three where we propose viable al-

ternatives for the efficiency criteria. As a part of our discussion in top-down

approach for efficiency alternatives, this chapter demonstrates how efficiency

can be provided in the design phase of security engineering. More precisely, in

this chapter we present our new server assisted signature protocol design which

improves the delay and round efficiency of previous approaches.

In recent years, one major trend in computing has been towards an envi-

ronment where computer applications will be hosted on a wide range of plat-
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forms, including many that are small, mobile and regarded today as devices

having only limited computational capabilities. This “pervasive computing” vi-

sion could bring a great deal of convenience but also great deal of security risks.

For instance think about the possible consequences when the integrity of the

data collected from a remote health monitoring sensor is not protected.

On the other hand, in subsection II.1.6 we have seen that most current

techniques for generating digital signatures are based on public key cryptog-

raphy (based on complex mathematical problems such as factoring or discrete

logarithms e.g., RSA [16] or DSA [8]). These traditional methods are simply un-

tenable from a performance perspective when constrained devices are of concern

(On a Pentium I - 200 MHz machine 1, using 1024-bit keys RSA takes around

59 ms to sign and 14 ms to verify). Due to this fact, research in the security

community so far was mostly focused on the computational incapabilities (the

real-time inefficiency) of these devices.

One traditional way of increasing the real-time efficiency of generating dig-

ital signatures is to do most of the work as background computations. These

methods are useful when the signer has a very limited response time once the

message is presented but he can carry out costly computations between consec-

utive signings. On the other hand, they suffer from two fundamental problems:

• Some mobile devices may have 8-bit microcontrollers running at very low

CPU speeds, so public key cryptography at any kind may not even be an

option for them.

1 Today’s high-end PDA’s and palmtops have a processor speed of 200 MHz.
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• Low CPU speed is not the only constraint for pervasive devices. Their

batteries hold only a small, finite amount of energy [43]. It is well known

that public key algorithms consume much more energy than symmetric

algorithms and one-way functions [44]. Precomputations does not help

when the most relevant performance figure is no longer bits per second,

but bits per joule [45].

One other way to reduce the computation cost on mobile/constrained devices

is to employ a verifiable and a powerful server. Getting help from a verifiable-

server has an advantage over proxy-based solutions (using a fully trusted server)

in open networks since as opposed to proxy-server, verifiable-server’s cheating

can be proven.

Asokan et al. [21] proposed an efficient verifiable server assisted signature

protocol called SAS but it does not totally eliminate public key operations for

the signer (the signer does not need to generate but instead verify a public key

signature). In this chapter, we propose a new alternative called SAOTS (Server

Assisted One-Time Signatures) protocol where, just like proxy signatures, gen-

erating a public key signature is possible without performing any public key

operations at all. This feature results in both power efficiency and real-time

efficiency of the proposed protocol.

Furthermore, while we are designing our new protocol, we take into account

the storage constraints of pervasive devices as well i.e., no signature storing is

required for the signer to prove the server’s cheating. The last but not the least,

executing in less number of rounds, SAOTS protocol is more communication-
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efficient.

The rest of this chapter is organized as follows. In the next section, related

work on efficient digital signature constructions is given. We propose our new

signature protocol called SAOTS in section IV.2. Section IV.3 is reserved for the

security analysis of the proposed protocol. In section IV.4, we give the results

of our performance evaluation study. In section IV.5, we introduce a variant

of SAOTS where the length of messages exchanged are shortened. In section

IV.6, we discuss the other important issue in server assisted signatures, the

issue of revocation of public key certificates. The concept of attribute certificate

is introduced and integration of this new type of certificates with SAOTS is

discussed in section IV.7. In the last section of this chapter we conclude by

summing up our work and discussing future possibilities for research.

IV.1 Related Work

IV.1.1 Efficient Public Key Signatures without Server

One possible way to construct efficient signatures would be to relax the security

requirements (Remember our discussion in section I.6). If a certain amount of

risk is acceptable, then one could use less-studied signature algorithms. This

method might provide efficiency but if the underlying cryptographic assump-

tions later turn out to be invalid, these signatures become completely open to

compromise.

As we have already mentioned in short, a more secure solution to speed up

the operation of public key signatures is to do the most of the computations
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on background as precomputations. The second (on-line) phase is performed

once the message to be signed is known and is supposed to be very fast so that

the response time of signing using a mobile device would be in acceptable range.

While some signature schemes can be naturally partitioned into these two phases

e.g., DSA [8], on-line/off-line signature scheme was first introduced by Even et

al. [46] to convert any signature scheme into the aforementioned two phases.

While in the original proposal [46], the length of signatures are longer since it

uses one-time signatures (will be explained in the next subsection), the authors

in [47] introduce an alternative scheme where the signature size does not increase

that much with a trade of heavier on-line computation requirement.

The notion of on-line/off-line signatures is nice, however we now face a new

problem; the batteries of mobile devices hold only a small, finite amount of

energy; this fact places a bound not on the response time but on the total amount

of computation the device can perform. That is why on-line/off-line signatures

does not help when the more relevant performance figure is not signatures per

second but signatures per joule [45].

IV.1.2 One-time Signatures

One-time signatures (OTS) provide an attractive alternative to public key based

signatures. Unlike signatures based on public key cryptography, OTS is based on

nothing more than a one-way function (OWF). Examples of conjectured OWFs

are SHS [9] and MD5 [17] 2. OTSs are computationally more efficient since no

2 SHS and MD5 were originally designed as one-way hash functions but they can easily
be used as one-way functions when the input message length is set to be equal to the length
of output.
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complex arithmetic is involved. Additionally, since OTS is based only on OWF

whereas public-key signatures are based on complex mathematical problem as

well as OWF, using OTSs allow us to elliminate one more point of vulnerability.

The OTS concept is very easy to grasp [48]. Broadly speaking, a message

sender prepares for a digital signature by generating a random number r, which

is retained as the private value. He then securely distributes the hash of r, h(r),

where h is a one-way function; this represents the public value and is used by

receivers as the signature certificate to verify the signature. The signature is

sent by distributing the value r itself. Receivers verify that this message could

only be sent by the sender by applying h to r to get h(r). If this matches the

value for h(r) in the signature certificate, then the OTS is considered to be

verified, since only the sender can know r. This, in effect, allows the signing of

a predictable 1-bit value. In order to sign any 1-bit value, two random numbers

(r1, r2) are needed; this way, both h(r1) and h(r2) are pre-distributed but at

most one of (r1,r2) is revealed as a signature. In the original proposal [48], 160

random numbers out of 320 are revealed as the signature for 160-bit hash value

of any given message.

Despite the performance advantages provided by OTSs, they have not gain

much attention in security world. Other than non-technical reasons, we believe

two disadvantages of OTSs were in effect.

First of all, one-time signatures are longer than traditional signatures results

in more serious storage and bandwidth constraints. Recent studies succeeded

in decreasing the length of one-time signatures in some extent. The authors in
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[49] realized that p out of n random numbers are sufficient to sign a b-bit length

message if the following inequality holds for a given n and p.

2b ≥ C(n, p) =
n!

p! ∗ (n − p)!
(IV.1)

To sign an arbitrary length message by OTS, just like the public-key based

signatures, we can reduce the length of the message m by computing the hash

value of the message, h(m) and then sign h(m). This means for instance for b

= 160 (e.g., SHS), n must be at least 165 with subsets of size 75 (p = 75).

Having determined the values of n and p, there is only one issue left to

complete the signing with OTS, that is how to map a specific message to an

OTS or in more concrete terms how to choose p out of n random numbers for

the message in hand. Please refer to Appendix B for the discussion of how to

obtain a valid mapping for a message [49]. For our purposes it is sufficient to

know that this mapping is not computationally heavy. It was also shown in the

Appendix B that this costs less than one hash operation.

The extra length of one-time signatures (which was an important concern

two decades ago) is negligible today owing to the high speed of modern networks

hence we think the second disadvantage is a more serious one, that is one-time

signatures can be used to sign only one message per one public key in its simple

form. Since the public key requires to be distributed in a secure fashion which

is done most typically using a public key signature, the benefit of using quick

and efficient hash function is apparently lost. There is also a bunch of clever

approaches to overcome this limitation. One of which we have already mentioned
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is on-line/off-line signatures where the public key of one-time signatures is signed

by using public key techniques off-line before the message is known. When the

message to be signed is in hand, there will not be any necessity to perform public

key operation so that the response time (real-time efficiency) is improved.

Due to power constraints, we might want to minimize the number of public

key operations no matter it is off-line or not. Then Merkle’s proposal [50] can

be preferred where one-time signatures can be embedded in a tree structure,

allowing the cost of a single public key signature to be amortized over a multitude

of OTS. The problem in this formulation is the longer lengths of signatures.

Now we face a more severe storage and bandwidth requirement than one-time

signatures in its simple form since the length of signatures increases as the

number of signatures generated using the tree structure increase.

IV.1.3 Signatures Employing a Server

The third and the last approach to use one-time signatures more than once by

using a single public key is the SAOTS protocol we propose in this thesis which

is based on a third party (server). But before introducing it, in a more general

view we would like to summarize the work on employing a powerful server to

decrease the computation requirements for a digital signature.

Server assisted signatures can be explained in three subgroups depending on

the trust relationship between the user and the server. More specifically the

server employed may be
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• fully trusted (proxy)

• untrusted

• verifiable

In the first category, after receiving an authenticated message from a user

(A MAC algorithm which can be implemented very efficiently may be used for

authentication), a more powerful proxy server on behalf of the user generates a

public key digital signature for the message [51]. Notice that the user himself

does not need to perform any public key operation, he just computes a MAC

using secret key cryptography. The drawback here is that this simple design is

only applicable when the user fully trusts the proxy server i.e., the server can

generate forged signatures and that cheating cannot be proven.

As the opposite, a totally untrusted server might be utilized i.e., the server

only executes computations for the user. Now the goal of securely reducing

computational costs on the sender’s machine becomes more difficult to accom-

plish and in fact most of the schemes proposed so far have been found not to

be secure. One exception is the interesting approach of Jakobson and Wetzel

[52]. However we see that in their approach public key operations although in

reduced amount are still needed to be performed on the constrained device.

IV.1.4 Verifiable-Server Assisted Signatures

The last alternative is to employ a verifiable server (VS). A VS is the one whose

cheating can be proven. This approach can be considered in somewhere between
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the other two since the server in this case can cheat but subsequently the user

would have the ability to prove this situation to other parties (e.g., an arbiter) 3.

We see that in literature, the verifiable server is sometimes named as semi-trusted

server.

The first work that aims to reduce the computational costs to generate digital

signatures for low-end devices by employing a powerful VS is SAS protocol [21].

In [53], the authors extend this work by providing implementation results as well

as other details of the scheme. The scheme in [54] also utilizes a semi-trusted

server to generate signatures but their goal is not to minimize the computation

cost on low-end machines but to provide fast revocation without losing trans-

parency for those who verify signatures. This work also has the advantage of

supporting revocation not just for signatures but for public-key encryption as

well. We will explore the issue of revocation in section IV.6 and IV.7.

We now would like to provide a brief summary of SAS protocol (For a com-

prehensive treatment, please refer to the original papers [21, 53]):

There is an initialization phase in SAS where each user gets a certificate from

an offline certification authority for Kn (the last element of a hash chain of

length n) where

3 In traditional methods of digital signature generation, the signer usually obtains a
public key certificate from a certification authority (CA). In order to trust the legitimacy of
signatures, the receiver must trust the CA’s certificate-issuance procedures. For instance the
CA can issue a fake certificate for a particular user and then impersonate the user by generating
a forged signature. However, if some kind of contract was signed in the certification process, in
dispute the signer can prove the CA’s cheating by asking this contract from the CA. Notice the
similarities between the trust relationship between the signer and CA in traditional methods
and the signer and the server in verifiable-server assisted signature protocols.
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Figure IV.1: Asokan et al.’s SAS Protocol Operating in Three Rounds.

Kn = hn(s) = h(Kn−1) (IV.2)

In Equation IV.2, h() is a one-way function like SHS [9] and hn(s) means

we apply hash function h() n times to an initial input s to generate a hash

chain of length n. In addition, each user should register to a VS (which has

the traditional public-key based signing capability) before operation. Then the

SAS protocol works in three rounds as illustrated in Figure IV.1:

1. The originator (O) sends m and K i to V S where

• m is the message

• Ki is the ith element of the hash chain. The counter i is initially set

to n − 1 and decremented after each run.

2. Having received O’s request, V S checks the followings:

• Whether O’s certificate is revoked or not.

• Whether hn−i(Ki) = Kn or in a more efficient way h(K i) = Ki+1

since Ki+1 has already been received.
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If these checks are OK, V S signs m concatenated with K i and sends it

back to O.

3. After receiving the signed message from V S, O verifies the V S’s signature,

attaches K i−1 to this message and sends it to the receiver R.

Upon receipt of the signed message, the receiver verifies V S’s signature and

checks whether h(K i−1) = Ki.

IV.1.5 SAS Protocol Weaknesses

We have observed that SAS protocol has several drawbacks. These are:

1. Verifying VS’s signature: In step 3 of the SAS protocol, before sending

the signed message to R, O should verify the V S’s signature otherwise a

hostile attack cannot be noticed i.e., an attacker can change the message

while in transit from O to V S and if V S signs this new message instead,

O’s revealing of K i−1 without verifying V S’s signature will result a forged

signature for the message the attacker has generated.

Remember that for some pervasive devices restricted with CPU and/or

battery constraints, public key cryptography is simply untenable no matter

it is used for signing or verifying.

For more powerful devices if the V S uses RSA [16] signature scheme, where

verification is much more efficient with respect to signing, this might be

affordable. However there are other popular digital signature schemes like

DSA [8] where verification is at least as costly as signing so a protocol which
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offers lightweight signing without any restriction in the digital signature

scheme used would be much more flexible and attractive.

2. Network Overhead: Remember that the main motivation to design the

SAS protocol is to decrease the time required to generate a signature. One

of the delay factors of the SAS protocol is the round-trip delay between

O and V S. To decrease the network delay, one can try to decrease the

number of rounds in SAS, however if O attaches the hash element K i−1 to

the first message he has sent to V S, an attacker can forge a signed message

easily by modifying the message while in transit.

As a result SAS protocol cannot be a two-round protocol like the SAOTS

protocol that will be introduced in the next section this is basically because

the signature is not binded with the message itself in a two-round case. If

the protocol is assumed to be running in a LAN environment, the network

overhead is not significant and does not greatly affect the efficiency. How-

ever, today’s anywhere anytime nature of pervasive computing invalidates

that kind of assumptions. A protocol operating efficiently also in a WAN

environment would be much more beneficial for our purposes.

3. Storing VS’s signatures: In SAS protocol, the signer is required to

store VS’s signatures to prove its cheating [21]. For some pervasive devices

which has a limited storage capacity, this also might put a burden on the

operation.
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IV.2 The Proposed SAOTS Protocol

In this section we propose the server assisted one-time signature protocol (SAOTS)

which operates in two rounds as opposed to three. SAOTS is the first VS based

approach where the user does not need to perform any public key operation at all

[55]. Moreover in our proposed protocol unlike other alternatives the server not

the user is required to save the signatures for dispute resolution. Thus SAOTS

elliminates all the three aforementioned drawbacks of SAS protocol.

IV.2.1 Setup

Our protocol is built on top of one-time signature idea. As a setup, the user

generates a one-time secret key (random numbers) and a one-time public key

(hash value of these random numbers) and in a secure fashion he distributes the

public key to the server. This can be accomplished by a public key signature if he

has already a capability of traditional signing or he can directly get a certificate

from a certification authority (CA) for the one-time public key he has. Similarly

the server obtains a certificate from a CA for its public key.

In addition, just like the SAS protocol, each user should register to a V S

before operation.

IV.2.2 Operation

The protocol works in two rounds as illustrated in Figure IV.2:

1. The user precomputes a second one-time secret key - public key pair. When

the message to be signed is ready, he concatenates the message with the
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Figure IV.2: Operation of SAOTS Protocol

new public key and signs this by his previous one-time secret key. He then

sends the message and the new public key as well as the one-time signature

to the server.

2. Having already received securely the one-time public key of the user’s

signature on the message, the server verifies the one-time signature. He

stores the new public key the user has signed for the verification of next

message. It also signs the message with traditional public key techniques

after appending a statement on the message saying that it has received

it from the sender (if the sender’s certificate is not revoked). The signed

message is ready to be transmitted to the intended receiver(s).

The receivers can easily verify the signature by using server’s public key. One

can easily prove that this protocol provides all the three security services asked

from a digital signature but only if the server does not cheat i.e., it does not

sign any message on behalf of the user without user’s approval. We will show

in the next section how the user can prove the server’s cheating. If he cannot

prove, the other parties conclude that the user is the one who actually sends the
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message.

The user can sign any further messages easily by repeating the step 1. The

server can always verify the one-time signature since it has securely received the

public key in the previous run of the protocol. The server should store all the

previous messages for the secure operation but the user does not need to store

anything to prove the server’s cheating. This becomes more clear when we make

the security analysis in the next section.

We would like to point that the ”chaining” technique we use that attaches

the public key for the next message to the current message is first suggested by

[56] for signing infinite length digital streams.

IV.3 Security Analysis

In this subsection, for the sake of a complete security proof, we will show

1. Underlying components (signature algorithms) are secure.

2. The authentication goal in SAOTS protocol is achieved.

3. How a dispute can be resolved.

At the end we say a few words on another issue in security; the strength of

SAOTS to the denial of service attacks.

IV.3.1 Security of Underlying Components

For secure operation, we need to prove the security of signatures of both the

sender and the server. Since the server’s signature is a traditional one, we
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conclude that if the traditional signature algorithm used is a secure one, then

the server’s signature is also secure.

Secondly, we note that the security of the chaining technique used in the

sender’s signature has been studied previously. For the security proofs we defer

interested readers to [56].

IV.3.2 Security Analysis of SAOTS Using BAN Logic

We can analyze the security of SAOTS protocol using the BAN logic. Let us

first rewrite the messages of the protocol in idealized form:

Message 1: O → S : (m, KnextO)KO
−1

Message 2: S → R : (S| ≡ O| ∼ m)KS
−1

Note that the appended statement in the second message means that the

server believes that the message is said by the originator and this has been

expressed using BAN notation, above.

The authentication goal of SAOTS is R| ≡ O| ∼ m 4. We can assume that

the public key of sender is always believed by the server since it is received

securely in the previous run of the protocol. Then by the message meaning rule

we derive S| ≡ O| ∼ m from the first message. One other initial assumption was

that the receiver has received the public key of the server securely so similarly

4 No freshness is assured in SAOTS protocol but there is an implicit time stamping i.e.,
the receiver holding a signature is explicity assured that the signer’s certificate was valid at
the time the signature was generated. This is because of SAOTS’s immediate revocation
capability. For freshness assurance, it is also possible to build a time-stamping service based
on VS.
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we can derive R| ≡ S| ≡ O| ∼ m.

In SAOTS protocol, the server is the authority on saying some message is

said by someone. Then by the jurisdiction rule we finally derive the formula we

are looking for:

R| ≡ S| ⇒ O| ∼ m, R| ≡ S| ≡ O| ∼ m

R| ≡ O| ∼ m

IV.3.3 Dispute Resolution

Provided that the underlying signatures building the protocol are secure, we now

want to show how a dispute can be resolved. In case of a dispute, the receiver

can submit the message and its signature received from the server to an arbiter.

The arbiter will verify the followings:

• the public key of the server is certified by the CA.

• the server’s signature is valid.

• the message contains a statement saying that it is originated from the

claimed sender.

If these checks are successful, then the sender is allowed to take the oppurtu-

nity to repudiate the message. There will be two checks to decide whether the

sender’s claim is true or not:

• CA will be asked to prove that the sender’s public key was registered by

himself.
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• The server will be asked to prove that the message was signed by the

sender himself.

As a proof, the server shows all the signed messages received from the sender

starts from the first one and continues until the message in question is reached.

The arbiter verifies all these one-time signatures.

If both CA and server successfully shows that they did not cheat, the arbiter

concludes that the sender is dishonest and claims falsely that he has not sent

the message.

IV.3.4 Denial of Service Attacks

In previous server assisted signature protocols, unlike traditional signature schemes,

denial of service (DoS) attacks aiming to deny the server’s service to the users

are of concern. The basic idea behind these attacks is as follows:

By sending legitimate (well-formed) requests, an adversary can force the

server to perform alot of signing tasks so that it cannot response timely to the

real request coming from users [53].

However if our proposal is preferred, these attacks are totally avoided be-

cause an adversary cannot forge users’ one-time signatures and therefore cannot

generate legitimate requests.
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Table IV.1: Computational Comparison of SAS and SAOTS Protocols.

SAS SAOTS

Originator 1H +1V 1H + 1M
Server 2H +1S (p+2)H +1M +

1S
Receiver 1V +2H 1V + 1H

IV.4 Performance Evaluation

IV.4.1 Computation and Communication Comparisons of SAS and

SAOTS Protocols

Rule#5: You can buy more bandwidth but not lower delays. A.S.Tanenbaum,
Computer Networks 3rd Edition, page 564.

Table IV.1 shows the comparison of SAOTS and SAS protocols with respect

to computation requirements on the participating entities.

H: hash computation

S: traditional signing by a public key

V : verification of public key signature

M : mapping computation (costs less than one hash)

p: number of hash computations to verify OTS

Note that in [49], the authors presented an efficient method which costs less

than one hash operation for encoding a message for one-time signature. Encod-

ing a message does refer to computation of which subset of random numbers

should be revealed as the OTS of the message (See Appendix B).

In SAOTS protocol, the server needs to perform one hash to get the hash of

the message and 75 hash operations (p = 75 if SHS is used) to verify the OTS

if all of 165 hash values constitutes the public key. By a simple trick and with
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a cost of additional hash operation for the server we can reduce the length of

public key to a single hash value. The idea is simple: as the public key, calculate

the hash of concatenation of all the 165 hashes. Now to be able to verify the

OTS the sender should send the chosen 75 random numbers and the other 90

random number’s hash value. In each run of the protocol the user should send

one signature and one public key so if the length of random number is equal to

the length of hash value, in overall the signer should send 75 + 90 + 1 = 166

hash values to the server.

Table IV.2 again makes a comparison between the two protocols but now in

terms of communication efficiency.

m: length of message

h: length of random numbers and hash values (the server’s statement is

assumed to be equal to the length of hash)

s: length of signature

n: number of random numbers used in the OTS

As seen from this table SAOTS provides more efficiency with respect to

number of rounds but with an increase in the length of the messages exchanged.

It will be shown in the next two subsections that a decrease in the number of

rounds of the protocol is generally much more important than an increase in the

bandwidth usage as far as communication efficiency is concerned.
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Table IV.2: Communication Comparison of SAS and SAOTS Protocols.

SAS SAOTS

Number of rounds 3 2
message round 1 m + h m + (n + 1)h
length round 2 m + h + s m + h + s

(in byte) round 3 m + 2h + s -

IV.4.2 Theoretical Comparison of Network Delays

In order to compare the network delays of SAOTS and SAS, we have imple-

mented both schemes and measure the time delays in real-time as discussed in

next subsection. But before introducing this study, it is worth trying to evaluate

their delay performance theoretically as much as possible. First of all, we have

seen that the network delay is composed of several delay elements so it can be

expressed as a sum of these:

Delaynetwork = Dn = Dt + Dp + Di + Dq + Da (IV.3)

Where the elements on the right side are transmission, propagation, interface,

queuing and other delays respectively. The interface delay is the delay on the

end hosts i.e., operating system and protocol overhead. If we ignore other delays

then we can rewrite the formula for SAS and SAOTS as follows:

SAS :
3m + 4h + 2s

BW
+ 3Dp + 3Di + Dq3

SAOTS :
2m + (n + 2)h + s

BW
+ 2Dp + 2Di + Dq2

Note that in the above formulas, BW denotes the bandwidth of the network

and propagation delay and interface delay is a invariant function of number
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of rounds but queuing delay is not. As a matter of fact, one might expect an

increase in this delay when the packet size increases, but the dependency relation

is probabilistic and highly dependant on the underlying network architecture.

If we perform a subtraction on these two formulas, we finally get the following

inequality:

Dp + Di + Dq3 >
(n − 2)h − s − m

BW
+ Dq2

If this inequality holds then network delay is smaller in SAOTS otherwise

it is bigger. On the top of the first term on the right side, the extra amount

of bits transmitted in SAOTS is given. The experiences have shown that in

most situations, transmission delay is not the dominant factor of the network

delay [57]. (Section 6.6 of [57] is a valuable guideline on performance issues in

computer networks in general and most of the arguments there are in favor of

SAOTS.)

An Example to Compare the Network Delays: We can use SHS as the

hash function to get the hash of the message (n=165) and RSA with a 1024-bit

as the signature algorithm (s=1024) and assume a typical message length of

1024 bits.

One of the most important parameters we should decide in implementation

of SAOTS (and SAS) is the length of random numbers and hash values used in

an OTS. To have the same security level of a 1024-bit RSA signature, we see

that it is sufficient to set the length of random numbers and the hash values to

80 bits [56]. For this purpose we can employ a well-known hash algorithm like

SHS producing 160 bits output and folding the output of SHS with exclusive-or
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to produce a 80 bit output (h=80).

Then in SAOTS we require to transmit approximately 11 Kbits additionally.

So, for instance if we take the bandwidth as 1 Mbits/sec and one-way propaga-

tion delay as 50 msecs and assume that the queuing delay increase is equal to

the interface delay decrease if SAOTS is preferred, then the network delay in

SAS is more than four times the delay in SAOTS.

IV.4.3 Implementation and Experiments

To have a more concrete comparison of SAS and SAOTS, we have implemented

both of them using MIRACL library [?]. A PC running Windows 2000 with

an 800 MHz Pentium III and a 128 MB memory was chosen as the VS and a

PC running Windows 95 with a 200 MHz Pentium I and a 32 MB memory was

chosen as the clients’ machine. Note that today’s high-end PDA’s and palmtops

have a processor speed of 200 MHz. The compiler was Microsoft Visual C++

Version 6.0. We have conducted two experiments. One of them was over a 10

Mbit Ethernet LAN and the other was over the WAN (Internet) with a very long

distance between machines (the clients were running on Middle East Technical

University in Ankara, Turkey and the VS was running on UCLA, Los Angeles,

USA).

RSA with a 1024 bit key and SHS with a 160 bit output was used and

m = 165, p = 75 and h = 80 were the OTS parameters. The public key e of

RSA was chosen to be 65537 since choosing e = 3 might cause some security

vulnerabilities. Remember that SAS is a three-round and SAOTS is a two-round
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Table IV.3: Performance Measurements of Cryptography Primitives (msecs).

Pentium III 800 Mhz Pentium I 200 Mhz

SHS 0.028 0.156
RSA(verifying) 2.220 13.893
RSA(signing) 9.454 59.162

Mapping 0.02 0.1

protocol. This is why the total delay (the network delay until the signed message

is received by the receiver) is smaller in SAOTS in spite of greater bandwidth

utilization 5. Table IV.3 gives the performance measurements of cryptography

primitives on two platforms used and Table IV.4 summarizes our findings of the

experiments.

These experimental results show that the total time required to send a signed

message to the receiver(s) in SAS protocol is at least twice the time in SAOTS.

We have also seen that there is a threshold for the network delay where

signing in a traditional way and send the signed message directly to the receiver

becomes more delay-efficient (computation plus communication delay) for the

user 6. But SAS and especially SAOTS are still preferable in applications where

a server needs to be utilized anyway e.g., e-mail, chat over a server etc.

It is straightforward to see that the gain we obtain using SAOTS will increase

if

1. If the protocol is operating in an environment with greater network delays.

2. A public-key algorithm with a longer key (e.g., 2048-bit RSA) is to be used

5 The network delay for WAN has a big variance so the numbers given here are just for
the purpose of giving a general idea.

6 The value of this threshold for the network delay is 59.162− 23.531 = 35.631 msecs for
SAS and 59.162− 11.906 = 47.256 msecs for SAOTS.
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Table IV.4: Experimental Comparison of SAS and SAOTS Protocols (msecs).

SAS SAOTS

Originator’s computation 14.049 0.256
Server’s computation 9.482 11.650

Receiver’s computation 14.205 14.049
Network delay (LAN) 1.9 1.5
Network delay (WAN) 340 250

since as the verification time of public-key signature will increase, only the

performance of SAS will get worse.

3. A public key algorithm (e.g., DSA [8]) where verification of the signature

is not more efficient than generating the signature is used.

4. A more powerful server is employed.

IV.5 A Size Reduction Technique: SAOTS with Hash

Chains

In SAOTS protocol we have proposed, in the first round the signer sends to the

server the message and a one-time signature as well as the public key for the

next signature. Is it possible to reduce the size of this bulk?

Yes, it is possible to avoid sending the public key of one-time signature if we

utilize the idea of hash chaining [58]. But as we will see, it does not come free.

Now in the initialization phase of SAOTS similar to SAS each user gets a

certificate from an offline certification authority for the hash array of length n

Kk
0 , Kk

1 , Kk
2 , . . . Kk

n−1 (IV.4)
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Figure IV.3: SAOTS with Hash Chain Operating in Two Rounds.

Where n is chosen to be large enough to map the hashed message (n=165

for SHS). Each element of the array is the last element of a hash chain of length

k where

Kk
j = hk(sj) = h(Kk−1

j ) (for j = 0 to n − 1) (IV.5)

In this equation, hk(s) is a hash chain of length k and means we apply hash

function h() k times to an initial input s.

Then the modified version of SAOTS (SAOTS with hash chains) works in

two rounds again as illustrated in Figure IV.3 but now the originator should

receive, verify and store the signature coming from the server:

1. The originator (O) sends m and Si to V S where

• m is the message

• Si = (Ki
a1

, Ki
a2

, Ki
a3

, . . . , Ki
ap

) denotes the subset of the array of

length p that maps the message to an OTS (composed of ith ele-

ments of hash chains). The counter i is initially set to k − 1 and

decremented after each run.
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2. Having received O’s request, V S performs the followings:

• Whether O’s certificate is revoked or not.

• Computes the mapping of h(m) or in other words finds out which

subset Si would correspond to the OTS of the message.

• Checks whether for (q = 1 to p) hn−i(Ki
aq

) = Kn
aq

or in a more efficient

way (q = 1 to p) h(K i
aq

) = Ki+1
aq

if Ki+1
aq

has already been received (it

depends on the previous message mapping).

If these are all OK, V S signs the message and sends it back to both R and

O. For the VS’s signature, there are two possibilities:

• VS can sign with a traditional public key signature

• If in the initialization phase VS gets a certificate for the hash chain array

(it should prepare a separate hash chain array for each registered user), VS

can also sign using one-time signatures thereby alleviate the verification

for those who can not perform public key operations.

After receiving the signed message from V S, both O and R verifies V S’s

signature. For secure operation, O should sign the next message only after this

(off-line) verification. Otherwise the following attacks can be performed:

• An attacker can generate the (ith) hash elements required to forge the

signature on a different message by applying a hash operation on the (i−

1)th hashes. He then inserts this new signature instead of the O’s signature.

However the attacker cannot generate a valid signature for any message
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he wants. This depends on the previous messages signed and the mapping

algorithm.

• If V S gets the previous signed message but does not send the signature on

this message before he gets the next signed message from O, an attacker

cannot forge a signature but now V S can generate a forged signature and

that cheating cannot be proven. For O, the signed message will be the

only proof for V S’s cheating.

Off-line verification and storing of V S’s signature before signing another

message will be sufficient to avoid these attacks. Since V S has signed the O’s

signature with the ith hash elements, if an attacker sends a forged signature

using the ith hash elements to V S, V S rejects this request (Look at the step 2

of the modified SAOTS protocol above) and the attack is not successful. The

V S cannot even generate a forged signature because it has signed the genuine

message previously.

Finally, we can say that with a trade of heavier computation requirement

and an extra storage requirement in this new version of SAOTS protocol using

hash chains we can have a total length save of (n + 1 − p) hashes (for SHS,

n = 165, p = 75 and h = 80, the save is 7.28 Kbits) in round 1 of the protocol.

The computation would be heavier not only for the originator but also for the

server. In more concrete terms, the server needs to perform n hashes instead of

p on average to verify the OTS of O. To conclude this section, average number

of hash computations needed by the server to verify an OTS in SAOTS with

hash chains is formulated:
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For the OTS of a message, the server receives p out of n hashes. Let’s call K i

any one of these hashes that is at depth i of the chain. To verify K i, it requires

any one of the next hashes in the chain (from i + 1 to k). If next hash (K i+1)

in the chain is available, then it needs only one hash operation to compute. If

not the hash computation requirement will increase. The probability that K i+1

has been received is (p/n = α). So if we assume that k is a big number, average

number of hash computations required for one hash will be approximated by

∞∑

t=0

α(1 − α)t(t + 1) (IV.6)

Since α < 1, this serial sum is equal to 1/α.

To find the total number of hash operations required, we need to multiply this

number with p, then finally we find the average number of hash computations

needed to verify an OTS in modified version of SAOTS protocol as

p ∗
1

p/n
= n (IV.7)

As an example, to map a 160-bit message, we can choose n = 165 and p = 75

where the server needs to do 165 hash computations to verify the OTS.

IV.6 Revocation of Public Key Certificates

Increased use of digital signatures emphasizes the importance of effective and

efficient revocation methods so that if a user does something that warrants re-

vocation of his security privileges i.e., he might be fired or may suspect that his
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private key has been compromised, he should not generate valid digital signa-

tures on any further messages (However, signatures generated prior to revocation

may need to remain valid).

In Online Certificate Status Protocol (OCSP) [59] (today’s state-of-the-art

approach to solve the revocation problem) to provide timely revocation infor-

mation, upon verifier’s query a validation server sends back a signed response

showing the sender’s certificate’s current status. The drawback here is that it is

impossible to ask a validation server whether a certificate was valid at the time

of signing.

Immediate revocation (the user cannot sign immediately after the revocation

takes place) is possible if an online VS is employed. In order to revoke a user’s

public key, it is sufficient to notify the server. The server maintains a list of

revoked users and it rejects signing on behalf of the user if his public key is in

the list.

We now want to show a deficiency in the revocation capability of SAS proto-

col [53]. SAS protocol works in three rounds as explained in subsection IV.1.4.

Think of a situation where the user gets the public key signature from the VS

in round 2 and postpones the execution of round 3. He then notifies the server

to revoke his public key (e.g., claims that his private key has been stolen). Af-

terwards, he can cheat by executing round 3 and generating a valid signature

although his public key has already been revoked.

In our proposal, this deficiency is elliminated since SAOTS protocol works

in two steps in opposed to three in SAS.
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IV.7 Integrating Attribute Certificates with SAOTS

Public key certificates provide the best solution for most applications however

some new applications like the ones in the area of health care require more than

that. Due to very dynamic rights of permissions and admissions, a certificate dif-

ferent than the public-key certificate is employed for professionals in healthcare

and other similar organizational settings and is called attribute certificate.

Just like public-key certificates where an authentic link is established between

an entity and his public key, attribute certificates link attributes to an entity

in an authentic manner. An attribute certificate does not exist autonomously -

it is rather bound to a base certificate: the public key certificate of the entity.

Exemplarily, attributes describe some of the following characteristics: general

authorizations, international or national specific data, delegations for other per-

sons, temporary rights etc.

Similar to PKI, the attribute certificates framework defined by ITU provides

a foundation upon which a Privilege Management Infrastructure (PMI) can be

built [60].

IV.7.1 Previous Work on the Design of Privilege Management In-

frastructure

In a PKI, the typical solution of the problem with public keys we have intro-

duced in section II.2 is to have trusted nodes known as certification authorities

(CA) which are “off-line” entities issuing public key certificates and putting

them in any convenient location, such as the directory service. Being an offline
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entity, unlike the secret key equivalent of KDC (key distribution center) CA is

neither a performance bottleneck nor a single point of failure; two parties (the

signer and the verifier) can have a secure communication without a third party’s

involvement.

However there is potential problem with CAs as mentioned in previous sec-

tion. Consider an organization where all employees have certain authorizations.

Suppose that an employee named Alice does something that warrants immedi-

ate revocation of her signing capability. For example Alice might be fired and

since Alice is now a disgruntled ex-employee, it is required to alert others not to

accept his signature as valid. One solution to this problem is to use a certificate

revocation list (CRL) which lists the serial numbers of certificates that should

not be honored. We have observed that CRLs and other similar approaches

can be easily outdated (it is hard to update the list instantly) and are not the

perfect answer to most organizations which need to provide more timely infor-

mation about revocation status of employees. Current state-of-the-art approach

is to use an on-line revocation server that can be queried over the network about

the revocation status.

So an up-to-date PKI should incorporate an online revocation server as well

in addition to the components introduced in subsection II.2.2. When the no-

tion of PMI is first introduced, one obvious conventional solution is to use an

architecture similar to PKI for it. Alternatively, in a recent paper, the au-

thors proposed to combine three components (certificate authority, a directory

service and an online revocation server) and name it as Attribute Certificate

106



Service Unit (ACSU) 7. The ACSU is now composed of three components: (1)

Attribute Authority (2) database to store the attribute certificates (3) Attribute

Server.

The CAs in a PKI are generally external to the organization i.e., private

companies or goverment agencies. This is because ”identity” tends to have a

global meaning. On the other hand attributes have a more local meaning e.g.,

being a project member. The new PMI scheme is therefore managed locally

and the ACSU is located inside the organization. Although linked, both infras-

tructures (PKI and PMI) can be autonomous and managed independently. The

advantages of such a design can be summarized as follows:

1. Simplified design (revocation is a built-in element in the system).

2. Local control over employees’ attribute certificates and their privileges.

3. Confidentiality of private privilege information.

IV.7.2 The Problems in Dawson et al.’s Approach

In Dawson et al.’s approach when Bob receives a signature from Alice; to au-

thenticate her, he gets her public key from a directory, he queries a revocation

server to obtain the status of her public key certificate and then for authoriza-

tion information he queries the ACSU to obtain her attribute certificate. The

ACSU returns back only valid (not revoked) attribute certificates. We have

investigated the following problems in this design:

7 In their paper, they also propose a method to employ multiple ACSUs for scalability
reasons.
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1. Although it is simpler than the conventional approach, Bob still needs to

query two different servers to verify the signature.

2. Immediate revocation (fine grained control over signing capabilities) is not

supported. The revocation server and ACSU can return the revocation

information at the time of query not at the time of signing.

The first problem can be easily handled by covering the functionality of public

key certificate revocation server also inside the ACSU so that Bob queries only

one server but the second problem needs a more careful treatment.

In a recent paper [62], the authors observe that in revocation techniques

where the receiver of a signature asks a server for revocation information do not

provide immediate revocation.

In their paper they also propose a method to provide immediate revocation.

However in their paper they do not discuss how attribute certificates can be

managed. We will now discuss a new design where attribute certificates are also

involved. But first we would like to extend a definition of the feature from which

the term immediate revocation is derived:

Modified Definition of Binding Signature Semantics: A valid digital

signature on a particular message can be generated only if its owner has a valid

public key certificate and a valid attribute certificate (is authorized to sign that

message) ”at the time of signing”.
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IV.7.3 When Do We Need Binding Signature Semantics?

Do we really need binding signature semantics? or it is sufficient to check the

signature’s validity at the verification time. The correct answer really depends

on the application. In an application where signatures are used to allow the

authenticated entity to have an access to a resource in the system, the protocol

works in real time in other words signing and verification are almost performed

at the same time. In this situation binding signature semantics can be considered

as a luxury. However it is not difficult to find an application that really needs

such a fine grained control.

For instance, suppose that the second manager of a company is permitted to

sign purchase orders when the first manager is on leave. Since the verification of

the signature on the purchase orders can be done at some later time, it is vital

to check the validity of certificates at the time of signing.

IV.7.4 Our Proposal: Extending Fine-Grained Control With At-

tribute Certificates

Fine grained control can be easily provided by employing a semi-trusted online

entity in signature generation. As a matter of fact, the ACSU in Dawson et al.’s

paper [61] can act as this online server. Now the ACSU is communicating with

the signer not the verifier. There are various alternatives for the implementation

8 but the main idea is the same:

8 One is presented in Boneh et al.’s paper [62] and one other is the SAOTS protocol we
have proposed.
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The server would participate in the signature generation only if the user is

allowed to sign the message at hand (has valid public key and attribute certifi-

cates). Without server’s participation there is no way for the user to generate a

valid signature.

More precisely, the proposed extended protocol involving the attribute cer-

tificate works as follows:

• The user produces his part on the signature of the message he would like

to sign and sends it to the ACSU.

• ACSU checks whether the user’s public key certificate is valid and also

checks whether he has a valid attribute certificate to sign the message. If

so, it generates its part of the signature on the message. Now the signature

on the message is complete. It is sent to the intended receiver(s).

• The receiver verifies the signature on the message. He does not need to

interact with anybody for verification.

IV.7.5 Final Remarks

In a recent paper [61], a design of privilege management infrastructure was

proposed where the receiver of a signature queries an online server named as

ACSU (which is also the authority on issuing attribute certificates) to get the

signer’s attribute certificate. In this section, we present a new design where the

signer not the receiver communicates with ACSU. By using our proposal the

verifier can check the validity of the signature (1) at the time of signing not at
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the time of receipt and (2) in a more convenient way without interacting with a

server.

Our proposal here can be thought as the combination of clever ideas in two

papers (Boneh et al’s [62] and Dawson et al.’s [61])

IV.8 Summary

In this chapter we have presented a new efficient verifiable server assisted signa-

ture protocol called SAOTS. By using a chaining technique where we attach the

public key of one-time signature for the next message to the current message,

it is shown that neither public key operations nor signature storage is required

for the user’s constrained device to prove the server’s cheating. Therefore our

protocol is more power efficient than on-line/off-line signatures and more com-

putation, storage and power efficient than previous verifiable server assisted

signature protocols.

SAOTS protocol implies that for generating a public key signature fully

trusted proxy servers are no longer the only option for pervasive devices which

cannot perform public key operations by themselves.

In recent years researchers come up with other signature schemes which do

not base on public-key operations. One of them was the BIBA scheme proposed

by A. Perrig [63]. BIBA’s advantages are smaller signature lengths and faster

verifying times. Designing and evaluating the performance of a server assisted

BIBA signature is a promising future work. As another future work, we also

plan to compare the performance of SAOTS (and SAOTS with hash chains)
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with respect to signatures using proxy servers. It will not be a surprise if we

see that the proxy signatures turn out to be more efficient but it is important

to know how much degradation we have in the performance if we do not want

to depend on a fully trusted third party.
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CHAPTER V

EFFICIENT VERIFICATION OF

SIGNATURES IN REAL-TIME

TELERADIOLOGY

Teleradiology is already impinging on everyday practice, but rapid

expansion, driven by an ongoing desire for increasing cost

effectiveness, will be seen in the near future. It is no longer a

fairytale dream but a useful tool to be used for greater benefit of

patients.

- Richard Wright

There are three things to be looked to in a building: that it stand on

the right spot; that it be securely founded; that it be successfully

executed.

- Goethe
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After requirement analysis and design phases, there comes the implementa-

tion phase and likewise following SCOTP and SAOTS, we present EVEREST,

our third and the last proposal. In this chapter, EVEREST would demonstrate

that a simple trick in the implementation could yield improved performance in

the verification of digital signatures in real-time teleradiology.

Let us begin our story from the very beginning. To improve the quality, cost

and access, the healthcare industry is endeavoring to attain the development

and deployment of electronic patient records. Not only used by radiologists, but

also by other clinicians and specialists, medical images are the indispensable

part of electronic patient records and are considered to be at the heart of the

patient’s diagnosis, determination of therapy and follow up [64].

The medical images are traditionally recorded on film from diagnostic devices

like CT, MRI scanners and X-ray systems. Medical institutions struggle, not

only with the cost of film but also with the staffing and storage requirements for

the infrastructure to manage all of these images. Picture Archiving & Commu-

nications Systems (PACS) [65] have been developed to represent medical images

in digital form. Medical practices start converting their older analog imaging

systems to digital. This conversion integrates storage and distribution of digital

medical images as illustrated in Figure V.1.

Traditionally, only firewalls are used to protect the security of medical images

[66] (a firewall examines each network packet to determine whether to forward

it toward its destination). Intruders frequently bypass firewall security and in

the literature a number of papers have been published to claim that this is inad-
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Figure V.1: Picture Archiving and Communications System (PACS)

equate for the protection and should be supported by other advanced security

measures [64, 66, 67]. Meanwhile, a recent security extension to the DICOM 1

standard was proposed to describe how digital signatures can be added to DI-

COM images so that the authenticity and integrity of the image is guaranteed

[68].

In addition, the demand for more advanced security measures increases with

the rapid expansion seen in teleradiology. Teleradiology is the umbrella term

to define the concepts of digitally transmitting radiographic patient images and

consultative text from one location to another over public networks 2. Teleradi-

ology is a convenient, cost-effective and productivity-enhancing technology and

its applications can be grouped into two general categories: (1) real-time on-

demand services facilitating remote interactive communication and emergency

1 The DICOM standard defines the basis of the interface mechanism allowing different
manufacturers’ digital imaging systems to communicate images.

2 Today, it really becomes fuzzy where a public network starts and when it ends therefore
we think the term teleradiology can also be used to cover PACS applications. As a matter of
fact the current trend for PACS is to provide low-cost connectivity from outside the enterprise
as well.
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triage, (2) non-interactive transmission and storage of images for later interpre-

tation.

Meanwhile, previous studies have also observed a performance problem when

the security measures are employed. This problem is more severe when medical

images are of concern since the image sizes might be huge. Besides, in real-time

teleradiology applications efficiency is crucial since the system is expected to

respond very quickly. In this chapter our objective is to provide a solution for

this performance problem. More precisely, we propose an efficient methodology

called EVEREST for verification of digital signatures to optimize the perfor-

mance of on-demand viewing of secure medical images [69]. We believe that

our work is the first one that aims to improve the real-time efficiency of secure

teleradiology applications. Additionally, one other important advantage of the

proposed method is the communication efficiency since getting the entire image

file would not be necessary to detect a tampering.

The rest of this chapter is organized as follows. Next section discusses the

importance of security and digital signatures for medical images. Section V.2

restates the efficiency problem in more detail. Section V.3 is about the pre-

vious studies and their shortcomings. In section V.4, we propose our method

EVEREST for the real-time efficient verification of signatures on medical images.

Section V.5 provides the results of our experiments and performance evaluations.

Finally, section V.6 concludes this chapter.
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V.1 Importance of Medical Image Security

As mentioned, in most of the current applications medical images are secured

by a firewall only [66]. However in the Internet and WWW era where networks

and internetworks become more open than ever before in an attempt to make

information available everywhere, security problems become more alarming than

ever before.

Today attacks are changing in nature and becomes much more dangerous,

meanwhile many of us are critically dependant on the security of PACS systems

and medical images. Consequently, it is evident that current protection mech-

anisms are inadequate and needs to be supported by other advanced security

techniques. We believe that health care field is in urgent need of the support of

security protocols and cryptographic algorithms and without being late should

follow other sectors (e.g., banking, military etc.) to employ them effectively and

efficiently.

Some might think that information systems in healthcare do not need such

security countermeasures simply because unlike banking and military there is

no profit an attacker can acquire. While you can argue whether a profit exists

or not in healthcare 3, we would like to remind you the “publicity attack” [1]

where the attacker is only in pursuit of to get his name in the newspaper 4.

As a matter of fact hacking into a bank’s web server happens so often and

ordinary that a hospital’s information system might serve better for the purpose

3 In both United States and Britain there are people who earn their living by only violating
medical record privacy of others [37].

4 Why did the man burn down the Temple of Artemis in ancient Greece?
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of getting famous. Moreover without proper security measures it takes less time

and less money. Lastly as a supporting argument we would like to mention

HIPAA Security Rule in USA 5, which has been recently passed into federal law

and provides a conceptual framework for healthcare information security and

sets out strict and significant federal penalties for non-compliance.

We would like to restate one important point here. That is in security,

“context matters more than technology [1].” In other words before choosing the

specific security protocol or cryptographic tool, to be effective, it is essential to

decide on the security target by answering the question, “what kind of security

do we need?”

As we see in Section I.1, three main information security targets can be listed

as:

• Confidentiality: prevention of unauthorised disclosure of information.

• Integrity: prevention of unauthorised modification of information.

• Availability: prevention of unauthorised witholding of information.

While the medical professions are rapidly coming to depend on computers

and networks, attacks that degrade the availability of digital information (such

as viruses and distributed denial of service kind attacks) might have serious

consequences and therefore the importance of the third target, availability can

never be underestimated. Moreover the existing techniques used to protect the

availability of information are observed to be more premature and less effective.

5 http://www.hhs.gov/ocr/hipaa/, US Department of Health and Human Services, Last
access: September 17, 2003.
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However we will not discuss this issue in detail here (we will add a few words in

the last section of this chapter). Instead in this chapter the second main target,

“integrity” is our main concern.

A medical image consists of two parts, a short simple image header and a big

anonymous image body. In most scenarios only the header containing the sen-

sitive patient information needs to be kept confidential however the integrity of

the entire image file needs to be assured. This is the reason why unlike encryp-

tion it is not secure to sign only a portion of the image file for efficiency reasons

[66]. In fact, Cao et al. have demonstrated with some visual examples how easy

to insert artifacts within the image, which causes confusion and contradiction

during diagnosis [66].

V.2 The Performance Problem

Today, digital signatures explained in subsection II.1.6 are accepted as the de-

facto standard for ensuring data integrity and authenticity. In the implemen-

tation of digital signatures if the message has an average size (e.g., in kilo-

bytes range), computing the hash value of the message can be performed in

microseconds and is not a dominant factor in the overall delay of signature gen-

eration/verification (see Figure II.1). However in teleradiology applications, a

typical examination generates between 10 MBs and 40 MBs or much higher with

volume magnetic resonance imaging (MRI), volume zoom CT and digital mam-

mography. The high extreme is in digital mammography, which generates 160

MBs per examination [67]. Therefore, when medical images are of concern, in
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contrast to other applications a considerable amount of time for signing and ver-

ification is spent to compute the hash value of the image (In a Pentium III 500

MHz machine computing the hash of a 50 MB image takes around 10 seconds).

As far as real-time teleradiology and on-demand viewing is concerned (images

are not batched long before review 6), verification efficiency is more important

than efficiency for signing because of three main reasons:

1. Signing is usually performed offline but the verification needs to be carried

out in real-time.

2. Generally an image is signed only for once but needs to be verified many

times over a period of years.

3. Server machine that signs the image is chosen to be a powerful machine

to serve multiple receivers at the same time however the receiver machine

might be a constrained device (the recent studies [70] show that to display

medical images even the handheld devices can be practically used).

So far, what we have said is about computational delay efficiency. Gener-

ally speaking, another issue in a typical network application is communication

efficiency i.e., how to avoid wasting bandwidth resources. Think of a situation

where after receiving the entire image file verification of the signature fails. In

all of the digital signature algorithms available today the determination of the

region the tampering is not possible hence a message should be sent back to

PACS server requesting for retransmission of the entire image file. Worse than

6 Batching is not practical (a) in emergency scenarios (b) when the storage capacity of
the display station is limited.
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that the retransmission repeats if the verification continues to fail in subsequent

receipts.

From the above discussion it becomes clear that a method for verification

of digital signatures which is more efficient in terms of both computational and

communicational load is higly desired in an application where big files are of

concern especially as in teleradiology where medical images are tens of megabytes

in size.

V.3 Previous Studies

In a recent article [71], the authors discussed a technique for efficient encryption

of medical images. Their work is based on so called “partial encryption” or

selective encryption” which protects only the most important part of the image.

A similar approach for digital signatures is not applicable because usually the

integrity of the entire image file needs to be protected. It is reasonable to assume

that if a medical image has some unnecessary parts then in a pre-processing

phase these parts can be removed from the image. This pre-processing would

be beneficial not only for the efficiency of digital signatures but also to decrease

the storage and tranmission requirements in general.

In a bigger picture there are two components that affect the performance of

on-demand viewing of digitally signed medical images:

• The transmission time from the PACS server to display station (Fig-

ure V.1).

• The time for the computation of hash and verification of signature.
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At this point, we would like to introduce some of the techniques employed

to decrease the transmission delay, the first delay component:

• Increasing Bandwidth Capacity: Of course it is obvious that the ulti-

mate solution and the current trend is based on an investment to increase

the bandwidth capacity of the infrastructure. As a result in the near future

when available bandwidths are measured in Gb/s the delay to compute the

hash value of the image will become more significant.

• Applying Image Compression: Other than digital signatures, another

state of the art and emerging technology in teleradiology applications is

image compression. There are two types of compression; while a 100:1 ratio

is possible in lossy compression, the current maximum limit for lossless

compression is 3:1 [72]. In practice, medical community is reluctant to

accept the lossy compression to be used for medical images and this is

why we should deal with tens of megabytes in teleradiology applications

even when compression techniques are employed.

• Speed-optimized Transmission Method: The other solution to opti-

mize the transmission has been implemented in popular freeware download

programs. The idea behind these simple tools is to split the long file into

several pieces on the server side and open a separate connection to transmit

in parallel each piece upon receiver’s request.

The second delay component, the inefficiency incurred by digital signatures

has been discovered previously [64, 66, 67] (but none of them proposed a so-
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lution). In [67], the authors present a method to sign digital mammography

images and their findings about the inefficiency were much more severe. This

is because their proposal includes embedding the digital signature into the im-

age itself instead of attaching it to the head or end of the image file. As a

consequence an extra amount of time would be necessary for the embedding

computation.

Just like other teleradiology applications, digital mammography uses DICOM

standard [68] that did not previously support digital signatures. The image em-

bedded with the digital signature still confirms with the DICOM image format

standard. That is the main reason behind the authors’ design rationale. How-

ever, recently a third security extension to the DICOM standard describes how

digital signatures can be transmitted with the DICOM images [68]. So for the

time being we believe that embedding the digital signature to the image does not

have any advantage over attaching. Moreover, the proposed embedding method

has some security weaknesses, as we will mention in short.

The Security Weakness in Zhou et al.’s Method: One additional goal

of embedding the signature to the image itself is to make it difficult to remove

from the image 7, Zhou et al. proposed a method where the least significant bit

of a random pixel of the image is replaced by one bit of the digital signature [67].

In order to select the random pixel, they used a linear congruential generator

with a modulus of 1771875. Then, the seed value that is agreed on between the

7 We think the reason to try to make the signature unremoveable was not clear in their
paper. These so-called steganography or watermarking techniques are usually employed either
for privacy or copyright purposes [6].

123



sender and the receiver has a space of around 21 bits (Another drawback here

is to assume that the receiver and the sender can agree on a shared secret).

Seeding the random number generator with a seed that is from too small a

space is a typical mistake for picking random numbers [10]. The problem is that

there would be inadequate number of possible numbers it would ever choose to

avoid a “brute-force attack” where without using any intelligence an attacker

try every seed value to discover the hidden signature (221 in our case which is

not considered to be safe today for an adversary having an average amount of

computing power).

At this point we would like to state that the goal of embedding an unremov-

able watermark that can be verified by a public key is currently a hot topic in

security world usually studied under the term “asymmetric watermarking”. In a

recent paper [73], the authors reviewed the current state of the art and concluded

that the problem of designing a perfect asymmetric watermarking scheme has

not been solved yet (In their definition “perfect” means secure, unremovable,

embedded with a secret key and verified with a public key without contacting a

third party).

In another previous work [56], the authors proposed an efficient method for

signing digital streams (very long potentially infinite sequence of bits, e.g., a

movie or a live broadcast). The solution to digitally sign these streams are of

two types. In the one for the finite stream, the basic idea is to divide the stream

into blocks and attach authentication information of the current block to the

following block by a chaining technique. Although this work has some inspiring
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ideas for us, it is not directly applicable to the medical images because of two

reasons: first of all, images in teleradiology do not match with the properties

of digital streams therefore the complexity of the chaining technique used is

unnecessary 8. Secondly, since it assumes to receive the parts in sequential

order this work has a poor performance when the speed-optimized transmission

method introduced earlier is used.

V.4 Our Solution

In our solution, the key observation we have made is that in the traditional

verification the processor of the verifying machine is idle (I/O blocked) while the

image is downloaded (the processor is utilized for hash computation only after

all the entire image file is transferred). If we come up with a new verification

methodology in which we do not need to wait until the entire image file is

downloaded, we can utilize the previously idle processor for hash computation

and as a result we improve the real-time efficiency of verification or in other

words the total time necessary for downloading and verification is decreased.

The method proposed can also be considered as a way to parallelize the steps

so that the receiver can perform most of the computation in background while

he is receiving the image itself. Apparently, our proposal does not decrease the

total amount of computation carried out by the processor. It just shifts the time

the processor is used for this computation.

8 One of the characteristics of digital streams, lack of need to buffer large amounts of
data is the main motivation behind this design where a block can be deleted after receiving
and verifying the next one. However to verify signatures on long files we do not have this
limitation.
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Figure V.2: Comparison of the traditional method and the proposed method
EVEREST.

As seen from Figure V.2, there is a similarity between our solution and the

technique known as “pipelining” that is widely used in designing more optimized

computer processors. With pipelining, the computer architecture allows the next

instruction to be fetched while the processor is performing arithmetic operation.

The staging of instruction fetching is continuous. The result is an increase in

the number of instructions that can be performed during a given time period.

A signature verification method for teleradiology should be flexible to work

reliably and efficiently no matter how the underlying transmission takes place.

It can be whether a traditional one with a single connection or the speed-

optimized method introduced previously. We now introduce one such method

called EVEREST (Efficient VERification of Electronic (digital) Signatures in

real-time Teleradiology), which consists of two parts: the set-up part working on

the sender side and the downloading and verifying part working on the receiver

side.
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Figure V.3: Signature Generation in EVEREST.

V.4.1 Signing on the Server Side

First, the issue of how many pieces the image file is split into is resolved. It

is good in practice to have as many pieces as the number of connections the

server would open per receiver when speed-optimized method is used. Optimum

number of connections depends on the resources the server machine has and

also on the number of independent receivers served at the same time. Note

that more connections not always mean more speed. The transmission medium

characteristics also affect the optimum number of connections.

Having decided on the number of pieces, then the server executes the proce-

dure illustrated in Figure V.3 for each image it needs to sign:

127



As we mentioned earlier, in traditional signatures, the hash of the message,

h(x) is signed to get the signature S(x) as seen from equation V.1:

S(x) = Sign(h(x)) (V.1)

In our method, the signing procedure is slightly modified 9. Equation V.2

shows the generation of signature when the message is split into 3 pieces (”||”

means concatenation).

S(x) = Sign(h(h(x1)||h(x2)||h(x3))) (V.2)

After an image is signed and the hash values and signature is stored, the

server is ready for secure transmission.

One important point worth mentioning is that our method keeps the signing

computation almost same (due to linearity of hash computation that can be seen

in Figure V.5).

V.4.2 Verification on the Receiver Side

Unlike the traditional verification where all the steps are executed in a single

main thread, in our method we have two threads working in parallel. While in

the MAIN thread, the pieces of the image file, the hash values and the signature

are downloaded, the VERIFY thread is used to verify the signature and the hash

values as shown in Figure V.4. The verification of the signature and hash values

9 This modification is unnecessary if the hash function h() statisfies h(x) =
h(h(h(x1)||x2)||x3) or h(x) = h(h(x1)||h(x2)||h(x3)). However most of the hash functions
used in practice does not satisfy any of these equalities.
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only begins when the required input becomes available otherwise the VERIFY

thread waits in a loop. In the MAIN thread, when downnloading a message piece

starts, an I/O block occurs and the CPU can entirely be used by the VERIFY

thread until that downloading is finished.

In the VERIFY thread after verifying the signature on the hash values, to

verify the hash values, the hash value of each piece received is computed and

compared with previously received one. In Figure V.4, ”end” means a successful

completion of the verification and ”quit” means the verification is unsuccessful

(a tampering has occurred) and the program terminates and discontinues down-

loading (results in communication efficiency). Also notice that the operation of

EVEREST does not assume to get any specific part first. If speed optimized

method is used the receiver opens n separate parallel connections (threads) to

the server machine to download each part and in this case we have a total number

of n + 1 threads working in parallel.

V.4.3 Security Analysis

We claim that EVEREST achieves the same security level of a traditional public

key signature scheme. As seen from equation V.2, to forge a signature, an

adversary can attempt either to

• Forge the public key signature of the sender.

• Find a message such that the hash value of that message is equal to the

hash value of any one of the blocks or the hash value of hashes of the

blocks.
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Figure V.4: Signature Verification in EVEREST.
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Clearly, the first attack is applicable to the traditional signatures as well.

As seen from Figure II.1, traditionally a hash function is first applied to the

message in order to produce a fixed-length digest, which is then signed. Hence

a successful second attack is at the same time an attack on the traditional

signature.

Since there is no attack that can be applied only to our method, our method

is as secure as traditional signing.

V.5 Performance Evaluation and Experiments

In this section, we first would like to make an analytical evaluation of the per-

formance of the proposed method and determine the maximum achievable theo-

retical gain with respect to traditional verification. Next, we provide the results

of the experiments we have conducted and compare these results with the ana-

lytical findings.

V.5.1 Performance Evaluation

In our method, the transmitted file size is slightly larger than the original case

due to extra hash values transmitted. To make a comparison, let Td denotes the

extra time delay for transmission of this extra amount. When the network delay

to download each part is bigger than the time required to verify the hash values,

it is reasonable to assume that at the time the receiver completes downloading

the last part, only computing the hash value of this last part is left to verify the

entire image since the processing for hash computation of all the previous parts
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Figure V.5: Performance of Hash Computation Using SHS Algorithm.

and signature verification has been completed by utilizing the idle (I/O blocked)

CPU.

We have observed that the time for signature verification is very small com-

pared to compute the hash value of image parts (around 80 msecs if 1024 bit

DSA [8] is used as the signature algorithm). As shown in Figure V.5, the time

to compute the hash value has a nearly linear dependence on the size of the file

(using SHS [9] as the hashing algorithm). So if the time to compute the hash

value of the entire file is Th, then the time to compute the hash value of the last

block is approximately Th

n
where n is the number of parts. So traditionally, the

total time necessary for verification is as follows:

Tver trad = Th + Ts (V.3)

Ts corresponds to the time for verification of the digital signature on the

hash value. Whereas in our proposed method, by taking into account the value
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Td, the time for verification is

Tver prop =
Th

n
+ Td (V.4)

To simplify, if we ignore Ts and Td (a very small quantity considering network

bandwidths available today), then the overall performance gain will be

Tdiff = Tver trad − Tver prop = Th(
n − 1

n
) (V.5)

Lastly, note that the performance gain in Equation V.5 is achieved when the

verification is successful. If verification fails, the computational gain increases

because of early detection.

V.5.2 Experiments

A Windows 98 PC with 450 MHz Pentium III and 128 MB memory and a

Windows 2000 PC with 800 MHz Pentium III and 256 MB memory were chosen

as the slow and fast receiver machines, respectively. A Windows XP Pentium

IV with 1.7 GHz Pentium IV and 512 MB memory is the server. JCE (Java

Cryptography extension) integrated to the Java 2 SDK Standard Edition v.1.4

was used for the implementation which downloads the image using a single

thread. The server and the receivers are connected via 10Mbps LAN. 1024-bit

DSA [8] is used for signing and SHS [9] is used as the hash algorithm.

In the programs we have written for precise timing measurements the CPU

usage is queried instead of simply measuring the elapsed time. However profiling

CPU usage in Java language is not so straight-forward. For those who are
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Figure V.6: Performance Gain of EVEREST Using Two Different Receivers.

interested, the techniques we have employed is explained in Appendix C.

Figure V.6 shows the achieved gain by using three message pieces and differ-

ent types of receiver machines. Using different number of pieces, Figure V.7 is

for demonstrating the difference between theoretical gain and experimental gain

(using the slow client and 50 MB image size).

As seen from the figures, a significant gain is obtained if our new method is

preferred. Overheads due to thread usage, context switches etc. are the possible

reasons for the difference between theoretical and experimental gains. However

we see that when the number of message pieces increases, experimental gain is

approaching to the theoretical gain. The time to download a 50 MB image is

observed to be around 50 seconds using 10 Mbps connection. If we would like

to specify how much speed-up we obtain in total time to download and verify

using our new method then we calculate it as 6-12%. We expect this gain to

increase when a higher speed network is used. This is because the time gain

134



Comparison of gains (slow client)


0


2


4


6


8


0
 1
 2
 3
 4
 5
 6


Number of message pieces


G
a

in
 (

s
e

c
s

)
 Experimental

gain


Theoretical gain


Figure V.7: Theoretical and Experimental Gains in EVEREST.

we obtain will remain almost same but the time to download the image file will

drop significantly. We also would like to point out that the theoretical maximum

speed-up in total time of our proposal is 50% (when time to download and time

for hash computation are equal and the message is split into infinite number of

pieces).

V.6 Summary

In spite of high investments in infrastructure for high-speed networking, medical

imaging still has performance problems due to huge image file sizes. The intro-

duction of digital signatures makes this problem only worse, since to verify the

signature a substantial amount of extra time is required to compute the hash of

the image file.

In this chapter, to solve the problem of efficiency in on-demand secure med-

ical imaging applications, we have proposed a method called EVEREST where
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the receiver can perform most of the hash computation while he is receiving the

image itself. EVEREST is the first one in literature to address the efficiency con-

cerns for digital signatures in teleradiology. The performance evaluation study

and experiments show the prospect of our method.

One other advantage is the communication efficiency since the receiver does

not need to get the entire file to detect a tampering. Traditionally when a

tampering has been detected, the whole image file needs to be retransmitted.

On the other hand in our proposed method in case of tampering the receiver

requires retransmission of only the tampered part to complete verification of

the signature. Consequently if the PACS system is a heavily used one and the

bandwidth resources are limited, our method would also help to improve the

“availability” of medical images.

An alternate option and a more obvious trick for real-time efficiency is that

the image is displayed immediately and the status of the digital signature will

be displayed when available. The disadvantage of this option is that the receiver

sees a disturbing status window that may easily be ignored. On the other hand

our method provides real-time efficiency without degrading the security and

user-friendliness of the system. In [64], the author has defined a “self-enforcing

protocol” as the best type of cryptographic protocol because it is independent

of the trustworthiness of people. We believe our method can be accepted as one

such protocol which provides efficiency as well.

Throughout this chapter we have assumed that the PACS server is the one

that signs the medical images. In [74], the authors presented an alternative so-
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lution where an embedded system performs the signing operation immediately

after the image acquisition. We have observed that the architecture of PACS

system illustrated in Figure V.1 is very appropriate for the so-called “threshold

cryptography”. By definition in threshold signatures at least two party should

participate to complete the signing operation. This property improves the secu-

rity because if an attacker steals one part of the private key, he will not be able

to forge signatures. As a result we think that implementing threshold signatures

in a PACS environment is a promising future work.

Another promising future work is adapting our method to encryption. In the

entire time interval the downloading of an encrypted image takes place, the CPU

of the receiver machine is again unused. Therefore the real-time performance of

confidential medical image transfer is highly improved if we can perform most

of the decryption computation before we finish receiving the image file.

Lastly, this method would also be applicable in other applications where big

files are required to be verified efficiently. The method EVEREST proposed in

this chapter has some unique features that will make it an exclusive choice for

some applications while excluding others.
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CHAPTER VI

CONCLUSIONS AND FUTURE WORKS

I like the dreams of the future better than the history of the past.

- Thomas Jefferson

Learn from yesterday, live for today, hope for tomorrow. The

important thing is to not stop questioning.

- Albert Einstein

In this last chapter, I would like to provide the concluding remarks in Q&A

form. Afterwards, the extensive list of future works is provided especially for

those who want to make research on these topics.

Q: In this thesis, what is the fundamental question you have dealt with?

A: I have tried to find out the alternatives for improving the performance of

authentication protocols, digital signatures and their applications in e-health.

Q: What are your findings?

First of all, we have observed that there are a bunch of authentication pro-

138



tocols proposed in the literature ranging from primitive Unix passwords to very

advanced zero-knowledge proofs. Choosing one of them really depends on the

context i.e., requirements and threats. For instance one-time passwords can be

an efficient entity authentication alternative for those who only worry about

so-called passive attacks where the attacker only listens the network and tries

to eavesdrop the password.

Secondly, like all other engineering disciplines, “design” is an important sub-

ject in security engineering. As a matter of fact, designing a more efficient

authentication protocol or a digital signature scheme is more challenging be-

cause of security considerations but a careful design might result in efficiency

we are looking for without degrading the security level.

Third and the last approach to have a better performance is based on some

clever tricks in the implementation phase. For instance using a faster modular

exponentiation algorithm for the cryptosystem RSA might be a typical example.

However we come up with a much simpler and a natural way to improve the

real-time efficiency of digital signatures in teleradiology.

In this study, not only the third one, but all of the three alternatives are

demonstrated by original examples.

Q: What do you mean by original examples?

A: As far as one-time passwords are of concern, we first suggest a new con-

struction called “signature chain” as an alternative to “hash chain” that is widely

used in one-time passwords and then based on the signature chain idea, we pro-

pose a one-time password protocol called SCOTP which improves the flexibility
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and security of previous approaches. The disadvantage of signature chain is the

larger verification time with respect to hash chain based approaches.

The second and the most important contribution of this dissertation we think

is a new design of a server assisted signature protocol. This new design employs

one-time signatures and improves the real-time and round efficiency of getting

assist from a “verifiable” server. By the help of our new protocol called SAOTS, a

“proxy” server is no longer the only option for those are uncapable of generating

public key signatures.

Third one has already been mentioned. EVEREST, the third method we

propose in this thesis is designed for verification of signatures on large medical

images. This approach is again more delay-efficient than traditional methods.

From another view, in proposing these three methods, we have actually an-

swered the following three questions:

1. One-time passwords offer a viable alternative but have some deficiencies

with respect to flexibility and security they provide. How can we improve

their security and flexibility?

2. In designing a new server assisted signature protocol, how can it become

feasible to use one-time signatures which do not based on a difficult math-

ematical problem and can be realized only by using very efficient one-way

functions?

3. To verify digital signatures in teleradiology a considerable amount of time

is spent to compute the hash of the image because the image size is huge
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(tens of megabytes). On the other hand the CPU of the verifying machine

is idle until the downloading of the entire image file is completed. Moti-

vating by these facts, how can we come up with an idea that improves the

real-time efficiency?

Q: OK, that looks nice. But I wonder if you have any additional contribution

in this thesis?

A: Yes, we have also examined some of the sub-problems that we have en-

countered while doing the actual research work. I prefer to express these prob-

lems in question form again:

• In smartcard authentication there is a significant risk in locations where

there is no smartcard reader available. What are the options to have a

survivable authentication framework? And how can one-time passwords

contribute to the survivability?

• Using the BAN logic, can we analyze the security of these one-time pass-

word protocols?

• In e-health, attribute certificates are very useful tools especially when the

roles and authorizations dynamically change. How can we integrate at-

tribute certificates to a server-assisted signature protocol?

Q: A few last words?

A: Yes, before the future works, I would say cryptography and network secu-

rity contains very joyful and interesting topics and I hope the future works that

will be provided next will help to those who are interested to work in this area.
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I would try to provide the future works in a logical order therefore they are

grouped again in a top-down approach:

Future Works in Requirement Analysis Phase:

• New security requirements in pervasive computing: One of the

application domains that is in urgent need for the efficiency provided by

our proposed methods is pervasing computing where for the sake of nearly

ubiquitous information access, computers get smaller and occupy every-

where. However throughout this thesis, we do not take into account the

new security requirements this new era of computing brings. For instance

while designing SAOTS we have assumed that the parties involved can

have an access to a server. Being capable of having an access to useful cer-

tification information is another assumption not only ours but also almost

every traditional authentication protocols have made. It has been argued

by a number of researchers that these assumption are no longer valid in

the pervasive domain [75, 76, 77]. As a matter of fact in a conference

[78] I have attended, it was surprising to see that this field is so young

that most of the papers presented have introduced the requirements and

problems rather than the solutions. Finding the required solutions will

really look like a promising and challenging research subject. We highly

recommend the interested readers to [78] and especially the paper about

the requirements of pervasive computing in e-health [77].

• Economics of Security: In this thesis, we have repeatedly emphasized

the importance of the requirement analysis phase for choosing an authen-
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tication protocol or a digital signature scheme. Actually thinking in terms

of your security requirements is a big step but not enough.

In real life for instance you might really need a brand new car, but your

financial resources could allow you to drive only a 10-year old Renault

Spring. Therefore considering both your requirements and resources is

essential. Nothing is different for security. “The economics of security is

a hot and rapidly growing field of research 1”. Studying on applying the

results of this new field to e-health systems would seem to give fruitful

results.

Future Works for the Design Phase:

• Secure signature schemes when quantum computers are real-

ized: Quantum computers use the concepts in quantum mechanics to

improve the computational efficiency of classical computers. A “qubit” is

a quantum-bit, a bit of information that can be both zero and one simul-

taneously. Thus, a qubit rather than a standard bit based computation

can make calculations using both values at the same time. Similarly a

“qubyte” is composed of eight qubits and can be all values from zero to

255 simultaneously. Extending this concept to multi-qubyte systems, it is

seen that there is a potential for computational efficiency growing expo-

nentially beyond anything possible with traditional computers.

To realize practical quantum computers there are some practical limita-

tions. But reserarchers believe that they will be available in the near future

1 http://www.cl.cam.ac.uk/∼rja14/econsec.html, Last access: September 17, 2003.
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and try to come up with algorithms to solve some complex problems dif-

ficult with classical computers. One of the famous quantum algorithms is

due to Shor [79] that solves the factorization and discrete logarithm prob-

lem in polynomial time. Since the security of most public key signature

algorithms (e.g., RSA [16] and DSA [8]) depend on the difficulty of these

problems, Shor’s invention implies that these signature algorithms become

insecure when quantum computers will become available.

Hence the big challenge is to design a signature scheme which protects its

security level even when quantum computers are used for the cryptanalysis.

On the other hand the security of one-time signatures does depend on only

a one-way function rather than the difficulty of a complex mathematical

problem therefore the solution we seek might be already very close to us.

However to make things even more complex I would say that designing

provably secure one-way functions in case when quantum computation is

to be used is also an open question that we do not know the answer yet.

As a conclusion, designing a signature scheme secure against quantum

cryptanalysis is one of the really ambitious future work we present in this

chapter.

• Improving the efficiency of joint compression and hashing: When

a large message such as the concerned medical image file in Chapter V is to

be transmitted, sometimes it is first compressed to reduce its size. Before

the transmission takes place if it is also required to perform the signing for
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security reasons, the hash of the message should be computed as well. So

to prepare the message for transmission, the delay overhead is equal to the

sum of the time required to compress the message and the time to compute

the hash of the message (if the time to sign the message is comparably

small and therefore ignored). Then, the open problem is to design a joint

compression (either a lossy or a lossless one) and hashing algorithm that

can be named as “comprehashing” which satisfies the following inequality:

Delay(Compress&Hash) << Delay(Compress)+Delay(Hash) (VI.1)

In formulating the inequality above, we are inspired by [80] which has

proposed and solved the same problem for joint signing and encryption.

• Robust authentication techniques surviving compression: In tel-

eradiology if compression is to be employed, it is a best practice to do the

compression before the signing. However in some situations it might be

necessary to compress the message after it is signed (e.g., to serve also the

receivers with more limited resources). If this is the case, to avoid the cost

and complexity of re-signing, we would need a signature algorithm which

remains valid after the compression is applied.

In fact, since usually a one-way hash function is applied before the signing,

a secure hash function which gives the same output for both the inputs of

uncompressed and compressed data will be sufficient for our purposes.
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One of the authentication techniques that survives the JPEG lossy com-

pression is the work by C.Y. Lin [81]. In our survey we see that these

techniques were usually proposed for lossy compression simply because it

is the one mostly preferred in practice on the other hand as far as medical

images are of concern, the situation is contraversial and lossless compres-

sion techniques are recommended. As a result we can say that a design of

a robust (and efficient) authentication technique that survives the lossless

compression will be worthful in e-health applications.

• Server assisted verification of digital signatures: As it is evident

from Chapter IV, there are numerous proposals in the literature to increase

the performance of digital signature generation. However in a similar fash-

ion getting aid for the verification of the signature is not well-studied 2.

While it is possible to think about the suggested future work indepen-

dently, considering the capabilities and limitations of SAOTS with respect

to verification of signatures might also be good starting point.

• An OTP Protocol with a stronger authentication goal: In section

III.9, we have seen that all of the current OTP protocols achieve a weak

authentication goal that safeguards against only passive network attacks.

A secure design of an OTP protocol which attains a stronger authentication

goal while preserving the protection capability against the attacks on the

client side would be very useful but at the same time could be not so

2 As a matter of fact we are not aware of any previous study except the email message of
P. Kasselman. Available at http://lists.oasis-open.org/archives/dss/200301/msg00010.html,
Last access: September 17, 2003.
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straight forward. This is because of the lack of trust on the client machine,

one of the sides the protocol should execute in. The interested readers

might find the recent work of Micali and Leyzin 3 stimulating.

• Designing a one-time signature based special purpose digital sig-

nature primitive: After Diffie and Hellman have proposed the concept

of digital signatures [7], researchers discovered a large number of signature

primitives with additional special properties. For instance “blind signa-

tures” are proposed to generate a signature on a message without knowing

what the message is [6]. While flexibility of public key operations allows

us to design such signature schemes, it is really difficult to do it similarly

with one-time signatures which depend on one-way functions.

• Reducing the length of messages in SAOTS protocol: We think

that the only real weakness of the SAOTS protocol proposed in chapter

IV is the longer length of messages exchanged. Obviously to reduce the

length, SAOTS would benefit from the future research that shortens the

length of one time signatures and/or one-time public keys. So the problem

to investigate is really about the concept of one-time signatures.

Future Works for Implementation, Security Analysis and Perfor-

mance Evaluation:

• Threshold cryptography for PACS environment: In the scenario of

a typical cryptography application there is one sender and one receiver.

3 S.Micali and L. Reyzin, “Physically Observable Cryptography”, Cryptology ePrint
Archive, Report 2003/120, Available at http://eprint.iacr.org, Last access: September 17,
2003, Last update: June 9, 2003.
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“Threshold cryptography” allows one (either the sender or the receiver)

to share the power of a cryptosystem [82]. For instance in a “ (n, k)

threshold signature scheme”, the signing key is split up among n parties

so that only any k out of n can sign a message. The advantages of threshold

signatures are two-folds. First of all they are valuable tools to implement

some real-world business transactions e.g., large bank transactions require

two people to sign. Secondly, since the secret key is shared among a number

of participants, an attacker is not able to break the system (e.g., generate

a forged signature) if he has obtained only one of the shares.

We have observed that the PACS system (Figure V.1) is very appropriate

to get benefit of the aforementioned advantages of threshold cryptography

because there are already more than one party participating (the image

acquisition modality and the PACS server) to respond to a receiver.

• Adapting EVEREST for encryption and message authentication

codes: The fact that the CPU of the verifying machine is idle during the

transmission of the medical image can be used not only to improve the

performance of employing digital signatures but also other cryptographic

tools as well. Although it seems to be not so tricky, this future work is

again promising for obtaining real-time efficiency in secure medical imaging

applications.

• Filling the gap between formal methods and cryptography: In ap-

plying formal methods, a cryptographic operation is generally represented
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as a black box which gives a certain output given a certain input e.g., The

BAN logic [22]. However this abstraction turns out to be too simplistic.

Instead, a formal technique which makes its abstractions with more proper

justifications is to be modelled. Visit the web page 4 for information on

combining cryptographic and formal proof techniques.

• Power efficiency of authentication protocols: In section I.4, we have

mentioned the power limitation of pervasive devices. In section IV.1, we

have argued that on-line/off-line signatures are not suitable for devices

with restricted power resources. This restriction is more serious in some

sensor networks where changing the battery of a sensor node is almost

practically impossible. Therefore the maximum operation life of the sensor

network depends on the battery life of sensors and the power efficiency of

communication protocols employed.

Today, in networking community yet another current hot topic is “sensor

networks” and there are a lot of recent work on designing secure protocols

suited to their special requirements. The appropriateness of authentication

protocols to sensor network applications including the ones presented in

this thesis really depends on their power efficiency. As a result, evaluating

the energy performance of these protocols is required. Of course this will

be more difficult than simply measuring the time delay of the protocol by

a few lines of software code [83].

4 Project web page, “linking formal methods and cryptography”, Available at
http://www.zurich.ibm.com/security/models/, Last access: September 17, 2003.
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Lastly, widely employed WTLS (Wireless Transport Layer Security) proto-

col, the standard for secure wireless access to Internet services, is another

candidate for such a performance evaluation study.
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APPENDIX A

How to Use DSA to Construct a Signature

Chain

We first want to remind you how DSA works. In DSA [8], we first generate a

random secret number k. The signature for a message x and the secret number

k is the pair (γ, δ).

sig(x, k) = (γ, δ) (A.1)

where

γ = (αk mod p) mod q (A.2)

and

δ = (x + αγ)k−1 mod q (A.3)
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In the above formulas, p, q, α as well as β (calculated as in equation A.4) are

public and a is the private key.

β = αa mod p (A.4)

For a 160 bit message x, both γ and δ are also 160 bits in length resulting

in a total signature length of 320 bits. Verification will work as follows:

e1 = xδ−1 mod q and e2 = γδ−1 mod q (A.5)

ver(x, y, δ) = true if (αe1βe2 mod p) mod q = γ (A.6)

We left the details of DSA to cryptography textbooks (e.g., [11, 3]) and

would like to give you the information on constructing a signature chain which

safeguards against attacks of computing previous OTPs from the later OTPs.

In constructing the SC by using DSA, the user first computes the signature

(γ1, δ1) for the seed s (a 160-bit random number) as the first OTP to be used.

Since to generate the second OTP, we need to sign a 160 bit number, we first

apply ”exclusive-or (+)” operation as follows:

x2 = γ1 ⊕ δ1 (A.7)

This computation is also done (offline) on the server side in order to verify

the second OTP which can be generated by applying the following formula:

P2 = sig(x2, k2) = (γ2, δ2) (A.8)
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Where k2 should be a newly generated random secret number. The procedure

shown in equations A.7 and A.8 repeats to generate further OTPs.
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APPENDIX B

Encoding a Message for One-Time Signature

Given a vector R of m random numbers, and a V of subsets each containing p

of those numbers, we have shown that we can sign any one of C(m, p) distinct

messages. In this appendix, we describe the mapping M between messages and

the elements of V , and demonstrate how to compute them efficiently.

Assume that the domain of M is composed of 2b messages, and we have a

way of representing each of a message as a b − bit integer k. Let any subset

S in V be expressed as Ra1
, Ra2

, Ra3
, . . . , Rap

. Arrange the subsets in V such

that their indices ai are in ascending order. For example, for m = 4, p = 2, the

subsets are ordered

{R1, R2}, {R1, R3}, {R1, R4}, {R2, R3}, {R2, R4}, {R3, R4}

Then the mapping M(S,V) of each subset S is defined as the integer po-

sition of S in this list representation of V. For example, in the above case,

M({R1, R3},V) = 2 and M({R3, R4},V) = 6. In general, for any n and
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p, the mapping of any subset S = {Ra1
, Ra2

, . . . , Rap
}, where a0 = 0 and

a1 < a2 < · · · < ap is given by:

M(S,V) = 1 +
p
∑

i=1

n−ai−1−1
∑

j=n−ai+1

(

j

p − i

)

(B.1)

Note that in order to compute the mapping for any subset, for a given n and p,

we need only compute the binomial coefficients C(j, p − i) for i from 1 to p, j

from p + 1 − i to n − i. Thus, each mapping requires n − p − (n − ap) = ap − p

additions.

Similarly, the mapping M−1(m,V) of a message represented by the integer m

can be computed by subtracting binomial coefficients until zero is reached. This

requires ap − p additions and comparisons. Pseudocode to do this conversion is

as follows:

m0 = m /* copy message to temporary value */
q = 1
for i = 1 to p do begin
while m0 > C(n − q, p − i) do begin
m0 := m0 − C(n − q, p − i)
q := q + 1
end /* while */
ai := q
q := q + 1
end /* for */

To put things in perspective, consider that a single SHS hash computation re-

quires approximately 500 arithmetic operations. Thus, our mapping (in both

directions) costs less than one SHS hash.
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APPENDIX C

How To Measure CPU Time in JAVA

In Java language, to evaluate the performance, a comfortable approach is to

call “System.currentTimeMillis()” before and after the code we have written.

The trouble with this approach is that it may give a result more than the real

execution time of our code because the time used by other processes or time

spent for I/O is also included in the time we have measured.

Alternatively to have a more accurate timing measurement, we can query

the CPU time spent by the process our code is executing in. The problem is

that unlike programming languages C and Pascal, programmatically querying

for CPU usage is impossible by using only pure Java.

Fortunately, in our research for a solution, we have seen there are (at least)

two different ways to measure the CPU time of programs written in Java 1 2:

1 V. Roubtsov, “Profiling CPU usage from within a Java application”, Available at
http://www.javaworld.com/javaqa/2002-11/01-qa-1108-cpu p.html, Last access: September
17, 2003, Last update: November 11, 2002.

2 J. Gortz, “Java Tip 92: Use the JVM Profiler Interface for accurate timing”, Available
at http://www.javaworld.com/javatips/jw-javatip92.html, Last access: September 17, 2003.
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• Implement the function measuring the CPU usage in C language and in-

tegrate it with the Java application via Java Native Interface (JNI) 3.

• Use the new API called Java Virtual Machine Profiler Interface (JVMPI)

introduced by Java 2 that allows access to the necessary timing informa-

tion.

I have preferred to use the second approach in our performance evaluation

study because it seems to be the easier one. In brief, I would like to introduce

this approach here:

The JVMPI provides a function called “GetCurrentThreadCpuTime()” which

returns the CPU time in nanoseconds for the current Java thread. In [?], a sim-

ple profile agent written in C++ language is provided to access this information.

This agent may be called from a Java program if in executing the Java class you

tell the JVM to use the DLL (dynamic link library) that loads the agent:

java − X ′′nameofdll′′ classname

Then to measure the CPU time, inside your Java code you simply call the

function getCurrentThreadCpuTime() instead of System.currentTimeMillis().

3 The JNI allows Java code that runs within a Java Virtual Machine (VM) to operate
with applications and libraries written in other languages, such as C, C++, and assembly.
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