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ABSTRACT

IMPROVING KERNEL PERFORMANCE FOR NETWORK SNIFFING

TOPALOĞLU, MEHMET ERSAN

MSc, Department of Computer Engineering

Supervisor: DR. CEVAT ŞENER

SEPTEMBER 2003, 76 pages

Sniffing is computer-network equivalent of telephone tapping. A Sniffer is simply

any software tool used for sniffing. Needs of modern networks today are much more

than a sniffer can meet, because of high network traffic and load.

Some efforts are shown to overcome this problem. Although successful approaches

exist, problem is not completely solved. Efforts mainly includes producing faster

hardware, modifying NICs (Network Interface Card), modifying kernel, or some

combinations of them. Most efforts are either costly or no know-how exists.

In this thesis, problem is attacked via modifying kernel and NIC with aim of transfer-

ring the data captured from the network to the application as fast as possible. Snort

[1], running on Linux, is used as a case study for performance comparison with the

original system. A significant amount of decrease in packet lost ratios is observed at

resultant system.

Keywords: sniffer, kernel modification, driver modification
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ÖZ

AĞ KOKLAMASI İÇİN ÇEKİRDEK PERFORMANSININ ARTTIRILMASI

TOPALOĞLU, MEHMET ERSAN

Master, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: DR. CEVAT ŞENER

EYLÜL 2003, 76 sayfa

Koklama, telefon dinlemenin bilgisayar-ağ eşlenigidir. Bir koklayıcı ise koklama için

kullanılan herhangi bir yazılım aracıdır. Yüksek ağ trafiği ve yükü sebebiyle modern

ağların ihtiyaçları koklayıcıların karşılayabileceğinden çok daha fazladır.

Bu problemin üstesinden gelebilmek için bazı çabalar gösterilmiştir. Başarılı

yaklaşımlar olsa da problem tamamen çözülememiştir. Çabalar genellikle, daha hızlı

donanım kullanma, ağ arayüz kartı sürücülerinde değişiklik yapma, çekirdekte

değişiklik yapma ya da bunların kombinasyonlarını içermektedir. Çabaların çoğu ya

pahalı ya da teknik bilgisi açıklanmamış çabalardır.

Bu tezde, ağdan yakalanan verinin uygulamaya mümkün olduğunca hızlı aktarılması

amacıyla, probleme çekirdekte ve ağ arayüz kartı sürücüsünde değişiklik yaparak

saldırılmıştır.
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Asıl sistemle performans karşılaştırması için, vaka çalışması olarak Linux üzerinde

çalıştırılan Snort [1] kullanılmıştır. Paket kayıp oranlarında önemli miktarda düşüş

gözlenmiştir.

Anahtar Kelimeler: Koklayıcı, çekirdek değiştirme, sürücü değiştirme
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CHAPTER 1

INTRODUCTION

With the development of the data and telecommunication networks, new services are

provided to the users. One of the most important foundation is The Internet. It was

just a small research network in the earlier days, but then it reached a vast coverage

of the computers around the whole world in a few years, becoming a technological

driver for human.

Nowadays the Internet is the part of people’s life that they can not give up. In ev-

ery area they face with computers. In business, many firms offer services to home.

As a result of this grow, use of Internet got increased massively. Massively in both

sense increased very rapidly and the amount of traffic for the networks increased too

much. With this much of increase it became hard to deal with that much of amount

of traffic. Some issues like quality of service became important. For good quality of

service characteristics of the networks are very important. Topology and design of

the network, critical points of the network, traffic density of the network and etc. all

important characteristics of the networks for quality of service. Good analysis of the

network is needed to determine these characteristics.

On the other hand, security concerns are also understood to be critical. Originally,

connectivity was the main concern of The Internet services. Security assumed not to

have crucial importance. All the applications and protocols, such as TCP/IP, over

networks are developed with full trust in mind.

The Incident of November 1988 changed the people’s attitude towards information

security [2]. The worm affected many computers. After that, many of the security

1



Figure 1.1: Security Incidents

incidents emerged rapidly. Figure 1.1 depicts this serious picture.

Of course, security incidents were not limited with worms. In time many kinds of

attacks emerged. To determine attack types first the question should be answered:

”What is the treat?”. Treat can be defined as the potential possibility of a deliber-

ate unauthorized attempt to access information, manipulate information or render

a system unreliable or unusable [3]. From this definition, attempted break-ins, mas-

querade attacks, penetration of security control system, leakage, denial of service and

malicious use emerge as attack types.

One major cause of this rapid increase in attacks is that intruders have become skilled

at determining weaknesses in systems and exploiting them with the increase in the

knowledge and understanding of how systems work [3]. With the help of this,

knowledge many tools for intrusion are developed so that new intruder candidates

do not need to know so much. These tools provide very sophisticated and various

kinds of attacks making the intruders’ life easier. Figure 1.2 show the relation be-

tween change of attack sophistication and intruder knowledge in time.

Attack risk increases when the computer is connected to other computers. The in-

crease is tremendous, if the connection is to the Internet. Attacks over network re-

quire knowledge about the network itself and protocols used within the network.

Protocol analysis gives important clues about the network. Sniffing may be used for

2



Figure 1.2: Attack Sophistication vs Intruder Knowledge

protocol analysis. Captured packets over the network may include many important

information. In fact, packets captured may involve the data an intruder wants.

Till here, everything goes well for the attacker’s or intruder’s point of view. But ac-

tually this is not the case. As new techniques and new types of attacks increases,

their defense mechanisms are also found. System administrators are also have more

knowledge about how systems work and they have much more information on their

systems. In the beginning of 1990’s, people started to use tools to defeat intruders.

Intrusion Detection Systems are most important of the tools they used. Nowadays

the success rate of the IDSes are very high. Sniffing is the underlying technology

that IDSes work. IDSes also use this technology to understand what is going on the

network, and behaviors of the intruders during an attack.

All these scenarios leads to the importance of the sniffing. Sniffing is computer-

network equivalent of telephone tapping, meaning that reading the data packets on

a wire. A sniffer is any software tool used for sniffing. Sniffers can be basis for two

different aims according to scenarios above: Sniffers may help system administrators

to maintain their networks or may be used for underground activities. A good sniffer

3



is the composed of hardware, capture driver, buffer, real-time analysis, decode and

packet editing components. Capture driver is the most important component do-

ing the actual work. Sniffers have variety of application areas ranging from network

analysis to intrusion detection systems.

Sniffers were working fine till near future. With the increase in network usage and

load speed, life became difficult for sniffers,also. As the load and speed increase in

a network, sniffer’s processing time for an individual packet decrease. What if net-

work is faster than packet processing time? Sniffer will give up, or start dropping

some of the packets. Solution is deploying faster sniffers or making some of the snif-

fer components faster.

Significant research efforts have been carried out to deal with higher speeds in net-

works. Some of these efforts deal with overcoming inherent protocol overhead caused

by the legacy protocol processing [4]. Among them two techniques are well known:

user-level network protocol and the zero-copy protocol schemes.

User-level network protocol is simply a scheme to by-pass the operating system. U-

Net [5], Fast Message (FM) [6], Active Message (AM) [7] and GM [8] are examples of

this approach.

Second well-known technique is zero-copy networking. As the name implies aim is

minimizing the copy process. Applications are given direct buffer management at

network layer. Implementation examples of zero-copy networking can be found in

the Linux kernel 2.4 [9], Myrinet [10], Solaris [11], and FreeBSD [12].

An other group of efforts are on programmable network interfaces. These efforts aim

to do most of the communication work on the interface card. Projects like check-

sum offloading, support for zero-copy I/O and user-level protocol processing, par-

tial implementations of network protocols on the network interface use these kinds

of interfaces [13]. Besides these academic efforts, industrial side also deal with pro-

grammable interfaces, but most of them are very costly. Intel Corporation designed

special network cards for this purpose [14].

Network Process Units (NPU) [15] equipped network cards brought a significant

performance increase to network communication. However, NPU cards are quite

expensive and difficult to purchase, are available only for a few media types, have

little memory on board limiting dramatically the size of programs that can run on the
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card itself, and they can be programmed using primitive tools and languages [16].

Also some efforts are performed to specific interface or field. ATM Port Interconnect

Controller (APIC) [17] is a ATM interface specific effort and GAMMA [18][19] is a

project for improving performance of parallel systems that are using MPI.

As mentioned above, sniffers and systems having sniffer component inside are far

away from satisfying the needs of modern networks. Some companies has devel-

oped products to solve this problem, but they do not publish technical details not

to lose industrial advantage. Other solutions are generally field-specific solutions as

stated above. This thesis propose to find an approach that is not field-specific, but

specific instead. Achievements will be royalty free on the contrary to the existing

industrial approaches. One of the existing such products is NFR (Network Flight

Recorder) [20]. It claims that it achieves much better performance than the current

standard at network rates over 200 Mbits/s.

Approach includes the modification two important component of the sniffers: cap-

ture driver and buffer components. These modifications are achieved via modifying

the kernel and driver of the network interface card.

The aim of the thesis is not to provide a faster intrusion detection system. The aim is

to transfer the data captured from the network to the application as soon as possible.

All other improvements are natural consequences of faster sniffing.

The rest of the thesis is organized as follows:

In Chapter 2, definition and the way sniffers work is given first. Then two main ap-

plication areas of sniffers presented. Finally, some examples of what to be sniffed are

given. Chapter 3 presents and an overview of an operating system and kernel. Later,

networking in the Linux kernel is examined in details as a case study. Then the pro-

posed design is presented. Finally, a comparison of thesis approach and alternatives

is given following the details of alternative approaches to the problem. Implementa-

tion details are explained in chapter 4. Chapter 5 first presents test environment, test

data and test scenario. Then, test results are compared with the baseline system. In

Chapter 6, a summary of the study is given first. Then, the outcomes are discussed

and conclusions are given. Finally, a list of suggestions for the future work are given.

Tables for test results are shown in Appendices.
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CHAPTER 2

SNIFFERS

2.1 What is sniffing and how it works?

Sniffing is computer-network equivalent of telephone tapping. Sniffing is actually

nothing but reading the data packets traveling through the wire. The data you sniff

is somehow complex and apperantly more random than you get while tapping the

telephone. Therefore sniffing tools come with a feature to be able to decode the data

over the wire [21].

A Sniffer is simply any software tool used for sniffing. Sniffers can be used as a base

to both systems that helps system administrators to maintain their networks and sys-

tems that are used for underground activities.

In a non-switched network, intended normal scenario is as follows: Data is broad-

casted to all machines in the network. Each network interface card looks at the packet

and if it is not the target, it simply discards the packet, otherwise it processes the

packet. But what happens when a computer runs a sniffer software?

To run a sniffer software the computer should have its network card running in

promiscuous mode. Promiscuous mode of network cards enable them to listen all

traffic flowing over the wire. If a sniffer can collect the data over the wire with the

help of feature, stated above, it can also decode the data. Thus it may reach some

important data that contains either useful or harmful information. To achieve this

goal a sniffer has to have some components. Basic components of a sniffer are:
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• Hardware: Standard network adapters are generally enough for most of the snif-

fers. But some may require special hardware having extra capabilities such as

being able to analyze hardware faults like CRC errors, voltage problems, cable

problems, dribbles, jitters, negotiation errors, etc.

• Capture Driver: This component is the most important one. Its duty is to collect

the data from the wire, filter out useless data and store the data in buffer(s).

• Buffer: Once frames captured from the network, they are stored in buffers.

There are a couple of capture modes: capture until buffer fills up or use buffer

in a round robin fashion, where new data replaces the old data. Also size of

the buffer is very important. It affects the capability of the sniffer under high

amount of network traffic.

• Real-time Analysis: This feature does some minor analysis of the frames as they

come of the wire which is able to find network performance issues and faults

while capturing.

• Decode: Decode component displays the content of the network traffic with

descriptive text, so analyzers can figure out what is going on the network.

• Packet Editing/Transmission: Some sniffers allows preparing hand-made packets

and transmitting them to the wire.

2.2 Application areas

Sniffers may have many different application areas. But there two main application

areas : First one is network analysis and debugging and the second one is Intrusion

Detection.

2.2.1 Network Analysis and Debugging

A good network sniffer is the best tool to understand what is really going on the

network being analyzed. There are two levels of analyzing the network, macro and

micro level [22].

At macro level, traffic on a network segment can be examined in the aggregate; long-

term monitoring can be performed and issues such as amount of traffic, bandwidth
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problems, variation of network traffic during the day, existing network protocols,

amount of broadcast traffic, network errors and heaviest user of the network can be

learned.

In micro level, all data frames flowing on a network segment is captured, and the

captured data is analyzed by putting the sniffer in analysis mode. In analysis mode,

the contents of each individual data frame can be viewed.

Sniffers are also capable of providing graphical representation and statistics [23]. The

volume of traffic and systems in interaction is defined by the peer map. The data sup-

plies a quick and high-level account of traffic activity. Detailed statistics such as, the

exact percentage of network traffic attributed to a specific protocol (FTP, HTTP, etc)

are also supplied.

Analysis of conversation between client and server to determine the one causing de-

lay in an application, analysis of conversation between client and server to determine

the existence of retransmission due to packet drops, determination of occurances of

frozen windows in TCP/IP network conversations ( most likely meaning buffer-full

situation in either side), determination of the source of unwanted broadcasts, IP mul-

ticast data stream, excessive ICMP redirects, determination of routing table errors,

analysis of a security breach on the network, and determination of the way a partic-

ular network application is working can be considered as examples of usage of these

information in analyzing the network.

2.2.2 Intrusion Detection

An Intrusion Detection System (IDS) attempts to detect an intruder breaking into

your system or a legitimate user misusing system resources.

The primary assumptions of the intrusion detection are: user and program activities

are observable and more importantly, normal and intrusion activities have distinct

behavior. Thus, intrusion detection includes the following essential elements:

• Resources to be protected (user accounts,network services, OS kernels, etc.).

• Models that characterize the normal or legitimate behavior of the activities in-

volving these resources.

• Techniques that compare the observed activities with the established models.
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In order to satisfy these, an IDS must have three components. First one is data col-

lection component, which preferably makes reduction also. Others are data classifi-

cation component and data reporting component.

Intrusions can be divided into 6 main types [24]:

• Attempted break-ins, which are detected by a typical behavior profiles or vio-

lations of security constraints

• Masquerade attacks, which are detected by atypical behavior profiles or viola-

tions of security constraints

• Penetration of security control system, which are detected by monitoring for

specific patterns of activity

• Leakage, which is detected by atypical usage of system resources

• Denial of service, which is detected by atypical usage of system resources

• Malicious use, which is detected by atypical behavior profiles, violations of

security constraints, or use of special privileges

An IDS can be classified according to the components they use. For example, they

can be classified into two groups according to data classification components, namely

anomaly detection and misuse detection. Other classification is done based on their

architecture: host-based or network based. One another classification is due to data

reporting component: passive or reactive systems.

2.2.2.1 Anomaly Detection

Anomaly detection is based on profiling [25]. Later, the decision is given due to the

deviation from the normal. The advantages of this system are as follows:

• It can be used to detect formerly unknown intrusions

• It is good at detecting masquerader

• It can also be used to detect insiders

Besides these advantages it has some drawbacks, such as :
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• It can’t categorize attacks very well

• It produces too many false negatives and positives

• Its implementation can become computationally ineffective

2.2.2.2 Misuse Detection

Misuse detection systems are not unlike from virus detection systems. The main

issues in misuse detection systems are try to recognize known bad behaviors. They

write a signature or a pattern that encompasses all possible variations of attacks.

When they are writing signatures and patterns they also take care not to match non-

intrusive activities.

There have been several research in misuse detection systems recently [3]. Some of

these systems are:

• Expert Systems: The most known expert system is NIDES [26]. NIDES (Next

Generation Intrusion Detection Expert System), which is developed by SRI, is

a case study for expert systems. It uses a hybrid intrusion detection technique

consisting of a detection component. The detection component encodes known

intrusion scenarios and attack patterns. It generally uses statistical data and

looks for the attack control and solution separately. The expert systems are

generated by a security professional, so the program is only as strong as the

security personnel who programs it. There is a real chance that expert systems

can fail according to the programmers care.

• Keystroke Monitoring: It is a very simple technique that monitors keystrokes

for attack patterns. It only analyzes key strokes not processes.

• Model Based Intrusion Detection: It states certain scenarios with other observ-

able activities. If these activities are monitored, it will find intrusion attempts

by looking at activities that refers an observable intrusion scenario. It is very

clean approach, because it divides operation into modules, and all modules

know what to do. So it will be successful for detection. Also, it can filter the

noise of data.
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• State Transition Analysis: In this technique, the monitored system is repre-

sented as a state transition diagram. While data is being analyzed, the sys-

tem changes its state from one to another. The state’s safety is determined for

known attacks, and when a transition is made, the state’s safety is checked.

• Pattern Matching: This model encodes known intrusion signatures as patterns,

then try to match against the audit data. If it matches the incoming events to

the patterns represented in known intrusion scenarios, it reports the event. The

most famous IDS that uses pattern matching is Snort [1].

2.2.2.3 Host-Based Intrusion Detection

Host-based intrusion detection systems are concerned with what is happening on

each individual host. They are able to detect such things as repeated failed access at-

tempts or changes to critical system files. Host-based IDS use audit logs and involve

sophisticated and responsive detection techniques. They typically monitor system,

event, and security logs. When any of these files change, the IDS compares the new

log entry with attack signatures to see if there is a match. If there is, the system re-

sponds with administrator alerts.

Since host-based IDS use logs containing events that have actually occurred, they can

measure whether an attack was successful or not with greater accuracy and fewer

false positives than network-based systems. Also, a host-based IDS monitors user

and file access activity, including full accesses, changes to file permissions, attempts

to install new executables and attempts to access privilege services. Because of such

attempts, host-based IDSs detect attacks that network-based IDSs would miss.

There are two main method for host-based IDS:

• Log Scanners: They monitor audit logs for intrusion detection.

• Integrity Checker: They monitor changes on a system file.

SNARE (System iNtrusion Analysis and Reporting Environment) [27], GrSecurity

[28], and CyberSafe [29] are example systems for host-based intrusion detection sys-

tems.
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2.2.2.4 Network Based Intrusion Detection

Network based Intrusion Detection Systems are IDSes that gather and analyze net-

work packets to detect intrusions. Simple implementation and accurate detection of

intrusions occurring through a network are the advantages of these systems, where

as being unable to detect intrusions arising from within the system, particularly in a

switching environment is the disadvantage.

NetSTAT[30] and Snort[1] are two examples of most widely used network based in-

trusion detection systems.

Snort is a lightweight network intrusion detection system and sniffer capable of real-

time traffic analysis and misuse detection on IP networks [31]. Snort provides fea-

tures to support protocol and content analysis and is based on pattern matching tech-

niques [32]. There are three main modes in which Snort can be configured: sniffer,

packet logger, and network intrusion detection system [33]. Sniffer mode simply

reads the packets off of the network and displays them in a continuous stream on

the console. Packet logger mode logs the packets to the disk. Network intrusion de-

tection mode analyzes the network traffic for matches against a user defined rule set

and perform several actions based upon what it sees.

2.3 What to Sniff?

Many different kind of information can be obtained by sniffing the network. Data

sniffed from the network can be used in many areas as mentioned in section 2.2.

Generally, valuable information is sniffed through well-known ports. This valuable

information could be used for different applications like network debugging and

analysis or intrusion detection. However, valuable information also attracts the un-

derground people. One of the valuable information type is authentication informa-

tion, but sniffing is not limited to authentication information.

2.3.1 Authentication Information

Authentication information can be used to by-pass the system authentication mech-

anism, but sniffing this kind of information may also help administrator to improve

their system’s security. To get this kind of information sniffing must be done on
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correct ports. Authentication mechanism is known for known applications on well-

known ports.

2.3.1.1 Telnet (Port 23)

Telnet was one of the favorite services for both users and attackers. Since packets in

the communication is sent as a plain text, an attacker may monitor the information

while somebody is attempting to login. However today, the usage of this service

significantly decreased due to its security.

2.3.1.2 FTP (Port 21)

The FTP service is used to transfer files among machines. Like telnet, it send its

authentication information in plain text. The FTP service can also be used for anony-

mous file access where arbitrary username and password is used.

2.3.1.3 POP (Port 110)

The Post Office Protocol (POP) service is used for accessing mails in a central mail

server. POP traffic is generally not an encrypted traffic, meaning sending authentica-

tion information as a plain text.

2.3.1.4 IMAP (Port 143)

The Internet Message Access Protocol (IMAP) service is an alternative protocol to the

POP service, and provides the same functionality. Like the POP protocol, authenti-

cation information is in many cases sent in plain text across the network.

2.3.1.5 NNTP (Port 119)

The Network News Transport Protocol (NNTP) supports the reading and writing

of Usenet newsgroup messages. NNTP authentication can occur in many ways. In

legacy systems, authentication was based primarily on a client’s network address, re-

stricting news server access to only those hosts (or networks) that were within a spec-

ified address range. Extensions to NNTP were created to support various authentica-

tion techniques, including plain text and encrypted challenge response mechanisms.
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The plain text authentication mechanism is straightforward and can easily be cap-

tured on a network.

2.3.1.6 rexec (Port 512)

The rexec service, is a service used for executing commands remotely. rexec per-

forms authentication via plain text username and password information passed to

the server by a client. The service receives a buffer from the client consisting of a

port number, username, password and command to execute. If authentication is suc-

cessful, a NULL byte is returned by the server; otherwise, a value of 1 is returned in

addition to an error string.

2.3.1.7 rlogin (Port 513)

The rlogin protocol provides much the same functionality as the Telnet protocol,

combined with the authentication mechanism of the rexec protocol, with some ex-

ceptions. It supports trust relationships, which are specified via a file called rhosts in

the user’s home directory. This file contains a listing of users, and the hosts on which

they reside, who are allowed to log in to the specified account without a password.

Authentication is performed, instead, by trusting that the user is who the remote

rlogin client says he or she is. This authentication mechanism works only among

UNIX systems, and is extremely flawed in many ways; therefore, it is not widely

used on networks today. If a trust relationship does not exist, user and password

information is still transmitted in plain text over this protocol in a similar fashion to

rexec. The server then returns a 0 byte to indicate it has received these. If authen-

tication via the automatic trust mechanism fails, the connection is then passed onto

the login program, at which point a login proceeds as it would have if the user had

connected via the Telnet service.

2.3.1.8 X11 (Port 6000+)

The X11 Window system uses a magic cookie to perform authorization against clients

attempting to connect to a server. By sniffing this cookie, an attacker can use it to

connect to the same X Window server. Normally, this cookie is stored in a file named
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.Xauthority within a user’s home directory. This cookie is passed to the X Window

server by the xdm program at logon.

2.3.1.9 NFS File Handles

The Network File System (NFS) originally created by Sun Microsystems relies on

what is known as an NFS file handle to grant access to a particular file or directory

offered by a file server. By monitoring the network for NFS file handles, it is possible

to obtain this handle, and use it yourself to obtain access to the resource.

2.3.1.10 Windows NT Authentication

Windows operating systems support a number of different authentication types, each

of which progressively increase its security. The use of weak Windows NT authen-

tication mechanisms, as explained next, is one of the weakest links in Windows NT

security. The authentication types supported are explained here:

• Plain text Passwords are transmitted in the clear over the network

• LAN Manager (LM) Uses a weak challenge response mechanism where the

server sends a challenge to the client, which it uses to encrypt the user’s pass-

word hash and send it back to the server. The server does the same, and com-

pares the result to authenticate the user. The mechanism with which this hash

is transformed before transmission is very weak, and the original hash can be

sniffed from the network and cracked quite easily.

• NT LAN Manager (NTLM) and NT LAN Manager v2 (NTLMv2) NTLM and

NTLMv2 provide a much stronger challenge/response mechanism that has

made it much more difficult to crack captured authentication requests.

Specialized sniffers exist that support only the capture of Windows NT authentica-

tion information.

2.3.2 Other Network Traffic

Although sniffing the authentication information throughout ports, stated above, are

the most common ones, they are not the only ones that an attacker may find of inter-

est. A sniffer may be used to capture interesting traffic on other ports.
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2.3.2.1 SMTP (Port 25)

Simple Mail Transfer Protocol (SMTP) is used to transfer e-mail on the Internet and

internally in many organizations. E-mail has and always will be an attractive target

for an attacker. An e-mail may contain some private and valuable information all

sent as plain text.

2.3.2.2 HTTP (Port 80)

HyperText Transfer Protocol (HTTP) is used to pass Web traffic. This traffic, usually

destined for port 80, is more commonly monitored for statistics and network usage

than for its content. While HTTP traffic can contain authentication information and

credit card transactions, this type of information is more commonly encrypted via

Secure Sockets Layer (SSL). Commercial products are available to monitor this usage,

for organizations that find it acceptable to track their users Web usage.
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CHAPTER 3

DESIGN

It is the operating system that controls all the computer’s resources and provides the

base upon which the application programs can be written [34]. Kernel is the smallest

part of the operating system that does the real work. It acts as a mediator between

the programs and the hardware. Basic functions of it are memory management, pro-

viding interface for programs and sharing CPU cycles.

Sniffers working on computers should be in correlation with the operating system

kernel as all other applications. Linux is chosen as a case study in this thesis. Be-

cause Linux is a free, and open source operating system and its documentation is

better then most of the other operating systems. Since Linux is used, from this point

on; the term kernel will refer to the Linux kernel.

3.1 Networking in Linux Kernel

Networking related code in the Linux kernel can be seen in the figure 3.1. The direc-

tories include/net and include/linux, in the Linux kernel source tree, have header files

for the networking code. As the name implies net is the directory for the actual code.

core is the protocol independent common code directory, where packet directory con-

tent is the af packet specific code and ipv4’s is code related to IP version 4. Directory

named ethernet has the codes specific to Ethernet protocol and sched has the code for

scheduling the network actions.

The core structure of the networking code is based on initial networking and socket
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Figure 3.1: Directory Tree for Networking Code in the Linux Kernel

implementations, and the key objects are:

• Device or Interface

• Protocol

• Socket

• Network Buffers

3.1.1 Network Devices

A network device is the entity that sends and receives data packets. It is normally a

physical device such as Ethernet card. An example for software devices is the loop

back device [35].

Each network device is represented by a data structure (see section 3.1.3) containing
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name, bus information, interface flags, protocol information, packet queue and sup-

port functions. Network devices have standard names such as /dev/eth0, /dev/lo .

Information needed to control the network device is stored in bus information. De-

vice characteristics and capabilities are determined via interface flags. Protocol in-

formation describes how the network device may be used by protocol layers. Packet

queue is the queue of the sk buff packets queued waiting to be transmitted on the

device. Finally support functions provide routines for protocol layers.

sk buff data structures are flexible and allow network protocol headers to be easily

added and removed [35].

Network device drivers register the devices during network initialization. They can

be built into Linux kernel. Problems with network device drivers are that all network

drivers don’t have devices to control and Ethernet drivers in the system are always

called in a standard way.

First problem easily solved by removing the entry in the device list pointed at by

dev base, if the driver can not find any devices during initialization routine call. Sec-

ond problem needs more elegant solution. There are eight standard entries in the

device list, from eth0 to eth7. They all have the same initialization routine. Initializa-

tion routine tries each Ethernet device driver built into the kernel in turn until one

finds a device. When it finds its Ethernet device it fills out the corresponding ethN

device. The physical hardware it is controlling is initialized and IRQ, DMA channel

used is worked out at the same time.

3.1.2 Sockets and Protocols

3.1.2.1 Protocols

A protocol is a set of organizational rules [36]. In the networking and communica-

tions area, a protocol is the formal specification that defines the procedures that must

be followed when transmitting or receiving data. Protocols define the format, timing,

sequence, and error checking used on the network. Specifications, of course, must be

organized. In internet networking field, organizational issues are handled by IETF

through the RFCs (Request for Comment).
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3.1.2.2 Sockets

Socket is the interface between applications and protocol software. It is a de facto

standard and usually part of the operating system. Like file I/O, it is integrated with

the system I/O and works as open-read-write-close paradigm. There are a variety

of different types of sockets, differing in the way the address space of the sockets is

defined and the kind of communication that is allowed between sockets. A socket

type is uniquely determined by a <domain, type, protocol> triple [37].

3.1.3 Network Buffers

Either for sending a packet or receiving a packet network buffers, named sk buff,

referring to socket buffer, (figure 3.2) are used. sk buff data structure is defined in

include/linux/sk buff.h. When a packet arrives to the kernel, either from the user space

or from the network card one of these structures is created. Changing packet fields is

achieved by changing its fields [38].

The first fields are general ones. Two pointers, one for next and one for previous skbs,

to show corresponding skbs in the list. Packets frequently put in lists or queues. The

owning socket is pointed by sk.

Stamp stores the time of arrival, while the dev field storing the device that the packet

arrived and when and if the device to be used for transmission is known.

The union h stores the pointer for one of transport layer structure like TCP, UDP,

ICMP, etc. Corresponding data structures (IPv4, IPv6, arp, raw, etc) are pointed by

the network layer header, nh. Link layer header is stored in the union mac. If the

link layer protocol used is Ethernet, ethernet field of this union is used. All other

protocols use the raw field.

The rest of the fields below link layer header is used to store information about the

packet like length, data length, checksum, packet type, security level, etc.

3.1.4 Sending a Packet

Each packet contains dst field which determines the output method. When sending

a packet:

1. For each packet to be transmitted corresponding method’s function is called.
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struct sk_buff {
/* These two members must be first. */
struct sk_buff * next; /* Next buffer in list */
struct sk_buff * prev; /* Previous buffer in list */

struct sk_buff_head * list; /* List we are on */
struct sock *sk; /* Socket we are owned by */
struct timeval stamp; /* Time we arrived */
struct net_device *dev; /* Device we arrived on/are leaving by */
/* Transport layer header */
union
{

struct tcphdr *th;
struct udphdr *uh;
struct icmphdr *icmph;
struct igmphdr *igmph;
struct iphdr *ipiph;
struct spxhdr *spxh;
unsigned char *raw;

} h;
/* Network layer header */
union
{

struct iphdr *iph;
struct ipv6hdr *ipv6h;
struct arphdr *arph;
struct ipxhdr *ipxh;
unsigned char *raw;

} nh;
/* Link layer header */
union
{

struct ethhdr *ethernet;
unsigned char *raw;

} mac;

struct dst_entry *dst;

/*
* This is the control buffer. It is free to use for every
* layer. Please put your private variables there. If you
* want to keep them across layers you have to do a skb_clone()
* first. This is owned by whoever has the skb queued ATM.
*/
char cb[48];

unsigned int len; /* Length of actual data */
unsigned int data_len;
unsigned int csum; /* Checksum */
unsigned char __unused, /* Dead field, may be reused */
cloned, /* head may be cloned (check refcnt to be sure). */
pkt_type, /* Packet class */
ip_summed; /* Driver fed us an IP checksum */
__u32 priority; /* Packet queueing priority */
atomic_t users; /* User count - see datagram.c,tcp.c */
unsigned short protocol; /* Packet protocol from driver. */
unsigned short security; /* Security level of packet */
unsigned int truesize; /* Buffer size */

unsigned char *head; /* Head of buffer */
unsigned char *data; /* Data head pointer */
unsigned char *tail; /* Tail pointer */
unsigned char *end; /* End pointer */

void (*destructor)(struct sk_buff *); /* Destruct function */
#ifdef CONFIG_NETFILTER

/* Can be used for communication between hooks. */
unsigned long nfmark;
/* Cache info */
__u32 nfcache;
/* Associated connection, if any */
struct nf_ct_info *nfct;
#ifdef CONFIG_NETFILTER_DEBUG

unsigned int nf_debug;
#endif

#endif /*CONFIG_NETFILTER*/
#if defined(CONFIG_HIPPI)

union{
__u32 ifield;

} private;
#endif
#ifdef CONFIG_NET_SCHED

__u32 tc_index; /* traffic control index */
#endif
};

Figure 3.2: sk buff Data Structure in the Linux Kernel 2.4.20
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2. Then virtual method, namely hard start xmit(), is called. The packet descriptor

in put in tx ring buffer and NIC is informed.

3. As the packet sent, card communicates with CPU and reports that he sent some

packets [38] via net tx action() function. The CPU , then schedules a softirq for

further processing like deallocating memory locations. CPU-card communica-

tion is driver-dependent communication.

3.1.5 Receiving a Packet

Packets not only contains data for the higher layer, but also they provide information

about data’s physical location, data length and some more control and status infor-

mation. Usually NIC driver sets up the packet descriptors and organizes them as

ring buffers when the driver is loaded [38]. tx and rx ring buffers are used by NIC

DMA engine for sending and receiving correspondingly and managed by the inter-

rupt handler.

Packet receive process can be examined step by step:

1. When a packet is received by the kernel, DMA engine puts the packet in rx ring

buffer in the kernel memory. The size of the ring driver and hardware depen-

dent [38].

2. The CPU, interrupted by the card, jumps to the driver ISR code. There is a

difference between old network subsystem and NAPI at this point. Interrupt

handler call the netif rx() kernel function in net/core/dev.c. This functions en-

queues the packet in the interrupted CPU’s backlog queue and schedules a

softirq. Softirq is responsible for further processing of the packet. If the backlog

queue becomes full, it changes its state to throttle. In throttle state CPU waits for

being totally empty before reentering normal state and allowing again packet

enqueueing. netif rx drops the packet if the backlog queue is in throttle state

[38].

NAPI’s situation is a bit different. Interrupt handler calls netif rx schedule. It

puts a reference to the device in a queue attached to the interrupted CPU, in-

stead of putting the packets into the backlog queue. Like older subsystem,

scheduling of a softirq is done. Backlog is also implemented as a device in
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NAPI in the kernel for backward compatibility. netif rx function is used only

in case of non-NAPI drivers and enqueues the backlog into the poll list of the

CPU after having enqueued the packet into the backlog [38].

3. Scheduling of softirq leads to execution of net rx action() which takes place in

net/core/dev.c. This step is also different for old subsystems and NAPI.

In old subsystems, net rx action() polls all the packets in the backlog queue and

calls related receive procedure for each packet [39] (see figure 3.3). The NAPI

is much more efficient than the old system. The pros are limitation of interrup-

tion rate, not being prone to receive live lock, better data and better instruction

locality [38].

libpcap based sniffers use AF PACKET type sockets. The path of the sniffers in the

figure 3.3 is same as others till Derefferred Packet Reception. At this point, sniffers fol-

low AF PACKET processing branch. After sending data ready signal packets advance

to Socket Level and later to Receiving Process.

23



Socket Level

Ethernet
Driver

Lower−Level
Packet Reception

Dereffered Packet
Reception

Protocol Handlers
Other Layer 3 AF_INET(IP)

Processing
AF_PACKET
Processing

[netif_rx_action()]
softirq

Packet Arrival

*_rcv() ip_rcv() packet_rcv()

icmp_rcv()tcp_rcv() udp_rcv()

data_ready() data_ready() data_ready()

TCP Processing UDP Processing ICMP Processing

netif_rx()

wake_up_interruptable()

Receiving Process

Figure 3.3: Flow Diagram for Receiving a Packet

24



CHAPTER 4

IMPLEMENTATION

To follow a systematic way, implementation is divided into six steps: Configur-

ing Kernel, Omitting IP processing, Modifying AF PACKET Receive Functions, By-

passing CPU Queue, Arranging Network Buffers and Modifying Ethernet Driver.

Kernel Configuration is done first, and then other five steps are applied over this

kernel configuration. Finally, two alternative combination of the steps is presented.

Detailed test results of each step and alternatives are given in section 5.4.

4.1 Step 1: Configuring Kernel

Default kernel, coming with Redhat Linux distribution, has lots of features to serve

different purposes. Since this kernel will be used for a special purpose, most of these

features are not needed and may be eliminated for a smaller footprint in terms of

system memory.

When configuring kernel, Linux provides various user interfaces. In all of these in-

terfaces configuration details are collected under different configuration titles.

• Code Maturity Level Options:

This section is about developing incomplete drivers and codes. For our special

purpose this kind of support is not needed.

• Loadable module support:

As the name implies this is support for loadable modules. For a faster kernel
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all the functions needed for networking events should be in kernel code itself,

not as kernel modules.

• Processor type and features:

Under this title different kinds of processor family is supported. Configu-

ration for SMP (Symmetric Multi-Processing) and High Memory support is

done here. Since the machine used for tests has only one PII processor and

64MB memory, as will be described in section 5.1, Processor family ”Pentium

Pro/Celeron/Pentium II” is set and support for SMP and High memory is dis-

abled in the configuration.

• General Setup :

This section is to define a route for the rest of the configuration. Subsections for

this section are

– Networking Support : Obviously necessary.

– PCI Support : Necessary because network card is a PCI device.

– EISA Support : No Extended ISA cards in the system.

– Hot plug device support : Not needed

– System V IPC: May be useful for IPC

– BSD Process Accounting : Process accounting is not needed.

– Sysctl support: Useful addition to kernel

– Power Management Support : Not needed

– Advanced Power Management Support : Not needed

• Memory Technology Devices(MTD):

MTD devices are flash, RAM and similar chip, often used for solid state file

systems on embedded devices. This option provides the generic support for

this kind of devices. In the system there no such devices so this option is not

needed.

• Parallel Port Support:

Parallel port support is not necessary because no parallel devices will be used

during sniffing.
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• Plug and Play Configuration:

System is thought to be static with a minimum hardware complexity. No addi-

tional devices will be plugged, nor removed during its operation.

• Block Devices:

Includes Normal PC floppy disk, XT hard disk support etc. Not needed.

• Multi Device Support (Raid and LVM):

System has only 1 about 4GB disk.

• Networking Options:

Most critical part of configuration for the study is under this part Supports

chosen here are expected to have dramatic effects on sniffing.

– Packet Socket: To use libpcap this is a mandotary option. Also to over-

come lots of memcpy overhead MMAP support for packet socket is en-

abled.

– Network Packet Filtering: Netfilter is a framework for filtering and man-

gling network packets. Needed when Linux is configured as a firewall but

in this case system is not a firewall.

– Socket Filtering: Filtering of the packets may be done by the application.

It is not needed here.

– Unix domain sockets: Most systems use unix sockets even they are not

connected to network. So support is added to the configuration.

– TCP/IP networking: Adds related protocols and necessary handling func-

tions to the network subsystem.

– IP- multicasting: All packets are captured regardless of being a multicast,

unicast or broadcast packet. No special treatment needed for this kind of

packets. Taken out from the configuration.

– IP- advanced router: not serves the purpose of the system.

– QoS and/or Fair Queuing: again not related to the system.

• Telephony Support:

Nothing to do with telephony support.
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• ATA/IDE/MFM/RLL Support:

This option provides low cost mass storage handling for the kernel. Many

kinds of devices included here:

– IDE/ATAPI TAPE Support: System does not have a tape device.

– IDE/ATAPI CDROM Support: Although system has a cdrom it doesn’t

have usage during system’s operation. Therefore support for IDE/ATAPI

CDROM is omitted.

– IDE/ATAPI Floppy Support: Not needed with the same reason with the

cdrom support.

– PCMCIA IDE Support: No PCMCIA cards.

– IDE Chipsets: Suitable chipset is chosen to have a faster I/O on the disk.

• SCSI Support:

SCSI devices have much more faster I/O than IDE devices. This will also effect

the performance of the application while logging. Since the system used has an

IDE disk, we don’t need this support. But replacing disk with a SCSI one may

lead to a better performance, then IDE disk support would be unnecessary.

• Fusion MPT device support:

This message passing technology is not used.

• I2O Device Support:

This I/O architecture does not exist in the system used.

• Network Device Support:

All devices but the Ethernet card in the system are unnecessary in the con-

figuration. Among Ethernet cards, ”3c590/3c900 series (592/595/597) Vor-

tex/Boomerang support” is added to the configuration.

FDDI Support, Token Ring Devices, Wireless LAN, WAN Interfaces, SLIP Sup-

port is not needed.

• Amateur Radio Support:

Not related.
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• IrDA support:

Not related.

• ISDN Subsystem:

Not needed, because systems aimed to run over Ethernet.

• Old CD-ROM drivers:

Not needed.

• Input Core Support:

System does not have USB HID devices. Thus, not needed.

• Character Devices:

Needed for terminal communication.

• Multimedia Devices:

System does not have video devices. Even if it has they are not needed

• File Systems:

Features like quota support, kernel automounter support are not needed. As

a file system system has ext3 formatted Linux root partition with journalling

enabled. Kernel support for both is mandatory, but other file system supports

such as FAT 16, FAT 32, NTFS, ISO9660, etc are not needed. Also network file

system support and support for advanced partition types are just overheads.

• Console Drivers:

Driver needed for VGA text console.

• Sound:

Sound card and drivers are not necessary.

• USB Support:

Although some USB ports exist on the motherboard of the system, no devices

attached to them.

• Bluetooth support:

Not needed.
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• Kernel hacking:

Not needed.

Having the kernel configured this way, size of the new kernel is at least two times

less than the size of the original kernel. This provides more memory to other ap-

plications. Disabling support for many features removes the overhead for checking

them. For example, in networking options if socket filtering option is enabled, kernel

will at least be checking whether a socket filter is active or not. Many of such checks

are prevented by this kernel configuration. One another benefit of this kernel config-

uration is that it reduces the number of interrupts generated. A CD-Rom would not

be generating an interrupt since it is not supported in this kernel. All these comes

out with a decrease in packet loss by around 50%.

4.2 Step 2: Modifying AF PACKET Receive Functions

For packet socket type sockets, receive function is tpacket rcv which can be found in

af packet.c in net/packet directory. As packet arrives to this function, packet type is

checked first. Function does not deal with loopback packets and drops them. Next

check is socket type check. Some status check and alignment is done according to

socket type. It is known that Ethernet card used has hard header control. Therefore,

check for this feature is not needed.

After some memory allocation process, if packet is a shared one it is cloned. Since

a packet will only be sent to one packet socket this step is unnecessary, so it can be

eliminated (see figure 4.1). Next is snaplen and mmap options arrangement.

After that sll header structure is filled. Last work to do is setting owner of the

packet and entailing packet to socket’s receive queue for the application and sending

data ready signal to the sleeping process.

This function is called for every packet received. Any change in this function directly

affects the network performance. In this step, conditional checks and impossible con-

ditions are eliminated. Little performance improvement is observed after this step.
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if (skb_shared(skb)) {
copy_skb = skb_clone(skb, GFP_ATOMIC);

}

. . .

if (skb_head != skb->data && skb_shared(skb)) {
skb->data = skb_head;
skb->len = skb_len;

}

Figure 4.1: Packet is not shared and it needn’t be cloned

4.3 Step 3: Omitting IP processing

Sockets can be categorized into two groups. First group is formed by the sockets that

requests any packet from the network. They have Ethernet Protocol ID defined by

macro ETH P ALL. The name implies ”all Ethernet packets”. All other kind of nor-

mal sockets form the second group.

Kernel keeps listings of the sockets according to their group. Whenever a socket is

opened, it registers himself. If socket is in the first group it is entailed to the link list

whose header is determined by the pointer ptype all. Others registered to the link list

pointed by ptype base’s array’s corresponding protocol element.

As the packet arrives from Ethernet card’s buffer, it is first delivered to all sockets

registered to first type. This is achieved by piece of code in figure 4.2. This code ex-

ists in netif receive skb function in net/core/dev.c. Code walks through all this kind of

sockets and calls their handler function. As the handler function called it clones the

packet for itself and processes it.

Next is delivering the packet to corresponding protocol handler. (see for loop in fig-

ure 4.3). Code finds the registered socket entry in ptype base array and walks through

each socket in the linked list. Packet is delivered to the corresponding handler. This

completes the delivering of the packet.

However, in case of sniffing, delivering packet to upper layer protocol handlers is not

needed. Thus, the code in figure 4.3 can be eliminated. Furthermore, since the com-

puter running sniffer for this thesis is a controlled one and only one socket is open for

requesting all packets loop is not needed in the code in figure 4.2. As a result these

two pieces of code can be replaced by simple piece in figure 4.4.

Normally, a packet follows the three steps shown in figure 3.3. After the third
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for (ptype = ptype_all; ptype; ptype = ptype->next) {
if (!ptype->dev || ptype->dev == skb->dev) {

if (pt_prev) {
if (!pt_prev->data) {

ret = deliver_to_old_ones(pt_prev, skb, 0);
} else {

atomic_inc(&skb->users);
ret = pt_prev->func(skb, skb->dev, pt_prev);

}
}
pt_prev = ptype;

}
}

Figure 4.2: ”for” loop to deliver the packet to socket type socket’s handler

for (ptype=ptype_base[ntohs(type)&15];ptype;ptype=ptype->next) {
if (ptype->type == type &&

(!ptype->dev || ptype->dev == skb->dev)) {
if (pt_prev) {

if (!pt_prev->data) {
ret = deliver_to_old_ones(pt_prev, skb, 0);

} else {
atomic_inc(&skb->users);
ret = pt_prev->func(skb, skb->dev, pt_prev);

}
}
pt_prev = ptype;

}
}

Figure 4.3: ”for” loop to deliver packet to corresponding protocol handler

ptype=ptype_all;
while (ptype) {

if (!ptype->dev || ptype->dev == skb->dev) {
ret = ptype->func(skb,skb->dev,ptype);
break;

}
ptype=ptype->next;

}

Figure 4.4: Packet is sent only to one packet socket.
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Figure 4.5: Flow Diagram for Receiving a Packet After Omitting IP Processing

step, the packet is cloned and sent to AF PACKET Processing that is for sniffing. Orig-

inal packet follows the way AF INET Processing (IP Processing) and upper steps till

the application. But after this step is applied, packet is not cloned and it is only sent

to AF PACKET Processing. In other words, figure 3.3 becomes figure 4.5.

4.4 Step 4: By-passing CPU Backlog Queue

Whenever a packet arrives to Ethernet card, Ethernet card takes it to his buffer and

wakes up Ethernet driver. Ethernet driver receive function, boomerang rx for 3com

card the machine has, calls netif rx function after little process on the packet. netif rx
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is in dev.c under net/core directory. Normally in this function CPU takes the packet

and entails it in its backlog queue and raises soft irq. Action that should be taken

when this soft irq is raised is the function named netif rx action. This function is the

one that sends packet to protocol handlers and protocol handlers put the packet to

the socket’s queue after some processing as stated in section 4.2.

For sniffing the path that packet should take is known. Thus entailing the packet

first in CPU’s own queue and later taking it from this queue and entailing it to the

socket’s queue is just an overhead. Instead, packet may directly be put into socket’s

receive queue. To achieve this, netif rx function can be rewritten as in figure 4.8.

Packet is timestamped first if it was not. After saving interrupt requests, packet count

is incremented. Performance effective part of code comes next. Arrived packet is di-

rectly put to related socket’s queue. Then interrupt requests are restored. Figure 4.6

and 4.7 depicts the picture of this step. First one shows the normal processing of the

packet while the second is the processing after the modification. In SMP (Symmetric

Multi Processors) boxes, each CPU has its own backlog queue. This modification still

holds for SMP boxes, each CPU would be directly putting the packet it received to

the related socket. The majority of the improvement of the thesis is obtained in this

step.
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int netif_rx(struct sk_buff *skb)
{

int this_cpu = smp_processor_id();
unsigned long flags;
int ret = NET_RX_DROP;
struct sock * sk;
static int throttle=0;
struct packet_type * ptype;

if (skb->stamp.tv_sec == 0)
do_gettimeofday(&skb->stamp);

skb_bond(skb);
skb->h.raw = skb->nh.raw = skb->data;

local_irq_save(flags);
netdev_rx_stat[this_cpu].total++;

ptype=ptype_all;
while (ptype) {

if (!ptype->dev || ptype->dev == skb->dev) {
sk = (struct sock *) ptype->data;
if (sk->receive_queue.qlen <= netdev_max_backlog) {

if (sk->receive_queue.qlen) {
if (throttle)

goto drop;
enqueue:

ret = ptype->func(skb,skb->dev,ptype);
local_irq_restore(flags);
return NET_RX_SUCCESS;
}
if (throttle)

throttle=0;
goto enqueue;

}
if (throttle == 0) {

throttle = 1;
netdev_rx_stat[this_cpu].throttled++;

}
}
ptype=ptype->next;

}
drop:

netdev_rx_stat[this_cpu].dropped++;
local_irq_restore(flags);
kfree_skb(skb);
return NET_RX_DROP;

}

Figure 4.8: Newly written netif rx function
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4.5 Step 5: Arranging Network Buffers

Packets are discarded if the receive buffer of the socket is full. Size of socket buffer is

stated in sock.h under include/net directory with the defines below:

#define SOCK_MIN_SNDBUF 2048

#define SOCK_MIN_RCVBUF 256

For normal Linux client packets sent are generally much more than packets received.

Therefore, size of send buffer for each socket is larger than the socket’s receive buffer.

However, the machine used in this thesis would not be an active one would only sniff

the packets on the wire, meaning packets received would be absolutely dominant.

With the small sized receive buffer, buffer would fill up quickly resulting in more

packet loses.

Setting the values as below is expected to solve this problem.

#define SOCK_MIN_SNDBUF 256

#define SOCK_MIN_RCVBUF 4096

Size of send buffer is decreased to save memory space.

4.6 Step 6: Modifying Ethernet Driver

This step is totally depended on which Ethernet card is being used. Improvement in

the Ethernet card driver means decreasing time spent for each packet, coders of the

driver had made the code as optimized as possible. Only debug conditional could be

eliminated from the driver’s code. Even these eliminations affected the performance,

but this effect is not so high.

4.7 Alternative 1:

One of the alternative systems using the steps, implemented individually, may be

combination of configuring kernel, modifying AF PACKET receive functions, omit-

ting IP processing, arranging network buffers and modifying Ethernet driver. This

combination uses the advantage of all steps involved but the dominant steps are the

first and fourth steps, that are kernel configuration and omition of the IP processing.
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4.8 Alternative 2:

The combination of configuring kernel, modifying AF PACKET receive functions,

by-passing CPU backlog queue, arranging network buffers and modifying Ethernet

driver may be an other alternative system. Omition of IP processing is not included

in this system because in the process of by-passing CPU backlog queue, this omition

is done inherently as a part of it. Most effective steps among them is by-passing CPU

backlog queue.
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CHAPTER 5

TEST RESULTS and COMPARISON

5.1 Test Environment

Test environment is very important for accurate test results. Test can not be done in

real environment, because achieving fully controlled tests is impossible. Controlled

tests is required for performance comparison. Data flow is changing continuously in

real networks, one can not get same density, same speed, data with same characteris-

tics, etc at different times. Best way is preparing a synthetic closed environment (see

figure 5.1). Actually, It is really hard to simulate real environments, but this synthetic

closed environment may be close to the real environment. Some tools exist to replay

the captured network scenario. Tool used in this thesis is tcpreplay [40]. Tcpreplay

simply opens a tcpdump file, forms the corresponding packets and puts the packet

on the wire. Two options of tcpreplay is used for this thesis. -i option specifies the

interface that packet should be put and -r option determines the speed in terms of

megabits per second. Synopsis of the tcpreplay can be seen in figure 5.2.

PC chosen for development and tests is a Pentium II PC with 350 MHz clock speed.

The PC has 64MB memory. This low configuration is chosen because generally faster

CPUs increases the bottleneck speed, which would make tests more difficult. Four

3Com EtherXL PCI network interface cards are connected to this PC. EtherXL is a

10/100 Fast Ethernet card. At its maximum rate that is 100Mbit/s kernel hardly

loose packets. Packet lost starts at around 220 Mbits/s. Upper limit is four Ethernet

cards, because the PC has only four PCI slots. Detailed properties of development
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Figure 5.1: Synthetic Environment built in Lab

SYNOPSIS
tcpreplay -i intf [ -c cache file ] [ -f config file ]
[ -I intf mac ] [ -j intf2 ] [ -J intf mac ]
[ -l loop count ] [ -m multiplier | -r rate | -R ]
[ -s seed ] [ -C CIDR... ] [ -u pad|trunc ] [ -v ]
[ -h|-V ] [ -M ] [ -x include | -X exclude ] file ...

Figure 5.2: Tcpreplay Synopsis
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[root@ids root]# cat /proc/cpuinfo
processor : 0
vendor_id : GenuineIntel
cpu family : 6
model : 5
model name : Pentium II (Deschutes)
stepping : 2
cpu MHz : 348.493
cache size : 512 KB
fdiv_bug : no
hlt_bug : no
f00f_bug : no
coma_bug : no
fpu : yes
fpu_exception : yes
cpuid level : 2
wp : yes
flags : fpu vme de pse tsc msr pae mce cx8 sep mtrr pge mca cmov pat pse36 mmx fxsr
bogomips : 694.68

[root@ids root]# cat /proc/meminfo
total: used: free: shared: buffers: cached:

Mem: 63307776 27840512 35467264 0 4513792 14172160
Swap: 139821056 0 139821056
MemTotal: 61824 kB
MemFree: 34636 kB
MemShared: 0 kB
Buffers: 4408 kB
Cached: 13840 kB
SwapCached: 0 kB
Active: 21776 kB
ActiveAnon: 4068 kB
ActiveCache: 17708 kB
Inact_dirty: 152 kB
Inact_laundry: 0 kB
Inact_clean: 388 kB
Inact_target: 4460 kB
HighTotal: 0 kB
HighFree: 0 kB
LowTotal: 61824 kB
LowFree: 34636 kB
SwapTotal: 136544 kB

Figure 5.3: CPU info of Development PC

PC can be seen in figure 5.3.

Data is dumped from 4 different identical AMD Athlon XP 1700 PCs each having

256MB memory. Figure 5.4 shows properties of one of the PCs used for replaying

scenarios.

Each of these dumper PCs connected to the development PC via cross cable. This

gives more accuracy because no other device like switch or hub affects the dump

process.

40



[root@matris root]# cat /proc/cpuinfo
processor : 0
vendor_id : AuthenticAMD
cpu family : 6
model : 6
model name : AMD Athlon(TM) XP 1700+
stepping : 2
cpu MHz : 1462.778
cache size : 256 KB
fdiv_bug : no
hlt_bug : no
f00f_bug : no
coma_bug : no
fpu : yes
fpu_exception : yes
cpuid level : 1
wp : yes
flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov
pat pse36 mmx fxsr sse syscall mmxext 3dnowext 3dnow
bogomips : 2904.36

[root@matris root]# cat /proc/meminfo
total: used: free: shared: buffers: cached:

Mem: 228302848 169811968 58490880 0 696320 156266496
Swap: 600436736 0 600436736
MemTotal: 222952 kB
MemFree: 57120 kB
MemShared: 0 kB
Buffers: 680 kB
Cached: 152604 kB
SwapCached: 0 kB
Active: 140168 kB
Inact_dirty: 284 kB
Inact_clean: 18380 kB
Inact_target: 31764 kB
HighTotal: 0 kB
HighFree: 0 kB
LowTotal: 222952 kB
LowFree: 57120 kB
SwapTotal: 586364 kB
SwapFree: 586364 kB
Committed_AS: 11996 kB

Figure 5.4: CPU info of Data Dumper PC 1
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5.2 Test Data

Data collected also plays an important role in accuracy of the test results. With biased

results performance can change drastically. Data collected from two different sites’

real network traffic.

First site is Ankara University. Ankara University has a heterogeneous network with

various kinds of servers and workstations with different operating systems. Data

collection position can be seen in figure 5.5 adapted from [32].

The second site that data is collected is Department of Computer Engineering in Middle

East Technical University. Department Network has various kinds of servers running

different kind of operating systems on them. Network structure can be seen in figure

5.6 adapted from [32].

Packets are captured from the live environment of these two sites. Table 5.1 shows

42



Table 5.1: Properties of Data Collected from Ankara University

Size of Packets 1.559.876.508 bytes
Number of Packets 3.500.000
Capture Start Date Fri Aug 3 11:38:01 2001
Capture End Date Fri Aug 3 15:00:18 2001

Table 5.2: Properties of Data Collected from CEng, METU

Size of Packets 1.661.297.351 bytes
Number of Packets 3.864.834
Capture Start Date Wed Feb 6 13:02:24 2002
Capture End Date Wed Feb 6 14:22:26 2002

the properties of the data collected from Ankara University. Data is collected in two

and a half hours. During these two hours, 3.500.000 packets were capture which to-

tally makes a file of 1.559.876.508 bytes.

These captured files are previously used in [32]. They are kept safe for use in this the-

sis. Duration for packet capture in Department of Computer Engineering (CEng),

in Middle East Technical University (METU) is about one hour and 20 minutes.

3.864.834 packets are collected using tcpdump. Total size of packets is 1.661.297.351

bytes. More details about the captured file can be seen in table 5.2.

5.3 Test Scenario

Laboratory environment is formed first(see section 5.1). 5 PCs are connected as in

figure 5.1. Each of four dumper PCs are connected via cross cables. This will prevent

the overhead brought due to interconnecting devices such as hub, switch, etc. Ideally

test environment could be a Gigabit Ethernet environment. In that case 2 PCs with

Gigabit Ethernet card would be enough for tests. Necessary equipments could not

be obtained to perform the test at the Gigabit Network environment. Therefore, test

are limited to 4 Fast Ethernet cards that is 400 Mbits/s network speed at most. Four

is the number of PCI slots on the Development PC.

Data in section 5.2 are copied to all dumper PCs. Five benchmark speed of network

has chosen that are 200Mbits/s, 240Mbits/s, 280Mbits/s and 380Mbits/s. Prelimi-

nary experiments have shown that Snort starts losing packets at about 200Mbits/s,
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and upper limit for development PC is 400Mbits/s. The values are chosen to be ex-

pressive enough.

In data dumper side,tcpreplay is run with -r 50,60,70,80,95 options to obtain these five

network speeds. -u option is also used for packets that are larger than the snaplen

that the packets previously captured. Snort is not able to listen all interfaces in

promiscuous mode. Thus, development PC has to run a different snort instance for

each network interface card.

After each run, outputs of each instance is collected and saved. Kernel statistics are

obtained through proc entry via command $cat /proc/net/dev. Number of sent packets

are calculated from the kernel statistics of the dumper PCs. Received packet num-

ber is calculated from the kernel statistics of the development PC. Snorts reports the

number of packets that it could analyze. Lost packets are calculated by taking the

difference because drop packet statistics of snort is untrustable. Snort Miss is the dif-

ference between received packets and number of packets that snort analyzed. Num-

ber of sent packets and received packets are not always equal because kernel itself

may lose packets and some errors like fifo errors and frame errors may occur. The

difference between them is denoted as Kernel Miss.

Sent Packets , Received Packets, Snort Analyzed are the values in tables in Appendix A.

Graphs in next section (see section 5.4) uses values Speed, total data dump rate, Snort

Miss Ratio, percentage of Snort Miss to Received Packets, Kernel Miss Ratio, percentage

of Kernel Miss to Sent Packets.

5.4 Test Results

Tests are done following the order in the implementation. First, results for default

case is taken, and then test are done after each implementation steps. Each test step

also has classification inside according to dump speed, that is total rate of scenar-

ios replayed by tcpreplay. In first group all four PCs replays the scenarios with the

tcpreplay’s -r 50 option which totally makes 200 Mbits/s rate. In other four groups,

total rates are 240 Mbits/s (-r 60), 280 Mbits/s (-r 70), 320 Mbits/s (-r 80) and 380

Mbits/s (-r 95) respectively. Five different runs are performed for each group to get

more accurate results and figures are drawn using the average of these five runs.
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Figure 5.7: Graphs for Default Kernel

5.4.1 Default Case

Default case is the reference point for the thesis. Kernel used in this set of tests is

Redhat’s original 2.4.20 kernel, from rpm package. Values in tables A.1, A.2, A.3, A.4

and A.5 are the values obtained running the tests on this kernel.

Values show that both Kernel Miss Ratio and Snort Miss Ratio increases with the

increase of traffic rate. Kernel Miss Ratio is about 0.1 % at 200 Mbits/s, but ratio

exceeds 0.7 % at 380Mbits/s. For the same traffic rates, Snort Miss Ratio increases

from less than 5 % to more than 40 %.

Figure 5.7 shows both Kernel Miss Ratio and Snort Miss Ratio versus traffic rate.

From the graph, one can deduce that increase of the ratios is linear.

5.4.2 Step 1 : Configuring Kernel

After the changes applied in implementation Step 1 (see section 4.1), miss ratios

change to values in tables A.6, A.7, A.8, A.9 and A.10. Tables show that, even a
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good kernel configuration halves the miss ratio.

This performance improvement depends on many different aspects. Kernel, with

many supports, has to do a lot of checking the existance of the feature. For example,

socket filtering. This feature directly related to networking performance. The aim

of this thesis is to transfer the packet received to application as soon as possible, not

selective transfer. Thus, this feature is not needed. Kernel, supporting socket filters,

at least checks whether a filter is attached to the socket. This means loss of time and

CPU cycles. Many other supports, even not related to networking code, at least gen-

erate interrupts and steal CPU cycles.

Some features like parallel port support requires polling of the devices. If kernel does

not have support for such features, polling is not needed. This means saving CPU

cycles. One another save with small kernel is the memory. Memory saved from ker-

nel size, is used for the application.

Kernel Miss Ratios and Snort Miss Ratios obtained by running snort with newly con-

figured kernel are skecthed in figure 5.8. Graph also includes the values of the default

for comparison. It can be seen that Snort Miss Ratio decreases about the half when

compared to the default values, and Kernel Miss Ratio is about 75 % of the default’s.

5.4.3 Step 2 : Modifying AF PACKET Receive Functions

Implementation Step 2 includes little modifications to packet receive function for

packet socket type sockets (see section 4.2). Modifications depend on known feature

and they are algorithmic modifications. Test results can be seen in tables A.11, A.12,

A.13, A.14 and A.15 for speeds 200, 240, 280, 320 and 380 Mbits/s respectively.

Snort Miss Ratios are almost same with the previous step. But at high speeds new

ratios are a little better. This is due to Kernel Miss. At high traffic rates, Kernel Miss

Ratio difference is not greater between this step and previous step. Graph in figure

5.9 depicts the picture for both Snort and Kernel Miss Ratios.

5.4.4 Step 3 : Omitting IP Processing

Every packet is first sent to sockets that are of type ETH P ALL. Then, they are deliv-

ered to the corresponding protocol handler. At this step, since second branch is cut
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Figure 5.8: Graphs after Kernel Configuration
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Figure 5.9: Graphs after Modifying AF PACKET Receive Functions
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Figure 5.10: Graphs after Omitting IP Processing

it is not sent to the protocol handler. In other words, scenario in figure 3.3 becomes

the one like in figure 4.5. Generally, most of the packets sniffed are not coming to

sniffer itself and they are marked as outgoing and dropped by the protocol handler

at first few instructions of the protocol’s receive function. Therefore there is not so

much gain with these test datas in this step. Test results can be obtained from tables

A.16, A.17, A.18, A.19, A.20. Figure 5.10 is drawn using these values and figure 5.8.

5.4.5 Step 4 : By-Passing CPU Backlog Queue

Major improvement is got in this step. As mentioned before, CPU put the newly

arrived packet to its own backlog queue and raises a softirq. Softirq generates and

interrupt and netif rx action is performed as the interrupt action. In the action packet

is retrieved fron the CPU’s backlog queue and entailed to the corresponding socket’s

receive queue. After this step backlog queue is short-cutted and arriving packet di-
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Figure 5.11: Graphs after By-Passing CPU Backlog Queue

rectly put to the corresponding socket’s queue. This is the changing of the figure 4.6

to the figure 4.7

Benefits of this by-pass are: firstly it will decrease the number of softirq’s raised,

packet will no longer entailed into two different queues. and also it decreases the

number of instructions per packet significantly.

The Miss Ratios are negligable when compared to the values with the modified ker-

nel. Figure 5.11 shows the comparison.

Detailed test results are in the tables A.21, A.22, A.23, A.24, A.25.

5.4.6 Step 5 : Arranging Network Buffers

The size of network buffers determines the number of packets that could exist with-

out being processed at the same time. If the receive (or sent) packet number exceeds

this number packets are dropped. Optimum number should be found for the values
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Figure 5.12: Graphs after Arranging Network Buffers

of macros SOCK MIN SNDBUF and SOCK MIN RCVBUF. Putting just very large

values to those macros is not come up with wonderful results. Because it makes ker-

nel larger, it may prevent some other functions.

Setting SOCK MIN RCVBUF to 4096 and SOCK MIN SNDBUF to 256 slightly in-

creased the network performance. rate of increase is higher at higher traffic rates.

Values, obtained at each run on modified kernel, can be found in tables A.26, A.27,

A.27, A.29, A.30. Graphs in figure 5.12 are plotted by using these values.

5.4.7 Step 6 : Modifying Ethernet Driver

Ethernet Driver is the first touch point of the packet with the kernel source. Any

decrease in number of instructions will affect overall system performance directly.

The driver of 3com EtherXL PCI is written in a very optimized way. Only debugging

information and some conditional checks could be removed from the code. Even
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Figure 5.13: Graphs after Modifying Ethernet Driver

this small modification affects the miss ratios. Tables A.31, A.32, A.33, A.34 and A.35

shows the values obtained from the test runs. Snort Miss Ratio vs Speed and Kernel

Miss Ratio vs Speed graphs in figure 5.13 are drawn based on these values. Although

it seems there is an increase in Snort Miss Ratio, this is because Kernel Miss Ratio is

very much smaller than configured kernel. Small Kernel Miss Ratio means more

packets received. Although snort analyses approximately same number of packets,

miss ratio is less in this step, at lower traffic rates. However at higher traffic rates,

snort could analysed more packets than the configured kernel. This again led to

decrease in Snort Miss Ratio. 5.7, 5.8, 5.9, 5.10, 5.11, 5.12 and 5.13, to allow good

comparison of the implementation steps. At each step packet lost ratio decreases, i.e

overall system performance increases.
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Figure 5.14: Graphs for Alternative Combination 1

5.4.8 Alternative 1

This solution is combination of configuring kernel, modifying AF PACKET receive

functions, omitting IP processing, arranging network buffers and modifying ether-

net driver. Test run results can be seen in tables A.36, A.37, A.38, A.39, A.40. This

solution decreased the Snort Miss Ratio more than 50 %. Kernel Miss Ratio is almost

negligable compared to the default case. Kernel configuration and omition of IP pro-

cessing are the leading steps in this alternative. Figure 5.14 compares the alternative

with the default results.

5.4.9 Alternative 2

This solution is combination of configuring kernel, modifying AF PACKET receive

functions, by-passing CPU backlog queue, arranging network buffers and modifying
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Figure 5.15: Graphs for Alternative Combination 2

ethernet driver. Test run results can be seen in tables A.41, A.42, A.43, A.44, A.45.

This solution provided significant decrease the Snort Miss Ratio. Kernel Miss Ratio

is again almost negligable when compared to the default case. Leading step for this

alternative is by-passing CPU backlog queue. Figure 5.15 compares the alternative

with the default results.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

Sniffers works fine with low traffic loads, but as the technology grew, life became

difficult for sniffers. Network gets higher than the value that a sniffer can cope with.

Many researchers carry out noticeable efforts on this issue. Some efforts are field

specific like GAMMA [18][19]. Most of other efforts are carried out by researches

working in industry. They claim to find effective solution to the problem but they do

not give technical details of what they have done, i.e. they do not give out the know-

how. Another industrial approach is to produce better hardware, but as in most cases

hardware solution is very expensive one.

In this thesis, a free and generic approach is proposed to get better performance in

sniffing even under high network loads. With this thesis an open, free and non field-

specific approach is achieved for the goal via kernel modifications and modification

to the network interface card. This approach is not a complete solution to the prob-

lem like all other approaches. Because there will always be a bottleneck network

traffic rate that devices can cope with.

Linux is most popular and known operating system when free and open source is

talked about. Documentation for Linux kernel is also better than most of other op-

erating systems. Although this helps so much in modifying kernel, understanding

the kernel code fully was not easy. Strategy was minimizing the path a packet trav-

els. Using mmap to eliminate unnecessary memory copies, not allowing the packet

traversing unnecessary branches in the Linux networking code and removing mid-

dle queues are parts of this strategy.
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First, kernel is configured to use mmap and unnecessary supports are removed from

configuration. pcap based sniffers uses special socket type called PACKET SOCKET.

Support for this type of sockets is also added. Then some check about known issues

eliminated in receive function.

Packet need not to traverse the protocol layers like IP, if it is only used for sniffing. It

is just sent to related PACKET SOCKET type socket’s queue. An other issue is that

CPU forms a backlog queue to which it collects all incoming packets to itself. De-

livery to related queues are done later. CPU is made to deliver directly to related

queues, i.e. backlog queue is by-passed. The size of network buffers is an other bot-

tleneck for network transfers. Since sniffers deal with receiving receive buffer size

is increased. Sending is not so important, therefore to keep kernel size small send

buffer size is decreased. Finally; driver of the network interface card is processed.

Actually, NIC driver,3Com Ether XL PCI, was a very optimized one. Not so much

thing to do with it. Disabling debugging and some conditional check elimination is

done.

Proposed work is mostly machine and platform independent except the first and last

steps. In the first step correct network driver has to be chosen according to systems

network interface card, and at the last step driver modification is directly dependent

to the network interface card again. All other steps are platform independent. This

is an advantage of the system.

Removing unnecessary supports and features, and configuring the kernel according

to the system decreased the packet lost ratios for Snort and the kernel. Proper con-

figuration of the kernel provided decrease in the kernel code by means of instruction

count and size. Test results have shown that gain is about 50 % according to the

baseline system. In Step 2 (Modifying AF PACKET Receive Functions) of the imple-

mentation little modifications to networking code is done to reduce the number of

instructions per packet. Just a small amount of performance gain is achieved after

this step.

Omitting IP processing is one of the steps that was expected to increase system per-

formance. After the test results, it was seen that there was not that much improve-

ment. Most probable reason for this is the characteristics of the test data. Test data

almost does not contain packets whose destination is the sniffing PC. With data con-
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taining more such packets may give better results. The majority performance in-

crease is achieved in forth step (By-Passing CPU Backlog Queue). By-passing CPU

backlog queue shorten the path of the packet captured from the network. Packet lost

ratios decreased to the values that may be ignored for both Snort and the kernel.

Network buffers for packet receiving were increased to store more received pack-

ets not to drop them. The system was not affected by the arrangement of network

buffers, however little increase was observed. One of the modifications targeting to

decrease number of instructions per packet was modifying the NIC driver of the ker-

nel. After the modifications while packets lost by kernel is decreasing, packets lost

by Snort is increased.

Two alternative combinations of these have been formed after implementing each

of the steps above. First alternative was composed of kernel configuration, packet

receive function modifications, IP processing omition, network buffer arrangement

and NIC driver modification. The overall system performance was doubled. In the

second alternative combination IP processing omition was replaced with by-passing

CPU backlog queue. Newly written code for by-passing CPU backlog queue, in-

herently includes the omition of IP processing. Overall results for this alternative

was just a bit better than the results obtained after step 4 (By-Passing CPU Backlog

Queue).

There is still some work may be performed on improving kernel performance. The

issues can be exported to the gigabit networks with a little effort. 3Com NIC’s driver

for Linux is an interrupt-based driver. Using polling instead of interrupt mechanism

may bring some more improvement to overall system performance.

One other way is developing a new operating system considering only sniffing issues

in mind. Though this is a hard work to do.

An other future work may be dealing with sniffer based applications individually,

not the kernel itself.
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APPENDIX A

Test Runs

A.1 Test Runs with default Kernel

Table A.1: Results for Default at 200 Mbits/s

Run Packets Sent Packet Received Snort Analyzed
1 14648887 14634732 14279867
2 14664568 14650837 14281370
3 14666527 14650142 14255168
4 14657310 14644243 14226733
5 14660572 14646012 14261282

Table A.2: Results for Default at 240 Mbits/s

Run Packets Sent Packet Received Snort Analyzed
1 14456449 14426116 13120021
2 14472974 14442726 13103806
3 14488042 14450888 13064286
4 14493444 14458846 13080287
5 14486392 14455194 13130704
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Table A.3: Results for Default at 280 Mbits/s

Run Packets Sent Packet Received Snort Analyzed
1 14148581 14088012 11333698
2 14143582 14087795 11360154
3 14149642 14090469 11372808
4 14151269 14089733 11335784
5 14156283 14100327 11350778

Table A.4: Results for Default at 320 Mbits/s

Run Packets Sent Packet Received Snort Analyzed
1 13373923 13300636 9063185
2 13370847 13299500 9006337
3 13382256 13305622 8918184
4 13382222 13306901 8965983
5 13377507 13306701 8890558

Table A.5: Results for Default at 380 Mbits/s

Run Packets Sent Packet Received Snort Analyzed
1 11435153 11348188 6804897
2 11435183 11354567 6841762
3 11447357 11366755 6986390
4 11416085 11336690 6896190
5 11440568 11358222 5238604
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A.2 Test Runs after Kernel Config

Table A.6: Results for KernConf at 200 Mbits/s

Run Packets Sent Packet Received Snort Analyzed
1 14679903 14672628 14528011
2 14680425 14669232 14472815
3 14681031 14672389 14513891
4 14679299 14668187 14492860
5 14680121 14670208 14492803

Table A.7: Results for KernConf at 240 Mbits/s

Run Packets Sent Packet Received Snort Analyzed
1 14482929 14461895 13789913
2 14487430 14465759 13774242
3 14475473 14453473 13753597
4 14485919 14464792 13801964
5 14471677 14450941 13790640

Table A.8: Results for KernConf at 280 Mbits/s

Run Packets Sent Packet Received Snort Analyzed
1 14140859 14099048 12629326
2 14144226 14105818 12670846
3 14151243 14104651 12483894
4 14147991 14105163 12621924
5 14145161 14102290 12583478
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Table A.9: Results for KernConf at 320 Mbits/s

Run Packets Sent Packet Received Snort Analyzed
1 13362587 13303915 11006348
2 13368397 13308939 11070862
3 13345955 13279101 10912355
4 13369457 13309002 10974725
5 13371587 13310430 10987267

Table A.10: Results for KernConf at 380 Mbits/s

Run Packets Sent Packet Received Snort Analyzed
1 11419833 11355352 8792295
2 11430335 11371813 8819936
3 11452539 11388802 8795708
4 11441791 11386773 8910043
5 11435470 11378527 6496228

A.3 Test Runs after Modifying af packet.c

Table A.11: Results for AF PACKET at 200 Mbits/s

Run Packets Sent Packet Received Snort Analyzed
1 14617195 14616879 14466696
2 14671077 14670873 14492628
3 14672904 14672689 14509846
4 14674152 14673944 14509750
5 14672201 14671805 14519842
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Table A.12: Results for AF PACKET at 240 Mbits/s

Run Packets Sent Packet Received Snort Analyzed
1 14467626 14467400 13788494
2 14467926 14467757 13810182
3 14473507 14473293 13812580
4 14462059 14461920 13818414
5 14452842 14452708 13708736

Table A.13: Results for AF PACKET at 280 Mbits/s

Run Packets Sent Packet Received Snort Analyzed
1 14129897 14129781 12656468
2 14142394 14142278 12672269
3 14128651 14128573 12417647
4 14155796 14155708 12671823
5 14135797 14135664 12713515

Table A.14: Results for AF PACKET at 320 Mbits/s

Run Packets Sent Packet Received Snort Analyzed
1 13399392 13398737 11077671
2 13375086 13374947 10915757
3 13400650 13400529 11081368
4 13417281 13417138 11099784
5 13393475 13393354 11051776
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Table A.15: Results for AF PACKET at 380 Mbits/s

Run Packets Sent Packet Received Snort Analyzed
1 11488069 11487973 8872582
2 11505199 11505062 8843675
3 11498414 11498277 8911307
4 11487908 11487805 8884648
5 11470949 11470813 8925665

A.4 Test Runs after Omitting IP Processing

Table A.16: Results for OmitIP at 200 Mbits/s

Run Packets Sent Packet Received Snort Analyzed
1 14677937 14677774 14517380
2 14673332 14673148 14517061
3 14680619 14680464 14528935
4 14678339 14678122 14530311
5 14672917 14672603 14533472

Table A.17: Results for OmitIP at 240 Mbits/s

Run Packets Sent Packet Received Snort Analyzed
1 14485497 14485297 13880507
2 14478477 14478161 13876735
3 14477048 14476837 13865170
4 14481886 14481714 13870961
5 14470257 14470059 13713345
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Table A.18: Results for OmitIP at 280 Mbits/s

Run Packets Sent Packet Received Snort Analyzed
1 14145941 14145750 12718619
2 14153847 14153674 12770500
3 14152973 14152798 12754235
4 14141896 14141708 12762305
5 14135929 14135748 12776674

Table A.19: Results for OmitIP at 320 Mbits/s

Run Packets Sent Packet Received Snort Analyzed
1 13411860 13411691 11230812
2 13392435 13392244 11224934
3 13393598 13393381 11250457
4 13385979 13385766 11217243
5 13391727 13391524 11239309

Table A.20: Results for OmitIP at 380 Mbits/s

Run Packets Sent Packet Received Snort Analyzed
1 11505787 11505601 9024990
2 11504088 11503917 8960069
3 11482676 11482468 9010690
4 11489215 11488995 8924587
5 11504324 11503875 9004779
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A.5 Test Runs after By-Passing CPU Backlog Queue

Table A.21: Results for BYPASSBQ at 200 Mbits/s

Run Packets Sent Packet Received Snort Analyzed
1 14668434 14668313 14668258
2 14631015 14630915 14630848
3 14660035 14659923 14659879
4 14656902 14656778 14656698
5 14662569 14662457 14662420

Table A.22: Results for BYPASSBQ at 240 Mbits/s

Run Packets Sent Packet Received Snort Analyzed
1 14442174 14442050 14441985
2 14444620 14444504 14444388
3 14441169 14441071 14441030
4 14431750 14431640 14431546
5 14443755 14443634 14443543

Table A.23: Results for BYPASSBQ at 280 Mbits/s

Run Packets Sent Packet Received Snort Analyzed
1 14067465 14067366 14067298
2 14084961 14084862 14084776
3 14079860 14079764 14079632
4 14076599 14076466 14076354
5 14084221 14084115 14084051
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Table A.24: Results for BYPASSBQ at 320 Mbits/s

Run Packets Sent Packet Received Snort Analyzed
1 13296924 13296842 13296723
2 13328052 13327943 13327855
3 13320945 13320831 13320733
4 13316128 13316023 13315902
5 13323897 13323793 13323664

Table A.25: Results for BYPASSBQ at 380 Mbits/s

Run Packets Sent Packet Received Snort Analyzed
1 11393589 11393475 11393439
2 11432921 11432840 11432721
3 11397400 11397303 11397160
4 11398851 11398751 11398643
5 11425953 11425821 11425740

A.6 Test Runs after Arranging Network Buffers

Table A.26: Results for NETBUF at 200 Mbits/s

Run Packets Sent Packet Received Snort Analyzed
1 14663391 14663193 14523266
2 14667009 14666775 14514020
3 14663658 14663426 14528021
4 14659338 14659059 14527338
5 14666751 14666506 14525750
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Table A.27: Results for NETBUF at 240 Mbits/s

Run Packets Sent Packet Received Snort Analyzed
1 14431705 14431389 13798262
2 14441571 14441016 13749384
3 14454725 14454270 13789798
4 14449822 14449585 13776409
5 14458160 14457936 13782456

Table A.28: Results for NETBUF at 280 Mbits/s

Run Packets Sent Packet Received Snort Analyzed
1 14108641 14108458 12680066
2 14122659 14122355 12700233
3 14126611 14126172 12656118
4 14112913 14112467 12679437
5 14126472 14126032 12690276

Table A.29: Results for NETBUF at 320 Mbits/s

Run Packets Sent Packet Received Snort Analyzed
1 13356564 13356059 11139375
2 13352198 13351612 11056171
3 13348551 13348030 11108163
4 13332548 13332114 11126402
5 13348922 13348456 11118115
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Table A.30: Results for NETBUF at 380 Mbits/s

Run Packets Sent Packet Received Snort Analyzed
1 11439663 11439265 8864892
2 11467424 11466997 8934481
3 11460031 11459616 8817312
4 11435357 11435175 8831700
5 11462447 11462302 8765980

A.7 Test Runs after Modifying Network Driver

Table A.31: Results for DRIVER at 200 Mbits/s

Run Packets Sent Packet Received Snort Analyzed
1 14668741 14668659 14502545
2 14672185 14672115 14521595
3 14672940 14672867 14485254
4 14672967 14672868 14470333
5 14674188 14674126 14511152

Table A.32: Results for DRIVER at 240 Mbits/s

Run Packets Sent Packet Received Snort Analyzed
1 14463421 14463337 13763961
2 14470767 14470682 13721446
3 14460437 14460334 13578820
4 14463090 14462991 13746063
5 14468574 14468486 13733497
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Table A.33: Results for DRIVER at 280 Mbits/s

Run Packets Sent Packet Received Snort Analyzed
1 14126834 14126752 12598910
2 14132597 14132514 12602048
3 14119502 14119410 12598127
4 14127563 14127498 12610796
5 14130993 14130891 12587825

Table A.34: Results for DRIVER at 320 Mbits/s

Run Packets Sent Packet Received Snort Analyzed
1 13377551 13377484 10816819
2 13383644 13383559 10951264
3 13383192 13383102 10965732
4 13372788 13372704 10924533
5 13362457 13362399 10982439

Table A.35: Results for DRIVER at 380 Mbits/s

Run Packets Sent Packet Received Snort Analyzed
1 11448176 11448089 8677238
2 11480413 11480337 8734934
3 11470595 11470511 8651284
4 11472506 11472431 8742605
5 11468073 11467998 8670965
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A.8 Test Runs after Alternative 1

Table A.36: Results for ALTERNATIVE1 at 200 Mbits/s

Run Packets Sent Packet Received Snort Analyzed
1 14671308 14671210 14551842
2 14673415 14673333 14531499
3 14674799 14674725 14542330
4 14674085 14674003 14530658
5 14668843 14668773 14518449

Table A.37: Results for ALTERNATIVE1 at 240 Mbits/s

Run Packets Sent Packet Received Snort Analyzed
1 14452059 14451970 13849982
2 14463707 14463617 13853226
3 14450721 14450611 13815449
4 14458128 14458029 13836320
5 14463045 14462926 13842775

Table A.38: Results for ALTERNATIVE1 at 280 Mbits/s

Run Packets Sent Packet Received Snort Analyzed
1 14118523 14118400 12736790
2 14137804 14137662 12762903
3 14120540 14120301 12770089
4 14141164 14140898 12760290
5 14128068 14127898 12786918
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Table A.39: Results for ALTERNATIVE1 at 320 Mbits/s

Run Packets Sent Packet Received Snort Analyzed
1 13383266 13383100 11214898
2 13414461 13414252 11172897
3 13375475 13375260 11301538
4 13382023 13381803 11289936
5 13375973 13375736 11280700

Table A.40: Results for ALTERNATIVE1 at 380 Mbits/s

Run Packets Sent Packet Received Snort Analyzed
1 11488554 11488344 9044329
2 11497140 11496962 8973289
3 11474618 11474450 9026719
4 11510703 11510507 8978901
5 11456271 11456109 9037323

A.9 Test Runs after Alternative 2

Table A.41: Results for ALTERNATIVE2 at 200 Mbits/s

Run Packets Sent Packet Received Snort Analyzed
1 14665584 14665531 14665448
2 14671151 14671082 14670979
3 14668790 14668727 14668641
4 14668790 14668721 14668617
5 14675657 14675602 14675523
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Table A.42: Results for ALTERNATIVE2 at 240 Mbits/s

Run Packets Sent Packet Received Snort Analyzed
1 14457058 14456964 14456888
2 14468018 14467929 14467797
3 14460507 14460429 14460363
4 14452629 14452547 14452426
5 14443053 14442976 14442904

Table A.43: Results for ALTERNATIVE2 at 280 Mbits/s

Run Packets Sent Packet Received Snort Analyzed
1 14102108 14102014 14101936
2 14120650 14120562 14120474
3 14111025 14110918 14110813
4 14126413 14126313 14126233
5 14109261 14109141 14109054

Table A.44: Results for ALTERNATIVE2 at 320 Mbits/s

Run Packets Sent Packet Received Snort Analyzed
1 13340954 13340853 13340694
2 13374531 13374436 13374320
3 13371494 13371380 13371232
4 13370969 13370859 13370701
5 13358846 13358716 13358592
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Table A.45: Results for ALTERNATIVE2 at 380 Mbits/s

Run Packets Sent Packet Received Snort Analyzed
1 11456087 11455995 11455937
2 11463669 11463540 11463481
3 11458331 11458199 11458076
4 11479022 11478884 11478786
5 11472670 11472559 11472471

76


