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ABSTRACT 

 

 

 

A BEHAVIOR BASED ROBOT CONTROL SYSTEM USING  

NEURO-FUZZY APPROACH 

 

Öğüt, Demet 

M.Sc., Department of Computer Engineering 

Supervisor: Assoc. Prof. Dr. Ferda Nur Alpaslan 

December 2003, pages 58 

 

 

In autonomous navigation of mobile robots the dynamic environment is a source of 

problems.  Because it is not possible to model all the possible conditions, the key 

point in the robot control is to design a system that is adaptable to different 

conditions and robust in dynamic environments.  

This study presents a reactive control system for a Khepera robot with the ability to 

navigate in a dynamic environment for reaching goal objects. The main motivation of 

this research is to design a robot control, which is robust to sensor errors and sudden 
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changes and adaptable to different environments and conditions. Behavior based 

approach is used with taking the advantage of fuzzy reasoning in design. 

Experiments are made on Webots, which is a simulation environment for Khepera 

robot.  

Keywords : Behavior-cased robotics, neuro-fuzzy system, reactive control, 

autonomous navigation. 
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ÖZ 

 

 

 

BULANIK MANTIK KULLANAN DAVRANIŞ-TABANLI  

BİR ROBOT KONTROL SİSTEMİ 

Öğüt, Demet 

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü 

Tez Yöneticisi : Doc. Dr. Ferda Nur Alpaslan 

December 2003, 58 sayfa 

 

 

Devingen robotların özerk gezinimlerinde dinamik ortam bir sorun kaynağıdır. Tüm 

ihtimal durumların modellenmesi mümkün olmadığı için, robot kontrolünde anahtar 

nokta, farklı durumlara uyarlanabilir ve dinamik ortamlarda dirençli sistemler 

tasarlamaktır. 

Bu çalışma, hedef noktalara ulaşmak için dinamik ortamlarda özerk gezinim yapma 

kabiliyetine sahip bir Khepera robotu için tepkisel kontrol sistemi sunuyor. Bu 

araştırmanın temel içgüdüsü, sensor hatalarına ve ani değişikliklere karşı dayanıklı 

ve değişik ortam ve durumlara uyarlanabilir bir robot kontrol sistemi tasarlamaktır. 

Tasarımda bulanık muhakemeden faydalanan davranış-tabanlı bir yaklaşım 
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kullanılmıştır. Deneyler Khepera robotu için simülasyon ortamı olan Webots 

üzerinde yapılmıştır. 

Anahtar Kelimeler : Davranış tabanlı robotbilim, nöral-bulanık system, tepkisel 

kontrol, özerk gezinim 
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CHAPTER 1  

 

INTRODUCTION 

 

 

Over the past few years, the research in autonomous mobile robots gained an 

extensive interest. This is due to the wish to replace the humans with robots in 

dangerous tasks, and to use the robots in classical everyday tasks and in industry. 

Many methods for robot control have been developed which can be generally 

grouped into two categories: deliberative and reactive.  

In deliberative approach global planning method is used in a completely 

known environment. These methods build the paths for reaching the target without 

any collision. A global optimum solution can be achieved in this approach. However, 

this scheme has well-known drawbacks. Exact model of the world is needed which is 

very difficult and modifications in this environment after modeling cannot be 

handled.  

In reactive approach model of the world is not needed, actions are determined 

according to information gathered from sensors. The robot has to react to its sensor 

data by a set of stimuli-response mechanism. The drawback of these systems is 

limited and uncertain sensor data because of the limited range, poor observation 

conditions, and environmental effects.  

A set of qualitative reasoning methods has been proposed to overcome the 

uncertainties in the systems. These approaches try to incorporate the uncertainty to 

gathering and reasoning steps, instead of trying to identify them with numerical 
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methods. And these methods try to capture the human behavior. Mostly used 

qualitative reasoning method is fuzzy inference.  

The fuzzy logic systems are inspired from human reasoning, which is based 

on perception. Fuzzy logic provides a methodology for representing human expert 

knowledge and perception-based actions without needing analytical model of the 

system. 

Neuro-fuzzy systems add the advantages of fuzzy reasoning to neural 

networks, which learn fast without needing symbolic representation of the system.  

Behavior based systems tries to model the reactive abilities of humans, 

animals, insects etc. to sensed environment. In behavior based approach goals are 

achieved by subdividing the overall task into smaller independent behaviors that 

focus on execution of specific tasks. For example a behavior can focus on traversing 

from start to target place, while another behavior focus on obstacle avoidance. 

In this study, a reactive behavior based robot control system is modeled and 

implemented. The goal of the robot is to navigate and reach the goal points with 

avoiding obstacles. The system uses the neuro-fuzzy approach with online learning. 

No supervision and global world modeling is used. 

Adaptive Network Fuzzy Inference System (ANFIS) is applied for a mobile 

robotics problem with Tsukamoto inference system. Each rule output is defined as a 

crisp value and overall output of system is calculated by weighted average of each 

rule’s output. Since each rule gives a crisp output and the aggregation is made by 

weighted average, this model avoids the time-consuming process of defuzzification.  

The thesis is organized as follows. Chapter 2 introduces behavior based 

systems and fuzzy control. Chapter 3 gives information about the adaptive networks 

and specifically introduces ANFIS. Chapter 4 covers the design of robot control 

system. Chapter 5 concludes this thesis and indicates future work. 
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CHAPTER 2  

 

ROBOT CONTROL 

 

 

2.1 Behavior Based Robotics 

It is obvious that a robot must have some form of intelligence to navigate in 

real world for a purpose without crashing into things. Intelligence can be defined as 

capacity to acquire and apply knowledge. The robot must be able to acquire 

information from its sensors, and use it to control the movement in an effective 

manner. It may also use a map, keep track of its position, and decide where it should 

go in what order, all of which requires usage of acquired information. 

The problems of a mobile robot may seem same as classical AI programs at 

first glance. For a given goal, the robot must find a solution based on available paths. 

In top-down design methodology the operation of a robot could be described as a 

cycle of world model construction, path generation, actuator output, sensor readings, 

and world model revision. The control of this approach is given in Figure 2-1. 

Traditional sense-model-plan-act approach work well for industrial robots, 

for which the environment they work and the task they accomplish is well defined.  

Most established robotics and artificial intelligence techniques are successful because 

of the finite, knowledge-based nature of the applications to which they have been 

applied. If the world model is complete enough for the computer, it can effectively 

consider relevant options and the consequences of its decisions.  
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Figure 2-1 Traditional sense-model-plan-act approach (adopted from [1]) 

But unfortunately the environment of a mobile robot cannot be described as a 

complete world model. This is the difference of mobile robots from the stationary 

robots in the industry. And also the industrial robots’ work place is designed to limit 

variation, and structured so that any variation can easily be sensed and compensated 

for, but a mobile robot must deal with any number of unexpected circumstances. The 

robot must be able to sense and respond to anything that could affect its ability to 

accomplish its mission. 

Mobile robots are different from ordinary computer applications. 

Programmers perform the functions of selecting relevant information from the world, 

translating it into symbolic data for entry, and interpreting the results. The function 

that the computer performs is actually simple by comparison, but requires so many 

tedious steps that it is better suited to a machine than a human being. The question of 

appropriate representation has been a more difficult problem for the AI community 

to deal with than the strategies associated with decision making. For this reason, the 

most successful and widespread AI applications have concerned with finite state 

spaces [2]. 

There are difficulties with using the symbolic system approach to mobile 

robots. First, robot needs the complete representation of the world to plan and make 
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decisions and this world model must be detailed enough for the needs of the robot. 

But accurate construction of this model is extremely difficult. Second, maintaining 

the model and making plans according to this model is very time consuming. This 

usually makes the robot's performance extremely slow. Third, because of the 

limitations of the model, sensors, and planning algorithms, there is always a risk in 

the real world, which is not possible to incorporate into the model and can result the 

failure of the system. 

The traditional AI methodology has two important characteristics [3]: the 

ability to represent hierarchical structure by abstraction and the use of strong 

knowledge that employs explicit symbolic representational assertions about the 

world. AI point of view for robotics applications was in the following way: the 

important thing is knowledge and its representation and robotics is not an exception. 

Behavior based robotics systems reacted against these idea and the sensing and 

acting in an environment dominated the interest on knowledge representation and 

planning [4]. 

Successful navigation of small animals, like insects in the world, show that 

deliberative reasoning has small effect on reliable autonomous behavior and opposes 

the idea of human like reasoning can solve the problems of mobile robotics. New 

trends focus on decentralized intelligence and reactive control schemes, which is 

inspired by observation of simple animals’ behaviors.  

Simple animals make decisions to survive like finding food sources, running 

away from predators, etc. although they have limited brains. Because an insect does 

not deliberate the decisions then it experiences some primitive forms of fear and 

hunger and have a brain capable of acting upon these motivations, than making 

rational choices. Motivations are more important than logic to autonomous agents.  

While biologists have been developing models and simulations of animal 

behavior, roboticists have been searching for the means to distribute the control tasks 

faced by autonomous machines, and make their performance more reliable. The 

fusion of these disciplines was inevitable. In an experiment aimed toward both the AI 

community and biologists, Beer developed a computer simulation of an artificial 
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cockroach [4,5]. His control scheme used a model of living neurons as a building 

block for simple behaviors. Despite the simplicity of its components, the simulated 

insect could coordinate six legs for walking, avoid obstacles, and search for food in 

its virtual world. 

Parallel architectures improve the performance, reliability, and scalability of 

autonomous machines. Minsky [6] describes a mind as being composed of individual 

entities called agents. Each agent performs a small part of a task and larger, more 

complex functions are achieved by groups of agents with coordinated and 

concentrated interaction between them. In behavior-based robotics individual 

behaviors can be viewed as agents. 

Brooks [1] introduced the layered control approach to the robotics 

community. Rather than decomposing the autonomous control problem into separate 

layers in a sense/model/plan/act scheme, Brooks proposed an architecture where each 

layer has direct effect on the action. Behaviors are represented as layers in 

subsumption architecture and multiple behaviors are coordinated in parallel. This 

architecture allows rapid and robust interaction with the environment, and offers 

incremental development of capabilities. Brooks' subsumption architecture is 

implemented on a wide variety of mobile robots. In the subsumption architecture, 

high-priority behaviors such as collision avoidance subsume other behaviors, such as 

goal seeking. The arbitration scheme is based on hierarchical switching. Brooks 

architecture is shown in the Figure 2-2: 

 

Figure 2-2  Layered Control Architecture (adopted from [1]) 
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Brooks’ work has inspired a variety of behavior-based control schemes. 

Arkin[7] developed the schema theory. Schemas are the basic primitives of the 

behavior, and they form a complex action with acting in a distributed, parallel 

manner. Output of each schema is a vector that defines the way that the robot must 

move, which is then combined by weighted summation. In each motor schema a 

perceptual schema is embedded which provides the environmental information 

specific to that behavior. Figure 2-3 presents the perception-action schema relations: 

 

Figure 2-3 Perception-action schema relations (adopted from [8]) 

Minsky, Brooks, and Arkin proposed that a complex problem could be solved 

by breaking down it into multiple small specialized agents [2]. Although they have 

different ideas for individual agents, in general, an agent defines a mapping between 

inputs and outputs, which can be connected to sensors and actuators. Each agent 

performs its function continuously and operates in parallel with the others.  
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Behavior based approaches are evaluated similar in terms of their parallelism, 

modularity, ease of development, flexibility and performance. These architectures 

are different in the granularity of behavioral decomposition, coordination of 

behaviors and response encoding technique [8].  

2.2 Fuzzy Control in Mobile Robots 

The goal of a mobile robot is moving purposefully in unmodified 

environments i.e. not specific environments designed for robots, without human 

intervention. Robot needs the model of the world as it navigates. Because the 

environment is dynamic, model of the world cannot be obtained at the start of 

execution of the robot. One way to overcome this problem is, modeling the 

environment in runtime by using the sensors. But the information that can be 

gathered from the sensors is not enough because of the limited range, poor 

observation conditions, and environmental effects.  

These problems has been tried to be solved by the careful design of robot 

mechanics and sensors [9]. But this increases costs, reduces robots autonomy and 

cannot be applied to all environments. The main challenge in current robotics is to 

build robust control programs that can perform complex tasks in dynamic 

environments. 

Qualitative nature of fuzzy logic makes it a useful tool for dealing with these 

problems, which sourced from uncertainty.  Fuzzy set theory is developed by Lotfi 

Zadeh [10] in the 1960's but it has become a popular tool for control applications in 

recent years. In fuzzy set theory the information is classified into sets that do not 

have crisp boundaries. And control functions are described in linguistic terms such as 

"large", "small", "fast," etc. One of the main benefits of fuzzy systems is that an 

expert human knowledge about the control of the system can be incorporated, 

without using the mathematical description of the problem. 

Fuzzy logic is different from predicate logic. In predicate logic assertions 

about the world are true or false which are referred as crisp values and have exact 

meaning. In fuzzy logic inputs have values according to how much they belong to a 
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fuzzy set. Fuzzy sets are defined with membership functions, which measure the 

degree of similarity of an instance to the set as a numerical value. 

Fuzzy if-then rules or fuzzy conditional statements are expressions of the 

form IF A THEN B, where A and B are labels of fuzzy sets characterized by 

appropriate membership functions. An example that describes a simple fact is: 

If pressure is high, then volume is small. 

where pressure and volume are linguistic variables, high and small are linguistic 

values or labels that are characterized by membership functions. 

Another form of fuzzy if-then rule, proposed by Takagi and Sugeno [11], has 

fuzzy sets involved only in the premise part. By using Takagi and Sugeno’s fuzzy if-

then rule, we can describe the resistant force on a moving object as follows: 

If velocity is high, then  force = 2velocity  * k 

where, again, high in the premise part is a linguistic label characterized by an 

appropriate membership function. However, the consequent part is described by a 

non-fuzzy equation of the input variable, velocity. 

Both types of fuzzy if-then rules have been used extensively in modeling and 

control. With the use of linguistic labels and membership functions, a fuzzy if-then 

rule can easily capture the knowledge of a human expert. 

Fuzzy control systems produce actions according to fuzzy rules based on 

fuzzy logic. The basic units of the fuzzy logic controller are: fuzzifier, fuzzy rule 

base, fuzzy inference engine, and defuzzifier [8]. In fuzzifier, crisp input values are 

mapped to fuzzy sets using membership functions. Fuzzy rule base contains the IF-

THEN rules which specifies the behavior of the system. Fuzzy inference engine 

maps input fuzzy sets to output fuzzy sets using rule base. Defuzzifier maps the 

fuzzy output sets to crisp output value. The structure of a fuzzy control system is 

given in the Figure 2-4: 
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In a fuzzy control system of a mobile autonomous robot, firstly crisp sensor 

values is translated into linguistic classes in the fuzzifier, and then appropriate rules 

are fired in the fuzzy inference engine which generates a fuzzy output value, finally 

this value is translated into crisp turning angle or speed in the defuzzifier. This final 

result is passed to motor as a command.  

 

Figure 2-4 Fuzzy Logic Control System Architecture (adopted from [8]) 

The first and most common application of fuzzy logic techniques in the 

domain of autonomous robotics is the use of fuzzy control to implement individual 

behavior units. Fuzzy logic controllers incorporate heuristic control knowledge in the 

form of if-then rules, and are a convenient choice when a precise linear model of the 

system cannot be easily obtained. They have also shown a good degree of robustness 

in the case of variability and uncertainty in the parameters. The key to this robustness 

is in the interpolation mechanism implemented by fuzzy controllers, which embodies 

the idea that similar inputs should produce similar actions. 

These characteristics fit the needs of autonomous robot navigation where: 

mathematical model of the environment is not available, sensor data is uncertain and 

imprecise and real-time operations are fundamental. 

The advantages of fuzzy control can be summarized in three headings. 

Firstly, the fuzzy rule format makes it easy to write simple and effective behaviors 



11 

for a variety of tasks, without having to use complex mathematical models. 

Secondly, because of their qualitative nature, fuzzy behaviors are prone to be 

transferred from one platform to another with few modifications. Finally, the 

interpolative nature of fuzzy control results in smooth movement of the robot, and in 

graceful degradation in face of errors and fluctuations in sensor's data [12]. 

2.3 Behavior Design 

2.3.1 Proprioceptive Behaviors 

The classic behavior used in mobile robotics is path tracking. In path tracking 

controller that is given a path in the form of coordinates, follows the path as close as 

possible. The controller needs its position relative to the path to accomplish this task. 

The position is usually gathered from wheel encoders or other sensors of the robot. 

These kinds of behaviors are called proprioceptive behaviors [12]. 

Because the kinematics and dynamics of the robot may be complex and 

nonlinear and interaction of the robot and the terrain is hard to model, path tracking 

can be a difficult task.  These problems led the roboticists to use fuzzy control 

techniques for path tracking. Fuzzy control is used in several applications: pass-

through-way-points problem by Benreguieg[13], spline curves by Zhang[14],  

following a straight line Tanaka and Sano[15],  tracking arbitrary continuous points 

by Ollero[16,17]. 

Instead of generating a path from the plan to reach a global goal, another 

popular technique used is to generate a potential field that has maxima around the 

obstacles, and minima at the goal location. A potential field based on the model of 

the environment is generated, and the robot then navigates through this field by using 

gradient descent algorithm, which can be implemented by fuzzy rules. Makita [18] 

has proposed a system based on this idea and which has been tested in simulation. 
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2.3.2 Sensor-Based Behaviors 

Tracking a precomputed path is an effective way to reach a target position 

when the assumptions used during the computation of the path are still valid at 

execution time (the environment was correctly modeled, and it has not changed 

afterwards); and the robot is able to determine its position with respect to the path. 

Because these conditions are rarely met in real world environments, the robots are 

based on sensor-based behaviors. A sensor-based behavior implements a control 

policy based on the sensing of environment in execution and navigating accordingly, 

rather than with respect to a path. Typical examples include moving along a wall or a 

contour, reaching a light source, and avoiding obstacles. 

In 1985 Sugeno and Nishida developed a fuzzy controller for a model car that 

moves in a track delimited by two walls [19]. A single rotating sonar sensor was used 

to measure the distances from the walls. The fuzzy controller was developed 

according to heuristic rules derived from the observation of a human driver. The 

results were encouraging, but the controller was not robust to sensor's errors, and the 

speed of robot was very slow 1.7 cm/sec.  

Shortly after the publication of Sugeno and Nishida, Takeuchi [20] developed 

a fuzzy controller for obstacle avoidance. The controller was obtaining occupied and 

free areas in front of the robot from a video camera. The rules were experimentally 

derived with the help of a simulator. The experimental results were satisfying, 

although perceptual errors in the vision system sometimes led to failures.  

In the subsequent years, an increasing number of fuzzy sensor-based 

behaviors had implemented in robots but the attention was mostly focused on the 

same two fundamental behaviors: following environmental features (walls, road 

edges, white lines on the floor, etc), and avoiding obstacles.  

More extensive autonomous robots have been developed in following years, 

which have different behaviors. Examples for these autonomous robots are Flakey 

[21, 22], Marge [2], Moria [23], and Lobot [24]. These robots include fuzzy 
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behaviors for going to a given position, for orienting towards a target, for docking to 

an object, for crossing a door, and so on. 

In Flakey [21, 22], a hybrid architecture is implemented; fuzzy control is used 

in conjunction with modeling and planning techniques to provide reactive guidance 

by Saffotti, Ruspini and Konolige in 1993. Sonar is used by Flakey to construct a 

cellular map of its environment. A high-level supervisory process then extracts the 

locations of landmarks and features such as walls from this map. These values are 

passed to selected fuzzy control behaviors to generate the proper wheel velocities. 

The behaviors are implemented as schemas that have three components: context 

(behavior relevancy to the current situation), desirability function (set of rules 

defining control) and descriptor set (objects in the world that are significant for the 

robot). 

For modeling behaviors Marge used distributed fuzzy agents, which are all 

independent and concurrent. Fuzzy behaviors implemented in Marge include goal 

seeking, obstacle avoidance, wall following and docking. In behavior fusion part, 

these behaviors are given gains and final command is gathered by vector summation.  

2.3.3 Complex Behaviors 

The behaviors like obstacle avoidance, wall following, path tracking, etc. are 

basic behaviors. They consider only one goal. If consideration of two or more goal is 

needed, there are two options. Complex rules can be written whose antecedents 

consider all goals or different rules can be written for each goal and outputs of these 

can be combined.  

Whether a complex behavior is better implemented by a monolithic or a 

partitioned set of rules is a difficult question. The monolithic solution can take better 

care of the interactions between the goals, and should be preferred when these 

interactions are important. Unfortunately, the monolithic solution can easily become 

intractable, as the number of rules tends to grow exponentially in the size of the input 

space. When input space is large, a partitioned solution is likely to be easier. 
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2.4 Behavior Coordination 

Coordination of the several simultaneous independent behavior-producing 

units to obtain an overall behavior that achieves the intended task is behavior 

coordination. The simplest example is the coordination of an obstacle avoidance 

behavior and a goal reaching behavior in order to safely reach the target in an 

environment with obstacles.  Today behavior coordination is still a major problem. 

Behavior coordination problem can be evaluated in two categories: behavior 

arbitration or command fusion.  

2.4.1 Arbitration 

The arbitration policy determines which behavior should influence the 

operation of the robot at each moment, and determines the task performed by the 

robot. Early solutions based on fixed arbitration policy. An example for this 

approach is the famous subsumption architecture proposed by Brooks [1], which is 

based on a hard-wired network of suppression and inhibition links. (Figure 2-5) This 

rigid organization contrasts with the requirement that an autonomous robot can be  

 

Figure 2-5 Arbitration by Suppression (adopted from [8]) 

programmed to perform a variety of different tasks in a variety of different 

environments. In fact, Brooks' robots were usually built to perform one single task.  
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One of the arbitration methods is action-selection. In this method the activation level 

of each behavior is determined according to agents goals and incoming sensor data. 

The behavior with the highest activation level is carried out at run time. No hierarchy 

exists between the behaviors. (Figure 2-6) 

 

Figure 2-6 Arbitration by Action Selection (adopted from [8]) 

Behavior coordination with voting is another arbitration method. In this 

architecture, behaviors vote for a predefined set of motor actions and the action 

receiving the highest vote is accomplished. (Figure 2-7) 

 

Figure 2-7 Arbitration by Voting (adopted from [8]) 

2.4.2 Command Fusion 

In arbitration one of the behaviors is selected and accomplished according to 

arbitration method. This scheme may be inadequate in situations where several 
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criteria should be taken into account. For example, consider a robot that encounters 

an obstacle while following a path and arbitration policy selects the obstacle 

avoidance behavior. Going around the obstacle from left or right is unimportant for 

the obstacle avoidance behavior.  But, from the point of view of the path-following 

behavior, one choice might be dramatically better than the other.  

To overcome this problem, different behaviors are executed parallel and 

outputs of these behaviors are combined. The most popular approaches for this type 

are based on vector summation scheme: a force vector represents each command, and 

commands produced by different behaviors are combined by vector summation. The 

robot carries out the resulting action. (Figure 2-8) 

 

Figure 2-8 Behavior Coordination by Vector Summation (adopted from [8]) 

When the output of a behavior is represented by a fuzzy set, fuzzy operators 

can be used to combine the output of different behaviors into a collective result, and 

finally choose a command according to this result. Fuzzy logic offers many different 

operators to perform combination, and many defuzzification functions to perform 

decision. It is important to note that the decision taken according to the collective 

output can be different from the result of combining the decisions taken from the 

individual outputs. Each individual decision issued by a behavior gives the preferred 

command, but does not tell anything about the desirability of alternatives. 

Preferences contain more information, as they give a measure of desirability for each 

possible command: combining preferences thus uses more information than 

combining vectors, and can produce a different final decision. Figure 2-9 graphically 
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illustrates this point in the case of two behaviors. This argument explains why fuzzy 

command fusion is fundamentally different from vector summation.  

 

Figure 2-9 Fuzzy Behavior Coordination (adopted from [12]) 

Another form of behavior combination that can be realized using fuzzy logic 

is obtained by using both (i) fuzzy meta-rules to express an arbitration policy, and  

(ii) fuzzy combination to perform command fusion. This form of combination, was 

initially suggested by Ruspini [25], and fully spelled out by Saffiotti [21, 26] under 

the name of context-dependent blending of behaviors, or CDB.  

CDB can be implemented in a hierarchical fuzzy controller as shown in 

Figure 2-10. In CDB, it is essential that the defuzzification step must be performed 

after the combination. Although in Figure 2-10 all the context-rules are grouped in 

one module, each context-rule can be put inside the corresponding behavior and this 

solution would be more appropriate for distributed implementations. This 

architecture can be iterated to implement individual behaviors, and combine them 

using a second layer of context-rules. Defuzzification should still be the last step. 
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Figure 2-10 Hierarchical Fuzzy Controller (adopted from [12]) 
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CHAPTER 3  

 

ADAPTIVE-NETWORK-BASED FUZZY INFERENCE 

SYSTEM (ANFIS) 

 

 

3.1 Adaptive Networks 

An adaptive network is a kind of multi-layer feedforward network. Some or 

all of the nodes in this network are adaptive, which means that each output of these 

nodes depends on the parameter(s) held in these nodes, and the learning rule 

specifies how these parameters should be updated to minimize the error. Each node 

performs a particular function (node function) on incoming signals and parameters. 

The function of the node may vary from node to node, and the choice of each node 

function depends on the overall input-output function, which the adaptive network is 

required to carry out. 

The links in an adaptive network only shows the flow direction of signals 

between nodes; no weights are associated with these links. For indicating different 

capabilities in an adaptive network, circles and squares are used. A square node 

(adaptive node) has parameters while a circle node (fixed node) has no parameters. 

In order to achieve a desired input-output mapping, these parameters are updated 

according to given training data and a learning procedure. An example for adaptive 

networks is given in Figure 3-1. 
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Figure 3-1 Adaptive Network (adopted from [27]) 

The basic learning rule of adaptive networks is based on the gradient descent 

and the chain rule, which was proposed by Werbos [28] in the 1970’s. But the 

gradient method is slow and has tendency to become trapped in local minima. 

3.2 Fuzzy Reasoning Mechanisms 

Several types of fuzzy reasoning have been proposed in the literature. 

Depending on the types of fuzzy reasoning and fuzzy if-then rules employed, most 

fuzzy inference systems can be classified into three types as shown in Figure 3-2. 

 

Figure 3-2 Commonly used fuzzy reasoning mechanisms (adopted from [27]) 
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The differences between them lie in the consequents of their fuzzy rules, and 

thus their aggregation and defuzzification procedures differ accordingly. 

In type 1 systems, the overall output is calculated as weighted average of 

each rule’s crisp output, which is represented by the rule’s firing strength and output 

membership functions. The rules firing strength can be determined by the product or 

minimum of the output of input membership function(s). The output membership 

functions used must be monotonically non-decreasing [29]. This model is called 

Tsukamoto model. 

In type 2 systems, which is called Mamdani model, standard fuzzy sets are 

used in both the antecedents and consequents of the rules, and a defuzzification 

procedure is utilized to obtain a crisp value from the output. The overall output is 

calculated by applying “max” function to the fuzzy outputs of each rule. For final 

crisp output several approaches might be used like: center of area, bisector of area, 

mean of maxima, maximum criterion, etc. [30,31] 

In type 3 systems Takagi and Sugeno’s fuzzy if-then rules are used [11]. The 

output of each rule is a linear combination of input variables plus a constant term, 

and the final output is the weighted average of each rule’s output. 

3.3 ANFIS 

ANFIS is a fuzzy inference system implemented in the framework of 

adaptive networks by Jang [27]. By using a hybrid learning procedure, ANFIS 

constructs an input-output mapping based on both human knowledge (in the form of 

fuzzy if-then rules) and input-output data pairs. 

3.3.1 Architecture 

Example ANFIS architecture for type 3 reasoning system is given in Figure 

3-3: 
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Figure 3-3 Type-3 ANFIS Architecture (adopted from [27]) 

ANFIS layers are defined as follows: 

Layer 1 This layer represents the membership functions. Every node in this 

layer is a square node with a node function: 

 )(1 xAO ii µ=        (1) 

where x is the input node i and iA  is the linguistic label (high, small, far, near, etc.) 

associated with this node function. 1
iO  is the  membership function of the iA  and it 

specifies the degree which the given x satisfies the iA . Usually the )(xAiµ  is chosen 

as bell-shaped function with maximum at 1 and minimum at 0 like: 
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In this case {a, b, c} are parameters of this node. As these parameters change 

the numerous membership functions can be represented. Any continuous and 

piecewise differentiable function, such as commonly used trapezoidal or triangular-

shaped membership functions, might be used in this layer as node functions. 

Parameters in this layer are referred to as premise parameters. 

Layer 2 This layer represents the rules of the system. Every node in this layer 

is a circle node (has no parameters). In these nodes incoming inputs are multiplied 

and result is sent as output. Nodes in this layer are labeled as ∏. Each node output 

represents the firing strength of a rule. Output of the nodes in this layer is: 
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)(*)( yBxAw iii µµ= ,   2,1=i    (3) 

Layer 3 This layer calculates the ratio of a rule’s firing strength to sum of all 

rules firing strengths. Every node in this layer is a circle node labeled as N.  The 

output of this layer is called normalized firing strengths calculated with: 

21 ww

w
w i

i +
= ,   2,1=i     (4) 

Layer 4 This layer calculates the output of each rule. Every node in this layer 

is a square node with the following function: 

)(4
iiiiiii ryqxpwfwO ++==     (5) 

where iw  is the output of third layer and { iii rqp ,, } is the parameter set of the node. 

Parameters in this layer are called consequent parameters. 

Layer 5 Node in this layer combines the output of each rule with vector 

summation. This single node is a circle node with the output: 
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For type-1 fuzzy inference systems, the extension for type-3 ANFIS system is 

quite straightforward (the type-1 ANFIS is shown in Figure 3-4). In this architecture 

the output of each rule is induced jointly by the output membership function and the 

firing strength. For type-2 fuzzy inference systems, if we replace the centroid 

defuzzification operator with a discrete version, which calculates the approximate 

centroid of area, then type-3 ANFIS can still be constructed accordingly. However, it 

will be more complicated than its type-3 and type-1 versions. 
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Figure 3-4 Type-1 ANFIS Architecture (adopted from [27]) 

3.3.2 Learning Algorithm 

In ANFIS hybrid learning which combines the gradient descent method and 

least square estimate (LSE) is used to identify parameters. 

The ANFIS network has only one output that can be represented as: 

      Output = ),( SIF     (7) 

where I  represents the input and S represents the parameters of the network. S is the 

total parameters in premise and consequent parts. If there is a function H such that 

composite function H o  F is linear in some elements of S, that it can be said that 

elements of S can be found by using least squares method. If the parameter set S can 

be divided into two sets 1S  and 2S  such that H o  F is linear in 2S , then after 

applying H to Equation 7, we get the following, which is linear in 2S : 

H(output) = H o ),( SIF     (8) 

Given the values of 1S , training data P can be added to the equation and the 

following matrix equation is gathered: 

AX = B     (9) 

X is an unknown vector whose elements are in 2S . If dimension of 2S  is M then 

dimension of A is PxM, dimension of B is Px1 and dimension of X is Mx1. Since 

number of training data (P) is greater than number of linear parameters (M), this is an 
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overdetermined problem and there is no exact solution. Instead, least square estimate 

of X, *X , can be found. The most well known formula for *X  is: 

BAAAX TT 1* )( −=           (10) 

where TA  is transpose of A and TT AAA 1)( −  is pseudo inverse of A if AAT  is non-

singular. Because the Equation 10 is expensive in computation and it becomes a 

problem when AAT  is singular, sequential method of Least Square Estimate is used 

given in the following equation: 

     (11) 

where T
ia is i-th row vector of matrix A, T

ib  is the i-th element of matrix B. iS is 

covariance matrix and least square estimate *X is PX . Initially 0X  = 0 and 0S  = γ I 

where I is identity matrix with dimension MxM and γ  is a positive large number. 

In ANFIS hybrid-learning procedure is composed of a forward pass and a 

backward pass. In the forward pass, input data is given to network and functional 

signals go forward to calculate each node output until the A and B given in the 

Equation 9 is obtained and then the parameters in 2S  are identified by the sequential 

least squares formulas in Equation 11. After parameters in 2S  are identified, the 

functional signals go forward and the output is calculated.  

With using the actual and target output values the error is calculated. In the 

backward pass the error is propagated from output end to input end and parameters in 

1S  is updated by gradient descent method.  

Assuming the training data set has P entries, the error measure can be defined 

for the p-th entry as in equation 12: 

  ∑ −= 2)( ppp OTE ,              (12) 
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where pT is the target output and pO is the actual output. Then the overall error 

measure is E = ∑ =

P

p pE
1

. 

To implement gradient descent in E over parameter space, firstly the error 

rate 
O

E p

∂
∂

 for the p-th training data and for each node output must be calculated. The 

error rate for the output node at layer L can be calculated from equation 13: 
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For the internal node at (k,i) layer k index i, error rate can be derived by the chain 

rule:  
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where 11 −≤≤ Lk . That is the error rate of an internal node can be expressed as a 

linear combination of the error rates of the nodes in the next layer. Therefore for all 

Lk ≤≤1  and (k)#1 ≤≤ i , 
k

pi

p

O

E

,∂
∂

 can be found by using equation 13 and 14. 

If α  is a parameter of the given adaptive network,  
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where S is the set of nodes whose output depends on α . Then the derivative of the 

overall measure E with respect to α  is, 
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Accordingly the update formula for the parameter α  is  
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in which η  is a learning rate which can be expressed as: 

∑ ∂
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E
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where k is step size, the length of each gradient transition in the parameter space. The 

value of k change to vary speed of convergence. 
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CHAPTER 4  

 

IMPLEMENTATION 

 

 

4.1 Problem Definition and Motivation 

Several studies are made on reactive autonomous mobile robots. Until recent 

years, in most of the studies numerical methods are used to control the robot, but the 

usage of fuzzy logic is gaining interest in mobile robotics. Fuzzy logic provides tools 

that are of potential interest to mobile robot control [12].  

In this study fuzzy control is used in a neural network by which both the 

advantages of numerical systems and fuzzy systems are obtained. Numerical systems 

learn fast without dealing with symbolic representations and fuzzy systems gets the 

profit of human reasoning in the modeled system. 

An online learning system for a dynamic environment is modeled and 

implemented in this work. The goals are to navigate the robot without striking to the 

obstacle, to find and reach the target objects. Environment is cluttered with different 

shaped obstacles. Experiments are performed in a simulation environment named 

Webots 2.0 of the Khepera robot [32]. This robot has eight short-ranged infrared 

sensors. A matrix vision turret is used to get the image of the world seen by robot. 

Main motivation of this study is to design a robot control system, which is 

robust to sensor errors and sudden changes, adaptable to different objectives and 

reactive in dynamic environments. No global world model and deliberative reasoning 

is used.  
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4.2 Khepera and Webots 

Khepera is a small robot especially used for research and education. It is 5 cm 

in diameter. It has 8 infrared sensors with the capability to detect obstacles, which 

are maximum 5 cm far away. Light sources also can be detected with these infrared 

sensors that is in the 15 cm range.  

It has two independent DC step motor wheels with encoders. Each wheel can 

move with the speed in the range 20± , where unit of speed is 8mm/s. Maximum 

speed of Khepera is 16 cm/s.   

Khepera has a matrix vision turret, which is used to gather the image of the 

environment. It supplies 24-bit color depth with a 60x80 pixel resolution.  

Webots is a simulator, which is specifically designed for Khepera, and it adds 

%10 error to sensors and actuator to simulate the real world conditions. 

4.3 Control Architecture 

4.3.1 Behaviors 

A behavior-based architecture is used for the control system. Different 

methods are used for behaviors. There are four basic behaviors of the robot, which 

are: Avoid Obstacle, Go to Goal, Wall Following and Generate Random Action. 

Each behavior is described as follows. 

Avoid Obstacle and Go to Goal: An online learning is applied for the avoid 

obstacle and go to goal behavior. These two behaviors are implemented in a neuro-

fuzzy architecture, ANFIS, which is defined in chapter 3. The membership functions 

and rules can be configurable, so structure of the network is not fixed. It can be 

adapted to different conditions easily. 

Goal objects are identified with red color. The output of the network is used 

as the direction of the robot. Negative values are used as left turn; positive values are 

used as right turn. 
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There are four inputs of the network: 

Density of Goal: Image of the world is taken as input from matrix vision 

turret and red color density in the image is calculated for density of goal.  

Direction of the Goal: This input is also calculated from the image gathered 

from color sensor. Image is divided into two parts, left and right, and according to 

the red color density in both parts direction of the goal is determined. 

Obstacle Distance:  Infrared sensor values are used for distance to obstacles. 

Sensor values are grouped into three categories: left, right and front. The maximum 

of these three groups is used as obstacle distance. 

Obstacle Direction: Again infrared sensor values are used to determine 

obstacle direction.  

This behavior is designed in a generic approach. Number of membership 

functions, parameters for these functions and rules of the system are adaptable.  

Wall Following: When the robot is faced with a wall this behavior makes the 

robot follow it. 

Search Goal: This behavior is activated when no goal is seen for a number of 

predefined steps (about 100 simulation step). In this behavior robot turns around and 

at every 20 degree gets the image of the environment, calculates the goal density. At 

the end of rotation, robot decides to go in the direction where the goal density is 

greatest. 

Control architecture is given in the Figure 4-1: 
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Figure 4-1 Control Architecture 

Avoid obstacle and go to goal behaviors are implemented as cooperative 

behaviors. Coordination of these activities is supplied with the use of ANFIS 

architecture.  

The overall coordination of behaviors is performed by arbitration with 

context. According to the situation of the world a priority is given for each behavior 

and the behavior with the highest priority is carried out. 

4.3.2 Learning Mechanism 

ANFIS is built according to a configuration file which defines the number of 

rules, number of membership functions and relationship of nodes. Initial parameters 

for membership and output functions are taken from a parameter file. Khepera is 

enabled and it begins to run. At each step according to context a behaviour is 

selected and robot is moved according to output of the this behavior.  This execution 

is shown in Figure 4-2. 
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Figure 4-2 Main Execution Cycle 

In behavior selection, current image of world seen by Khepera is taken from 

camera. Image is analyzed and if any goal object is observed ANFIS behavior is 

selected for the robot to move toward the goal. After goal is reached, for a number of 

steps again ANFIS behavior is activated although the goal can not be seen. By this 

way, with avoid obstacle behavior in ANFIS, it enables the robot go away from the 

goal.  
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If goal was not seen for a determined number of steps, Search Goal behavior 

is selected. If the robot was following a wall, the Wall Following behavior is selected 

again. Otherwise sensor values are gathered and analyzed to see if there exist a new 

wall in the left or right of the robot. If so, Wall Following behavior is executed. 

Robot moves according to ANFIS behavior, otherwise.  Behavior selection is shown 

in Figure 4-3. 

 

Figure 4-3 Behavior Selection 
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In ANFIS behavior, inputs of the network are calculated and given to ANFIS 

network to determine the output. If output is smaller than 0, robot turns left with the 

speed value as the output of network. If output is larger than 0, robot turns right with 

the speed value as the output of network. Otherwise robot moves forward. ANFIS 

behavior is shown in Figure 4-4. 

 

Figure 4-4 ANFIS Behavior 

After robot action, ANFIS network is trained. The target output value for the 

network  is determined using the situation of the world perceived by the robot before 

and after its action. A negative reinforcement arises when the robot is so close to an 

obstacle or goal density observed is decreased. Positive reinforcement arises when 

the goal density is increased. If there exist an obstacle close to robot, target value 

must be to turn opposite direction of the obstacle. If observed goal density is 

decreased after the move, target value is selected as the opposite direction that the 

robot was moved. But if goal density is increased target value is selected same value 

as the robot was moved. If the change in the goal density is small, it is assumed to be 

not changed. In this condition, goal direction is used to determine the target value. If 

goal seen, the direction of the goal is selected as the target value. In other conditions 

target value is selected as the same value that the robot was moved. Target value 

determination algorithm is given in Figure 4-5. 
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Figure 4-5 Find Network Target Value 

Network is trained according to determined target value. Network is selected 

as type-1 ANFIS. Membership functions in 2nd layer of the network are choosen as 

bell-shaped functions as shown in Figure 4-6 . Parameters a, b and c are used to 

determine the membership function.  
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Figure 4-6 Membership Functions 

Consequent functions in 4th layer must be monotonically non-decreasing for 

type-1 ANFIS. The consequent functions are also determined according to 

parameters p and q, as shown in Figure 4-7 . 

 

Figure 4-7 Consequent Functions 

Input values are given to network and output of nodes in layer 1 to 3 is 

calculated. For identifying parameters of consequent function in 4th layer Least 

Square Estimate is used which is given in Equation 11.  According to identified 

parameters, actual output of network is gathered. Error is calculated with actual and 

target output values. With gradient descent method error is propagated backwards 

and in 2nd layer membership functions parameters are updated.  Network training is 

shown in Figure 4-8. 
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Figure 4-8 ANFIS Network Training 

When goal is not seen for a number of steps (about 100 simulation steps), 

robot stops and begins to turn its around. After each 20 degree turning, it stops and 

image of the world is gathered from camera and goal density is calculated. When 

robot completed a turn around itself, it stops. From calculated goal densities the 

direction where goal density was maximum is selected. Robot turns to this direction 

and begins to move in this direction. Search goal behavior execution is given in 

Figure 4-9.  
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Figure 4-9 Search Goal Behavior 

In Wall Following behavior, direction of the wall is determined from sensor 

readings. Speed for motors are calculated according to distance and direction to wall. 

Robot makes movement according to determined motor values. If the wall is not seen 

after this action, wall following behavior is stopped. Then again behavior selection 

given in Figure 4-3 is executed. Wall Following behavior execution is shown in 

Figure 4-10. 
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Figure 4-10  Wall Following Behavior 

4.4 Experimental Results 

Experiments are carried out at Webots. Fixed and dynamic environments are 

used as test environment. In environments there were obstacles and goal objects 

placed randomly. In dynamic environments goal object were dynamic. In both 

environments the robot was able to find and reach the goal objects. When the objects 

are moving, the robot followed the goal objects.   

The complexity of the environment is determined according to number of 

obstacles, number of goal objects and wall orientations. As the number of obstacles 

increases and the walls prevents the robot to see and reach the goal objects, the 

complexity of the environment increases. 

When in the environment number of obstacles and goal objects are increased, 

the robot learned the behavior faster. Because the data used in the training of the 
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network is collected as the robot moves around, if there exist more objects in the 

environment, then richer data will be available. With rich data the network trained 

faster.  

 But crowded environments were designed such that the robot can see the 

goal objects easily. When the robot cannot see the goal object, because of walls or 

obstacles it can get stuck at same positions.  

Experiments can be grouped under four headings that can be categorized 

according to learning algorithm used, rules employed, world models and 

static/dynamic goal objects. 

1. In ANFIS network training, both batch and online learning is tested. 

While the robot navigates in the world, training data is collected. In batch learning, 

after each 1000 training data is collected, the network is trained. These 1000 training 

data used in training are not same. The training of network with each 1000 data is 

called an epoch. One epoch is divided into two phases, a forward and backward 

phase. In first phase consequent function parameters is identified with Least Square 

Estimate (LSE) method. In this phase membership function parameters are not 

updated. In second phase, gradient descent algorithm is used to update membership 

function parameters.  

In online learning, for each training data firstly Least Square Estimate is used 

to update consequent function parameters and then with using these identified 

parameters output of network is calculated. Error is calculated for training data and 

membership parameters are updated using this error in Gradient Descent algorithm. 

In batch processing, total error collected for all training data in one epoch is 

used in Gradient Descent. But in online learning only the current training data error 

is used. 

Experiments are made in the world model shown in Figure 4-11.  
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Figure 4-11 An Example World 

In Figure 4-12 analysis for batch and online learning is shown: 
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Figure 4-12 Error Analysis for Batch and Online Learning 

Online learning gives better results as compared to batch learning. System is 

adapted to current conditions in online learning easily. Because in batch learning, the 

training occurs in epochs and between epochs the robot acts according to last results 
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obtained and does not adapt to current conditions. But in online learning the training 

occurs after each action of the robot and robot uses these updated results that reflects 

the current situation better.  

It is difficult to learn escape when the robot stuck near a wall in batch 

learning, the picks seen in graphics is caused by these situations. The robot can stuck 

near a wall when there exist a wall corner at one side of it, and sees target objects in 

same direction. It oscillates between the Avoid Obstacle and Go to Goal behaviors.  

But Avoid Obstacle has higher priority and robot learns to escape from this 

condition. In batch processing because learning is made within epochs, robot learns 

to escape from this condition one epoch later. 

Online learning is also tested using forgetting factor in Least Square Estimate 

method. With this factor squared error measure is formulated to give higher 

weighting factors to more recent data pairs. By this way the effects of old data pairs 

are decayed as new data pairs become available. The updated formulas for LSE is 

given in Equation 19 with forgetting factor λ : 

    (19)  

In Figure 4-13 comparison with and without forgetting factor in online 

learning is shown. With forgetting factor used in LSE, system gives better results. 
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Figure 4-13 Error Analysis for Online Learning with Forgetting Factor 

2. Robot is tested with two different rule sets and membership functions 

for ANFIS network within same world model (Figure 4-11).  

In both sets the inputs are same: Goal Density, Goal Direction, Obstacle 

Distance and Obstacle Direction. 

In first set, 

There are 2 membership functions for each input: 

• Goal Direction: Left, Right 

• Goal Density: Low, High 

• Obstacle Distance: Near, Far 

• Obstacle Direction: Left, Right 

And 6 rules: 

1. If Goal Direction is Right AND Goal Density is Low TURN RIGHT  
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2. If Goal Direction is Right AND Goal Density is High TURN RIGHT 

SHARP 

3. If Goal Direction is Left AND Goal Density is Low TURN LEFT 

4. If Goal Direction is Left AND Goal Density is High TURN LEFT 

SHARP 

5. If Obstacle Distance is Near AND Obstacle Direction is Right TURN 

LEFT 

6. If Obstacle Distance is Near AND Obstacle Direction is Left TURN 

RIGHT 

The network structure according to this rule set is given in Figure 4-14. In 

this set, there are no middle values for membership functions. The inputs related with 

direction are classified as left or right and front is discarded and there is no action for 

going forward. When the network is trained with these rules, going forward action is 

simulated by oscillating left and right directions.  

 

Figure 4-14 Network Structure for First Rule Set  
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In the second set middle values for membership functions and a rule for going 

forward is added. 

In second set, 

Now there are 3 membership functions for direction inputs: 

• Goal Direction: Left, Front, Right 

• Goal Density: Low, High 

• Obstacle Distance: Near, Far 

• Obstacle Direction: Left, Front, Right 

And 8 rules (2 rules added to first set): 

1. If Goal Direction is Right AND Goal Density is Low TURN RIGHT 

2. If Goal Direction is Right AND Goal Density is High TURN RIGHT 

SHARP 

3. If Goal Direction is Left AND Goal Density is Low TURN LEFT 

4. If Goal Direction is Left AND Goal Density is High TURN LEFT 

SHARP 

5. If Goal Direction is Front GO FORWARD 

6. If Obstacle Distance is Near AND Obstacle Direction is Right TURN 

LEFT 

7. If Obstacle Distance is Near AND Obstacle Direction is Left TURN 

RIGHT 

7. If Obstacle Distance is Near AND Obstacle Direction is Front TURN 

RIGHT 
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The network structure for second rule set is given in Figure 4-15. Because 

second rule set is more complete and it handles more situations than first set, robot 

learns faster and moves smoother with this set. When there is an obstacle in front, 

robot tends to turn right because of the last rule. 

 

Figure 4-15 Network Structure for Second Rule Set 

The error analyses of two sets are given in Figure 4-16. Second rule set gives 

better results according to first set.  
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Figure 4-16 Error Analysis with Two Rule Set 

If the complexity of the network increases the performance of the robot 

decreases. Learning of behaviors becomes more difficult as the number of 

connections between the nodes increases. The complexity of the network is 

determined by the number of inputs, number of membership/consequent functions, 

number of rules and membership/consequent functions’ complexities. As the number 

of nodes and connections between them increases, the complexity of the network 

increases. Furthermore, if complex algorithms are used in the 

membership/consequent functions, the complexity of the overall network increases. 

3. Robot is tested with the world that has walls which is shown in Figure 4-17 
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Figure 4-17 World Model With Walls 

 In this world model robot learns faster according to world model without 

walls, because by following walls robot reaches the goal objects easily. But if the 

walls prevent the robot to see and reach the goal objects, the performance of robot 

decreases. Comparison is shown in Figure 4-18 with the two world models. World 

model without walls is given in Figure 4-11. 
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Figure 4-18 Error Analysis for World Model With Walls 
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4. The robot is tested in dynamic environment, where the goal objects are not 

stationary, after training. When there are moving goal objects in the world, the robot 

followed them successfully. The error analysis for a world model with dynamic goal 

objects are given in Figure 4-19: 
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Figure 4-19 Error Analysis for Dynamic Environment 

4.5 Comparison With Previous Studies 

Construction of a well performing fuzzy system is not always easy. The 

problem of finding appropriate membership functions and fuzzy rules is often a tiring 

process of trial and error. But usage of learning algorithms with fuzzy systems helps 

to overcome this problem. The learning capabilities of neural networks made them 

prime target for a combination with fuzzy systems in order to automate or support 

the process of developing a fuzzy system for a given task. And in this study neural 

network is used for learning parameters of membership and consequent parameters 

of fuzzy system 

In a similar study to this study was made by Zavlangos and Tzafestas [33] 

which is an intelligent navigation system for omnidirectional mobile robots based on 

fuzzy logic. The objective is finding collision free trajectories for a robot, in static or 
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dynamic environments containing some obstacles between start and goal 

configuration. The fuzzy rule base of the system combines the repelling influence, 

which is related with distance and the angle between the robot and nearby obstacles, 

with attracting influence produced by the angular distance between the actual 

direction and position of the robot and final configuration, to generate a new 

actuating command. The disadvantage of this system is membership functions are 

fixed and determined by the developer. Finding the optimum parameters for 

membership function is a problem in fuzzy systems without using learning 

algorithms. These membership functions are peculiar to the worked environment and 

robot characteristics and are not adaptable to different conditions, like different 

sensors. As an advantage of our study, membership and consequent function 

parameters are not fixed. They are adapted with online learning using ANFIS for Go 

to Goal and Avoid Obstacle Behaviors. 

In their study J.Cao and X. Liao [34] proposed a reactive navigation system 

using neuro-fuzzy techniques. The purpose of the robot is to follow a path identified 

by two dashed lines. The robot current angle with respect to the line direction and the 

robot offset with respect to centerline is used as inputs and output is defined with 

three actions: turn right, turn left and go straight. In this system, the parameters of 

membership/consequent functions and connection weights between nodes in the 

network are learned. When the weight of a rule or membership function is close to 

zero, they are deleted and new ones are added.  

Rule generation is very difficult in complex systems especially when the 

number of inputs is high. Pruning techniques from neural networks can be used to 

reduce the number of rules in neuro-fuzzy systems. It is also possible to use fuzzy 

clustering methods to find fuzzy rules and initialize system with them. One 

possibility to learn rules is to start with a system that contains all possible fuzzy rules 

that can be defined according to partitioning of inputs. Thus the system begins with 

an inconsistent rule base, which is made consistent by learning. The idea of 

decremental rule learning is to try out existing rules and to evaluate them. Rule units 

that do not pass this test are eliminated from the network. This learning algorithm 

becomes very expensive, if there are a lot of fuzzy sets defined for a lot of variables. 
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For this reason, it is useful to use knowledge about the system to generate initial 

rules and avoid generating all possible rules. Incremental rule goes in the opposite 

way, creates a rule base from scratch by adding rule by rule. NEFCON [35,36] 

system supplies both incremental and decremental rule-learning techniques. 

Disadvantage of ANFIS is that there is no learning procedure defined for a given 

neuro-fuzzy model and structure of network is fixed.  

Another fuzzy navigation study was developed by Benreguieg [37], which is 

also tested on Khepera. This system has a planner and navigator divisions. Planner 

part generates paths for the robot to achieve goal points with using A* algorithm and 

visibility graph. The navigator handles goal-seeking and avoid obstacle behavior 

with using fuzzy logic. In this study complete world knowledge is needed for the 

planner and the world must be static. In our study no deliberative planning is made, it 

is a reactive system that acts according to local data. The advantage of our system is 

to adapt changing environments without using a world model. 

There is a trade off in neuro-fuzzy approaches. To obtain high performance, 

complex training algorithms based on gradient descent algorithms which demand 

Sugeno or Tsukamoto (Section 3.2) type fuzzy systems is needed. When Mamdani 

type fuzzy systems are used which are easier to interpret, fast heuristic for training 

can be used but achieve lower performance[36]. In ANFIS hybrid learning of 

gradient descent and LSE is used which causes high computational complexity but 

good performance. 

In this study, ANFIS is applied with Tsukamoto inference system. The output 

of each rule is defined as a crisp value induced by the rule’s firing strength. The 

overall output is taken as the weighted average of each rule’s output. Since each rule 

gives a crisp output and the aggregation is made by weighted average, this model 

avoids the time-consuming process of defuzzification. 
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CHAPTER 5  

 

CONCLUSION 

 

 

In robotics most applications of fuzzy logic concern the use of fuzzy control 

techniques to implement individual behaviors. Fuzzy controllers are a convenient 

choice when an analytical model of the system to be controlled cannot be easily 

obtained, and there is variability and uncertainty in the parameters. These 

characteristics fit well for reactive behaviors because a mathematical model of the 

environment is usually not available, sensor data is uncertain and imprecise, and real 

time operation is essential. And also fuzzy logic provides a methodology for 

representing human expert knowledge and perception-based actions without needing 

analytical model of the system. 

However, identifying optimum fuzzy membership and consequent functions 

is a tedious task. To solve this problem learning algorithms are used. Neural 

networks have an important application area in the field of mobile robotics because 

of their adaptive and learning properties. Several studies are made using this hybrid 

model of fuzzy logic and neural networks [38-40]. 

In this study a behavior-based navigation strategy using neuro-fuzzy 

approach is presented. ANFIS is applied in a mobile robotics problem with 

Tsukamoto style inference system. The resulting architecture is adaptable to different 

objectives and robust to environmental changes. The robot successfully navigates in 

a dynamic environment, find and reach to target objects. When there are walls in the 

environment that lead the robot to reach goals, the performance of robot increases. 
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This structure has advantages over analytical methods because of fuzzy logic. 

With using fuzzy logic rules the robot behaviors are defined as simple and 

understandable and human expert knowledge is added to system easily. The usages 

of rules to define the behaviors give the flexibility to define different behaviors and 

objectives with update of these rules. So the system is adaptable to different 

objectives. Second, because of the interpolative nature of fuzzy control the 

movement of the robot is smooth without abrupt changes that may be caused by 

sensor values. 

The system is adaptable to different conditions with the usage of neural 

network for learning the fuzzy membership and consequent functions.  Because the 

membership functions are not fixed when the input values range change because of 

different environmental conditions or usage of different sensors, the system adapts to 

these conditions by updating membership function parameters. 

 In our study, because of behavior-based strategy is used; the system has a 

modular structure that can be extended easily to add new behaviors. In this 

architecture multiple behaviors are combined into a unified action without abrupt 

transitions. 

As a future work, the capabilities of the robot control system can be extended 

by adding new behaviors. A behavior remembering previously visited goal object 

positions and encouraging the robot to go unvisited sections of the world can be 

added. And also different characteristics can be used other than color to identify goal 

objects in the world. Rule generation functionality can be added by modifying 

ANFIS system.  

In this study, a matrix vision turret is used to get the image of the world seen 

by the robot. And this instrument is an extension for Khepera robot, which does not 

exists in robot at hand. So it was not possible to apply the method to the real robot. 

As a future work, after this extension turret is gathered the proposed method can be 

tested on real robot. 
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With enhancing this study target object identification may be changed and 

this system can be used in real world problems when the goal is finding target objects 

in an unknown environment.   
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