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ABSTRACT

IMPLEMENTATION AND COMPARISON OF TURBULENCE MODELS ON A
FLAT PLATE PROBLEM USING A NAVIER-STOKES SOLVER

GENC, Balkan Ziya
M.Sc., Department of Mechanical Engineering

Supervisor: Prof. Dr. M. Haluk Aksel

December 2003, 102 pages

For turbulent flow calculations, some of the well-known turbulence
models in the literature are applied on a previously developed Navier-Stokes
solver designed to handle laminar flows. A finite volume formulation, which is
cell-based for inviscid terms and cell-vertex for viscous terms, is used for
numerical discretization of the Navier-Stokes equations in conservative form.
This formulation is combined with one-step, explicit time marching Lax-
Wendroff numerical scheme that is second order accurate in space. To minimize
non-physical oscillations resulting from the numerical scheme, second and
fourth order artificial smoothing terms are added. To increase the convergence

rate of the solver, local time stepping technique is applied.

1l



Before applying turbulence models, Navier-Stokes solver is tested for a
case of subsonic, laminar flow over a flat plate. The results are in close

agreement with Blasius similarity solutions.

To calculate turbulent flows, Boussinesq eddy-viscosity approach is
utilized. The eddy viscosity (also called turbulent viscosity), which arises as a
consequence of this approach, is calculated using Cebeci-Smith, Michel et. al.,
Baldwin-Lomax, Chien’s k-& and Wilcox’s k-w turbulence models. To evaluate
the performances of these turbulence models and to compare them with each
other, the solver has been tested for a case of subsonic, laminar - transition
fixed - turbulent flow over a flat plate. The results are verified by analytical

solutions and empirical correlations.

Keywords: Navier-Stokes equations, finite volume method, Lax-
Wendroff method, Cebeci-Smith turbulence model, Michel et. al. turbulence
model, Baldwin-Lomax turbulence model, k-& turbulence model, k- turbulence

model.
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BiR NAVIER-STOKES COZUCUSU KULLANARAK TURBULANS
MODELLERININ BiR DUZ PLAKA PROBLEMI UZERINDE UYGULANMASI
VE KARSILASTIRILMASI

GENC, Balkan Ziya
Yiiksek Lisans, Makina Miihendisligi Bolimii
Tez Yoneticisi: Prof. Dr. M. Haluk Aksel

Aralik 2003, 102 sayfa

Tirbiilansli akiglar1 hesaplamak igin, daha 6nceden laminar akiglar igin
gelistirilen hazir durumda bir Navier-Stokes ¢oziiciisiine, literatiirde iyi bilinen bazi
tiirblilans modelleri eklenmistir. Korunum bi¢imindeki Navier-Stokes denklemlerinin
sayisal olarak ayristirilmasi igin, viskoz olmayan terimlerde hiicre koseli, viskoz
terimlerde ise hiicre merkezli olan bir sonlu hacim yontemi kullanilmistir. Bu
formiilasyon, uzayda ikinci dereceden hassas, tek adimli ve zaman ilerlemeli Lax-
Wendroff sayisal semasi ile birlestirilmistir. Sayisal yontemden kaynaklanan fiziksel
olmayan dalgalanmalar1 Onlemek ig¢in ikinci ve dordiincii dereceden yapay
yumusatma terimleri eklenmistir. Coziiciiniin yakinsama hizini artirmak i¢in yerel

zaman adimlama teknigi uygulanmistir.



Tiirbiilans modellerini uygulamadan 6nce, Navier-Stokes ¢oziiclisii, bir diiz
plaka tizerindeki sesten diisiik hizli, laminar bir akis durumu i¢in denenmistir.

Sonuglar Blasius benzerlik ¢oziimleriyle yakin uyum icerisindedir.

Tiirbiilansli akiglar1 hesaplamak icin, Boussinesq edi-viskozite yaklagimi
kullanilmigtir. Bu yaklagimin sonucu olarak ortaya c¢ikan edi viskozitesi (tiirbiilans
viskositesi de denilir), Cebeci-Smith, Michel, Baldwin-Lomax, Chien’in k-¢ ve
Wilcox’un k-w tiirbiilans modelleri kullanilarak hesaplanmistir. Tiirbiilans
modellerinin performanslarini degerlendirmek ve birbirleriyle karsilastirmak
icin ¢oziicli diiz bir plaka ilizerindeki sesten diisiik hizli, laminar - sabit gegisli -
tiirbiilanslhi bir akis durumu i¢in test edilmistir. Sonuglar, analitik ¢éziimler ve

deneysel korelasyonlar kullanilarak dogrulanmugtir.

Anahtar Kelimeler: Navier-Stokes denklemleri, sonlu hacim yontemi, Lax-
Wendroff yontemi, Cebeci-Smith tiirbiilans modeli, Michel ve arkadaglarinin
tirbiilans modeli, Baldwin-Lomax tiirbiilans modeli, k-& tirbiilans modeli, k-@

turbiilans modeli.
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CHAPTER 1

INTRODUCTION

1.1 WHY COMPUTATIONAL FLUID DYNAMICS (CFD)?

The science of modern fluid dynamics, the subject of which is the
understanding and modeling of fluid flow phenomena, has three major approaches to
solve the problems of fluid flow: Experimental, theoretical, and computational, as

stated in the order of their historical outcome and significance.

Each of these three approaches has different methods to obtain solutions, but
serve for the same objective: To obtain the most realistic solution, compromising

cost and accuracy. So to achieve this, they interact with each other synergistically, as

can be shown in the figure below:

THEORY
(since 1700)

EXPERIMENT
(since - )

CFD
(since 1965)

Figure 1.1 Interaction of major approaches in CFD, Gerritsma [1].

Especially in aerodynamics, this interaction brings a very useful teamwork,

resulting in superior designs of flow fields. In this teamwork, the role of these basic



three approaches, with their advantages and disadvantages can briefly be stated as

follows:

1.1.1 Experimental Approach:

Experiments are efficient means of measuring global parameters like drag,
lift, pressure drop, heat transfer coefficients, etc... with the advantage of containing
the correct physics [2]. However, for example, if the experiments are carried out in a
wind tunnel, scale effects may become important. Therefore, setting the correct
Mach number, Reynolds number and other similarity parameters appropriately may
not be possible. What’s more, there is always the influence of the wind tunnel walls
and the support of the model. As another option, if a field test with the actual
prototype has to be carried out, then the disadvantages will consist of the difficulties
in instrumentation, the inability to provide controlled flow conditions and lack of

safety.

Thus, where possible, experiments offer the ultimate test, but the restricting

factors are [1]:

1. Object or model modification may be extremely difficult or expensive
ii. ~ Model test is not always possible due to high temperature and real gas effects

iii.  The cost and availability of equipment

1.1.2 Theoretical (Analytical) Approach:

Theoretical approaches, on the other hand, have the advantage of providing
solutions in closed forms. Thus one can immediately identify the fundamental
parameters and study the effect of varying a certain parameter on the answers to
problems. Even so, to obtain this much of a “mathematical comfort”, either a simple
flow should be chosen or approximations (i.e. boundary layer hypothesis) to the full

flow problem should be engaged.



Having briefly stated the above drawbacks for experimental and theoretical
approaches, one can easily see the need for a reasonable complementary alternative

to flow problems. Hence computational approaches come into the picture:

1.1.3 Computational (Numerical) Approach:

The fundamental principles governing fluid flow, can be expressed in terms
of mathematical equations, which in their most general form, are usually partial
differential equations. CFD is, in part, the art of replacing the governing partial
differential (or integral) equations of fluid flow with numbers and advancing these
numbers in space and time to obtain a final numerical description of the complete
flow field of interest [3]. In this regard, computational problems involve the
manipulation of, and the solution for numbers. It can be said that the end product of

CFD is a collection of numbers presented with their detailed analysis and discussion.

CFD has become an indispensable tool in aerodynamics for both designing
and analyzing flows which have no analytical solutions. Indeed, from late 1950°s -
from the time when aerodynamicists were seeking for the solution of the famous
bow-shock problem - up to now, CFD has been the subject of continuous increase in
popularity. Moreover, the increase in the performance to cost ratios of computer
speeds - which shows no sign of slowing down - draws the interest towards
numerical techniques, and brings the opportunities for more realistic simulations at a
lower cost. Here, it is worth mentioning that many of the key ideas for numerical
solution methods of partial differential equations were established more than a
century ago, but they were of little use before computers appeared [2]. So today, it is
well appreciated that computers make the study of fluid flow easier and more

effective.

This trend for CFD would well be understood, when its important advantages

are considered [4]:

i.  Substantial reduction of lead times and costs of new designs



ii.  Ability to study systems where controlled experiments are difficult or
impossible to perform (e.g. very large systems)

iii.  Ability to study systems under hazardous conditions at and beyond their
normal performance limits (e.g. safety studies and accident scenarios)

iv.  Practically unlimited level of detail of results

Despite all its advantages, there are limitations and restrictions for CFD:
Flow predictions are as superior as the level of physics that goes into the
formulations. That is to say, the quality of the computational results will always
depend on our ability to model the physics appropriately (interaction with the
theory). Here, one should keep in mind that numerical results are always
approximate. Furthermore, the solution will not only depend on the physical
parameters but also on the numerical parameters such as time step, relaxation
parameters, the mesh, etc... Thus, in order to make sure that the problem is really
solved and there are no misconceptions, comparison of the results with experiments

is necessary (interaction with experiment). This process is called “validation”.

1.2 WHAT DOES CFD ENCOMPASS?

1.2.1 Mathematical Modeling:

CFD is interested in fluid flows for which the equations describing their
behavior are known but no analytical solution exists. Thus, in CFD, an approximate
solution is sought. To accomplish this, a mathematical model is needed, which will
describe the flow with enough detail and reduce the complexity of the original

equations.

The motion of an heat conducting, viscous fluid is governed by a set of non-
linear partial differential equations, known as Navier-Stokes equations, derived from
the conservation laws for mass, momentum and energy. Expressed in different forms,
Navier-Stokes equations are the most comprehensive models for problems of fluid

flow. However, they are highly non-linear and have complex solutions: To simplify



the solutions, for example, one can consider “inviscid flow” assumption to get rid of
viscous terms in these equations, but then the chances of obtaining a detailed flow
analysis near solid boundaries and predicting frictional effects will be impossible.
Alternatively, a two-dimensional approximation for the flow field can be employed,
but this time, the inherent three-dimensional structure of turbulence will be overseen:
Unfortunately, two-dimensional flow models are unable to account for the three-
dimensional mechanism of “vortex stretching”, the major source of turbulence
structures. As it can be seen from these examples, solutions to fluid flow problems,
can be obtained by various levels of approximation, like spatial level, steadiness
level or dynamical level, as covered by Hirsch [5]. Such approximations,
assumptions and their effects should always be kept in mind, to understand and

comment on the character of solutions.

1.2.2 Grid Generation:

In a numerical solution, the flow properties are defined on a numerical grid,
which is basically a discrete representation of the problem domain. The grid is
bounded by the object and the peripherals of the domain considered, and the process
of rendering such a grid is called grid generation. Grid generation makes the problem

manageable for computer simulations.

There are various ways to define a grid around an object, which one to choose

depends on the following facts:

i.  Geometric complexity of the object around or inside which the fluid flows
ii.  Mathematical model chosen to solve the problem (i.e. Euler or N-S
equations)
iii.  Qualitative shape of the flow field solution (i.e. where large gradients occur,

like shock waves, boundary layers, etc...)

Among the above stated considerations, the latter is rather intuitive, and

depends on the previous experiences of the grid designer. With careful consideration



of the above facts about grid generation, different kinds of algorithms can be
employed to produce grids, like structured ones of O-type, C-type, H-type, etc ... or

unstructured ones.

1.3.3 Discretization of the Governing Equations:

It is the recipe by which the continuous partial differential equations,
governing the fluid flow, are converted into their discrete algebraic counterpart, to be

handled by the computer. Well known discretization methods are [1,2]:

Finite Difference Method (FDM): This method approximates the governing
equations by Taylor series expansions. It is believed to have been introduced by
Euler in the 18" century. Disadvantages are restriction to simple geometries and

conservation principle is not enforced unless special care is taken.

Finite Element Method (FEM): 1t is similar to FVM in many ways. The
domain is broken into a set of discrete volumes or finite elements that are generally
unstructured. The distinguishing feature is that the equations are multiplied by a
weight function, before they are integrated over the entire domain. It has the

advantage of ability to deal with arbitrary geometries.

Finite Volume Method (FVM): This method takes the integral form of the
conservation equations as the starting point, and divides the domain into finite
number of contiguous control volumes. It uses discrete approximations to surface
integrals appearing in the integral formulation. This approach is perhaps the simplest
to understand and to program. All approximated terms have physical meaning which
is why it is popular among engineers. Disadvantage is that methods of order higher
than two are more difficult to develop in three-dimensional space. That’s because
finite volume approach involves three stages of approximation which are
interpolation, differentiation and integration. This is also the kind of approach

implemented in this study.



Spectral Element Method (SEM): This is a fairly new method, similar to
FEM. One of its differences with FEM is that in SEM, the basis functions are chosen

perpendicular to each other.

It should be noted that there is no method optimal to every problem of fluid

flow.

1.3 MATHEMATICAL MODELING OF TURBULENCE FOR CFD

1.3.1 Definition and Characteristics of Turbulence:

In 1937, Taylor and Von Karman proposed the following definition of
turbulence: “Turbulence is an irregular motion in general makes its appearance in
fluids, gaseous or liquid, when they flow past solid surfaces or even when
neighboring streams of the same fluid flow past over one another” [6]. Most flows
occurring in nature and in engineering applications are turbulent. The irregularity of
turbulent motion is due the inherent nonlinear nature of Navier-Stokes equations,
when the Reynolds number is beyond a critical value. Thus, contrary to laminar flow,
which is regular and deterministic, turbulent flow is stochastic and chaotic [7].
Luckily, for engineers, rather than instantaneous properties, average behavior of
turbulence is generally sufficient for which mathematical models are established.
Before plunging into these mathematical models it will be useful to take a look at

characteristics of turbulence, as briefly stated below [8]:

i.  Turbulence is irregular or random, which makes deterministic approaches
impossible; instead, one relies on several statistical methods to handle
fluctuating properties over time.

ii.  Turbulence is diffusive, which causes rapid mixing and increased rates of
momentum, heat and mass transfer. This property is useful for some
applications.

iii.  Turbulence arises at large Reynolds numbers, due to the instability of

laminar flows, when the nonlinear convective term in Navier-Stokes



equations gets increasing importance compared with the viscous term. Thus
the tendency to instability, which is damped by viscosity, increases.

iv.  Turbulence is intrinsically three dimensional, characterized by high levels of
vorticity fluctuations produced by the vortex stretching mechanism. This
mechanism is absent in two dimensional flows.

v.  Turbulence dissipates energy. Viscous shear stresses perform deformation
work, which increases the internal energy of the fluid at the expense of
kinetic energy of the turbulence.

vi.  Turbulence is a continuum phenomenon governed by equations of fluid
mechanics. This is because even the smallest scales of turbulence are far
larger than any molecular length scale (i.e. mean free path of molecules).

vii.  Turbulence is flow dependent, not a feature of fluids but of fluid flows.

1.3.2 A Brief History of Turbulence Modeling:

Modern turbulence modeling efforts go back to the time when Osbourne
Reynolds proposed one of the most popular averaging techniques in 1895 and
established the famous Reynolds averaged Navier-Stokes equations (RANS). His
approach can be taken as the origin of modern turbulence research. This technique is

also adopted in this work and will be discussed in Chapter 2.

But, before Reynolds, in 1877, Boussinesq introduced the eddy viscosity
concept, which is an analog of molecular counterpart in Navier-Stokes equations
established for laminar viscous flows [9]. This approach has greatly influenced
turbulence research on the coming years such that few authors find a need to refer to

Boussinesq’s original paper.

No one until Prandtl’s discovery of boundary layer concept in 1904 had ever
attempted to solve RANS equations [6]. After further research, in 1925, Prandtl
introduced the mixing length concept (from an analogy to the kinetic theory of gases)

by which he could propose an algebraic expression for eddy viscosity.



In 1935, a different approach was proposed by G. I. Taylor in his pioneering
work. Prior to this time, there had been no clear recognition and acceptance of the
fact that the velocity of the fluid in turbulent motion is a random continuous function
of position and time, and the theories of the turbulence were only based on mixing
length hypothesis [10]. His work has statistical importance, where he introduced the
correlation between the velocities at two points as one of the quantities needed to
describe turbulence. He could realize that “statistical homogeneity” would greatly
simplify the analysis leading to the concept of “isotropic turbulence”. After Taylor’s
work, T. Von Karman (1937) perceived that the mean values of the products of the
velocities at two (or more) points were tensors which immediately enabled the
analysis to be expressed more concisely and greatly facilitated the deductions from

the assumption of isotropy [10].

In 1941, Kolmogoroff has come up with the hypothesis that the small scale
components of the turbulence are approximately in statistical equilibrium. Together
with an equation for £, the turbulence kinetic energy, he modeled an equation for a
second parameter w, which he referred to as “the rate of dissipation turbulence
kinetic energy in unit volume and time. This model is known as k- model and it is

the first proposed model of two equation type.

In 1945, Prandtl postulated a model, in which the eddy viscosity were
depending upon the kinetic energy of the turbulent fluctuations, k. Conceptually, this
took into account the fact that the eddy viscosity were depending on flow history.

This has given rise to one equation model of turbulence.

In 1951, Rotta has laid the foundation for turbulence models that eliminates
the use of Boussinesq approximation. He devised a differential equation governing
the evolution of the Reynolds stress tensor. This approach is called second order

closure.



So in taking an average of the Navier-Stokes equations for turbulent flow,
detailed information about the fluid motion is lost. In order to recover the

information lost, a turbulence model must be introduced.

Computational efforts based on these turbulence models started in early 60’s.
A classification of turbulence models which have been subjected to computational

use since then can be made as follows:

i.  algebraic (zero) equation models,
ii.  one-equation models,
iii.  two equation models and

iv.  second order closure models.

The evolution of these models can briefly be described as follows [6]:

Algebraic models: Van Driest (1956), Cebeci and Smith (1974), Baldwin and
Lomax (1978) have contributed to the mixing length model in different ways and

their models are the most popular ones among other algebraic models.

One equation models: Bradshaw, Ferriss and Atwell (1967) have formulated
the first popular model of this type. Further contributions came from Baldwin and
Barth (1990), Goldberg (1991) and Spalart and Allmaras (1992). There has recently
been an interest in one equation models of turbulence, due to their accuracy,
simplicity of implementation and less demanding computational requirements as

reported by El Khoury [11].

Two equation models: After Kolmogoroff (1941), Launder et. al. (1972) has
made the first significant contribution by introducing famous k-¢ model. Wilcox et.
al. have pursued further development and presented successful applications of k-

model.

10



Second order closure models: After sufficient computer resources became
available by 1970’s, most notable improvements to the model were done by
Donaldson and Rosenbaum (1968), Daly and Harlow (1970) and Lounder et. al
(1975). These models are advantageous in the sense that they automatically
accommodate complicating effects such as streamline curvature, rigid body rotation
and body forces. However because of large number of extra partial differential
equations, complexity and computational cost, these models have found relatively

small number of applications.

Apart from the above mentioned models, the tremendous increase in the
speed of computers in the last two decades has given the opportunity for the
introduction of new techniques to the field of computational turbulence research:
These techniques are, namely, Large Eddy Simulation (LES) and Direct Numerical
Simulation (DNS). These techniques have become the two popular topics of interest

for turbulence researchers of today. They can briefly be explained as follows:

DNS directly include the physics of turbulence. No turbulence model is
imposed on the Navier-Stokes equations; thereby no closure approximations are
utilized. However, it has some major drawbacks: DNS is limited to relatively low
Reynolds numbers in practice and it is currently very expensive to conduct a DNS
calculation at even moderately high Reynolds number. It can be said that DNS is still

under development stage and needs further increase in CPU speeds.

On the other hand, as its name suggests, LES has the less ambitious goal of
describing the larger scales of the flow by numerical simulation, approximating the
smaller ones. This in turn allows higher Reynolds numbers to be achieved [12].
Consequently, LES technique constitutes a good compromise for accuracy and cost

in between DNS and two equation models.
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14 PRESENT STUDY

In the present study, a previously developed Navier-Stokes solver is used to
implement some well known turbulence models, those of which employ eddy
viscosity approximation. To evaluate the effects of turbulence transport equations
(namely k-¢ and k- models) on the solutions, the solver is tested for a turbulent flow

case over a flat plate.

The one step, second order accurate Lax-Wendroff scheme is used in the
study. The Lax-Wendroff technique is first introduced in 1960, and Ni [13]
combined it with a finite volume technique and applied it to Euler equations in 1982.
He later improved it to solve for Navier-Stokes equations and his work forms the

basis of this study.

Pertaining to Ni’s technique, the discretization is hybrid in the sense that it is
cell-vertex for the inviscid terms and cell-centered for viscous terms. The same
technique is used for the discretization of turbulence closure equations and a cell

based approach is used to calculate the source term.

To damp the numerical oscillations, artificial viscosity terms are added to the
formulations. For the discretized turbulence transport equations, artificial viscosity
coefficient is chosen considerably higher than the one chosen for Navier-Stokes
equations, which rendered the scheme more stable. Also to maintain stability,

positivity and boundedness conditions are employed for the turbulence parameters.

The following chapters are organized as follows: Chapter 2 describes the
governing equations of the flow, that is, Navier-Stokes equations coupled with two
equation turbulence models. This chapter also gives a brief introduction to RANS
equations, the closure problem and mixing length hypothesis. Chapter 3 covers the
method of discretization, which is based on the type of formulations used by Ni [13].
Handling of viscous and turbulence terms, stability and convergence of the method

are explained. Chapter 4 gives the initial and boundary conditions for the partial

12



differential equations. Chapter 5 presents the results obtained for the test cases to
validate the solver and discuss its performance. Chapter 6 summarizes the work by a

conclusion and lists some useful ideas for future study.
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CHAPTER 2

GOVERNING EQUATIONS

In this study, Navier-Stokes equations are used to model a viscous, heat
conducting, and compressible gas which flows under no external or body force, and
for which no heat generation occurs within. These equations are written in
conservative form in three dimensions, with respect to a stationary reference frame.
The conservative form is preferred because this form includes the physics of the flow

in the equations and has better shock capturing capabilities.

To calculate the effects of turbulence, Reynolds Averaged Navier-Stokes
equations (RANS) are used, and thus “the closure problem of turbulence” is
introduced. To close the system of equations, the compressible gas is assumed to be
perfect with constant specific heats. Auxiliary relations like Sutherland’s law of
viscosity - which relates the laminar viscosity of the fluid to its temperature - are

used. To calculate turbulent viscosity, turbulence closure approximations are utilized.

2.1 THREE-DIMENSIONAL NAVIER-STOKES EQUATIONS COUPLED
WITH TWO-EQUATION TURBULENCE CLOSURES

The compressible Navier-Stokes equations are written in a conservative

vectorial form as follows:

oU oF oG oH OoF, 0G, O0H,
=y + +S (2.1)
o ox oy 0Oz Ox oy oz

where
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pu
pv

pk
A

H=| pw?
pw-+p
Pwh

powe
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F —|toutr vtz w—gq,

(/Lllam +

0

T

XX

T,

T

Xz

/’l turb
Oy

|

ok

Ox

(2.2e)

( ﬂ + ;uturb J%
lam

o, Oox

vz
G, =Tl +T,v+7, w=gq, (2.2)

r + /u turb %
lam Uk ay

/J + /u turb %
lam
o, )Oy

zz

H =|t.utt v+t w—gq, (2.2g)

(,U + ;uturb j%
lam

o, )Oz

(/I + /uturb J%
lam

o, Oz

where u, v and w are the three velocity components in the x, y and z directions,
respectively. p is the density, p is the static pressure, k is the turbulent kinetic energy

and ¢ stands fore in the k-¢ turbulence closure and forw in the k- turbulence

closure. For the k-£ turbulence model the source term may be expressed as below:
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S O o o O

S, = (2.2h)
b —pe-D
g )
_CclPk ;_Csz k fz _E_
For k- @ turbulence model, the source term takes the form below:
_ 0 _
0
0
S, . = 0 (2.2i)
0
P - pko
< 2
ab, e Ppa

Note that the terms coming from the transport equations for turbulence
closure are included at the 6™ and 7™ row of every vector. Using the equation of

state, pressure can be written in terms of the conservative variable as follows:
_ 1 [ 2 2 2]
p=( -1 e—z(pu) +(pv)” +(ow) 2.3)

where e is the total internal energy per unit volume. The total enthalpy per unit mass,

h is defined as:

C ;p ) 2.4)
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The stress terms are composed of two parts, laminar and turbulent, as

follows:
Z-xx = z-xx,lam + z—xx,tur (25a)
7'-yy = 7'-yy,/am + z-yy,l‘ur (25b)
Tzz = Tzz,lam + z-zz,tur (2'5C)
7’-xy = 7’-xy,lam + 7’-xy,tur (25d)
sz = sz,lam + sz,tur (2'56)
7’-yz = z-yz,lam + Tyz,tur (25f)
and,
7’-yx = Txy (ng)
sz = z-yz (25h)
T =T, (2.51)

The subscripts lam and tur are for laminar and turbulent quantities

respectively. The production term for all models is the same and can be expressed as:

ou ou Ov [ﬁu GWJ ov
Pk :z-xx,tur_—i_z—x , tur —+t= +sz,tur —t+t +Tyy,tur_
ox "oy ox 0z 0Ox oy
(2.6)
ov ow ow
+T'ztur ~—t +Tzztur_
w0z oy oz

The laminar stresses given by Stokes law of viscosity can be expressed as:

7’-)oc,lam = Higm (__x _____ _) (273)

Tyy,lam = /’llam (__y _____ _) (27b)
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zz,lam

xy,lam

T

xz,lam

yz,lam

T

yx,lam

sz Jlam

T

zy,lam

=7

=7

=T

40w 20u 20v
30z 30x 30y

ou oOv
—_ + —_
/Lllam (ay ax)

6_u
oz
ov

ow
+ —
lulam ( ax )

ow
= _ J’- _
/Lllum ( ay)

0z

xy,lam
xz,lam

vz, lam

i (5 — === —)

(2.7¢)

(2.7d)

(2.7¢)

(2.71)

(2.7g)

(2.7h)

(2.71)

Relying upon eddy viscosity approximation, the turbulent stresses can be

expressed as:

ou ov

2-xy,tur = Hy, (_ + _)

Xz, tur

oy Ox
ou

ow
= 4
/thur ( ax)

0z

5v+6_w)

2-yz,tur = :utur (g ay

T

VX, tur

T

zx , tur

T

zy,tur

=T

- Txy,tur

Xz, tur

T vz, tur
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(2.8b)

(2.8¢)

(2.8d)

(2.8¢e)

(2.8f)

(2.82)

(2.8h)

(2.81)



As for shear stresses, the heat fluxes can be assumed to be composing of

laminar and turbulent parts:

qx = QX,/am + qx,tur
qy = qy,lam + qy,tur

qz = qz,lam + qz,tur

Laminar stresses can be written as follows:

. or

qx lam ax
e

q y lam ay
oT

qz lam aZ

Turbulent stresses are:

e T2
qx,tur tur 8x 3 pu

T 2
qy,tur - _Ktur 5 - ngk

e T2
qz,tur tur 82 3 pW

(2.9.a)
(2.9.b)

(2.9.0)

(2.10a)

(2.10b)

(2.10¢)

(2.11a)

(2.11b)

2.11¢)

In equations (2.10a-c) and (2.11a-c), T stands for the temperature. Laminar

and turbulent thermal conductivities are:

Kigm = ( P Jﬂ , where Pr, = 0.72 for air

R .
K, = (MJL , where Pr,, = 0.90 for air
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Note that, laminar and turbulent Prandtl numbers are constants.

2.2 CALCULATION OF LAMINAR VISCOSITY

The dynamic viscosity of air is assumed to be a function of temperature only,

using Sutherland’s law.

3

TE
=1.45x10° —— 2.13
Hian T+110.0 2.13)

In the above equation, temperature is in Kelvin and dynamic viscosity is

calculated in units of Pa.s.

2.3 CALCULATION OF TURBULENT VISCOSITY

2.3.1 k-g Turbulence Closure

For the high-Reynolds-number k&-¢ turbulence closure, D = E = (.0 and
/>,=1.0 in equation (2.2h). Chien model is implemented in this work; and hence, the

low-Reynolds-number turbulence closure source terms take the following form:

k
p = Hm? (2.14)
v
E-= 2%6)@(— 0.55") (2.15)
Re* 7 ’
f, =11-0.222exp| — p (2.16)
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2
Rele = % 2.17)
/ulamg

where y" is the non-dimensional wall distance calculated as:

v =Lu oy (2.18)
/Lllum

and u is the friction velocity defined as:

u, = [ (2.19)

The eddy viscosity for the k- model has the following form:
/utur = {C,u Re;‘f" }f,ululam (220)

where f,, =1 for the high-Reynolds number turbulence closure and for Chien model

it 1s set as follows:
f, =1-exp(-0.0115y") 2.21)

The closure coefficients for high-Reynolds number &-¢ turbulence closure

are:
C,=144, C,,=192 o,=1, o,=13 Pr, =09 (2.22)
The closure coefficients for low-Reynolds number &-¢ turbulence closure are:

C,=135 C,=180 o,=1 o,=13 Pr,=09 (2.23)

&
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2.3.2 k- Turbulence Closure

For this model, the eddy viscosity is given as:

(2.24)

. Pk
/’lturzap_
w

The closure coefficients for low-Reynolds-number k-@ turbulence closure

are:

o« = 0;O++RRi(v /ZQR 9 5/ 18+ (Reiw/ Ry )
e e
100 w /g Y 2.25
SayeRel R, o) 1+(Re! /R, (2.25)
"9 1+Re /R, 0y =0, =2

B=3/40, a;=p/3, @, =1/10 R,=8 R, =6, R,=27/10 (2.25)

and the turbulent Reynolds number for k- @ model is defined by

. pk
Rek” = £ 2.27)
a)/ulam

The closure coefficients for high-Reynolds number k- turbulence closure

are:
a =10, a=>, f'=—1, o0,=0,=2 (2.28)

2.3.3 Positivity and Boundedness for k-¢ and k- Closures

During computations, &, & and @ must be bounded by limiters, otherwise their

values may attain negative values, which are non-physical and meaningless.
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Furthermore this may create stability problems. So if &, &£ and @ are found to be
negative during the computations, the boundedness suggested by Gerolymos [19] are

used in this study, which are

k=g=107" (2.29)

For k and w the lower limits are set as follows:

k=10"° w=5 (2.30)

According to Liu [15], the production of turbulent kinetic energy must be limited to

the twice of the dissipation expressed as:

P, =min(P, 2 pe) 2.31)

24 ZERO-EQUATION (ALGEBRAIC) TURBULENCE MODELS

Zero-equation models retain the Boussinesq eddy-viscosity (turbulent
viscosity) approximation to compute the turbulent stresses, as in two-equation
turbulence models. Their difference is that the turbulent viscosity is formulated using
the mixing-length hypothesis. Closure coefficients and auxiliary functions are used to
support their formulations to take into account the effects of wake, intermittency and

separation.

The coupling of zero-equation models with the Navier-Stokes equations is

very similar to two-equation models. The differences are:
i. As their name (zero-equation) implies, no additional partial

differential equation is solved, so the last two equations are dropped

from the system of equations (2.2.a-h).
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ii.  The terms involving turbulence kinetic energy, % ok, % puk , % pvk

and % pwk are cancelled in the equations (2.8.a-c) and (2.11.a-c).

2.4.1 Cebeci-Smith Turbulence Closure

The Cebeci-Smith model is a two-layer algebraic model with the turbulent

viscosity given by separate expressions in each layer as

(L Jmer» ¥ SY J
w =N ; (2.32)
ﬂ ((lutw )outer ’ y > ym

where y,, is the smallest value of y for which (s, )mr =(u,, )mr whereas y denotes

the normal distance from the wall. The values of ,, in the inner layer, (z,, )

inner °

and the outer layer, (4, ) are computed as follows

outer ?

Inner Layer Formulation:

2 2
(L Ve = P L - (a“J +(avj (2.33)

) \ox

where / .

X

is the mixing length calculated by

| =k y(l e ] (2.34)

and y" is the distance from the wall and is calculated as in equation (2.18).
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Outer Layer Formulation:

(/utur )auter‘ = 6‘(IDIJE 5: FKleb (y’ 5) (235)
where U, is the boundary layer edge velocity taken as:
U,=0.995U,, (2.36)

o, is the velocity thickness defined by the integral

e

*_5 _L
5= ! (1= )y (2.37)

where ¢ is the boundary layer thickness. Fy,,(y,0) is the Klebanoff intermittency

function given as:

1
6
I+ s.s[c’““by ]
ym(Lx

Finally the closure coefficients for Cebeci-Smith model are expressed as

Frep(y:0) =

(2.38)

dP / dx
pu.

-1/2
k=041 C,,=03 a=00168 A*=26{1+y } (2.39)

where u, is the friction velocity defined by equation (2.19).

Alternative Outer Layer Formulation:

The eddy viscosity in the outer layer can simply be formulated in a different

way as follows:
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2 2
(t Yo = P Ly (a”j +(8") (2.40)

) \ax

Note that the form of the eddy-viscosity is the same as it is in the inner layer,

but this time the mixing length is given by:
[..=00850 (2.41)

2.2.2 Michel et. al. Turbulence Closure

The model by Michel et. al. postulates a single layer approach, where turbulent
viscosity is calculated by a single formulation throughout the whole boundary layer.

The turbulent viscosity is

2 2
ou ov
=p-1 > | =| +| = 2.42
ltltur p mix (a ] (axj ( )

where the mixing length is given as:

,y*
.. =0.0858 {1 —e” J.mnh[o 0’; s yj (243)

The closure coefficients 4* and x have the same values as in Cebeci-Smith

model.
2.2.3 Baldwin-Lomax Turbulence Closure

Like the Cebeci-Smith closure, the Baldwin-Lomax model is also a two-layer

algebraic model. The turbulent viscosity is the same as in equation (3.32) However,
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the values of ,, in the inner layer, (x,, ) and the outer layer, (u,, ) are

inner ° outer >

computed as follows:

Inner Layer Formulation:

2

(s Y = Pl (2.44)

where the mixing length is given by

,y*
Lix = Ky'(l —e” ] (2.45)

and |a3| is the magnitude of vorticity vector given by

-

2 2 2
I RN N (2.46)
oy 0Oz 0z Ox ox Oy

For wake regions and separated boundary layers, mixing length is calculated

from:

l,. =Ky (2.47)

mix

Outer Layer Formulation:

ymax
(/utur )()uter = pa Ccp Fwake FKleb (y’ ) (248)
Ckleh
. Vdif
Fwake =min ymameax ’ ka ymwc F . (249)



j (2.50)

ymax 1
Fion (Y5 )=

6
CkIEb 1 + 55[ CKlebyJ
Yy max

(2.51)

Vmax 18 the value of y at which /

mix

: a)‘ achieves its maximum value. Vg is calculated

as:

def =V max _Vmin (252)
where V' denotes the magnitude of the velocity vector. V,,,, is the maximum value of
the velocity along the profile. For wall bounded flows, V,,;, is zero, and for free shear
layers, Vi, corresponds to the velocity at yugy .

Finally, the closure coefficients for Baldwin-Lomax model are as follows:

k=041 a=00168 A*=26
C,=16  Cg,=03 C, =025 (2.53)
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CHAPTER 3

NUMERICAL METHOD

This chapter presents and discusses the numerical technique used for the
discretization of the three-dimensional Navier-Stokes equations, coupled with
turbulence transport equations for k-¢ and k-w models. Calculation of the time step
and artificial smoothing terms, which are necessary for the stability and convergence

of the numerical scheme, will be explained in detail as well.

3.1. DISCRETIZATION

The discretization technique used in this study is a hybrid finite volume
technique: Hybrid in the sense that cell-vertex approach is used for the inviscid and
first order source terms; and cell-centered approach is used for the second order
inviscid terms and first order viscous terms. This will be discussed in detail in this
chapter. The technique is based on a one-step Lax-Wendroff scheme, which is of
explicit time marching type. It was first introduced by Ni [7] for the solution of
Euler equations and further improved to solve for Navier-Stokes equations [9]. The
derivation of the scheme starts with the second order Taylor series expansion of the

conservative vector variable U:

n 2 2 n
Un+1 =U" +At£68—(t]j +%[66(2]J (31)
t

In the above equation, the superscript # denotes the time step. Using equation

(2.1), the term aa—lt] can be written as
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oU oF oG oH ©oF, oG, oH,
—+ + +

+S (3.2)
ot ox oy 0z Ox Oy Oz

Define the residual as U = U""” —U" and insert (3.2) into Equation (3.1) to

get:
1*" order 1* order source
Residual 1** order inviscid term viscous term term
NG R
~ ~ ~

oF oG oH ' oF, oG, oH, )" ]
SU =U!"" U = -At. +—t FAL = L |+ AL(S)

ox oy 0z ox oy 0z

2 oF oG oH Y\ 2 ! 2
A g( L9 | LA g(aFuaGV{aﬁv +Atiy/
w 2 Ot 6x\f Oy oz ) 2 ot\ ox y 0z . 2 o0~

2" order inviscid term 2™ grdér viscous term /(?o/rder
0, 0. source term

(3.3)

Note that in the above equation; the terms are grouped according their
degrees and physical meanings. The effect of the second order viscous and the source
terms on the convergence history and final solution has been found to be entirely
negligible so that they will be neglected. So, the second order contributions will only
be due to the inviscid fluxes. Also the superscript n can safely be dropped so that the
right hand side of the following equations will stand for the same time level. The

remaining equation is:

oF oG OH
U = —At.(— +—t ]+ At{ oF, 96, o, ]+ AL(S)

ox oy oz ox Oy oz
(3.4)
At? 9(0F 0G OH
——
2 ot ox oy 0z

The second order inviscid flux terms can be modified as follows:
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AP 9(0F , 0G OH|_Ar* a(aFj+g(a_Gj+g(a_Hj
2 ol ax oy 0Oz 2 loaxl o oy \ ot oz \ ot

_ar g[a_Fa_U)+g(a_Ga_U)+z(a_Ha_U]
2 | ox\oU ot oy\ou ot oz\oU ot

e fo(orau,) 010000, ) ofea, )] g,

| ox\oU ot oy\oU ot oz\oU ot

[ 20F ), 220 ), 00 )

2 | ox\oU oy\ou 0z\ 0
where,
AUza—UAt (3.6)

ot

The Jacobians of the inviscid flux vectors can be expressed as [7]

AF = a_FAU
ouU

AG =29 AU (3.7)
ouU

AH—a—HAU
oU

Substitute these definitions into Equation (3.2) to obtain

w__At(aF 6G+8HJ At(aF 6GV+6HVJ+NS

ox Oy Oz ox 0oy oz

(3.8)

A (8(AF) .\ AAG) . 8(AH)J
2 ox ay oz

The finite volume approximation yields the following expressions for

change AU , and for Jacobians of inviscid fluxes F, G, H as:
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fap T
Alpu)
Apv)
AU = A(pw) (3.92)
Ae
A(pk)
| Alpg)]
[ Alpu) |
uA(pu)+ pulu + Ap
oF vA(pu)+ PUAY
= (EJAU = hXéfﬁ;gZiw (3.9b)
kA(pu )+ uA(pk ) — ukAp
| pA(pu)+ul(pg) - ughp |
I Alpv) |
oot
oG vAlpv)+pv)Av + Ap
AG = (EJAU = hz?/(jvp)‘;+?£vp)\,A2W (3.9¢)
kA(pv) -+ vA(pk) - (vic)Ap
#A(pv)+vA(pg) - vgAp
[ Alpw)
uAEpw;+ Epw)Au
ol vAlpw)+(ow)Av
AH = [%)AU = VZAA((/iW’M?)J:L((@W’vz)AAVZJF Ap (3.94)
kA(pw)+ wA(pk) - (wh )Ap
#A(ow)+wA(pg)—(we)Ap

Note that ¢ represents &€ and w for k-¢ and k- turbulence closure,

respectively. Also note that,
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A =—[A(pu) —urp]
P

A== [a(p) -]
P

sw=—[A(pw) ] (3.10)
Yol

Ap=(y_1){Ae_;(MA(W)+VA(W)+wA(pW)+ P, WAW)}

Ahzi[Ae+Ap—hAp]
o)

Before starting the explanation of the integration procedure, it will be useful
to examine a typical cell as given in Figure 3.1. The nodes of the cell are locally
numbered in counter clockwise order as shown. First order inviscid changes are
calculated using the nodes shown with the solid circles, o, and the second order
inviscid and first order viscous changes are calculated using the “imaginary” node
shown by the white circle, o, representing cell averaged values at the center of the

cell.

5@ 6

5
>

1 g 2

Figure 3.1 Local cell numbering notation
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All nodes are surrounded by eight cells, as shown for node 1 in Figure 3.2.
Two kinds of control volume are used: The one formed by joining the nodes of the
computational domain and the other one formed by joining the cell centers of these,

which is a transformed control volume. Figure 3.2 also illustrates these.

g 7
p 9 .
ra L Fal
r i a1 ra
i i
/ 1 1
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Figure 3.2 Representation of the cells surrounding node 1 of Figure 3.1.

The transformed control volume shown by A-B-C-D-E-F-G-H in Figure 3.2
is the combination of one eighth of every primary cell, which is shown by 1-2-3-4-5-
6-7-8. Such a transformed control volume is used to calculate the second order
inviscid and the first order viscous changes. On the other hand the primary cell
shown in Figure 3.1 is used for the calculation of the first order inviscid changes and

the first order source term.

Now the integration procedure can be explained. First integrate Equation

(3.8) over a random control volume to get the average change in U:
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J.é'UdV = —J.At[a—F+§+a—dev+ J.Az(aFv +£+ oH, jdv
i » \Ox oy oz i ox oy 0z

At(dAF) oAG) o(AH)
+'[(AtS)dV—J'7[ + + ]dv

o i ox oy Oz

(3.11)

The above integration is for any control volume, which will later be applied
to the control volumes formed by the primary cell and the transformed control

volume. But before, it will be illustrative to check the below figure:

Cell I

O

ell I

e ——
&\

Cell IV \ | ] /

N

NGy

|~

ell VIII Cell VII Cell 111

Figure 3.3 Disassembled cells that surround node 1

Figure 3.3 depicts the numbering notation of the eight cells that are shown in
Figure 3.2. Here it is worth noting that the cells of the computational domain are not
always regular shapes like cubes or prisms, rather, they are generally irregular and
can be thought as three dimensional trapezoids. In this work they are shown as cubes

just for the sake of illustration.
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So, the total contribution of the changes on node 1 is the summation of the

contributions from the surrounding eight cells, which can be written as follows:

5UI = év(]II +§(]11] +§[]1111 +5U11V +§[]1V +5(]IV1 +5UIVII +5U1V1]] (312)

In the above equation, the subscripts show the node (which is node 1 here)
and cell numbers (I to VIII), respectively, at a given time step. Figure 3.4 shows the
part of the transformed control volume; labcdefgh drawn by the dark lines, within

the primary cell, 12345678. This part is used to calculate SU,,, which stands for the

contribution of cell I to node 1.

- -———

Figure 3.4 Part of the transformed control volume remaining in cell I and

cell center face area notation

So, the contribution of cell I to node 1 can be written as follows
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=

1 At 6_F+6_G+8_H P At 6FV+GGV+8HV e
ox Oy Oz

8 Av] cell-1 A\vll labcdefg ax ay aZ
A e A [G(AF) L AAG) G(AH)}N
8AY, », 2AY ) i\ OX oy oz

(3.13)

The above integration calculates the contributions of the change in cell I
together with contributions coming from the part of the “transformed” control
volume inside cell I. The contributions are calculated for node 1. The first and third
integrals on the right hand side of Equation (3.13) stand for the contributions coming
from first order inviscid flux and first order source term, respectively, calculated in
cell 1. The second and the fourth integrals evaluate the contributions coming from
first order viscous and second order inviscid fluxes, using the transformed control

volume.

The coefficient 1/8 is due to the fact that the contribution on node 1 is from
the surrounding eight cells or can be thought as an average contribution of a cell to
one of its eight nodes. However, the second and fourth terms in the above integral
does not contain the coefficient 1/8, which is logical since the integral is performed

on one-eighth of the transformed control volume.

Now, using divergence theorem to convert the volume integrals (except the

one for the source terms) in Equation (3.13) to surface integrals one gets:

= 1 A I(Fde +GdS, +HdSZ)+ Al .[(deSx +G,dS, +HvdSZ)
AVI cell—1 i 1 labcdefg
1 At At
LA [sav - [(aFds, +AGds, + AHas.)
8AVY, i 209} Japedete

(3.14)

For the ease of representation, group the terms in Equation (3.14) as shown

below:
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N— [(Fas, +Gads, + Has.) (3.15a)
Avl cell-1
AU, =2 [(Fds, +G,ds, +H,ds.) (3.15b)
I labcdefg
, At
NU, = - [(aFds, + aGds, + AHAS. ) (3.15¢)
1 Jabcdefg
AU, =2 [(sav) (3.15d)
Avl cell-1

Substitute the above-defined groups back into Equation (3.14), to get
U, =%(AUl. +AU, )+ AU, + AU, (3.16)

Now, using trapezoidal integration around cell I, the term AU, in the above

equation can be evaluated as follows

At

Av] [ (E,x'Sl,x + Gl,y'Sl,y +H1,Z'Sl,z )

AU, =

~(F,..5,,+G,,.5,, +H,_S,.)

+(F,..S,, +G,,.S,, +H,.S,.) (3.17)
—(F, .S, +G,,S,, +H,.S,.)

+(F, .S, +G.,.S;, + H,_.S;.)

—(F,.-Sq. + Gy, -Sq, + He .S ) ]

X

X

where the fluxes through each cell face are taken to be the average of the corner

nodes as shown below for the fluxes in x direction:
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P :F5+FI+F4+F8 :F6+F2+F3+F7

F.

1,x 4 2,x 4
F+F +F +F. F,+F, +F +F,
F3X= 1 2 6 5 F4x: 4 3 7 8 (3,18)
’ 4 ’ 4
F+F +F+F, F,+F +F +F,
FS,x: 4 Ff),x: 4

Figure (3.5) depicts the surface vectors used in Equation (3.17) in order to
explain the calculation of the average fluxes over each face of cell I. The inviscid

first-order changes are thus calculated (or estimated). Calculation procedure for the

surface vectors can be seen in Appendix A.

S

Sy
8
4 >
S
S R > @
A 6
nA I
/ } / |
1 £ 2
Ss

S3

Figure 3.5 Surface vectors on cell |

After a similar interpretation for the fluxes in the other directions, namely, G

and H, insert these equations for F, G, H into (3.17), to get:
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AU = N FS+F1+F4+FgS]X G, +G +G, +G, S“,+H5 +H, +H, +H, s
AV, 4 ’ - '
_(E, +F2:;F3 +F, S2vx+G6+G2+G3+G7 S2vy+H6+H2+H3+H7 Szz)
+Fl +F, +F, +F; S3X+G‘ +G, + G + G s, +H, +H, +H +H, s..
4 i 4 * 4 ’
(FAE+F+F S4x+G4+G3+G7+G8 s, +H4 +H, +H, +H; s,
4 g Y 4 y
+Fl +F21F3 +F, Ss,x+G1 +G, +G, +G, SS,erHl +H,+H,+H, s..
B FE+F+F +E S6X+G5+G°+G7+G8 S6},+H5+H"+H7 +H, s,
4 ’ 4 ‘ 4 ’
(3.19)

Calculation of the first order inviscid changes is thus completed. Before
plunging into the calculation procedure for the viscous change term, it should once
again be noted that the necessary integration will be carried out on the portion of the
transformed control volume remaining in cell I, which is the volume labcdefg.
Thereby, the viscous terms are averaged over a cell and defined at the cell center.
The surface area that is to be used for the surface integration will be taken as the part
of the face of the transformed control volume abcdefgh, which lies in the cell I. This
approximately amount to one fourth of the area of cell I at the cell center for random
cells. (It exactly amounts to one-fourth, for perfectly rectangular cells) For this
integration, three surface vectors 4;, A, Az are used as shown in Figure 3.4. The
calculation of these vectors is discussed in Appendix A. So now, AU, can be written

as

At

AU, =
4AY,

{Fv(Alx + A2x +A3X)+GV(A1)/ + A2y + A3y)+Hv(Alz +A22 +A3z)}

(3.20)
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Introduce the following notation into Equation (3.20)

Afv :Fv'Alx_i_Gv.Aly—'—Hv'Alz
Agv :FV'A2x+Gv'A2y+HV'A2z

Ah,=F -4, +G, -A3y +H, A,

to obtain

A
" 4AY,

AU (Af, + Ag, + Ah,)

(3.21a)
(3.21b)

(3.21c)

(3.22)

Here, it should be noted that F,, G, and H, are calculated separately for each

Now the calculation of viscous terms is thus completed.

node of the cell. This calculation procedure will be explained later in this chapter.

The second-order inviscid flux terms can be evaluated in a similar way as the

viscous flux terms as

Ar 1
Alei == ZAVI Z{AF(AIA + A2x + ASx)
+AG(4,, + 4,, + 4,,)

+AH(A12 + AZz + A3z) }

with the following notation

Af,=AF-A4,+AG- 4, +AH - 4,
Ag, =AF-A, +AG-A4, +AH - 4,,

Ah; =AF -4, + AG- 4, + AH - 4,

Substitute Equation (3.24) into Equation (3.23) to get
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(3.24a)
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AU, = %—AAvt (- Af, —Ag, — Ah,) (3.25)
1

This completes the calculation of the second order inviscid terms. Now, considering

the first and second order source terms in Equation (3.15) as

av, =L [(sav) (3.26)

1 cell-1

AU, is formulated by carrying out the integral in the primary control volume.

Thus,

AU :is

AV, =ALS . 3.27
s Av] 1 center ( )

center

Here note that S .. 1is not the average of eight nodes over the cell. That is

1L . . .
conter % —z S, . The conservative variables are first averaged over a cell and it is

i=l1

S

followed by a cell-based evaluation of all source terms.

Thus, summing up all the terms formulated up to now, the formulation for

total changes of each node that forms cell-I becomes

éUu :;{A(]i +A§((_M _Agi _Ahi)_z(_M _Agv _Ahv)+AV1Scente)')} (3.28a)

U, =;{AU,- +A§((+Af,- —Ag, — M) -2+, - Ag, —Ahv)+Av,Sm,e,>} (3.28b)

U, =;{AU1. +A§((+4fi +Ag, —Ah) -2+ A, +Ag, —Ahv)+AV,Scmr)} (3.28¢)
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&, =1{AU,- (0, g~ )20, + g )

8

1

U, I{AU A’((

8 Av,

8

M _Agi +Ahi)

1 Nt
R e )

I

1, =4 10 )

8

1

1

U = {80100 )2 0, )

8

_2(_M _Agv +Ah +AV Scenter

_2(+M/ _Ag\/ +Ah +AV Scenter

_2(+M +Agv +Ah +Av Sccnter

)} (3.28d)
(3.28¢)
(3.280)

(3.28g)

)} (3.28h)

The above formulas are called the “distribution” formulas, as stated by Ni

[13].

After the calculation of the change for each cell (here for cell I) and its

distribution to its corresponding nodes, the conservative variables can be updated at

every node of the cell as follows:

n+l n
u'™ =U+0oU,

where the subscript i=1,2,...,8 .
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3.2. CALCULATION OF VISCOUS AND HEAT CONDUCTION TERMS

The terms containing a derivative of a conservative variable written in
Cartesian coordinate system (x, y, z) can be transformed into curvilinear coordinates

(& n, ¢) for any conservative variable U.

(x, »,2) > (&1 ¢)

Where
§=¢(x . 2)
n=n(x, y,z) (3.30)
§=¢(x, 2, 2),

Using the chain rule, the transformation of derivatives in Cartesian

coordinates to the ones in curvilinear (local) coordinates can be written as:

o] [o¢ an ) |8
ox Ox Ox Ox ¢
ol e | 5
oy oy oy o | |on
91 |9 an il |9
L0z Loz oz oz ] |04 |
The Jacobian of transformation can be written as
S_déng) 1
Aoyz) (o ya) afye yo) a(ye ye
o&\onos o¢on) on\o&ol oL o) 05\ o0& on Onoé
(3.32)

and the equations for the metric terms in the Jacobian matrix are
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(3.33a)

(3.33b)

(3.33¢)

(3.33d)

(3.33¢)

(3.33)

(3.33g)

(3.33h)

(3.33i)

Now, the shear stresses can be expressed in terms of gradients in curvilinear

coordinates as follows
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o [(agav gav}{a_ga_h
v oy 0 0Oy on oy o

+%%j+(6_§8_w+@a_w+a_§a_wm
&z 0F oz on o0z Of
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(3.34a)

(3.34b)

(3.34¢)

+a—§ﬂjj (3.34d)
oy o0& 0Oy on oy 04

Ou , B¢ Ou n (3.34¢)
ox 0& Ox on oOx 04

+6_w_u]] (3340
ox o0& 0Ox on oOx 04

(3.35a)

(3.35b)



g. :_(ﬁj; 9¢ T  onol  9¢ or (3.35¢)
Pr)(y—1)\ 0z 8¢ 6z on 0z OC

Ni [13] suggested that, first order finite difference approximation to the above

derivatives can be formulated in each cell separately for each node as follows:

Let Q denote any conservative variable or, a Cartesian coordinate x, y, or z.

Then for node 1 in cell I, shown in Figure 3.1, one can write the expressions for

(a—QJ (5_Qj and (a—QJ as follows:
aé: 1 877 1 aé’ 1

aQ AQ QZ_QI Qz_Ql
| L2Y_ _ -0,-0, 3.36
(agl M e e A TP (3360
o0 _AO 0,-0, 0,-0
| oY _ — =0,-0, 3.36b
(8771 An  n,—n, An -0 ( :
6Q AQ QS_QI QS_QI
oL | LAY _ — =0.-0, 3.36
(651 A Cg ag &P (3369

The derivatives for the other nodes can be handled in a similar way: The idea
is to remain in the cell, and use either a forward or a backward difference, whichever

appropriate.

3.3. ARTIFICIAL SMOOTHING

The one-step, second-order Lax-Wendroff scheme operates satisfactorily in
the regions where the variation of the properties is smooth. In such regions, stability
can be preserved if a fine mesh is used together with the help physical diffusion

inherent in the scheme. However, the scheme has a major drawback that it causes
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oscillations around discontinuities, i.e. around a shock wave or in the boundary layer.

So, artificial smoothing terms must be introduced, to damp those oscillations.

These terms don’t have much effect on the final converged solution, since
they almost converge to zero, as the solution converges. Admittedly, they introduce
some error in the calculations. However they are necessary for the convergence of
the solution and assure stability around discontinuities (i.e. a shock wave),
suppressing the oscillations in those regions. It should here be noted that, in spite of
its second order accuracy and simplicity, Lax-Wendroff scheme’s behavior around

discontinuities is not fully satisfactory, as stated by Hirsch [5].

Therefore, in this study, artificial smoothing terms are added to the
distribution formulas, given by Equations 3.28a - 3.28h. The artificial smoothing is
calculated for each node within a cell in two steps in the following way: First the
second order smoothing term is calculated and then, the fourth order smoothing is
applied to the second order smoothed term. The resulting formulation is added to the
distribution formulas. In this study, the second order smoothing strategy is taken
from Ni [11] whereas the fourth order smoothing is supplied by Tinaztepe [15].

They can be given as:

52U, = o> 2L (T -U,) (3.37a)
5U, =gt AL (52U—52U,.) (3.37b)
8AV

where the subscript i=1,2,...,8 denotes the node number of a cell and the over bar
indicates the conservative variables averaged over the cell. 4 is the area at the cell

center, given in Figure 3.4:

(3.38)
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Also, o® and o stand for the second and fourth order artificial smoothing
coefficients, respectively. o is taken as 1/32 of ¢ and ¢ should be chosen to be

smaller than 0.1 as given in Tmaztepe [15].

Near solid boundaries, the viscous fluxes in the momentum equations are
quite large and adequate to provide smoothing [9]. Hence, in these regions, the
second and fourth order smoothing terms can introduce unwanted errors to the
solution, giving rise to very large nonphysical values of total dissipation in the near-

wall regions.

So, to account for this fact, a local Mach number scaling can be utilized, to
decrease the level of artificial smoothing near walls where the flow slows down, as

given by Tmaztepe[15]

2
s~

Now, the total change of a node can be written as

(3.39)

_ 2 4
oU,=0U,+0°U,+6"U, (3.40)

where i=1,2,...,8

3.4. TIME STEPPING CONTROL

The Lax-Wendroff scheme is an explicit scheme, which marches in time; In
all explicit methods, a limit must be prescribed for the time step at every iteration,
otherwise the stability of the method will be endangered. This limit is superimposed

on the time step Af by the CFL condition [16].

50



In this study, Ni’s [9] formulation is used to restrict the time step for the
solution of the Navier-Stokes equations. This formulation is also used by El Khoury

[9], which can be given as

At = CFL -min EX , Ly , ZZ
‘V-la‘+c+2ﬁ’u ‘V-f‘+c+%—’u ‘V.f‘+c+%—”
L. Ly L.
(3.41)

where L is the displacement vector crossing the cell in the streamwise direction and

[ is a unit vector in the direction L. ¢ is the local speed of sound in the cell and y is

taken as the laminar viscosity for this study.

L can be expressed in the x, y and z directions, as follows [9]:

in x-direction
= 1 1 -
L = Z(x2+x3+x6+x7)—z(xl+x4+x5+x8 I

)}
| | .
+h(y2+y3+y6+y7)—z(yl+y4+y5+yg)}1 (3.42a)

J{%(z2 +z,+z, +Z7)_%(Zl +z, + 2, +zg)} IE}

in y-direction

L, :{[i(% +x, +x, +xg)—%(x1 X, +xs +xg )|

)
| 1 .
J{Z(yﬁyﬁ%+y8)—z(y1+y2+y5+y6)}1 (3.42b)

+{i(z3 +z,+z, -i—zg)—%(z1 +z, +z; "‘Zs)} k}
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in z-direction

Zz :{[i(xs T X T Xy +x8)_%(xl TX, T X, +x4)}l?

1 1 -
{Z(ys+y6+y7+ys)-z(yl+y2+y3+y4)}1 (3.42¢)
1 1 ~
+ Z(z5 +2z4+2, +ZS)_Z(ZI +z,+z,+2,) |k
For stability of the scheme, CFL number stays below 1.0 for every cell in the

computational domain. Local time stepping control is employed, that is a different Az

value is imposed on each cell. All of the variables used in this method are taken as

average values over a cell.
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CHAPTER 4

INITIAL AND BOUNDARY CONDITIONS

In Chapters 2 and 3, the governing equations and their discretization
technique are discussed. In this chapter, the initial and boundary conditions, which

are necessary to obtain a solution out of these equations, will be explained.

Initial conditions are used to set up the initial flow field, which is a must for
all time marching schemes like the one used in this study. On the other hand,
boundary conditions are necessary to get a solution unique to the special flow
domain of concern. Different types of boundary conditions are used in this study,

including characteristic type boundary conditions.

4.1 INITIAL CONDITIONS

To start the iterative solution procedure, the flow domain should be initialized
at all points of the computational domain. To achieve this, one should keep in mind
the following criteria: the final converged solution should be independent of the
initialization of the flow. In this study, initialization is done using the input Mach

number and the direction cosines of the flow as follows:
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(4.1)

Here note that isentropic relations are also utilized. Also note that K stands

for the free stream turbulence intensity, which has an empirically determined value

ranging between 0.005 % and 1 %.

In this study, the free stream values of turbulence parameters, which are used

For k-¢ turbulence closure,
k,=10"u,

e =10"u

0 0

and for k- w turbulence closure:
k,=10"°
o =50

0
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to initialize the flow field, are taken as follows:

(4.3)

(4.2)



It is worth reminding here that the k& value is taken to have a small value so
as to guarantee that the freestream eddy viscosity is much smaller than the molecular
viscosity. This is because, from mixing length hypothesis, turbulent kinetic energy is

related to the turbulent eddy viscosity as follows:

tr, ~ pk, 0 (4.4)

0

4.2  APPLICATION OF BOUNDARY CONDITIONS

The characteristic boundary conditions used in this study are formulated in a
predictor-corrector form. The predictor step consists of the solution procedure for
conservative variables at the boundary nodes carried out by the Lax-Wendroff
scheme and the corrector step consists of the application of the characteristic

boundary conditions to the boundary nodes.
Accordingly, the solution is updated as follows:

SU 4.5)

boundary = Y corrected _Upredicled

where U, @0d U, 400q Stands for the corrected and predicted conservative

variables respectively.
4.3 CHARACTERISTIC TYPE BOUNDARY CONDITIONS

To derive the characteristic type boundary conditions, the Euler equations are
written in terms of primitive variables in the normal, tangential and binormal

directions at a boundary as follows:

oU oF oG  oH _

—F—+—+—=0 (4.6)
o0 on Os O0b
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where 7, s and b denotes the local coordinates in the normal, tangential and binormal
directions, respectively. Since the variations assumed to be much larger in the normal

direction than the other two, their derivatives can be dropped from the equation to get

the following form

ou [ OF _, (4.7)
ot on

and in a quassi-linear form, it can be written as

UL 7% _y (4.8)
ot on

where U and 4 represents the primitive vector variable and the Jacobian matrix

respectively, which can be given as follows

P
un
U=|u, (4.9)
u,
L2
and
‘w, p 0 0 O]
0 i, 0 0 é
A= o 4.10
=0 0 u, 0 0 (4.10)
0 0 i, 0
0 pc’ 0 0 |
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where u,, u; and u, correspond to normal, tangential and binormal velocity vector
components and c represents the speed of sound. The barred quantities represent the

averaged values and are taken as constants.

The Jacobian matrix can be diagonalized by performing a similarity

transformation as follows:

L'AL=A (4.11)
where
1o o £ £
2c 2¢
00 0 % —%
L=y 0 -1 6 o0 (4.12a)
0 1 0 0
00 L L
L 2¢c  2c |
_ e
1 0 0 0 =
00 0 1 0
=00 - oo (4.12b)
01 0 —
oC
1
0 -1 0 0 —
L pC
and
fw, 0 0 0 0 |
0w, 0 0 0
A=[0 0 @, 0 0 (4.13a)
0 0 0 u+c 0
0 0 0 0 u-c
or
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A 0 0 0 0
04 0 0 0

A=[0 0 4 0 0 (4.13b)
0 0 0 4 0
0 0 0 0 A

~

where 4,,4,,4,,4,,4; are called the eigenvalues of the Jacobian matrix 4.

Equation (4.11) can be solved for the Jacobian matrix 4 to get:
A=LAL" (4.14)
Substitute Equation (4.14) into Equation (4.8), to get

8_U+LAL_,8_U:

0 4.15
ot on ( )

Left multiplying Equation (4.8) by L™ yields

L“a—U+AL“a—U=0 (4.16)
ot on

The characteristic vector variable, which stands for the perturbations in

characteristic variables, is defined as follows:
oW =L"sU (4.17)
Now substituting Equation (4.17) into Equation (4.16), it is possible to obtain

8_W+A6_W:0 (4.18)
ot on

where W is the vector of linearized characteristic variables and written as follows:
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W= Us (4.19)

At this point it should be reminded that two kinds of boundary condition will
be used: physical and numerical. Applying physical boundary condition means to
impose the physical values of the characteristics at the boundary, which are generally
the far field values. Applying numerical boundary condition means to impose the
value of the characteristics coming from the interior of the domain calculated by the
numerical method. The type of boundary condition to be applied is decided by the
signs of the eigenvalues of the characteristics that depend on the Mach number of the
flow at the boundary. Positive eigenvalues mean that characteristics enter the flow
domain, whereas zero or negative values mean that the characteristics leave the

domain.

Physical boundary conditions are imposed utilizing the fact that ideally the
boundary conditions should not reflect the characteristics back into the flow domain.
Therefore the so called “non-reflective” boundary conditions express the physical
boundary conditions as the requirement that the local perturbations propagated along

incoming characteristics must be made to vanish [15]. Thus,

W _y (4.20)
ot
or equivalently
A o (4.21)
on
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in a discretized form

AW =0 (4.22)

4.3.1 Subsonic Inlet

For the case of subsonic inlet, ¢ >u, >0 so the eigenvalues 4,,4,,4,,4, are
positive and A is negative. This means that the fifth characteristic variable has to be

determined from the interior domain and the other four physical boundary conditions

are to be specified at the boundary. Therefore,

AVVI = 0 = pcorrected - p"‘g';’”ed = IDfar - IJEﬁZV (4233)
AWZ =0= Up corrected = ub,far (423b)
AW3 = 0 = us,corrected = us,far (4230)
AW4 = 0 = un corrected + ‘DCLLCMI, = un far + p._ﬁ’” (423d)
’ pc ’ pc
V4 corrected V4 predicted
AW5 = 0 = - un corrected + - — = _un predicted + - —_—_ (4236)
' pc ’ pC

where the subscript corrected denotes the corrected value whereas the subscript
predicted stands for the value predicted by Lax-Wendroff scheme. Solving the above

set of equations for the corrected primitive variables to get
1 —
corrected — far predicted n, far - n, predicted N
p = > [p +p + pc (u u )] (4.24a)

p corrected p far
pcorrected = pfar + [52 - (4.24b)
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p far p corrected

Uy corrected = Un, far T T (4.24¢)

Us correciea = Us, ar (4.244)

Uy correciea = Wb, far (4.24¢)

Finally, for the k-¢ closure.

k=u’K (4.25a)
and

e=u’K (4.25b)
and for the £- @ turbulent closure [21],

k=10"° (4.262)
and

w, = 0(10%) (4.26b)

Note that in the above equations, free stream values are used.

4.3.2 Supersonic Inlet

Sinceu, >c, all the eigenvalues4,,4,,4, in Equation (4.13) are positive.

Resultantly, at the inlet, all the characteristic values are corrected using the free

stream values. Thus,
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AW, =0=
AW, =0=
AW, =0=
AW, =0=
AW, =0=

_ p corrected __ p Jar

p corrected
—2 far -2
C C

uh,corrected = ub,far

u

s,corrected ~ us,far

p corrected p Jfar
n,corrected + — - un,ﬁ;r + R
pc pcC
p corrected P Jar
- un,corrected + — - _un,ﬁzr + —
PC PC

Primitive variables can be solved for as follows:

p corrected p far

,0 corrected — p far

un,correcled - un, far

u s,corrected

uh,corrected = ub,far

=u

(4.27a)

(4.27b)

(4.27¢)

(4.27d)

(4.27¢)

(4.282)

(4.28b)

(4.28¢)

(4.28d)

(4.28¢)

Finally, it should be noted that, the supersonic inlet boundary conditions used

for the k-£ and k- w closure are just the same as the ones in the subsonic case.

62



4.3.3 Subsonic Exit

For the case of subsonic outflow, u, <0 and|u”| <c. That’s why, 4,
becomes positive, and 4, ,4,,4;and A, become negative. Hence at the exit, only one

physical boundary condition will be imposed which corresponds to W, . Therefore,

— P corrected _ p predicted
AVVI =0= pcorrected - 5—2 - ppredicted - 52 (4293)
AWZ = 0 = ub,cor‘rected = ub,predicted (429b)
AVV?) = 0 = us,corrected = us,predicted (429C)
_ p corrected __ p Sar
AVV4 =0= un,corrected T =~ un,far I (429d)
Lc Lc
— V4 corrected __ p predicted
AWS - O = - un,currected + - — - _un,predicted + — (4'296)
pc pcC
The above set of equations can be reduced to the following form:
pcorrected = pfar (4303)
p corrected p predicted
pcorrected = ppredicted + Ez (4~30b)
p corrected p predicted
un,currected = un,predicted + JR— (4~3OC)
PC
us,corrected = us,predicted (430d)
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ub,corrected = ub,predicted (4-306)

Finally, at the exit, a first order extrapolation is used for the k-¢ and k-@

turbulence closures, as follows:

U .=2U

ij my; —U 4.31)

i+2,j

where U stands for the conservative variables representing ok, pg,and po .

4.3.4 Supersonic Exit

For the case of supersonic outflow, u, <0 , therefore all the eigenvalues

become negative. No physical boundary conditions are used; the values of the

primitive variables are extrapolated from the inner flow domain. Therefore,

= p corrected  __ p predicted
AI/Vl - O = pcorrected - —2 - ppredicted - —2 (4323)
C C
AWZ = 0 = ub,cor‘rected = ub,predicted (432’b)
AWS = 0 = us,cor‘rected = us,predicted (432C)
AW =0= 4 Peorrectea _ _,_M (4.32d)
4 = un,corrected — - un, predicted N .
pc pcC
AW. =0 = _ + Peorrected _ + pPVEdined (4 32 )
5 un,currected — - un,predicted — . S
pC pcC

And for the corrected primitive variables one obtains
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p corrected — p far

P corrected P predicted
un,correcled = un, predicted
= us, predicted

u s,corrected

ub,currected = ub, predicted

(4.33a)

(4.33b)

(4.33¢)

(4.33d)

(4.33¢)

For the two-equation turbulence closure, the same first order extrapolation

procedure, carried out for the subsonic exit, is used.

4.4

SYMMETRY BOUNDARY CONDITION

The symmetry boundary condition asserts that, the flow velocity is tangent to

the surface; thus, normal component of the velocity is set to zero on the boundary.

A,,4,, 4, and A, becomes negative, and A, positive. Therefore,

AW, =0=
AW, =0=
AW, =0=
AW, =0=
AW, =0=

p corrected

ub,corr‘ected

u s,corrected

n,corrected

n,correc

_ V4 corrected __ _ p predicted
=2 =p predicted —2
C C
= uh, predicteed
= ux,predicled
_ p corrected __ u _ p wall
— = “n,wall —
pc Yol
p corrected  _ p predicted
ted — - n, predicted —
pC PC
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(4.34b)

(4.34¢)

(4.34d)

(4.34¢)



Keeping in mind that u,  , is set to zero, one can obtain

n,wall
un,corrected = un,wall = 0
us,corrected = us, predicted
ub,wrrected = ub, predicted

p corrected p predicted - pC un, predicted

_ p corrected p predicted
p corrected p predicted Ez

and for the k-£ and k- w turbulent closure, a first order extrapolation yields:

45 SOLID WALL BOUNDARY CONDITION

(4.35a)

(4.35b)

(4.35¢)

(4.35d)

(4.35¢)

(4.36)

The action of attractive molecular forces between the flowing fluid and the

solid wall boundary causes the fluid particles stick to the wall. Therefore, just on the

solid wall boundary, it is assumed that the relative velocity between the fluid and the

solid body becomes zero, preventing slip. Thus, this type of boundary condition is

also called the no-slip boundary condition. Mathematically, it can be expressed as

follows:

u=v=w=>0

(4.37)

For the energy equation, the appropriate solid wall boundary condition would

be either to specify the temperature or heat flux on the wall, that is,

66



(4.38)

wall

or

oT

a = qwall (439)

_ k thermal

In this study, adiabatic boundary condition is used, that is, heat flux on the

wall is set to zero.
qwull = O (4'40)
or accordingly,

ar _

0 4.41
o (4.41)

In the normal direction to the solid boundary, using boundary layer

assumptions, y-momentum equation reduces to

P _y (4.42)
on

For the k-& equations solid wall boundary conditions are

=¢ =00 (4.43)

wall wall

and for the k- w turbulent closure,

=0.0 (4.44)

wall

and for @ Wilcox [21] suggested that

67



25000,
w = 3
k

(4.45)

where k, is the average height of a sand-grain roughness element. k, must be small

enough to insure a correct skin friction distribution when applied to a smooth wall,

otherwise the skin friction values will be larger than the correct values [9].

4.6 FAR FIELD BOUNDARY CONDITION

Ideally, at a farfield boundary, the propagating waves should neither be
reflected nor emitted. Rather, by the action of viscosity, they should be dissipated. To
implement such an ideal farfield condition means that the boundary should be placed
sufficiently far, say 50-60 or sometimes 100 characteristic lengths away [15]. Then
the implementation would become a simple matter, the free stream values could

directly be specified at the boundary.

However, this kind of a method is practically inconvenient because it will
necessitate the use of large number of grid points and result in a considerable

increase of computational time.
A practical approach would be to put the farfield boundary closer, say 5 — 6
characteristic lengths away, but this time special corrections will be added to the free

stream values [15].

In this study, the free stream values of primitive variables are directly

imposed on the far field boundaries.
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CHAPTER 5

RESULTS

To evaluate the performance of the turbulence models adapted into the
Navier-Stokes solver, a case of two dimensional, subsonic, laminar - transition fixed
- turbulent flow over a flat plate is chosen. This test case was also handled by several
other researchers, like Jameson [20], El Khoury [11], Haliloglu [16], Tiaztepe [15].

These researchers used a free stream Mach number of 0.3.

But before applying any turbulence models into the Navier-Stokes solver, it is
first tested for a two dimensional laminar flow over a flat plate, with the same Mach
number as the turbulent case, but with a different Reynolds number. The Reynolds
number is chosen to keep the flow in the laminar regime. This case aims to validate
the performance of the Navier-Stokes solver that the turbulence models will be

included in.

A total number of five turbulence models are applied, and the computed
results are compared with analytical and empirical results. These results include
velocity, local skin friction distribution and boundary layer thickness plots, which are
seen necessary to evaluate the performance of the computations. Residual histories

are also included for further evaluation.

In addition to the results, grid properties, some basic issues of the numerical

work and important pinpoints in model implementation are discussed.
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5.1 GRID AND FLOW PROPERTIES

To verify the accuracy of the Navier-Stokes solver that the turbulence models
will be based on, a two dimensional laminar flow with zero pressure gradient is
considered. Mach number is set to be 0.3 as in the turbulent case, but the length of
the flat plate is properly adjusted to keep the Reynolds number less than 5x10°, the
widely accepted value for transition to turbulence. To adjust the length of the flat
plate which is initially 1 meter (lying between 0 < x < 1), the grid data is scaled with
a factor of 0.005. This scaling reduces the flat plate length to 5 mm. Thus a
maximum Reynolds number of 3.5x10* could be obtained, and the flow could be

kept in the pure laminar regime.

0
®*200 (1)

Figure 5.1 The grid used for the laminar flat plate problem (scaled).

The grid used for this case is shown with its scale indicated on the axis in
Figure 5.1. It is basically a structured H-type grid formed of 121x81 grid points
(9801 nodes, 9600 cells). This discretized domain has a length of 5 chords and a
width of 3 chords. In this domain, in the horizontal direction, there are 30 nodes

before the flat plate, 70 nodes on the flat plate and 21 nodes in the wake region. The
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grid is clustered exponentially at the leading edge and over the flat plate, making

minimum Ax and Ay equal to 0.00022 and 0.00025 of the chord length, respectively.

¥ (m)
|||||L|h||||

Figure 5.2 The first grid (grid-1) used for the turbulent flat plate problem.

Apart from the laminar flow case, two different grids are considered for the
turbulent flow case. For both grids, flat plate lies at 0 < x < 1, dimensions given in
meters. The first grid used is shown in Figure 5.2. It has 121x81 grid points that are
clustered at the leading edge and near the wall. There are 37 nodes upstream, 81
nodes on the flat plate and 3 nodes in the wake region. The grid is clustered such that
minimum Ax and Ay are equal to 0.00004 and 0.000015, respectively. Clustering at
the leading edge is done to ensure that there are enough grid points to capture the
gradients of pressure and velocity along the x-direction which occur due to flow
stagnation. In addition to this, transition occurs near the leading edge, therefore this
clustering helps to capture the sudden changes in flow properties during transition.
Along the normal direction to the plate, the turbulent velocity profiles are expected to
be much steeper than they are for laminar flow. For this reason, the grid should be
compressed more in the y-direction to capture property variations along the boundary

layer correctly. Therefore during the grid generation, minimum value of Ay is
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adjusted such that there is at least one grid line in the laminar sublayer. In other
words, there is at least one grid point below y* < 5, keeping in mind the fact that the
same y value above the flat plate can attain different y* values along the plate,
depending on the value of the wall shear stress. Consequently, such a grid clustering
along normal direction to the wall helps to increase the accuracy of calculations in

the boundary layer.

2.5

Figure 5.3 The second grid (grid-2) used for the turbulent flat plate

problem.

The second grid used for the flat plate problem is shown in Figure 5.3. This
grid have the same number of nodes, 121x81, but it is clustered at the trailing edge as
well. Minimum Ay is set to be the same as it is in grid-1, but minimum Ax is now set
to be 0.000032. In this grid, there are 37 nodes in the upstream region, 70 nodes on
the flat plate, and 8 nodes in the wake region. It can be said that grid-2 is a more
clustered version of grid-1 at the trailing edge. The other difference is that a few grid
lines are transferred from the flat plate to the wake region. Again note that, for this

grid, the flat plate lies at 0 <x < 1, same as in grid-1.
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For the turbulent case, the free stream Mach number of the air flow over the
flat plate is 0.3, and the free stream Reynolds number based on the length of the flat
plate corresponds to 6,000,000. In accordance with references [11],[15],[16] and
[20], transition to turbulence is fixed at X, = 0.054, which corresponds to a Reynolds
number of 324,000. Actually, fixing transition is setting an empirical x-value in the
solver after which the turbulence models are coupled with the Navier-Stokes
equations in the domain. Finally, it should once again be noted that the flows
considered in this study have no streamwise pressure gradient and can be considered

incompressible.

In this study, the initial flow properties are taken as:

i. M, = 0.3, flow being in parallel direction to the flat plate (purely in x-
direction),
il.  (Py»= 100,000 Pa, for stagnation pressure,
. (T,)»=298 K, for stagnation temperature.

Notice that, for two-equation models, initial values for turbulence parameters
are given in Section 4.1. Boundary conditions for the turbulent case are set as

follows:

i.  For inlet and exit (inlet at x = -2, 0 <y < 3 and exit at x = 1.2, 0 <y <3)
characteristic boundary conditions are applied, as explained in Section 4.3.

ii.  On the lower boundary along the regions excluding the flat plate (at y = 0,
-2 <x<0and 1 <x < 1.2), symmetry boundary condition is applied, as
explained in Section 4.4.

iii.  On the flat plate (at y =0, 0 <x < 1), no-slip boundary condition is applied, as
explained in Section 4.5.

iv.  Finally on the upper boundary (at y = 3, -2 < x < 1.2), free stream boundary

condition is applied.
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5.2 PERFORMANCE OF THE NAVIER-STOKES SOLVER

To test the performance of the Navier-Stokes solver, the velocity outputs -
obtained along different vertical positions on the flat plate - are compared with
Blasius similarity solution. The similarity variable 7 and non-dimensional velocity "

are defined as such:

n==2.|Re (5.1a)
X

(5.1b)

Re, is the Reynolds number at position x on the plate defined as

U
Re, =FP="=t (5.2)

' M,

Finally, the result for local skin friction coefficient is compared with the

Blasius exact solution which is calculated to be
C, =0.664(Re, )"’ (5.3)

The results for skin friction distribution and tangential and normal velocities
are presented in Figures 5.4, 5.5 and 5.6. Note that the velocity data is obtained at
four different positions on the plate, and plotted on top of each other. After several
runs for different grids, it has been observed that the slight deviation for skin friction
result at the leading edge is due to grid clustering in the y direction, not due to the
solver. This deviation could further be decreased by compressing the grid more along

the horizontal direction.
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Figure 5.4 Local skin friction coefficient along the flat plate (Laminar
Case).
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Figure 5.5 Non-dimensional tangential velocity profiles (Laminar Case).
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Figure 5.6 Non-dimensional normal velocity profiles (Laminar Case).

These plots validate the Navier-Stokes solver well enough to remove any
doubt in mind about its performance for laminar flows. It is thus concluded that the
considered turbulence models can be applied with enough comfort, and the accuracy

of the Navier-Stokes formulation is acceptable for this purpose.

5.3 PERFORMANCE OF THE TURBULENCE MODELS

To evaluate the performance of the models, both empirical and analytical
results have been employed. The calculated local skin friction coefficient and
boundary layer thickness have been compared with Blasius exact and approximate
solutions. Calculated turbulent velocity profiles have been compared with
empirically obtained universal velocity distributions. As a summary, the analytical
and empirical relations for the flat plate problem utilized in this study can be given as

follows:
For local skin friction, Blasius exact solution for laminar regime is used, as

given in Equation (5.3). For turbulent region Prandtl’s 1/5 law is used, as given

below:
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C, =0.0592(Re, )" (5.4)

where Re, is the Reynolds number based on distance from the leading edge, x,

defined as in Equation (5.2) and Cris the local skin friction coefficient given as,

Cf = v (5.5)

noting that p,, and U, are free stream values for density and velocity, and 7, is the

value of wall friction calculated locally on the flat plate.

For turbulent non-dimensional velocity profiles, the following generally
accepted correlation [18], which is also plotted in linear-log scale in Figure 5.7, is

used:

y* , 0<y"<5 (5.6a)
u =< 50lg(y*)-3.05, 5<y <30 (5.6b)
2.5log(y*)+55 , 30<y" (5.6¢)

In the above correlation, y* is defined by Equation (2.18) and non-

. . . + .
dimensional velocity u~ can be given as,

ut =L (5.6b)

where u, is the friction velocity defined by Equation (2.19). Here note that this

definition of non-dimensional velocity is different than in Equation (5.1b).

For boundary layer thickness, the following analytical results are used:
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5=50x(Re, )™ - for laminar regime, (5.7a)

5=0.2882x(Re, )** - for turbulent regime. (5.7b)

Before evaluating the results, it must be noted that skin friction and velocity

distributions are plotted on a log-log and linear-log scale respectively. (Velocity plots

are in linear scale for #" and in logarithmic scale for the Reynolds number.)

Finally, it is worth mentioning that, for all algebraic models, the artificial

dissipation coefficient is set to 0.001, similar to the original Navier-Stokes solver.

Higher values are used for two-equation models. For all models, the CFL value is set

to 0.5,

and local time stepping technique is applied.
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Figure 5.7 Non-dimensional velocity profile for an incompressible
turbulent flow over a flat plate and identification of different regions within

the turbulent boundary layer (Adapted from reference [18] ).
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5.2.1 Cebeci-Smith Model

This model is tested on grid-2. Clustering the grid at the trailing edge is
preferred to prevent the under prediction of the skin friction result which was
observed for grid-1. In other words, the skin friction result obtained by grid-2 was

notably better than that obtained by grid-1.

The results of computations for Cebeci-Smith model are shown in Figure 5.8,
Figure 5.9 and Figure 5.10. The local skin friction coefficient result is compared with
Prandtl’s 1/5 law, that is, with Equation (5.4). Note that the skin friction result for the
turbulent part is slightly under predicted. Here it should once again be noted that, the
skin friction distributions are plotted on a log-log scale and therefore, the curves in
the turbulent zone are pushed to the trailing edge of the flat plate. In the linear graph,

turbulent zone constitutes almost all the flat plate.

The deviation near the end of the boundary layer in the velocity plot, as seen
in Figure 5.9 is expected. This is because, such a defect or deviation from the log-law
in the outer region of the boundary layer is also observed in various experimental
results in the literature and thus this region is given the name “defect layer” (see
Figure 5.7). As its name implies, in this region, the actual velocity profile deviates

from the logarithmic profile, so that there is a defect.

Boundary layer thickness calculation is necessary for the Cebeci-Smith
model, in order to calculate velocity thickness. Velocity thickness data is then used to
calculate the outer layer turbulent viscosity, as explained in Section 2.4.1. In this
regard, boundary layer thickness calculation has an indirect effect on turbulence
properties, entering directly into the formula for turbulent viscosity. Therefore, to
ensure the accuracy of the computations, such a plot was seen to be necessary, and a
small routine is developed and added to the code to get an output of the boundary

layer thickness, as shown in Figure 5.10.
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Figure 5.8 Local skin friction cociucient along the flat plate (Cebeci-
Smith model).
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Figure 5.9 Non-dimensional turbulent velocity profiles (Cebeci-Smith
model).
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Figure 5.10  Boundary layer thickness along the flat plate (Cebeci-Smith

model).

For this model, results show fairly good agreement, except for the boundary
layer thickness: the stepwise oscillations near the leading edge are thought to be
because of the grid coarsening near the boundary layer edge, far above the flat plate.
And as seen from the other plots, this small inconsistency has a minor effect on the
model performance, and it is acceptable. (The result deviates from the analytical
solution at most by only 0.001 of the length of the flat plate, one-thousandth of a

meter.)

5.2.2 Michel et. al. Turbulence Model

This model is the easiest one to implement, among others considered in this
study. It has a single layer approach, where the turbulent viscosity is calculated by a
single formula. In spite of this fact, the results show almost the same performance
with the Cebeci-Smith model. (Figures 5.11, 5.12, 5.13) It is observed that when
grid-1 is used, skin friction result is slightly over predicted at the trailing edge. So

similar to the Cebeci-Smith model, grid-2 is selected for this model, too.
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Figure 5.11  Local skin friction coefficient along the flat plate (Michel et.
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Figure 5.12  Non-dimensional turbulent velocity profiles (Michel et. al.

model).
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Figure 5.13  Boundary layer thickness along the flat plate (Michel et. al.

model).

Conclusively, successful results are obtained with Michel et. al. model, with
its simplicity as a plus. Also, the deviation in the boundary layer thickness plot is
acceptable, again due to the grid coarsening effect which is explained for the Cebeci-

Smith model.

5.2.3 Baldwin-Lomax Model

This model is the last algebraic model considered in this study. The results
obtained with this model are shown in Figures 5.14 and 5.15. As in the case of other
algebraic models used in this study, to maintain a better accuracy at the trailing edge,
the second grid (grid-2) is selected. The results are in close agreement with the
analytical solutions, both for skin friction and velocity distribution. Boundary layer
thickness plot is not included in the results, because boundary layer thickness
calculation is unnecessary for this model. In fact, this is the main advantage of the
model over other algebraic formulations. Eliminating the boundary layer thickness

data is really an advantage for separated flows, for which its calculation might create
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stability problems. However, this fact is unimportant for attached boundary layers

like in our case.
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Figure 5.14  Local skin friction coerricient along the flat plate (Baldwin-
Lomax model).
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Figure 5.15  Non-dimensional turbulent velocity profiles (Baldwin-Lomax

model).
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With the above results, the implementation of Baldwin-Lomax model is
shown to be successful. Generally, algebraic models are simple, easy to implement
and do not create stability problems. They are the best alternatives for simple flow

cases like the one considered in this study.

For all algebraic models used in this study, a second order smoothing
coefficient (or artificial dissipation coefficient) of 0.001 is used. This value is
adapted from references [9] and [16]. While implementing the algebraic models into

the Navier-Stokes solver, no other extra numerical treatment was imposed.

5.2.4 Chien’s k-¢ model

Since two additional equations are solved with Navier-Stokes equations, this
model needs a more intricate numerical work. Numerical experimentation showed
that to maintain stability, artificial dissipation coefficient must be increased by
approximately 3 orders of magnitude, in agreement with reference [9]. This stability
concern, that is increasing the amount of artificial dissipation, brings an extra burden
for the numerical scheme. Due to the Lax-Wendroff scheme explained in Chapter 3,
the non-physical artificial dissipation acts more on coarser grids than on finer ones.
Increased artificial dissipation means decreased distribution of changes at each cell to
its nodes at each time step. Thus, the convergence speed of the solver decreases, and
extra care should be given to the grid structure, because the solver becomes more
sensitive to the grid used. Accordingly, many runs have been performed with several

grids and the only successful result is obtained by grid-2.

During iterations, k£ and ¢ may attain negative values. This situation violates
the physics of the problem because turbulence kinetic energy and its dissipation can
not be negative. What’s more, this unwanted situation can cause stability problems.
Therefore, when this occurs, values of £ and ¢ are set to very small positive numbers,

immediately after the iteration.
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The skin friction result for this model is shown in Figure 5.16. Note that, a
close match with the analytical solutions is observed. The small downward trend of
the curve just before transition is also observed by reference [9], and it is thought to
be due to the model’s interaction with the laminar part of the flow. In any case, the
model’s performance for the turbulent part is much more important, and in this

regard, the accuracy of the computation is acceptable.
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Figure 5.16  Local skin friction coefficient along the flat plate (Chien’s k-¢

model).

5.2.5 Wilcox’s k- model

The implementation of k-w model is similar to the k-¢ model. While
discretizing the two additional transport equations, the value of the artificial
dissipation coefficient (which is originally 0.001) was increased by a factor of 5000
[9]. Note that the value of artificial dissipation coefficient remains unchanged for the
Navier-Stokes equations. The value of w at the wall and at the first and second grid
points above the wall is set according to Equation (4.45). The value of kz in Equation
(4.45) is set to be 2x107 and reduced to its half after 20,000 iterations. During the

iterations, if negative values of k& and w are encountered, they are set to their free
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stream values, similar to the k-¢ model. With these numerical considerations, the

stability of the calculations could be maintained.

Different than other models, grid-1 is used for this case. Actually this is the
only model where grid-1 is used. Trailing edge clustering was found to be
unnecessary and it can be said that this model is less sensitive to the grid structure
than the k-¢ model. However, the final converged solution is again highly dependent
on artificial damping, similar to the k-¢ model. From the experience gained by this
case, it can clearly be said that, for wall boundary layer flows, Wilcox’s k-w
formulation is far less stiff than Chien’s k-¢ model and good performance is obtained
with less effort. On the contrary, it is observed that k~@ model is more sensitive to
the free stream flow region after the flat plate. And it should be reminded to the

reader that all the results obtained in this study exclude free stream regions.

The skin friction result obtained for this model is presented in Figure 5.17

below.
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Figure 5.17  Local skin friction coefficient along the flat plate (Wilcox’s k-

w model).
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Finally the residual histories of models are plotted on the same graph in
Figure 5.18. This plot shows the x-momentum residual behavior and it is given to
show the convergence behavior of each model. Note that, for models which use high
artificial damping coefficient, oscillations tend to get suppressed. This is the very
case for especially the Chien’s k-¢ model, where the increased damping coefficient is
applied to the whole system of equations. A very smooth curve is obtained for this
case. For the k~-w model on the other hand, still some oscillations are observed. This
is thought to be because high artificial damping is applied only to the additional two

equations solved.

For zero-equation models, approximately 70,000 iterations were enough for
convergence. But for two-equation models, the solver is run for approximately
90,000 iterations. Finally it should be noted that the residual graph is incapable of
showing the convergence speed, that is, the time necessary for any model to reach a
solution. This is because; a single iteration takes different time for different models.
In this study, P4 processors are used with 2.4 GHz clock speeds. For zero equation
models it took approx. 3.5 hours for the results to converge, whereas for two

equation models it took almost 5.5 hours to reach the converged solutions.
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Figure 5.18  Average x-momentum residual history for the turbulence

models.
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CHAPTER 6

DISCUSSION AND CONCLUSION

6.1 SUMMARY

A previously developed Navier-Stokes solver capable of solving laminar
flows is improved to handle turbulent flows, using several eddy-viscosity turbulence
models (EVM’s) which are of zero-equation and two-equation type. The improved
solver is tested for a case of subsonic, laminar - transition fixed - turbulent flow over
a flat plate. Transition to turbulence calculations is fixed by a certain value of x, that
is, the distance from the leading edge of the flat plate. Before the transition point,
only Navier-Stokes equations are solved. Over the flat plate, wall bounded
turbulence formulations are used. After the flat plate in the wake region, free stream

formulations of the turbulence models are implemented.

While evaluating the performance of the solver, it must be kept in mind that
the model and the numerical scheme can not be thought independently, they must be
considered as a whole. In this regard, the results show the characteristics of the
model, as well as the efficiency of the numerical discretization. This is especially the
case for two-equation models, where the discretization of the turbulence transport
equations has a major effect on the results. Apart from this interaction, it is also
observed that the results are sensitive to space discretization or in other words the
grid used. It was observed that the clustering of the grid at the trailing edge yielded

better results, especially for the k- ¢ closure.
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Zero equation models implemented in this study are Cebeci-Smith, Michel et.
al., and Baldwin-Lomax models. These models utilize the mixing length hypothesis,
which was set forth by Prandtl in 1925. This hypothesis asserts that in turbulent flow,
fluid particles coalesce into lumps and move as a single unit. The mixing length is an
empirically determined length scale which gives us the distance that these lumps of
fluid particles can move freely with respect to each other. The mixing length theory
is highly inspired by the kinetic theory gases (with analogy to molecular mean free
path of gases), and models using this theory give successful results for flows with no
or low adverse pressure gradients. For simple flows like the one considered in this
work, mixing length models are the best alternatives, due to their simplicity and the
ease of implementation. Especially the mixing length model developed by Michel et.
al. is the easiest one to implement and performs as good as others. However, it is
reported that this model is only applicable for flat plate boundary layers [25]. Here it
must be noted that, Michel et. al. and Cebeci-Smith models have the drawback of
calculating boundary layer thickness, which would be hard especially for separated
flows. On the other hand, Baldwin-Lomax model has the capacity to predict
separated wall bounded flows but it is reported that their performance is still

questionable [6].

The two-equation models considered in this study are Wilcox’s k-w and
Chien’s k-¢ models. These models are selected due to their popularity and accepted
success in predicting turbulent flows. They use the turbulence kinetic energy
equation which is an additional partial differential equation modeling the transport of
turbulence within the flow and it is derived by taking the moments of Navier-Stokes
equations. With this equation, turbulence history effects can be introduced into the
solutions. This consideration is supposed to increase the accuracy of the calculations.
It must however be kept in mind that the two-equation models are based on the
assumption of isotropy. However, real life turbulence is almost always anisotropic
because it has a preferred direction. In parallel to the assumption of isotropy, all
eddy-viscosity models assume the turbulent flow to be in equilibrium state, which
asserts that in turbulent flow, the energy cascade of the turbulent eddies are in

equilibrium. This is almost never the case as well. In the shadow of these
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assumptions, it can be said that, wall bounded turbulence (or wall shear turbulent
flows) is a harder case for turbulence modeling studies than free shear turbulence.
Therefore, application of these models to the flat plate problem is only a first step
towards the testing of the solver on more complex geometries. On more complex test
cases, the effects of pressure gradient, flow curvature, separation and shock-

boundary layer interaction on turbulence can be investigated.

Numerical study for the two-equation models showed that the result obtained
with k-¢ model is rather sensitive to grid clustering at the trailing edge. However, it is
also observed that k-¢ model performs better than k-@ in the wake region. k- model
on the other hand performs well enough without such a grid clustering. However, k-
o model is rather sensitive to free stream values of w, which was also reported by
Menter [22]. The disadvantage of k-¢ model is that it is rather stiff and needs the use

of high values for artificial dissipation coefficient to render the solution stable.

Conclusively, zero equation models perform well enough for turbulent flat
plate problem, and they are the best choice for this kind of a flow where small
amount of adverse pressure is present. In our case, their performance is adequate
with the two-equation models for which greater effort is spent. However, two-
equation models have the potential to perform better for complex flow field
calculations. They are considered in this study to show their application and this will

form the basis of future studies.

6.2 RECOMMENDATIONS FOR FUTURE STUDY

This study has witnessed the successful implementation of algebraic models
on the Navier-Stokes solver for flat plate problem. It will be a good practice to go
one step further to Johnson-King turbulence model, which is a successful model,
tested by various researchers on airfoil geometries for transonic separated flows. In
addition to this, it is much easier to implement than two-equation models. In this

model, only an ordinary differential equation is solved. An algebraic version of this
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model is also presented by Cebeci and Chang [27], rendering the model even

simpler.

Many improvements can be made on the two-equation turbulence kinetic
energy models used in this study. First of all there are various different versions of
these models which are suitable for different flow fields. To see their contributions,
these versions may be applied on the Navier-Stokes solver. A rather interesting
approach is reported by Menter [17], where he proposed to combine the k-¢ and k@
closures to compensate for the deficiencies of each other. He offered to combine the
success of k-w model in the near wall region with the success of k-& model in the free
stream region. To do this, he proposed a blending function to determine how much of
these models will be utilized in different regions of the flow, without user
intervention [26]. Menter could thus offer a powerful combination of the two models
and his approach has been the subject of industrial applications in the past years due

to its success.

In the mid-way between two-equation and algebraic models, one equation
models may also be considered. Due to their less computational demands and
acceptable success, they have found quite wide applications in research studies and

in industry.

Finally, all models developed into the present solver can be easily applied to
any finite volume Navier-Stokes solver, with similar discretization. However, the use
of a higher order numerical scheme would yield better results for more complex flow

geometries.
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APPENDIX A

CALCULATION OF SURFACE VECTORS

This short summary is intended to demonstrate the calculation procedure of
the surface areas used in Chapter 3 in the calculation of the first- and second-order
changes. The surface vectors are decomposed into three components in each of the
three Cartesian directions. The following calculations are carried out in

correspondence with Figure 3.5. The surface vector S; can be expressed as follows:

1, .
51=E(r54xr18) (A1)

Here, r stands for the displacement vector between two nodes and the
subscripts denote the node numbers of the corresponding vector. The open form of

the displacement vectors can be expressed as follows:

Iy =(x4—xs)l?+(y4—y5)j+(z4—25)k (A.2a)

Fig = (xs _xl);+(y8 _yl)j"‘(zg _Zl)k (A.2b)

Substituting the above vectors into (A.1) and rearranging to get
. .
Slza(’”54><’”18):x4_x5 Ya—DVs 24725 (A.3)
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The open form of Equation (A.3) can be expressed as:

5, =5 1l = Xag =)= =3 e =2,

—j[(x4 —Xs )(Zs _Zl)_(xg - )(24 —Zs )] (A.4a)
+l€[(x4 _xs)(ys _yl)_(x8 _xl)(y4 _ys)]}

where the first, second and third terms stand for the three Cartesian components S; y,
Sax, Ssx respectively, which are used in Chapter 3. The rest of the five surface

vectors can be given as follows:

5, = 72
|=
:E{i[(y3—y6Xz7—zz)—(y7—y2)(z3—z7)] (A.4b)

—j[(x3 _x6)(Z7 _Zz)_(x7 _xz)(Z3 _Z6)]

+E[(x3 —xﬁ)(y7 —yz)—(x7 _xz)(ys _yé)]}

§3 = %(’752 X ’761)
- % 0 = 7 Xz = 20) = (07 = 9 Nz — 2] (A4c)

_j[(xz _xs)(Z1 _ZG)_(xl _xo)(zz _Zs)]

+l€[(x2 —)CS)(y1 —yG)—(xl _xf,)(J’2 _ys)]}

§4 = %(7%3 X’774)
1
= E{l [(y3 —yg)(Z4 _Z7)_(y4 _J’7)(Z3 _Zs)] (A.4d)

_][(xz —xg)(z4 _27)_(x4 —x7)(z3 _Zs)]

+]€[(X3 _xg)(y4 _y7)_(x4 —x7)(y3 _ys)]}
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1, .
S5 :5(”13sz4)

= l{lq[()@ -» )(24 - Zz)_ (y4 -0 )(23 —Z )] (Ade)

—]'[(x3 _xl)(z4 —22)—()64 —xz)(z3 _Zl)]
+IE[()% _xl)(y4 _yz)_(x4 _xz)(yz _yl)]}

- 1 _ ~
S¢ = 5(’”57 ers)

{f[( — ¥ Nz —2e) = (s = ve N2y — )] (A.40)

[(x7 —Xs )(Zs _Zs)_ (xs X )(27 —Zs )]
+ [(x7 _xs)( ) (xs _xs)(y7 _ys)]}

Referring to Figure A.1, the cross products of surface vectors that are used in
the calculation of the second-order inviscid and first-order viscous terms as denoted

by Figure 3.5 in Chapter 3 are derived as follows:

A= 50 = G x7) (A50)

Each of the above displacement vectors (7,,and 7, ) can be expressed using

om

the corners of the main cell, as follows:

(A.5b)

P _1[(77 +R)-(F+7) (7 +7)-( +a))

'y 2 2
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Figure A.1 Surface vectors

Evaluating the cross product along with further manipulation, the above

equation can be expressed in x, y and z directions as follows:

1
Al,x:g[(y8+y7_yl_yZ)(ZS+ZG_Z4_Z3) (A.6a)

_(ZS+Z7 - _Zz)(ys + Ve _y4_y3)]
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1
Al’y zg[(xs TX X _xz)(zs +2zZ,—2, _23)
_(28-1-27 -z, —zz)()c5 +x6—x4_x3)]

1
Al,z :_[(xs +X; — X _xz)(ys t Ve = Vs _J/3)

8
s+ 1 =2 =) s + s — v —33)]

(A.6b)

(A.6¢)

Similarly the surface vectors 4, and 43 can also be expressed as shown below

1
4,, :g[(yx"'ys V3 _yz)(Z1 +z,-2 _27)
_(Zx"'zs I3 _ZZ)(yl +Vs—Ys _y7)]
1
A2,y Z_[(xs X5 — X5 _x2)(zl +Z4 2 _27)

_(Zx+zs —Z3 _ZZ)(xl T X, — X _x7)]

1
A2,z :g[(xx"'xs — X3 _x2)(y1 t Vs —Ys _y7)

_(J’x Vs — Vs _J’2)(x1 +x4_x6_x7)]

1
A3,x =§[(J’1 +Ys—)s _J/7)(Zx +z,-2 _Zz)

_(Zl +zs—2z4 _27)()’8 Vs~ Ve _yz)]

1
AB!y zg[(xl X5~ Xy _X7)(Zg +z,—Zg —Zz)

_(Zl tzs—2z4 _27)(x8 T X, — X _xz)]

1
4, =§[(x1 + X5 — X, _x7)(yx +V,—Ye _yz)

_(yl +Ys—)s _y7)(x8 + X, — X _xz)]

100

(A.7a)

(A.7b)

(A.7¢)

(A.8a)

(A.8b)
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Calculation of cell volume is carried out using the method introduced by
Kordulla and Vinokur [24]. This method was also used by Haliloglu [16] and El
Khoury [9].

Figure A.2  Cell division

Figure A.2 shows the cell division while the half of the cell is composed of

three tetrahedral. These tetrahedral are shown below

Figure A.3  Tetrahedral division of the half cell
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Hence, as shown in Figure A.3, the cell is composed of six tetrahedral sub-

volumes. Therefore, its volume can be expressed as follows:

1. . . . . . .
A\vl:g’”ﬂ'{(”51><’”61)‘*'("81><”51)+("61><”21)‘*'("21X’”zl)"'(”slX”411)+(7'41‘*"'zal)}
1. - . . ..
:g”ﬂ'{("52X7'61)+(V45Xr81)+(r24xr31)}
1. (= = =
:§r71 (1+S3+SS)
(A9)
where the displacement vector is given as:
2 :(xl —x7);+(yl _y7)j+(21 _Z7)l€ (A.10)

where §), S5, and S5 are the previously calculated surface vectors. Substituting all

these into Equation (A.9), the final form of the volume can be rearranged to give

AV = % (x-S +S,, +S5.)

(= », NS, + 8., +Ss,) (A.11)
+ (Z1 —Z )(Sl,z + S3,z + Ss,z)

where Si ., Si,, ..., S5, Ss. are the components of the surface vectors as calculated

above.
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