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 ABSTRACT 

 
PERFORMANCE IMPROVEMENT OF A 3-D CONFIGURATION 

RECONSTRUCTION ALGORITHM FOR AN OBJECT USING 

A SINGLE CAMERA IMAGE 
 

 

ÖZKILIÇ, Sibel 

M.S., Department of Mechanical Engineering  

Supervisor: Prof. Dr. Bülent E. Platin 

December 2003, 92 pages  

 

 

Performance improvement of a 3-D configuration reconstruction 

algorithm using a passive secondary target has been focused in this study. In 

earlier studies, a theoretical development of the 3-D configuration 

reconstruction algorithm was achieved and it was implemented by a 

computer program on a system consisting of an optical bench and a digital 

imaging system. The passive secondary target used was a circle with two 

internal spots.  

 

In order to use this reconstruction algorithm in autonomous systems, 

an automatic target recognition algorithm has been developed in this study. 

Starting from a pre-captured and stored 8-bit gray-level image, the algorithm 

automatically detects the elliptical image of a circular target and determines 

its contour in the scene. It was shown that the algorithm can also be used for 

partially captured elliptical images.  
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 Another improvement achieved in this study is the determination of 

internal camera parameters of the vision system.  

 

Keywords: Camera calibration, thresholding, binarization, ellipse recognition, 

lens distortion, target recognition. 
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 ÖZET

 

ÜÇ BOYUTLU UZAYDA CİSİMLERİN KONUMLARININ TEK 

KAMERA GÖRÜNTÜSÜ KULLANILARAK BELİRLENMESİ İÇİN 

GELİŞTİRİLMİŞ YÖNTEMİN PERFORMANS İYİLEŞTİRİLMESİ 

 

ÖZKILIÇ, Sibel 

Yüksek Lisans Tezi, Makina Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Bülent E. Platin 

Aralık 2003, 92 sayfa 

 

 

Bu çalışmada, cisimlerin 3 boyutlu uzaydaki konumlarını pasif ikincil bir 

hedef kullanılarak belirleyen bir yöntemin iyileştirilmesi üzerine odaklanılmıştır. Bu 

çalışmaya temel oluşturan önceki çalışmalarda, 3 boyutlu uzayda cisimlerin 

konumlarını belirleyen bir yöntemin kuramı geliştirilmiş ve bu yöntem bir bilgisayar 

programı yardımıyla, bir optik ölçme sistemi ve sayısal görüntüleme sistemi üzerinde 

uygulanmıştır. Kullanılan pasif ikincil hedef, içinde iki benek olan bir daireden 

oluşmaktadır.  

 

Geliştirilen bu yöntemi herhangi bir dış müdahale olmaksızın çalışan otonom 

sistemlerde uygulayabilmek için, bir otomatik hedef belirleme yöntemi geliştirilmiştir. 

Bu yöntem optik sistemce çekilmiş ve depolanmış 8 bitlik bir resimde dairesel 

hedefin görüntüsü olan elipsi bulmakta, kenarlarını otomatik olarak belirlemektedir. 

Yöntemin kısmi olarak görüntülenmiş elipsler için de kullanılabildiği gösterilmiştir. 

 

Çalışmada geliştirilen başka bir iyileştirme de görüntüleme sisteminin iç 

kamera parametrelerinin belirlenmesidir.  

 v



  

Anahtar kelimeler: Kamera kalibrasyonu, eşik belirleme, siyah-beyazlaştırma, elips 

tanıma, mercek bozuklukları, hedef tanıma. 
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 NOMENCLATURE 
 
 

a The parameter vector of an ellipse when the ellipse 

equation is written in polynomial form. 

a, b, c, d, e, f The coefficients of the ellipse when the ellipse equation is 

written in polynomial form.  

C(x,y)       The representation for the general conic equation 

d0 The distance between the origin of the camera coordinate                     

system to the image plane coordinate system 
d               The distance of the origin of the image plane coordinate   

system to the target   coordinate system. 

Ei
(average) The average reconstruction error in the configuration 

parameters i. 

f       Focal length of the camera. 

F(a,x)      The general conic representation of the ellipse.  
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L(x,y)  The parameter for the line connecting the pair of points on 

the ellipse. 

M   maximum score in accumulation space. 

p1,p2        Tangential lens distortion parameters. 
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CHAPTER 1 

INTRODUCTION 
 

 

1.1 General  
 

In many robotic applications that aim positioning or recognition tasks, vision 

is one of the most effective and flexible techniques to sense the environment. 

Similar to the human vision system, machine vision systems may give very rich 

information about the environment. Therefore, the intelligence on the environment 

begins with the interpretation of this visual information. Mechanisms involved and 

the experience in human perception of environment through vision may be used in 

this interpretation step.  

 

In practical applications, there are basically two types of vision systems; 

namely, the “stereo vision” and the “monocular vision”. Stereo vision systems use 

two cameras to view an object. In this type of vision systems, the need for 

synchronization of two cameras brings an additional cost to the hardware. The 

interpretation of two images of a same scene is another challenging task to perform 

in their processing phase. On the other hand, unlike stereo vision, the depth 

information cannot directly be obtained from a single image with monocular vision. 

So, some a priori information about the object is required for this purpose.  

 

With the help of the developing technology, the cost for setting these visual 

systems decreases and their use spreads in many application areas, like automated 

production lines, manipulated guidance, and autonomous vehicles. Especially, in 

tool selection applications, where the configuration information of an object needs 

not to be accurate but only the recognition of the object is essential, low-cost vision 

systems can be easily implemented.  
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However, in robotic applications like manipulator guidance, since the 

accuracy of configuration parameters are very crucial, the accuracy of the 

configuration reconstruction technique used becomes very important next to the 

importance of the quality of the image as well as the quality of the lens. 

 

Vision applications, in which the aim is the positioning can be analyzed in 

two parts, namely “pattern recognition” and “camera calibration”. Pattern recognition 

is the science that concerns with the description or classification (recognition) of 

measurements. On the other hand, pattern recognition may be characterized as an 

information reduction, information mapping, or information labeling process [1].   

    

 Historically, two major approaches to pattern recognition are seen as the 

statistical (or decision theoretic) and the syntactic (or structural) approaches. 

Recently, the emerging technology of neural networks has provided a third 

approach, especially for “black box” implementations of pattern recognition 

algorithms. The structure of a typical pattern recognition system is shown in Figure 

1.1. 

 

Pattern recognition techniques are based on geometrical and/or textural 

features of patterns. A pattern can be as basic as a set of measurements or 

observations, perhaps represented in vector or matrix notation [1]. As seen in Figure 

1.1, the pattern data is converted into a measured data after sensing it with a sensor 

or transducer. This measured data is generally preprocessed to filter for producing a 

more useful data free of any unnecessary details and/or noise so that it can be used 

in the feature extraction step. In the feature extraction step, the purpose is to reduce 

the data by measuring certain “features” or “properties” that distinguish one pattern 

from the others. These features (or, more precisely, the values of these features) 

are then passed to a classification algorithm that evaluates the evidence presented 

and makes a final decision about class of the pattern [2].  

 

Camera calibration in the context of three-dimensional machine vision is a 

process of determining the internal camera geometric and optical characteristics 

(intrinsic parameters) and/or the 3-D position and orientation of the camera frame 

relative to a certain world coordinate system (extrinsic parameters) [3].  While 

external camera parameters consist of three rotational and three translational 
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positions, the intrinsic camera parameters can be pronounced as the effective focal 

length, scale factor, image center, and lens distortion.  
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Figure 1.1 Typical pattern recognition system structures [1] 

 

 

In camera calibration, the transformation from 3-D world coordinates to 2-D 

image coordinates is determined by solving the unknown parameters of the camera 

model [4]. Depending on accuracy requirements, the model is typically based on 

either orthographic or perspective projection. Orthographic transformation can be 

considered as the roughest projection approximation assuming that objects in 3-D 

space are orthogonally projected on the image plane. It is more suitable for vision 
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applications where objects are positioned very far away from the camera and/or 

requirements of the geometric accuracy are somewhat low.  Due to its linearity, it 

provides a simpler and computationally less expensive solution than perspective 

projection, which is in turn a nonlinear mapping. However, for 3-D motion estimation 

and reconstruction problems, the perspective projection gives an idealized 

mathematical framework, which is actually quite accurate to model high quality 

camera systems.  

 

In order to describe the mechanism involved in perspective imaging, let us 

consider an ideal pinhole O at a fixed distance in front of an image plane (Figure 

1.2). Assume that an enclosure is provided that only light coming through the 

pinhole can reach the image plane. Since light travels along straight lines, each 

point on the image corresponds to a particular direction defined by a ray from that 

point through the pinhole. Thus, the perspective projection is achieved.  

 

In Figure 1.2, x- and y-axes of the coordinate system are parallel to the 

image plane. The optical axis is defined to be perpendicular from the pinhole to the 

image plane along z-axis. Note that the introduced Cartesian coordinate system has  

 

 

 
 

Figure 1.2 Perspective projection model 
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its origin at the pinhole O. The image of a point P on the object is P’ on the image 

plane, when there is no other obstructing object lies on the ray from P to the pinhole 

O. Performing this imaging principle for all points lying on the surface of the object 

provides the familiar perspective projection of this object on the image plane [5]. 

 

 The automation degree in a given vision application is also another 

important point in actual applications. A true autonomous system needs to interpret 

the image information without any supervisor in spite of the changes in 

environmental conditions and/or in camera settings.  

 

In this study, the vision application is achieved on a monocular vision set-up 

for the configuration determination task modeled by perspective projection. The 

major aim is to develop and implement an algorithm, which will automatically 

interpret a given image information. This algorithm will be used to improve the 

performance of a previously developed configuration reconstruction algorithm by 

Kılınç [6] and Acar [7] in the Mechanical Engineering Department of Middle East 

Technical University.          

 

 

1.2 Objectives of the Study 
 

This study is based on a previously developed 3-D configuration 

reconstruction algorithm, which determines the external camera parameters of a 

secondary target using its single gray-level image. In this algorithm, the target was 

recognized by a supervisor manually, so it was not an autonomous algorithm. 

 

The major objective of this study is to develop an automatic target 

recognition task and its integration to the existing configuration reconstruction 

algorithm. 

 

The improvements, which will be aimed in this study, are listed below as 

relative merits comparing the previous study and the present study: 
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Binarization:   

• In the previous study [7], the threshold was taken as a constant value for all 

scenes and the lighting was manually adjusted accordingly to get a full 

ellipse in the binarized image.  

• In this study, an automatic binarization algorithm is aimed that calculates the 

best threshold for every image without any need for a lighting adjustment. 

 

Pattern recognition: 

• In the previous study [7], the ellipse was recognized by a supervisor on the 

captured image, manually. 

• In the present study, the development of a pattern recognition technique is 

aimed to detect the center of the ellipse automatically on the image without 

any need for supervisor assistance.  

 

Segmentation of the ellipse area: 

• In the previous study [7], a supervisor was needed to segment the ellipse 

area, manually. 

• In this study, an automatic segmentation of the ellipse area is aimed.  

 

Software platform: 

• In the previous study [7], a software developed in DOS environment, and it is 

not a user-friendly program.  

• In this study, a user-friendly GUI, in which all the image processing and 

camera calibration tasks achieved in this study and in the previous study are 

integrated, is aimed. In the aimed software, there exist both single tasks 

used in the image processing steps and complete target recognition task. 

Also an option for the continuous processing of automatic 3-D configuration 

reconstruction of the object exits in the interface.  

 

Calibrating the internal parameters of the camera: 

• In the previous study [7], only the image center of the camera was 

determined beforehand.  

• In this study, a method for the determination of the lens distortion parameters 

and its implementation by a software program are aimed. 
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1.3 Proposed Method for Autonomous Reconstruction of 3-D   

Position of an Object 
 

In reaching the aims listed above, the following sets of consecutive tasks are 

proposed to form a resulting autonomous system. The process will begin with 

capturing a gray scale image of a scene that contains a circular secondary target. 

Then, a threshold will be determined automatically to binarize this image. After this 

binarization, an edge detection will be performed followed by an edge thinning. 

Then, an ellipse fitting procedure will be performed on the whole image. All pixels of 

the scene will be labeled according to their probability of being an ellipse center as a 

result of this ellipse fitting algorithm. A contour detection algorithm will be performed 

around the center, which has the highest possibility of being the center of an ellipse. 

After the segmentation of the target area containing the contour of the ellipse, the 

contour information on the ellipse and its spots will be generated for use in the 

reconstruction algorithm. In case of a partial capture of an ellipse, the object 

recognition should still be possible up to some degree of partition.  

 

The advantages of the proposed 3-D configuration reconstruction algorithm 

can be summarized as follows: 

• Monocular vision 

• Simple non-iterative solution in external calibration 

• Determination of all 6 configuration parameters 

• Uniqueness of the solution 

• Solution for the recognition of the partial images  

• Low importance on lighting conditions 

• No need for any structural lighting 

• No point to point correspondence or knowledge of the world 

coordinate points of the target 

• No perfect geometry for the target  
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1.4 Outline of the Study 
 

The background of the 3-D configuration reconstruction algorithm is 

presented in Chapter 2. In addition to the method used, the experimental set-up and 

results of experiments are also briefly explained.  

 

In Chapter 3, some improvements developed to make the algorithm 

autonomous are given. Automatic thresholding and ellipse detection algorithms are 

explained and their performances are discussed. The ellipse detection algorithm is 

performed for some artificial scenes that also contain some regular geometric 

shapes other than ellipse and on real images grabbed with a camera under different 

lighting conditions. Results obtained for scenes with partially captured ellipses are 

also given.   

 

In Chapter 4, results of the automatic object recognition algorithm are 

presented.  

 

In Chapter 5, definitions of the internal camera parameters studied in this 

thesis are explained and a method for the detection of lens distortion parameters is 

presented. 

 

Chapter 6 presents the summary and conclusion for the work done in this 

study and ends up with some recommendations for future work. 

 

Appendix A contains a brief summary of some basic image processing 

techniques used in this study.  

 

In Appendix B, the aim and the structure of the computer program developed 

in this study are explained. Also, a user manual for the computer program is 

presented.  
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CHAPTER 2 

PREVIOUS WORK 
 

 

2.1 Overview 
 

There are various studies on the external camera calibration. Chatterjee and 

Roychowdhury [8], proposed a coplanar calibration method based on nonlinear 

optimization method, which also computed the lens distortion parameters. They also 

compared the result of their method with results of three other camera calibration 

studies. Han and Rhee [9] used a circular pattern containing two internal spots, one 

of which was located on the center of the circular pattern and aligned with the optical 

axis. They determined three rotation parameters, the image plane distance, and the 

distance between the origin of the camera, and the origin of the world coordinate 

system. Tsai [3] used the radial alignment constraint to reduce the dimensionality of 

the unknown parameter space. In this study, the tangential distortion was ignored 

and radial distortion parameters, effective focal length, scale factor, and all six 

external camera parameters are determined. Zhang [10] proposed a method for the 

determination of external camera parameters and radial lens distortion. The 

proposed procedure consisted of a closed form solution, followed by a nonlinear 

refinement based on maximum likelihood criterion. Ahn, Rauh and Kim [11] used 

circular coded targets for the automation of an optical 3-D measurement system in 

which they used stereo vision and multiple imaging. Heikkila [4] suggested a 

calibration procedure that utilizes circular control points and performs mapping from 

world coordinates into image coordinates and backward from image coordinates to 

3-D plane coordinates. The camera model, which was used in this study, allowed 

least-squares optimization with the distorted image coordinates. Özdemir [12] and 

Çetin [13] studied locating a mobile robot in a structural environment by using a 

single camera. In these studies, the straight-line correspondences were used.    
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Olgac, Gan and Platin [14] used a circular secondary target and orthographic 

projection model but also made the assumption that the target center lies on the 

optical axis of the camera. However, the use of a full circular target made the 

determination of the in-plane rotation inherently impossible. Platin et al. [15] and 

Olgac et al.[16] applied the same method by replacing the orthographic projection 

model with a perspective projection model. The major disadvantages of these 

algorithms were the constraints on the target configuration and the requirements of 

a priori knowledge of some configuration variables. This method was further 

improved by Kılınç [6] by adding two internal spots to the circular secondary target 

such that all six configuration parameters can be reconstructed. The method 

developed by Kılınç [6] was implemented on an experimental set-up and tested by 

Acar [7] and satisfactory results for the reconstruction of all 6 external parameters 

were obtained.  

 

Since this study aims some improvements on the implementation of the 

existing 3-D configuration reconstruction algorithm [6,7], this algorithm will be 

explained in this Chapter and the experimental set-up used to implement this 

method will also be presented. 

 

As far as the configuration reconstruction algorithm is concern, only its 

general solution and some results of its implementation will be summarized here. 

Their details can be found in [6] and [7]. Steps of the computer algorithm in the 

previous study beginning from the image capture to the determination of the 3-D 

configuration parameters will also be given and some results obtained from the 

experimental investigations will be presented. 

 

The previous work that this study is based on consisted of two main parts: 

a) Development of an algorithm to theoretically determine the 

configuration of an object in the workspace with respect to a base 

plate [6]. 

b) Implementation of this algorithm via a computer program and 

investigation of its performance on an experimental vision set-up [7]. 
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In monocular vision, in order to determine the distance between a camera 

and a rigid body, some a priori information about the body is required. So, a planar 

secondary target was assumed to be mounted on the rigid body. The plane on 

which the secondary target is mounted were called as the “target plane”. 

Determining the configuration of the secondary target with respect to a world 

coordinate system would also mean determining the configuration of the rigid body 

with respect to the same coordinate system.  

 

Kılınç [6] and Acar [7] used a circular planar target of radius R with two 

internal spots as a passive secondary target (Figure 2.1). One of these spots was 

located at the center of the circle and this spot was used to determine the location of 

true center of the circle in the image plane. The other spot was placed (at a known 

distance) rf away from the center. Both spots were identical circles with radii of r0. 

While the boundary of the elliptical image of the projected circular target was used to 

determine the two rotation parameters and the depth information, the image of the 

center spot was used for two translation parameters, and the image of the second 

spot was used for the remaining rotation parameter.  

 

 

   
 

Figure 2.1     Circular secondary target 

 11



 
 
2.2 3-D Configuration Reconstruction Algorithm 
 
The reconstruction parameters can be seen in Figure 2.2. World coordinates 

of any point P lying on the target plane can be expressed in terms of augmented 

matrices by the following vector equation: 

 

Rwp
(w) = Hwt

(w,t) Rtp
(t) = Hwc

(w,c) Hci
(c,i) Hit

(I,t) Rtp
(t) (2.1) 

 

where 

 

Rwp
(w) : The augmented matrix of the vector from the origin of the world 

coordinate system to the point P in the world coordinates. 

Rtp
(t)    :  The augmented matrix of the vector from the origin of the target 

coordinate system to the point P in the target plane coordinates. 

Hwc
(w,c) : The configuration of the camera with respect to the world 

coordinate system.  

Hci
(c,i) : The configuration of the image plane with respect to the camera   

coordinate system.  

Hit
(I,t) : The configuration of the target plane with respect to the image 

plane 

 

Among the transformation matrices used in Equation (2.1), Hwc
(w,c) is 

determined by a camera calibration and Hci
(c,i) is known for a given lens setting. 

Therefore, the solution can be obtained if the remaining Hit
(I,t) can be determined. 

This transformation matrix can be decomposed to a series of basic rotation and 

translation matrices as follows: 

 

Hit
(I,t)

 = Tz(do) Rx(-Φ) Ry(-θ) Tz(d) Rx(α) Ry(β) Rz(γ) (2.2) 

 

where 

  

Tz(do) : Basic translation matrix for a translation do along zi-axis in the 

image plane coordinate system 
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Rx(-Φ) : Basic rotation matrix for a rotation -Φ about xi-axis in the image 

plane coordinate system 

 
 

Figure 2.2     3-D configuration reconstruction parameters 

 

 

Ry(-θ) : Basic rotation matrix for a rotation -θ about yi-axis in the image 

plane coordinate system 

Rx(α) : Basic rotation matrix for a rotation α about xt-axis in the target plane 

coordinate system 

Ry(β) : Basic rotation matrix for a rotation β about yt-axis in the target plane 

coordinate system 

Rz(γ) : Basic rotation matrix for a rotation γ about zt-axis in the target plane 

coordinate system 

Tz(d) : Basic translation matrix for a translation d along zt-axis in the target 

plane coordinate system 

   

The purpose of the reconstruction algorithm is to compute values of α, β, γ, 

d, Φ, θ (Figure 2.2) for a given elliptical image in the image plane of the camera.  

Therefore, reconstruction parameters (Figure 2.2) can be defined as follows:  
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Φ : Tilt angle of the camera (from which the vertical offset is calculated) 

θ : Pan angle of the camera (from which the horizontal offset is calculated)  

d : Distance of the image plane to the target plane along the optical axis  

α : Tilt angle of the target (rotation about horizontal xt -axis) 

β : Yaw angle of the target (rotation about yt-axis)  

γ : In-plane rotation of the target about zt-axis 

 

All details of the general solution are given in [6,7]. Here, a general algorithm 

[7] will be presented as if it can be implemented directly. 

• First, φ and θ angles are determined from the centroid of the center spot. 

• Then d, α, and β parameters are determined from the contour 

information for the image ellipse. 

• Finally, the in-plane rotation γ of the target is determined from the 

centroid of the outer spot. 

  

The image of the central spot of the target represents the image of the true 

center of the circle on the image plane. Its centroid will be the image of the origin of 

the image coordinate system in the target centered solution. If one can determine φ 

and θ, then the direction in which the target center is shifted can be found.  

  

The image coordinates of the true center of the target are given as [6]: 

 

x0 = d0 tanθ / cosφ             (2.3a) 

 

y0 = -d0 tanφ              (2.3b) 

 

Since these coordinates (x0,y0) are known for a given image, φ and θ can be 

found as: 

 

φ = tan-1(-y0 / d0)             (2.4a) 

 

θ = tan-1(-x0 cosφ / d0)             (2.4b) 
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Once φ and θ are determined, then the direction in which the target center is 

shifted can be found. It is possible to define a virtual image plane of a fictitious 

camera whose optical axis (zv1-axis) goes through the target center (Figure 2.3). A 

coordinate system is defined in this virtual image plane and is denoted by 

(Ov1xv1yv1zv1). If one finds the coordinates of the image points in the virtual image 

plane, then it will be possible to apply the target centered solution to find d, α, β with 

respect to the virtual plane. 

  

Since φ and θ are known, it is possible to write the transformation matrix 

Hvi
(v,i)  from the virtual image plane to the actual image plane as follows 

 

Hvi
(v,i)  = Tz(d0) Ry(φ) Rx(θ) Tz(-d0) (2.5) 

 

Then the coordinates of any point lying on the image plane can be 

expressed in the virtual image plane coordinate system by the following 

homogeneous transformation as 
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where (Xv, Yv, Zv) are the coordinates of the image point lying on the actual image 

plane expressed in the virtual image coordinate system whereas xi and yi are the 

coordinates of this image point in the actual image coordinate system. On the other 

hand, the projection of a point in the actual image plane on the virtual image plane 

can be achieved using the following perspective transformation:  
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where  
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xv : The horizontal coordinate of the projected point on the virtual plane 

coordinate system. 

yv : The vertical coordinate of the projected point on the virtual plane 

coordinate system. 

 

 

 
 

Figure 2.3     The virtual image plane 

 

 

Finally, the virtual image plane coordinates of the projection of an image 

point projected onto the virtual image plane are obtained as: 

   

φθ+θφ−θ
φθ−φθ+θ

=
sincosdcossinysinx

)cossindsinsinycosx(d
x

oii

oiio
v  (2.7a) 

 

φθ+θφ−θ
φ+φ

=
sincosdcossinysinx

)cosysind(d
y

oii

ioo
v  (2.7b) 
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After finding (xv, yv), the solution for d, α, and β are available for a target 

centered case [6]. 

 

In order to get in plane rotation of the target, a new virtual image plane is 

defined such that it is parallel to the target plane and its origin lying on the line OoOt  

(Figure 2.4). Also to ease the solution procedure, one more constraint to the location 

of the virtual image plane is added. It is positioned such that the center of the image 

spot lies on the intersection line between the actual image plane and the virtual 

image plane.    

  

Once the location of virtual image plane is determined, it is possible to write 

down the transformation matrix from this second virtual image plane to the actual 

image plane as: 

 

Hvi
(v,i) = Ry (-β) Rx (-α) Tz (dx) Ry (θ) Rx (φ) Tz (-do) (2.8) 

 

where the parameter dx is used to locate the center of the image spot to lie on the 

intersection of the second virtual image plane and the actual image plane. The 

virtual image plane will be parallel to the target plane and as a consequence zt will 

be also parallel to zv2.  

 

When the basic transformation matrices are substituted, elements of this 

transformation matrix can be obtained as: 

 

Hvi
(v,i) [1,1] = cosβ cosθ + sinβ cosα sinθ (2.9a) 

Hvi
(v,i) [1,2] = sinβ sinα cosφ + cosβ sinθ sinφ - sinβ cosα cosθ sinφ (2.9b) 

Hvi
(v,i) [1,3] = - sinβ sinα sinφ + cosβ sinθ cosφ - sinβ cosα cosθ cosφ (2.9c) 

Hvi
(v,i) [1,4] = do sinβ sinα sinφ - do cosβ sinθ cosφ  

 + do sinβ cosα cosθ cosφ - dx sinβ cosα (2.9d) 

Hvi
(v,i) [2,1] = - sinα sinθ (2.9e) 

Hvi
(v,i) [2,2] = cosα cosφ + sinα cosθ sinφ (2.9f) 

Hvi
(v,i) [2,3] = - cosα sinφ + sinα cosθ cosφ (2.9g) 

Hvi
(v,i) [2,4] = do cosα sinφ - do sinα cosθ cosφ + dx sinα (2.9h) 

Hvi
(v,i) [3,1] = sinβ cosθ - cosβ cosα sinθ (2.9i) 
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Hvi
(v,i) [3,2] = - cosβ sinα cosφ + sinβ sinθ sinφ + cosβ cosθ cosα sinφ (2.9j) 

Hvi
(v,i) [3,3] = cosβ sinα sinφ + sinβ sinθ cosφ + cosβ cosθ cosα cosφ (2.9k) 

Hvi
(v,i) [3,4] = - do sinα cosβ sinφ - do sinθ sinβ cosφ  

 - do cosβ cosθ cosα cosφ  + dx cosα cosβ (2.9l) 

 
 

 
 

Figure 2.4     The virtual image plane for the calculation of in-plane rotation 

 

 

Hvi
(v,i) [4,1] = 0 (2.9m) 

Hvi
(v,i) [4,2] = 0 (2.9n) 

Hvi
(v,i) [4,3] = 0 (2.9o) 

Hvi
(v,i) [4,4] = 1 (2.9p) 

 

If the matrix Hvi
(v,i) is represented by its elements hij where i denotes the row 

and j denotes the column as 
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then, for the image center (xs, ys) of the outer spot lying on the second virtual image 

plane, the key point is to impose Zv = 0 explicitly and to solve for dx using xi = xs and  

yi = ys . This is equivalent to write:  

 

[ 0
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s
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]  (2.11) 

 

Observing the elements h31, h32 and h34, it is seen that the only unknown is 

dx, since xs and ys can be determined using the centroid of the image of the spot. 

Therefore, dx can be calculated as: 

 

αβ
+−−

=
coscos

)h(y)h(x)h(
d 34s32s31

x  (2.12) 

 

Now, the virtual image coordinates of the center of the outer spot which are 

going to be denoted by xs’ and ys’ can be determined by substituting dx in the 

expressions of h14 and h24;   

 

xs’ = (h11) xs + (h12) ys + (h14) (2.13a) 

 

ys’ = (h21) xs + (h22) ys + (h24) (2.13b) 

 

As the virtual image plane and the target plane are parallel, γ can be 

calculated using a double argument arctangent function as follows: 

 

)
'x
'y

(tan
s

s1
2

−=γ  (2.14) 

 

One important property of this method is that it does not recall the off-set 

distance of the outer spot denoted by rf in Figure 2.2. Thus the in-plane rotation can 

be reconstructed just with the knowledge that the spot is located on the xt axis. 
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2.3 Experimental Setup 
 

The experimental set-up consists of two parts; namely, a vision system and a 

positioning system on which the target and the camera are mounted. The vision set-

up composed of a Charge Injected Device (CID) camera and a frame grabber.  

 

The frame grabber used to grab images is a Data Translation DT3851 Series 

Board. The board is built around the onboard graphics processor, a Texas 

Instruments TMS34020 [17]. The graphics processor controls video input, video 

display, and DT-connect transfers, and performs a limited amount of image 

processing. The frame grabber has 640Hx480V non-interlaced 8-bit graphic format 

for single monitor operation. The image is grabbed in Windows environment and 

stored in a file.  

 

The Charge Injected Device (CID) structure has a fundamentally different 

principle of operation, and readout technique from Charge Coupled Device (CCD`s), 

providing useful performance advantages. Each pixel in the CID array is individually 

addressed during readout. Scanning routines are implemented via electronic 

switching of row and column electrodes, which are fabricated in a thin, clear 

polysilicon matrix over the surface of the array. While CCD`s transfer collected 

charge out of the pixels during readout (hence erasing the image stored on the 

sensor), CID`s do not transfer charge from site to site in the array. Instead, readout 

is accomplished by transferring or “shifting” the collected “charge packet” within an 

individually addressed pixel, and sensing displacement values across the electrodes  

at the site. CID Technologies Inc.’s CID2250D model used as the CID camera in the 

previous study and this study. It has a 512Hx512V CID35 solid state sensor  with a 

continuous zoom.  

 

There are two lenses used with this camera: 

 

• Cosmicar CCVT lens having a focal length of 25 mm maximum aperture 

ratio 1:1.4 and 1 inch image size. 
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• RS lens having a focal length of 16 mm, maximum aperture ratio 1:1.4, and 

2/3 inch image size. 

 

 

 
 

Figure 2.5     Positioning unit 

 

The positioning unit (Figure 2.5) has two stations; first station is basically a 

camera-positioning unit, and second station is a target-positioning unit [7]. The 

camera-positioning unit has translational freedoms in x-, y-, and z-axes, and a 

rotational freedom around y-axis. In each of the translational axes, the travel 

distance is 50 mm with a resolution of 0.01 mm. The rotary table has 360° 

continuous travels with a resolution of 0.002°. On the other hand, the target-

positioning unit has two translational freedoms in x-axis and z-axis. It has a travel 

distance 50 mm with 0.01 mm resolution in x-axis.  The maximum travel distance in 

z-axis is 300 mm and it has a resolution of 0.01 mm. It has also the rotational  
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freedoms in two axes; namely about x-axis and y-axis. The x-axis has a continuous 

rotation of 360° with 0.002° resolutions. The y-axis has 360° continuous travel with a 

resolution of 6 arc minutes.   

 

 

2.4 Object Recognition 
 

In the previous study of Acar [7], first the image of the target was grabbed 

and stored in a file. Then a computer program that works under DOS environment 

and compiled with Borland C++ 3.1 was executed. In the beginning, the name and 

path of the image file was written, afterwards the image was seen on the screen and 

it was binarized with a constant threshold value of 128.  Secondly, the ellipse area 

was segmented by a supervisor with the cursor. Starting from the near edge of the 

rectangle outside the ellipse region, the algorithm moved through the edge pixels. 

After finding one edge pixel, the contour was followed, until the starting point was 

reached. The contour pixels that would be used in the reconstruction algorithm were 

determined by the MaxMinCross type pixel selection method [7]. The same contour 

following algorithm was also used to determine the contour of the spots whose 

centers were determined by using the moments. The information obtained was used 

in the 3-D configuration reconstruction algorithm and all six external parameters 

were supplied as the output. 

 

 

2.5 Results of the 3-D Configuration Reconstruction Algorithm 
 

In the experiments performed by Acar [7], it was possible to measure the first 

two rotations Rx and Ry using the optical bench directly, but not the third rotation Rz, 

it was taken to be a constant value and compared with the reconstructed value. 

Three translations Tx, Ty, Tz could be measured directly from the set-up. When 

rotation around Rx or combined rotations around Rx and Ry were present, it was not 

possible to measure Tx and Ty directly. Hence these two axes were analyzed 

separately. 
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Different data sets mainly depend on minimum and maximum target 

distances, and reconstruction parameters were determined. It was reported that the 

method works properly within the following limits: 

 

10° < | Rx | < 80° 

10° < | Ry | < 80° 

 

500 mm < Tz < 1300 mm  

 

Results of the 3-D configuration reconstruction obtained in [7] can be 

summarized as:  

• Tx and Ty are constructed successfully in the whole range of rotations, 

because they are constructed using the central spot. 

• Reconstruction errors for Tz are low in the limits of rotations, given above. 

However, as the target moves away from the camera, this error increases. 

• Rx and Ry are determined successfully in the limits. Reconstruction errors 

increase when the rotations get closer to the ultimate limits. 

• Rz is constructed successfully in the whole range of rotations, because it is 

constructed using the location of the outer spot. 

 

The average reconstruction errors were found as follows: 

 

ETx
(average) ≈ 0.5 mm   ERx

(average) ≈ 0.4° 

ETy
(average) ≈ 0.5 mm   ERy

(average) ≈ 0.4° 

ETz
(average) ≈ 1.5 mm   ERz

(average) ≈ 0.5° 
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CHAPTER 3 

IMAGE PROCESSING AND ANALYSIS 
 

 
3.1 General 
 
As it is explained in the previous Chapter, the 3-D configuration 

reconstruction algorithm developed in previous studies [6,7] utilizes the contour data 

of the elliptical image of a circular target and images of two inner spots. In order to 

get the contour information from an image, some image processing methods should 

be applied. In this study, first a binarization is performed on the image using a 

threshold value calculated for each image automatically. Three versions of this 

binarization algorithm are developed and compared for different lighting conditions 

and lens settings. The second and third steps of the image processing are an edge 

detection with a Sobel operator and an edge thinning. Next steps are the detection 

of the ellipse center and segmentation of the ellipse area. The final step of the 

image processing is the determination of the ellipse contour with a contour following 

algorithm.    

 

3.2 Image Binarization 
 
Binarization is a technique performed to convert a gray level image to a 

binary image. It is usually used to distinguish an object from its background. Picture 

cells in which the gray-level is above a threshold give rise to ones in the 

corresponding position of the binary image, and those below it give rise to zeros (or 

vice versa) [5]. In order to make the segmentation robust to variations in a 

scene,,the algorithm used should be able to select an appropriate threshold value 

automatically using samples of the image intensity present in the image. An 
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automatic thresholding must analyze the gray-level values and use the knowledge 

about the application and its environment to select the most appropriate threshold 

value [18].  

 

In a digitized image, a gray-level histogram giving the number of picture cells 

having a particular gray-level can be created. An example histogram is given in 

Figure 3.1. For the application in this study, the only a priori knowledge about the 

scene is a white circle on a black background, so it is decided to use a histogram 

modeling method. 

 

 

 
 

Figure 3.1    An example histogram 

 

There exist many studies concerning the thresholding problem [19-22]. In 

most of these studies, the binarization is considered as a classification problem and 

a criterion function is used for the decision making. The threshold, which is the value 

that minimizes or maximizes this criterion function, depends strongly on the method 

used. One of the oldest studies on this topic is “Otsu method” [19], which selects a 

threshold that minimizes the resulted weighted sum of the within-group variances for 

two classes of pixels. Another approach is the “maximum entropy sum” proposed by 
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Kapur [20], which is based on the information measure between two classes. The 

method developed by Sahoo, Wilkins and Yeager [20] includes both Kapur’s 

maximum entropy sum method and the entropic correlation method of Cheng  and 

Don [21].  

 

One of the most effective studies on this topic is Kittler and Illingworth’s 

“Minimum Error Thresholding” method [22]. According to this method, if gray-level 

distributions of pixels for an object and its background are known or can be 

estimated, then an optimal, minimum error threshold can be obtained using results 

of the statistical decision theory.  

 

 

3.2.1 Minimum Error Thresholding Method 
 

In this method, the histogram is modeled as a mixture of two Gaussian 

distributions having respective means and variances (µ1,σ1
2) & (µ2,σ2

2) and 

respective proportions P1 and P2. The principal idea behind this method is to 

minimize the following criterion function J(T) related to the average pixel 

classification error rate.   

 

J(T) = 1 + 2[ P1(T)logσ1(T)+P2(T)logσ2(T)] –  

                                                 2[ P1(T)logP1(T)+P2(T)logP2(T)] (3.1) 

 

where T is an trial threshold value, P1(T) and P2(T) are cumulative brightness of two 

classes of pixels. Trying various brightness values between 0 and 255, the best 

threshold value is selected as the one that gives a minimum for the criterion 

function.  

 

This technique can be applied to a whole image and a single threshold value 

can be found automatically. However, under uneven lighting conditions, spatially 

varying thresholding can be used as well, in which the image is divided into small 

regions, and for each region, a local threshold value may be calculated. 

 

In this study, first a global thresholding (GT) is performed. However, for 

some non-uniformly lighted images, the GT is proven to be not too satisfactory. 
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Therefore, two separate local thresholding (LT) techniques are also developed using 

the minimum error thresholding method. In these LT techniques, a 640Hx480V 

pixels image is divided into 300 local sub-images of 32x32 pixel size each and then 

LT values for each of these sub-areas are found. However, in the LT method, there 

appears to be a problem of discontinuity between the divided regions, once these 

regions are patched together. In order to avoid this type of discontinuities, local 

threshold values are smoothened with a 2x2 mask of [1 1; 1 1] within the 

neighboring regions and then 64x64 pixel sub-regions are binarized with this 

averaged threshold value (LT1).  

 

In the second LT method (LT2), local regions are selected such that half of 

the new region is overlapped with its neighbors (regions on the left and above). By 

this application, the regions are not strictly separated from each other and the initial 

trial brightness values are selected using those threshold values calculated for 

neighboring regions. As a result, a total of 1200 threshold values are obtained for a 

640Hx480V pixels image. Again, these values are averaged with a mask of [1 1; 1 

1]. Results of these three methods are shown with some sample images captured in 

different lighting and set-up conditions in Figures 3.2-3.7. 

 

 

 
 

Figure 3.2    Image captured with a 25 mm lens in controlled lighting conditions 
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Figure 3.3    Image captured with a 25 mm lens in normal lighting conditions of the 

room 

 

 
 

Figure 3.4    Image captured with a 25 mm lens in normal lighting conditions of the 

room rotated 70° in x-axis. 
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Figure 3.5    Image captured with a 16 mm lens in controlled lighting conditions 

 

 
 

Figure 3.6    Image captured with a 25 mm lens with extra lighting on the target 

 

 29



 
 

Figure 3.7   Image captured with a 16 mm lens in normal lighting conditions without 

any control 

 

 

  3.2.2  Comparison of Binarization Algorithms 
 

By a simple eye inspection, only some properties of the target (spots and 

boundaries) can be checked. In order to compare performances of various methods, 

the homogeneity of distributions is checked. So, the addition of the variance of each 

pixel from the mean of the class is compared for the minimum value. It is assumed 

that smaller the addition of variances is, better the object-background separation 

gets. This criterion is only performed on a small region containing the target, not on 

the whole image. Group variances of the binarized images (Figure 3.2-3.7) 

according to binarization method are given in Table 3.1. 
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Table 3.1 Group variances of the binarized image according 

to binarization method 

 

Variance (x107) 
Figure 

GT LT1 LT2 

3.2 1.71 2.58 2.55 

3.3 0.09 4.72 2.55 

3.4 0.12 3.03 1.21 

3.5 1.20 3.76 2.22 

3.6 3.79 1.85 1.70 

3.7 0.67 2.29 1.70 

 

 

As seen in Table 3.1, the smallest group variances are obtained in Figures 

3.2, 3.3, 3.4, 3.5 and 3.7, all with global thresholding methods. However, in Figure 

3.6, in which the image captured under an extra lighting condition on top of the 

target, the global thresholding shows the worse performance according to the 

performance criteria. Also, in the resulting globally thresholded image (Figure 3.6b), 

internal spots of the target cannot be recognized. The LT technique works better for 

this kind of lighted images. 

 

Another important result for global thresholding is given in Figure 3.7b. The 

target is small because of the use of a wide-angle lens. In this case, the second spot 

cannot be seen when the image is binarized using the global threshold method. 

Although from performance results in Table 3.1, LT2 method seems to work well, 

the target edges are smoother in the first LT method.  

 

However, the most important cases are in Figure 3.3 and in Figure 3.4, since 

they resemble a normal indoor environment. As seen in both Table 3.1 and in the 

binarized images, the GT method is best for these cases. Moreover, the GT method 

turns out to be more efficient in terms of computation time, which becomes an 

important factor especially for the real-time applications. 
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As a result, it is decided to use the global threshold method in this study. 

This binarization is the first step of the target recognition algorithm and it is 

performed to separate objects from their common background without any critical 

information loss on the image. As explained above, there is a possibility of the 

vanishing inner spots on the target. But these two inner spots are important for the 

3-D configuration reconstruction algorithm. So, they should also be determined in 

the target recognition. In order to avoid this problem, after the determination of the 

ellipse area, a second binarization is performed on the restricted area containing the 

ellipse to guarantee the recognition of these spots together with the ellipse itself. 

When the ellipse area is recognized in the image at the end of the target recognition, 

a rectangular area containing the target is segmented. The size of this segmented 

area is 1.5 times larger then the ellipse on both horizontal and vertical directions. 

The second binarization mentioned above is achieved on this segmented area.   

 
 
3.3 Ellipse Detection  
 

Ellipse is one of the important geometric shapes in image processing 

studies. Therefore, various methods [23-31] were developed for its recognition. 

These methods can mainly be classified as “clustering” and “least squares fitting 

based” methods. Clustering methods are based on mapping sets of points to the 

parameter space, such as the Hough transform (see the Appendix A for details). On 

the other hand, least squares fitting methods focus on determining the set of 

parameters that minimize some distance measure between the data points and 

ellipse.  

 

Criteria used for the ellipse detection algorithm developed in this study are: 

• Computational load 

• Capability of using edge detected image data 

• Capability of determining partially grabbed ellipses up to some portion  

• Accuracy 
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3.3.1 Hough Transform Based Algorithms 
 
These methods differ in the parameterization step of the ellipse, which is 

important in reducing the parameters needed for the definition of the ellipse, i.e., 

parameters used in the accumulation space. This parameterization step will affect 

the computational load of the method. Some recently developed Hough transform 

based methods can be summarized as follows:  

 

Lei and Wong [23] determined a symmetry axis for each pair of points on the 

contour of the ellipse, and develops an accumulation space for the candidates of 

symmetry axes. Two perpendicular axes that take the maximum number of votes 

were selected as the major and the minor axes. After finding these axes, another 

accumulation array was made for the lengths of these axes. The orientation of the 

ellipse would be given by the orientation of these axes. In this procedure, all pixels 

on the contour were used for determining the symmetry axes, so the algorithm 

cannot be used for partially occluded ellipses. Sewisy and Leberl [24] detected 

midpoints of edge points pairs with the same y-coordinates, defined a vertical line, 

and similarly using pairs with the same x-coordinates, defined a horizontal line using 

the accumulation method. They suggested to use the intersection of these two lines 

to determine the center of the ellipse. After finding the edge points of the ellipse, 

three edge points were used for ellipse fitting. The algorithm is suitable for partially 

occluded ellipses. In the study of Yip, Tam and Leung [25], the ellipses and circles 

were detected, using a 2-D array. Two pairs of edge points with the same edge 

orientation were selected. Using these points, the vertices of the ellipse were 

calculated as a function of five parameters of the ellipse. A 2-D accumulation space 

was obtained using these vertices. Four peaks in the accumulation space would 

correspond to four vertices of the ellipse. After selecting these vertices, five 

parameters of the ellipse were determined. It can be used for partially occluded 

ellipses, but the experiments showed that the accuracy of the extracted parameters 

was not as high as in a complete ellipse case. Guil and Zapata [26] used tangents of 

nonparallel edge points for a focusing algorithm and also recommended some 

checkpoints for erroneous pairings that could also be used for other algorithms. Yoo 

and Sethi [27] made use of poles and pole definitions of the ellipse. The algorithm is 

capable of detecting partially visible ellipses, overlapping ellipses, and groups of 
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concentric ellipses. McLaughlin [28] used a randomized Hough transform after 

determining the center and linearizing the equation of the ellipse. Bennett, Burridge 

and Saito [29] suggested a single pass algorithm, which could extract any group of 

ellipse parameters, or characteristics that might be computed from those parameters 

without detecting all five parameters.  
 
 

3.3.2 Least Squares Fit Based Algorithms 
 

The most popular least squares fitting algorithm was proposed by Fitzgibbon, 

Pilu and Fisher [30]. This algorithm can be summarized as follows. Having 

representing the general conic by an implicit second order polynomial as 

 

F(a,x) = ax2 + bxy + cy2 + dx + ey + f = 0 (3.2) 

 

where a = [ a  b  c  d  e  f ]T is the parameter vector and x = [ x  y ]T is the position 

vector, one constraints the parameter vector a so that the conic represented is 

forced to be an ellipse. The appropriate constraint is well known, namely that the 

discriminant b2-4ac is to be smaller than zero. Fitzgibbon changed this inequality 

constraint into an equality constraint as b2-4ac = -1 and performed a least squares 

fitting. 

 

Halir and Flusser [31] improved the algorithm in [30] against some 

singularities. Hough transform based methods have a high robustness to occlusion 

and no requirement for pre-segmentation, unlike least square algorithms. However, 

the computational load and memory use are high in these methods as compared to 

least squares fitting based algorithms. Those algorithms that reduce the dimensions 

of the accumulation space can be used to avoid this disadvantage.  

 

In this study, Bennett’s algorithm is implemented, since it avoids the object-

based pre-segmentation, has a 2-D accumulation space, and finally has a lower 

complexity. 
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3.3.3 Bennett’s Approach to Characterizing Ellipses 
 
In this approach, a parameterization is obtained for a family of ellipses, which 

are tangent to two line segments. Using these line segments, a general quadratic 

equation for a conic is represented as 

 

C(x,y) = L2(x,y) – λ l1(x,y) l2(x,y) = 0 (3.3) 

 

where L(x,y) = 0 is the line connecting two points P1 and P2, l1(x,y) = 0 and l2(x,y) = 0 

are the respective tangent lines to these points (Figure 3.8), and λ is a constant. The 

equation for a conic could also be written in the following form: 

 

xTAx + 2kTx + c = 0 (3.4)  

 

where 
k = [ f  g ] T  (3.5a) 

and 

⎥
⎦

⎤
⎢
⎣

⎡
=

bh
ha

A  (3.5b) 

 

 

 
 

Figure 3.8     Pairs of points on an ellipse and their tangents 
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where parameters a, b, c, f, g, h are linear functions of λ and also depend on 

coordinates of each pair of edge points as well as their orientations. For such a 

conic to represent an ellipse, the A matrix should be positive definite. For each pair 

of edge points, the range of λ, that gives a positive definite A matrix is determined 

and ellipse centers are accumulated according to these ranges of λ. 

 

In order to use Equation (3.3), positions of the edge pixels and their edge 

gradients in the image are needed. Using these values, tangents to edges at these 

points can be determined.  

 

In the original algorithm, pairs of points P1 and P2 are selected randomly 

from a predetermined area. It is 25Hx25V pixels area in a 100Hx100V pixels area in 

[29].  In this study, the image is segmented into its connected points, and these 

edge pairs for the ellipse fitting are selected among the family of connected points. 

 
 
3.3.4 Case Studies for Ellipse Detection 
 
The ellipse detection algorithm is tested by using various scenes, some are 

generated artificially by using a paint program (Figures 3.9-3.10, 3.13-3.14) and the 

rest are grabbed with a CID camera and frame grabber set-up (Figures 3.11, 3.15-

3.16). These scenes can be grouped as follows: 

 

• Scenes containing symmetrical shapes other than ellipse, like rectangles 

or squares (Figure 3.9, 3.13) 

• Scenes containing other fully captured ellipses (Figure 3.9, 3.11)  

• Scenes containing partially captured ellipses (Figure 3.10, 3.13c, 3.13d) 

• Real images containing some other irregular objects from the 

environment (Figure 3.11, 3.15-16) 

 

It is obvious that larger the area that contains the necessary points for ellipse 

fitting is, better the ellipse fitting results are. However, scanning a larger area brings 

a greater computational load, so before the ellipse fitting process, images are 

segmented to their connected points. 
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Centers are accumulated in a 2-D array using all connected points as pairs 

with all possible combinations. In order to determine the characteristics of the 

accumulation for an ellipse and for other regular or irregular objects, the 3-D 

graphics of accumulation space created for various cases are observed. In these 

graphs, scales on the bottom plane of the graphs are the pixels on each analyzed 

image whereas the vertical scale is the accumulation score. Also in the graphics, 

some very lower scores are not included, in order to avoid the difficulty for the visual 

analyses of the graphs.  

 

Before expressing some comments on these graphics, terms that will be 

used in the remaining part of this study will be explained. While observing these 3-D 

graphs, the sharpness of some peaks draws attention. In order to compare peaks 

with respect to this property, their degrees of sharpness are described as the 

“quality factor”.  Another feature that will be used during the comparison of peaks is 

their symmetry. Some local symmetrical features up to some distance from the 

center of each local region are observed for peaks. The distance where this 

symmetry vanishes is given a name as the “distance of symmetry”.   

 

Using these terms, some important observations on these accumulation 

spaces can be summarized as follows: 

 

O1. Peaks corresponding to ellipses have a higher quality factor with 

respect to other symmetrical shapes (Figure 3.9).  

 

O2. There are some small peaks around the maximum peak in the ellipse 

area (Figure 3.9). By the accumulation of some group of pixels on the 

high curvature side of the ellipse contour, some smaller ellipses can 

be obtained. Centers of these smaller ellipses are accumulated in 

these side peaks.  

 

O3. Side peaks may have higher scores than other partial ellipses in the 

image (Figure 3.10).  

 

O4.  When more than half of an ellipse is captured, (like the ellipse in the 

bottom of Figure 3.10), the peak score determined in that region is 
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located at the center of ellipse. If an ellipse is grabbed in an 

asymmetrical manner (such as the ellipse on the upper corner in 

Figure 3.10), the maximum peak in that region does not point out the 

center of ellipse. However, there is a peak at the actual center of the 

ellipse, as well. 

 

O5. If there are some other objects with curvatures greater than the 

ellipse in the image, their accumulation score is greater than the 

ellipse score, but again the quality factor of the ellipse is greater than 

the quality factors of those objects. (Figure 3.11) 

 

O6. Peaks for ellipses are more symmetrical than other peaks, so 

symmetry may be another property that should be added to 

comparison criteria. 

 

 

 

Figure 3.9    An artificial image containing an ellipse and an additional rectangular 

shape (above), and its 2-D accumulation space of candidate ellipse centers with 

their scores (right). 

 

 

 

 

 

 38



 

 

 
 

Figure 3.10    An artificial image containing two partial ellipses, and its 2-D 

accumulation space of candidate ellipse centers with their scores (right) 

 

 

 
 

Figure 3.11    An image grabbed using the experimental set-up, and its 2-D 

accumulation space of candidate ellipse centers with their scores (right) 
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Measurement of quality factor and symmetry: 
 

After suppressing the local maximum around each peak in the accumulation 

space, some imaginary contours are drawn around this maximum in the 

accumulation space. In Figures 3.12a and 3.12b, an example ellipse and its 3-D 

accumulation space can be seen. In Figure 3.12c and 3.12d, contour plots of the 

accumulation space are shown. Also in Figure 3.12d, in order to visualize the 

method, some example square contours are drawn around the maximum score. As 

it can be seen from Figure 3.12b, the maximum score is about 3600. So one must 

draw these square contours, until all the points on the contour have their score less 

than half of the maximum score (approximately 1800 for this case). Other scores 

and their coordinates are added one by one and at the end of addition of each 

contour, the area moments of contours are calculated. During this addition, when 

the weight of points that spoils the symmetry is added, the centroid of the area shifts 

from the starting coordinate (the coordinate of the maximum peak). The radius of the 

circle, which is tangent to this last contour, is defined as the “distance of symmetry”. 

 

During this extension process, the contour, whose score is half of the 

maximum score, is also determined. The “quality factor” is calculated as the ratio of 

the maximum score to the area of circle, which is tangent to this contour. For 

example, if edges of the square contour which has the half score of the maximum 

score is 2r pixels long, and the maximum score is M, then the quality factor for that 

center candidate is calculated as 

 

  q = M / (r2π)                (3.6) 

 

In order to test these criteria on example scenes, a series of images (Figure 

3.13-3.16) are created and their symmetry and quality factors are measured and 

classified. Table 3.2 summarizes this information. 
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Figure 3.12    An example figure for quality factor calculation  
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Figure 3.13    Some artificial pictures for quality factor and symmetry analysis 

 

 
 

Figure 3.14    Some artificial pictures for quality factor and symmetry analysis 
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Figure 3.15    An edge thinned partial target image from the vision set-up for quality 

factor and symmetry analysis 

 

 
 

Figure 3.16    An edge thinned target image from the vision set-up for quality factor 

and symmetry analysis 
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Table 3.2    Quality and distance of symmetry analysis of artificial pictures 

 

Point 

Quality 

factor 

(1/pixel2)

Distance of 

symmetry 

(pixels) 

Score 

Presence 

of 

ellipse 

a1 4 90 1337 not an ellipse 

b1 213 184 2682 full ellipse 

c1 82 30 2315 partial ellipse 

d1 42 21 2116 partial ellipse 

e1 896 9 2815 not an ellipse 

f1 138 12 1733 not an ellipse 

g1 128 207 3632 full ellipse 

h1 337 13 1694 partial ellipse 

i1 134 16 6753 not an ellipse 

i2 142 17 1787 partial ellipse 

i3 579 23 1820 not an ellipse 

j1 122 97 3443 full ellipse 

j2 221 37 2773 not an ellipse 

j3 597 36 1876 not an ellipse 

 

 

Examining Table 3.2, one can conclude that, full ellipses have a greater 

quality factor with respect to other symmetrical shapes, like the one in Fig. 3.13 (a1).  

  

As seen in Figure 3.14, the quality factors of the irregular shapes (e1 and f1) 

are higher than those for ellipses. Because, pixels with the half of the maximum 

score are closer to the center pixel as a result of asymmetric characteristics of these 

irregular shapes.  

 

It is also observed that the distance of symmetry decreases as the cut 

portion of an ellipse increases (see h1 in Fig. 3.14). 
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Using these observations, in order to make a classification, the decision 

boundaries for the quality factor and distance of symmetry features of an ellipse can 

be given as 

 

 50 1/pixel2 < quality factor < 500 1/pixel2 

 35 pixels < distance of symmetry           

 

As a result, in order to classify points on the accumulation space as a center 

of an ellipse or not, points which have the highest score are selected. These points 

are candidates for the center of a possible ellipse in the image. For each center 

candidate, the quality factor and the distance of symmetry are calculated. The 

center candidates, which have the quality factor and distance of symmetry values 

between the limits given above, are selected. From the selected ones, the ellipse 

center is the one with the highest score. If there is no candidate for ellipse center, 

which has the quality factor and distance of symmetry values between these limits, 

there is still a possibility of having a partial ellipse in the image. So, the decision 

boundary for the distance of symmetry can be extended in order to recognize a 

partial ellipse.  
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CHAPTER 4 

TARGET RECOGNITION 
 

 

4.1 Overview  

 

In the previous chapter, some image processing and pattern recognition 

algorithms are explained and results obtained by their applications on a set of 

artificial and real scenes are presented. In this chapter, a complete target 

recognition algorithm and results obtained by its application will be presented. The 

flow chart of the algorithm can be seen in Figure 4.1. 

 

As briefly introduced in Chapter 1, a typical pattern recognition algorithm 

starts with the measured output of a sensor in a system and continues with the 

preprocessing and enhancing this data.  The preprocessing is the filtering or 

transforming raw input data to aid its computational feasibility and feature extraction 

and to minimize the noise [1]. The next step in the recognition algorithm is the 

extraction of features, which will be utilized in a classification algorithm to end up 

with the recognition of observed data. Features are some extractable 

measurements, which may be symbolic, numerical, or both.  

 

The feature selection is a process of choosing an input to the pattern 

recognition system and involves judgment. It is often useful to develop a geometric 

viewpoint of features, especially in a statistical pattern recognition case. Features 

are arranged in a d-dimensional feature vector, which yields a multidimensional 

measurement space or feature space. Often, a classification is accomplished by 

partitioning the feature space into regions for each class.      
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Figure 4.1    Flow chart for target recognition algorithm 

Performing the second 
binarization in the segmented 

ellipse region 

Selecting the ellipse center and 
segmenting the ellipse region 

Sending the contour 
information to the 

reconstruction algorithm 

Calculating the quality factor and 
distance of symmetry for the 

maximum twenty scores in the 
accumulation space 

Grabbed and stored 
gray-level image 

Binarization with 
global thresholding 

Edge detection and 
edge thinning 

Segmentation of the image 
into its connected regions 

Performing the ellipse fitting and 
obtaining the accumulation space 

Determination of the 
selected ellipse contour 
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In this study, a pattern recognition algorithm is developed to recognize an 

elliptical image of a circular target used in the 3-D configuration reconstruction 

algorithm. It begins with a previously captured and stored gray-level image. In the 

preprocessing step, an automatic binarization with global threshold, an edge 

detection and an edge thinning are performed.   

     

The edge detection is achieved by the convolution of the image array with a 

3x3 Sobel operator, which is actually a first derivative operator. Since after the 

binarization, the gray-level image is transformed into an image with stepwise edges, 

a first derivative operator is decided to be suitable for the detection of local intensity 

changes in the binarized image. Some details of the edge detection process and 

also some common algorithms are given in Appendix A.  

 

After the edge detection, it is seen that edges are usually thicker than one 

pixel size, and therefore an edge thinning is needed in order to reduce the 

computational load for rest of the processing. Some details for the definition of edge 

thinning and also some algorithmic principles can be found in Appendix A. 

     

The ellipse-fitting algorithm employed in this study uses pairs of image pixels 

belonging to the boundary of a region. This region is expected to be elliptical, and 

therefore the algorithm tries to fit an ellipse to these point pairs. In the fitting 

algorithm, local tangents to edges of these two points are utilized. In other words, 

local slopes of edges at these points are used. The slope information needed is 

obtained during the edge detection step. Center coordinates of all such fitted 

ellipses and scores of each center are accumulated in a space called as the 

“accumulation space”. The selection of pixel pairs becomes very crucial for the 

selection of features. It is seen that, if pixel pairs are selected as connected pairs, 

regions in the accumulation space become more separated and their properties 

become more perceivable. For this reason, it is best to segment the image into its 

connected regions, before applying the ellipse-fitting algorithm.    

 

When an accumulation space is observed, it is seen that regions containing 

elliptical boundaries can be classified using the values defining the quality factor and 

size of the symmetry region. So the feature space can be partitioned into decision 
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regions by the following features: Ellipse fitting score, quality factor, and size of the 

symmetry region for each ellipse center candidate.   

 

The algorithm is applied to some real and artificial scenes and a series of 

quantitative values for objects of regular and irregular shapes are obtained and 

presented in the previous chapter. Using these results, some decision boundaries 

for the classification are determined. 

 

Following the determination of the ellipse center, an outward search is 

started from this center to reach a point on the ellipse contour. Once such a point is 

found, a contour following algorithm [7] is used to determine the complete contour of 

the ellipse.  

 

As explained in Chapter 3, a global thresholding may result in elliptical 

images with vanishing internal spots under some lighting environments. To remedy 

this undesirable performance, following the detection of an elliptical region, this 

region is segmented from the original image and a second binarization is performed 

only on this segmented region. Since the target is a white circle with a black 

background and with two black inner spots, the selection of a new threshold for this 

segmented area makes two classes of background and foreground pixels more 

separated. After this second binarization, a new ellipse contour is determined for 

use in the 3-D configuration reconstruction algorithm.               

 

The entire image processing steps and the rest of the 3-D configuration 

reconstruction algorithm is implemented by a software, which is presented in 

Appendix B. 

 

4.2 Results of the Recognition Algorithm 

 

After checking the performance of the image processing algorithms 

separately, the target recognition algorithm is applied to the images captured using 

the vision set-up. As an example, target recognition algorithm is presented step by 

step through the Figures 4.2a-4.2e. The original image can be seen in Figure 4.2a, 

and its binarized image in Figure 4.2b. In Figures 4.2c and 4.2d, images obtained 

after edge detection and edge thinning processes are shown, respectively. In these 
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last two images, the background is painted in black color and the edge pixels are in 

white color. For all edge pixels in Figure 4.2c, the magnitudes of the edge gradients 

in horizontal and vertical direction are stored in text files. These files are used to 

calculate the slopes of edge pixels in the ellipse fitting step. As seen in the figure, 

both the contour of the ellipse and the contour of the spots are visible after the edge 

thinning process.  

 

 

 
 

Figure 4.2a    Image of the target before processing 

 

 
 

Figure 4.2b    Image of the target after binarization 



 51

 

 
 

Figure 4.2c    Image of the target after the edge detection 

 

 

 
 

Figure 4.2d    Image the target after the edge thinning 

 

 

Using only edge pairs of connected components, an ellipse fitting is 

performed and features like quality factor and distance of symmetry for the top 

twenty center candidates in the accumulation space are calculated. The center  
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candidate, which is within the decision boundaries of quality factor and distance of 

symmetry is the center of the ellipse and marked with a spot and called as “e1”. The 

quality factor for the point “e1” is 409 1/pixel2, and the distance of symmetry is 53 

pixels. The outer contour of the ellipse is determined and a rectangular area 

containing this contour is segmented. A second binarization is performed on this 

area. The binary segmented area is shown on the left upper corner of Figure 4.2e. 

In this figure, again the colors are inverted, and the background is shown in white 

and the object pixels are in black color. After the second binarization, the ellipse 

contour is determined once more, and the resultant contour is ready to be used in 

the 3-D configuration reconstruction algorithm.  

 

 

 
 

Figure 4.2e    Image of the target after target recognition 

 

 

In the second example, a binary image (Figure 4.3a) and its resultant image after 

target recognition (Figure 4.3b) are shown. Again, three features of the objects 

(accumulation score, quality factor, and distance of symmetry) in the image are 

calculated. While summarizing the properties of the accumulation space in the 

previous chapter, it is pointed out that although the ellipse centers do not have the 

greatest scores in the accumulation space for some images, the ellipse can be 

recognized properly according to their quality factor and distance of symmetry  
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features.  The ellipse in Figure 4.3a is an example for this kind of images. The 

quality factor for the point “b1” on the ellipse center (Figure 4.3b) is 126 1/pixel2 and 

the distance of symmetry is 35 pixels. After the segmentation of the ellipse area, the 

ellipse contour is determined. 

 
  

  

 

 

 

 

Figure 4.3a    Image of the target after binarization 

 

 

 
 

Figure 4.3b    Image of the target after target recognition  
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Figure 4.4a    Image of the target after binarization 

 

 

 
 

Figure 4.4b    Image of the target after target recognition 

   

In Figure 4.4a, another binary image is given. During the initial global 

binarization, inner spots are lost, so a second binarization seems to be necessary 

after the segmentation of the ellipse area. The target recognition is performed and 
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the ellipse area is recognized correctly as seen in Figure 4.4b. After a second 

binarization in this area, inner spots can also be recognized. The quality factor for 

the ellipse center “b1” is 113 1/pixel2 and the distance of symmetry is 75 pixels. 

Even though this point does not have the highest score in the accumulation space; it 

has proper quality factor and distance of symmetry values as in the previous 

example. 

 

The images in the case studies have size for 640Hx480V pixels2. When the 

size of the target is greater the quarter of the image area, the decision boundaries 

for the quality factor may not be utilized. As the size of the ellipse area approaches 

the half of the image area, the peak in the accumulation space on the ellipse center 

vanishes.  

      

As a result of these case studies, it can be concluded that the target 

recognition algorithm developed in this study can be used for the recognition of 

ellipses. The accumulation score, quality factor and distance of symmetry are the 

features that are used in the recognition. The decision boundaries for these features 

are given in the previous chapter. If the ellipse recognition cannot be achieved with 

in these boundaries, they may be extended in order to recognize a partial ellipse. 

After the recognition of the ellipse, segmentation of the area that contains the ellipse 

and the second binarization on this area is achieved. At the end of the target 

recognition, contour of the ellipse and the contour of the inner spots are detected. 

This information is utilized for the 3-D configuration reconstruction algorithm.  

 

 

 

 

 



 

 

 

 

CHAPTER 5 

INTERNAL CAMERA CALIBRATION 
 

 

5.1 Overview 
 
In this chapter, the aim of internal camera calibration and previous studies on 

this subject will be explained. Then, a proposed method for the determination of lens 

distortion parameters will be presented. 

  

The problem of interior orientation can be defined as to determine the 

internal geometry of the camera. The geometry is represented by a set of camera 

parameters [32]: 

a) Camera constant for the distance of the image plane from the center of 

projection. 

b) Principal point for the location of the origin of the image plane coordinate 

system. 

c) Lens distortion coefficients for the changes in the image plane 

coordinates caused by optical imperfections in the camera. 

d) Scale factors for distances between the rows and columns. 

 

The interior orientation problem is a problem of compensating errors in 

constructing a camera so that the bundle of rays inside the camera obeys the 

assumptions of the perspective projection. Camera parameters are also called as 

the “intrinsic parameters”, as opposed to the “extrinsic parameters” for the exterior 

orientation of the camera.  
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The “camera constant” is not the same as the “focal length” of the lens all the 

times except when the lens is focused at infinity; then the camera constant is equal 

to the focal length. Otherwise, the camera constant is always less than the focal 

length. On the other hand, the “principal point” is where the optical axis intersects 

the image plane.  

   

In the previous studies, the calibration for the determination of the optical 

center is done geometrically by the rotation method [7,33]. Also, an iterative 

algorithm is proposed in [6] for the determination of the image plane distance, but it 

is not included in the solution of the reconstruction algorithm. 

 

In this study, a method for the determination of the lens distortion is also 

proposed. 

 

 

5.2 Studies on the Internal Camera Calibration   
 

Tsai and Lenz [3,34], uses the concept of “radial alignment constraint” to 

decompose calibration parameters into two groups. The first group consists of only 

extrinsic parameters; i.e., the relative motion and translation between 3-D camera 

and world coordinate system. The second group of calibration parameters, i.e., 

radial lens distortion parameters and the focal length, can be obtained by solving 

perspective projection equations with a few iterations for optimization, using an initial 

guess obtained by solving two unknowns.   

 

Devernay and Faugeras [35] use 3-D line segments, which can be city 

scenes, interior scenes, or aerial views containing buildings and man-made 

structures. Edge extraction and polynomial approximation are applied on these 

images in order to detect possible 3D edges present in the scene, and then they 

look for the distortion parameters that minimize the curvature of the 3D segments 

projected to the image. After they find a first estimate of the distortion parameters, 

they perform another polynomial approximation on the corrected edges. This way, 

straight-line segments that were broken into several line segments due to distortion 

become one single line segment, and outliners are implicitly eliminated. They 
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continue this iterative process until they fall into a stable minimum of the distortion 

error after a polynomial approximation step. 

 

Another method is measuring the distortion in an image of a perfect circle 

into an ellipse.  Chatterjee and Roychowdhury [8] use one of these methods to 

determine the initial estimate. They deal with the coplanar camera calibration and 

discuss the camera calibration model consisting of extrinsic and intrinsic 

parameters.  

 

The technique proposed by Zhang [10] in which the radial distortion is 

modeled next to external camera parameters, only requires a camera to observe a 

planar pattern shown at a few (at least two) different orientations. Either the camera 

or the planar pattern can be moved by hand. The motion need not be known. The 

proposed procedure consists of a closed-form solution, followed by a nonlinear 

refinement based on the maximum likelihood criterion.  

 

Prescott and McLean [36] determine the radial distortion parameters with a 

technique based on the analysis of distorted images of straight lines. Lines are 

extracted by grouping the individual pixels as belonging to a particular line support 

region, and the distortion parameters are optimized, so that distortions can be 

obtained in linear features.   

 

Heikkila and Silven [4,37] develop a four-step calibration procedure that is an 

extension of two-step methods, in which initial parameter values are computed 

linearly and final values are obtained with a nonlinear minimization. The third step is 

the correction of asymmetric projection and finally, the fourth step is the correction of 

image by avoiding tangential and radial lens distortions by back-projection. 

 

 

5.3 Lens Distortion 
 

As a result of imperfections in the production and assembly of lenses, the 

image of a planar object lies in general on a slightly curved field [8], wherein objects 

at the edge of the field of view appear somewhat smaller or larger than they should 

be.    
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Lens distortions include two components: radial distortion that bends the rays by 

more or less than the correct amount [32]. Two typical radial distortions are 

pincushion and barrel distortions. The pin cushion distortion results, for example 

when a lens is used as a magnifying glass, whereas barrel distortion results when 

an object is viewed through a lens at some distance from the eye. On the other 

hand, tangential distortions are usually caused by a decentering in the lens 

(decentering distortion) due to imperfections in lens manufacturing or a tilt in the 

camera sensor or lens (thin-prism distortion) 

 

Formulation of the Lens Distortion 
 
The radial distortion can be formulated as:  
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and the expression for the tangential distortion is often written in the following form: 
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where ( ) are undistorted image coordinates, rud
i

ud
i v,u i is the distance between the 

observed point and the origin,  ( , ) and  ( , ) are respective radial 

and tangential distortions on these points. Tangential distortion coefficients are 

and , while the radial distortion coefficients are and  
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Combining Equations (5.1) and (5.2) for N number of points and arranging 

known coefficients and unknowns ones, the following equation can be obtained.  
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Using the following definitions for A and C vectors and B matrix 
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Equation (3) can be written as 

 

 A2Nx1 = B2Nx4 C4x1       (5.4) 

 

When elements of matrices A and B are known, the following pseudo 

inversion technique could be used in order to solve the equation for the C. 

  

 C = (BT B)-1 BT A      (5.5) 
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After determining the distortion coefficients, the distorted points are back-

transformed to their undistorted coordinates. The formulation for the back-

transformation of distorted points is as follows: 
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5.4 Proposed Method 
 
In this study, the extrinsic camera parameters are solved by using the 3-D 

configuration reconstruction algorithm, so the internal camera parameters could be 

solved independent of these external parameters. It would be better to use a back-

projection algorithm rather than an optimization based method. In the back-

projection step, a calibration object is needed.  

  

It is aimed to calibrate the camera in an unstructured environment, without 

the measured data for the external parameters. The information of control points 

used will be extracted from the calibration pattern itself. Since, as a matter of 

definition of lens distortion, distortions at the camera center (so the image center) 

are zero, one can assume that distortions very close to the center is also zero. 

Referring to some points near the center, distortions on the whole image can be 

obtained.  

 

In order to measure distortions, a pattern having white circular spots on a 

black background is proposed. Control points are chosen as centroids of these 

circular spots. In the middle of the pattern, there is a circle with a center spot in it. 

Since the image of the pattern is grabbed in an unstructured environment, in the 

absence of a positioning set-up, this circle is utilized for the determination of the 

external parameters of the pattern by using the 3-D configuration reconstruction 

algorithm. Four spots around this circle are used for the sample pattern and they are 

assumed to be free of distortion. The calibration pattern can be seen in Figure 5.1. 

 

Another important property of the image of the pattern is the image center, 

which is marked for the easy selection. In the image grabbing step, the image center  
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is adjusted such that image center is projected on the circle. The image should all 

be full of grids, so that a homogeneous distribution of sample points can be 

obtained, which will effect the correctness of the distortion parameters, so the 

calibration procedure.  

  

After determining the external parameters of the pattern, a look-up table is 

developed by transforming the original grid to the image coordinate frame using 

these external parameters and compared with the image of the grid pattern. The 

error for each control point is determined and an error matrix is developed. By 

substituting the parameters in the equation (5.3) and solving Equation (5.5), the 

tangential and radial distortion parameters are determined. 

 
 

 
 

Figure 5.1 Calibration pattern and a sample pattern in the middle 
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5.4 Calibration Procedure 

 

The calibration steps are as follows:  

 

• The calibration pattern is viewed, by taking as many grids as possible in 

order to have a homogeneous image full of grids. The image center 

should be as near as the pattern center.  

 

• The sample calibration grid, which involves the circle in the middle and 

the four spots around it, is taken in a window with the cursor. 

 

• The software program determines the centroids of these four spots, and 

these points are assumed to be undistorted (Figure 5.1).  

 

• A greater area, which will be used to calculate the distortion parameters 

on the image, is selected. The number of vertical and horizontal spots is 

calculated, and using the sample pattern and external camera 

parameters, correct places of intersection points are calculated and a 

look-up table is generated. 

 

• Calculated distortion parameters will not used on the whole image each 

time, instead after determining the ellipse area, the pixels on that area 

are back-projected to their undistorted coordinates, and the 3-D 

configuration reconstruction algorithm will continue with these undistorted 

coordinates.  
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CHAPTER 6 

SUMMARY AND CONCLUSIONS  

 

 

In this chapter, a summary of the study and conclusions reached will be 

presented, and some recommendations for future research will be given.  

 

 

    6.1    Summary 
 

A computer based target recognition algorithm is developed in order to make 

an existing 3-D configuration reconstruction algorithm, autonomous. The 

reconstruction algorithm assumes that a monocular image of a scene is available, 

which contains a circular white secondary target with two inner dots over a 

predominantly dark background. 

 

The target recognition algorithm developed in this study processes a raw 

image of size 640Hx480V pixels to obtain pixel coordinates of the boundary of an 

ellipse, which is supposed to be the image of the circular secondary target.  In the 

preprocessing steps of the algorithm, first a binarization is performed in order to 

separate object-like white regions from dark background regions of the scene. The 

binarization is performed by an automatic selection of a threshold gray-scale value 

based on the method “Minimum Error Thresholding”. This method is applied by 

using both global and local thresholding approaches in order to see their relative 

merits. Comparative results have led the use of the global thresholding in this study. 

 

In order to fit an ellipse to a given region in a full image, pixel coordinates 

and local slopes of the edge of such a region are needed. So, an edge detection 
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process is performed on the binarized image by using a Sobel operator and edge 

gradients in horizontal and vertical directions are obtained. Using these gradients 

the edge information in the whole image are generated.   

 

After the edge detection, it is observed that, the thickness of edges is larger 

than one pixel size, usually about three pixels for the images used in this study. In 

order to reduce the computational load for the rest of the recognition algorithm, a 

further process called as the edge thinning is performed on the edge detected 

image.  

 

In order to fit ellipses to edge thinned images, a Hough Transform based 

algorithm available in the literature is used. However, it is seen that its results 

cannot be used directly, by barely using the algorithm. Therefore, a set of 

modifications and enhancements are developed and implemented to make the 

algorithm suitable to the purpose of this study.  

 

The algorithm utilizes edge points on the image as pairs and their slopes, 

which are obtained as gradients in the edge detection step. After performing the 

ellipse fitting, an accumulation space is build up for center coordinates of possible 

ellipses fitted to all possible pairs of edge points on the image. In the original 

algorithm pairs of edge points were selected in a restricted region defined in the 

software. In this study, first the image is partitioned into its connected regions and 

then edge pairs are selected from these connected regions for use in the ellipse 

fitting algorithm. 

 

Another enhancement developed in study is in the interpretation of the 

accumulation space. In the original algorithm, only scores of center candidates were 

used for classification. In this study, the accumulation space is observed and some 

features of elliptical regions in this space are extracted. In addition to the score 

values in the accumulation space, features like quality factors of the maxima and 

distances of symmetry around these maxima are used in the classification step.  

 

The determination of the center candidate is followed by the determination of 

the ellipse contour by a contour following algorithm. Then the region containing this 

elliptical contour in the image is segmented. Using only this segmented area, a 
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second binarization is performed on the original image. The final contour is 

determined by repeating all intermediate steps of the target recognition process 

limited to the segmented area. This contour information is then used in the 3-D 

configuration reconstruction algorithm. 

 

For the detection of distortion parameters, a method with a special pattern is 

proposed. The method assumes no special structuring for the environment nor any 

information about the external parameters of the pattern used. The pattern needs 

not to be configured in a special orientation; only the image of the center of the 

pattern should coincide with the image center. While determining the pattern 

configuration, the 3-D configuration reconstruction algorithm is used. Positions of 

control points on the image and their undistorted positions are compared and an 

error matrix is developed. By using the pseudo inversion technique, the distortion 

parameters are calculated.   

 

In order to implement all algorithms summarized above, a user friendly 

software is developed in the Windows environment using Borland C++ Builder 

Professional compiler.    

 

 

6.2 Conclusions 
 

In the binarization part of the study, both the local and global binarizations 

are studied. In addition to the eye inspection of resulting binary images, these 

methods are compared analytically according to the homogeneity of their 

distributions. It is concluded that, the global binarization is more efficient to be used 

in this study. In order to avoid inner spots to vanish in some bright image cases, a 

second binarization is needed on a restricted area after recognition of the ellipse 

area.  

   

In the ellipse fitting part of the study, an edge thinning and partitioning the 

image into its connected components bring computational advantage to the 

algorithm. As a result of selecting edge pixels from connected components, regions 

in the accumulation space become more separated and properties of their regions 

more perceivable.  
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The target recognition algorithm developed in this study is able to detect a 

full ellipse in an image without any difficulty. But, it can also be used to identify 

partially captured ellipses of symmetrical type up to a ratio of partition. In the target 

recognition process, a set of decision boundaries are developed in terms of the 

quality factor and distance of the symmetry for choosing the center of an elliptical 

shape among multiple candidates. It is shown that the recognition of partial ellipses 

may become critical if there are other curved patterns next to the partial ellipse in 

the same image. In such cases, lowering the distance of symmetry limit appears to 

be the best solution to catch any possible partial ellipse especially when no ellipse is 

detected within decision boundaries specified for the full ellipse case.   

 

In previous studies [6,7], after detecting the ellipse contour, eight contour 

pixels were selected for use in the 3-D configuration reconstruction algorithm. This 

selection was achieved with a method called “MaxMinCross Pixel Selection” method 

[6,7]. Since the 3-D configuration reconstruction software is integrated into this new 

study, this pixel selection method is not modified. However, this method is not 

suitable for partial ellipse cases. This part of the algorithm should be changed with 

another pixel selection method, so that the configuration reconstruction of the partial 

target can be achieved. 

 

A Windows based software environment is developed for the implementation 

of the target recognition algorithm. The process time for the whole target recognition 

algorithm for an IBM compatible AMD Athlon 1800+ PC is between 10-35 seconds 

depending on the complexity of the scene. 

 

The target recognition algorithm is integrated to the 3-D configuration 

reconstruction algorithm in a user friendly computer platform so that a complete 

vision system to detect the configuration parameters of a rigid body in an automated 

environment is obtained. 

  

A method compatible with the target recognition algorithm developed in this 

study is also proposed for the internal camera calibration, which can be used in an 

unstructured environment.  
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6.3 Guidelines for Future Work 
 

The following list contains some practical points that may be focused on in 

future studies for further improvements. 

    

• The experimental implementation and performance tests of the internal 

camera calibration method suggested in this study may be investigated for 

exploring its possible use in practical applications. 

 

• Optimization on the whole external camera and internal camera parameters 

may be performed in order to avoid some other unbiased errors on these 

parameters. 

 

• The pixel selection method that is used for the 3-D configuration 

reconstruction should be changed with the one that is suitable to the partial 

ellipse cases. 

 

• The resolution of the algorithm may be improved by embedding sub-pixel 

techniques in the algorithm. A finer digital representation is important in the 

determination of distortion parameters, as well as in the external camera 

calibration step. 

 

• The target recognition algorithm developed in this study may be used in 

motion tracking. However, the solution speed should be optimized for this 

application by using features of previously detected frames.  
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APPENDIX A 

SOME IMAGE PROCESSING METHODS 

 

  
A.1  Edge Detection 

 

Edge detection is a contour based segmentation method. In the first part of the 

thesis study, a binarization is performed before the edge detection. The important 

problem in both edge detection and binarization is to determine a suitable threshold, 

especially for autonomous cases. For the binarization part, a histogram modeling 

gives the necessary and sufficient information in order to determine the threshold 

value autonomously. Once binarized, the image has step edges, and an edge 

detection is easier than a gray-scale image. 

 

 
Basic Theory of Edge Detection 

 

There are two types of edge detection methods, namely, Template Matching 

(TM) and Differential Gradient (DG) [38]. In either case, the aim is to determine 

where the intensity gradient magnitude, g, is sufficiently large to be taken as a 

reliable indicator of an object. Both TM and DG operators estimate local intensity 

gradients with the aid of suitable convolution masks. In case of a DG type operator, 

only two such masks are required for x and y directions. For a TM case, it is usual to 

employ up to 12 convolution masks capable of estimating local components of the 

gradient in different directions. In the TM approach, the magnitude of a local edge 

gradient (in short “edge magnitude”) is approximated by taking the maximum of the 

responses for the component mask as 
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g = max ( gi: i=1 to n) where usually n is 8 or 12.                              (A.1)  
 

In the DG approach, the local edge magnitude may be computed vectorially 

using the following nonlinear transformation: 
 

g = ( gx
2+gy

2)1/2                                                                      (A.2) 
  

where gx and gy are gradients in x and y directions, respectively. 

 

In order to save the computational effort, it is a common practice to approximate 

this formula by using one of the following simpler methods 
 

g =  |gx| + |gy|                (A.3) 
 

or 
 

g = max (| gx| , |gy|)                                 (A.4) 
 

both of which gives equally accurate results for Equation (A.2), on the average.  
 

In the TM approach, the edge orientation is estimated simply as that of the mask 

giving rise to the largest value of gradient in Equation (A.1). In the DG approach, it is 

estimated vectorially by a more complex equation as 
 

θ = arctan(gy/gx)                          (A.5) 

 

In general, there are two types of gradient operators [32]. First group takes the 

first derivative into account. If it is above a threshold value, the presence of an edge 

point is assumed. Second approach determines only those points that have local 

maxima in gradient values and considers them as edge points. This means that, at 

edge points, there will be a peak in the first derivative, and equivalently, there will be 

a zero crossing in the second derivative. Thus, edge points may be detected by 

finding zero crossings of the second derivative of the image intensity. The Laplacian 

and second directional derivative operators may not be used in machine vision since 
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any operator involving two successive derivatives is affected by noise more than an 

operator involving a single derivative. Even very small local peaks in the first 

derivative will result in zero crossings in the second derivative. In order to avoid 

effects of noise, some filtering methods must be used.  
 

Since there are step edges after the binarization, a first derivative operator is 

found to be sufficient in this study. There are various first derivative operator masks 

with changing number of elements and weights. Some of them are as follows: 
 

Roberts Operator:  
 

 
         Rx=                                                                                                

1  0 

0 -1 
   
 
         Ry=                                                                                                    

0 -1 

1  0 
 

 

Since the operator is a 2x2 gradient operator, the differences are computed at 

the interpolated point [i+1/2, j+1/2]. The Roberts operator is an approximation to the 

continuous gradient at that point and not at the point [i,j] as might be expected.  
 

Sobel Operator: 
 

In order to avoid having the gradient calculated about an interpolated point 

between pixels, the following 3x3 mask called as the Sobel operator is used. 
 

 -1 0 1 

-2 0 2 

-1 0 1 

          Sx =  
 

 
 1 2 1 

0 0 0 

-1 -2 -1 

         Sy =  
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Note that, this operator places more emphasis on pixels that are closer to the 

center of the mask.   
 

Prewitt Operator: 
 

 -1 0 1 

-1 0 1 

-1 0 1 

       Px =  
 

 
 

1 1 1 

0 0 0 

-1 -1 -1 

 

Py = 
 

 
Unlike Sobel operator, this operator does not place any emphasis on pixels that 

are closer to the center of the mask.    
 

 
A.2  Edge Thinning 

 

Thinning is an iterative neighborhood operation, which generates a skeletal 

representation of an object [38]. Thinning can be viewed as a logical neighborhood 

operation where object pixels are removed from an image. Obviously, this removal 

must be constrained. These constraints can be summarized as follows: 
 

(a) The pixel must lie on the border of the object. This implies that it has at 

least one background pixel with 4-connected neighboring pixels. 
 
(b) The deletion of a pixel should not destroy the object’s connectedness; i.e., 

the number of skeletons after thinning should be the same as the number 

of objects in the image before thinning.  
 

(c) The algorithm should preserve the object’s length.  
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A.3  General Hough Transform Technique  

 

The Hough transform algorithm requires an accumulator array whose dimension 

corresponds to the number of unknown parameters in the equation of family of 

curves being sought [19]. In case of ellipse, there are five parameters to be 

determined which are its center coordinates, its orientation, and the lengths of its 

major and minor axes.  
 

The equation of an ellipse in polar form is given as 
 

1b/)sin(ra/)cos(r 2222 =φ−ψ+φ−ψ              (A.6) 

 

where the radial and angular positions of a point on the ellipse are 
 

 2
0

2
0 )yy()xx(r −+−=               (A.7) 

 

                       (A.8) ))xx/()yyarctan(( 2
0

2
0 −−=ψ

  
and 
 

 a, b : lengths of the major and minor axes of the ellipse 

 φ     : orientation of the major axis 

 x, y : coordinates of any point on the ellipse 
 x0,y0: coordinates of the ellipse center 

   
 In the standard Hough transform (STH) technique, using every point in the 

image the parameters (r,Ψ) are calculated for each edge point in the image. Using 

the specified range for the orientation θ (it may be between angles 0-π, since the 

ellipse has a symmetrical shape), and major and minor axes lengths (they may be at 

most equal to the diagonal length of the ellipse), a five-dimensional accumulator 

array is obtained. The content of this array A (x0,y0, θ, a, b)   is incremented by one, 

when an edge pixel P(x,y) justifies the equation of the ellipse.  
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The number of elements in the accumulator space is given as 
 

Rθ.Rx0.R y0.Ra.Rb                (A.9) 

  
where Rk means the number of elements for the variable k in its specified range. 
 

After completing the accumulation, peaks are selected as the parameters of the 

ellipses in the image.  
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APPENDIX B 

COMPUTER PROGRAM DEVELOPED 

  
 B.1  General Features of the Software  

 

The computer program developed in this study aims to implement the 

techniques and algorithms proposed in this thesis in order to recognize the image of 

a circular target and extract its features automatically. There should also be options 

available for the user to execute various steps of the process such as binarization, 

edge detection, edge thinning, ellipse detection, and contour detection, one by one. 
 

In addition to the image processing menu, there is a camera calibration menu in 

the program. It is also capable of determining external camera calibration 

parameters and the lens distortion parameters. A computer program written by E. U. 

Acar compiled in DOS environment was already available developed during the 

implementation of the 3-D configuration reconstruction algorithm [7]. In this study, 

this program is modified and compiled in Windows environment and added to the 

interface.  
 

It is also aimed to generate a user friendly program complied in the Borland 

C++ Builder Professional compiler. The interface has four menus; namely [File], 
[Image Processing], [Camera Calibration], and [Help]. Since the main aim of the 

computer program is to perform an automatic 3-D configuration algorithm, in 

addition to these menus, there is an individual button for the automatic operation of 

the algorithm.   
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B.2 User’s Manual  
  

In this section, menus and submenus of the program are explained, some visual 

examples are presented and subroutines used in the software are given.  
 

 

 
 

Figure B.1    Opening window of the software interface 
 

 

When the program is executed, the opening window (Figure B.1) is initialized. 

Menus [File], [Image Processing], [Camera Calibration], and [Help] can be seen 

on the top of the window. On the top left, a text window exists, which is used to 

display some text information by the software at different steps of the computation. 

The aim of this text window is to report the current status of the computation as well 

as to display some intermediate results to the user. The small image window below 

this text window is used to show the histogram of a selected part of an image. The 

large area on the right hand side is the main image window, on which images are 

viewed. The size of this area is 640 pixels horizontal x 480 pixels vertical.  
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 Menus and the submenus of the software interface are as follows. 
 

[File] This menu has three submenus, namely, [Open], [Save as], and [Exit]. 
 

[File] [Open]  When this option is selected, a dialog box opens (Figure B.2). 

First, from the “Files of Type” option on the dialog box, the type of the image file 

is selected among two options, namely, the raw data format with an extension 

“img” and the bitmap format with an extension “bmp”. Only those files with 

extensions matching the selected file type will be displayed. After selecting an 

image file in any directory in the computer, the “Open” button is pressed to load 

the content of that file to the software. By pressing the “Cancel” button, one can 

exit from the dialog box without making any selection. 
 

 

 
 

Figure B.2    [File] [Open] submenu of the software interface 
 

 

[File] [Save as]  In order to save an image seen in the main image window, this 

option must be used. When this option is selected, a dialog box opens (Figure 

B.3) by which images can be saved in “bmp” format. An existing file may be 
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selected from any directories to replace or a new file name may be written in the 

“File name” box with the “.bmp” extension. After this, the “Save” button is 

pressed in order to save this file. If one wants to close the dialog box without 

saving a file, the ”Cancel” button must be pressed.    
 

 

 
 

Figure B.3    [File] [Save as] submenu of the software interface 
 

 

[File] [Exit]  If the user wants to leave the program, this option must be 

selected. When it is selected, the interface window will be closed.  
 

[Image Processing] This menu has six submenus, namely, [Target Recognition], 
[Stepwise Image Processing], [Nearest Neighbor Algorithm], [Quality Factor 
Calculation], [Connectivity], and [Histogram]. 

 
[Image Processing] [Target Recognition]  When this submenu is selected, 

the computer program takes the raw image data, automatically recognizes the 

target area and segments it. First, the image file selected is opened; the raw 

image is displayed in the main image display box, followed by resultant images 
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after binarization, edge detection and edge thinning procedures in sequence. 

Concurrently, the user is informed through the text box about the status of these 

procedures. At the end, the segmented binary target is shown on the left upper 

corner of the image area (Figure B.4a-B.4b). 
 

 

 
 

Figure B.4a    [Image Processing] [Target Recognition] submenu of the 

software interface – initial screen-shot 
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Figure B.4b    [Image Processing] [Target Recognition] submenu of the 

software interface - final screen-shot 

 
 

[Image Processing] [Stepwise Image Processing] When this submenu is 

selected, a secondary submenu is opened, which includes four procedures, 

namely, [Binarization], [Edge Detection], [Edge Thinning], and [Contour 
Detection]. 

 

[Image Processing] [Stepwise Image Processing] [Binarization]   
 When one wants to binarize a raw data image, this submenu is used. First a 

raw data image is opened and this submenu is selected. The gray-level 

image is binarized with the global binarization. The resulting binarized image 

is viewed in the main image box and the threshold calculated for the image is 

written in the text box. 
 
[Image Processing] [Stepwise Image Processing] [Edge Detection]                        

This submenu is to detect the edges of a gray-level image. First a gray-level 

image is opened and this submenu is selected. The gray-level image is first 

binarized and then an edge detection is performed. In the main image box,  
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  the binarized and the edge detected images are shown consequtively. 

 

[Image Processing] [Stepwise Image Processing] [Edge Thinning]   
 This option gets the gray-scale image as the input and after performing the 

binarization and the edge detection step, an edge thinning is carried out. In 

order to use this submenu, a gray-level image is opened and this submenu is 

selected. First the binarized image is shown and then the resulting edge 

detected and edge thinned images are viewed consecutively in the main 

image box. 

 

[Image Processing] [Stepwise Image Processing] [Contour Detection]   
This submenu is used to detect the contour of an object, which may be used 

in any other process. The input to this option is an edge-thinned image; so 

first the edge thinning is performed on the gray-level image by using the 

[Edge Thinning] submenu. Afterwards, a point inside the interested contour 

is assigned with mouse, then the “Contour Detection” option is selected. The 

algorithm detects the outer contour and paints the pixels on the contour in 

blue color. 

 
[Image Processing] [Nearest Neighbor Algorithm]  This submenu is used to 

detect nearest neighbors of an object point, which may be used in any other 

process. The input to this option is an edge-detected image. First a gray-level 

image is opened and the edge detection is performed using the [Edge 
Detection] submenu. An object point is marked with the cursor on the image. 

Brightness value of the selected image point is written in the text box. If it is an 

object point, the brightness is written as 255, or if it is a background pixel, the 

brightness value is written as 0. When the [Nearest Neighbor Algorithm] 
submenu is selected, this algorithm determines and paints the nearest neighbor 

object pixels in red color. 

 
[Image Processing] [Quality Factor Calculation]  The input to this procedure 

is a binary image. First, a gray-level image is binarized with the using 

[Binarization] submenu or a binary bitmap image is used. When this option is  

selected, the image is segmented into its connected regions and the ellipse-

fitting algorithm is applied. The edge-thinned image of a gray-scale image is 
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shown in the main image box with twenty colored points on it. These are points 

with highest scores in the accumulation space. The one with the yellow color is 

the one with a highest score. Quality factor values of points are written in the 

text window (Figure B.5b).  
 

[Image Processing] [Connectivity]  The input to this algorithm is an edge 

detected or an edge thinned image. Before selecting this submenu, a gray-level 

image is opened and the [Edge Detection] or [Edge Thinning] submenu is 

selected. On the resultant image, an object pixel is assigned with the mouse on 

the image, and [Connectivity] option from the menu is selected. The algorithm 

determines object points, which are connected to the selected object point. 
 

 

 
 

Figure B.5a    [Image Processing] [Quality Factor Calculation] submenu 

of the software interface – initial screen-shot 
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Figure B.5b    [Image Processing] [Quality Factor Calculation] submenu 

of the software interface – final screen-shot 

 

 
 

Figure B.6    [Image Processing] [Histogram] submenu of the software 

interface 
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[Image Processing] [Histogram]  This submenu is used to see the 

histogram and threshold value of a portion of an image. First, a gray-level 

image is opened and a window is drawn around the interested image, or part 

of the image with the cursor. The “Select” button on the left of the image 

window is pressed, and then the [Histogram] submenu is selected from the 

menu. The histogram for the image is drawn on the small image window. 

The threshold is also calculated and shown on the histogram (Figure B.6).  
 

[Camera Calibration]  This menu has two submenus, namely, [Distortion 
Parameters] and [External Camera Calibration]. 
 

[Camera Calibration] [Distortion Parameters] When this option is selected, a 

submenu is opened and the steps that will be used for the determination of the 

distortion parameters of lens are listed. 

 

[Camera Calibration] [Distortion Parameters] [Pattern Define]  After 

drawing a window around the sample pattern in the middle of the calibration 

pattern, the “Select” button is pushed and [Pattern Define] submenu is 

selected from the menu. It calculates external camera parameters of the 

pattern. 

 

[Camera Calibration] [Distortion Parameters] [Area Selection]  After 

drawing a window around the selected calibration area, the “Select” button 

is pushed and [Area Selection] submenu is selected. It calculates image 

coordinates of centroids of spots on the pattern image. 

 

[Camera Calibration] [Distortion Parameters] [Parameter Detection]  
After performing the [Pattern Define] and the [Area Selection], this option 

is selected. Distortion parameters are calculated and written in the text box. 
 

[Camera Calibration] [External Camera Calibration]  This submenu is used 

to determine external camera parameters of a circular target in the image.  

Before using this option, first a gray-level image is opened and [Target 
Recognition] is selected. After the recognition is completed and the resultant 
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image with binary segmented ellipse area is shown in the main image box, 

[External Camera Calibration] submenu is selected. At the end of the process, 

the original gray-level image is with the calculated external parameters written 

in the corner is shown in the main image box.  
 

One can perform the automatic 3-D configuration reconstruction continuously 

until the end of the determination of external parameters, by using the “Process” 

button on the left-hand side. After opening a gray-level image, the “Process” button 

is pressed. At the end of the process, the calculated 6 external parameters are 

shown on the corner of the main image box. In order to exit the process, the 

“Cancel” button is pressed.  
 

[Help]  When this menu is selected, a PDF document that includes explanations for 

methods used in the software and the user manual is viewed. By using links in the 

document, the user may get the necessary information about the program.  

 

 

B3. Description of Software Routines  
 

The main routine of the software is the file “imagemain1409.cpp”. Some 

important subroutines used in this study can be summarized as follows: 

 

• struct coordlong2* connectivity (int** image, int hor, int ver, int* count): This 

routine is called from the main routine of the program, namely 

“imagemain1409”. Inputs to the routine are the image that is processed and 

horizontal and vertical coordinates of the selected point whose connected 

components are sought for. Another input to this routine is the address of an 

integer, on which the number of connected points will be assigned. Outputs of 

the routine are horizontal and vertical coordinates of connected points. 
 

• int** histogram (int **image1, int r, int c, int* finalthreshold): This routine 

calculates the histogram array of the input “image1” and sends it to the 

“localthreshold” routine. The output is the binarized image, elements of which 

are 255 for object points and 0 for the background.  
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• int localthreshold (float *h): It is called from the “histogram” routine and 

calculates the threshold of the processed image using only its histogram. The 

“Minimum Thresholding Method” is used in this routine. It returns the threshold 

value of the image to the “histogram” routine. 
 

• int** edgedetect (int **image): The input to this routine is a binarized image. 

Edge points on the image are detected by a Sobel operator. The output is a 2-D 

array, elements of which are 255 for edge points and 0 for the background. Also 

horizontal and vertical edge gradients of edge points are written to the created 

files ‘Edgefilesx’ and ‘Edgefilesy’. These files are utilized in the ellipse fitting 

step.  
 

• int** thin (int** image): The input to this routine is an edge detected image. The 

edge thinning is performed in this routine by deleting edge pixels according to 

the criteria given in (Appendix A.2). The output is a 2-D array, elements of 

which are 255 for edge points and 0 for the background.  
 

• struct cell* ellipsedetect (int** image, struct coordlong2**, connected_pixels, 

struct cell* index, long edge_number): Inputs to this routine are the image of 

interest, connected components in the image, and the number of edge points. 

An ellipse fitting is performed in this routine using the “Bennett’s Ellipse Fitting 

Approach”. Elements of the accumulation space are stored in files. These files 

can be used in drawing 3-D graphs of the accumulation space. Scores in the 

accumulation space are sorted and local maxima are suppressed. The output of 

the routine is an array containing horizontal coordinates, vertical coordinates 

and scores of first ten points in the accumulation space.  
 

• struct result_observe quality_factor (struct cell maxscore): This routine 

calculates the quality factor and the distance of symmetry for highest ten peaks 

in the accumulation space. It returns the output in an array of structures to the 

target recognition algorithm. 
 

• struct coordinates2** look_up_table (double** position_orientation, 

coordinates2* pattern_centroid, int number_of_colomns, int number_of_rows): 

This routine is used in the internal camera calibration. It calculates undistorted 
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coordinates of control points. Inputs to the routine are configuration parameters 

of the pattern calculated in the main routine, control points on the sample 

pattern, and numbers of control points in the horizontal and vertical directions in 

the calibration area.  
 

• double* distortion_parameters (struct coordinates**actual_corners, struct 

coordinates **corner_points, int number_of_rows, int number_of_colomns ): 

This routine is used in the internal camera calibration. It compares actual 

positions of control points and undistorted coordinates of these control points, 

and builds up an error matrix and some other matrices used in the solution of 

distortion parameters. Distorted coordinates of control points are calculated in 

the main routine. The subroutine for the pseudo inversion solution is called in 

this routine. The output is an array that contains four distortion parameters. 
 

 

 92


	Binder3.pdf
	Binder1.pdf
	abstract.pdf
	abstract.pdf
	PERFORMANCE IMPROVEMENT OF A 3-D CONFIGURATION RECONSTRUCTIO
	A SINGLE CAMERA IMAGE


	OZET.pdf
	ÜÇ BOYUTLU UZAYDA CİSİMLERİN KONUMLARININ TEK KAMERA GÖRÜNTÜ




