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In this thesis, we focus on integration issue of manufacturing and sales functions 

from the perspective of aggregate production planning. The manufacturing function 

and sales function are performed by separate affiliated companies of the same 

business group, which operate as an integrated supplier-buyer system. In particular, 

this study provides theoretical and practical insight into the use of forecast volatility 

measure to better match supply with demand so as to reduce the costs of inventory 

and stock-outs in the manufacturer-buyer relationship under described master 

production-scheduling environment. Nature of forecast modifications provided by 

the buyer lays the foundation for the study. We modify the existing aggregate 

production planning model to accommodate a measure of historical forecast 

evolution. The overall objective of the thesis is to provide management with a 
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forecast evolution-modeling framework to examine performance characteristics of 

the manufacturer-buyer interaction.  

Keywords: martingale model of forecast evolution, master production scheduling, 

safety stock 
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ÖZ 
 
 

ÇARPIMSAL TALEP TAHMİN EVRİMİ MODELİ ALTINDA BİR 
FİRMANIN ÜRETİM-ENVANTER PROBLEMİ İÇİN EMNİYET STOK 

ANALİZİ 
 
 
 

KAYHAN, Mehmet 
 

Yüksek Lisans, Endüstri Mühendisliği Bölümü 
 

Tez Yöneticisi: Prof. Nesim Erkip 
Yardımcı Tez Yöneticisi: Assoc. Prof. Refik Güllü 

 
 

Ağustos 2003, 126 sayfa 
 
 

Bu çalışmada, üretim fonksiyonu ve satış fonksiyonunun toplaşık üretim planlama 

faaliyetleri çerçevesinde entegrasyonu üzerinde durulmuştur. Entegre bir üretici-

müşteri sistemi olarak çalışan üretim ve satış fonksiyonları, aynı grubun farklı 

şirketleri tarafından gerçekleştirilmektedir. Özellikle, bu çalışma, incelenen üretici-

müşteri ilişkisi altında arz ve talebi daha iyi dengeleyerek envanter ve stoksuzluk 

maliyetlerini azaltmak amacıyla, talep tahmin değişkenliği ölçütünün kullanımına 

teorik ve pratik bir kavrayış sunmaktadır. Müşteri tarafından sağlanan talep tahmin 

değişikliklerinin karakteristiği bu çalışmanın temelini oluşturmaktadır. Talep tahmin 

evrimi ölçütünü dahil etmek amacıyla üreticinin mevcut toplaşık üretim planlama 

modeli geliştirilmiştir. Bu çalışmanın genel amacı, üretici-müşteri ilişkisi 

 v



performansının incelenebilmesi için, firmaya talep tahmin evrimi modelleme 

çerçevesi sunmaktır. 

Anahtar Kelimeler: talep tahmin evrimi modeli, toplaşık üretim planlama, emniyet 

stoğu 
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CHAPTER 1 
 
 

INTRODUCTION 
 
 
 

In this thesis, we consider a case to show the importance and benefits of modeling 

sales forecast evolutions, and discuss a specific evolution modeling method that may 

be used in an ERP system to better integrate sales and production divisions. In 

particular, we consider a manufacturer-buyer interaction in a master production-

scheduling environment. The manufacturer and buyer, which are affiliated 

companies of the same business group, operate as an integrated supplier-buyer 

system. Without considering end customers at first, the buyer, which is the 

commercial company of the group, is regarded as the first immediate customer of the 

manufacturer. Note that the buyer is the only customer of the manufacturer with a 

transfer payment scheme. With a total of 8 regional offices and more than 150 

exclusive distributors scattered throughout Turkey, the buyer performs marketing 

and sales activities for products produced by the manufacturer.  

 

The industry in which the group operates requires a high volume and a high variety 

production system with capital-intensive machinery focusing on capacity utilization, 

and shelf life constraints for raw materials and finished products. Producing bakery 

and snacking cereal products, the group operates in the fast moving consumer goods 
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- FMCG sector. Today, the manufacturer is faced with the challenge of producing 

more stock keeping units - SKUs than they have in the past and having to produce 

them with a shorter lead time. To accomplish this task, information visibility and 

interaction with the buyer, distributors and chain markets play the key role.  

 

For the most part, how supply chain is managed lays the foundation of effectiveness, 

efficiency, and hence, success for the entities of the chain. If there is a need for more 

responsive supply chain, as in our case, supply chain decisions should be based on 

data that is as close to end consumers as possible. That way, in FMCG sector 

manufacturers ideally need to base their supply chain decisions on retailer-to-end 

consumer sales data. However, this practice is relatively rare in FMCG sector and 

few manufacturers know as much about end consumers as they would ideally like. In 

our case retailer-to-end consumer sales data, however, is very difficult to capture 

using the existing systems; and at present, buyer-to-distributors/chain markets sales 

data is the most reliable sales data in an individual SKU level. The group’s current 

emphasis is to be able to act on distributor-to-retailer sales data, and accordingly, 

they need to capture the distributor sales data and feed into its ERP system. 

 

Without considering manufacturer’s suppliers and end consumers, the entities that 

comprise the supply chain under consideration are manufacturer, buyer, distributors, 

chain markets and retail stores. The supply chain is schematized by the following 

three figures representing flows of information, finished products and funds, 

respectively. Figure 1 represents flows of sales forecasts and demand information. 

Each week the buyer communicates sales forecasts in weekly level of detail to the 
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manufacturer. The manufacturer, in turn, makes production and inventory decisions 

based on weekly sales forecasts. Throughout the week, the buyer processes daily 

orders placed by distributors and chain markets, and makes shipment decisions. 

Demand at distributors is observed in two different ways. First, retail stores place 

orders periodically at their own convenience. Second, demand can be observed while 

distributors visit retail stores daily, and in turn sell product from the back of the truck 

to satisfy the then-occurring demand. The latter can be defined as spot sales. 

 
 
 
 

 

 

 

 

MANUFACTURER 

RETAIL STORES

spot sales 

periodical orders 

DISTRIBUTORS

BUYER

daily orders

daily orders
weekly sales forecasts

CHAIN MARKETS

Figure 1 A Schematic Flow of Forecast and Demand Information 
 
 
 
Figure 2 schematizes physical flow of finished products. Finished products are 

distributed directly from the manufacturer’s plants to distributors and chain markets. 

The distributors visit retail stores daily and deliver customer orders. The group 

operates three main production facilities and has one central warehouse. Production 

facilities deliver their finished products to a central warehouse, which is located at 

one of the production facilities and managed jointly by the buyer and manufacturer. 

Demands are observed at the central warehouse and from here customer orders are 

shipped directly to distributors and chain markets. 
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Figure 2 A Schematic Flow of Finished Products 
 
 
 

Figure 3 represents flow of funds. Financial flows from one entity to another are bi-

directional. For example, distributors and chain markets pay for the amount they 

demand while the buyer gives sales support in the form of incentives etc. There are 

four classes of sales activity throughout the supply chain under consideration: 

manufacturer-to-buyer, buyer-to-distributor/chain market, distributor-to-retailer, and 

retailer-to-end consumer, successively. Manufacturer-to-buyer sale is realized upon 

manufacturer-to-distributor/chain market delivery, or equivalently buyer-to-

distributor/chain market sale is realized. Data on distributor-to-retailer sales and 

distributor inventory levels in an individual SKU level are not much reliable. At 

present, buyer-to-distributor/chain market sales data in an individual SKU level is 

used in the manufacturer’s decisions.  

 
 
 

Distributor-to-Retailer Sale   
 

 

 

 

MANUFACTURER BUYER

DISTRIBUTORS

CHAIN MARKETS

 
Buyer-to-Distributor & Chain Market Sale 

 /  sales support 

Manufacturer-to-Buyer Sale 
/  transfer payment 
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Figure 3 A Schematic Flow of Funds 
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Control of inventory is a problem common to all supply chains. The control of 

inventory directly relates to control of the above-mentioned flows throughout the 

supply chain. Two main types of control can be applied to manage the supply chain: 

centralized and decentralized control. Centralized control refers to the cases where 

inventory at a particular point in the supply chain is controlled while considering the 

inventory levels in the supply chain as a whole. As a typical example, echelon 

inventory policy considers the total inventory upstream. Decentralized supply chain, 

on the other hand, controls the inventory at an individual entity of the chain by 

considering only the local information at that entity. As an example, in an MRP 

environment, the order requirements are based on the MRP explosion by considering 

the forecasts as exact. Lee and Billington (1993) states that often organizational 

barriers between the entities exist, and information flows can be restricted such that 

complete centralized control of inventory in a supply chain may not be feasible or 

desirable. Hence, it can be said that an important requirement for implementing a 

centralized inventory policy is the ability to access information on inventory levels at 

other entities in the supply chain. In the view of this, it can be said that the supply 

chain under consideration has a decentralized inventory control. In fact, company 

structures and relationships between various business functions are among the first 

challenges to attain the supply chain success. Corporate structure in our case had 

been traditional and function-focused for almost forty years before the group’s 

production inventory management system (called PIMS as well) was put into 

implementation. In this function-focused structure, managing the supply chain has 

been a multi-function activity in which each one of the buyer and manufacturer has 
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considered its own local objectives rather than chain-wide emphasis within the 

jurisdiction of the group. 

 

After the launchment of PIMS now, the manufacturer and buyer try to operate as an 

integrated supplier-buyer system. Therefore, many of the challenges facing the 

group’s supply chain today relate to integration issues between various systems. In 

this environment, PIMS through its framework delivers integration tools and 

interfaces to the manufacturer and buyer supporting pursuits of bettering 

relationships between manufacturing and sales functions to respond to customer 

demands more efficiently. Therefore, PIMS addresses the challenge of integrating 

the buyer and manufacturer’s activities through a set of corporate rules and software 

modules, supported with a PIMS database. 

 

The work of the thesis is motivated by an in-house developed ERP project 

(production inventory management system – PIMS project), which deals with the 

development and implementation of a system for production planning and inventory 

management for the manufacturer-buyer setting considered. Being the main part of 

that project, master production scheduling - MPS problem constitutes the framework 

of the research in the thesis. MPS can be thought as a vehicle for coordinating the 

achievement of manufacturer and buyer goals. Hence the operations at MPS level 

should rely on two-way communications and hence information flows between the 

manufacturer and buyer in order to prove the success. In our framework, the main 

information flows between the entities of the chain are weekly sales forecasts 

generated by the buyer for each period of 12-week forecast horizon and daily orders 
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placed by distributors and chain markets. Each week, the buyer reviews and updates 

weekly sales forecasts to more accurately predict amount of orders to be placed 

during a future week. And in turn, the manufacturer makes operational and tactical 

decisions (production decisions, determination of safety stock levels, hiring and 

layoff decisions, capacity investment decisions) based on these forecasts.  

 

The research in this thesis consists of four main parts. The first part includes a 

description of the industry background and organizational environment for the 

manufacturer-buyer setting considered. An overview of forecasting activities and 

description of production planning and inventory management operations involved in 

managing the master production scheduling are presented. Corporate policies 

influencing activities involved in the master scheduling and some observations 

concerning forecasting behavior of the buyer and safety stock level determination are 

also discussed. In the second part of the thesis, we first give an in-depth theoretical 

analysis of forecast evolution modeling with a particular attention to martingale 

model of forecast evolution methodology. The research in the theoretical part of the 

thesis is motivated by the study in Heath and Jackson (1994). To have a better focus, 

we employ a particular set of products and environment to illustrate the application 

of forecast evolution modeling. By using historical forecasts and demands, we model 

forecast modification behavior of the buyer as a multiplicative process. To get an 

insight of the forecast modification behavior and to give an empirical support for the 

forecast evolution assumptions, we perform an empirical investigation on the data. 

Also, several investigations are taken to identify and solve the problems associated 

with the data. At the end, variance-covariance matrix of forecast updates is estimated 
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from the historical forecast and demand data. The third part is related with the use of 

forecast evolution modeling and hence the estimated variance-covariance matrix. It 

considers the integration of forecast evolution modeling into the manufacturer’s 

master production scheduling problem to determine target safety stock levels. We 

consider a variant of classical ways of determining safety stock levels (based only on 

forecast error variability or on demand variability). The proposed method captures 

the variability through the standard deviation of demand, which is calculated from 

the variability of forecast updates. This method is based on the fact that uncertainty 

in forecasts resolves in each period of the 12-week planning horizon. More precisely, 

using the proposed method of determining target safety stock levels we propose two 

other master production-scheduling models. One is just the same as the existing MPS 

model except the way of determining target safety stock levels. They are calculated 

exogenously based on demand variability that is captured by using the estimated 

variance-covariance matrix of forecast updates. On the other hand, the second model 

considers endogenous determination of target safety stock levels depending on 

demand variability and also correlations of forecast updates across products and time 

periods. In the fourth part of the thesis, we give a detailed description of the master 

scheduling models and conduct computational study to discuss performances of the 

MPS models in terms of safety inventory levels and delivery performance. As a 

conclusion we state that the second model, which considers demand and forecast 

correlations in determining target safety stock levels, provide better performance 

results. 
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The objectives of the research described in the thesis are to give the manufacturer an 

insight into the applicability of the forecast evolution concept and a specific 

evolution modeling methodology; and to integrate the forecast evolution modeling 

into manufacturer’s master production-scheduling model, more precisely into safety 

stock determination method, to support pursuits of establishing better manufacturer-

buyer relationships. In this thesis we make the following contributions: (1) first of 

all, we describe an implementation of martingale model of forecast evolution 

methodology in a real-life MPS problem; (2) we employ forecast evolution modeling 

to determine target safety stock levels. Using the fact of impact on safety stock levels 

of forecast volatility and correlations between forecast updates across products and 

time periods, we integrate forecast evolution modeling into manufacturer’s MPS 

model to better establish target safety stock levels for a multi-product system. This 

method delivers a sort of allocative efficiency while allocating production time-hour 

capacity between products. 

  

The thesis is structured as follows: In Chapter 2, we describe the organizational 

environment, buyer’s forecasting activities and manufacturer’s production planning 

operations that provide underpinning activities in managing the weekly master 

production planning. In addition, corporate policies influencing activities involved in 

master scheduling are presented. In Chapter 3, literature survey concerning the 

context of the research is presented. In Chapter 4 we present a methodology for 

forecast evolution modeling with special reference to Martingale Model of Forecast 

Evolution (MMFE) technique. In this chapter, empirical support for the data is also 

presented. Using the multiplicative form of the MMFE technique, application and 

 9



integration of forecast evolution modeling into linear-programming models to 

establish target safety stock levels are discussed. In Chapter 5, details of the MPS 

models are given. Experimental runs are performed to compare the models’ 

performances. Finally, Chapter 6 contains a summary of conclusions.  
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CHAPTER 2 
 
 

INDUSTRY BACKGROUND 
 
 
 

2.1. An Overview of Organizational Environment 
 
 
 
In the thesis we consider manufacturer-buyer setting and study their interaction from 

the perspective of master production scheduling. The manufacturer and buyer are 

affiliated companies of the same business group. The manufacturer produces and 

inventories a portfolio of SKUs based on sales forecasts provided by the buyer, and 

in turn, the buyer performs marketing and sales activities for the products. 

 

The manufacturer is one of the largest and oldest bakery and snacking cereal 

products producers in Turkey, holding a leading position in the industry today. The 

buyer deals with approximately 150 distributors scattered throughout Turkey and 

works directly with large chain markets. The group’s assortment includes over more 

than hundred items of bakery and snacking products and they have several 

established brands. As the competition on the market for bakery products increases, 

the group constantly enlarges the assortment launching new products and supports 

the new brands with advertising and promotion. In near future the group plans to 

optimize the assortment and launch new products. Group’s brands have the high 
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level of consumer awareness and consumption. Most of the group’s brands are 

positioned in the middle-price segment. The group’s products are also exported to 

various countries. 

 

The manufacturer is a cost-conscious company, which emphasizes cost reduction for 

manufacturing and inventory. The buyer, on the other hand, is sales-focused. Today, 

marketing expenditure and transportation costs account for significant share in the 

buyer’s costs. The manufacturer makes expenditures on production modernization 

and new products development. In general terms, the industry in which the group 

operates is a high-volume, low-value margin industry where many of the 

manufacturers find it difficult to survive. Threshold level for the entry in this 

industry is relatively low. For success, however, it is very high, and success depends 

on operational efficiencies and effectiveness throughout the supply chain. 

 

Without considering manufacturer’s suppliers and end consumers, the players that 

comprise the supply chain under consideration are manufacturer, buyer, distributors, 

chain markets, and retail stores. The structures of the supply chain and distribution 

network are shown in Figure 4. It indicates that the distribution structure is different 

from the chain structure. Distribution strategy and network are established to deliver 

directly to distributors and chain markets from the manufacturer’s production 

facilities. However, the first immediate customer of the manufacturer is the buyer, 

not distributors or chain markets. In general, regarding the nature of the supply chain, 

in which the manufacturer and buyer are the main players, it can be said that it has a 

decentralized inventory control. Inventory at the production facilities and inventory 
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at the distributors are the main points of finished products inventory pools within the 

supply chain.  

 
 
 
 
 
 
 

 
 
 
 

 

MANUFACTURER 

DISTRIBUTORS

CHAIN MARKETS
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daily orders

daily orders
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distribution 
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Figure 4 Distribution and Chain Structure 
 
 
 
Amongst the largest national producers in its sector, the manufacturer produces, 

packages and inventories more than hundred SKUs at three group-owned production 

facilities. Finished products are then purchased by the buyer and shipped from the 

plants to over 150 distributors and a lot of chain markets throughout the country. 

They are further delivered from the distributors to over 190,000 retail stores. Primary 

distribution, referred to as manufacturer-to-distributors/chain markets delivery, is 

owned and governed by the buyer, so it has significant control over the distributors 

and their associated activities/policies regarding inventory management. The primary 

concern for transportation of products to distributors and chain markets is to be able 

to load the trucks with full truckload capacity since transportation costs account for 

the major part of the buyer’s costs. In addition, significant logistical costs are 

associated with loading and delivery of multiple orders per truck. 
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The demarcation of sales territory results in eight regions, each of which is 

responsible for retail sales organization and activities of distributors and management 

of chain market accounts. Accounts in each region are comprised mainly of many 

individual exclusive distributors and chain markets. The buyer operates two major 

delivery networks to service end consumers. Main channel of distribution is through 

distributors, sales of which dominate the current sales mix (almost 82%) since the 

market is dominated by individual retail stores. In this channel, the buyer chooses to 

sell indirectly to end consumers through distributors to which products are channeled 

directly from the plants. The distributors are exclusive distributors in the sense that 

they only sell the company’s products, and no other competing products. They have 

dedicated sales force, warehouse and vehicle fleet to service the distribution. The 

buyer establishes sales and distribution standards and manages sales of the 

distributors through its distributor supervisors. However, product distribution 

strategy induced by the existing performance evaluation and incentive system is not 

effective compared to that of the major competitor. Consequently, distributors give 

insufficient emphasis on distribution and merchandising, the two keys to success in 

retail stores, such that little compliance with service frequency and numeric 

distribution coverage for its territory exists.  

 

Accounting for nearly 15% of the volume, the other major distribution channel is to 

sell direct to end consumers through chain markets, to which products are channeled 

directly from the plants. For this channel, merchandising strategies related with 

packaging, display, pricing, special offers etc. are becoming more important and 

intense. This channel will create significant volume opportunities in the future, but 
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numeric distribution coverage is still the key to effectively service small retail stores 

in the distributor channel.  

 

Distributors and chain markets use computer ordering system to communicate with 

order processing center in the central warehouse. The buyer’s shipment 

representative manages the order fulfillment process. (S)he receives and monitors the 

product availability data contained in the database. The shipments to distributors and 

chain markets are based on the forecasts and target safety stock levels. Order lead 

time is short such that orders from distributors and chain markets are usually placed 

with one or two day lead time. Together with the fact of short order lead time, an 

increasing number of SKUs with short life cycle and scattered distributor locations 

underline the importance of accurate forecasts for the manufacturer since sales 

forecasts drive manufacturer’s production planning. 

 

The competitive strategy of the organization is that products are processed and 

delivered into stock according to sales forecast-driven production planning, and in 

turn customer orders are filled from the finished goods inventory. Production 

planning is based on forecasted manufacturer-to-buyer sales data provided by the 

buyer, whereas order fulfillment processes respond to orders from distributors and 

chain markets. Actual sales data of distributors and chain markets are not being 

pushed upstream to the manufacturer, and in turn operations at the manufacturer 

level do not avoid the bullwhip effect. The manufacturer is in the phase of transition 

from production focus to customer focus. In the past, production-focus has led the 

manufacturer to emphasize manufacturing-cost reduction instead of emphasis on 
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filling periodical customer orders. Being affected by this situation, production-

planning environment is structured by the organization's strategic response both to 

the interests of the buyer and to the actions of competitors. 

 

After examining the organizational environment and corporate policies influencing 

production planning activities, forecasting and aggregate production planning 

activities involved in managing the master scheduling are described in the following 

sections.  

 
 
 
2. 2. An Overview of Forecasting Activities 
 
 
 
While the industry is becoming more supply chain driven and hence more 

competitive, efficacy of forecasting activities and integration of forecasting process 

with production planning represent a fundamental need for the group’s success. 

Therefore, an understanding of the forecasting activities and environment is essential 

to the first stage of the manufacturer’s production planning operations – determining 

master production schedule. 

 

The buyer is the solely responsible of the forecasting activities and hence manages 

the forecasting system. They determine sales forecasts and communicate to the 

manufacturer at an individual SKU level. The forecast horizon, the length of the 

horizon for which nontrivial forecasts are available, comprises 3-month period. Sales 

forecasts are estimates of the quantity distributors and chain markets are going to 
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order from the buyer. In fact, the structure of the forecast horizon is two-fold. The 

buyer considers 3-month forecast horizon and determines monthly sales forecasts 

accordingly when carrying out the main forecasting activities. As a consequence of 

the existing performance evaluation and incentive alignment system, the buyer 

strives to achieve monthly target of sales volume rather than weekly target. Whereas, 

the manufacturer considers 12-week planning horizon and they require weekly sales 

forecasts over the 12-week forecast horizon. The existing performance evaluation 

system requires the manufacturer to satisfy weekly customer orders from the finished 

goods inventory. Another notable characteristic of the environment is that the 

manufacturer bears the full cost to guarantee reliable supply to market by holding 

safety inventory although the buyer is the solely responsible of the quality of sales 

forecasts. Therefore, the way of handling safety inventory at this stage implies that a 

complete decentralized inventory control fails in this case. In the view of this, it can 

be said that the degree of centralization for inventory control at this stage is 

somewhere between a complete centralized control and a complete decentralized 

control. 

 

This discrepancy in horizons of the buyer and manufacturer results in two-stage 

forecasting process. The first stage, which is the main stage, comprises monthly 

operations by which 3-month rolling sales forecasts are developed. Figure 5 

illustrates the 3-month forecast horizon. The arrow labeled as STAGE-1 represents the 

decision point at which forecasting activities involved with the first stage of 

forecasting process are performed. At the end of month-0, monthly forecasts for the 

third month of the forecast horizon are generated for the first time, and monthly 
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forecasts for the first and second months are updated on condition that percentage of 

update must be within the pre-specified percentage revision limits. An intermediate 

stage occurring between the first and second stages of the forecasting process 

transforms monthly sales forecasts into weekly forecasts by using an allocation 

scheme. The allocation scheme considers the fact that if a price change is going to 

happen in the forecast horizon then sales pattern before and after the change is 

affected since distributors and chain markets decide on how much to buy today by 

taking into account any future price-advantage. The intermediate stage plays the 

main part in trying to eliminate the effect of that discrepancy between the buyer and 

manufacturer’s horizons. However, the allocation scheme may not always reflect the 

realities of demand pattern over the weeks of month. The second stage of the 

forecasting process includes weekly operations by which weekly forecasts are 

repeatedly revised and updated by the buyer. Figure 5 illustrates the 12-week forecast 

horizon. The arrow labeled as STAGE-2 denotes the time at which weekly forecasts 

are made. At the beginning of week-0, weekly forecasts for each period of the 12-

week forecast horizon are generated and updated as long as percentage of update is 

within the pre-specified percentage revision limits. The revision limits may be 

violated in the case of reasonable unexpected demand conditions, which account for 

the tail probabilities of demand and forecast distributions.  
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Figure 5 3-month and 12-week forecast horizons 
 
 
 
In the first stage of the forecasting process, both analytical methods and judgment are 

considered in order to generate monthly sales forecasts. Statistical forecasts from 

analytical methods are based on historical three-year buyer-to-distributor/chain 

markets sales data in monthly level of detail captured in the PIMS database. The 

buyer generates statistical forecasts. And, judgment is incorporated during 

judgmental forecasting process, in which regional offices and distributor supervisors 

determine their judgmental sales forecasts in monthly level of detail for chain 

markets and distributors, respectively. 

 

An extranet system, called distributor management information system, has been set 

up, which is used to process judgmental sales forecasts and to share sales activity 

information with regional offices and distributors. Before judgmental forecasting 

process, the buyer communicates sales activity information to regional offices and 

distributors. Sales activity information consists of planned price changes, trade 

promotions, product advertisements, and products to be produced over the planning 
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horizon. Beside sales activity information, distributor supervisors consider the 

following factors to determine their monthly judgmental forecasts:  

� Regional and seasonal factors 

� Historical sales data 

� Sales support activities performed by the buyer (ads, promotion, incentive etc.)  

� Sales support activities performed by distributor (sales personnel, vehicles etc.) 

� Judgmental estimates of sales personnel 

� Inventory status 

� Rival activities within its territory 

� Information about new products 

 

Judgmental forecasts generated by regional managers for chain markets and 

distributor supervisors for distributors are fed into distributor management 

information system. Regional managers monitor the judgmental forecasts of 

distributor supervisors to revise and approve them. That is, this practice provides 

regional managers with managerial intervention with the claim of improving the 

quality of forecasts generated and of incorporating expert opinion. At the end of the 

judgmental forecasting process, the buyer consolidates all judgmental forecasts 

generated into one judgmental forecast figure for each SKU.  

 

Using statistical forecasts and consolidated judgmental forecast for each SKU, 

forecast intervals for each month of the forecast horizon are constructed. In the view 

of forecast intervals and budgeted sales the buyer makes three-month ahead forecasts 

for the first time and updates one-month ahead and two-month ahead forecasts. 
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The buyer allocates these monthly final forecasts to sales regions based on the pre-

specified allocation percentages. Each regional office, in turn, allocates its own 

portion of monthly forecast to distributors operating within its territory. Allocation 

percentages are determined by considering historical regional sales and judgmental 

forecasts. Key account managers at regional offices, who manage the chain market 

channel within their sales territories, determine aggregate forecast amount to be 

allocated to the chain markets channel as a whole in their territories. Allocated 

monthly forecasts by region and by distributor are then treated as respective sales 

quotas for regional offices and distributors, on which performance evaluation and 

incentive alignment systems are based. 

 

In the second stage of the forecasting process, weekly sales forecasts generated in an 

individual SKU level for the 12-week planning horizon are shared with the 

manufacturer. The manufacturer reviews the weekly sales forecasts and performs 

rough-cut capacity planning to determine whether they have sufficient production 

line capacity, man-hour capacity, raw material availability etc. to respond to these 

weekly forecasts. Possible changes in the forecasts are negotiated with the buyer to 

attain their feasibility. As a result of this interaction, actually, the nature of forecasts 

might change, and in turn forecasts just become respective production orders. The 

output of the forecasting process defines the expected weekly sales and it is used to 

support weekly production planning decisions of the manufacturer. The manufacturer 

takes weekly feasible forecasts as respective production orders for the current 

planning cycle, on which weekly aggregate production planning - master production 
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scheduling is based. The master production scheduling model requires weekly sales 

forecasts and inventory safety level estimates for product items. The most important 

planning decisions are the weekly aggregate production plan, scheduling of raw 

materials acquisitions, planning of inventory and capacity, and hiring/layoff 

decisions.  

 

The manufacturer develops an operational plan every week to determine production 

quantities for its products. Operational level day-to-day operations are quite critical 

for the continuity of daily production processes. These are operations such as 

inventory control, receiving and shipping, scheduling, and allocating workers to jobs. 

They are based on the master production schedule, a weekly production plan 

determining general characteristics of the production, and the other decisions made 

by the top level. Ideally, production planning system helps the manufacturer to 

design and improve the coordination and arrangement of processes, and helps devise 

logistics so that materials flow from suppliers, through processing plants, and to 

distributors and finally retail stores. Given all known data, the manufacturer tries to 

answer the question of what is the minimum cost solution that determines 

production, inventory and workforce levels to meet weekly forecast requirements.  

 
 
 
2. 3. Production Inventory Management System – PIMS and 

Master Production Scheduling Problem 

 
 
An increasing number of companies require some sort of enterprise resource 

planning - ERP system to coordinate its operations and mathematical programming 
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models to support fact-based decision-making. Such models assist them in making 

better decisions about capacity and production planning, inventory management, raw 

material acquisition etc. Similarly, the management of the group had been concerned 

for some time about the lack of a formal integrated framework for production 

planning that facilitates coordination and collaboration among different business 

functions. To mitigate this problem, the group has launched an in-house developed 

enterprise resource planning system, called Production Inventory Management 

System – PIMS which provides a sort of model-based production inventory 

management system. The aim of PIMS, therefore, is to develop an integrated 

planning framework for the manufacturer-buyer setting that can be implemented with 

in-house developed systems and modules. In this section, we give a general 

description of manufacturer's planning process with particular attention to its master 

production scheduling (MPS) problem from the perspective of PIMS. Some details 

of the MPS model are given in Chapter 5. 

 

PIMS helps the manufacturer to manage its operational activities and support some 

tactical decisions to satisfy orders from the inventory with the most economical 

commitment of all production means and capacity (production line capacity, 

manpower etc.). Though further development efforts continue, PIMS is tailored to 

solve company-specific problems for particular functional areas of business.  

 

PIMS is basically compiled in series of modules, each covering particular functional 

areas of the business such as sales planning, production planning and inventory 

management. Modules are either stand-alone or combined with other modules to give 
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an integrated system, and they are usually able to operate on IBM AS/400 systems. 

Production planning function is managed mainly through Production Planning 

Module - PPM and through other modules of PIMS, which are custom-tools to 

complement that function. PPM assists the manufacturer to make its production 

operation more efficient by providing tools for production control over aggregate 

production plans, shop floor schedules, and manpower resources.  It can be said that 

PIMS has facilitated the transition from the purely decentralized production planning 

process to a more centralized process guided by PPM. 

 

Production planning module - PPM is comprised mainly of three multi-period, large-

scale mathematical programming models (master production scheduling model, shop 

floor scheduling model and manpower assignment model) to direct operational 

weekly production, inventory, raw material acquisition, and workforce decisions. 

PPM is employed weekly for operational planning and for dealing with tactical 

issues like capacity investment / reassignment, hiring - firing decisions, and overtime 

/ undertime decisions.  

 

Master production scheduling - MPS model of PPM is to define production 

requirements in weekly time buckets to meet forecasted demands over the 12-week 

planning horizon. Being the highest level of operational production planning in the 

integrated structure, the MPS model focuses on individual products and deals with 

weekly production, inventory levels and workforce usage under the constraints of the 

manufacturing operation. Once a master production schedule is developed, it 

becomes the master plan and ultimately drives every activity in the manufacturer - 
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from timely acquisition of raw materials to customer delivery. Master production 

scheduling model is formulated as a linear programming model and is implemented 

via a 12-week rolling planning horizon. The MPS problem was modeled into a 

GAMS code, and is solved using Cplex solver on the GAMS server. 

 

The overall objective of MPS is to allocate all the manufacturing resources in an 

efficient manner while satisfying the forecasted demands over the planning horizon. 

The objective function of MPS model calls for minimizing combined cost of: 

� underachievement of beginning finished products inventory requirements, which 

are needed to cover weekly forecasts provided by the buyer 

� underachievement of target safety stock level requirements, which are needed to 

cover unexpected sales 

� holding inventory per period 

� and overtime man-hour usage.  

 

Unsatisfied portion of weekly forecast and unsatisfied portion of target safety stock 

level for each SKU at each period of the 12-week planning horizon represent the 

respective shortfalls in the desired inventory levels for that SKU at that period. The 

objective function is the weighted sum of the above four different objectives. 

Weights are used to give them some sort of priority while determining the optimal 

solution. In the view of this, the role of the objective function, therefore, can be 

described as priority-setter, and hence, the optimal value of the objective function is 

of no concern to our research in a sense. The highest-priority objective is to minimize 

the costs associated with shortfalls in weekly forecast requirements and is therefore 
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dealt with first. To minimize the shortfalls in target safety stock levels is the next 

highest-priority objective.  

 

The MPS model is based on the policy of preparing, at the beginning of each period 

of the 12-week planning horizon, beginning finished goods inventory as much as that 

period’s forecast provided by the buyer plus target safety stock level determined by 

the manufacturer for each product. This policy ensures that the manufacturer meets 

forecasted demand and target safety stock level for all items in its entirety as much as 

possible.  

 

At the manufacturer’s production facility considered for computational study, there 

are eight production lines. There is a set of bakery products associated with each 

production line, which are bounded by the technological features/capabilities of the 

line. All the production lines are capable of producing multiple products. There is 

finite production capacity and finite storage capacity for processed products. For 

each period of the 12-week planning horizon, the major production and inventory 

related decision variables associated with master production scheduling planning 

include:  

� production quantities for each SKU at each period of the 12-week planning  

 horizon 

� projected on-hand inventory levels for each SKU at the beginning of each    

 period of the 12-week planning horizon 

� shortfall in weekly forecast requirement for each product at each period of the  

 12-week planning horizon 
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� shortfall in target safety stock level for each product at each period of the 12- 

 week planning horizon 

� and other manpower and production line related decision variables 

 

Production time-hours usage and man-hours usage are constrained by respective 

resource availabilities. Production line constraint ensures that each week’s 

production does not exceed the limit set by the total number of available production 

hours. Constraints on man-hours availability ensure that regular and overtime man-

hours at each period do not exceed the allowable amounts.  

 

Master scheduling model makes production decisions for each SKU at a weekly level 

of detail, and employs the standard production, inventory, and demand recursion. 

This inventory balance equation determines the beginning inventory status of each 

SKU for each period of the 12-week planning horizon from the beginning inventory 

status of the previous period plus production during the previous period minus 

forecasted demand for the previous period.  

 

Figure 6 shows MPS plans made at two successive periods. The arrows denote the 

time at which MPS plan is made for the next 12-week planning period. At the 

beginning of period s, the buyer provides the manufacturer with weekly forecasts for 

each period of the 12-week planning horizon starting period s + 1. Based on these 

forecasts, the manufacturer employs the production planning module - PPM and 

hence the master production scheduling - MPS model to maintain a balance between 

the anticipated supply plan for products and future demands. The resulting master 

 27



schedule drives the material and capacity planning, and it becomes the basis for the 

subsequent manufacturing operations. However, only the first period’s production 

requirements are implemented. Lead-time for raw material acquisitions is required 

therefore the resulting master plan is frozen one week ahead. As the time for 

production, period s + 1, approaches, labor and material are committed. Production is 

made one period before the realization of demand. Therefore, amount corresponding 

to demand of period s + 2 is produced during period s + 1 and is made available in 

finished products inventory at the beginning of period s + 2. And in turn, orders 

placed by distributors and chain markets during period s + 2 are filled from that 

beginning inventory. This policy reflects realistic lead-time constraints in terms of 

raw material acquisitions, production and competitive factors.  

 
 
 
 

s s + 1 s + 2 s + 3 s + 4  s + 12 s + 13 
 

 

 

 

 

s s + 1 s + 2 s + 3 s + 4  s + 12 s + 13 
 

 

 MPS Plan 

MPS Plan 

12-WEEK PLANNING HORIZON

12-WEEK PLANNING HORIZON 

Figure 6 Master production scheduling cycle 
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Similarly, at the beginning of period s + 1, the manufacturer has a forecast vector 

containing forecasts for each period of the 12-week planning horizon, and in turn, 

master production plan for the next 12-week planning horizon covering week s + 2 

and beyond is made. Production of period s + 2 is prepared for demand of week s + 3 

and hence put into finished products inventory ready for shipment at the beginning of 

week s + 3. Orders placed by distributors and chain markets during week s + 3 are 

filled from finished products inventory.  

 
 
 
2. 4. Observations and Discussion 
 
 
 
In this section we identify and discuss some of current operating problems directly 

related with the research of the thesis, the causes of the problems and the areas that 

improved master scheduling can address. 

 

The first observation is concerned with the forecasting behavior of the buyer. The 

buyer updates weekly forecasts for the next 12-week planning horizon at the 

beginning of each week. They, however, focus on updating only those weekly 

forecasts for the first 4-5 weeks of the 12-week planning horizon. Delayed forecast 

updates lead to significant forecast changes as the time for order execution 

approaches. This practice leads to inefficiencies and an extra burden to the 

production system in the sense that decisions concerning periods beyond the first 4-5 

weeks of the planning horizon do rely on significantly inaccurate, misleading 

forecasts. Consequently, this practice cause shortsighted decisions concerning 
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workforce resources, raw material acquisitions etc., which result in extra costs, extra 

hours and unsatisfied customer orders. 

 

Another notable observation concerning the forecasting behavior is that there is a 

considerable influence of budgeted sales and monthly forecasts on the operational 

weekly forecasts, which drive the master planning process. Budgeted sales are 

generated to create business plan for the next financial year and to create budget plan 

for marketing etc. Coupled with the influence of the existing performance 

measurement and incentive alignment system, operational forecasts, therefore, have 

being adjusted to attain the respective sales quotas of the buyer and distributors. As 

mentioned before, the starting point of the forecasting is monthly forecasts over the 

3-month forecast horizon, which are mainly based on judgment and experience, and 

therefore, may be manipulated to achieve performance targets. Because allocated 

monthly forecasts by region and by distributor are treated as sales quotas, on which 

performance evaluation and incentive alignment system are based. Consequently, the 

primary concern of distributors becomes achievement of these monthly sales quotas 

rather than product focus, service frequency and numeric distribution coverage. This 

leads to insufficient emphasis on potential market volume of some products. 

Distributors under this incentive system focus only on sales of some products 

overmuch, especially those being more likely to be sold, and are not concerned with 

the sales of the remaining. This results in operational inefficiencies in some cases. 

Integrating the evolution of operational weekly forecasts into master scheduling can 

mitigate the influence on production planning of this practice given the existing 

performance measurement system. 
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Production quantities requested by the MPS are based on manufacturing economics 

and forecasts as well as target safety stock levels. To implement the MPS in a rolling 

horizon context, the one-week freeze period is determined. However, forecast errors 

are so dramatic that it is difficult to maintain the stability of the resulting master 

production schedules from one period to the next. Hence amounts left over in stock 

or rapidly depleting stock may cause changes to the MPS. In addition, shortfalls in 

the beginning inventory for each product are being satisfied from the running week’s 

production, which is prepared for the next week’s customer demand. On the other 

hand, due to revisions made to the MPS plan, up and downs are observed for the first 

period of the planning horizon. This fact impacts the efficacy of the freeze period 

because changes have been made to master plan within the freeze period. To design 

aggregate plans that follow closely the up and downs of actual demands is not 

practical because it is usually too costly to vary output levels significantly from one 

period to the next. Clearly, this practice unbalances and overburdens the production 

system and also leads to shortage in the following weeks’ beginning inventory or to 

extra working hours and hence extra costs. 

 

Being designed to protect from demand variations when actual sales are different 

from predicted sales, target safety stock levels for the existing master planning model 

have being calculated using the historical differences between one-week ahead 

forecasts provided by the buyer and actual shipments to distributors and chain 

markets. The forecasts and orders are adjusted along the way as actual demand 

fluctuated from the forecast. In any week, the buyer can ship any amount of a 

 31



product up to the sum of its one-week ahead forecast and target safety stock level. 

Therefore, the buyer can manipulate the level of target safety stock by shipping less 

or more than its one-week ahead forecast to achieve its monthly sales quota. 

Employing the proposed method of establishing target safety stock levels can 

mitigate this drawback. The proposed method calculates target level by considering 

estimated variances and covariance of historical forecast updates made by the buyer. 

Forecast evolution modeling represents the underlying forecasting behavior of the 

buyer better than the simple forecast error distribution. Furthermore, integrating the 

multiplicative form of martingale model of forecast evolution with safety stock 

calculation provides more responsive safety stock method in the sense that it adjusts 

the target safety stock level each time a new forecast vector is available to the 

manufacturer.     

 

Note that this thesis study does not help in generating better forecasts. However, it 

takes into account the evolution of forecasts and uses that information. Hence, we 

expect to have even better results when better forecasting practices are applied. By 

characterizing the behavior of forecasting system and by adapting it to the existing 

planning activities, the manufacturer is able to react more efficiently to forecast 

changes and not have to rely on costly reactions to late-changing forecasts. This 

means that by capturing the possible evolution of forecasts, the company could 

obtain greater accuracy at an earlier point in time. The effort here is not to attempt 

improving accuracy of the forecasts. Hence, forecasts provided by the existing 

forecasting mechanism are considered as outcomes of the underlying stochastic 

process.  
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CHAPTER 3 
 
 

LITERATURE SURVEY 
 
 
 

Every business has integrated systems of facilities, equipment, processes, people and 

information to get the finished products to the customer. Challenge is to design, 

optimize, and redesign these systems. Lee and Billington (1992) provides a list of 

common pitfalls in current supply chain management practices and some 

corresponding opportunities. They state that as the complexity of logistics network 

increases organizations could more likely gain operational efficiencies by focusing 

on inventory. To overcome this challenge the correct use of performance 

measurement system for the supply chains represents a fundamental need for the 

organization’s success. 

 

FMCG supply chains are complex and dynamic in the sense that they involve 

multiple players, they are characterized by constantly evolving relationships between 

players, they support a huge number of stock keeping units, and they use a mixture of 

manufacturing techniques like make-to-stock and make-to-order to fulfill orders. The 

current challenge facing organizations is the ability to have effective integration and 

coordination across the supply chain. It is critical therefore to focus on the 

performance of the supply chain as an integrated whole, rather than as a collection of 

 33



separate processes or companies. Hence the question of whether the existing 

performance evaluation system is compatible with the supply chain management 

initiatives should be explored. Lee and Whang (1999) studies performance 

measurement and incentive alignment for decentralized multi-echelon supply chains 

where each entity maximizing its local objectives. They define a performance 

measurement scheme as a set of corporate rules such as accounting methods, transfer 

pricing schemes, performance metrics and various operational constraints. 

Furthermore, they state that such a set of corporate rules is one way in order to 

mitigate the problem of incentive misalignment in a decentralized supply chain. In 

our case, PIMS is governed by a set of corporate rules, may be viewed as a contract, 

expressing relationships between the manufacturer and buyer. 

 

Some studies in supply chain literature indicate that buyer-manufacturer relationships 

are becoming more dependent on factors like delivery performance, flexibility in 

contract, and commitment to work together, as opposed to traditional relationships 

based mainly on cost. Hausman et al (2000) investigates the manufacturing-

marketing interface from a behavioral perspective and explore strategies, conflict and 

morale on business performance. They conclude that an increased emphasis on the 

importance of marketing and manufacturing strategy improves functional harmony, 

in turn influencing competitive position and profit performance. They illustrate that 

the new emphasis on supply chain management may be indicative of this 

phenomenon. 
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Lee et al. (2000) analyzes a manufacturer and a retailer supply chain from the 

information sharing perspective and its mitigating impact on bullwhip effects. They 

conclude that information sharing could provide significant inventory reduction and 

cost savings to the manufacturer with significantly correlated demands over time. For 

example, sharing capacity information permits better planning and coordination 

between trading partners and helps reduce the gaming that occurs in product shortage 

situations. Lee, Padmanabhan & Whang (1997) explores four rational factors leading 

to create the bullwhip effect. 

 

Because forecasting is fundamental to business management, there are also many 

reading materials about forecasting outside of the supply chain literature. The 

concept of predictability, sales forecast modeling and conditional forecasting to 

predict future demands has received enormous attention in the research literature. In 

this study, the concept of unpredictability and its implications for sales forecasting 

are discussed. Related to the concept of predictability, similar studies, which have 

considered the problem of forecast evolution and its impact on inventory cost, have 

been made in the supply chain literature (for example, Heath and Jackson 1994, 

Graves et al. 1998, Çakanyıldırım and Roundy 1999, Kaminsky and Swaminathan 

2002).  

 

Sales forecasts drive planning activities in supply chain production-inventory 

systems. Analyzing how these forecasts evolve over time can lead to significant 

insights into the impact of forecast accuracy on supply chain costs. Note that 

forecasts do not necessarily become more accurate as they are updated and hence 
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such forecast churning could cause inefficiencies if the manufacturer relies only on 

the wrong forecast update.  

 

By characterizing the behavior of forecasting system and by adapting it to the 

existing planning activities, the manufacturer is able to react more efficiently to 

forecast changes and not have to rely on costly reactions to late-changing forecasts. 

This means that by capturing the possible evolution of forecasts, the company could 

obtain greater accuracy at an earlier point in time. The effort here is not to attempt 

improving accuracy of the forecasts. Hence, forecasts provided by the existing 

forecasting mechanism are considered as outcomes of the underlying stochastic 

process.  

 

Several classes of forecast evolution models exist in supply chain literature. Scarf 

(1959) and Azoury (1985) study Bayesian models for forecast revisions in an 

inventory setting. Later, Bitran et al. (1986) presents Bayesian forecast updates for 

style goods under capacity restrictions and adapts to a stochastic mixed integer 

programming formulation 

 

Fisher and Raman (1996) introduces a response-based, two period stochastic 

production planning problem from the fashion goods industry. After initial demand 

has been observed, an improved forecast drives the decision of how much additional 

amount of products to produce at different points during the season. In this 

environment, the manufacturer needs to determine production quantities in two 
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periods, with lower production costs in the first period but improved forecast 

information available in the second.  

 

Kaminsky and Swaminathan (2002) presents the multi-period demand case of the 

study by Kaminsky and Swaminathan (2001), which models a forecasting process 

getting refined over time as new information is available. In their study, forecasts are 

represented by a series of bands and forecast evolution process is introduced based 

on these bands. Subsequent forecasts have a smaller band and are contained within 

the band defined by previous forecasts as time elapses. They adapt the procedure to 

capacitated production planning environments and develop heuristics which utilize 

knowledge of demand forecast evolution. They also consider the impact on the 

system of improved forecast updates.  

 

Hausman (1969) considers a recurring sequential decision problem and new 

improved forecasts before each decision stage. He treats ratios of successive 

forecasts as independent lognormal variates and assumes that forecast evolutions 

have the quasi Markovian property of no memory. To illustrate the approach, a 

dynamic programming formulation with the current forecast being the state variable 

is developed.    

 

Hausman and Peterson (1972) considers a stochastic forecast revision process for a 

capacity constrained, multi-product production scheduling problem. They assume 

that ratios of successive forecasts of total orders for a seasonal product are mutually 

independent lognormal variates. They formulate the problem as a dynamic 
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programming problem and consider alternative heuristic approaches for solving the 

problem.  

 

Graves et al. (1986) considers a set of aggregate production smoothing models to 

analytically optimize the tradeoffs between inventory requirements and production 

smoothing considering demand variability and forecast uncertainty. For the case of 

an uncapacitated system with i.i.d. demand, they model the monthly forecast 

revisions of the aggregate forecast process as a single item version of the martingale 

model of forecast evolution (MMFE). This paper is considered to be the first MMFE 

paper in the supply chain literature. Hausman (1969), Graves et al. (1986, 1998) and 

Heath and Jackson (1994) are the main contributory papers for the development of 

the MMFE model and provide detailed discussion and motivation of the MMFE. 

 

Heath and Jackson (1994) introduces an MMFE for a multi-item system. They study 

the impact of forecast error on cost and customer service by taking into account 

correlations in demands across products and time periods. They adapt the MMFE as 

forecast updates generation procedure to an existing LP model of production and 

distribution system and conduct a simulation study to analyze the relationship 

between safety stock levels and improvement in forecasts. 

 

In his study that considers production inventory system from a different perspective 

by incorporating forecasts explicitly in production inventory systems with 

uncorrelated demand, Güllü (1996) models the effects of forecast evolution on 

system performance by considering a special case of the MMFE. He compares a 
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single item system that employs one period ahead demand forecast with the one that 

does not and showed that using forecast information results in better system 

performance in terms of expected costs and inventory levels. Güllü (1997) considers 

a two-echelon allocation problem consisting of a central depot and multiple retailers 

with the aim of determining a depot allocation policy to minimize the system-wide 

costs. Finally he demonstrates the value of forecast information. Toktay and Wein 

(2001) considers an MMFE demand process and model the effects of forecast 

evolution on system performance for discrete-time make-to-stock queues under 

heavy traffic assumptions for a capacitated single server.  

 

In the buyer-manufacturer setting considered, the forecast volatility problem studied 

in the above work leads to the question of how sufficiently accurate the forecasts 

provided by the buyer is in order to justify the manufacturer acting on it in master 

scheduling. To implement any basic MPS model in the rolling planning horizon 

context, demands are assumed to be known with certainty, and accordingly, the 

standard recursion of inventory, production and demand is employed. Uncertainty in 

the forecasts is typically accommodated afterwards by adding safety stocks to 

production requirements. However, the control and maintenance of safety stocks are 

a problem common to all manufacturers. According to every manufacturer's own 

situation, different methods of safety stock determination are applied to manage 

production plans. Forecast error variability and demand variability are used in many 

settings as better methods to determine safety stock levels. The manufacturer is one 

of the companies to use forecast error-based method to establish target safety stock 

levels. The effective and efficiency of a safety stock method depends on a clearer 
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understanding and then proper reflection of the nature of uncertainty in forecasts. 

This understanding determines the relationship of the safety stocks with the 

uncertainty in forecasts (how safety stocks are related to the error in forecasts).  

 

Baker and Peterson (1979) describes a general framework for analyzing rolling 

schedules and examines analytically a fundamental quadratic cost model for the 

effects of the uncertainty in forecasts, the periodicity of demand and the length of the 

planning interval. Enns (2002) illustrates the importance of considering forecasting, 

safety stock and planned lead time in evaluating the MRP performance, and studies 

the effects on master scheduling performance of demand uncertainty and forecast 

bias in a batch production environment. By using an integrated MRP planning and 

execution test bed, Enns evaluates the use of safety stock and inflated planned lead 

time to accommodate for forecast error. Enns concludes that an increase in the 

forecast-to-demand ratio deteriorates the MPS due date performance and increases in 

demand uncertainty have mixed effects on MPS due date performance.   

  

Campbell (1995) outlines two popular safety stock determination methods (the 

constant cycle service level method and the constant safety stock method) and 

develops a third method which distributes safety stock in an optimal manner over the 

planning horizon and is used as a basis for evaluating the performances of the other 

two safety stock methods. He considers the relationships of the methods with order 

interval length, lead time, and forecast errors. He applies the third method to a basic 

master production problem for a single end product with no limits on production 

capacity. The problem assumes a finite planning horizon so that a rolling horizon is 
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not considered. At the end of experimental analysis of safety stock methods, he 

concludes that the constant safety stock method performs better than the constant 

cycle service level method. And he also demonstrates that the optimal safety stock 

method results in measurable safety stock savings. Zinn and Marmorstein (1990) 

presents a simulation to compare the two alternative methods of determining safety 

stock levels, referred to as the demand system and the forecast system. The demand 

system depends upon the variability of demand whereas in the forecast system the 

required safety stock level depends upon the variability of demand forecast errors. 

They quantify the safety stock required under the two systems and discuss the 

managerial implications of the simulation results.  

 

In this thesis, we focus on a set of bakery products that relate to each other in terms 

of package design, brand name, production line etc. The demand pattern is altered to 

some degree through pricing, promotion, backlogs and launching new products. In 

master scheduling, the manufacturer attempts to satisfy demand by manipulation of 

the size and combination of the variables in control. The main issues addressed in the 

thesis are firstly, to investigate what the methods are for integrating forecast 

evolution modeling into manufacturer’s master production scheduling model with the 

aim of better inventory management; and secondly and more precisely to develop a 

method of establishing target safety stock levels for different products in different 

planning periods that accommodates the historical demand and forecast correlations 

captured from the estimated variance-covariance matrix of forecast updates.  
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Safety stock is established to accommodate the variability or exceptional supply and 

demand conditions. Hence correct use of safety stock in the master scheduling is 

important. The existing safety stock method captures the variability through the 

forecast errors. The proposed method, on the other hand, captures it through the 

standard deviation of demand, which is calculated based on the fact that uncertainty 

in forecasts resolves in each period of the 12-week planning horizon. 
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CHAPTER 4 
 
 

APPLICATION OF FORECAST EVOLUTION MODELLING 
 
 
 

4. 1. Martingale Model of Forecast Evolution 
 
 
 
Having outlined the operating environment of the manufacturer-buyer setting, it is 

now clear that success in the industry depends on flexibility of the production to 

react to evolving business conditions on a frequent basis together with adequately 

accurate sales forecasts on which tactical and operational decisions rely on. 

Forecasting has always concerned itself with predicting future demand and then with 

the management of variances between forecast and actual demand. As time evolves, 

forecasting environment changes and additional information becomes available. 

Using additional information, new forecasts for products are made periodically. In 

order to characterize the underlying forecasting behavior, this periodical 

modification activity can be described as a forecast evolution model. 

 

As mentioned before, sales forecasts of the buyer are a combination of judgment and 

statistical estimates. Qualitative part of forecasts is effective in the sense that it may 

reflect knowledge of events that have not been observed in the past but are expected 

in the future; knowledge of advertising, promotional plan and competitor’s activities; 
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knowledge of recent events whose effects have not yet been observed in time series 

data. Hence, judgmental forecasts are useful but it is very difficult and not practical 

to fit a time series model on them. To characterize and model behavior of the 

forecasting system having qualitative estimates, Martingale Model of Forecast 

Evolution - MMFE technique has desirable properties and its assumptions are 

consistent with the realities of the most real life cases.  

 

Incorporating forecast evolution modeling into the existing planning operations 

promises to assist the organization in several ways: Martingale Model of Forecast 

Evolution technique (1) in general provides an effective probabilistic method of 

distilling huge amounts of historical data on forecasting activities into information 

that is useful for operational activities like inventory management and production 

planning; (2) provides a method by which the relationship between variability in 

forecast updates from one period to the next and the system performance can be 

captured and characterized. In this section, we provide an overview of some of the 

issues that arise in formulating MMFE, which can then be used as the basis for 

examining relationships between forecasts. 

 

For simplicity, we limit our case and focus on a set of products, which are related to 

each other in terms of package design, brand name, production line etc. At the 

manufacturer production facility, approximately 60 SKUs are being processed, 

packaged and inventoried on a total of eight production lines. The production lines 

are capable of producing multiple products. However, there are a certain number of 

products associated with each production line, which are bounded by the 
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technological features/capabilities of the line. There is finite production capacity and 

finite storage capacity for processed products. The products on the same production 

line, therefore, compete for the same processing and packaging capacity. Although 

we will solve our MPS formulations and carry out computational study and 

comparison for the chosen products, our method of determining target safety stock 

levels will be generic so that it will supply output for the other products as well.  

 

In order to characterize the existing forecast evolution the notation we employ is as 

follows:  

� Consider for each product p ∈  { 1 , … , P } a univariate stochastic process {  

for a sample of  t  { 1 , … , T }. The values that are tracked are described as 

realized demands in period t for product p.  

p
tD }

∈

 

�  represent forecast generated at period s for the amount demanded at 

period s + n for n = 0, 1, 2, …, M and for product p = 1, … , P where M (= 12) is 

the length of the horizon for which nontrivial forecasts are available. When n = 0, 

 denotes the actual demand realized at period s. For n = M + 1, M + 2, …, ∞ 

  represents the expected demand, .  

p
nss

F
+,

p
ss

F
,

p
nss

F
+,

pµ

 

At the beginning of period s, we have a random vector of forecasts generated in that 

period for each product p under consideration: 

p
s
F  =  [ , , , … , , , , , …] p

ss
F

,
p
ss

F
1, +

p
ss

F
2, +

p
Mss

F
+,

pµ pµ pµ
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At the start of any period s, forecast modification activity is carried out for the next 

M = 12 periods, but not for n = M + 1 and beyond. For instance,  is 

replaced by 

p
ss

F
2,1 +−

p
ss

F
2, +  in period s as the best estimate for the quantity demanded in 

period s + 2. This modification activity can be described as a finite vector of forecast 

updates on which the perceived forecast evolution is based.  Forecast updates are 

defined as follows: 

 

�  represent modification from period s – 1 to period s in the forecast 

generated in period s – 1 for the amount demanded in period s + n. Therefore, in 

any period s, we have a finite vector of forecast updates generated in that period 

for each product p such that random forecast update vector, 

p
nss +,ε

p
s
ε , contains the 

updates made from period s – 1 to period s in the forecast vector, p
s 1−
F , generated 

in period s – 1. 

p
s
ε   =   [ , , , … , ,  ] p

ss,ε p
ss 1, +

ε p
ss 2, +

ε p
Mss 1, −+

ε p
Mss +,ε

 

Given the initial vector of forecasts = [ , , …, , , , , …], 

any prediction vector 

p
0F

pF 1,0
pF
2,0

p
M

F
,0

pµ pµ pµ

p
s
F  generated at period s can be obtained by modifying the 

entries of prediction vector p
s′
F  generated at period s′ < s by random updates. For 

example, the entry  of the forecast vector of the period s equals to a function p
ss

F
1, +
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, p
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p
ss
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++−

ε  of the entry  of the forecast vector of the previous 

period s - 1 and some random variable . 

p
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p
ss 1, +

ε
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The MMFE is one way of modeling this forecast evolution mechanism. It is a 

powerful and descriptive technique, which characterizes the above random vectors 

and the relations between them. The MMFE defines the above function )(*,*g  in 

two different ways such that forecast evolution mechanism can be explained by 

additive or multiplicative operations. 

 

Additive model describes forecast evolution mechanism by an addition operation so 

that random forecast update vector at period s, p
s
ε  becomes: 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

−+

+

p
Mss

p
Mss

p
ss

p
ss

F

F

F

F

,

1,

1,

,

M    -   =  =  

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−+−

+−

−

p

p
Mss

p
ss

p
ss

F

F

F

µ

1,1

1,1

,1

M

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

−+

+

p
Mss

p
Mss

p
ss

p
ss

,

1,

1,

,

ε
ε

ε
ε

M p
s
ε   

 47



 
The additive model is meaningful as long as the size of changes in predictions is 

unrelated to the size of the predictions. 

 
In our case, however, forecasts can be updated directly on condition that percentage 

of change must be within the pre-specified weekly, monthly and cumulative 

percentage revision limits. Therefore, for the forecasting system under consideration 

it can be said that an update of 10% being independent of the forecast size is more 

reasonable. Putting another way, the size of difference between successive forecasts 

depends on the size of the forecasts. This observation suggests the use of 

multiplicative process to describe the underlying forecast evolution, and hence we 

shall focus on multiplicative process of forecast evolution hereafter. The 

multiplicative process has proved to often provide a good approximation to actual 

evolution in the data for the business environment (see Heath and Jackson 1992). 

 

Multiplicative model describes forecast evolution mechanism by a multiplication 

operation so that it describes the forecast revision made in period s as the ratio of 

successive forecasts generated in periods s and s – 1 for the amount demanded in 

period s + n. Hence, random forecast update vector at period s , p
s

R  becomes: 
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The idea here is that random evolution of a system is expressed as a percentage of its 

current size, and is independent of its size in the past.  

 

In modeling the distributions of the size of evolution, lognormal distribution, denoted 

by LN [µ , σ2], has been particularly useful. The lognormal distribution with 

parameters µ and σ2 is the distribution of a random variable whose logarithm follows 

a normal distribution with mean µ and variance σ2. That is,   

 

If Y   ~   N [µ , σ2] then X  =  eY  ~  LN [µ , σ2]  with the probability density function: 

πσ 2
1

x
f(x) =  e  

22 2)(ln σµ−− x     ,    x > 0 . 

 

Consider eYi = Xi  ~  LN [µi , σi
2] and eYj = Xj  ~  LN [µj , σj

2]. The first two moments 

of Xi and covariance of Xi and Xj are as follows:  

)2/( 2

 iie]E[X i
σµ +

=                   (4-1) 

)1(
)2( 22

−
+

= iii
i ee)var( X

σσµ
                (4-2) 

)1
,

(
2/)( 22

, −=
+++ )Ycov(Y

XX
jijiji

ji ee)cov(
σσµµ

              (4-3) 
 

Hence, random vector of forecast updates at period s can also be described as p
s
η  by 

taking the natural logarithm of p
s

R :  
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where   represent the natural logarithm of ratio of successive forecasts 

generated in periods s and s – 1 for the amount demanded in period s + n. Therefore, 

in any period s, we have a finite vector of logarithmic forecast updates generated in 

that period for each product p such that random forecast update vector, 

p
nss +,

η

p
s
η , contains 

the updates made from period s – 1 to period s in the forecast vector, p
s 1−
F , 

generated in period s – 1. 

 

MMFE imposes a certain structure to the evolution of forecasts, and some of these 

restrictions can be tested. As in Heath and Jackson (1992) there is a set of 

assumptions, which are concerned with mostly conditional behavior of the system. 

According to Heath and Jackson (1992), the additive and multiplicative models given 

above are governed by the following assumptions: 
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Assumption 1: The information available to make predictions in period s 

grows as time passes. In other words, if ∆s describe the information set at time s and 

∆s+1 describe the information set at time s + 1 then ∆s ⊆  ∆s+1. 

 

The rationale for this assumption is straightforward. Forecasting systems use 

available information to learn the true state space of the environment and make 

predictions of future demands. In fact, this type of forecasting process can be 

modeled using expectations conditional on information sets. Realized demands  

observed in period t < s constitute a part of the information set ∆

p
tD

s.

 

Assumption 2: The forecast update vector p
s
ε  is uncorrelated with the 

information in set ∆s-1 for the additive model, and hence is uncorrelated with all 

linear combinations of vectors p
s 1−
ε , p

s 2−
ε , p

s 3−
ε , …. Also, 0)( =p

s
E ε . 

 

For the multiplicative model, similarly, the vector  is assumed to be uncorrelated 

with the information in set ∆

p
sR

s-1 , and hence should be uncorrelated with all linear 

combinations of vectors , , , …. Also we require p
s 1R −

p
s 2R −

p
s 3R − 1)( =p

s
E R . 

 

By using the properties of lognormal distribution, it can be shown that if the above 

assumption is satisfied for the vector , then the vector =  is also 

uncorrelated with the information in set ∆

p
sR )ln( p

sR
p
sη

s-1 , and hence with all linear combinations 

of , , , … for all s, and . To show this, p
s 1−η p

s 2−η p
s 3−η 0)( =p

sE η
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Let p
s

R and p
s 1−

R be forecast update vectors at periods s and s-1, which are 

lognormally distributed with parameters ( µ1, σ1
2 ) and ( µ2, σ2

2 ), respectively. If 

p
s

R and p
s 1−

R both satisfy the above assumption then it follows that (see Law and 

Kelton 2000) 

        )cov( p
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The above expected value expressions lead to . And, by inserting the 

expression  into the above covariance equation produces: 

0)2/( 2 =+σµ

2/2σµ −=

)cov( p
s

p
s 1,

−
RR  01

, 1 =−= − )cov(
p
s

p
se ηη

 

Hence,  and are also uncorrelated. p
sη

p
s 1−η

 

The reason for making this assumption is to specify a model in which forecast 

updates are not predictable linearly or nonlinearly, by any method, using past data 

like observed demands. This rationale is meaningful, since if this assumption does 

not hold (i.e. when there exists some linear combination of the available information  

which is correlated with p
s
ε ) then this would result in some other nontrivial linear 

forecast of p
s
ε , which is better than the original one. Consequently, original forecast 

can be improved with this new better forecast of p
s
ε . 
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The issue of justifying this assumption may be viewed as one of assuming that 

successive forecasts for the same quantity demanded form a martingale. Thus the 

change in forecast becomes a martingale difference. It can be shown, using 

properties of conditional expectations that the values of any martingale difference 

series must be uncorrelated, and must have zero mean. 

 

Assumption 3: The forecast update vectors p
s
η  for all s (and p

s
ε  for additive 

process) form a stationary stochastic process. 

 

The rationale for this assumption relates to predictability over time. If the forecast 

update vectors p
s
η  forms a non-stationary process (if assumption 3 is violated) then 

the degree of predictability (from assumption 2) becomes relative to the time period 

considered and it becomes then possible for p
s
η  and for some k that  

0)|( 1 ≠−∆ s
p
s

E η  for s = T + 1, …, T + k 

while  0)|( 1 =−∆ s
p
s

E η  for s = T + k + 1, …, T + k + m  

 

Therefore, if the vector process p
s
η  for all s is non-stationary then the variance-

covariance matrix of the p
s
η  vectors may not be sufficient to capture all important 

forecast evolution model characteristics.  

 

Assumption 4: The forecast update vectors p
s
η  (and p

s
ε  for the additive 

process) are multivariate normal random vectors. For the multiplicative process, 

ratios of successive forecasts p
s

R  are multivariate lognormally distributed. 
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Under these assumptions, martingale model of forecast evolution produces an 

additive model in which p
s
ε  vectors are independent, identically distributed 

multivariate normal random vectors with 0)( =p
s

E ε . Similarly, for a multiplicative 

process, MMFE states that p
s
η  vectors are independent, identically distributed 

multivariate normal random vectors with 1)( =p
s

E R , which leads to the mean of 

each coordinate of vector p
s
η  being equal to the negative of one half of its variance.  

Therefore, to characterize the forecasting behavior for the additive and multiplicative 

models, we require only the variance-covariance matrix of the forecast update 

vectors and the initial state of the forecasting system. 

 
 
 
4. 2. Empirical Support and Covariance Matrix Estimation 
 
 
 
We have, so far, discussed martingale model of forecast evolution in somewhat 

abstract terms. At this point, it is needed to give an empirical support for the data on 

hand. The main focus here is in calculating the variance-covariance matrix of the 

forecast updates. In this section, hence, we describe the data on hand and give some 

details of covariance matrix estimation.  

 

In the empirical study part of the thesis we focus on a set of products, covering 17 

different stock keeping units. The selected SKUs can be divided into two main 

categories: One consists of products sharing a common production line and the other 
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comprises products having the same brand. Being related to the current status of all 

products produced, some drivers affecting product demand and product availability 

are considered in order to construct the set of products we focus on. These drivers 

consider factors such as the phase of product life cycle, package design, brand name, 

substitution, sales volume and some distributional characteristics. Also, considering 

these drivers, we consider nine product families. The assignment of products to these 

groups is not in a mutually exclusive manner such that products from different brand 

groups may belong to the same product group containing items being processed on 

the same production line.  

 

Let p ∈  { 1 , … , P = 17 } be index on different SKUs and t ∈  { 1 , … , T } be index 

on different observation points in time. For each product under consideration three 

historical data sets covering approximately three years period ( T = 125 weeks ) are 

used to consider: 

 

� Sales forecasts in weekly level of detail for approximately three years period. 

For period t we have a forecast vector generated in that period for each product p. 

A forecast vector comprises sales forecasts corresponding to each period of the 

12-week planning horizon. Therefore, we have a total of 125x12 forecasts, 12 for 

each observation point. 

� Quantity demanded by distributors and chain markets in weekly level of detail. 

For period t we have a demand observation realized in that period for each 

product p. All the products considered have stable demand over extended periods 

of time, but are affected by promotions, price changes, competitor’s actions etc.  
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� Actual shipments to distributors and chain markets in weekly level of detail. For 

period t we have an observation on actual shipment made in that period for each 

product p. 

 

The data sets used in the thesis are extracted from the PIMS database and analyses 

performed are based on disguised data. The analysis of the data indicates the 

presence of missing values almost in each of the series. A missing forecast value is 

replaced with that part of budgeted monthly sales, which is calculated by considering 

the working days of the week for which the missing forecast value estimates the 

quantity demanded. Similarly, a missing demand value and shipment value are 

replaced by considering the budgeted sales. 

 

In order to estimate the actual values for the variance-covariance matrix, the 

following steps need to be taken: 

 

Step 1: Clean the Data 

 
Though a full analysis of the data set involves some product specific features there 

are two common motivations in data analysis: (1) to identify actual pattern of the 

majority of the data, and (2) to obtain more reliable information about the nature of 

the underlying process.  

 

Figures given in Appendix A show samples of time series plots and box-plots for 

some product demands available. These products provide a general picture of the 
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data characteristics. Weekly demand was provided covering approximately three 

years period (a total of 125 observations). The analysis of time series plots and box-

plots shows the presence of potential outlying observations in the series.  

 

To clean the effects of exogenous events on historical demands and sales forecasts, 

our first task is to detect any influencing outliers and eliminating if present. The 

analysis of the data indicates the presence of outliers almost in each of the series. 

Outliers may be attributable to skewness of the distribution of random error, some 

unassignable causes, or even chance. Some outliers are exceptional data; others are 

not (see Law and Kelton 2000). Hence the interpretation of suspected outliers and 

unusual data is important since they may convey some interesting information. In 

addition, any peculiarities in the data which can disturb the pattern and might destroy 

the value of estimates are identified. Observed peculiarities generally result from 

such factors as special one-off orders, promotions, price discounts, run-outs of stock, 

competitor’s temporary strategy etc. For example, Figure 7 in Appendix A shows an 

irregular demand value at observation point 95. This demand value reflects a special 

one-off order situation occurred at that period. Outlier detection and peculiarity 

identification are essential in the sense that they clean the data so that more robust 

tools and analysis for inventory management and planning can be developed.  

 

Step 2: Eliminate Systematic Forecasting Errors 

 
Estimation biases may be induced by incorrect information or some inherent 

forecasting behavior. Analysis regarding forecasting bias reflects and measures the 
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predictive performance of the forecasting system considered. We assess empirically 

this performance by testing whether the expected value of prediction error is zero or 

not. 

 

Assuming that the p
s
η  vectors are independent identically distributed multivariate 

normal random vectors with 0)( =p
s

E η  requires the demand process to be 

stationary and forecasts to be unbiased. Accordingly the issue of justifying 

0)( =p
s

E η  in Assumption 2 can be viewed as one of satisfying that predictions 

within the forecast horizon are unbiased estimates of demand so that there is no 

systematic tendency to either underestimate or overestimate the true value of 

demand.  

 

Let   be the demand process for product p; and   be (j + 1)-step ahead 

forecasts for j 

p
t

D p
jF 1+

∈  { 0, 1, … , 11 }.  

 

If  =  for a particular j then it can be concluded that (j + 1)-step 

ahead forecasts are unbiased. Hence we can investigate the estimation biases in terms 

of two-sample t-tests of the individual hypotheses: 

)( p
tDE )( 1

p
jFE
+

0H :  -  = 0   for each j  )( p
tDE )( 1

p
jFE
+

 

It can be shown by using forecast evolution mechanism that testing the above null 

hypothesis is equivalent to testing the hypothesis of 0)( =p
s

E η  or of 1)( =p
s

E R . 
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Hence one sample t-tests for the null hypotheses 0H : 1)( =p
s

E R  are carried out and 

biased forecasts are adjusted when the null hypothesis is rejected such that adjusted 

forecasts result in 1)( =p
s

E R . For example, 3-step ahead forecasts for product p2 

appear to be generally almost 15% higher than realized demand. This upward bias, 

hence, is eliminated by adjusting all the historical forecast values by the scaling 

value of (100/115) before being used in further calculations. Analyzing the 

systematic errors and making adjustments to obtain unbiased forecasts is critical for 

the purposes of estimating a variance-covariance matrix that is based only on random 

fluctuations. 

 
 
Step 3: Obtain Forecast Update Vectors & Validate the Assumptions 

 

Modification activity at period s, described by forecast update vector p
s

R  for the 

multiplicative process is given as: 
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In Assumption 4, it is stated that ratios of successive forecasts are lognormal variates 

and hence forecast update vectors p
s

R  are lognormal random vectors. The forecast 

updates described as ratios can, of course, be transformed into normal variates by 
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taking natural logarithms. Hence, we may equivalently study the hypothesis that 

natural logarithms of ratios of successive forecasts are distributed normally. 

 

Tables given in Appendix B show samples of some logarithmic forecast updates 

expressed as natural logarithms of ratios of successive forecasts. In the tables, jη  for 

j  { 0, 1, … , 11 } represent logarithmic forecast updates made in (j + 1)-period 

ahead forecasts to obtain j-period ahead forecast. In particular, column 

∈

0η  represents 

logarithmic forecast errors expressed as natural logarithms of ratios of one-period 

ahead forecasts and actual demands. From these tables we can obtain a general 

picture of the forecast evolution characteristics of the underlying forecasting system. 

An important finding obtained from the tables is that for almost every product 

logarithmic forecast updates having zero value are dominant in the columns 

corresponding to variables 4η  till 11η . This finding proves the observation made 

before on the forecasting behavior of the buyer. The buyer does not pay any attention 

to updating the forecasts for the last 7-8 weeks of the 12-week planning horizon. This 

practice causes delayed forecast updates leading to a need for significant forecast 

changes as the time for order execution approaches. 

 

Another notable finding that can be obtained from the tables is that forecast updates 

having zero value corresponding to column 1η , representing logarithmic forecast 

updates made in two-period ahead forecasts to obtain one-period ahead forecasts, are 

also dominant. This proves the implementation of one-week freeze period in the 

master production scheduling. 
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Both graphical techniques and statistical tests are used to check the normality 

assumption of logarithmic forecast updates. In carrying out the hypothesis test we 

both perform Kolmogorov-Smirnov test with the significance level of 0.05 and 

construct normal probability plot. Note that K-S test is valid for any sample size (see 

Law and Kelton 2000). The results are given for some products in Appendix C. The 

normal probability plots do not have large deviations from a straight line, suggesting 

that the logarithmic updates are normal. And, the results of the hypothesis tests 

indicate that in all but two cases the data is consistent with the normality assumption. 

The degree of violation for those two cases is not too significant (p-values for those 

two cases are 0.041 and 0.043) and hence they are assumed to be normal. 

 

Another assumption, which is even harder to satisfy than the assumption of 

normality, is the assumption of mutual independence for bivariate forecast updates. 

To test whether the forecast update vectors can be regarded as being independent, we 

calculate bivariate correlations based on Pearson’s correlation coefficient, which 

requires normally distributed data (see Law and Kelton 2000). In our case, it is not 

reasonable to calculate bivariate correlations for the variables from 4η  till 11η  since 

the samples for them are composed dominantly of logarithmic forecast updates 

having zero values. The results of the correlation analysis for the remaining forecast 

update variables are contained in Table 13 given in Appendix C, together with the 

value of two-tailed probabilities corresponding to the 0.05 and the 0.01 levels of 

significance. Correlation coefficients significant at the 0.05 level are identified with a 

single asterisk, and those significant at the 0.01 level are identified with two 
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asterisks. The presence of significant correlations indicates that the independence 

assumption is violated. Therefore, it is needed to adjust biased forecasts so that the 

resulting forecast updates of adjusted forecasts satisfy the independence assumption 

(see Hausman 1969). After making the necessary adjustments (by scaling the biased 

forecasts to eliminate the bias), the results indicate that the assumption of 

independence is supported. These biases should be reimposed later while employing 

the forecasts to quantify demand variability in the subsequent sections.   

 

One may express any observation on the time series, , in terms of the random 

forecast update variates, either as,  

p
tD

p
sD   =           =    *  p

ssF ,
1
0

−
=

Πn
j )( ,

p
sjsR

−
p

snsF ,−

or as, 

        =     =     +  . )ln( p
sD )ln( ,

p
ssF 1

0
−
=

Σn
j )ln( ,

p
sjsR

−
)ln( ,

p
snsF

−

 

Note that in the multiplicative model, if we begin with a forecast value  and 

if every step yields an independent and identically distributed random 

multiplier  from lognormal distribution, then any resulting distribution after n  

p
snsF ,−

p
sjsR ,−

steps is again lognormal since it arises from the combination of random terms by a 

multiplicative process.  

 

Step 4: Estimate Variance and Mean of the Forecast Update Vectors 

 

It is easy to show that under Assumption 2 the condition 1)( =p
s

E R  leads to 

 for all j 2/)var( p
j

p
j ηµ −= ∈  {0, 1, …, 11}.  
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From equation (4-4),  =  = 1. And after a bit of 

manipulation,  

)( ,
p

jssRE
+

2/     )var(
p
j

p
je

ηµ +

 ]  [ p
jE η =               (4-5) 2/   )var( p

j
p
j ηµ −=

 

Variance of the forecast update , , can be represented by:    p
jη )var( p

jη

     ] ) (  [ 2p
j

p
j

p
j E)var( µηη −=

        22 )(] )( [ p
j

p
jE µη −=

                       by substituting (4-5)  4/)( ] )( [ 22 )var(E)var( p
j

p
j

p
j ηηη −=

 

Hence  can be calculated solving the above quadratic equation. And the 

mean values ’s of random variates, ’s, can be estimated by using the result 

. Table 1 below tabulates samples of variances and means of 

’s for product p13. 

)var( p
jη

p
jµ p

jη

2/   )var( p
j

p
j ηµ −=

p
jη

 
 
 

Table 1 Estimated variance and mean values of jη  for product p13 

 
 )var( jη jµ  

j = 11 0.00628 -0.00314
j = 10 0.02065 -0.01033
j = 9 0.00588 -0.00294
j = 8 0.00385 -0.00193
j = 7 0.00268 -0.00134
j = 6 0.00526 -0.00263
j = 5 0.00468 -0.00234
j = 4 0.00976 -0.00488
j = 3 0.00823 -0.00411
j = 2 0.01201 -0.00601
j = 1 0.00723 -0.00362
j = 0 0.32209 -0.16104
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Step 5 : Variance - Covariance Matrix Estimation 

 
The variance-covariance matrix of random forecast update variates is estimated from 

the historical data. By using the estimated mean values ’s of the random variates 

’s , the issue of estimating the variance-covariance matrix from the historical data 

is simplified.  

p
jµ

p
jη

 

Let  represent the random variable that generates the updates made to (j + 1)-step 

ahead forecasts to obtain j-step ahead forecasts for product p 

p
jη

∈  { p1, p2, …, p17 } 

and period j ∈  { 0, 1, … , 11 } Hence  represents the random variable that 

generates forecast error between one-step ahead forecast and realized demand for 

product p. 

p
0η

 

Denote the length of an update vector with N and the number of products with P and 

the length of the forecast horizon with H such that E be the N by P x H data matrix 

consisting of such P x H variables as:  

1
0
pη , , , …,  1

1
pη 1

2
pη 1

11
pη

2
0
pη , , , …,  2

1
pη 2

2
pη 2

11
pη

. 

. 
17

0
pη , , , …,    each observed on N individuals. 17

1
pη 17

2
pη 17

11
pη

 

In multivariate analysis, we seek to examine the relationships between the P x H 

variables with the aim of characterizing the underlying forecast evolution 

mechanism.  
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Let  be the P x H by P x H variance-covariance matrix of the N by P x H data 

matrix E. Covariance terms on the off-diagonal entries and variances on diagonal 

entries of the matrix  are as follows:  

∑

∑

N)cov(
N

t

p
j

p
tj

p
i

p
ti

p
j

p
i /))((, ,,∑ ′′′

−−= µηµηηη  

      N)var(
N

t

p
j

p
tj

p
j /)( 2

,∑ −= µηη

 

Variance  values calculated in Step 4 and in Step 5 can be compared to 

assure the validity of the assumptions used in these calculations. 

)var( p
jη

 

Given the complexity of the underlying processes, note that some limitations on our 

ability to analyze the data fully affect the results. This is especially more important 

when the dimensionality of the variance-covariance matrix is large compared to the 

sample size of data, resulting in few degrees of freedom available. For this reason, all 

conclusions concerning the problem at hand must be tentative, and may be revised by 

looking at the same type of data at a later stage. Obviously, with more historical 

forecast and demand data one is expected to estimate better. 

 

Consider the estimated variance-covariance matrix ∑ . For any product p, using the 

variances  for all j )var( p
jη ∈  { 0, 1, … , 11 } the percentages of total forecast 

variability that is resolved as the system evolves from one period to the next period 

are calculated. As can be seen from Table 2, a significant proportion of total forecast 

variability for each product is not resolved until the period of realization for that 
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product. In other words, there exists a considerable amount of forecast error in the 

system. For example, for product p4, a significant percentage, 70.4%, of total 

forecast variability is not resolved until the period of realization. This observation 

reflects the performance of the forecasting system (or the accuracy of the forecasts 

provided by the buyer) and indicates that the manufacturer cannot effectively 

respond to demand variability without holding significant amount of safety stock.  

 
 
 

Table 2 Percentages of total forecast variability resolved by period 
 
  PRODUCTS 

  P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17

11 3.9 2.2 2.5 2.6 2.3 2.1 1.4 4.1 3.2 2.6 5.4 2.2 1.5 2.4 2.0 4.2 6.5

10 8.3 8.1 5.3 5.6 4.0 6.9 5.2 7.0 6.8 8.3 8.6 7.6 5.1 6.9 6.3 9.6 10.9

9 2.1 2.8 1.7 1.7 1.2 2.6 1.3 3.9 3.3 1.6 2.9 1.9 1.4 2.0 1.3 4.5 5.8

8 1.5 1.7 1.5 1.5 1.8 1.7 1.0 1.1 1.0 1.4 1.0 1.3 0.9 1.4 1.4 2.2 2.1

7 1.1 0.8 0.7 0.7 1.4 1.2 0.9 2.7 0.6 1.1 0.6 0.9 0.7 0.6 0.7 0.5 0.6

6 1.6 1.6 1.3 1.2 1.9 1.5 1.0 1.2 1.2 1.6 1.0 2.2 1.3 1.3 1.4 2.7 2.8

5 1.2 1.5 0.9 0.9 1.8 1.5 2.9 1.9 4.2 1.2 1.4 2.0 1.1 1.3 1.3 2.5 1.7

4 3.3 4.0 0.9 0.9 1.0 0.8 2.7 2.9 4.4 3.7 2.3 3.4 2.4 2.7 2.9 2.0 2.4

3 2.7 3.6 5.2 3.2 6.1 3.0 4.0 4.6 5.8 3.2 3.0 2.1 2.0 3.5 2.6 2.4 3.5

2 6.6 4.2 6.8 3.9 4.9 7.2 7.3 4.8 7.9 5.2 3.4 3.6 2.9 3.9 3.7 4.5 6.2

1 4.1 2.6 2.0 7.3 0.9 1.3 0.3 3.2 4.6 4.3 1.7 3.3 1.8 2.0 1.3 2.2 2.5

PE
R

IO
D

S 
/ j

 

0 63.5 66.8 71.2 70.4 72.8 70.1 72.1 62.5 57.0 65.8 68.7 69.4 78.8 72.1 75.0 62.9 55.1
  100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

 
 
 
Step 6 : The Resultant Data 
 

We have analyzed the historical forecast and demand data for a set of products with 

the aim of giving empirical support and hence validating the assumptions of 

martingale model of forecast evolution. First we have checked for and eliminated, if 

necessary, any influencing outliers and peculiarities, which may cause the misleading 

results in the subsequent analysis. In the setting of multiplicative processes used to 
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describe the growth of the system, we have calculated historical forecast updates 

from the past forecast and demand data. We have performed two main hypothesis 

tests to check for the normality assumption and mutual independence assumption of 

forecast updates. Finally, we have estimated the variance-covariance matrix of the 

forecast updates from the historical data, and hence obtained the variance terms 

, covariance terms )var( p
jη )cov( p

j
p
i

′ηη ,  and expected values  for each 

product p ∈  { p1, p2, … , p17 } and for period j 

 ]  [ p
jE η

∈  { 0, 1, … , 11 }. Appendix D 

contains some part of the estimated variance-covariance matrix.  

 
 
 
4. 3. Integration of Forecast Evolution Modeling with MPS  
 
 
 
In this study, we analyze the manufacturer-buyer interaction at the aggregate 

planning level and empirically investigate the relationship between the buyer’s 

forecasting behavior and in turn the manufacturer’s delivery performance. By 

tracking forecast volatility, characterized by the size and frequency of forecast 

updates, we explain the buyer’s forecasting behavior and in a sense measure its 

predictive performance. The manufacturer’s delivery performance, on the other hand, 

is tracked by its ability to meet weekly delivery requests (weekly forecasts) provided 

by the buyer. Based on the empirical analysis, we attempt to show how forecast 

volatility could be incorporated into the production planning and inventory 

management activities at the MPS level to improve the manufacturer’s delivery 
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performance. Naturally, with more accurate forecasts provided delivery performance 

will be better.  

 

Forecasts are periodically updated as the buyer observes the realized demands and 

obtains new market information. By being updated successively, however, forecasts 

do not necessarily become more accurate (accuracy relating to having lower standard 

deviation of forecast errors). Existence of much uncertainty about the market demand 

when the buyer makes prediction for a period for the first time gives rise to forecast 

volatility problem, which might cause inefficiencies if the manufacturer relies only 

on this relatively less accurate forecasts. Hence, the extent to which degree of 

accuracy of forecasts provided by the buyer determines the degree of justification for 

manufacturer’s acting on those forecasts. The manufacturer who acts only on given 

less accurate forecasts will probably face significant future adjustments and costs.  

 

Much uncertainty is associated with the data, especially with actual demands, for a 

long-term production-inventory model. In a long-term production-inventory model 

forecast unreliability becomes more important since it results in either huge 

inventory or low customer fill rate. Obviously, safety stocks for individual products 

held in inventory are critical to the execution of an effective inventory policy. 

Indeed, the issue at all levels of planning is how they should be computed. Practical 

considerations and realities of the supply chain suggest in practice that combinations 

of judgment and statistical analysis should be used in determining safety stock levels 

for products. 
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The manufacturer calculates safety stock levels for products by considering 

differences between historical actual shipment and forecast data. Hence by doing so, 

the manufacturer bears the full cost of forecast error and the buyer shares uncertainty 

of demand process with the manufacturer. They prepare, therefore, for both uncertain 

demands and unforeseen production problems.  

 

Let  be the forecast generated at week s-1 for the amount demanded at week s 

for product p (that is, it represents one-week ahead forecast generated at week s-1). 

Let  be the shipment amount to distributors and chain markets made at week s for 

product p. Each month the following steps are taken to calculate the current target 

safety stock level for product p: 

p
ssF ,1−

p
sS

 

1. From historical 40-week shipment and forecast data, deviations of actual 

shipments from one-week ahead forecasts are calculated as: 

p
s∆   =    -     for  s p

sS p
ssF ,1− ∈  { 1 , … , 40 } 

 
 

Note that observations are numbered in time order such that more weight is given 

to closer observations. The largest four and the lowest four deviation values are 

eliminated from the set. Let the remaining set be S ′  and || S ′ || = 32. 

  

2. Using the remaining 32 deviations, weighted mean absolute deviation-WMAD 

value is calculated as:  
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pWMAD   = ∑
′∈

32

Ss
( | | * s )  / p

s∆ ∑
′∈

32

Ss
s 

 

3. Standard deviation (
p

∆
σ ) of the remaining 32 deviations ( ) is calculated. 

And, by using a 95 percent service level, safety stock level for product p,  is  

p
s∆

pSS

determined as: 

pSS   =   + 1.65 * pWMAD
p

∆
σ              (4-6) 

 

Current safety stock levels are deterministic target inventory levels being updated 

each month based on historical forecast error distribution. Target safety stock levels 

are calculated exogenously and fed into the master production scheduling model as 

an input. Master scheduling model takes target safety stock levels at a constant level 

for each period of the 12-week planning horizon. That is, they do not vary by periods 

of the planning horizon. 

 

In order to compute target safety stock level for a specific product p, the 

manufacturer determines variance of the deviations, , for product p independently 

from the other products as: 

p
s∆

)pvar(∆   =   2

p
∆

σ

 

However, due to realities of the supply chain considered and the resulting nature of 

demand patterns for many products, some of the products are expected to be 
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correlated, and hence demands to be interdependent. This observation motivates us to 

investigate the effect of demand and forecast correlations on target safety stock 

levels.  

 

The importance of demand and forecast correlations on target safety stock levels is 

apparent if some drivers (including factors like promotions, ads, phase of the product 

life cycle, brand, package design, logistical needs of products, substitute and 

complementary products etc.) affecting product demand and product availability are 

emphasized. All these factors and events have varying impacts on product demands. 

For example, promotions may lead to temporary demand lifts for the promoted 

SKUs, but they may also depress demand for other SKUs. Moreover, products in the 

maturity phase of the life cycle experience predictable demand than ones in the 

innovation phase. When any marketing instrument is applied to a product, there may 

be an effect on demand for related products, either substitutes or complements. In 

some cases, stimulations of demand for one item may result in an increase of demand 

for a complementary product; while in other cases, the effect is opposite for 

competing products. Hence, it is important that to accurately represent the outcomes 

in the environment under consideration interaction effects between products should 

be captured and modeled explicitly and be used in production planning. Estimated 

variance-covariance matrix of random forecast updates and the method proposed for 

determining target safety stock levels lay the foundation of the way of integrating the 

buyer’s forecast evolution with the manufacturer’s production planning model.  
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In the proposed integration method, calculation of target safety stock levels is based 

on demand variability rather than forecast error variability. In determining the target 

level of safety stocks based on the variability of demand, we have to calculate 

variance of the demand, . Derivations made to quantify the variability of 

demand, and hence to determine target safety stock levels are given in the following 

subsections.  

)var(D p
ns +

 
 
4. 3. 1 Derivations for Demand Variability 
 
 
 
Suppose at the beginning of period s we have a finite vector of preliminary forecasts, 

p
s
F , generated in that period: 

p
s
F  =  [ , , , … , ] p

ss
F

1, +
p
ss

F
2, +

p
ssF 3, +

p
Mss

F
+,

where M denotes the length of the planning horizon, which is equal to 12 weeks in 

our case. 

 

In the setting with multiplicative process used to describe the evolving path of the 

system, forecasts of the demand move in discrete time steps and the predictions 

change accordingly. 

 

For product p, the actual demand to be realized at period s + n, , can be 

expressed in terms of random forecast updates and a preliminary forecast value, 

, as follows: 

p
ns

D
+

p
nssF

+,
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where n  { 1, … , M } such that  represents n-week ahead preliminary 

forecast available at week s.  is a lognormal random forecast update 

observing on the ratio of j-week ahead forecasts to (j + 1)-week ahead forecasts for 

product p. And,  represents normal random forecast update observing on 

the difference between logarithms of j-week ahead forecasts and logarithms of (j +1)-

week ahead forecasts for product p such that ln( ) = . 

∈ p
nssF

+,

p
nsjsR

++ ,

p
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p
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++ ,
p

nsjs ++ ,η

 

We would like to emphasize, at this point, that the lognormal distribution has 

multiplicative reproductive properties (see Hines and Montgomery 1990). These 

properties are as follows: 

Property 1: If  has a lognormal distribution with parameters)( ,
p

nsjsexp
++

η µ  

and , and  is a constant, then *  has a lognormal 

distribution with parameters ( ) and . 
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Property 2: If  and  are independent 
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We present the variability derivations for an individual product and for a group of 

products separately in the following two subsections. 

 
 
 
4. 3. 1. a. Variability Derivations for an Individual Product 
 
 
 
In determining the target level of safety stocks based on the variability of demand, 

we have to calculate variance of the demand,  using equation (4-7) as: )var(D p
ns +

         =  *  )var(D p
ns +

n
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Where  =  for 

each period n 

p
n

LNV )(*...*)(*)( ,1,1,
p

nss
p

nsns
p

nsns +++−+++
ηηη expexpexp

∈  { 1, … , M=12 } is lognormal since it is the product of independent 

lognormal variates (from the above lognormal Property 2). Therefore, the whole term 

 *  in the variance expression is a lognormal variable multiplied by a 

constant, .  

p
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p
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However, it is not possible to calculate directly variance of the nonlinear term, 

 * , in equation (4-8). Therefore, it is more reasonable first to take the 

natural logarithm of the nonlinear term and then to calculate the variance of 

 and expected value of  in an effort to calculate the 

variance of . 
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where  in terms of random forecast updates is: )ln( p
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We calculate variance of the lognormal term, , by using equation 

(4-10) as: 
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The last equation follows from the fact that , , …, 

 represent the forecast updates made at different points in time (at periods  

p
nsns ++ ,η p

nsns +−+ ,1η

p
nss ++ ,1η

s + n, s + n-1, …, s + 1, respectively), and hence each one comes from the different 

independent, identically distributed random update vector. We can obtain the 

individual variance values  from the estimated variance-covariance 

matrix  of lognormal forecast updates, and in turn we can calculate value of the 

whole term, . 
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We can calculate the individual expected values  by using equation 

(4-5), which is the result of Assumption 2 given in Section 4.1. Hence we can 

calculate value of the whole term, . 
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When  for a particular period n p
n

LNV ∈  { 1, … , M } is lognormal with 

parameters  and ,  *  has a lognormal distribution with 

parameters ( ) and  from the above lognormal Property 1. 

Therefore, using the relationship between lognormal distribution and normal 

distribution, which is stated by equation (4-2),  =  *  

is calculated as:  
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where  and are given by equations (4-11) 

and (4-12), respectively. 
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Therefore, using a 95 percent service level, target safety stock level of product p for 

period n ∈  { 1, … , M } of the 12-week planning horizon, , based on demand 

variability becomes: 

p
nSS

 
p
nSS  = z * )var(D p

ns +
 where z = 1.645.         (4-13) 
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4. 3. 1. b. Variability Derivations for Product Groups 
 
 
 
In empirically assessing the integration method, we focus on nine product families. 

Product families are constructed according to two main factors: brand and production 

line. Products belonging to the same brand category are put into the same product 

family. And similarly, products sharing the same production line are in the same 

product family. The assignment of products to these groups is not in a mutually 

exclusive manner such that products with distinct brands can be produced on the 

same production line or vice versa. Other product group compositions that follow 

any practical classification are also possible. For example, grouping can consider 

products’ sales opportunities in a particular sales region. Let G = {G1, G2, … , G9} 

be the set of product indices that form a specific product group Gi, i = 1, … , 9. In 

determining the target level of aggregate safety stock for a specific group Gi based 

on the variability of group’s total expected demand, we have to calculate the variance 

of group demands,  as: 
Gip
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Individual variance terms, ’s, in the above expression are calculated as in 

the previous section. Covariance term in the above variance expression can be 

)var(D p
ns +
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expressed in terms of random forecast updates and a preliminary forecast value, 

, by using equation (4-7), as follows: p
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Where  =  

(similarly ) is lognormal since it is the product of independent lognormal 

variates (from the above lognormal Property 2). Therefore, the whole term 

*  (similarly  * ) in the covariance expression is a 

lognormal variable multiplied by a constant,  (similarly ).  
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It is not possible, however, to calculate directly covariance of the nonlinear terms, 

 *  and  * , in equation (4-14). Therefore, as in the p
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previous section it is more reasonable first to take the natural logarithm of these 

nonlinear terms and then to calculate the covariance of  and . )ln( p
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D
+
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Therefore, by using equation (4-9), covariance of  and  can be 

expressed as: 
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We can obtain the individual covariance values  from 

the estimated variance-covariance matrix 
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∑  of lognormal forecast updates, and 

hence we can calculate value of the whole term, . )DDcov( p
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When  for a particular period n p
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LNV ∈  { 1, … , M } is lognormal with 

parameters  and ,  *  has a lognormal distribution with 

parameters ( ) and  from the above lognormal Property 1. 

Therefore, using the relationship between lognormal distribution and normal 

distribution, which is stated by equation (4-2), ,  is calculated as:  
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where  is given by equation (4-15), and 

 and are given by equations (4-11) and 
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Therefore, using a 95 percent service level, target level of aggregate safety stock for 

product group Gi for period n ∈  { 1, … , M } of the 12-week planning horizon, , 

based on demand variability becomes: 

p
nSS

 
p
nSS  = z * )Dvar( p

nsp Gi +∈
Σ   where z = 1.645.        (4-17) 

 

The way to link forecast evolution with production planning should be adaptive to 

changes in the planning environment, which is a dynamic and constantly changing. 

Hence, it is important that the way of integration has the property of making use of 

new data and inputs to adapt to new environments. Accordingly when that happens, 

the MPS model adjusts and updates itself to determine target safety stock levels. 

Under multiplicative model, given (4-13) and (4-17) and all expressions that specify 

(4-13) and (4-17), forecast values by period of the planning horizon are employed to 

obtain the corresponding variance and covariance terms. Therefore, the period in 

which the MPS model runs has an impact on target safety stock levels through 

incorporating the forecast vector available at that period into calculation of variance 

and covariance terms.   
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CHAPTER 5 
 
 

COMPUTATIONAL STUDY AND COMPARISON 
 
 
 

The emphasis in computational study is restricted to analysis of beginning inventory 

levels of finished products and delivery performance of the manufacturer under three 

different methods of establishing target safety stock levels in the described master 

production scheduling environment. Each safety stock method is considered as a 

vehicle for expressing the relationship between forecast updating behavior of the 

buyer and inventory levels of the manufacturer. Hence the way of establishing safety 

stock is essential to adequately and efficiently accommodate the related uncertainty 

inherent in forecast evolution. Naturally, more accurate forecasts in the master 

schedule result in more stable production plans leading to low inventory levels 

together with high delivery performance. In practice, however, variations between 

forecasts and realized demands are inevitable and forecast accuracy problem may 

appear.  

 

We present details of three master production scheduling - MPS models below. The 

first one is the original MPS model currently in use. The other two models are 

variants of the first model. Each one of the linear programming models described 

below makes production decisions for each SKU at a weekly level of detail, and 
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employs the standard production, inventory, and demand recursion. The models are 

based on the policy of preparing period’s forecasts at the beginning of that period. In 

other words, at the beginning of a period, MPS tries to prepare the finished goods 

inventory as much as that period’s forecast and target safety stock level. 

 
 
 
5. 1. MPS Model – 0 
 
 
 
The first master scheduling model, which may be referred to as MODEL-0, is 

abstracted from the MPS model that is currently in use. For MODEL-0, target safety 

stock levels are determined exogenously based on the variability of historical 

forecast errors as stated before in equation (4-6). They are fed into the model at a 

constant level for each period of the 12-week planning horizon. 

 

The following indices are used for parameter and variable definitions:  

 p for products such that       p ∈  { p1, p2, …, p17 } 

w for weeks of the planning horizon such that w ∈  {1, 2, …, 12 } 

L for production lines such that   L ∈  {L1, L2, …, L8 } 

s for labor type such that    s ∈  {s1, s2 } 

 

The production and inventory related decision variables are defined as follows: 

p
wI               :  total beginning inventory on hand for product p at the start of period w. 

   It is an input for week 1=w  
 

p
wY               :  total production amount of product p produced during period w 

 
p
wFslack      :  represent shortfall in w-step ahead forecast for product p 
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p
wSSslack     :  represent shortfall in target safety stock level of period w for product p 

 

wLLHU ,  :  total production time-hours usage for production line L in period w 

 
wsMHU ,  :  total man-hours usage of labor type s in period w 

 
wsoMHU ,  :  total overtime man-hours usage of labor type s in period w 

 

The following production and inventory related parameters are used:  

pSSL           :  target safety stock level for product p determined by the current 
method using equation (4-6) and fixed at a constant level for each 
period of the 12-week planning horizon 
 

wsrMH ,        :  total regular man-hours available for labor type s in period w 
 

wsoMH ,  :  total overtime man-hours available for labor type s in period w 
 

p
LLR           :  total number of workers required to produce one unit of product p on  

production line L  
 

wLLH ,  :  total production time-hours available for production line L in period w 

 
p

LT  :  average production rate per hour for product p on production line L  
 

p
LSR  :  average scrap rate for product p on production line L 

 
p
LBR  :  average machine breakdown rate in production line L when producing  

                        product p  
 

wOD  :  overtime decision at period w, which is 1 if overtime is planned at  
   period w and zero otherwise 
 

The objective function will be defined in terms of the following economic 

parameters: 
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p
LPC   :  total production costs per unit of product p on production line L  

   accrued until finished goods inventory 
 
WFslack       :  objective function weight for per unit of shortfall in forecast  

requirements 
 

WSSslack     :  objective function weight for per unit of shortfall in target safety stock  
level, which is much lower than WFslack  
 

sOC             :  cost per overtime man-hour for labor type s 
 

pP               :  priority of product p  
 
h                  :  multiplier for unit holding cost per period for products 
 

The below linear programming model determines the production requirements of 

products at each period of the 12-week planning horizon with the objective of 

minimizing weighted combined costs of penalties per unit-violation of forecast 

requirements, penalties per unit-violation of target safety stock level requirements, 

inventory holding cost, and overtime man-hour cost. 

 

MINIMIZE   ( Penalty for per unit of  +  Penalty for per unit of 

 +  Penalty for per unit of  +  Inventory Holding 

Costs  +  Overtime Costs  ) 

∑ p
wFslack

p
wSSslack p

wSLFslack

SUBJECT TO 
pI1  =  Initial Inventory of product p 

(C1)             )(1
p
w

p
w

p
w

p
w

p
w FslackFYII −−+=+ ∀  product p and period w 

(C2)          )()( p
w

p
w

p
w

p
w

p
w SSslackSSLFslackFI −+−≥ ∀  product p and period w 

(C3)              p
w

p
w SSLSSslack ≤ ∀  product p and period w 
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(C4)           p
w

p
w

n

j

p
jw

p
w SLFslackSSLFI −+≤ ∑

=
+ )(

0
∀  product p and period w 

(C5) ))1(*)1(*(*,
p
L

p
L

p
L

p
w

p

p
sws BRSRTYLRMHU −−= ∑  

(C6) wswsws oMHrMHMHU ,1,1,1 +≤             ∀  period w 

(C7)               ∀  period w  ∑∑ +≤
s

wsws
s

ws oMHrMHMHU )( ,,,

(C8)         wwsws ODoMHoMHU *,, ≤ ∀  labour type s and period w  

(C9) ))1(*)1(*(,
p
L

p
L

p
L

p

p
wwL BRSRTYLHU −−= ∑      ∀  line L and period w  

(C10)            wLwL LHLHU ,, ≤ ∀  line L and period w  

 

Constraint (C1), the inventory balance equation, relates the production, inventory, 

and demand variables to each other for product p and for period w. This constraint 

balances the beginning inventory status of each SKU at the beginning of week w+1 

from the beginning inventory status of the previous week w plus production during 

the previous week w minus forecasted demand for the previous week w. Here the 

model assumes that demand of week w is known with certainty and hence forecasted 

demand figures are used in the recursion to represent the shipment amounts made at 

week w.  

  

According to the existing performance measurement system, the manufacturer’s 

beginning inventory  at period w must be at least the minimum inventory level 

specified for that item to satisfy high percentage of demand in that period from the 

finished goods inventory. Constraint (C2) expresses this condition, which requires 

that forecasted demand and target safety stock level for all items must be met in its 

p
wI
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entirety as much as possible. Production is also constrained by the shelf life 

decisions. Constraint (C4) limits the beginning inventory of items with short shelf 

life. 

 

Constraints (C1), (C2), (C3) and (C4) include slack variables to represent amount of 

violation for the corresponding constraints. For illustration, by using slack variable 

 in inventory balance equation (C1), negative inventory positions are 

eliminated from the consideration. Constraints containing slack variables are 

associated with relevant objective function terms. When a slack variable takes value 

greater than zero it means that corresponding constraint will be violated at a cost, 

which is linear penalty per unit of violation. The occurrence of such a violation may 

indicate that a little overtime is needed, or it may signal a capacity bottleneck that 

cannot be avoided in the short term.  

p
wFslack

 

Constraint (C5) computes total man-hours usage of labor type s in period w by using 

production rates, labor requirements and total production amounts for all products 

produced at period w. Constraint (C6) and (C7) ensure that total man-hours usage for 

labor types is less than or equal to total regular man-hours plus total overtime man-

hours available in period w. Constraint (C8) ensures that total overtime man-hours 

usage of labor type s in period w is less than total overtime man-hours available.  

 

Constraints (C9) and (C10), line capacity constraints, relate the total production time-

hours consumed by production line L to total production time-hours available for that 

line at period w. And additional constraints on man-hours availability, which relate 
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the man-hours usage to regular and overtime man-hours available per manpower 

types for that period, are also considered. For simplicity, additional constraints that 

are included in the analysis are not reproduced here since they are not relevant 

directly to safety stock analysis of the thesis.  

 
 
 
5. 2. MPS Model – 1 
 
 
 
The second master production scheduling model considered, MODEL-1, has the same 

structure as the original model, MODEL-0, except that target safety stock levels are 

determined from demand variability as opposed to forecast error variability. For 

MODEL-1, target safety stock level for product p, , is determined exogenously 

employing the estimated variance-covariance matrix of forecast updates under the 

assumption of independent product demands by using equation (4-13). Being a 

parameter, they are fed into the model at a constant level for each period of the 12-

week planning horizon as in MODEL-0. 

pSSL

 
 
 
5. 3. MPS Model – 2 
 
 
 
The third master scheduling model, which may be referred to as MODEL-2, employs 

the proposed method of establishing target safety stock levels. They are based on 

demand variability that is calculated from the variability of forecast updates by the 

expressions that specify equation (4-13) and (4-17). In that method we take into 
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account correlations of forecast updates across products and time periods, which are 

captured from the estimated variance-covariance matrix.  

 

Different from the existing safety stock method, the proposed safety stock method 

determines target safety stock levels endogenously within the as MODEL-2 and does 

not fix target safety stock at a constant level over the planning horizon. The premise 

of this practice is that target safety stock levels vary over the 12-week planning 

horizon as uncertainty is being resolved while forecasts evolve. This can be seen 

from the above  expression in which as the period being forecasted 

becomes far from the current period, the number of random-update terms increase. 

For illustration, for the third period of the planning horizon target safety stock level 

for product p is established by quantifying variability of demand in that period of the 

MPS planning horizon. 

)Dvar( p
s

)ln(

 

In addition to indices used in the MODEL-0 the index Gi for product groups such that 

Gi ∈  { G1, G2, … , G9 } is used in MODEL-2. 

 

Being a parameter in MODEL-0, target safety stock level for product p, , which 

is determined by the current safety stock method using equation (4-6) and fixed at a 

constant level for each period of the 12-week planning horizon, is now replaced by 

the following decision variable in MODEL-2 as:   

pSSL

p
wSSvar        :  target safety stock level for product p in period w determined  

           endogenously within MODEL-2 (decision variable) 
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The following parameters are employed within the related constraints in order to 

determine the optimal value of the decision variable : p
wSSvar

p
wSSind        :  target safety stock level for product p in period w determined  

           independently of the other products using equation (4-13)  

 
Gi
wSSgroup    :  target aggregate safety stock level for product group Gi in period w  

           determined by considering correlations across products and time   

           periods using equation (4-17) 

 

The objective function coefficients and production and inventory related parameters 

are the same as in MODEL-0. However, in MODEL-2, decision variables  are 

handled in a different way from the other two models such that products having 

lower priority result in lower target safety stock levels. 

p
wSSslack

 

The below linear programming model determines the production requirements of 

products at each period of the 12-week planning horizon with the objective of 

minimizing weighted combined costs of penalties per unit-violation of forecast 

requirements, penalties per unit-violation of target safety stock level requirements, 

inventory holding cost, and overtime man-hour cost. 

 
MINIMIZE   (  Penalty for per unit of  +  Penalty for per unit of 

 +  Penalty for per unit of  +  Inventory Holding 

Costs  +  Overtime Costs  ) 

∑ p
wFslack

p
wSSslack p

wSLFslack

SUBJECT TO 

pI1  =  Initial Inventory of product p 
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p
wwL BRSRTYLHU −−= ∑      ∀  line L and period w  

(C10)            wLwL LHLHU ,, ≤ ∀  line L and period w  

 
 

The inventory balance equation, constraint (C1), remains the same as in MODEL-0. 

However, constraint ( C2 ) now strives to attain that the beginning inventory,  at 

period w is equal to forecasted demand plus target safety stock level as much as 

possible. Constraint (

p
wI

C3) is now comprised of two different decision variables and 

optimal value of a decision variable is constrained by the optimal value of the other 

decision variable. 

 92



 

Constraint (C-I) ensures that target safety stock level for product p, , is equal 

to at most , which is target safety stock level determined under the 

assumption of independent product demands. Constraint (C-II) defines a lower limit, 

, for the total of individual target safety stock levels of products 

belonging the same product group. Constraint (C-III) ensures that target safety stock 

level at period w is less than or equal to that of period w + 1 to remain consistent 

with the fact that more uncertainty is resolved in period w than in period w + 1 over 

the planning horizon. 

p
wSSvar

p
wSSind

Gi
wSSgroup

 

A collection of individual constraints (C-I) for the set of products belonging product 

group Gi can be consolidated into the following expression for product group Gi as:  

∑∑
∈∈

≤
Gip

p
w

Gip

p
w SSindSSvar        ∀  product group Gi and period  w                      (5-1) 

 

It can be written for product group Gi by arranging the above expression and 

constraint (C-II) that: 

∑∑
∈∈

≤≤
Gip

p
w

Gip

p
ww SSindSSvarSSjoint Gi     ∀product group Gi and period w       (5-2) 

∑
∈

≤
Gip

p
ww SSindSSjoint Gi          ∀product group Gi and period w       (5-3) 

 

Actually, this is the natural ordering we would like to obtain as a result of 

optimization. Note that if products belonging group Gi had independent demands 
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actually, then covariance terms in the expressions that specify equations (4-13) and 

(4-17) would be zero and constraint (C-I) and expression (5-2) would become as 

follows: 

p
w

p
w SSindSSvar =    

∑∑
∈∈

==
Gip

p
w

Gip

p
ww SSindSSvarSSjoint Gi  

 

Expression (5-2) follows from the fact that , or equivalently, 1,1 ≤≤−
′ )sDscorr(D pp

1
,

1 ≤≤−
′

′

)svar(D)svar(D

)sDscov(D

pp

pp

        ⇒  )svar(D)svar(D)sDscov(D pppp ′′
≤,  

 

Hence by using this result in  calculation we can obtain expression (5-3) as 

follows: 

Gi
wSSjoint

 

Gi
wSSjoint      =   K * )sDsvar(D pp ′

+    

                     =   K * )sDscov(D)svar(D)svar(D pppp ′′
++ ,*2  

                    ≤    K * )svar(D)svar(D)svar(D)svar(D pppp ′′
++ *2  

                    ≤    K * 2)( )svar(D)svar(D pp ′
+  

   ≤    K * ( )svar(D)svar(D pp ′
+  )      

Gi
wSSjoint    ≤       ∑

∈Gp

p
wSSind
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5. 4. Experimental Runs 
 
 
 
Before making the experimental runs, several relevant MPS problem characteristics 

are worth noting:  

� Planned cumulative production lead time is set at one-week. Hence MPS 

requirements to be produced during period w of the 12-week planning horizon are 

meant to be available for delivery at the beginning of period w + 1. 

� Although corresponding shipments are actually made during period w + 1, we 

assume that total amount of shipments to be made during period w + 1 are made 

all at once at the beginning of period w + 1. 

� It is assumed that the demand for any product that is not satisfied due to 

stockouts is treated as lost sales. Indeed, in the current environment backlogging 

is allowed, that is, amount of customer order placed by distributors and chain 

markets that remains unsatisfied can be met later than it occurs. Therefore the 

demand data made available to us reflects the backlogged amount of past 

demands.  

� Production decisions in the running week are fixed. That is, as the models are 

solved at the beginning of each period in a rolling format, it recommends 

production levels for the second period (one week later the running week) and 

beyond covering 12 weeks. The main reason for this is that materials are not 

constrained in the models and it takes time to procure raw materials and 

packaging materials in place for production.  
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We consider three performance metrics for each product:  

1. Total amount of customer orders quantified in tons that are filled from the stock 

2. Total number of customer orders that are completely filled from the stock 

3. Average projected inventory on hand at the beginning of week 

 

Note that objective function values are not comparable for all models as the safety 

stock values are handled differently. Moreover, the weighting structure in the 

objective function results in values that are not numerically interpretable and 

comparable. 

 

To experiment the above MPS models in parallel for comparison in the rolling 

planning horizon context, we roll each model for a 12-week period in succession 

using historical forecast and demand data and obtain 12 different, successive master 

production plans. At each simulation week, we execute the first week of the resulting 

master production plan by implementing the standard inventory, production and 

demand recursion. In this recursion, we treat MPS production requirements as actual 

production amounts and employ the historical demands of the related week to 

balance the beginning inventory that will be used in the next roll. 

 

In each roll, we calculate and collect the following statistics corresponding to the 

performance metrics considered for each product: 

� target and realized safety stock levels for each period of the 12-week planning 

horizon 
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� total inventory left over at the end of the first period of the resulting master 

production plan 

� total amount of demand that are filled from the beginning inventory  

� the number of successes (a success occur if demand is completely filled from the 

beginning inventory) 

 

We present the results of computational study with these statistics and explore the 

benefits of integrating forecast volatility measure into master production scheduling 

models through the use of different methods of establishing products’ target safety 

stock levels. 

 

Some relevant general observations from the experimental runs are worth noting. 

� Weekly forecasts provided for each period of the 12-week planning horizon are 

satisfied in the same way. That is, decision variable  for a particular 

product p and period w takes the same value as a result of optimization with each 

one of the three models. 

p
wFslack

 

� Using different ways of determination, target safety stock levels are established in 

a different way in each model. MODEL-2 establishes lower total level of target 

safety stock. And, employing correlations and product priorities it allocates 

production time-hour capacity between products differently from the other two 

models. 
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� Target safety stock requirements are satisfied in different way in each model. That 

is, decision variable  for a particular product p and period w takes the 

different values as a result of optimization with each one of the three models. And 

hence, production quantities  recommended for a particular product p and 

period w by the models are different. 

p
wSSslack

p
wY

 

For each MPS model and product p, averaged over the 12-week experimentation 

period target safety stock and ending inventory levels are obtained and presented in 

Table 3. Average target safety stock levels indicate that MODEL-2 supports holding 

lowest of total amount of safety stock levels. Note that the values in the row labeled 

as TOTAL are simply the sum of the values in the respective columns. Therefore, 

these totals have no significance with respect to inventory value. Considering 

bivariate correlations of forecast updates across products and time periods and 

employing the product priority scheme more effectively, MODEL-2 determines more 

realistic target safety stock levels. For example, it determines higher levels for some 

products than MODEL-0 and lower levels for some others. When operating almost at 

full capacity, impact of product priorities on target safety stock levels becomes more 

apparent if MODEL-2 is used since the issue of allocating production line time-hours 

availability between products is dealt with more effectively by MODEL-2. 
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Table 3 Average target safety stock levels and average ending inventory levels 
 

    Average target safety stock levels (tons)      Average ending inventory levels (tons) 
  MODEL-0 MODEL-1 MODEL-2  MODEL-0 MODEL-1 MODEL-2 

p1 15.8 29.4 9.7  27.6 40.2 21.1
 p2 14.5 11.5 12.0  15.0 11.9 12.3
 p3 33.8 40.5 34.6  42.8 50.1 43.8
 p4 3.3 2.4 2.4  2.2 1.3 1.5
 p5 8.7 9.0 4.0  11.5 12.0 6.9
 p6 23.6 28.4 28.7  43.2 48.1 49.0
 p7 8.5 13.6 2.3  23.1 28.4 18.2
 p8 4.8 6.7 0  7.9 9.8 3.2
 p9 4.4 6.7 5.5  8.0 10.4 9.3
 p10 5.8 4.7 2.0  9.3 8.1 5.6
 p11 3.9 3.6 3.6  4.5 4.2 4.1
 p12 7.7 9.8 10.7  13.0 14.9 15.9
 p13 10.0 15.9 9.8  14.6 20.1 14.1
 p14 6.3 8.8 7.2  9.4 11.7 10.4
 p15 4.5 7.5 7.8  8.3 11.1 11.4
 p16 21.2 35.3 29.9  46.7 60.2 54.9
 p17 26.5 32.2 18.4  36.2 42.5 28.3

TOTAL 203.0 265.9 188.6  323.3 385.0 310.0
 
 
 
In Table 4 below, entries of Table 3 is given as a percent of mean weekly demand 

for each product p. Note that for MODEL-2 results in lower target safety stock levels 

in terms of percent of mean weekly demand. 

 
 
Table 4 Average target safety stock levels in percent of mean weekly demand (%) 

 
  MODEL-0 MODEL-1 MODEL-2  

p1 57.3 106.6 35.2  
 p2 96.7 76.7 80.0  
 p3 78.9 94.6 80.8  
 p4 150.5 109.4 109.4  
 p5 75.9 78.5 34.9  
 p6 54.6 65.8 66.5  
 p7 36.8 58.9 10.0  
 p8 60.6 84.6 0.0  
 p9 54.7 83.4 68.4  
 p10 62.2 50.4 21.5  
 p11 86.1 79.5 79.5  
 p12 59.1 75.2 82.1  
 p13 68.4 108.8 67.1  
 p14 66.7 93.1 76.2  
 p15 54.2 90.3 93.9  
 p16 45.4 75.7 64.1  
 p17 73.2 88.9 50.8  

TOTAL 62.9 82.2 58.3  
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Under MODEL-2 for each period of the 12-week planning horizon, Table 5 reports 

target safety stock levels for each period of the planning horizon, , averaged 

over the 12-week experimentation period. Target safety stock levels do vary by 

period of the 12-week planning horizon. The results are consistent with the premise 

of MODEL-2, which is that target safety stock levels vary over the 12-week planning 

horizon as uncertainty is being resolved while forecasts evolve.  

p
wSSvar

 
 

Table 5 Averages of target safety stock levels, , by periods of the planning 
horizon under MODEL-2 (in tons) 

p
wSSvar

 
  PERIODS 

  1 2 3 4 5 6 7 8 9 10 11 12 
p1 9.1 9.4 9.4 9.7 9.7 9.9 9.9 9.9 9.9 9.9 9.9 9.9 
p2 11.0 11.8 11.8 11.9 12.0 12.0 12.0 12.0 12.2 12.3 12.4 12.4 
p3 31.8 32.2 32.2 34.0 34.6 35.0 35.0 35.1 35.6 35.9 36.9 36.9 
p4 2.0 2.1 2.1 2.1 2.2 2.3 2.4 2.4 2.5 2.6 2.9 3.0 
p5 2.0 2.5 2.5 2.6 2.8 3.4 3.8 4.2 4.8 5.6 7.0 7.2 
p6 21.6 23.3 24.4 26.5 28.1 28.4 29.0 29.7 30.5 31.4 35.5 36.2 
p7 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.1 2.8 2.8 3.0 3.0 
p8 0 0 0 0 0 0 0 0 0 0 0 0 
p9 3.3 3.5 3.5 3.9 5.0 5.0 5.2 6.9 7.4 7.4 7.6 7.6 

p10 1.2 1.2 1.3 1.5 2.1 2.1 2.2 2.3 2.4 2.4 2.4 2.4 
p11 3.3 3.4 3.4 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 
p12 9.3 9.9 10.1 10.5 10.7 10.8 11.0 11.0 11.1 11.2 11.6 11.7 
p13 7.0 7.1 7.1 7.9 9.0 9.5 10.2 11.1 11.7 12.1 12.7 12.8 
p14 5.4 5.9 6.2 6.6 6.9 7.1 7.2 7.5 7.6 7.8 9.0 9.2 
p15 6.9 6.9 7.0 7.2 7.6 7.7 7.7 8.0 8.0 8.1 9.0 9.0 
p16 20.7 22.0 25.0 29.5 30.9 30.9 31.4 32.0 32.3 33.1 35.0 35.6 

PR
O

D
U

C
TS

 

p17 15.3 16.5 18.1 18.2 18.3 18.3 18.3 18.5 18.8 19.5 20.4 20.8 
Total 151.8 159.6 166.2 177.7 185.6 188.1 191.0 196.4 201.3 205.6 218.8 221.4

 
 
 
It is important to note that the performance of MODEL-2 is more seriously affected 

by the product priority scheme than that of the other models. This occurs because 
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MODEL-2 recommends higher target safety stock levels for high priority products 

and lower levels for low priority products. For example, it sets target safety stock 

level of product p8, which has the lowest product priority over the other products, at 

zero. 

 

Another notable observation obtained from Table 5 is that there is a considerable 

increase in average target safety stock level of product p5, , from period 1 

to period 12. It goes up from 2.0 tons in period 1 to 7.2 tons in period 12. This 

observation is a result of what MODEL-2 intends to perform. Product p5 is contained 

in product group G2 together with product p4 and also in group G7 with products p1, 

p2, p3, p4. Actually, product p4 and p5 have the same brand with different package 

size and hence they can be viewed as substitute products. Investigating the 

covariance terms  for product p5 (calculated using 

equation (4-15) and specifies equation (4-16)) reveals that value of the covariance 

term,  goes up from 0.05224 in period 1 (n = 1) to 

0.36729 in period 12 (n = 12). In other words, degree of correlation between products 

p5 and p4 is higher in period 12 than in period 1. This results in higher 

,  value calculated using equation (4.16), and hence higher target 

safety stock level for product group G2, , in period 12 determined by using 

equation (4.17). Table 6 contains  ’s averaged for each period of the 12-

week planning horizon. Table 7 tabulates target safety stock levels for individual 

5p
wSSvar
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products p4 and p5, ’s, averaged for each period of the 12-week planning 

horizon. Note that ’s for a particular product p are calculated independently 

from the other products using equation (4-13).  

p
wSSind

p
wSSind

 
 

Table 6 Averaged target safety stock levels for product group G2, , by 
periods of the planning horizon under MODEL-2 (in tons) 

2G
wSSjoint

 
 
 PERIODS 

 1 2 3 4 5 6 7 8 9 10 11 12 
G2 3.3 3.5 3.9 4.5 5.0 5.6 6.2 6.6 7.2 8.1 9.9 10.2 

 
 
 

Table 7 Averaged target safety stock levels for individual products p5 and p4, 

, by periods of the planning horizon (in tons) p
wSSind

 
 
 PERIODS 

 1 2 3 4 5 6 7 8 9 10 11 12 
p4 2.4 2.4 2.5 2.6 2.7 2.7 2.8 2.8 2.8 2.9 3.1 3.1 
p5 8.8 9.1 9.3 9.7 9.8 10.0 10.3 10.3 10.6 11.3 13.1 14.2 

 
 
 
Therefore, constraints (C-I), (C-II) and (C-III) for MODEL-2 produce the above 

observation concerning  for product p5. Given the increase in  

from period 1 to period 12, constraints (C-II) ensure that the sum of  and 

 for product p4 and p5 in period 12 is higher than that of period 1. However,  

5p
wSSvar 2G

wSSjoint

4p
wSSvar

5p
wSSvar

how an increase in this sum should be allocated to an individual  for each 

product p within a particular product group is determined by constraints (C-I) and 

p
wSSvar
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(C-III). Table 7 indicates that from period 1 to period 12 there is more increase in 

 for product p5 than for product p4. Therefore, given product priority scheme  p
wSSind

and correlations, constraint (C-I) ensures that the increase in  is higher than 

the increase in . 

5p
wSSvar

4p
wSSvar

 

We evaluate the other performance measures considered in terms of product groups. 

As mentioned before we construct nine product groups in terms of brand and 

production line. Product group G1 is a brand group including products with different 

package sizes. For products contained in product group G1 and for each MPS model, 

Table 8 reports two performance metrics, total number of demands completely filled 

from the beginning inventory and percentages of total amount of demand filled from 

the beginning inventory. It also tabulates averages of realized safety stock levels at 

the first period of the 12-week planning horizon. The results indicate that, overall, 

MODEL-2 performs better than MODEL-0 and MODEL-1. Figures corresponding to 

two performance metrics demonstrate that MODEL-2 results in measurable savings in 

safety stock levels while performing better delivery performance than MODEL-0 and 

nearly the same performance as MODEL-1. For example, for product p1 MODEL-0 

and MODEL-1 determine excessive safety stock levels. Obviously, with more 

experimental runs and hence more resulting computational data, figures for 

performance measures will be more reliable with respect to service level and one is 

expected to compare the performances of the models better. 
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Table 8 Performance measures for product group G1 

 
  

averages of  realized SS levels 
(in tons) 

 number of orders filled completely  % of total amount of orders filled

  MODEL-0 MODEL-1 MODEL-2 MODEL-0 MODEL-1 MODEL-2 MODEL-0 MODEL-1 MODEL-2 

 p1 6.8 13.6 3.9  9 10 9  87.4 91.8 90.2

 p2 7.1 4.7 5.9  10 9 10  96.8 97.3 97.9

 p3 15.6 19.8 16.1  9 10 10  89.1 95.2 93.7

 

 
 
Product groups G2, G3, G4 and G5 exhibit a similar behavior as product group G1. 

Product group G4 differs from the other brand groups in logistical demands such that 

products in G4 are channeled to end consumers through chain markets.  

 

Each one of product groups G7, G8 and G9 contains products that are being 

processed on the same production line so that they compete for the same production 

line capacity. Therefore, under the low capacity setting, efficacy of MODEL-2 

becomes also more apparent for these product groups.  

 
 

Table 9 Performance measures for product group G9 
 

  
averages of realized SS level  

(in tons) 
 number of orders filled completely  % of total amount of orders filled

  MODEL-0 MODEL-1 MODEL-2 MODEL-0 MODEL-1 MODEL-2 MODEL-0 MODEL-1 MODEL-2 

 p12 2.7 3.6 4.1  10 11 11  92.3 95.0 96.0
 p13 3.9 6.8 3.7  10 11 11  93.7 94.9 94.1
 p14 1.9 3.2 2.4  9 10 10  88.0 90.8 90.2
 p15 1.1 2.4 2.6  9 10 11  89.2 91.9 92.4

 

 
 
Table 9 shows the results corresponding to product group G9. Note that, for product 

p13 of that group, MODEL-2 propose lower average realized safety stock levels than 

the other two models while achieving better delivery performance than MODEL-0 
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and the same delivery performance as MODEL-1 does. This finding reflects what 

MODEL-2 intends to perform. Similar tables for the other product groups are given in 

Appendix E. 
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CHAPTER 6 
 
 

CONCLUSION 
 
 
 

This thesis has explored how forecast volatility is incorporated into an aggregate 

production planning problem with the aim of determining target safety stock levels. 

There can be no doubt of direct impact of more accurate forecasts provided by the 

buyer on customer delivery performance of the manufacturer, as well as its indirect 

impact on chain-wide efficiency.  

 

We use a probabilistic model where forecast modification activity performed by the 

buyer over time is characterized by random variables. We bridge theory and practice 

in the second part of the thesis. For our application in the manufacturer’s MPS 

problem, we provide a way of safety stock level determination that describes typical 

information and data flow in an abstract manner. 

 

In the supply chain under consideration, higher delivery performance with fewer 

inventories represents a vital competitive dimension for the manufacturer and for the 

buyer as a whole. Basically, inventory management reveals the way the business is 

being run and indicates in a sense how well the business is performing against the 

competition. Through a focused study, we have addressed incorporating forecasting 
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characteristics of the buyer into production planning activities of the manufacturer. 

In particular, we examined the concept of correlations captured by variance-

covariance matrix of forecast modifications and their effect on target safety stock 

levels, and in turn, on delivery performance. 

 

By determining safety stock levels using variability of demand as opposed to 

variability of forecast errors, the manufacturer can prevent the buyer from 

manipulating the operations to conform to its functional objectives, which is the 

reality of the supply chain considered since she buyer performs the dominant 

functions, which sales and marketing activities and in turn has more power than the 

manufacturer. 

 

For the MPS environment described, we compared the original production planning 

model, which considers variability of historical forecast accuracy in determining 

safety stock levels, with the proposed models that are based on variability of demand. 

One of the proposed models also takes into account correlations in forecast changes 

and establishes target safety stock levels endogenously within the model. We have 

observed that under multiplicative form of martingale model of forecast evolution the 

latter results in lower expected target safety stock levels with better allocating 

production capacity between products using priority scheme more effectively. 

 

This study provides some contributions to fill a gap in current production/inventory 

policies literature concerning the impact on safety stock levels of correlations in 
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forecast modifications and of forecast volatility measured by variability of forecast 

accuracy. 

 
On a broader level, the recommendation to management of the group is to maintain 

and promote the corporate emphasis on efforts to achieve manufacturer and buyer’s 

working together much more closely to realize their mutual business goals. To 

achieve greater coordination across the supply chain, information exchange barriers, 

such as a lack of appropriate corporate rules, tools and interface must be removed 

and information transparency must be achieved. Indeed, the lack of information 

visibility beyond the immediate partner in the supply chain can limit the efficacy of 

the results. Then analysis and models such as those presented in this thesis can help 

assess the impact of particular actions and prioritize improvement opportunities. 

 

This information visibility includes sharing immediate customer’s demand 

information as well as sharing inventory status data, and even capacity information. 

For example, forecasts depend solely on the demand signal from immediate 

downstream customers results in excessive safety stock, which is a direct effect of 

the bullwhip effect. Manufacturer’s production planning system is based on 

production orders provided by the buyer and adjusted to support reliable delivery of a 

wide variety of products.  

 

To manage the flow of the materials, production and delivery, and to link all 

production activity, the manufacturer has laid great emphasis on forecasts provided 

by the buyer, as expressed by production orders. However it is preferable to place 
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some emphasis on other information about customers, suppliers and production, 

which affect the accuracy of the schedules derived from the master production 

schedule, where processes make items regardless of actual end demand, i.e. forecast 

oriented method.  

 

The ultimate vision of higher delivery performance with fewer inventories assumes a 

supply chain capable of effectively responding to customer orders with just value-

added amounts of inventory between each stage. Opportunities for future work on the 

topics addressed by this thesis involve ways of prioritizing products more 

dynamically with the aim of contributing to transform this vision into reality. Priority 

scheme of products may be determined by taking into account inventory status of 

distributors or even pipeline inventory so that if pipeline inventory for a product is 

relatively high then that product takes lower priority. Another possible alternative is 

to prioritize the products according to amount of backorder for that product so that 

higher backorder amount during lead time reflects higher priority. Echelon stock idea 

to prioritize the products is the third possible alternative. Echelon inventory level for 

a product is constrained by a management-specified upper level. Greater difference 

between actual echelon inventory level and this upper level for a product implies 

higher priority for that product.  

 

The goal of this thesis is to address the critical issue of forecast churning and its 

related impact on inventory levels. Another measure of success will be if it 

stimulates the company to evaluate future opportunities to apply this work to 

practical business cases. 
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APPENDIX A 
 
 

SOME TIME SERIES PLOTS AND BOX-PLOTS 
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Figure 7 Time Series Plot for product p13 
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Figure 8 Box-Plot for product p13 
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APPENDIX B 
 
 

SOME EXAMPLES OF FORECAST UPDATES 
 
 
 
Table 10, 11 and 12 below contains samples of some logarithmic forecast updates 

expressed as natural logarithms of ratios of successive forecasts for product p13, p16 

and p5, respectively. Where jη  for j ∈  { 0, 1, …, 11 } represent logarithmic forecast 

updates made in (j + 1)-period ahead forecasts to obtain j-period ahead forecast. In 

particular, column 0η  represents forecast errors expressed as natural logarithms of 

ratios of one-period ahead forecasts and actual demands.  
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Table 10 Some of Normal Forecast Updates for product p13 

 
T 11η  10η  9η  8η  7η  6η  5η  4η  3η  2η  1

η  0η  

1 0 0 0 0 0 0 0 0 -0.02 -0.03 0 0.052 
2 0 0 0 0 0 0 0 0 -0.02 -0.03 0 -0.31 
3 0 0 0 0 0 0 0 0 -0.02 -0.03 0.058 -0.65 
4 0 0 0 0 0 0 0 0 -0.02 -0.03 0 -0.79 
5 0 0 0 0 0 0 0 0 -0.02 -0.03 0 -0.15 
6 0 0 0 0 0 0 0 0 -0.02 -0.03 0 -0.05 
7 0.373 0.368 0.059 -0.09 -0.02 0 0.1 -0.18 -0.13 0.054 0.047 -0.52 
8 0 0 0 0 0 0 0 0 -0.02 -0.03 0 -0.73 
9 0 0 0 0 0 0 0 -0.02 -0.03 0 -0.11 

10 0 0 0 0 0 0 0 0 -0.02 -0.03 0 -0.19 
11 0 0 0 0 0 0 0 0 -0.02 -0.03 0 0.124 
12 -0.11 -0.05 0.042 -0.01 -0.36 -0.36 -0.36 -0.35 -0.24 -0.26 -0.23 -0.78 
13 0 0 0 0 0 0 0 0 -0.02 -0.03 0 -0.51 

: : : : : : : : : : : : : 

: : : : : : : : : : : : : 
94 0.154 0 0 0 0 0 0 0 -0.02 -0.03 -0.06 0.333 
95 0 0 0 0 0 0 0 0 -0.02 -0.03 0 0.07 
96 -0.06 0.021 -0.06 0 0 0 0 0 -0.02 -0.03 0 -0.27 
97 0 0 0 0 0 0 0 0 0.165 -0.03 0 0.358 
98 0 0 0 0 0 0 0 0 -0.02 -0.03 0 -0.02 
99 -0.13 0 0 0 0 0 0 0 -0.02 0.121 0 0.069 

100 0 0 0 0 0 0 0 0 -0.02 -0.03 0 0.096 
101 0 0 0 0 0 0 0 0 -0.02 0.149 0 -0.59 
102 0 0 0 0 0 0 0 0 -0.02 -0.03 0 -0.23 
103 0 0 0 0 0 0 0 0 -0.02 0.073 0 -0.24 
104 -0.14 -0.06 0 0 0 0 0 0 -0.02 -0.03 0 0.5 
105 0 0 0 0 0 0 0 0 -0.02 -0.03 0 0.098 
106 0 0 0 0 0 0 0 0 0.064 0.146 0 -0.55 
107 0 0 0 0 0 0 0 0 -0.02 0.101 0 -0.11 

0 

 
 
 

 

Note that for j = 4, 5, …, 11 variable jη  takes zero values dominantly. Variables 
0

η ,  

3
η , 

2
η , on the other hand, take nonzero values. This indicates that there exists a 

forecast modification activity only for the first 3-4 periods of the 12-week planning 

horizon.  
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Table 11 Some of Normal Forecast Updates for product p16 
 

T 11η  10η  9η  8η  7η  6η  5η  4η  3η  2η  1
η  0η  

1 0 0 0 0 0 0 0 0 0 0 0 0.664 
2 0 0 0 0 0 0 0 0 0 0 0 0.392 
3 0 0 0 0 0 0 0 0 0 0 0 -0.02 
4 0 0 0 0 0 0 0 0 0 0 0 0.475 
5 0 0 0 0 0 0 0 0 0 0 0 0.599 
6 0 0 0 0 0 0 0 0 0 0 0 0.148 
7 0.416 0.416 0.104 -0.09 -0.02 0 0.1 -0.17 -0.12 0.085 0.05 -0.18 
8 0 0 0 0 0 0 0 0 0 0 0 -0.31 
9 0 0 0 0 0 0 0 0 0 0 0 0.429 

10 0 0 0 0 0 0 0 0 0 0 0 0.215 
11 0 0 0 0 0 0 0 0 0 0 0 0.245 
12 0.382 0.451 0.556 0.446 0 0 0 0 0 0 0 -0.11 
13 0 0 0 0 0 0 0 0 0 0 0 -0.45 

: . . . . . . . . . . . . 

: . . . . . . . . . . . . 

94 0.305 0 0 0 0 0 0 0 0 0 0 -0.69 
95 0 0 0 0 0 0 0 0 0 0 0 -0.14 
96 0.075 0.164 -0.08 0 0 0 0 0 0 0 0 -0.27 
97 0 0 0 0 0 0 0 0 0 0 0 -0.1 
98 0 0 0 0 0 0 0 0 0 0 0 -0.58 
99 0.055 0 0 0 0 0 0 0 0 0 0 -0.27 

100 0 0 0 0 0 0 0 0 0 0 0 -0.27 
101 0 0 0 0 0 0 0 0 0 0 0 -0.71 
102 0 0 0 0 0 0 0 0 0 0 0 -0.48 
103 0 0 0 0 0 0 0 0 0 0.196 0 -0.74 
104 9E-04 0.095 0 0 0 0 0 0 0 0 0 0.081 
105 0 0 0 0 0 0 0 0 0 0 0 -0.68 
106 0 0 0 0 0 0 0 0 0.182 0.278 0 -0.95 
107 0 0 0 0 0 0 0 0 0 0.08 0 -0.53 

 
 

 
 
 
Note that for j = 1, 2, …, 11 variable jη  takes zero values dominantly. Variable 

0
η , 

on the other hand, takes nonzero values, which denotes forecast errors. 
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Table 12 Some of Normal Forecast Updates for product p5 
 

T 11η  10η  9η  8η  7η  6η  5η  4η  3η  2η  1
η  0η  

1 0 0 -1.47 0 0 0 0 0 0 0 0 -0.3 
2 0 0 0 0 0 0 0 0 0 0 0 -0.48 
3 0 0 0 0 0 0 0 0 0 0 0.056 -0.63 
4 0 0 0 0 0 0 0 0 0 0 0 -0.16 
5 0 0 0 0 0 0 0 0 0 0 0 -0.1 
6 0 0 0 0 0 0 0 0 0 0 0 0.233 
7 0.079 0.074 -0.23 -0.03 0.046 0.064 0.165 -0.04 0.07 0.26 0.219 -0.18 
8 0 0 0 0 0 0 0 0 0 0 0 -0.67 
9 0 0 0 0 0 0 0 0 0 0 0 0.182 

10 0 0 0 0 0 0 0 0 0 0 0 0.014 
11 0 0 0 0 0 0 0 0 0 0 0 0.256 
12 0.004 0.057 0.158 0.363 0 0 0 0 -0.11 -0.11 -0.11 0.086 
13 0 0 0 0 0 0 0 0 0 0 0 -0.47 

: : : : : : : : : : : : : 

: : : : : : : : : : : : : 
94 0.251 0 0 0 0 0 0 0 0 0 0 0.116 
95 0 0 0 0 0 0 0 0 0 0 0 -0.53 
96 -0.08 -0 -0.08 0 0 0 0 0 0 0 0 -0.17 
97 0 0 0 0 0 0 0 0 0.183 0 0 0.385 
98 0 0 0 0 0 0 0 0 0 0 0 -0.51 
99 -0.02 0 0 0 0 0 0 0 0 0 0 -0.16 

100 0 0 0 0 0 0 0 0 0 0 0 0.324 
101 0 0 0 0 0 0 0 0 0 0.351 0 0.862 
102 0 0 0 0 0 0 0 0 0 0.502 0 0.076 
103 0 0 0 0 0 0 0 0 0 0.198 0 -1.48 
104 -0.11 -0.01 0 0 0 0 0 0 0 0 0 -0.81 
105 0 0 0 0 0 0 0 0 0 0 0 -0.75 
106 0 0 0 0 0 0 0 0 0.235 0.354 0 -1.5 
107 0 0 0 0 0 0 0 0 0 0.28 0 -0.66 

 

 

Similarly, Table 12 comprised of zero values for the majority of variables jη . Only 

the variable 
0

η  takes nonzero values, which denotes forecast errors. 
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APPENDIX C  

 

SOME RESULTS OF THE HYPOTHESIS TESTS 
 
 
 

The results of the hypothesis of normal logarithmic forecast updates are given below 

for some of the variables .  p
jη
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Figure 11 Normal Probability Plot of Forecast Update 0η  for product p13 
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Figure 12 Normal Probability Plot of Forecast Update 0η  for product p16 
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Figure 13 Normal Probability Plot of Forecast Update 0η  for product p5 
 

 

The above normal probability plots do not have large deviations from a straight line, 

suggesting that the logarithmic updates are normal. Normal probability plots and 

Kolmogorov-Smirnov tests indicate that normality assumption is not violated. 
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The results of the hypothesis of independent forecast updates are given in the 

following correlation matrix for the forecast update variables not taking zero values 

dominantly. 

 
 
 
 

Table 13 Bivariate Correlations of Some Forecast Updates for product p13 
 

1.000 .076 .037 .194*
.076 1.000 .052 .098
.037 .052 1.000 .653**
.194* .098 .653** 1.000

. .436 .705 .045
.436 . .591 .314
.705 .591 . .000
.045 .314 .000 .
107 107 107 107
107 107 107 107
107 107 107 107
107 107 107 107

N0
N1
N2
N3
N0
N1
N2
N3
N0
N1
N2
N3

Pearson
Correlation

Sig.
(2-tailed)

N

N0 N1 N2 N3

Correlations

Correlation is significant at the 0.05 level (2-tailed).*. 

Correlation is significant at the 0.01 level (2-tailed).**. 
 

 
 
 

The results are given together with the value of two-tailed probabilities 

corresponding to the 0.05 and the 0.01 levels of significance. Correlation coefficients 

significant at the 0.05 level are identified with a single asterisk, and those significant 

at the 0.01 level are identified with two asterisks. The presence of significant 

correlations indicates that the independence assumption is violated. Therefore, it is 

needed to adjust biased forecasts so that the resulting forecast updates of adjusted 

forecasts satisfy the independence assumption (see Hausman 1969). The results 

indicate that generally the assumption of independence is supported. 
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APPENDIX D 
 
 

THE ESTIMATED VARIANCE-COVARIANCE MATRIX  
 
 
 

Table 12 contains variance and covariance values for normal random variables, ’s 

p  { p1, p2, …, p17 } and period j 

p
jη

∈ ∈  { 0, 1, … , 11 }.  represent the normal 

random variable that generates the updates made to (j + 1)-step ahead forecasts to 

obtain j-step ahead forecasts for product p and period j. Hence  represents the 

random variable that generates forecast error between one-step ahead forecast and 

realized demand for product p. 

p
jη

p
0η

∑  is the 17x12 by 17x12 variance-covariance matrix 

of the 125 by 17x12 data matrix. 
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 p p1 p2 . . . . . . . p17 
p  j 11                 10 9 8 7 6 5 4 3 2 1 0 11 10 9 . . . . . . . 11 10 . . . 0 

11 0.0120             0.0068 0.0027 0.0001 0.0013 0.0007 -0.0006 -0.0020 0.0000 0.0015 -0.0002 -0.0024 0.0051 0.0019 0.0006 . . . . . . . 0.0012 -0.0003 . . . -0.0073 
10 0.0068             0.0259 0.0049 -0.0001 0.0006 0.0003 -0.0006 -0.0022 -0.0036 -0.0012 -0.0007 0.0077 0.0002 0.0190 0.0014 . . . . . . . -0.0030 0.0199 . . . 0.0064 
9 0.0027              0.0049 0.0067 0.0011 0.0009 0.0017 -0.0012 0.0000 -0.0006 0.0023 -0.0006 0.0009 -0.0003 0.0023 0.0045 . . . . . . . -0.0023 0.0017 . . . 0.0018 
8 0.0001 -0.0001               0.0011 0.0046 0.0019 0.0028 -0.0003 0.0000 0.0011 -0.0019 0.0015 0.0009 0.0002 -0.0005 0.0009 . . . . . . . 0.0033 0.0022 . . . -0.0018 
7 0.0013              0.0006 0.0009 0.0019 0.0034 0.0020 0.0004 0.0030 0.0018 0.0019 0.0021 0.0009 0.0004 -0.0007 -0.0004 . . . . . . . 0.0009 -0.0008 . . . 0.0004 
6 0.0007               0.0003 0.0017 0.0028 0.0020 0.0050 -0.0007 0.0008 0.0011 0.0005 0.0020 0.0019 0.0001 -0.0008 0.0010 . . . . . . . 0.0001 -0.0015 . . . -0.0033 
5 -0.0006 -0.0006            -0.0012 -0.0003 0.0004 -0.0007 0.0037 0.0013 0.0008 0.0000 0.0015 0.0007 0.0000 -0.0012 -0.0016 . . . . . . . 0.0015 -0.0013 . . . -0.0024 
4 -0.0020 -0.0022            0.0000 0.0000 0.0030 0.0008 0.0013 0.0104 0.0028 0.0015 0.0001 0.0038 -0.0016 -0.0021 -0.0004 . . . . . . . -0.0020 -0.0043 . . . -0.0009 
3 0.0000 -0.0036             -0.0006 0.0011 0.0018 0.0011 0.0008 0.0028 0.0085 0.0045 0.0028 -0.0022 0.0000 -0.0035 -0.0004 . . . . . . . -0.0004 -0.0052 . . . 0.0028 
2 0.0015 -0.0012             0.0023 -0.0019 0.0019 0.0005 0.0000 0.0015 0.0045 0.0205 0.0033 0.0011 0.0005 -0.0018 0.0011 . . . . . . . -0.0028 -0.0051 . . . 0.0049 
1 -0.0002 -0.0007             -0.0006 0.0015 0.0021 0.0020 0.0015 0.0001 0.0028 0.0033 0.0127 -0.0021 0.0008 -0.0004 -0.0020 . . . . . . . 0.0003 -0.0020 . . . 0.0047 

p1
 

0 -0.0024              0.0077 0.0009 0.0009 0.0009 0.0019 0.0007 0.0038 -0.0022 0.0011 -0.0021 0.1978 -0.0019 0.0060 0.0017 . . . . . . . 0.0055 0.0059 . . . 0.0380 
11 0.0051               0.0002 -0.0003 0.0002 0.0004 0.0001 0.0000 -0.0016 0.0000 0.0005 0.0008 -0.0019 0.0047 -0.0002 0.0000 . . . . . . . 0.0058 0.0007 . . . -0.0072 
10 0.0019 0.0190 0.0023 -0.0005 -0.0007 -0.0008 -0.0012 -0.0021 -0.0035 -0.0018 -0.0004 0.0060 -0.0002 0.0173 0.0014 . . . . . . . -0.0001  0.0207 . . . 0.0050 p2

 

9 0.0006              0.0014 0.0045 0.0009 -0.0004 0.0010 -0.0016 -0.0004 -0.0004 0.0011 -0.0020 0.0017 0.0000 0.0014 0.0059 . . . . . . . 0.0004 0.0033 . . . 0.0000 

. . 
. . 

. . 
. 

. . 
. . 

. . 
. 

. . 
. . 

. . 
. 

. . 
. . 

. . 
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. 

. . 
. . 

. . 
. 

 

. . 
. . 

. . 
. 

. . 
. . 

. . 
. 

 

. . 
. . 

. . 
. 

11 0.0012 -0.0030              -0.0023 0.0033 0.0009 0.0001 0.0015 -0.0020 -0.0004 -0.0028 0.0003 0.0055 0.0058 -0.0001 0.0004 . . . . . . . 0.0265 0.0175 . . . -0.0158 
10 -0.0003             0.0199 0.0017 0.0022 -0.0008 -0.0015 -0.0013 -0.0043 -0.0052 -0.0051 -0.0020 0.0059 0.0007 0.0207 0.0033 . . . . . . . 0.0175 0.0446 . . . -0.0001 

 . . 
. 

. . 
. 

. . 
. 

. . 
. 

. . 
. 

. . 
. 

. . 
. 

. . 
. 

. . 
. 

. . 
. 

. . 
. 

. . 
. 

. . 
. 

. . 
. 

. . 
. 

 . . 
. 

. . 
. 

 . . 
. 

2 0.0008 0.0004 0.0019 -0.0022 -0.0005 -0.0010 -0.0017 -0.0006 0.0009 0.0093 -0.0031 -0.0026 0.0000 0.0003 0.0025 . . . . . . . -0.0027  0.0021 . . . 0.0135 
1 -0.0008             0.0009 -0.0024 0.0007 -0.0002 0.0006 0.0006 -0.0014 0.0007 -0.0039 0.0049 -0.0061 -0.0001 0.0008 -0.0024 . . . . . . . -0.0004 0.0023 . . . 0.0052 

p1
7 

0 -0.0073            0.0064 0.0018 -0.0018 0.0004 -0.0033 -0.0024 -0.0009 0.0028 0.0049 0.0047 0.0380 -0.0072 0.0050 0.0000 . . . . . . . -0.0158 -0.0001 . . . 0.2250 

T
able 14 Som

e Part of the Estim
ated V

ariance–C
ovariance M

atrix (204 x 204)  
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APPENDIX E 
 
 

PERFORMANCE MEASURES FOR PRODUCT GROUPS 
 

 

 

Table 15 Performance measures for product groups G2 
 

  
averages of  realized SS levels 

(in tons) 
 number of orders filled completely  % of total amount of orders filled

  MODEL-0 MODEL-1 MODEL-2 MODEL-0 MODEL-1 MODEL-2 MODEL-0 MODEL-1 MODEL-2 

 p4 1.9 1.0 1.1  11 11 11  96.3 95.9 96.1
 p5 4.5 4.9 2.9  10 11 11  97.2 98.4 96.6

 
 
 

Table 16 Performance measures for product group G3 
 

  
averages of  realized SS levels 

(in tons) 
 number of orders filled completely  % of total amount of orders filled

  MODEL-0 MODEL-1 MODEL-2 MODEL-0 MODEL-1 MODEL-2 MODEL-0 MODEL-1 MODEL-2 

 p12 2.7 3.6 4.1  10 11 11  92.3 95.0 96.0
 p13 3.9 6.8 3.7  10 11 11  93.7 94.9 94.1

 
 
 

Table 17 Performance measures for product group G4 
 

  
averages of  realized SS levels 

(in tons) 
 number of orders filled completely  % of total amount of orders filled

  MODEL-0 MODEL-1 MODEL-2 MODEL-0 MODEL-1 MODEL-2 MODEL-0 MODEL-1 MODEL-2 

 p14 1.9 3.2 2.4  9 10 10  88.0 90.8 90.2
 p15 1.1 2.4 2.6  9 10 11  89.2 91.9 92.4

 
 
 

Table 18 Performance measures for product group G5 
 

  
averages of  realized SS levels 

(in tons) 
 number of orders filled completely  % of total amount of orders filled

  MODEL-0 MODEL-1 MODEL-2 MODEL-0 MODEL-1 MODEL-2 MODEL-0 MODEL-1 MODEL-2 

 p16 11.5 18.4 15.6  8 10 10  89.6 96.7 97.1
 p17 14.6 17.2 10.3  10 11 11  94.9 98.3 97.6
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Table 19 Performance measures for product group G6 

 
  

averages of  realized SS levels 
(in tons) 

 number of orders filled completely  % of total amount of orders filled

  MODEL-0 MODEL-1 MODEL-2 MODEL-0 MODEL-1 MODEL-2 MODEL-0 MODEL-1 MODEL-2 

 p6 10.8 13.3 13.5  7 9 8  85.3 97.6 97.4
 p7 4.1 5.8 1.5  8 10 10  87.6 96.5 95.9
 p8 2.2 3.5 0  10 11 9  96.2 99.1 95.3
 p9 2.1 3.6 2.5  10 11 11  96.7 99.2 99.3
 p10 3.1 2.3 1.2  6 7 5  85.6 93.3 88.9
 p11 2.1 1.9 1.7  10 11 11  98.8 99.4 99.3

 
 
 

Table 20 Performance measures for product group G7 
 

  
averages of  realized SS levels 

(in tons) 
 number of orders filled completely  % of total amount of orders filled

  MODEL-0 MODEL-1 MODEL-2 MODEL-0 MODEL-1 MODEL-2 MODEL-0 MODEL-1 MODEL-2 

 p1 6.8 13.6 3.9  9 10 9  87.4 91.8 90.2

 p2 7.1 4.7 5.9  10 9 10  96.8 97.8 98.2

 p3 15.6 19.8 16.1  9 10 10  89.1 95.2 93.7

 p4 1.9 1.0 1.1  11 11 11  96.3 95.9 96.1
 p5 4.5 4.9 2.9  10 11 11  97.2 98.4 96.6

 
 
 

Table 21 Performance measures for product group G8 
 

  
averages of  realized SS levels 

(in tons) 
 number of orders filled completely  % of total amount of orders filled

  MODEL-0 MODEL-1 MODEL-2 MODEL-0 MODEL-1 MODEL-2 MODEL-0 MODEL-1 MODEL-2 

 p6 10.8 13.3 13.5  7 9 8  85.3 97.6 97.4
 p7 4.1 5.8 1.5  8 10 10  87.6 96.5 95.9
 p8 2.2 3.5 0  10 11 9  96.2 99.1 95.3
 p9 2.1 3.6 2.5  10 11 11  96.7 99.2 99.3
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