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Medical imaging has become the key to access inside human body for the 

purpose of diagnosis and treatment planning. In order to understand the 

effectiveness of planned treatment following the diagnosis, treated body part may 

have to be monitored several times during a period of time. Information gained 

from successive imaging of body part provides guidance to next step of treatment. 

Comparison of images or datasets taken at different times requires registration of 

these images or datasets since the same conditions may not be provided at all 

times. Accurate segmentation of the body part under treatment is needed while 

comparing medical images to achieve quantitative and qualitative measurements.  

This segmentation task enables two dimensional and three dimensional 

visualizations of the region which also aid in directing the planning strategy.  

In this thesis, several segmentation algorithms are investigated and a hybrid 

segmentation algorithm is developed in order to segment bone tissue out of head 

CT slices for orthodontic treatment planning. Using the developed segmentation 
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algorithm, three dimensional visualizations of segmented bone tissue out of head 

CT slices of two patients are obtained. Visualizations are obtained using the 

MATLAB Computer software’s visualization library. 

Besides these, methods are developed for automatic registration of two-

dimensional and three-dimensional CT images taken at different time periods. 

These methods are applied to real and synthetic data. Algorithms and methods 

used in this thesis are also implemented in MATLAB computer program. 

Key words: Medical Imaging, CT, Segmentation, Registration, 

Visualization, Region Growing, Iterative Closest Point 
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 Tıbbı görüntüleme, tanı ve tedavi planlaması amacıyla insan vücudunun 

içine erişebilmenin anahtarı olmuştur. Tanı sonrası uygulanacak tedavi 

planlamasının etkisinin anlaşılması için, tedavi altındaki vücut bölgesinin belirli 

bir sure içerisinde defalarca görüntülenmesi gerekebilir. Vücudun belirli 

bölgesinden sıralı elde edilen görüntülerin birbirleriyle karşılaştırmasıyla kazanılan 

bilgi, tedavinin bir sonraki aşaması için yol gösterici olmaktadır. Sıralı çekimler 

sırasında aynı koşullar yaratılamayabileceğinden, farklı zamanlarda elde edilen 

görüntülerin veya veri kümelerinin karşılaştırılabilmesi, görüntülerin veya veri 

kümelerinin çakıştırılmasına bağlıdır. Niteliksel ve niceliksel ölçümlerin elde 

edilebilmesi için tıbbi görüntülerin karşılaştırılması sırasında vücudun tedavi 

altındaki bölgesinin doğru bölütlenmesi gerekir. Bu bölütleme, planlama 

stratejisine yön vermeye yardım eder ve ilgili bölgenin iki boyutlu ve üç boyutlu 

görüntülerinin oluşturulmasını sağlar. Bu tezde, farklı bölütleme algoritmaları 

araştırılmış ve kafa bilgisayarlı tomografi görüntülerinden kemik dokuyu 

bölütleme için hibrid bölütleme algoritması geliştirilmiştir. Geliştirilen bölütleme 
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algoritması kullanılarak kemik dokusu bölütlenmiş kafa tomografi görüntülerinin 

farklı hastalara ait üç boyutlu modelleri görselleştirilmiştir. Tez sırasında verileri 

görselleştirmek için MATLAB bilgisayar programının görselleştirme 

kütüphanesinden faydalanılmıştır.   

Bunlara ek olarak farklı zamanlarda alınan iki boyutlu ve üç boyutlu 

bilgisayarlı tomografi görüntülerinin otomatik olarak çakıştırılabilmesi için 

yöntemler geliştirilmiştir. Bu yöntemler sentetik ve gerçek veriler üzerinde 

uygulanmıştır. Bölütleme ve çakıştırma algoritmaları ve yöntemleri de MATLAB 

bilgisayar programı içinde gerçeklenmiştir.  

Anahtar Kelimeler: Tıbbi görüntüleme, bilgisayarlı tomografi, bölütleme, 

çakıştırma, görselleştirme, bölge büyütme, yinelemeli yakın noktalar 
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CHAPTER 1 
 
 

1. INTRODUCTION 
 

1.1 Introduction to the project 

Medical Imaging gained an increased importance over the past thirty 

years after the invention of the computerized tomography and various researches 

have been carried out since then. The discovery of computerized tomography scan 

revolutionized medical diagnosis, allowing doctors to see exactly what is going on 

inside the body. Combined with powerful, robust and fast segmentation, 

registration and visualization algorithms, it is now possible to carry out surgical 

planning even during the operation [1].  

Medical imaging can be divided into several phases which start with 

digitizing the images and gathering them to obtain a dataset. If the dataset under 

investigation is from a CT or an MRI machine, it is in the form of slices. 

Interpolation is needed when these slices are not adequate or the dataset formed 

from these slices is not isotropic. Following the interpolation, the body part under 

investigation should be segmented out from the whole data set. Individual slices 

can be combined to provide a three-dimensional visualization. If datasets from 

various imaging techniques or datasets taken within a time period are to be used, 

registrations of the datasets are needed. Segmented and registered datasets can then 

be used to identify an abnormality within the body and to form a treatment plan. 

1.2 Aim and scope of the study 

In this thesis; various segmentation algorithms are investigated for the 

purpose of bone segmentation from head CT slices. Methods for registration of 
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two dimensional and three dimensional automatic registrations of datasets are 

studied. Visualizations of segmented bone tissue and visualization results of 

registration algorithms are shown. Within this study, head CT dataset provided by 

Hacettepe University Orthodontics department are used in developing the 

algorithms. These slices were taken with 2 mm slice thickness with a variable 

pixel resolution from dataset to dataset and they are in DICOM format. In a 

dataset, there are more than two hundred slices. Aim of the study is to extract the 

bones within the slices in order to construct the three dimensional visualization of 

the craniofacial complex. Visualizations of the craniofacial complex at different 

stages of treatment will reveal the effectiveness of the orthodontic treatment.  

Originally images in the CT dataset are recorded as 16-bit and have a 

resolution of 512 by 512. In order to make the computation easier and to speed up 

the execution time, the image content is converted to 8-bit format and size of the 

images reduced using cubic spline interpolation with MATLAB built-in functions. 

1.3 Outline of the thesis 

Chapter 2 is devoted to literature survey about medical imaging. Different 

types of medical imaging techniques are investigated and brief information is 

given about them. In the subsequent sections, the phases of the medical imaging 

covering interpolation, segmentation, registration and visualization are studied. 

Chapter 2 ends with information given about Digital Imaging and 

Communications in Medicine (DICOM), a standard for medical imaging.  

In Chapter 3, segmentation algorithms are investigated. Each algorithm is 

tested with real data and algorithms are discussed according to the results. Chapter 

3 describes the hybrid segmentation algorithm developed to segment the bone 

structure from the head CT slices. Chapter 3 also includes, three dimensional 

visualizations of head CT slices of two patients segmented by the hybrid 

segmentation algorithm. These visualizations are obtained using the visualization 

library  of MATLAB computer software.  
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In Chapter 4, two dimensional and three dimensional automatic registration 

algorithms are investigated. Experimental results of the registration algorithms 

using real and synthetic data are given. At the end of the chapter, developed 

methods are described both for automatic registration of two and three dimensional 

images. 

Chapter 5 is devoted to the conclusions of results obtained from all of the 

algorithms investigated throughout the thesis. Within this chapter, suggestions for 

future work is also provided. 

In Appendices, the MATLAB programs used in realizing the available 

algorithms and developed algorithms are given.  
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CHAPTER 2 
 
 

2. LITERATURE SURVEY 
 

2.1 Introduction 

Medical Imaging dates back to 1895 when Wilhelm Roentgen 

accidentally discovered that a cathode-ray tube could make a sheet of paper coated 

with barium platinocyanide glow, even when the tube and the paper were in 

separate rooms. Roentgen decided that the tube must be emitting some sort of 

penetrating rays. He named them X for unknown. Shortly afterward, he found that 

if he aimed these X-rays through a person’s hand at a chemically coated screen, he 

could see the bones in the hand clearly on the screen. In fact, the very first 

radiograph of human anatomy was Mrs. Roentgen’s left hand, revealing the 

skeleton inside which is shown in Figure 2.1 [2]. 

 

Figure 2.1 First X-Ray image showing the bones of Mrs. Roentgen’s left hand 
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Over the next few decades, X-rays grew into a widely used diagnostic 

tool. Since bones show up clearly as white objects against a darker background, 

Roentgen’s rays proved particularly suited for examining fractures and breaks, but 

they could also spot cancer tumors, respiratory diseases such as tuberculosis or 

black lung, and a variety of other tissue abnormalities via the injection of a 

contrast material [3]. The great strengths of X-rays are their high resolution with 

details as small as 0.1 millimeter and their ease of use. Using X-rays for medical 

diagnosis has some drawbacks. X-rays do not distinguish well between tissues of 

similar densities. In addition to this, X-ray machines expose potentially harmful 

radiation which limits the usage areas and frequency. 

For more than half a century, the science of medical imaging grew 

steadily but slowly, as incremental improvements was made in the X-ray 

technique. With the introduction of computerized tomography in the early 1970’s, 

the growing interest in medical imaging speeded up. Computerized tomography 

relies on taking a series of X-rays, sometimes more than a thousand, from various 

angles and combining them with a computer. Computerized tomography made it 

possible to build up a three-dimensional visualization of any part of the body. Also 

using the interpolation techniques, it is possible to obtain two dimensional slices 

from any angle and at any depth just as if the body is sliced with a sharp knife and 

taken a picture of the result. The CT scan revolutionized medical diagnosis, 

allowing doctors, for instance, to see if a head injury had produced any bleeding in 

the brain or to make out the shape and extent of tumors in cancer patients [4],[5]. 

CT was the first of what has proved to be a flood of new medical 

imaging tools, each of which reveal different information about the body. 

Although the tools work according to various physical principles, the new medical 

imaging techniques all depend on computers to construct the images from a mass 

of data that is collected electronically instead of on film. These new techniques 

open up a wealth of possibilities, only some of which have been reaped, but they 

also demand that researchers solve a host of new problems in order to realize those 

possibilities.  
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2.2 Computerized Tomography 

Tomography refers to the cross-sectional imaging of an object from 

either transmission or reflection data collected by illuminating the object from 

many different directions. The impact of this technique in diagnostic medicine has 

been revolutionary, since it has enabled doctors to view internal organs with 

unprecedented precision and safety to the patient. The first medical application 

utilized X-rays for forming images of tissues based on their X-ray attenuation 

coefficient [3]. More recently, however, medical imaging has also been 

successfully accomplished with radioisotopes, ultrasound, and magnetic 

resonance; the imaged parameter being different in each case.  

Fundamentally, tomographic imaging deals with reconstructing an 

image from its projections. A projection of an image at a given angle is the integral 

of the image in the direction specified by that angle, however, in a loose sense, 

projection can be thought as the information derived from the transmitted energies, 

when an object is illuminated from a particular angle. The energy source herein 

can be a beam of photons; can be ultrasonic waves or microwaves each of which 

determine the type of tomographic imaging.  

There are numerous nonmedical imaging applications which utilize the 

computerized tomography. Researchers have already applied this methodology to 

the mapping of underground resources via cross-borehole imaging, some 

specialized cases of cross-sectional imaging for nondestructive testing (NDT), the 

determination of the brightness distribution over a celestial sphere, and three-

dimensional imaging with electron microscopy [6]. 

Three types of computerized tomography has been developed which 

have all different application areas. These are X-Ray CT, Emission CT and 

Ultrasonic CT that will be explained briefly. 
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2.2.1 X-Ray Computed Tomography 

X-Ray CT, the first of all CT methods developed, utilizes X-rays for 

forming images of tissues based on their attenuation coefficient. Although X-Ray 

computerized tomography has found its biggest use in medical imaging there are 

several applications in the area of nondestructive testing (NDT) of materials and 

industrial objects. X-ray tomography is widely used for the analysis of the bone 

structure since bones have an attenuation coefficient much larger than any other 

tissue in the human body. Figure 2.2 shows different slices of a child head 

recorded on a CT machine.  

  

 
Figure 2.2 CT slices of different parts of the head 

2.2.2 Emission Computed Tomography 

Emission CT uses the decay of radioactive isotopes to image the 

distribution of the isotope as a function of time. These isotopes may be 

administered to the patient either by injection or by inhalation. Thus, for example, 

by administering a radioactive isotope by inhalation, emission CT can be used to 

trace the path of the isotope through the lungs and the rest of the body. There are 

two types of emission CT: Single photon emission CT where the result of the 

decay is a single photon and positron emission CT where the decay produces a 

single positron. Figure 2.3 shows a sequence of positron emission tomography 

images showing the existence of Parkinson’s disease in the head. 
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Figure 2.3 PET images of the head showing the existence of Parkinson’s disease 

2.2.3 Ultrasonic Computed Tomography 

Similar to X-ray tomography, an ultrasonic wave transmitter illuminates 

the object and by measuring the energy on the far side of the object a line integral 

of the attenuation can be estimated in ultrasonic computed tomography. Since the 

propagation speed of ultrasonic waves are much smaller than X-rays, the exact 

pressure of the wave as a function of time can be measured. Using this wave 

function, it is possible to measure the delay caused by the examined object which 

will correlate to the refractive index of the object under examination. 

2.2.4 Magnetic Resonance Imaging 

Although the principles of nuclear magnetic resonance have been well 

known since the 1950s, only since 1972 has it been used for imaging. In the sense 

that the images produced represent a cross section of the object, MRI is a 

tomographic technique. Magnetic resonance imaging is based on the measurement 

of radio frequency electromagnetic waves as a spinning nucleus returns to its 

equilibrium state. Any nucleus with an odd number of particles such as protons 

and neutrons have a magnetic moment, and, when the atom is placed in a strong 

magnetic field, the moment of the nucleus tends to line up with the field. If the 

atom is then excited by another magnetic field it emits a radio frequency signal as 

the nucleus returns to its equilibrium position. Since the frequency of the signal is 

dependent on not only the type of atom but also the magnetic fields present, the 

position and type of each nucleus can be detected by appropriate signal processing. 

Two of the more interesting atoms for MRI are hydrogen and phosphorus. The 
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hydrogen atom is found most often bound into a water molecule while phosphorus 

is an important link in the transfer of energy in biological systems. Both of these 

atoms have an odd number of nucleons and thus act like a spinning magnetic 

dipole when placed into a strong field. 

MRI’s multi-planar capabilities and sensitivity to tissue differentiation 

makes it the procedure of choice for detecting abnormalities or lesions in most 

parts of the body. MRI has been successfully utilized in the detection of 

abnormalities in brain, neck, spine, chest, heart, breast, abdomen, pelvis, 

musculoskeletal body parts. Figure 2.4 shows an MRI image of the internal organs. 

Image is taken from GE medical systems website. 

 

 Figure 2.4  MRI image of internal organs 

2.3 Phases of Medical Imaging 

Medical imaging starts with choosing the type of imaging technique 

discussed above that will be used to diagnose the body part under investigation. 

Sometimes more than one imaging technique can be combined to explicitly 

determine the location of the abnormality within the body. The phases after this 

step can be subdivided into several categories, which include restoration, 

interpolation, segmentation, registration and visualization. 
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2.3.1 Restoration 
 

Acquired images from the imaging equipment most often have to be 

restored initially before using them. Restoration covers the elimination of a noise 

source from the image content, adjusting the contrast in the whole image or in 

some sub region of an image or reducing the effects of image artifacts. For 

example, teeth filling, prostheses, fiducial markers are all sources of artifacts in a 

CT image that limit the reliability of the results. Although some methods [7],[8] 

have been developed to reduce the effect of these artifacts to some extend, if 

possible the source of artifact should be removed before the scanning operation for 

proper segmentation, registration and visualization. 

2.3.2 Interpolation 

Interpolation is required in imaging, in general, whenever the acquired 

image data are not at the same level of discretization as the level that is desired. In 

biomedical imaging systems, most of the case, the distance between adjacent 

image elements within a slice differ from the spacing between adjacent image 

elements in two neighboring slices. In addition, the spacing between slices may 

not be the same for all slices. These anisotropic data need to be converted to 

isotropic discretization or converted to level of desired discretization for 

visualization, manipulation, and analysis of data. If images from different 

viewpoints or from arbitrary planes are required such as the saggital or coronal 

view, interpolation is also needed.  

If we want to register data acquired for the same object of study from 

two modalities or from the same modality at two separate time instances, one of 

them needs to be rediscretized to the discretization level of the other. Moreover, 

the resolution of the datasets may differ. Upon registering these datasets, level of 

discretization of one of them needs to be converted to that of the other. Although 

the scanner resolutions are improved with the developing scanner technology, 

these problems will continue to exist and interpolation will always be needed. 



 11

According to [9], interpolation techniques can be divided into two 

groups: scene-based and object-based. Scene-based methods use the intensity 

values of the given scene to find the interpolated scene intensity values. Nearest 

neighbor interpolation, linear interpolation, quadratic interpolation, cubic and B-

spline interpolations are examples for the scene-based interpolation techniques. In 

object-based methods, some object information extracted from the given scene is 

used in carrying out the interpolation process. Shape-based interpolation is an 

example of object-based methods. It is used in applications which required slice-

by-slice help from a user for the difficult segmentation task. In [9] different types 

of 3-D image interpolation methods are evaluated and shape-based averaging 

method was found to be the most accurate among the other methods evaluated. 

Also in [10] interpolation methods in medical image processing such as truncated 

and windowed sinc, nearest neighbor interpolation, linear interpolation are 

compared according to their runtime speed, computational complexity, qualitative 

and quantitative error determinations.  

2.3.3 Segmentation 

Image segmentation is separation of structures of interest from the 

background and each other. The goal of image segmentation is to find regions that 

represent objects or meaningful parts of objects. Medical image segmentation 

deals with segmentation of the body structures for visualization and volume 

estimation of objects of interest, detection of abnormalities, tissue quantification, 

preprocessing for image registration, preprocessing for surface registration, 

classification, and more. These can be segmentation of bones or coronal arteries in 

a CT dataset or segmentation of brain or lungs in an MRI dataset. Image 

segmentation techniques can be classified into several different classical 

approaches.  

2.3.3.1 Threshold Techniques 

Threshold techniques are based on the thresholds which are usually 

selected from the image histogram. It is said that all pixels whose value is between 
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two threshold values belong to one region. The fact that the thresholds are derived 

from the histogram says that these techniques don't take into account spatial 

information of the image and they have problems to cope with the noise as well as 

with blurred edges on the image.  

Global thresholding is the simplest statistical thresholding technique, 

where pixels are classified based on their intensity values. However, choosing the 

right intensity method is difficult and varies from one dataset to other. The 

selection of the threshold can be interactively manual or automatic. In manual 

selection, the threshold is operative sensitive. Other thresholding techniques 

include iterative threshold selection, adaptive thresholding, variable thresholding, 

double thresholding [11]. 

2.3.3.2 Deformable Models 

Deformable models are geometric descriptions of contours or surfaces 

which evolve under a suitable energy. These include methods based on snakes [12] 

which are energy minimizing splines influenced by imaging forces and methods 

based on balloons [13] which are an improved version of snakes that do not need 

to be initialized around edges.  

2.3.3.3 Edge-based methods 

Edge based methods try to locate the places of rapid transition from one 

region to the other of different brightness or color value. The basic principle is to 

apply some of the gradient operators convolving them with the image. High values 

of the gradient magnitude are possible places of rapid transition between two 

different regions, which we call edges. After this step of finding edges on the 

image, they have to be linked to form closed contours of the regions. Laplacian of 

Gaussian, Canny and Sobel are some of the operators used in edge detection [14]. 
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2.3.3.4 Region-based Methods 

Region-based methods are complementary to the edge-based methods. The 

point in region-based methods is to group pixels of the same or similar brightness 

or color to the regions according to the given criteria of homogeneity. These 

methods look at the neighboring pixels of the given pixel and merge them into the 

region if criteria of homogeneity are satisfied. Homogeneity criteria is based on 

some threshold value, the choice of which is problematic, because operator usually 

has to play a lot with the right choice of the thresholds, and thresholds always 

depend on the image data. 

2.3.3.5 Mixed, hybrid methods, other techniques 

Mixed methods use the available segmentation methods within several 

stages of the segmentation task. [15] is a good example where curve evaluation, 

region growing and region competition methods are combined to segment the 

carpal bones from CT slices and they called the hybrid method skeletally coupled 

deformable model. In addition to the classical methods, discussed above, there are 

segmentation techniques based on neural networks [16], mathematical morphology 

[17] and watersheds [18]. 

2.3.4 Registration 

Registration is a fundamental task in image processing used to match 

two or more pictures taken, for example, at different times, from different sensors, 

or from different viewpoints. Matching a target with a real-time image of a scene 

for target recognition, monitoring global land usage using satellite images, 

matching stereo images to recover shape for autonomous navigation, and aligning 

images from different medical modalities for diagnosis are some of the application 

areas where registration of images is heavily used [19]. 

Medical image registration deals with the registration of images 

gathered from different or same modalities taken at same time or within a time 

period. This could be the registration of CT images taken before and after 
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diagnosis to determine the development of the bone tissue or registration of MRI 

and CT images to visualize the brain and the bone structure at the same time.  

Registration starts with selection of features from the two datasets to be 

registered. According to the features used in registration, registration methodology 

can be divided into to subgroups: Extrinsic and intrinsic registration. Extrinsic 

features rely on artificial objects such as stereotactic frames, attached to the 

patient, objects which are designed to be well visible and accurately detectable in 

all of the pertinent modalities. Registration of the acquired images is 

comparatively easy, fast, can usually be automated, and, since the registration 

parameters can often be computed explicitly, there is no need for complex 

optimization algorithms. [20] is an example for extrinsic registration where the 

authors used a fixture which they call “SIP Lab Innsbruck frame” which is  shown 

in Figure 2.5, and proposed semi-automatic and fully automatic ways of 

registering CT and MRI datasets. The main drawback of extrinsic registration is its 

prospective character. Provisions must be made in the pre-acquisition phase, and 

often the invasive character of marker objects is a problem. Most of the time, the 

data is gathered without using special equipment and registration relies on the 

intrinsic methods. Intrinsic methods rely on the patient generated image content 

only. Registration can be based on landmarks, anatomical or geometrical, 

alignment of segmented binary structures, surfaces, or directly on to measures 

computed from the image grey values. Geometrical features consist of corners, 

local curvature or extrema generally localized in an automatic fashion [21], [22]. 

Following the selection of the features, whether intrinsic or extrinsic, a 

method has to be developed to register two datasets. First of all, type of the 

transformation involved in the registration process has to be decided. The 

transformation can be rigid in which the shape and size do not change or can be 

non-rigid. 
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Figure 2.5 “SIP Lab Innsbruck frame” fixated on the patient’s head 

After deciding the type of transformation, the transformation matrix can be 

calculated by selecting the same features from two datasets. For a rigid 

transformation, at least four conjugate pairs have to be selected to calculate the 

nine unknowns in rotation matrix and three unknowns in the translation matrix. 

Selection of candidate conjugate points in three dimensional sets is a difficult task 

so most of the time registration of features is carried out using algorithms. The 

most popular algorithm used for registration is the iterative closest point algorithm 

[23]-[28], where the features used in registration can be points, curves or surfaces.  

2.3.5 Visualization 

Visualization of three dimensional biomedical volume images has 

traditionally been divided into two different techniques in [29]: Surface rendering 

and volume rendering. Both techniques produce a visualization of selected 

structures in the three dimensional volume image, but the methods involved in 

these techniques are quite different, and each has its advantages and disadvantages. 

Selection between these two approaches is often predicated on the particular nature 

of the biomedical image data, the application to which the visualization is being 

applied, and the desired result of the visualization. 
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2.3.5.1 Surface Rendering 

Surface rendering techniques rely on the extraction of contours that 

define the surface of the structure to be visualized. These techniques represent the 

surface by a mosaic of connected polygons. This technique is advantageous since 

it requires relatively small amount of contour data which directly affects the 

rendering speed. Its disadvantage comes from the discrete nature of the surface 

polygon placement which makes this technique prone to sampling and aliasing 

artifacts on the rendered surface. 

2.3.5.2 Volume Rendering 

Volume rendering is one of the most versatile and powerful image 

display and manipulation techniques. Volume rendering has one such big 

advantage over surface rendering that, it does not need prior surface or object 

segmentation. Volume rendering technique uses the whole volume and since 

medical datasets containing hundreds of slices are large, computation speed is 

lower than the surface based rendering technique. Figure 2.6 shows a volume 

rendering of the head obtained from CT slices taken from medical imaging website 

of Siemens corporation. 

 

Figure 2.6 Volume rendering of head 

Virtual endoscopy, neosurgery, cardiac and coronary artery disease, 

craniofacial surgery planning and radiation treatment planning are different 

application areas where medical visualization is heavily used [30]-[33]. 



 17

2.4 Digital Imaging and Communications in Medicine (DICOM) 
 
 Digital Imaging and Communications in Medicine standard (DICOM) was 

created by the National Electrical Manufacturers Association (NEMA) to aid the 

distribution and viewing of medical images, such as CT scans, MRI images, and 

ultrasound images. DICOM imaging allows interchange of medical images taken 

from different manufacturers of imaging equipments. DICOM standard also 

includes a network protocol utilizing TCP/IP for creating a network of imaging 

equipments. DICOM is used in medical profession including cardiology, dentistry, 

endoscopy, mammography, ophthalmology, orthopedics, pathology, pediatrics, 

radiation therapy, radiology, surgery and even in veterinary [34]. 

 DICOM datasets contain a DICOMDIR file which stores the directory 

structure of the datasets and the way the images are related to each other. The 

images also have their own DICOM information that include the name of the 

patient, the imaging machine, pixel resolution, image position patient information 

in the slice, slice thickness used to obtain that slice and other information. 

Throughout the thesis version 6.5 of MATLAB is used to extract the information  

and the image content from the DICOM files using “dicominfo” and “dicomread” 

functions.  
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CHAPTER 3 
 
 

3. SEGMENTATION OF BONE TISSUE FROM HEAD CT 
IMAGES 

 

3.1 Introduction 

In order to detect the changes within the bone structure over a period of 

time, first of all bone tissue has to be segmented out from other tissue parts. 

Segmentation of bone tissue from a CT dataset is somewhat easier than 

segmentation of other body parts because bones have higher X-ray attenuation 

coefficient and this makes them to be distinguishable from the other parts of the 

body. Although bones are easily identified, before developing an algorithm for 

segmentation, bone structure has to be considered. Bone in human and other 

mammalian bodies is generally classified into two types as shown in Figure 3.1:  

Cortical bone, also known as compact bone and Trabecular bone, also known as 

cancellous or spongy bone. These two types are classified on the basis of porosity 

and the unit microstructure. Also bones are classified according to their shape: 

Long, short, flat and irregular bones. Craniofacial bones which we want to 

segment are considered to be flat bones with spongy bone structure in between 

compact bone structure.  

Different parts of the bone appear different while recorded on a CT slice. 

Spongy bone regions seem texturized and darker and compact bones appear 

brighter and have no texture with good edges. Also because of the nature of 

imaging, some edges of the bone are diffused and because of this diffusion, narrow 

inter-bone regions collapse together making segmentation difficult. 
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Figure 3.1 Craniofacial Bone Structure 

Figure 3.2 clearly shows a diffused edge and types of bone regions in different 

portions of a CT slice. 

During the segmentation of craniofacial bones, classification of bone 

structure whether compact or spongy is not important for our case. Important issue 

is extraction of exact shape and position of the bone structure. The algorithm has 

to classify bone and non-bone regions for this purpose.  

3.2 Thresholding using the EM algorithm for segmentation of bone 

Among the segmentation algorithms presented in Chapter 2, the basic and 

the easiest segmentation algorithm is the thresholding algorithm. Thresholding 

algorithm segments a body part according to a threshold that  user provides or a 

threshold found automatically using the image content. For more than hundred 

slices, manual thresholding is somewhat a tedious, operator sensitive and a 

difficult task. Also the illimunation of the X-rays within different cross sections 

 

 

Compact Bone 

Spongy 
Bone 
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Figure 3.2 CT slice showing the bone structure 

of the head are different, making a global threshold for the bone structure 

unavailable. Therefore, thresholds for different slices have to be selected 

individually according to the image content. The easiest way for selecting an 

automatic threshold is to think of the image histogram as consisting of sum of 

Gaussian distributions with different means and standard deviations. Figure 3.3 

shows a head slice and its histogram where bone and non-bone regions are 

identified and circled in the histogram.  

In an 8-bit image format, the brightest region in the image corresponds to 

255 and the darkest region is 0 giving 256 discrete levels to describe the image 

content. Careful examination of the CT slices showed that all values lower than 50, 

correspond to noise and these values fall below any threshold level for bones. The 

circled regions in Figure 3.3, shows the non-bone and bone regions in the 

histogram. Each of these regions is considered to be Gaussian with a mean and 

standard deviation.  

 

Spongy Bone Compact Bone Diffused edge 
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Figure 3.3 Head CT image and its histogram 

Expectation maximization algorithm [35] is used to find the optimal 

threshold that divides these regions from each other. Expectation maximization 

algorithm simply guesses the parameters mean and standard deviation, calculates 

the weights of the Gaussian probability distribution functions and using these 

guesses, probabilities of the bone and non-bone regions in the histogram are 

calculated. This is the expectation step of the algorithm. Calculated probabilities 

and weights are used to create new guesses for the means and standard deviations 

which will be used in the next iteration of the algorithm and this constitutes the 

maximization step of the algorithm. This process continues until the parameters do 

not change a lot. After mean values and standard deviation are calculated, 

threshold is selected as mean value summed with standard deviation multiplied by 

a constant which user provides. The results of the thresholding algorithm are given 

in Figure 3.4.  
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Non-Bone region

Bone region 

Dark and noisy 
regions 
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a) 

 

b) 

 

c) 

 

d) 

 

Figure 3.4 a)Original Image b) Histogram with gaussian curves and c) thresholded 

image using the EM algorithm with multiplier 0.5 d) and multiplier 1 

The segmentation algorithm based on thresholding works well on 

separating the bone out of the image but it has some drawbacks. Because the 

algorithm only considers the intensity values and not the shape, even in the 

optimal threshold, there are some holes inside the bones and diffused edges are 

incorrectly segmented. As described above, spongy bone structure is texturized 

and the intensity values are not flat within the region of interest. The intensity level 

inside these bone structure is sometimes lower than the optimal threshold and this 

will result in gaps within the bone. Also the distribution of intensity values of 

bones, in general, does not fit to Gaussian distribution. In contrast to thresholding 

algorithm, the segmentation algorithm must consider both the spatial information 

as well as the intensity information.  
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3.3 Segmentation Using the Zero Crossings of Laplacian of Gaussian  

Another type of segmentation method described in Section 2.3.3.3 which 

takes the spatial information into consideration, is the edge-based method. Edge 

based methods try to determine the places of rapid transition from one region to 

the other with different brightness or color value. Several edge detection operators 

are available. Canny, Sobel, Prewitt, Roberts, zero-crossings of Laplacian of 

Gaussian are the prominent ones that are used mostly.  

The edge detector used in detection of bone boundaries should give closed 

contours and should not give local edges which are inside the bone. Such an 

operator satisfying these properties is the zero-crossings of Laplacian of Gaussian 

algorithm which is also known as Marr & Hildreth edge detector. In this algorithm, 

the image is filtered with a Laplacian of Gaussian operator whose standard 

deviation and size can be adjusted. Following the detection of zero-crossings of the 

gradient image, the edges in the image are found. Figure 3.5 shows the effect of 

the choice of different values of standard deviation on the edge image. 

As seen from the images, increasing the value of the standard deviation of 

Gaussian filter decreases the numbers of closed contours but on the other hand, 

because of the smoothing property of the Gaussian filter, the locations of the edges 

are shifted. Also detection of bone contours after the edge detection operator is 

hard, since the intensity information is lost. Therefore, before applying the edge-

based operator, a simple thresholding applied to image will get rid of most of the 

non-bone regions. For this purpose, EM algorithm described in Section 3.2 is used 

with a threshold multiplier constant less than one. This will eliminate most of the 

non-bone regions and the classification of bone and non-bone regions will be 

easier. Resulting set of closed contours can be filled and this can be used as a mask 

to segment the bone from image. Smaller regions can be eliminated according to 

their area.  

The problem with edge-based methods is the differentiation between bone 

and non-bone regions because sometimes they are enclosed within the same 

contour. Edge based methods have a trade-off between the detail, the number of 
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contours and exact location of the boundaries. When accuracy of the boundaries is 

needed edge based method based on Marr-Hildreth operator is not suitable. Figure 

3.6 shows the edge map after thresholding and applying the edge operator. 

 

a) 

 

b) 

c) 

 

d) 

 

Figure 3.5 a) Original Image b) Zero-crossing operator applied to image standart 

deviation 1 c) standard deviation 3 and d) standard deviation 5 
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a) 

 

b) 

 

c) 

 

d) 

 
 

Figure 3.6 a) Original Image, b) Thresholded image c) Zero-crossing operator 

result with standard deviation 1 and d) with standard deviation 3 

3.4 Region Based Methods for Segmentation of Bone 

In addition to edge-based methods, there are region based segmentation 

methods. Region based methods split the image into regions and according to a 

homogeneity criterion the regions are combined to construct the required 

segmentation. The best techniques are those based on the assumption that the 

image can be partitioned into regions that can be modeled by simple planar and 

biquadratic functions. This type of region growing algorithm has the problem of 
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determination of initial partitioning size of the image. In order to increase the 

accuracy of the segmentation smaller patches can be selected. [11] 

Region growing is a common method of grouping pixels within an image 

based on their eight-way connectivity and grayscale. A special case of region 

growing algorithm is the seeded region growing algorithm which is based on 

conventional postulate of region growing algorithms where the criteria of 

similarity of pixels is applied, but the mechanism of growing regions is closer to 

the watershed algorithm [36]. Instead of tuning homogeneity parameters, seeded 

region growing is controlled by choosing usually a small number of pixels, known 

as seeds. These seed pixels are chosen by the user according to his opinion as to 

what should be the regions to be extracted on the image. So, we start with the 

number of seeds which have been grouped into n sets: A1, A2, ..., An. Sometimes 

individual sets could consist of single point. At each step of the algorithm we add 

one pixel to some of the sets Ai, i =1,..., n. Let T be the set of unallocated pixels 

which border at least one of the regions, which means that T is the set of all pixels 

which are on the borders of regions formed up to now:  
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where N(x) is the set of immediate neighbors of the pixel x.  

In our case, we consider 8-connectivity which contains all the neighbors of 

the pixel. Each step in the algorithm takes one pixel from the T set and adds it to 

one of the regions with which neighbors N(x) of the pixel intersect, actually label 

it with the label of that region. Then all pixels from N(x) are examined and 

distances from their neighboring regions are calculated. According to these 

distances, pixels are put into T set in increasing order. The distance measure 

simply indicates how far the intensity of the regarded pixel is away from the mean 

intensity value of growing regions. It is defined as:  
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If pixel under consideration has more than one neighboring regions with different 

running means, region which will include the pixel has to be decided. For this 

purpose, distances of the pixel from all its neighboring regions are calculated. 

Decision is done by comparing all of the distances and finding their minimum. 

Minimum distance from the neighboring regions of the pixel is described as:  
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If all the neighbors of the pixel under interest belong to same region as found in 

the comparison test, then the pixel is included in that region. If some of its 

neighbors belong to a different region, the pixel is labeled as boundary pixel which 

separates the regions.  

 In the implementation of seeded region growing, simple sorted list is used 

as the data structure for storing elements of set T. Sorted list used in the region 

growing algorithm is called sequentially sorted list (SSL) in which only 

coordinates of the pixels and distance delta from their neighboring regions are 

stored. When a new pixel is considered, it is taken from the SSL and processed. 

When we add a  new pixel to the list we have to add it according to its distances 

from the neighboring regions. The pseudo code of seeded region growing 

algorithm is given below: 

Initialization:  

Label seed points according to their initial grouping.  

Put neighbors of seed points (the initial T) in the SSL.  

Region Growing:  

While SSL is not empty do  

     Remove first pixel y from the SSL.  

     Test the neighbors of this point:  
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 if all neighbors of y which are already labeled (other than boundary                          

label)  have the same label than  

                Set y to this label.  

                Update running mean of corresponding region.  

                Add neighbors of y which are neither already set nor already in      

the  

                SSL to the SSL according to  their value of delta  

          else  

                Flag y with the boundary label.  

Figure 3.7 shows the result of seeded region growing applied to a part of image. In 

this example three seeds are selected. One of them corresponds to the non-bone 

region, one of them for the teeth and the last is used for the bones. The resultant 

segmentation has three regions. Teeth and bone region can be combined for 

visualization purposes. MATLAB code of implemented seeded region growing 

algorithm is given in Appendix A.  

 

Figure 3.7 Result of seeded region growing algorithm 

Choosing the seeds for the region growing algorithm is user dependent. 

Also, since the values of previous entries of SSL are not updated to reflect their 

differences from the new region, mean value and the final segmentation result is 

dependent on the way seed pixels are selected. An improved version of the SRG 

algorithm [37] eliminates pixel order dependencies while trading off from 

execution speed. 
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When we have two regions to segment, bone and non-bone, automatic 

segmentation of CT slices becomes easier. Bright clumps pixel are selected to be 

seeds and the region growing algorithm is based on these seeds. The selection of 

brightness is dependent on a threshold; all pixels having intensities higher than this 

threshold are assigned as seeds. Using this property, a simplified version of the 

seeded region growing algorithm can be used to segment the head CT slice. The 

input parameters to the simplified algorithm are seed level and a threshold value.  

The region growing algorithm used here, searches all pixels within the image and 

their neighbors. If a pixel intensity value is larger than seed level it is immediately 

assigned as bone region. If it is less than seed level, all neighbors of the pixel are 

searched and intensity differences between these pixels and the running mean are 

calculated. If the smallest difference is less than the threshold, that pixel is 

assigned as a bone pixel and growing process continues on searching the neighbors 

of this previously assigned pixel. All pixels that are assigned as bone or non-bone 

are stored in order to prevent the algorithm to reprocess the same pixel. The 

critical issue here is the selection of seed level and threshold parameters. In order 

to automate the method, threshold and seed level gathered from image content can 

be used. Figure 3.8 shows the result of the simplified region growing algorithm 

applied to image. MATLAB code of simplified region growing algorithm is given 

in Appendix B.  

  

Figure 3.8 Original Image and result of region growing algorithm 
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In simplified region growing algorithm, segmentation is sensitive to 

threshold selection. Choosing a small threshold will result in thinned regions and 

choosing a large threshold will enlarge bone tissue regions and merge the 

unconnected regions such as teeth. Also different regions have different intensity 

profiles and using a global running mean results in some regions to be considered 

as non-bone.  

3.5 Hybrid Algorithm Developed for the Extraction of Bone Tissue 

 All of the segmentation methods considered above have some drawbacks 

and finding a best operator satisfying the requirements of a segmentation task is 

hard. According to the requirements of a segmentation task, some of the operators 

can be combined and subtasks can be assigned to them in several stages of 

segmentation. Such methods are called hybrid methods. Using the discussed 

segmentation operators, a hybrid method is developed for our task. In the first step, 

the hybrid method uses the thresholding algorithm to presegment the image to 

decrease the size of the non-bone regions. Thresholding divides the image into 

several parts that can be labeled by using the connected component labeling 

algorithm. Connected component labeling algorithm finds all connected 

components in an image and assigns a unique label to all points in the same 

component. Also the bounding box enclosing these parts are detected to create sub 

images whose location in the original image is known. Simplified region growing 

algorithm is applied to each of these regions having an area larger than a 

predefined level. All other regions not satisfying the minimum area constraint are 

deleted. The results of the region growing on each segment are collected to form 

the output image. Seed level is chosen as the mean value of the sub image and 

threshold is the standard deviation within that part of the image. Figure 3.9 shows 

the result of the hybrid algorithm. Hybrid algorithm segments teeth better than the 

algorithms discussed above. Also applying the region growing algorithm on the 

different components of the image prohibits an overall running mean exceeding 

some of the regions average mean value which prevents holes within bone tissues. 

MATLAB code of the hybrid segmentation algorithm is given in Appendix C. 
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a) 

 

b) 

 
c) 

 

d) 

 

Figure 3.9 a) Original Image, b) Connected component labeling of the image, c) 

Mask after hybrid algorithm and resultant d) segmented Image 

3.6 Visualizations following the hybrid segmentation algorithm 

In this section, visualizations of the segmented bone structure of head CT 

slices are shown. Head CT slices are segmented by the hybrid segmentation 

algorithm that is described in Section 3.5. These visualizations are realized using 

Visualization Library of MATLAB version 6.5. MATLAB code used in obtaining 

the visualizations is provided in Appendix D. Head CT images of two patients who 

are subjected to orthodontic treatment are used in obtaining these visualizations.  
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Figure 3.10 shows several visualizations of the patient prior to 

segmentation. Figure 3.11 shows segmented visualizations of the same views. 

Figure 3.12 and 3.13 belong to another patient.  

 Visualizations of the craniofacial bone show the abnormalities in the jaw 

and teeth in both patients. Combining these visualizations with the visualizations 

obtained during the treatment, a planning strategy on how to correct these 

abnormalities can be formed.  
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a)

 

b) 

c) d) 

 

Figure 3.10 a) Front view b) Right view c) Left view and d) profile view of first 

patient 

a) b)

 

c) d)

 

Figure 3.11 a) Front view b) Right view c) Left view and d) profile view of 

segmented bones of second patient 
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a) 

 

b) 

 

c) 

 

d) 

  

Figure 3.12 a) Front view b) Right view c) Left view and d) profile view of second 

patient 

a) 

 

b)  

 

c) 

  

d) 

 

Figure 3.13 a) Front view b) Right view c) Left view and d) profile view of 

segmented bones of second patient 
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CHAPTER 4 
 
 

4. AUTOMATIC REGISTRATION OF MEDICAL IMAGES 
AND DATASETS 

4.1 Introduction 

Registration is indispensable when we have to track changes of images 

taken at different times, from different viewpoints or by different sensors. 

Registration methods can be viewed as different combinations of choices for a 

feature space, a search space, a search strategy and a similarity metric. Feature 

space extracts valuable information from different datasets that will be used for 

matching. Search space consists of available transformations capable of registering 

these datasets. Search strategy decides on how to choose the next transformation in 

order to find the optimal transformation that aligns two different datasets. 

Similarity metric compares these transformations with each other and the 

registration continues until a satisfactory small metric is found. Major areas that 

use registration heavily are computer vision and pattern recognition, medical 

image analysis and remotely sensed data processing [19].  In the field of medical 

imaging, changes in the position of the patient over a period of time, position of 

the imaging machine, change in the viewpoint and changes within some portions 

of the image make the registration a necessary step in image analysis.  

According to [38] medical image registration methods can be classified 

into several categories. These categories include registration according to 

dimensionality, nature of registration basis, nature of transformation, domain of 

transformation, interaction, optimization procedure, modalities involved, subject 

and object. These categories are further divided into subcategories and references 

are given for all of them in [38]. 
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In our case, registration of two dimensional images and three dimensional 

datasets that belong to head are considered. CT scans of patient that are subjected 

to orthodontic treatment are taken before the start of treatment and at the end of 

treatment. Since a time has to pass during the treatment, the registration can be 

characterized as time-series registration. In addition to this, the datasets to be 

registered taken at different times have the same modality, so our registration 

purpose also falls into monomodal registration category. As described in 2.3.4, 

there are two different subcategories for the nature of registration basis. These 

include extrinsic and intrinsic registration. The CT images provided by the 

Orthodontics department of Hacettepe University are taken without using any 

frame that will make the registration easier, therefore the registration has to be 

intrinsic.   

Before starting a registration task, type of the transformation involved in 

the images should be decided. An image coordinate transformation can be rigid, 

when only translations and rotations are involved. If parallel lines are mapped on 

parallel lines, transformation is called affine. If lines are mapped onto lines, it is 

called projective. If lines are mapped onto curves transformation is elastic [19].  

Rigid registration is the simplest type among these registrations.  

Registration of head CT scans taken at different times is a rigid registration 

problem [39] when some precautions are taken before and during the scanning.  

The patient should not move during the scanning process for an accurate 

registration. Gantry tilt of the detector should be set to zero. Otherwise the tilt 

should be corrected before or during registration which will cause substantial 

errors. Same conditions in the first scanning should be provided in the second 

scanning. Also as in the case of segmentation, registration should be automatic in 

order to prevent errors that belong to user interaction. Assuming all of these 

conditions are met, accuracy of registration is left to the algorithm. 

Throughout this chapter of the thesis, automatic registration of two 

dimensional images and three dimensional datasets are investigated. Before 
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proceeding, brief information about rigid transformation and iterative closest point 

algorithm are given.  

4.2 Rigid Transformation 

An image coordinate system is called rigid, when only translations and 

rotations are allowed. Rigid transformations account for object and sensor 

movement in which objects in the images retain their original shape and size. A 

rigid-body transformation is composed of a combination of a rotation, a translation 

and a scale change. Two dimensional rigid transformations can be described by: 
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This can be written as 

12 psRtp +=  ,                                            (4.2) 

Where 1p and 2p are two coordinate vectors of the two images, t  is the 

translation vector, s is the scale factor and R is the rotation matrix. 

A rigid three dimensional transformation can be described using a single 

constant matrix equation. The matrix equation can be written in an open form as:  
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where T is an arbitrary translation vector and R is a 3x3 rotation matrix defined by 

[11]:  
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Using  rotation ω about the x axis, rotation φ about the new y axis and rotation κ 

about the new z axis, the individual components of the rotation matrix can be 

written as [11]:  

κφ coscos=xxr                                                           (4.5) 

κωκφω sincoscossinsin +=xyr                        (4.6) 

κωκφω sinsincossincos +−=xzr                   (4.7) 

κφ sincos−=yxr                                              (4.8) 

κωκφω coscossinsinsin +−=yyr        (4.9) 

κωκφω cossinsinsincos +=yzr               (4.10)    

φsin=zxr                            (4.11) 

φω cossin−=zyr           (4.12) 

φω coscos=zzr                                                                (4.13) 

Solving for the individual angles that correspond to rotation is 

algorithmically cumbersome. Instead of using the angles, the rotation matrix can 

be described by quaternions. 

A quaternion is a four-element vector, 

( )3,2,10 , qqqqq =                                                  (4.14) 

 

having the property,  
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0 =+++ qqqq .                                       (4.15) 
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 Quaternions encode the rotation and has some properties that make them 

suitable while developing an algorithm. 

In terms of quaternions, the rotation angle is defined by [13]:  
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A more convenient way to write the overall registration state vector is: 

[ ]TTR qqq |=                                                 (4.17) 

where  

     [ ]TT qqqq 654=                                        (4.18) 

is the translation vector.  

Once the unit quaternions are found, conversion between quaternions and 

the rotation angles is easy using (4-5) through (4-12). The algorithmic advantages 

of the unit quaternions are used in the iterative closest point algorithm which is 

described in the following section. 

4.3 Iterative Closest Point Algorithm (ICP) 

Given two sets of partially overlapping range data and an initial estimate of 

their relative positions, iterative closest point algorithm is used to register the data 

sets by improving the position and orientation estimate. First introduced by Besl 

and McKay [40], iterative closest point is an essential step in model building, 

dimensional inspection, and numerous applications of range data processing.  

 Iterative closest point algorithm can be used for registering point sets, line 

segment sets, implicit curves, parametric curves, triangle sets, implicit surfaces 
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and parametric surfaces. Although main purpose for ICP is registration of three 

dimensional shapes, it covers the two dimensional registration.  

 At each step of iteration in ICP, correspondences are calculated between 

the two data sets, and using these, a transformation which minimizes the mean 

square error of the correspondences is calculated. If the mean square error falls 

below a threshold or the predefined number of iterations is exceeded, the algorithm 

stops.  

 Before going into details of the algorithm, simple definitions will be given. 

The Euclidian distance definition in a three dimensional space used in the 

algorithm is, 

2
12

2
12

2
1221 )()()(),( zzyyxxrrd −+−+−=                  (4.19) 

where  

),,( 1111 zyxr =
r

 and ),,( 2222 zyxr =
r

.                           (4.20) 

For two dimensional datasets, z axis components are not included in the equation. 

 Considering a data shape P and a model shape X which are to be aligned, 

each having Np and Nx number of points. For all data points in P, distances from 

the model X are calculated. Among these distances, minimum distance between 

the point and the model is taken as the distance metric. This distance metric is 

denoted by,  

 

pxXpd
Xx

rrr
r −=
∈

min),(                                          (4.21) 

 

Letting Y denote the resulting set of closest points and C denote the closest point 

operator:  
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),( XPCY = .                                                  (4.22) 

Given the resultant corresponding point set Y, the least squares registration is 

computed using,  

( ) ),(, YPQdq =
r

,                                            (4.23) 

where Q is the least squares quaternion operator defined in [40]. 

Using the correspondent data points and model points, cross covariance of 

the sets P and X are calculated, which is then used to form a symmetric 4x4 

matrix. Eigenvalues of this symmetric 4x4 matrix gives the unit quaternions. After 

finding the quaternions, optimal translation vector is calculated. The data shape 

points are updated via  ( )PqP r
=  where qr  is the overall registration state vector.  

If we have measured data point set P with Np points and the model data 

point set with Nx number of points, the implementation of the iterative closest 

point algorithm is as follows:  

 

Initialization: 

[ ]
0

00000010

0

=
=

=

k
q

PP
T  

Iteration: 

 Compute the closest points: ),( XPCY kk = . 

 Compute the registration    : ),(),( 0 kkk YPQdq =  

 Apply the registration         : )( 01 PqP kk =+  

 Terminate the iteration if dk-1-dk<τ where τ is a preset threshold. 
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4.4 Two dimensional automatic medical image registration 

Two dimensional medical image registration is necessary when we need to 

register two dimensional images of a body part taken at different times. These 

images can be taken by conventional X-ray machines or CT machines. However 

two dimensional registration of CT slices taken at different times is not possible, 

because of the change in the coordinate system. They need to be registered in a 

three dimensional space. Assuming the same viewpoint is provided in a two 

dimensional time-series image, registration consists of finding the rotation angles, 

scale change and translation vector. 

Automatic registration of two dimensional medical images requires finding 

correspondent points in images that we want to register without any user 

interaction Following the point extraction, extracted points should be registered 

using a registration algorithm.  

[41] describes a method for automatically finding correspondent points in 

medical images. The algorithm is divided into six steps: 

Step 1: A similarity measure is defined that will be used in the next step of the 

algorithm. Only requirement for the similarity measure is that, similarity values 

must lie between 0 and 1; 0 meaning identical subimages whereas 1 means the 

largest dissimilarity between images.  

Step 2: For every pixel (x,y) in the reference image I the similarities 

Sim((x,y),(x+k,y+l)) between a circular area of radius r centered at (x,y) and a 

circular area of equal size centered at (x+k,y+l); such that k 2 +l 2 <R 2 , is 

calculated. Sim((x,y),(x+k,y+l)) is defined as:  

∑
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(4.24) 
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G being the number of gray levels, N is the number of pixels defined by a circular 

region r. This step of the algorithm maps a two dimensional image to another two 

dimensional image, which the authors call “Similarity Surface” centered at pixel 

(x,y). Shape of underlying similarity surface gives an indication of how the pixel at 

that coordinate is distinctive from other pixels. Multiplication of similarity values 

at only 16 sites shown in Figure 4.1 is a fast method to determine the 

distinctiveness of a pixel. Distinctiveness is defined as,  

∏
=

=
16

1
),(),,((),(

k

kk yxyxSimyxD ,                           (4.25) 

where (xk,yk) are the pixels around the circular region having a radius of 3 which is 

shown in Figure 4.1. 

Distinctiveness is also a two dimensional image which can be displayed for 

visualization purposes. Distinctiveness map of a CT slice is shown in Figure 4.2. 

MATLAB code used in obtaining the distinctiveness map is given in Appendix E.  

 

Figure 4.1 Digital circle with radius r=3 used for calculating the distinctiveness of 

a pixel 
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a) 

 

b) 

 

Figure 4.2 a) CT image and b) its three dimensional distinctiveness map 

Step 3: A predefined number of pixels with highest distinctiveness are chosen and 

among these pixels satisfying a separation of dmin between them are selected such 

that first pixel has the highest distinctiveness in the image, following pixel having 

the highest distinctiveness and a separation dmin between already selected pixels is 

chosen. This process continues until the set of pixels achieve the predefined 

number. 

Step 4: Step 4 is the pixel location correction step. At the end of step 3, we have 

two sets of pixels with highest distinctiveness and a separation of dmin.. Each 

candidate point in the second image is searched around the first image candidate 

points. Search area is defined by a circle with radius R. Corrected pixel location is 

found by choosing the pixel with smallest similarity value.  

Step 5: In step 5, first, invalid point pairs are removed by setting a threshold for 

the similarity between the pairs. Second, an assumed transformation is applied to 

first image’s pixels and the geometric misfit is calculated for each pixel. If this 

geometric misfit is greater than a threshold, these points are removed. This process 

is repeated as many times until the entire misfit is smaller than the threshold. 
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Step 6: Weights are assigned to point pairs using the distinctiveness, similarity and 

the misfit values. Authors advise to use these weighted point pairs while 

approximating the geometric transformation. 

There are many variables included in the algorithm such as the circle radius 

size, thresholds, number of distinct points. Once these values are set for a given 

two dimensional registration task, following registrations of the same type of 

images will be automatic. Also this algorithm is said to be effective while 

registering monomodal two dimensional images with a linear functional 

relationship between their intensity values. 

For the images we consider, type of transformation involved in images is 

assumed to be rigid. Also instead of applying predetermined transformation and 

calculating the misfit for each point pair, iterative closest algorithm can be applied 

in the fifth stage of the algorithm. ICP finds a transformation such that the overall 

sum of misfit is minimized. The subjective function that is to be minimized can be 

formed using the weights assigned in sixth step. MATLAB code of two 

dimensional iterative closest point is given in Appendix F. 

The modified automatic registration algorithm proposed above is tested 

using a processed CT topogram image and the synthetic image obtained by 

rotating this image with a given angle. The topogram image has a white 

background. This background is subtracted from the image using simple 

morphological operations. Contrast of the output image is adjusted to make bone 

regions clear. This image is rotated by a given predefined angle. This rotation 

models the patients head position change from one image to another image. While 

forming the rotated image, bicubic interpolation is used. Background subtracted 

image and 17 degrees rotated synthetic image are shown in Figure 4.4. 40 points 

extracted on both images with highest distinctiveness using a minimum distance 

15 are also shown in Figure 4.4. After examining the points carefully, it is seen 

that, some of the points in the first image are not mapped exactly to the second 
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image. These pixels have to be corrected using template matching. ICP algorithm 

is run using the extracted points and recovered angle is found as 15.49 degrees.  

The angle is recovered with a slightly large error and the reason for this 

error mainly depends on the rounding effect of the interpolation process. This 

effect can be overcome by applying the reverse rotation using the angle found 

above and iterating the same steps until angle increment or misfit between features 

is below a threshold value. Figure 4.3 shows the resultant RMS distance error 

between features in two images versus iteration number graph. 

  

Figure 4.3 RMS Error vs. Iteration Number for 2-D Automatic Image Registration 

It is seen that after 3 iterations RMS error drops down to 2.531 from 92.09 

which allows us to recover the initial angle with less than %1 percent resolution.   

This algorithm is applied to the topogram images provided from the Orthodontics 

department shown in Figure 4.5. Area of interest is selected to confine the search 

area for the algorithm which is the head in our case. Figure 4.6 shows the result of 

the registration algorithm.  
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a) b) 

 

c) 

 

d) 

 

Figure 4.4 a) Original processed image b)17 degrees rotated image c) Extracted 

points from original image d) Extracted Points from rotated image 
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a) b) 

Figure 4.5 Real Images used in testing the automatic registration algorithm             

a) Before treatment b) During treatment 

The method for two dimensional automatic registration is as follows, 

1. Number of points, the separation of points that will be used in registration 

process are determined. 40 points with minimum distance 15 can be the 

starting point and these parameters may be changed if needed for better 

performance. 

2. Features are extracted from both images and the registration method 

described above is applied. 

3. From the registered image and initial image, anatomical landmark points 

may be selected and using these points the amount of displacement at those 

points may be calculated. 

4.5 Three dimensional automatic medical image registration 

Registration of CT datasets formed by several slices taken at different time 

intervals is a three dimensional registration task. Slice positions and slice contents 

may change because of rotation, scaling and translation from one dataset to other. 



 49

Achieving the exact patient position may not be possible even when using a 

fixture. 

Automatic registration of three dimensional datasets requires the extraction of 

features in a three dimensional space and finding the optimal transformation 

between them. Iterative closest point is used in some clinical cases and found to be 

efficient in terms of registration error [27], [28].  

a) 

 

b) 

Figure 4.6 a) Registered Image and b) registered image superimposed on the first 

image 

In our case, ICP algorithm is tested with a real dataset and a synthetic 

dataset formed by rotating this dataset using bilinear interpolation. MATLAB code 

used in rotation and bilinear interpolation is given in Appendix G. Rotation models 

the change of patient position or change in the viewpoint. Figure 4.7 shows the 

same numbered slice in the original and the rotated dataset with rotation angles -

2.345 around x axis, 4.345 around y axis and 1.879 around z axis. It is clearly seen 

that rotation changes the image content and finding the back transformation is 

possible only when three dimensional dataset is considered as a whole.  
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Upon registering two dataset, candidate point pairs for registration are 

selected from the isosurface vertices. Isosurface is a combination of surfaces 

having a level that is equal to a given threshold. In this sense, isosurface level 

extraction is similar to global thresholding. Figure 4.8 shows the vertices of the 

patches found from the original and the rotated dataset. Pathes corresponding to 

original set consists of 177711 points and patches that correspond to rotated 

dataset consists of 165877 points. Threshold is intuitively selected as 180 such that 

most of the bone region is segmented out of the dataset. Vertices of the patches 

formed by isosurface extraction are reduced to five percent of its original value in 

one dataset to increase the speed of the search. This reduction eliminates most of 

the irrelevant point pairs. Since ICP algorithm considers a given number of points 

which is smaller than the whole number of data points, using relevant points on 

each iteration allows the algorithm to approach the final transformation more 

quickly and accurately. Figure 4.9 shows the reduced patch vertices in the rotated 

dataset that consist of 8455 points. 

  

a) 

 

b) 

 

Figure 4.7 a) Slice in first dataset and b) same slice location in the rotated datasets 

Patch vertices in first dataset and reduced patch vertices in the second set 

are given to the ICP algorithm. In each iteration, ICP algorithm rotates the reduced 

points such that overall misfit between the closest points in first set is reduced. ICP 

algorithm outputs the successively transformed dataset. Rotation angles are found 

by comparing the rotated set with the initial set given to ICP. Figure 4.10 shows 
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the RMS distance versus iteration number graph while ICP is running to register 

the original dataset with 4 degree rotated set in each axis. RMS distance is 

calculated by using the actual points and the successively rotated points and it is a 

point to point distance metric. It is seen that after a few iterations RMS error drops 

below 0.5. Initial angle given to the algorithm is recovered by comparing the 

successively rotated and translated set with the one given initially to ICP. Found 

angles for different initial rotation angles are given in Table 4.1. Three-

dimensional iterative closest point algorithm implemented in MATLAB is given in 

Appendix H.  

 

Figure 4.8 a) Original isosurface vertices and b) vertices in the rotated dataset 

 

Figure 4.9 Reduced patch vertices of the rotated dataset 
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Figure 4.10  RMS error versus iteration number for 3-D automatic registration 

 

Initial 

angle 

x y z Found 

angle 

x y z 

 1 1 1  1.0336 1.0070 0.9184 

 2 2 2  1.9319 2.0804 1.9381 

 3 3 3  2.9704 3.0547 2.9147 

Table 4.1 Initial angles given and result of ICP algorithm 
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As seen from the table, angle is recovered with less than 10 percent error in 

all the rotations in Table 4.1. This amount of error depends on how good the 

corresponding points in the two datasets are selected. Also the distance metric used 

in ICP is important. Distance metric should be point to surface since selection of 

exact corresponding points in two datasets is not possible. Instead of using bone 

surface points that correspond to face vertices, for better results extremal points or 

crest lines defined in [21]-[22] can be used for extracting point pairs for head CT 

registration. It is shown in [42] that errors smaller than the resolution can be 

achieved using extremal points in the registration.  

The steps for 3-D automatic registration are as follows. 

1. Both head CT datasets taken at different times are segmented to 

extract the bone tissue. The discretization of both datasets 

should be made the same before this process therefore 

interpolation is needed. 

2. Point features from both datasets are extracted especially 

anatomical landmark points that do not change with rigid 

rotation.  

3. Points in one of the sets are reduced by sampling to speed up the 

search process. Sampling might be random to inhibit error 

localization. Also sampling may be uniform or it may be non-

uniform.  

4. ICP algorithm is applied to align one dataset to the other. 

5. Using the aligned set and the initial set, the overall 

transformation matrix is found. 

6. Transformation matrix is applied to one of the datasets for slice 

by slice comparison, visualization and measurement purposes. 
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CHAPTER 5 
 
 

5. CONCLUSION 
 

 Medical imaging combined with powerful segmentation, registration and 

visualization algorithms allow medical treatment to be planned easily and 

accurately. Treatment planning consists of imaging body part at different time 

periods, segmentation of the part under investigation and registration of datasets 

gathered during this period. Comparison of these images and datasets provides the 

effectiveness of the treatment, the differences between planned and achieved 

results. The operator than decides on how to proceed in the next step of the 

treatment.  

In this thesis, various segmentation algorithms are explored that can be 

used in the segmentation stage of treatment planning. Using the available 

algorithms, a hybrid algorithm is developed for bone tissue segmentation from 

head CT images. Although the algorithm is applied to head CT images, it can be 

used to segment bones from any body part. Segmentation is automated while 

leaving some of the parameters left for user control. This property of segmentation 

algorithm provides minimized errors dependent on user interaction, but on the 

other hand presents a means of control on the segmentation task. 

 Registration step of medical treatment planning is investigated for two 

dimensional and three dimensional images that involve rigid transformations. 

Possibility of automatic registration of two datasets taken at different times is 

shown. The accuracy of the results is discussed. However much registration 

algorithms discussed in this thesis are confined to rigid transformations, 

registrations of datasets involving non-rigid transformations is possible by 
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modifying the optimal transformation search stage. Like the segmentation 

counterpart, this registration algorithms are not restricted for head CT images; they 

can be used in any dataset that involve rigid registration. 

 In this thesis, visualizations of the segmented bone from head CT slices 

from two patients are provided to show the effectiveness of developed hybrid 

segmentation algorithm. Successive visualizations of datasets taken at different 

times will reveal the effectiveness of the planned treatment using this segmentation 

algorithm. Measurements can be taken that will also be helpful in guiding the 

treatment.  

 Developed and investigated algorithms throughout the thesis can be used to 

monitor the condition of patients and to constitute a planning strategy for 

individual patients. These algorithms may be tested with real datasets and 

automatic or manual measurements may be taken by comparing datasets taken at 

different time periods for a specific type of treatment in the future for determining 

the accuracy of the algorithms.  
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APPENDICES 
 

 
APPENDIX A 

 
SEEDED REGION GROWING  

Srg2d.m 
 

function [out_im]=srg2d(im,seed_points); 
 
j=1:8; 
[row,col]=size(im); 
size_im=size(im); 
l_im=length(im); 
label_image=zeros(row,col); 
out_im=zeros(row,col); 
im=double(im); 
seed_label_matrix=assign_labels_to_seeds(seed_points); % assign seed levels to  

         %seeds 
mean_of_regions=[]; 
 
for i=1:size(seed_points,1)  % assign initial means to regions 
    mean_of_regions=[mean_of_regions;im(seed_points(i,1),seed_points(i,2))]; 
end                            
 
[row_seed,col_seed]=size(seed_points); 
l_seed=row_seed; 
ssl=[]; 
 
for i=1:l_seed 
    neighbour_seed=neighbours(seed_points(i,1),seed_points(i,2),row,col); 
    for j=1:length(neighbour_seed) 
        if (neighbour_seed(j)>=1 & neighbour_seed(j)<=row*col) 
            [delta,ind]=min(abs(ones(1,l_seed)'*im(neighbour_seed(j))- 

mean_of_regions)); 
            delta=[delta,ind]; 
            ssl=[ssl;neighbour_seed(j),delta]; 
        end 
    end 
    ssl=sortrows(ssl,[2]); 
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end 
 
label_image=label_seeds(seed_label_matrix,row,col);                     % update label            
% image 
 
for t=1:length(mean_of_regions) 
    n=find(im==mean_of_regions(t)); 
    label_image(n)=t; 
end 
 
while isempty(ssl)==0 
    y=ssl(1,:); 
    ssl=ssl(2:size(ssl,1),:); 
    result=0; 
    [x_coord,y_coord]=ind2sub(size(im),y(1)); 
    neigh=neighbours(x_coord,y_coord,row,col); 
    labels=label_image(neigh); 
    neigh=[neigh,labels]; 
    n=find(neigh(:,2)~=0 & neigh(:,2)~=-1);  % -1 is used for the boundary label so  

% do not look for boundary labels 
    if size(n,1)>1      
        if (sum(neigh(n,2))/size(n,1)==neigh(n(1),2))  % if all neighbours of y have 
                                                                                   % the same label  
            result=1;            % then assign y to this label 
            label=neigh(n(1),2); 
        end    
    else  
        [min_delta,label]=min(y(2:3)); 
        result=1; 
         
    end  
    if result==1   % if all the neighbours have the same label  
        label_image(y(1))=label; % Set y to this label. 
        n=label_image==label; 
        l_n=sum(sum(n)); 
        % update mean of regions 
        mean_of_regions(label)=sum(sum((n.*im)))/l_n; 
        %update_ssl 
        % find neighbours of the grow point 
        [x_coord,y_coord]=ind2sub(size(im),y(1)); 
        neighbour_grow=neighbours(x_coord,y_coord,row,col);                   
        
[delta,mind]=min((abs(im(neighbour_grow)*ones(1,length(mean_of_regions))-
ones(1,length(neighbour_grow))'*mean_of_regions')')); 
        delta=[delta' mind']; 
        temp_ssl=[neighbour_grow,delta]; 
        [C,IA,IB]=union(ssl(:,1:2),temp_ssl(:,1:2),'rows'); 
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        ssl=[ssl(IA,:);temp_ssl(IB,:)]; 
        labeled_pix_ind=find(label_image(ssl(:,1))); 
        labeled_pix=ssl(labeled_pix_ind,:); 
        ssl=setdiff(ssl,labeled_pix,'rows'); 
        ssl=sortrows(ssl,[2]); 
        n=find(label_image==1);    
        out_im(n)=mean_of_regions(1); 
        n=find(label_image==2);    
        out_im(n)=mean_of_regions(2); 
        n=find(label_image==3);    
        out_im(n)=mean_of_regions(3); 
        imshow(uint8(out_im)); 
    else 
        label_image(y(1))=-1;  %else flag y with boundary label 
    end 
end   
 
for k=1:length(mean_of_regions) 
    n=find(label_image==k); 
    out_im(n)=mean_of_regions(k); 
end 
 
function neigh=neighbours(x_pixel,y_pixel,row,col); 

neigh=[x_pixel-1,y_pixel-1;x_pixel-1,y_pixel; x_pixel-
1,y_pixel+1;x_pixel,y_pixel-1;x_pixel,y_pixel+1;x_pixel+1,y_pixel-
1;x_pixel+1,y_pixel;x_pixel+1,y_pixel+1]; 

if neigh>1 & neigh<row & neigh<col  
    neigh=sub2ind([row,col],neigh(:,1),neigh(:,2)); 
else 
    j=1:8; 
    n=find(neigh(j,1)>=1 & neigh(j,2)>=1 &  neigh(j,1)<=row & neigh(j,2)<=col); 
    neigh=neigh(n,:); 
end 
 
function ssl=initial_neighbour_seed(seed_points,row_max, 
col_max,mean_of_regions); %finds neighbours of ssl in image 
global im; 
[row_seed,col_seed]=size(seed_points); 
l_seed=row_seed; 
ssl=[]; 
for i=1:l_seed 
    
neighbour_seed=neighbours(seed_points(i,1),seed_points(i,2),row_max,col_max); 
    for j=1:length(neighbour_seed) 
        if (neighbour_seed(j)>=1 & neighbour_seed(j)<=row_max*col_max) 

[delta,ind]=min(abs(ones(1,l_seed)'*im(neighbour_seed(j))-
mean_of_regions)); 
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            delta=[delta,ind]; 
            ssl=[ssl;neighbour_seed(j),delta]; 
        end 
    end 
    ssl=sortrows(ssl,[2]); 
end 
 
function seed_label_matrix=assign_labels_to_seeds(seed_points);     
[row,col]=size(seed_points); 
seed_label_matrix=seed_points; 
 
for i=1:row 
    seed_label_matrix(i,3)=i; 
end 
 
function label_image=label_seeds(seed_label_matrix,row,col); 
label_image=zeros(row,col); 
 
for j=1:size(seed_label_matrix,1) 
    x_pix=seed_label_matrix(j,1); 
    y_pix=seed_label_matrix(j,2); 
    label_image(x_pix,y_pix)=seed_label_matrix(j,3); 
end 
 
function [result,label]=extract_neighbours(pix_coord,row_max,col_max); 
global im; 
global label_image; 
result=0; 
label=-1; % initialy y is boundary label 
neigh=neighbours(pix_coord(1,1),pix_coord(1,2),row_max,col_max); 
label_indices=sub2ind(size(im),neigh(:,1),neigh(:,2)); 
labels=label_image(label_indices); 
neigh=[neigh,labels]; 
n=find(neigh(:,3)~=0 & neigh(:,3)~=-1);  % -1 is used for the boundary label so do     
                                                                    % not look for boundary labels 
if size(n,1)>1      

if (sum(neigh(n,3))/size(n,1)==neigh(n(1),3))  % if all neighbours of y have the  
       % same label  

        result=1;                      % then assign y to this label 
        label=pix_coord(4); 
    end    
else  
    [min_delta,label]=min(pix_coord(3:4)); 
    result=1; 
    label=pix_coord(4); 
end 
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APPENDIX B 
 

SIMPLIFIED REGION GROWING  
Region_growing.m 

 
function [y]=region_growing(x,threshold,seed_level,block_size); 
[row,col]=size(x); 
global segmentedImage; % segmented image  
global segmentedImage_assignment; % assigned segmented image pixels 
global OutputImage; 
global pixelCount; 
global sumGrey; 
global meanGrey; 
global seedGrey; 
OutputImage=zeros(row,col); 
pixelCount=0; 
segmentedImage=zeros(row,col); 
segmentedImage_assignment=zeros(row,col); 
for i=1:row 
    for j=1:col 
        if(x(i,j)>seed_level) 
            OutputImage(i,j)=255;; 
            segmentedImage_assignment(i,j)=1;             
        elseif(abs(x(i,j)-seed_level)<threshold) 
            if (segmentedImage_assignment(i,j)==0) 
                pixelCount=0; 
                sumGrey=0; 
                meanGrey=0; 
                seedGrey=seed_level; 
                pixelprocessing(x,i,j,10,block_size); 
            end 
        end 
    end 
end 
y=OutputImage; 
 
 
function pixelprocessing(x,i,j,threshold,block_size); 

[row_x,col_x]=size(x); 
global greyValue; 
global noMoreNeighbours; 
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global sumGrey; 
global pixelCount; 
global meanGrey; 
global segmentedImage_assignment; 
global OutputImage; 
global seedGrey; 
noMoreNeighbours=0; 

 
 
while (noMoreNeighbours == 0) 
     
    greyValue=x(i,j); 
    sumGrey=sumGrey+greyValue; 
    pixelCount=pixelCount+1; 
    meanGrey=sumGrey/pixelCount; 
    noMoreNeighbours = 0; 
     
    heldI=-1; 
    heldJ=-1; 
    greyDifference=999;    
    neighbour=[-1,0;1,1;0,1;1,1;1,0;1,-1;0,-1;-1,-1]; 
     
    for g=1:1:8 
         
        connectedx=i+neighbour(g,1);  % x coordinate of the connected pixel    
        connectedy=j+neighbour(g,2);  % y coordinate of the connected pixel 
        if (i>=row_x-2 | i<=2) % the pixel is not in the range proceed to next one 
            return ; 
        end 
         
        if (j>=col_x-2 | j<=2)  % the pixel is not in the range proceed to next one 
            return ; 
        end 
         
        if (segmentedImage_assignment(connectedx,connectedy)==0) 
            neighbourGreyValue= x(connectedx,connectedy); 
            diffvalue=abs(meanGrey - neighbourGreyValue); 
            if (diffvalue<threshold) 
                if (diffvalue<greyDifference) 
                    heldI=connectedx; 
                    heldJ=connectedy; 
                    greyDifference=diffvalue;                        
                end 
            end 
         end         
    end 
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    if (heldI~=-1 & heldJ~=-1)  
        segmentedImage(heldI, heldJ) =255; 
        OutputImage(heldI, heldJ) =255 ; 
        segmentedImage_assignment(heldI,heldJ)=1; 
        i=heldI; 
        j=heldJ;        
         
    else 
        noMoreNeighbours = 1; 
        segmentedImage(i, j) = 255 ; 
        segmentedImage_assignment(i,j)=1; 
        OutputImage(i,j)=255; 
        return; 
    end 
end 
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APPENDIX C 
 

HYBRID SEGMENTATION ALGORITM 
Segmentation3.m 

 
 
 
function [out_image,pixels]=segmentation3(x,ku_std,ku_mean,block_size); 
[row,col]=size(x); 
out_image=zeros(row,col); 
b=ones(1,70); 
[x2,thresh]=segmentation1(x,0.5); 
edge_x2=edge_zerocross(x2,4,0); 
edge_x2=imfill(edge_x2); 
[X,num] = bwlabel(x2,8);  
feat= imfeature(X,'Area','Centroid','BoundingBox','PixelList'); 
pixels=[]; 
for k=1:1:num 
    bw_area=feat(k).Area; 
    bw_centroid=feat(k).Centroid; 
    bw_boundbox=ceil(feat(k).BoundingBox); 
    bw_pixellist=feat(k).PixelList; 
    bw_boundbox(3:4)=bw_boundbox(3:4); 
    if bw_area>30  & min(bw_pixellist(:))~=1 & max(bw_pixellist(:))~=row 
    temp_image=zeros(row,col); 
    temp_rbg=zeros(row,col); 
    [r,c] = find(X==k);         
    rc = [r c]; 
    BW2 = bwselect(X,c,r,8); 
    temp_image(BW2)=x(BW2); 
    if bw_boundbox(2)+bw_boundbox(4)>row  
    upper_limit_row=row; 
    else 
        upper_limit_row=bw_boundbox(2)+bw_boundbox(4); 
    end 
 
    if bw_boundbox(1)+bw_boundbox(3)>col  
    upper_limit_col=col; 
    else 
      upper_limit_col=bw_boundbox(1)+bw_boundbox(3); 
    end 
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cropped_x=x(bw_boundbox(2):upper_limit_row,bw_boundbox(1):upper_limit_col
);  
    mean_x=mean(x(BW2)); % mean of subimage 
    sigma_x=std2(temp_image); % standard deviation of  subimage 
    
temp_rbg=region_growing(double(cropped_x),sigma_x*ku_std,mean_x*ku_mean
,block_size); 
    
out_image(bw_boundbox(2):upper_limit_row,bw_boundbox(1):upper_limit_col)=
temp_rbg;             
      end 
end 
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APPENDIX D 
 

3-D VISUALIZATION CODE 
SHOW_CT.m 

 
function show_ct(D,iso_level,filename); 
close all; 
figure(1); 
[r,c,d]=size(D); 
axis off; 
axis tight; 
axis image; 
axis tight; 
grid off; 
Ds=smooth3(D); 
if iso_level==500 
    hiso = patch(isosurface(Ds),'FaceColor',[1,.75,.65],'EdgeColor','none'); 
else     
    hiso = patch(isosurface(Ds,iso_level),'FaceColor',[1,.75,.65],'EdgeColor','none'); 
end 
 
hcap = patch(isocaps(D),'FaceColor','interp','EdgeColor','none'); 
view(0,0); 
lightangle(0,0);  
set(gcf,'Renderer','zbuffer'); 
lighting phong; 
isonormals(Ds,hiso) 
set(hcap,'AmbientStrength',.6) 
set(hiso,'SpecularColorReflectance',0,'SpecularExponent',50) 
set(gcf,'PaperPositionMode','auto')   % Use screen size 
view(0,0); 
eval(['print -f1 -djpeg ', 'on.jpg']); 
view(-90,0); 
eval(['print -f1 -djpeg ', 'yan.jpg']); 
view(90,0); 
eval(['print -f1 -djpeg ', 'obur_yan.jpg']); 
view(-44,8); 
zoom(2); 
eval(['print -f1 -djpeg ', 'profil.jpg']) 
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APPENDIX E 
 

DISTINCIVENESS MAP 
distinctive.c 

 
#include "matrix.h" 
#include "mex.h" 
#include "math.h" 
#define gray_level 255 
 
double find_sim(double *x, double *y, int size, int num_circ_pixels) 
 
{ 
int i,j,index1,index2; 
double result; 
result=0; 
for (i=0;i<size;i++) 
result=result+abs(x[i]-y[i]);            
return (result/255)/num_circ_pixels; 
} 
 
int create_circle(double loc, int c_x, int circ_index, double circle_size) 
 
{ 
int t,p,num_circ_pixels; 
num_circ_pixels=0; 
for(t=0;t<loc;t++) 
for (p=0;p<loc;p++) 
if((c_x-t-1)*(c_x-t-1)+(c_x-p-1)*(c_x-p-1)<=circle_size*circle_size+1) 
{   circ_index=t+p*loc; 
num_circ_pixels=num_circ_pixels+1; 
} 
return num_circ_pixels; 
 
} 
 
 
void im_windower (double *im, double *small_im, int origin_x ,int origin_y, 
double radius, int im_col_size, int im_element_size) 
{  
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int i,j,index,window_size,small_im_index; 
window_size=2*radius+1; 
small_im_index=0; 
 
for (i=-radius;i<=radius;i++) 
for (j=-radius;j<=radius;j++) 
 
{       
small_im_index=(j+radius)+(i+radius)*window_size;  
if((i)*(i)+(j)*(j)<=radius*radius+1) 
{ 
index=origin_x-1+j+(origin_y-1+i)*im_col_size; 
if (index>0 & index<im_element_size)       
small_im[small_im_index]=im[index]; 
else 
small_im[small_im_index]=0; 
} 
else 
small_im[small_im_index]=0; 
} 
}                
 
void mexFunction( int nlhs, mxArray *plhs[], 
int nrhs, const mxArray *prhs[] ) 
{        
int m,k,l,t,row,col,num_elements,index1,index2,row_counter,col_counter; 
double *im; 
double *points,*radius; 
int    *dims; 
int    circ_index; 
double *dist_map; 
double d,circle_size,loc,num_circ_pixels; 
double *circ_pixels,*small_im1,*small_im2; 
int *circ_pixel_dims; 
int circ_pixel_row; 
double *small_im1_data; 
double *small_im2_data; 
double result; 
 
num_circ_pixels=0; 
im=mxGetData(prhs[0]); 
radius=mxGetData(prhs[1]); 
circ_pixels=mxGetData(prhs[2]); 
num_elements=mxGetNumberOfElements(prhs[0]); 
dims=mxGetDimensions(prhs[0]); 
row=dims[0]; 
col=dims[1]; 
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plhs[0]=mxCreateDoubleMatrix(row,col, mxREAL); 
dist_map=mxGetData(plhs[0]); 
circ_pixel_dims=mxGetDimensions(prhs[2]); 
circ_pixel_row=circ_pixel_dims[0]; 
circle_size=radius[0]; 
loc=2*circle_size+1.0; 
small_im1=mxCreateDoubleMatrix(loc,loc, mxREAL); 
small_im2=mxCreateDoubleMatrix(loc,loc, mxREAL); 
small_im1_data=mxGetData(small_im1); 
small_im2_data=mxGetData(small_im2); 
d=1.0; 
num_circ_pixels=create_circle(loc,circle_size+1,circ_index,circle_size); 
 
for (col_counter=0;col_counter<col;col_counter++) 
for (row_counter=0;row_counter<row;row_counter++) 
{ 
for (m=1;m<circ_pixel_row;m++) 
{    
k=circ_pixels[m-1]; 
l=circ_pixels[circ_pixel_row+m-1];  
if (row_counter+k>0 & row_counter+k<row & col_counter+l>0 & 
col_counter+l<col) 
{ 
im_windower(im,small_im1_data,row_counter,col_counter,circle_size,col,num_el
ements); 
im_windower(im,small_im2_data,row_counter+k,col_counter+l,circle_size,col,nu
m_elements); 
result= find_sim(small_im1_data,small_im2_data,loc*loc,num_circ_pixels); 
if (result !=0) 
d=d*result; 
else 
{ 
d=0; 
break; 
} 
} 
} 
if (row_counter+col_counter*col<num_elements) 
dist_map[row_counter+col_counter*col]=d; 
d=1.0; 
} 
} 
 
 
 
 
 



 74

 
 
 
 
 

APPENDIX F 
 

2-D ITERATIVE CLOSEST POINT 
ICP2.m 

 
function [R,T] = ICP2(new_target,new_temp,max_iter,threshold); 
error=100000; 
iteration=0; 
pixels1=new_target; 
temp=new_temp; 
first_pixels2=new_temp; 
[r1,c1]=size(new_target); 
[r2,c2]=size(new_temp); 
while (abs(error)>threshold & iteration<max_iter) 
    iteration=iteration+1 
    k=dsearchn(pixels1,temp); 
    target=pixels1(k,:); 
    [r_target,c_target]=size(target); 
    save points.mat target temp; 
    q0=[0 0 0]; 
    [x,fval]=fminunc(@cost_function2d,q0);  % minimization step 
    [R]=[cos(x(1)), -sin(x(1)) ;sin(x(1)), cos(x(1))]; 
    f_values(iteration+1)=fval 
    error=abs(f_values(iteration+1)-f_values(iteration)); % update error 
    temp=temp*R+ones(1,r2)'*[x(2) x(3)];    
end 
target=temp; 
temp=first_pixels2; 
save points.mat target temp; 
x=fminunc(@cost_function2d,q0); 
[R]=[cos(x(1)), -sin(x(1)) ;sin(x(1)), cos(x(1))]; 
T=[x(2) x(3)]; 
 
function f=cost_function2d(x) 
load points.mat; 
[row1,col1]=size(target); 
[row2,col2]=size(temp); 
min_row=min(row1,row2); 
rxx=cos(x(1)); 
rxy=-sin(x(1)); 
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ryx=sin(x(1)); 
ryy=cos(x(1)); 
R=[rxx rxy;ryx ryy]; 
f=1/min_row*sum(sum([target(1:min_row,:)-(temp(1:min_row,:)*R)-
ones(1,min_row)'*[x(2) x(3)]].^2)); 
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APPENDIX G 

 
3-D ROTATION USING BILINEAR INTERPOLATION 

ICP3.m 
 

#include "matrix.h" 
#include "mex.h" 
#include "math.h" 
#define ndims 3 
 
void mexFunction( int nlhs, mxArray *plhs[], 
int nrhs, const mxArray *prhs[] ) 
{        
 
const int dims[]={256,256,100}; 
long int size,k; 
double new_x,new_y,new_z; 
double a,b,c;  
int n1_x,n2_x,n3_x,n4_x,n5_x,n6_x,n7_x,n8_x; 
int n1_y,n2_y,n3_y,n4_y,n5_y,n6_y,n7_y,n8_y; 
int n1_z,n2_z,n3_z,n4_z,n5_z,n6_z,n7_z,n8_z;    
int n1,n2,n3,n4,n5,n6,n7,n8; 
int x,y,z,i; 
 
double *outdata; 
double *pdata; 
double *R; 
double *T; 
 
/* Check for proper number of input and output arguments */     
if(nlhs > 1){ 
mexErrMsgTxt("Too many output arguments."); 
} 
 
/* Check data type of input argument  */ 
 
if(mxIsEmpty(prhs[0])) { 
mexWarnMsgTxt("Input argument is empty\n"); 
} 
R = mxGetData(prhs[1]); 
T = mxGetData(prhs[2]); 
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plhs[0] = mxCreateNumericArray(ndims,dims,mxDOUBLE_CLASS,mxREAL); 
outdata = mxGetData(plhs[0]); 
pdata   = mxGetData(prhs[0]); 
size    = mxGetNumberOfElements(plhs[0]); 
for(i=0;i<size;i++) 
{ 
z= (i/65536); 
y= (i/256)%256; 
x= (i-i/256*256); 
 
new_x=(x*R[0]+y*R[1]+z*R[2])-T[0];  
new_y=(x*R[3]+y*R[4]+z*R[5])-T[1]; 
new_z=(x*R[6]+y*R[7]+z*R[8])-T[2]; 
 
a=new_x-floor(new_x); 
b=new_y-floor(new_y); 
c=new_z-floor(new_z); 
 
n1_x=floor(new_x);n1_y=floor(new_y);n1_z=floor(new_z);        
n2_x=ceil(new_x);n2_y=floor(new_y);n2_z=floor(new_z);         
n3_x=ceil(new_x);n3_y=ceil(new_y);n3_z=floor(new_z);       
n4_x=floor(new_x);n4_y=ceil(new_y);n4_z=floor(new_z);  
n5_x=floor(new_x);n5_y=floor(new_y);n5_z=ceil(new_z);      
n6_x=ceil(new_x);n6_y=floor(new_y);n6_z=ceil(new_z);       
n7_x=ceil(new_x);n7_y=ceil(new_y);n7_z=ceil(new_z);       
n8_x=floor(new_x);n8_y=ceil(new_y);n8_z=ceil(new_z); 
 
n1=(n1_x+(n1_y)*256+n1_z*256*256);  
n2=(n2_x+(n2_y)*256+n2_z*256*256); 
n3=(n3_x+(n3_y)*256+n3_z*256*256); 
n4=(n4_x+(n4_y)*256+n4_z*256*256); 
n5=(n5_x+(n5_y)*256+n5_z*256*256); 
n6=(n6_x+(n6_y)*256+n6_z*256*256); 
n7=(n7_x+(n7_y)*256+n7_z*256*256);         
n8=(n8_x+(n8_y)*256+n8_z*256*256);                 
 
k=(floor(new_x)+floor(new_y)*256+floor(new_z)*256*256);         
 
if (k>0 & k<size & n1>0 & n1<size & n2>0 & n2<size & n3>0 & n3<size & n4>0 
& n4<size & n5>0 & n5<size & n6>0 & n6<size & n7>0 & n7<size & n8>0 & 
n8<size) 
{ 
if (new_x<0 | new_y<0 |new_z<0 | n1_x<0 | n1_y<0 | n1_z<0 | n2_x<0 | n2_y<0 | 
n2_z<0 | n3_x<0 | n3_y<0 | n3_z<0 | n4_x<0 | n4_y<0 | n4_z<0 | n5_x<0 | n5_y<0 
| n5_z<0 | n6_x<0 | n6_y<0 | n6_z<0 | n7_x<0 | n7_y<0 |n7_z<0 | n8_x<0 | n8_y<0 
|n8_z<0) 
outdata[i]=0; 
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else 
{ 
outdata[i]=(1-a)*(1-b)*(1-c)*pdata[n1]+a*(1-b)*(1-c)*pdata[n2]+a*b*(1-
c)*pdata[n3]+(1-a)*b*(1-c)*pdata[n4]+ (1-a)*(1-b)*(c)*pdata[n5]+a*(1-
b)*(c)*pdata[n6]+a*b*(c)*pdata[n7]+(1-a)*b*(c)*pdata[n8]; 
} 
} 
}       
} 
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APPENDIX H 
 

3-D ITERATIVE CLOSEST POINT 
ICP3.m 

 
function [q,R,alldata_out,f] =  
ICP3(model,alldata,sample_number,max_iter,threshold); 
hold off 
set(scatter(model, 'b.'), 'markersize', .001); 
set(gcf, 'renderer', 'opengl') 
hold on 
axis off 
h_alldata = scatter(alldata, 'r.'); 
set(h_alldata, 'markersize', .001); 
axis vis3d 
error=100000; 
iteration=1; 
xo=[0 0 0 0 0 0]; 
R = [1,0,0;0,1,0;0,0,1]; 
q = [1;0;0;0;0;0;0]; 
difference=100; 
f=0; 
all_data_length=length(alldata); 
Tes=delaunayn(model); 
while (abs(error)>threshold & iteration<max_iter & difference>1e-30)    
    cov_px=zeros(3,3); 
    cov_px1=zeros(3,3); 
    iteration=iteration+1;        % find closest points 
    pixels=round(rand(1,sample_number)*all_data_length); 
    n=find(pixels==0); 
    pixels(n)=1;     
    data= alldata(pixels,:); 
    D=av_distance(data);     
    [K,dists]=dsearchn(model,Tes,data); 
    mean_d=mean(dists); 
    std_d=std(dists); 
    median_d=median(dists); 
    if mean_d<D 
        dist_threshold=mean_d+3*std_d; 
    elseif mean_d<3*D 
        dist_threshold=mean_d+2*std_d; 
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    elseif mean_d<6*D 
        dist_threshold=mean_d+std_d; 
    else      
        dist_threshold =median_d; 
    end     
    m=find(dists<dist_threshold); 
    sel_points=K(m); 
    temp=data(m,:);     
    target=model(sel_points,:); 
    lt=length(temp); 
    % calculation of the mean square distance function    
        f(iteration)=1/lt*sum(dists) 
 
    if iteration>2 
        difference=abs(f(iteration)-f(iteration-1)); 
    end     
 
    mp=(sum(temp)/lt)'; 
    mx=(sum(target)/lt)';     
    temp=temp'; 
    target=target';     
 
    for i = 1 : lt; 
        cov_px1 = cov_px1 + (temp(:,i)*transpose(target(:,i)) - mp*transpose(mx)); 
    end     
 
    cov_px=cov_px1/lt;     
    % Calculation of the Q matrix     
    A = cov_px - transpose(cov_px); 
    D = [A(2,3); A(3,1); A(1,2)]; 
    T = cov_px + transpose(cov_px) - 
(cov_px(1,1)+cov_px(2,2)+cov_px(3))*[1,0,0;0,1,0;0,0,1]; 
    Q = [cov_px(1,1)+cov_px(2,2)+cov_px(3,3), D(1), D(2), D(3); 
        D(1), T(1,1), T(1,2), T(1,3); 
        D(2), T(2,1), T(2,2), T(2,3); 
        D(3), T(3,1), T(2,3), T(3,3)];     
    % Updating the quartenions to the eigenvalues corresponding to the largest         
%eigenvalue     
    
    [eigvec,eigval] = eig(Q); 
    eigmax = max(eigval); 
    [eigmmax, index]=max(eigmax); 
     
    for i = 1:4 
        q(i) = eigvec(i,index); 
    end     
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% Updating the rotation matrix as per the new quartenions         
 
    rxx=q(1)^2+q(2)^2-q(3)^2-q(4)^2; 
    rxy=2*[q(2)*q(3)-q(1)*q(4)]; 
    rxz=2*[q(2)*q(4)+q(1)*q(3)]; 
    ryx=2*[q(2)*q(3)+q(1)*q(4)]; 
    ryy=q(1)^2+q(3)^2-q(2)^2-q(4)^2; 
    ryz=2*[q(3)*q(4)-q(1)*q(2)]; 
    rzx=2*[q(2)*q(4)-q(1)*q(3)]; 
    rzy=2*[q(3)*q(4)+q(1)*q(2)]; 
    rzz=q(1)^2+q(4)^2-q(2)^2-q(3)^2; 
    R=[rxx rxy rxz;ryx ryy ryz;rzx rzy rzz]; 
    R=R/norm(R);        
    % Updating the translation vector         
    qT = mx - R*mp; 
     
    for i = 5:7 
        q(i) = qT(i-4); 
    end 
    alldata=alldata*inv(R)+ones(1,all_data_length)'*[q(5) q(6) q(7)]; 
    scatter(alldata, h_alldata);     
    drawnow 
end 
data_out=data; 
alldata_out=alldata; 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 


