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ABSTRACT

SHAPE ANALYSIS USING CONTOUR-BASED AND REGION-BASED

APPROACHES

CIFTCI, GUNCE
MSc, Department of Electrical And Electronics Engineering

Supervisor: Prof. Dr. Ismet Erkmen

DECEMBER 2003, 71 pages

The user of an image database often wishes to retrieve all images similar to the one
(s)he already has. In this thesis, shape analysis methods for retrieving shape are in-
vestigated. Shape analysis methods can be classified in two groups as contour-based
and region-based according to the shape information used. In such a classification,
curvature scale space (CSS) representation and angular radial transform (ART) are
promising methods for shape similarity retrieval respectively. The CSS representa-
tion operates by decomposing the shape contour into convex and concave sections.
CSS descriptor is extracted by using the curvature zero-crossings behaviour of the
shape boundary while smoothing the boundary with Gaussian filter. The ART de-

scriptor decomposes the shape region into a number of orthogonal 2-D basis functions

ii



defined on a unit disk. ART descriptor is extracted using the magnitudes of ART
coefficients. These methods are implemented for similarity comparison of binary im-
ages and the retrieval performances of descriptors for changing number of sampling
points of boundary and order of ART coefficients are investigated. The experiments
are done using 1000 images from MPEG7 Core Experiments Shape-1. Results show
that for different classes of shape, different descriptors are more successful. When the
choice of approach depends on the properties of the query shape, similarity retrieval

performance increases.

Keywords: Scene Analysis, Shape Representation, Curvature Scale Space, Angular

Radial Transform
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OZ

CEVRIT VE BOLGE TEMELLI YAKLASIMLARLA SEKIL ANALIZI

CIFTCI, GUNCE
Yiiksek Lisans, Elektrik ve Elektronik Miihendisligi Bolimii

Tez Yoneticisi: Prof. Dr. Ismet Erkmen

ARALIK 2003, 71 sayfa

Bir goruntu veritabani kullanicisi siklikla elindeki goriintiiye benzeyen goériintiilere
erismek ister. Bu tezde, sekil erigiminde kullanmak igin gekil analiz yontemleri a-
ragtirilmigtir. Sekil analizi yontemleri, kullanilan gekil bilgisine gore, cevrit ve bolge
temelli olarak iki grupta simiflandirilabilir. Sekil erigimi i¢in, kivrim 6lgek uzay: (KOU)
gosterimi ve agisal radyal doniigiim (ARD) bu siiflardaki bagarih yontemlerdir. KOU
gosterimi gekli digbiikey ve i¢biikey boliimlere ayirir. KOU betimleyicisi, geklin sinir-
larim1 Gauss filtresiyle diizlegtirirken siirin kivrim davranigini kullanarak ¢ikartilir.
ARD, gekli birim dairede taniml iki boyutlu dikgen taban fonksiyonlarina ayirir.
ARD betimleyicisi, ARD katsayilarinin biiyiikliiklerinden ¢ikartilir. Bu yontemler ikili
imgelerin benzerlik kargilagtirma problemine uygulanmig ve betimleyicilerin, degigen

sinir noktalar1 ornekleme sayisi ve ARD katsayr derecelerine gore, performanslar
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aragtirilmigtir. MPEGT7 veri setiyle yapilan bu deneylerde farkli gekil gruplar: icin
farkli betimleyicilerin daha bagarili oldugu gorilmugtir. Cevrit ya da bolge temelli
yaklagim secimi, benzeri aranan geklin 6zelliklerine dayandirildiginda, benzerlik bulma

performans: artmaktadair.

Anahtar Kelimeler: Sahne analizi, Sekil Gosterimi, Kivrim Olgek Uzayi, Acisal Radyal

Doniigiim
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CHAPTER 1

INTRODUCTION

There has been a rapid increase on the amount of digital images around the world, due
to the decreasing storage and processing costs and the Internet. Terabytes of data are
being generated in the form of aerial imagery, survelliance images, fingerprints, engi-
neering drawings, medical images, trademarks and logos, images from sports events,
graphic illustrations, entertainment industry photos and videos. The increasing num-
ber of images in many applications gives rise to the difficult problem of organizing

them for the best and rapid access to their information content.

Traditional text based indexing mechanisms has limitations. One is that, when
the database is large, it is almost impossible to manually annotate all the images.
The other is, some visual properties of images such as texture and shape are difficult
to describe using words. Therefore, instead of words , researchers in computer vision
have tried to use some convenient feature vectors to describe these properties. The
objective is to allow users to specify an image or a part of it and the system should then
find all images in the database similar to that image. Among the visual properties of

an image such as shape, color and texture, shape features are very powerful when used



in similarity search and retrieval. This is because the shape of objects are strongly
linked to their identity and functionality: humans can recognize objects only from their
shapes. This property distinguishes shape from the other elementary visual features.
Therefore, shape similarity search has the potential of being the most effective search
technique in many application fields.

This study addresses the problem of similar shape retrieval. The similar shape
retrieval problem can be stated as retrieve or select all shapes or images that are
visually similar to the query shape. The first step of designing a shape retrieval
technique is shape representation. In shape representation, the objective is to find
a representation that captures essential shape properties. After that, shape feature
vectors are extracted from the chosen shape representation and these descriptors are
used for image similarity measurement and indexing. Shape representation methods
are generally classified as contour-based and region-based methods. In this study, most
promising shape descriptors for each class, curvature scale space representation and
angular radial transform are implemented and compared in order to observe their
retrieval performances.

The following pages of this thesis are organized in six chapters. In Chapter 2,
state of art shape representation and description techniques will be reviewed. In
Chapters 3 and 4, the reader will find detailed presentations of curvature scale space
and angular radial transform shape descriptors. In each chapter, it will be shown
that both descriptors have desired properties which make them promising for shape
retrieval. In Chapter 5, retrieval performances of the descriptors will be evaluated and
compared by use of a developed software for shape retrieval of binary shapes. Chapter

6 summarizes the conclusions of this thesis and gives some future directions.



CHAPTER 2

REVIEW OF SHAPE REPRESENTATION AND

DESCRIPTION

2.1 Introduction

Shape is an important visual feature and it is one of the primary features for image
content description. However, shape description is a difficult task. Because it is
difficult to define significant shape features and measure the similarity between shapes.

Moreover, shape is often corrupted with noise, defection and occlusion.

Shape research is an active area for over 30 years. In the past, shape research
was driven by applications of object recognition. Therefore, shape representation and
description methods used targeted particular applications. Effectiveness or accuracy
of methods was very important in these techniques. Content Based Image Retrieval
(CBIR) is newly coming up multimedia application. CBIR systems are system which
automatically retrieve images from an image database by color, texture, shape and
text features. With this application, for the representation and description of shape ,

efficiency becomes equally important as effectiveness for online retrieval.



In this chapter, shape representation and description techniques in literature are
reviewed. Several criteria for the evaluation of shape description techniques are listed.

Promising shape descriptors for use in image retrieval are identified.

2.2 Classifications of Shape Representation Techniques

Shape analysis methods can be classified according to different criteria. Pavlidis [1]
has proposed the following classifications. The first classification is based on the use
of shape boundary points or interior of the shape. This commonly used method clas-
sifies shape representations as contour-based and region-based representations. Fourier
transform of the boundary is an example of contour-based method. Some examples
of region-based methods are moment based approaches and the medial axis transform
(MAT).

Another classification of shape analysis algorithms can be made according to the
result of the analysis, numeric or non-numeric. For example, MAT produces another
image (a symmetric axis) for representation of a shape which is a non-numeric de-

scriptor . Fourier and moment based methods produce numbers (scalar or vectors).

A third classification of shape analysis can be made according to information
preservation property of the method. Methods which allow the accurate reconstruction
of a shape from its descriptor are called information preserving, while methods only
capable of partial reconstruction or ambiguous description are called non-information
preserving. For example, area to perimeter square ratio is a non-information preserving
description because many different shapes may have the same ratio therefore it is not

possible to reconstruct the shape from its area to perimeter square ratio.

Using a hierarchical classification, first it is possible to classify the variety of shape



representations contour-based method and region-based methods. Under each class,
the different methods are distinguished as global and structural based on whether the
shape is represented as a whole or represented by sub-parts (primitives).

The whole hierarchy of the classification is shown in Figure 2.1

Shape
Contour-hased Region-hased
Structural | Global | [ Globa | | Stuctural
Chain Code Perimeter Area Convex Hull
Polygon Circulanty Euler Number Media Axis
B-spline Eccentricity Eccentricity
Shape Signature Geometric Moment
Fourier Descriptors Zernike Moments
Scale Space Legendre Moments
Angular Radial
Transform
Grid Method
Shape Matrix

Figure 2.1: Classification of shape representation and description methods

2.3 Shape Description Methods Evaluation Criteria

A common discussion in shape description research is how to judge the quality of
shape descripton method. All methods are not suitable for every kind of shape and
application. In fact, the method chosen among shape representation methods should
depend on the properties of the shape to be described and the particular application.
For example, the presence of noise which is a common problem in segmented images

can affect the choice of the shape representation method, such a representation should



not change much with noisy images.

The essential property of a shape representation is the invariance of the represen-
tation with the transformations of the object like scaling, rotation and translation.
Because such transformations do not change the shape of an object.

Several authors proposed criteria for the evaluation of the quality of a shape de-
scriptor. A number of criteria have been proposed in [2, 3, 4] to define a representation

as reliable, they are:

e Uniqueness: The representation should uniquely specify a single shape.If there
are two different shapes, their representations also should be different. It will
therefore be possible to say that two objects have the same shape by observing

that they have the same representation.

e Invariance: If two objects have the same shape, they should also have the same
representation. Since transformations like uniform scaling, rotation and trans-
lation do not change the shape of an object, a good shape descriptor should be

invariant under uniform scaling, rotation and translation.

e Stability: Stability describes how sensitive a shape descriptor is to small changes
in shape. If two objects have a small shape difference, their representations
should also have a small difference. A small change in some part of a shape

should create a small local change in the representation.

e Efficiency: For a representation to be suitable for practical recognition tasks,
the representation should be computable efficient and storable. It is also called
as accessibility which describes how easy or difficult it is to compute a shape

descriptor in terms of memory requirements and computational time.



e It may be useful to determine some properties of the shape using its representa-
tion. For example, if a curve has a symmetric shape, it may be desirable to be
able to determine that fact from its representation (the symmetry criteration).
Moreover, if the shape of a part of an object is the same as the shape of part of
another object, it may be useful to be able to determine this relationship using

their representations (the part/whole criteration).

The methods mentioned above define desired properties of a good shape descriptor
conceptually but the quality of a shape descriptor can not be numerically expressed.
So it is not possible to make an exact numerical comparison of shape description
methods. Moreover, shape representation methods proposed in computational vision
may also fail to satisfy one or more of the criteration above. At the same time, these
methods can be suitable for special-purpose shape representation tasks. Therefore,
the specific application puts the criteria for the evaluation of a shape descriptor.
For example, in the development of MPEG-7 which aims to standardize CBIR, six
requirements has been set to measure a shape descriptor, they are: good retrieval
accuracy, compact features, general application, low computation complexity, robust

retrieval performance and hierarchical coarse to fine representation.

2.4 Contour-Based Shape Representation Techniques

Contour-based shape representation techniques extract shape features from shape
boundary. There are generally two approaches for contour shape representation:
Global and structural.

With global approaches a feature vector derived from the whole boundary is used to

describe the shape. The shape similarity is done by point-based matching or feature-



based matching. Structural approaches break the shape boundary into segments,
called primitives using a particular criterion. The final representation is usually a
string or a graph (or tree), the similarity measure is done by string matching or graph

matching. These two types of approaches are discussed in the following.

2.4.1 Global Methods

2.4.1.1 Simple Shape Descriptors

Common simple shape descriptors are perimeter, area, circularity (perimeter?/area),
eccentricity (length of major axis/length of minor axis), major axis orientation
and bending energy [5]. These simple descriptors are different for shapes with large
dissimilarities. So they are usually used to filter shapes with large dissimilarities.
They are not used as standalone descriptors. Because same representations with
these descriptors do not guarantee shape similarity. For example, the eccentricity of
the shape in Figure 2.2 (a) is close to 1. A circle has also the eccentricity value 1,
therefore eccentiricity is not enough to correctly describe the shape in the figure. The
circularity of two shapes in figure 2.2 (b) and (c) are nearly the same, however they

are two different shapes.

(a) (b) (c)

Figure 2.2: Shape eccentiricity and circularity
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Figure 2.3: (a)Centroid to boundary distance approach (b) Shape signatures for a
circle and triangle

2.4.1.2 Shape Signature

Shape signatures represent shape by a one dimensional function derived from shape
boundary points. Many shape signatures exist, including complex coordinates, po-
lar coordinates, central distance, tangent angle, curvature and chord-length. Shape
signatures have been extensively studied in [6, 7]. Using shape centroid for the rep-
resentation of the boundary is an example of shape signature. One variation of idea
is to use the distances between shape centroid and boundary points as values of 1-D
function. Boundary points are selected so that the central angles are equal. Another
idea is to use the distances between these subsequent boundary points for the 1-D
function values. Shape signatures are usually normalized into being translation and
scale invariant. Shape signatures are sensitive to noise, slight changes in the bound-
ary can cause large error in the matching. Therefore, it is undesirable to directly use

shape signature for shape retrieval.

2.4.1.3 Fourier Transform of Boundary

Fourier transform has played a key role in image processing for many years and also

applied to many shape representation applications. This method uses the Fourier



transform of the 1-D boundary representation of the boundary of a shape. The fun-
damental principle behind Fourier transform is that a shape boundary can be treated
as a signal and it can be represented by basic components of the signal. If we can
define basic components to represent shape under analysis, the significant basic com-
ponents found can be used for the description of the whole shape. Zahn and Roskies
method [8] represents a closed boundary as a function of tangent angles versus the
distance between the boundary points from which the angles were determined. The
Fourier transform is applied to the boundary function and the resulting coefficients are
used for shape description. If we do arc length normalization, the descriptor becomes
invariant to scale change. The shape descriptor is invariant to translation because tan-
gent angle versus arc length function is invariant to shape position. Rotation of the
object (variation of the starting point) causes a phase change in the Fourier transform.
Looking at the magnitudes of the coefficients will ensure rotation invariance. The nice
characteristics of Fourier descriptor, such as simple derivation, simple normalization,
simple to do matching, robustness to noise, make it a popular shape descriptor. The
disadvantage is Fourier descriptor does not give local shape information. After the

transform, local shape information is distributed to all coefficients.

2.4.1.4 Scale Space Techniques

Sensitivity of shape descriptors to scale (image resolution) is an undesirable feature
of shape desciptors. Different results can be found at different resolutions. Witkin
[9] proposed a scale-space filtering approach which provides a useful representation
of the significant shape features. The representation was created by tracking the
position of inflection points in signals while they are filtered by low-pass Gaussian

filters of variable widths. The inflection points in the representation were expected

10



to be significant object characteristics. Babaud et al. [10] proved that the Gaussian
kernel is the most useful filter for scale-space filtering. The Gaussian filter has the
desirable property of saving inflection points when the width of the filter is increased.

Asada and Brady [11] introduced a representation called Curvature Primal Sketch.
This is a scale-space approach for the representation of curvature. The shape boundary
is filtered with Gaussian functions of increasing width to get a multi-scale representa-
tion for shape boundary. The curvature is then computed at different scales to obtain
curvature primal sketch.

Mokhtarian and Mackworth [3] applied the scale space approach to the description
of planar curves using the shape boundary. The curvature along the contour was
computed and smoothed with variable width Gaussian filters. The scale space image of
the curvature function was used as a descriptor which is invariant to scale, translation
and rotation and robust to noise. The method is later extended for shape retrieval

12, 13].

2.4.2 Structural Methods

With structural approach, shapes are broken down into boundary segments called
primitives. Structural methods differ in the selection and organization of the prim-
itives. The boundary can be decomposed using polygonal approximation, curvature
decomposition and curve fitting [14]. The result is encoded and represented as a string
of general form

S = s1,892,..., Sp (2.1)

where s; may be an element of a chain code, a side of a polygon, a quadratic arc,

a spline, etc. s; may contain a number of attributes like length, average curvature,

11



maximal curvature, bending energy, orientation etc. The resulting string can be di-
rectly used for description or can be used as input to a higher level syntactic analyzer.
Such structural methods of shape representation and description are described in the

following.

2.4.2.1 Chain Encoding

Chain codes describe a shape by a sequence of unit-size line segments with a given
orientation. The basis were introduced in 1961 by Freeman [15] who described a
method for encoding arbitrary geometric shapes. In this approach, an arbitrary curve
is represented by a sequence of small vectors of unit length and a limited set of

possible directions. A chain code is an ordered sequence of vectors written in the form

of A= A1A2An .

If the chain code is used for matching, it must be independent of the choice of
the starting pixel in the sequence. One method for normalizing the chain code is to
find the sequence of the numbers so that when the chain is interpreted as a base four
number the resulting chain will give the minimum integer number. An 8-directional
chain code can also be defined which represents the relative directions of boundary
elements of a shape measuring 90° and 45° direction changes. N-directional (N > 8

and N = 2k) chain code is also possible, which is called as general chain code [16].

A chain code is very sensitive to noise and scaling. It is not desirable to use chain
code directly for shape description because of its sensitivity to boundary noise and
resolution. It is often used as an input to higher level analysis for example it can be

used for polygonal approximation and for finding boundary curvature.

12



2.4.2.2 Syntactic Techniques

Syntactic techniques view the composition of a natural scene as a composition of a
language that is sentences are built up from phrases, phrases are built up from words
and words are built up from alphabets, etc [17]. Syntactic methods represent shapes
with a set of predefined primitives. The set of predefined primitives is called codebook
and the primitives are called codewords. For example, given the codewords in the right
of Figure 2.4, the chromosome shape in the left of Figure 2.4 can be represented as a

grammatical string of S:

S=dbabcbabdbabcbabd (2.2)

The matching between shapes can use string matching by finding the minimal number

of operations to convert one string into another.
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Figure 2.4: Structural description of chromosome shape [5]

The representation can be formulated as a string grammar. Each primitive is inter-
preted as an alphabet of some grammar, where a grammar is a set of rules of syntax of
how sentences are generated from the symbols of the alphabet. After grammars have

been established, matching is straightforward. For a sentence which represents an un-
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[19]

known shape, the matching task is to decide in which language the shape represents
a valid sentence.

Syntactical methods attempts to use the structural and hierarchical nature of
human vision system. However, it is not practical in general application because
building up a pattern grammar which generates valid patterns (shapes) is not possible.
In addition, this method needs a priori knowledge for the database in order to define

codewords or alphabets which is usually unavailable.

2.4.2.3 Boundary Approximations

Two most popular methods for boundary approximation are polygonal and spline
approximations.

Polygonal approximatons are used to approximate the shape boundary using polyg-
onal lines. The objective is to capture the essence of the boundary shape with some
approximation criteria. Such criteria can be the use of the minimal error, the min-
imal polygon perimeter, the maximal internal polygon area or the minimal external

polygon area. One of the most popular methods in this group is the split-and-merge
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algorithm [14]. In this approach, a curve is split into segments until some accept-
able error is obtained. At the same time, split polygonal segments are merged if the
resulting segment approximates the curve within some maximum error. For the de-
scription, the polygon vertices are used as primitives. The feature for each primitive
is expressed with a four element string which consists of internal angle, distance from
the next vertex, and its x and y coordinates. After the shape is represented as string
of line segments, line segments are organized into tree data structure and similarity

between shapes can be investigated.

Splines are also popular for curve approximations. B-splines are piecewise polyno-
mial curves whose shape is closely related to their control polygon a chain of vertices
giving a polygonal representation of a curve. They have good representation proper-
ties: They change their shape less than their control polygon. If a control polygon
vertex changes its position, the resulting change of the spline curve occurs in a small
neighbourhood of that vertex. The drawback of a spline representation is its high

sensitivity to change in scale [5].

2.5 Region-Based Shape Representation Techniques

In region based methods, shape features are extracted from the whole region of a
shape. Common region based methods use moment descriptors to describe a shape.
Other region based methods include grid method, shape matrix, convex hull and media

axis.

15



2.5.1 Global Methods
2.5.1.1 Geometric Moments

The use of moments for shape description was initiated by Hu [18]. His approach was

based on the two-dimensional Cartesian moment m,,, of order p+q of a function f(x,y)

—+00 “+o00
Mpg = / / zPyp(z,y)dzdy p,q=0,1,2,... (2.3)
—0Q0 —00

Using nonlinear combinations of the lower order moments, a set of moment invari-
ants (usually called geometric moment), which has the desirable properties of being
invariant under translation, scaling and rotation, are derived. The use of higher order
moments for pattern analysis has not been addressed. Geometric moment invari-
ants has attracted wide attention [5, 19, 20, 21, 22, 23] and has been used in many
applications.

The main problem with geometric moments is that only a few invariants derived
from lower order of moments is not sufficient to accurately describe shape. Higher
order invariants are difficult to derive. It has been shown that similar moments do not
guarantee similar shapes. Uniqueness criteria may not be satisfied for each moment

invariant.

2.5.1.2 Orthogonal Moments and Other Moments

The algebraic moment transform of equation (2.3) can be extended to generalized
form by replacing the conventional transform kernel z,y, with a more general kernel
of P,(x)P,(y).

Teague [21] uses this idea to introduce orthogonal moments -Legendre moments

and Zernike moments- by replacing z,y, in equation (2.3) with Legendre polynomial
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and Zernike polynomial respectively. Since both Legendre and Zernike polynomials are
complete sets of orthogonal basis, Legendre and Zernike moments are called orthog-
onal moments. Other orthogonal moments are pseudo-Zernike moments. Orthogonal
moments allow for accurate reconstruction of the described shape.

Teh and Chin [22] have made a detailed study of orthogonal moments -Legendre
moments, Zernike moments, psudo-Zernike moments, and non-orthogonal moments-
geometric moments, complex moments, rotation moments. Their results show that
geometric moments, complex moments and pseudo-Zernike moments are less affected
by noise and Legendre moments are more severely affected by noise. Zernike moments
and pseudo-Zernike moments have more reconstruction power than Legendre moments
for both noisy and normal images. They conclude that Zernike moments and pseudo-
Zernike moments are the preferred shape descriptors to others. Liao and Pawlak [23]
extend Teh and Chin’s work by introducing techniques to increase the accuracy and
efficiency of moments.

Moment shape descriptors are usually concise, robust, easy to compute and match.
The disadvantage with many moment methods is that it is difficult to correlate high
order moments with shape physical features. Shape description using Zernike moments

proves to be very promising [24, 25].

2.5.1.3 Grid Based Method

Grid shape descriptor is proposed by Lu and Sajjanhar [26] and has been used in [27]
and [28]. Basically, a grid of certain number of cells is overlaid on a shape, the grid is
then scanned from left to right and top to bottom. The result is a bitmap. The cells
covered by shape are assigned 1 and those not covered by shape are assigned 0. The

shape can then be represented as a binary feature vector. In order to be invariant
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to translation, rotation and scaling of the shape, the shape is first normalized before
the scanning. The shape is scaled into a fix sized rectangle, shifted to the upper
left of the rectangle and rotated so that the major axis of the shape are horizontal.
Mirrored shape and flipped shape should be considered separately. The advantages of
grid descriptor are its simplicity in representation, conforming to intuition. However,

the computation of the descriptor is expensive.

2.5.1.4 Shape Matrices and Vectors

Normal shape methods use grid sampling to acquire shape information. Goshtasby
proposes the use of shape matrix which is derived from a circular raster sampling
technique [29]. The idea is similar to normal raster sampling. However, rather than
overlaying the normal square grid on a shape image, a polar raster of concentric circles
and radial lines is overlaid in the center of the mass (Figure 2.6(a)). The binary value
of the shape is sampled at the intersections of the circles and radial lines. The shape
matrix is formed so that the circles correspond to the matrix columns and the radial
lines correspond to the matrix rows. The result matrix representation is invariant to

translation, rotation, and scaling.

Since shape matrix is a sparse sampling of shape, it is easily affected by noise.

Besides, shape matching using shape matrix is expensive.

Parui et al. propose shape description based on the relative areas of the shape
contained in concentric rings located in the shape center of the mass [30, 31]. Let
L be the maximum radius of the shape S to be described, Ci, be the kth ring of n

concentric rings obtained by sectioning the maximum radius L into n equal segments.
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An area-ratio invariant is defined as

B A(SNC;)
r = TAC) (2.4)

where A(-) is the area function. The shape descriptor is the feature vector of z =
[1,29 ... z,]7. Although the area ratio descriptor is more compact and robust than
the shape maftrix, its drawback is to ignore the shape distribution within a ring.
Consequently, the two shapes in Figure 2.6 (b) and (c) will be the same under this

descriptor.

(a) (b) (c)

Figure 2.6: (a) shape matrix concept [33] (b) a star shape formed by line strips (c) a
rectangle shape.

2.5.2 Structural Methods

2.5.2.1 Convex Hull

A region R is convex if and only if any two points z1,z2 € R, the whole line segment
z1x2 s inside the region. The convex hull of a region is the smallest convex region
H which satisfies the condition R C H. The difference H — R is called the convex
deficiency D of the region R.

Since shape boundaries tend to be irregular because of digitization, noise and

variation in segmentation, this results convex deficiency that has small components
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Figure 2.7: (a) Convex hull and it concavities (b) Concavity tree representation of
convex hull [5]

throughout the boundary. Common practice is to first smooth a boundary prior to
partitioning (i.e.polygon approximation). The extracting of convex hull is the process
of finding significant convex deficiencies along the boundary. The shape can then
be represented by a string of concavities. A better representation of the shape is
obtained by a recursive process which results in a concavity tree. A convex hull of
the whole region is constructed first, and then the convex hulls of remaining concave
parts are found. It goes on until all remaining convex deficiencies are convex. Figure
2.7(a) illustrates this process. The shape is then represented as a concavity tree
(Figure 2.7(b)). Each concavity can be described by its area, bridge length (the
line which connects the cut of the concavity), maximum curvature, distance from
maximum curvature point to the bridge. The matching between shapes becomes a

string matching or a graph matching.

2.5.2.2 Medial Axis Transform

Like the convex hull, region skeleton can also be employed for shape representation and

description. The basic idea of the skeleton is that eliminating redundant information
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while retaining only the topological information concerning the structure of the object
that can help with recognition. The skeleton methods are represented by Blum’s
medial axis transform (MAT) [23]. The MAT of a region R with border B is as
follows: For each point p in R, we find its closest neighbour in B. If p has more than

one such a neighbour, it is said to belong to the medial axis (skeleton) of R.

(a) (b) (c)

Figure 2.8: Medial axes of three simple regions

The skeleton can then be decomposed into segments and represented as a graph
according to certain criteria. The matching between shapes becomes a graph matching
problem.

Although the MAT of a region gives an intuitively pleasing skeleton, implemen-
tation of the definition is a computational burden because it involves calculating the
distance from every interior point to every point on the boundary of a region. In

addition, medial axis tends to be very sensitive to boundary noise and variations.

2.6 Evaluation of Shape Representation Methods

In this chapter, a selection of most characteristic shape representations are discussed.
There are mainly two approaches: contour-based and region-based. Contour-based
methods are generally more popular than region-based methods because it is believed

that human beings discriminate shapes by contour features. Contour-based methods
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generally use less computation than region-based methods. However, contour shape
descriptors are more easily affected by noise and variations than region-based shape
descriptors. Because they use less shape information than region-based methods.
Region-based methods are usually more robust and application independent. But they
involve more computation and need more storage area than contour-based methods.

The choice of shape representation directly depends on the type of shapes and
application it will be used. For image description and retrieval, MPEG-7 proposed
some criteria for the suitability of a shape description technique which are compact-
ness of the descriptor, good retrieval accuracy, general application, low computation
complexity, robust retrieval performance and hierarchical coarse to fine representation.

According to these criteria, structural approaches are weak because of their compu-
tational complexity and strong application dependence. Global methods which result
in numeric descriptors are more suitable for image retrieval. In contour-based meth-
ods Fourier descriptors and curvature scale space descriptor are more promising than
other methods for image retrieval. The perceptual meaning and compact features
of curvature scale space makes it a good candidate for shape description and online
retrieval. In region-based methods moment-based techniques are the most promising.
In the next chapters, these most promising methods, curvature scale space descriptor

and moment-based techniques will be studied in detail.
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CHAPTER 3

CONTOUR-BASED ANALYSIS: CURVATURE SCALE

SPACE REPRESENTATION

In this chapter, the contour shape descriptor is presented: underlying theory of curva-
ture scale space representation, the algorithm to extract CSS descriptor is explained

and its properties are discussed.

3.1 Scale Space

3.1.1 Background

The philosophy behind scale space modeling is that we observe objects in different
scales and objects are meaningful only under certain scales. A simple example is the
concept of a branch of a tree, which makes sense only at a scale from, say, a few
centimeters to a few meters. It is meaningless to discuss a tree concept at nanometer
and kilometer level [32]. For example, in physics the world is described at several
levels of scales; at fine scale, particle physics and quantum mechanics, at coarse scale,

astronomy. The physical description depends on the scale the world is modelled. An
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instrument (e.g.eye, camera) is needed to do an observation. The range an instrument
can see is bounded on two sides: the outer scale is the coarsest detail that an object is
discriminated, like a minumum size of a window that completely contains the object or
the structure; the inner scale is the finest detail seen which depends on the instrument,
e.g. one CCD element of digital camera, a cone or rod on the retina. The type of
information that can be obtained from an image is determined by the relationship

between the size of the structures in the image and the size of resolution.

While these qualitative aspects have been well known, the concept of scale has been
hard to be formalized into a mathematical theory. A method that has been proposed
for handling the notion of scale is to represent measured signals at multiple scales. In
certain situations, the suitable scales for analysis may be known a priori, however,in
the most of vision problems, the scale of the scene under analysis is not known. The
main idea for scale space is that if no prior knowledge is available about the appropriate
scale for a given data set, then the only reasonable approach is to represent the input
data at multiple scales [32]. A major reason for representing a signal at multiple scales
is to represent the multi-scale aspect of real-world data. Another aim is to remove

unnecessary and disturbing details so that further processing tasks can be simplified.

Witkin [9] first related image structures at different scales and introduced the
term scale-space. He embedded a signal f(z) : Ry — R into a continuous family
L(z,t) | t > 0 of gradually smoother versions of it. It means a signal f(z) is convolved

with a family of continuous functions g(z; t):

L(z,t) = g(z,t) % f(x) (3.1

where g(x,t) is the smoothing function or kernel function, L(z,t) is the smoothed
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signal, and * means convolution. For a continuous function f(z), (3.1) is expressed

as:

B 0= [ ol 0St - o (3.2

3.1.2 Gaussian Scale Space

It has been shown that Gaussian is the most useful smoothing function for generating
scale space [10].
Given a signal f(z) : RY — R, the scale-space representation L : RN XR, — R is

defined such that the representation at zero scale is the original signal:

L(z; t) = f(x) (3-3)

and the representations at coarser scales are given by convolution with Gaussian ker-

nels of increasing width:

1 T
L(z; t) = e /2 —&)d 3.4
@)= [ e e 0 (34
where z = (1, ...,zx)? € RY. For one-dimensional signal, the scale-space formulation

and its discrete form are given as

+oo
Lz, 1) = / L el e (3.5)

— 27t

+o0
Lat)= Y \/%e—ﬂ/%f(x—n) (3.6)

n=—oo
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Figure 3.1: The scale-space behaviour of a one dimensional signal [35].

3.1.3 Property of non-creation of new features

The most important property of scale space is non-creation of new features. It means
that the transformation from a fine scale to a coarse scale can be considered as a
simplification of the signal, so that fine-scale features disappear monotonically with

increasing scale.

Particularly useful features are zero-crossing points of the nth-order spatial deriva-
tives. In practice, second order derivatives of the signal are used widely in pattern
analysis, because the second derivatives represent the curvatures of the signal. When
Witkin [9] introduced scale-space, he observed that the number of zero-crossings in the
second derivative decreased monotonically with scale and took that as a basic charac-
teristic of the representation. The zero-crossing points of the second order derivatives

are called as inflection points which are significant features of the pattern. For one
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Figure 3.2: (a) an original signal f(x) at the bottom and its successively smoothed
versions on the top of it. t is the scale of the smoothing function; (b) interval tree
derived from the zero crossing of the second derivatives of the smoothed signals in the
left, each (x,t) in the interval tree corresponds to a zero-crossing point at position x
and scale t of the signal[10].

dimensional signal, with the application of Gaussian scale space, the zero-crossing
points of signal at all scales form the so called fingerprints or interval tree. (Figure
3.2(b)).

With Gaussian smoothing, moving from coarse to fine scale, new zero-crossings
appear but existing one never disappear.

Asada and Brady [11] first extracted peaks from the interval tree, introduced a
representation called Curvature Primal Sketch. From the detected peaks they inter-
preted high level primitive events as physical features such as corner, join, end, crank
etc.

Mokhtarian and Mackworth [3] adopt Asada and Bradys interpretation method
and extend it to shoreline registration. They called the resulting scale space signature
as Curvature Scale Space (CSS) contour image. The peaks of individual branches in
the CSS are detected, and they are used for matching two curves under analysis. The
method is later used for shape retrieval [12, 13]. Curvature Scale Space Descriptor

has been chosen as MPEG-7 contour based shape descriptor.
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3.2 Curvature Scale Space Descriptor

Basically CSS method treats shape boundary as a 1-D signal and analyze this 1-
D signal in scale space. The concavities/convexities of shape contour are found by
examining zero-crossings of curvature at different scales. These concavities/convexities
are useful for shape description because they represent perceptual features of shape

contour. The block diagram of computing CSSD is shown in Figure 3.3.

Input Image
—— | Preprocessing —’|Curvature Derivation —'}CSS Image

CSS Descriptor 4—| Peak Normalization |4— CSS Peaks

Figure 3.3: Block diagram of computing Curvature Scale Space Descriptor

3.2.1 Contour Tracing

After segmentation of a given image, first step of the process is finding the boundary
points of the input shape.

Among most common contour tracing algoritms, Square Tracing Algorithm has
the advantage of simple implementation procedure and therefore used frequently to
trace the contour of a given pattern. The idea behind the algorithm is: Given a digital
pattern i.e. a group of black pixels, on a background of white pixels i.e. a grid; locate
a black pixel and declare it as the ” start” pixel. Locating a ”start” pixel can be done
in a number of ways; for example starting from the top left corner of the grid, scanning
from left to right starting from the top row and proceeding with bottom rows, until

the starting pixel is encountered. In order to extract the contour of the pattern: when
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Figure 3.4: Contour tracing algorithm.When a black pixel is encountered, turn left.
When a white pixel is encountered, turn right.

black pixel is found, turn left and go on with that pixel, otherwise white pixel is found,
turn right and go on with that pixel. This goes on until the start pixel is encountered
again. Whenever black pixels are found, the coordinates are stored as the contour of

the pattern. The pseudo code of this algorithm is provided in Appendix 1.

3.2.2 Arc-length parametrization and scale normalization

After contour tracing, let’s say the list of contour points of the shape form a set of n

elements:

X ={(z1,11), (z2,92), ----(Tn>yn) }

In the following steps, it is desired to find zero-crossings in curvature of the curve
at varying levels of detail, that is, for varying degrees of the smoothing of the curve. A
planar curve does not behave like a single valued function so a parametrization of the
curve is needed in order to compute the curvature of the curve. Such a parametrization
can be done by considering arc length variable along the curve and expressing the curve

in terms of z(u) and y(u):
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Figure 3.5: An example for arc-length parametrization of boundary coordinates

C = {z(u),y(w)}

where u is the arc length changing over the closed interval [0,1].

The x and y coordinates of the boundary pixels are parametrized by the curve
arc-length parameter u, and u is normalized to interval [0-1]. Figure 3.5 is an example
of a contour and shows the set of contour points, and the corresponding values of the
parameter u and unorm (normalized to interval [0,1] ).

The functions z(u) and y(u) are then resampled to N equidistant points. This
makes a normalization effect so that shapes with different number of boundary points

can be compared.

3.2.3 Calculating Curvature

The curvature K of a planar curve at a point P on the curve is defined as the instan-
taneous rate of change of the slope angle @ of the tangent at point P with respect to

arc-length wu.



where 0 is the angle between tangent ¢(s) and ¢(s + h). It is possible to compute the

curvature of a planar curve from its parametric representation.
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Figure 3.6: Inflection points of a fish shape

It is shown in Appendix 2 that the curvature K on curve C is given by:
. . . . . 2 2
K(j) = (2'() *y"(5) —y' () * 2"())/ (" +y")*/?

where j is index of N equidistant points, ', ' and z”, 3" are the first and second

derivatives at location j.

3.2.4 Gaussian Filtering

The idea is to compute the convolution of the parametric coordinate functions of the
curve C' with a 1-D Gaussian kernel with a progressively larger width o, which is
equivalent to low-pass filtering the original contour with a filter with a progressively
lower bandwidth. This can be implemented by repetitive application of the lowpass
filter with kernel (0.25, 0.5, 0.25). After each pass of the low-pass filter, the curvature
zero-crossings are found and located on the CSS image. Zero crossings can be found
by finding k for which K (k) * K(k + 1) < 0 (Figure 3.6). CSS image shows how the
inflection points change when filtering is applied. CSS image x-axis, x_css corresponds

to the position on the contour (clockwise, starting from any arbitrary point).The
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number of filtering applied makes up the y_css coordinates at the CSS graph. Any
black point on the CSS image means that at that position on the contour, at that
scale, there is an inflection point. Smoothing of the curve goes on until the curve
becomes convex that is there are no zero-crossings of curvature. CSS image formation

can be observed from Figure 3.7.

3.2.5 Properties of CSS Image

The significant peaks in the CSS graph give valuable information about a shape.
The concept of CSS representation is based on the observation that when comparing
shapes, humans tend to decompose shape contours into concave and convex sections.
The overall similarity depends on the similarity of the corresponding sections: for
example, how prominent they are, their length relative to the contour length and
their position and order on the contour. The CSS representation decomposes the
contour into convex and concave sections by determining the inflection points where
curvature goes from negative to positive or vice versa. Figure 3.8 shows a shape of a
fish and its CSS image. There are three peaks in the CSS image (marked as A,B,C),
this means that the fish shape has three concave parts. The CSS image shows that
the concave parts of the shape A and C are approximately has similar perceptual
importance because their peak heights are similar. Concavity B is less prominent.
From the CSS image, we can say that the concavity B is between concavities A and

C and find relative distances between inflection points.

In figure 3.9, the left column shows the contour at different stages of curve evolution
(after 20 and 80 passes of filter). Next to the contour is the CSS image obtained from

the evolution of the curve, corresponding curvature zero-crossings are shown.
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Figure 3.7: Fish object: a) original image; b), d), f), h) and j) contours with progres-
sive amounts of low-pass filtering (after 3, 13, 30, 45 and 60 passes of the low-pass
filter, respectively); c), e), g), i) and k) corresponding progressive formation of the
CSS representation[36]
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Figure 3.8: Concavities of a fish shape and corresponding peaks at its CSS image
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3.2.6 CSS Matching and Similarity Measurement

The characteristic property of the CSS image is the maxima points called as peaks.
The CSS coordinates of a maximum has information on the location and the scale of
the corrresponding contour. The matching algorithm should find the correct corre-

spondence between two sets of maxima from each CSS image.

Peak Extraction

CSS image is usually connected everywhere except possibly in a neighbourhood of
its maximum. In fact, the exact maxima can be seen in the CSS image with a very
fine sampling of the curve and the ¢ parameter, but fine sampling will result in a
large CSS image and greater computation cost. So the actual maximum of a CSS
contour usually falls in the gap at the top of the contour. In order to find the gaps,

the zero-crossing points must be very close to each other and none of them must have
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a zero-crossing neighbour at the next higher scale. When such a pair is found, the

maximum is assumed to be the midpoint of the line segment joining the pair.

Peak Normalization and Quantization

The location points are normalized so that they are invariant to the number of the
sampling points and the size of the contours. The peaks are ordered on the basis of
decreasing values y_css, transformed using a nonlinear transformation and quantized.

The quantization details are explained in Appendix 3.

Similarity Measurement

The matching is done by evaluating the similarity measure between the descriptor of

the query shape and the descriptors of the model shapes in the database of shapes.

Firstly, it is a good idea to compare global parameters of the query and model
shapes. If there is a significant difference, comparison is not performed for the dissim-
ilar shapes. This step reduces the amount of computation that would be needed to find
a similarity measure between dissimilar shapes. Simple shape descriptors eccentricity

and circularity are used for this purpose.
Circularity is a dimensionless quantitity and thus is insensitive to scale changes
and orientation and is minimal for a disk-shaped region.

perimeter?

(3.7)

circularity =
area

Eccentiricity measure can be defined as the ratio of main axes of inertia [33].

Eccentricity is also scale and orientation invariant.
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(H20 — po2)? + 4p1
area

eccentricity = (3.8)

where pip 4 is the central moment of order p, g.

If the calculated circularity and eccentricity are in thresholds, further similarity is

to be measured for the model shapes.

| eq — ém |
A .
MAX (egem) = " (39)
| cg = cm |
1= Cml o pp_ 3.10
MAX (cq,cm) — 0 (310)

where e, and e, are the eccentricity values for the query shape and model respec-
tively, and ¢4, ¢, are the circularity parameters of the query shape and model Th_e

and Th_c are the thresholds used, Th_-e = 0.6 and Th_c = 1.0 were used.

The similarity measure M is computed as a weighted sum of similarity measure
between global shape parameters and the similarity measure M css between the peaks

of CSS representation.

M=04ax——eml og, Va—cml (3.11)

MAX (eq, em) MAX (cq,cm)
The similarity measure between two sets of CSS peaks is an L2 measure between
the matching peaks. For two peaks to be matched, the L2 measure between their
x-coordinates should be below a threshold taken to be 0.1. For unmatched peaks, the

similarity measure increases with the height of the unmatched peaks.

Mess =) _((apeakli] — zpeak(j])” + (ypeak[i] — ypeak[j))?) + ) (ypeakli])® (3.12)
1 2
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where )", is summation over all matched peaks (i and j are indices of query and model

peaks that match), and )", is summation over all unmatched query and model peaks.
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CHAPTER 4

REGION-BASED ANALYSIS: ANGULAR RADIAL

TRANSFORM

In this chapter, the region shape descriptor is presented: the ART algorithm used to

extract ART descriptors of a shape is explained and its properties are discussed.

4.1 Background

Among region-based methods used for description of shape, various types of moments
have been used for shape description in many applications. Orthogonal moments
are more suitable than geometric moments for shape description because uniqueness
criteria defined for a reliable description holds for orthogonal moments.

Teh and Chin [22] have made a detailed study of orthogonal moments and non-
orthogonal moments. Sensivity of these moments to image noise and image represen-
tation abilities were compared. They concluded that Zernike moments and pseudo-
Zernike moments are the preferred shape descriptors to others.

Kim [34] presented the Zernike moment descriptor for retrieval of images from
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a large image database. It is shown that the Zernike moment descriptor has many
desirable properties such as rotation invariance, robustness to noise, expression effi-
ciency and fast computation. The real parts of Zernike basis functions up to order 8
are shown in Fig.4.1. The radial and angular directional complexities of Zernike basis
functions vary depending on the values of n and m. As shown in Fig.4.1, Zernike basis
functions do not describe equally the radial and angular directional complexities, but
they rather tend to emphasize the radial directional complexities because the Zernike

basis functions are defined only when n > m.

Figure 4.1: Real parts of Zernike basis functions up to order 8

With the motivation keeping the two desirable properties of Zernike basis func-
tion, the orthogonality and their rotation invariance of magnitude, with additionally
taking into account both complexities in radial and angular direction, ART shape
descriptor has been proposed [35]. Experimental results showed that the proposed
ART descriptor totally improved retrieval accuracy when compared with Zernike mo-
ment descriptor. ART descriptor has been chosen as MPEG-7 region based shape

descriptor.

39



4.2 Angular Radial Transform

4.2.1 The definition of ART

ART is an orthogonal 2-D complex transform defined on a unit disk in polar coordi-

nates:

Fom = <Vnm(p79)af(p’0)> (4'1)

2z 1
= / / Vo (0,0), f(p,0)pdpdd (4.2)
0 0

where Fy,p, is an ART coefficient of order n and m, f(p, ) is an image function in
polar coordinates, and Vj,(p,#) is the ART basis function that are separable along

angular and radial directions, i.e.,
Vam(p,0) = Am(0) Rn(p) (4.3)

inorder to achieve the rotation invariance, an exponential function is used for the

angular basis function,

1
Am(0) = %exp(jmm (4.4)
The radial basis function defined by a cosine function,

1 ifn=20
Ru(p) = (45)
2cos(mmp) ifn#0

where n and m are respectively radial and angular indices which define the order

of coefficient F,.
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4.2.2 Region Description with ART

ART basis functions Vj,(p,0) are complex functions. In Fig.4.2, the real parts of
the first 36 basis functions are shown. Their imaginary parts are similar except for
quadrature phase difference. While for exact reconstruction of an image an infinite
number of ART coefficients are needed, finite, usually small number of coefficients are

enough for image description.
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Figure 4.2: Real parts of ART basis functions (N=3, M=12)

Figure 4.3 summarizes how a region descriptor can be formed with ART transform.
The steps for finding the ART descriptor will be explained in detail. The pseudo-code

for computing the ART descriptor is provided in Appendix 4.

Binary Images .
Preprocessing | —m=| ART Transform
ART
Magnitudes
AR_T Quantization |-s—— | Normalization
Descriptor

Figure 4.3: Block diagram of computing ART descriptor

Preprocessing

The normalized region is projected onto the basis functions to compute the corre-

sponding ART coefficients. Due to reasons of simplicity and efficiency, instead of con-
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verting every image to polar coordinates, the basis functions are computed directly in

Cartesian coordinates.

B = [ [ Vinle) @)y (4.6)

First, the set of ART basis functions V,,,(z,y) is stored in a lookup table (LUT).
In the next step, the binary image is normalized. ART transform is defined on a unit
disk so the shape should be enclosed in a circle. A radius R of a circle is determined
to enclose the shape completely from the center of mass (centroid) of shape to the
outermost pixel of the shape. If the diameter of the shape is different from the LUT,
the centroid of the shape is aligned to coincide with that of the LUT and linear

interpolation is applied to map the image onto the LUT size.

Figure 4.4: An original shape (left) and its normalized shape (right).

ART transformation

The real and imaginary parts of the ART coefficients are computed by summing up
the multiplication of a pixel in an image to each corresponding pixel in the LUT, on

raster scan order.

42



Table 4.1: Quantization table of ART Magnitudes.

0.00000000 < ArtM < 0.00358547 | 0000 | 0.03850817 < ArtM < 0.04592658 | 1000

0.00358547 < ArtM < 0.00741841 | 0001 | 0.04592658 < ArtM < 0.05449051 | 1001

0.00741841 < ArtM < 0.01153552 | 0010 | 0.05449051 < ArtM < 0.06461948 | 1010

0.01153552 < ArtM < 0.01598233 | 0011 | 0.06461948 < ArtM < 0.07701635 | 1011

0.01598233 < ArtM < 0.02081630 | 0100 | 0.07701635 < ArtM < 0.09299868 | 1100

0.02081630 < ArtM < 0.02611131 | 0101 | 0.09299868 < ArtM < 0.11552452 | 1101

0.02611131 < ArtM < 0.03196467 | 0110 | 0.11552452 < ArtM < 0.15403269 | 1110

0.03196467 < ArtM < 0.03850817 | 0111 0.15403269 < ArtM 1111

Normalization of magnitude of ART coefficients and quantization

After finding the ART coefficients, the magnitudes of each ART coefficient is cal-
culated. The magnitudes of ART coefficient are used as descriptor because of their
rotation invariance property. The magnitudes of coefficents are normalized with Fyg

which is the highest valued element.

ArtM[n,m] =| Fam | / | Foo | (4.7)

For keeping the descriptor size minimum, quantization is applied to each coeffi-
cient using four bits per coefficient. Quantization table is constructed based on an
exponential distribution model [36]. The resulting quantized magnitude of ART coef-
ficients is called ART descriptors. Since ArtM|[0,0] is 1 after normalization, it is not
used. Therefore, the descriptor is made up of an array of (n*m)-1 normalized and

quantized magnitudes of ART coefficients of a shape.

4.2.3 Similarity matching with ART

The similarity distance of two shapes is calculated by summing up the absolute differ-

ences of two sets of reconstructed values of ART descriptors in Table 4.2. Thus, the
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similarity distance between two shapes A and B is determined by:

nxm—1

D(A,B) = Z | InverseQuantize(ArtDE 4[i]) — InverseQuantize(ArtDEg[i]) |

=0

Table 4.2: Reconstruction values for ART descriptors.

ArtDE

Quantisation center

0000

0.001763817

0001

0.005468893

0010

0.009438835

0011

0.013714449

0100

0.018346760

0101

0.023400748

0110

0.028960940

0111

0.035140141

1000

0.042093649

1001

0.050043696

1010

0.059324478

1011

0.070472849

1100

0.084434761

1101

0.103127662

1110

0.131506859

1111

0.192540857

4.2.4 Properties of ART Transform

(4.8)

With the algorithm defined for ART transform, ART has the desirable shape descrip-

tion properties of translation, scaling and rotation invariance. Translation and scaling

invariance property comes with the preprocessing step where the centroid of the shape

is aligned to coincide with that of the LUT table and the size of the shape is scaled to

be enclosed in the circle with the diameter of the LUT size. The rotation invariance is

achieved by taking the magnitudes of ART coefficients as descriptor. The magnitudes

of any ART coefficients of a rotated shape and a reference shape are equal as shown

in Appendix 5.
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CHAPTER 5

SIMULATIONS AND RESULTS

5.1 Simulations

In the previous two chapters, the contour shape descriptor CSSD and region shape
descriptor ARTD are explained in detail. The descriptor extraction methods described
in these chapters are realized by software developed using C++ language with Borland
C++ Builder. In order to give a good understanding of the descriptor extraction
methods for CSSD and ARTD, they are implemented separately and then combined
in a third program which analyzes a group of image similarity: the user can choose a
binary image and ask the system to find all images similar to it using these contour

and region based approaches.

The performance of both descriptors are examined through a number of experi-
ments. Performance evaluation of contour-based descriptor CSSD and region-based
descriptor ARTD was in mainly three tests: Similarity based retrieval, robustness to

scaling, robustness to rotation.

For the similarity based retrieval tests, 1000 images from MPEG-7 Core Experiments-
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Shape-1-B dataset, one of the test-sets that were defined during the standardization
process of MPEG-7 [35] are used.The dataset consists of binary masks of natural
objects with significant shape variability and arbitrary shape distortions including

rotation, scaling, arbitrary skew and streching,
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Figure 5.1: Some of the images in similarity based retrieval dataset.

The data set used consists of 50 classes of similar shapes with 20 images in each
class. Some classes are illustrated in Figure 5.1. While there is a variability of shapes
in each class, the degree of similarity between each class is greater than the similarity
between two shapes from different classes. Using this property, a similarity retrieval
performance can be evaluated: a query with a shape from, say class x , should ideally
return all the remaining shapes in that class at top ranks, before shapes from other
classes.

Considering each shape as an input query, we observed n outputs of the system
and found the number of correctly retrieved shapes, m. A shape is considered to be
correctly retrieved if it is in the same class with the query shape. The success rate of

a query is calculated :

m

Success rate for a query = x 100

max

where M4, 18 the maximum possible value of m in n outputs of the system. The
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Figure 5.2: Example shape classes (a)horses, (b)beetles, (c)keys and (d)bones.

b
oy

{ h )

Figure 5.3: Shapes from differenet classes (a)car and truck, (b)imfish and fish.

success rate of the descriptor for the whole dataset is the average of the success rates
for each query. Note that in the dataset, there are different classes with similar shapes.

Therefore, one does not expect to reach a retrieval rate of 100 % (examine Figure 5.3).

5.1.1 The effect of the order of ART coefficients to similarity based re-

trieval performance

The number of angular and radial functions of the ART descriptor determines how

accurately the shape is represented. If the selected number of ART descriptors is not
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large enough, it will affect retrieval performance. However, if the number of ART
coefficients is larger than necessary, it will cost more storage area and feature extrac-
tion time.Therefore, retrieval using different number of ART coefficients is studied.
The retrieval performance achieved by using different numbers of angular and radial

functions is presented in Table 5.1.

Table 5.1: Retrieval results of the ART descriptor obtained by employing different
number of angular and radial basis functions.

n | m | processing time (ms) | Top 20(%) | Top 30(%) | Top 40(%)
2|3 79,86 21.58 27.34 32,07
2|16 99.45 40.21 46.61 51.04
2 |12 157.71 44.00 50.13 54.47
2 |24 361.35 43.73 49.48 53.65
3| 3 86.53 30.71 37.06 41.54
3| 6 119.95 45.66 51.63 55.82
3 |12 228.17 47.82 53.37 57.45
3 |24 581.27 47.00 52.58 56.55
5| 3 112.44 38.92 44.95 48.75
5| 6 193.86 48.38 54.33 57.98
5 | 12 502.32 49.34 54.66 58.45
5 |24 930.00 48.59 53.83 57.70
10| 3 192.29 41.16 46.37 49.81
10| 6 501.56 48.68 53.86 57.46
10 | 12 960.84 49.32 54.66 58.24
10 | 24 1870.00 48.93 54.15 57.76

From Figure 5.4 it is observed that the retrieval performance does not improve
significantly above the angular basis m=12 for all the selected values of n. The radial
complexity of the basis functions above n=>5 does not improve retrieval performance
for the dataset, either. As far as the retrieval performance is concerned m=12, n=>5

gives the highest performance with 58.45 % retrieval success.

From the Figure 5.5, for the (m,n) values of ARTD performing best for the dataset,

the ones with retrieval performance over 55 % are good candidates. From the point of
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view of feature extraction time and storage area, the ones with the smallest number
of coefficients are advantageous. Between (6,5) and (12,3) which have a very small
performance difference, it can be said that employing 6 angular and 5 radial basis func-
tions offers a good tradeoff between retrieval performance (57.98 %) and compactness

of the descriptor (number of basis functions = 30).

5.1.2 The effect of number of sampling points in CSS to similarity based

retrieval performance

In the algorithm to find the CSS representation of a binary image, after finding bound-
ary points, the next step is to sample the boundary points into a fixed number of
points, N. Then these points are used for low-pass filtering of the boundary. Often in
literature, the number of sampled points is the power of two and is usually small, for
example, 32 points or 64 points. However there is a concern that the sampling may
result in loss of boundary features. To see its effect, similarity retrieval experiments
using CSSD are conducted for varying number of sampling points N = 32, 64, 128,

256 ,512.

Table 5.2: Retrieval performance with changing number of sampling points

N | time(ms) | Top 20(%) | Top 30(%) | Top 40(%)
32 109.42 41.76 50.21 56.24
64 116.88 37.32 44.79 50.30
128 | 155.29 34.25 41.76 47.67
256 | ©517.22 31.95 38.37 42.75
384 | 1263.81 32.32 38.32 43.32
512 | 2316.82 32.28 38.86 43.59

From the results of the simulation, it is seen that the coarser boundary feature

extraction results with a higher classification performance. With a fine sampling
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of the boundary, the small differences of shapes in the same class also begin to be
represented in the descriptor. For the calculation of similarity distance between peaks
of CSS images, these insignificant peak characteristics are added to unmatched peaks

and increase the similarity distance.

5.1.3 Similarity based retrieval performances of CSSD and ARTD

The similarity based retrieval performances of CSSD and ARTD are shown in Table
5.3. The orders of n=>5, m=6 for ART basis functions and for the boundary N=32
resampled points are used respectively for ART and CSS representation methods. In
order to compare the computation times of the descriptors, the feature extraction and
retrieval times are tested on the Windows platform of 1.8 GHz AMD PC with 512
MB memory. Note that further speed optimization of the code can reduce proccessing
times. The time taken for the feature extraction and the retrieval of the shape database

using developed software is given in Table 5.4

Table 5.3: Similarity based retrieval performance of CSSD and ARTD using N=32,
(n,m)=(5,6) in top 20, 30, 40 retrievals.

Top 20(%) | Top 30(%) | Top 40(%)
CSSD 41.755 50.21 56.24
ARTD 48.375 54.33 57.98

Table 5.4: Computation times for CSSD and ARTD using N=32, (n,m)=(5,6)

Average feature extraction Average similarity
time of each shape (ms) | measurement time (ms)
CSSD 109.415 4.1
ARTD 193.86 1.76
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5.1.4 Rotation Effect

For testing the descriptors against rotation variance, a database of 250 shapes is
used. The robustness of each approach to changes of the shape due to digital rotation
and to the quantization of the representations is investigated. In the dataset, there
are 50 basic shapes from MPEG-7 CE1 set and four derived shapes from each basic
shape.These shapes are digitally rotated versions of each shape by angles 9, 45 ,80,
150 degrees. Each of 250 shapes are used for query. The number of correct matches

was computed in the top 5,7,10 retrievals.

Table 5.5: Retrieval performance for rotation set in top 5, 7, 10 retrievals.

Top 5(%) | Top 7(%) | Top 10(%)
CSSD 80.48 86.56 89.6
ARTD 99.92 100 100

5.1.5 Scaling Effect

For testing the descriptors to changes of the shape due to digital scaling and quanti-
zation of the representations, a database of 250 shapes is used. From 50 basic shapes,
four more shapes are derived by scaling each basic shape by factor 0.2, 0.4, 0.6 and 2.
Each of 250 images are used for query. The number of correct matches was computed

in the top 5,7 ,10 retrievals.

Table 5.6: Retrieval performance for scaling set in top 5, 7, 10 retrievals.

Top 5(%) | Top 7(%) | Top 10(%)
CSSD 77.6 83.44 85.52
ARTD 90.16 93.12 94.24
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5.2 Results

Results of the simulations reveal some important properties of descriptors CSSD and
ARTD. In this section, the properties of the descriptors will be discussed.

It was mentioned that both representations are invariant to translation, rotation
and scale. As we deal with digital images, for example digital scaling of images to
a small size as compared with the sampled grid may result significant distortions in
their shape. In order to test descriptor behaviour to such effects, rotation and scaling
experiments are done. It can be seen from rotation and scaling tests (Table 5.5 and
Table 5.6) that ARTD offers very good rotational and scaling invariance. CSSD scaling
behaviour is also acceptable (approximately 4 successful retrievals in the first 5) as

some images are severely distorted when scaled by factor of 0.2.

fibghih

Figure 5.6: Shapes of child and bottle and their scaled-down versions by 0.2.

Other properties of CSSD are as follows:

e It is robust to mirroring: invariance to mirroring of the shape contour is consid-

ered by mirroring the significant peaks in similarity measurement algorithm.

e It is robust to noise: noise influence is eliminated by thresholding short peaks

in CSS representation.

e It is robust to significant non-rigid deformations. (Figure 5.7-a)
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e It can find the strong similarity between shapes distorted due to perspective

transformations.(Figure 5.7-b)
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Figure 5.7: Examples of shapes for CSSD properties.

The properties of ARTD are as follows:

e It can describe objects with or without holes, as well as shapes consisting of

disconnected regions (Figure 5.8-a).

e It can cope with errors in segmentation in which an object is split into discon-

nected subregions (Figure 5.8-b).

e It is robust to minor non-rigid deformations shown as in Figure 5.8-c .

2 Lala

(a) () (©)

Figure 5.8: Examples of shapes for ARTD properties.

For similarity based retrieval, it is observed from the simulations that the region
based ARTD performed better on average about 4 % compared with CSSD using the
best performing parameter for N and n,m. While for the top 20 retrievals , ARTD

gives better performance, for top 40 retrievals, the performances of the descriptors are
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very close. It is observed from the test results that for some classes of shapes CSS
performed better. A class-by-class analysis illustrates the differences between contour
and region based similarity notions. Considering the shape classes in which CSSD
performance is better than ARTD by 10 % or more, some example classes are shown

in Figure 5.9 .

Figure 5.9: Example of shapes where contour descriptor success rate is better than
region descriptor.

For example for Butterfly, some characteristic features are in its antenna, which
have a relatively small area and not sufficiently emphasized. The second class includes
images of a running person where significant non-rigid deformations occur. CSSD is

more robust to such deformations. Beetles and Elephants are examples in which the

variability of the shapes is better captured by the contour rather than the region.

A

Figure 5.10: Example of shapes where region descriptor success rate is better than
contour descriptor.

Three example classes in which ARTD has significantly better performance than
CSSD are shown in Figure 5.10. In this classes basic shapes like square (Device-3),
triangle (Device-4) and pentagon (Device-6) is cut out variable number of openings.

Such shapes have a similar distribution of pixels, but different contours, because the
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number and shape of the openings are different in class members.

A disadvantage of the CSSD is for convex shapes. A convex shapes contour carries
a very little characteristic information that can be represented by CSS. For example,
CSSD algorithm can not represent a perfect circle because there are no curvature zero-
crossings. For the rounded square in Figure 5.10, CSSD can be calculated however

CSS may not discriminate it from other convex objects.

As for dimensions of descriptors, we can say that both descriptors are compact.
Once the order of ART basis function is chosen, the number of ART features is constant
(n*m—1) The dimension of CSS descriptor varies with each shape according to contour
complexity (number of significant peaks in CSS representation). For the similarity
retrieval dataset, the average number of CSSD features needed to describe shape is

seven with eccentiricity and circularity values.

The computation process of CSSD is more complex than that of ARTD. The ex-
traction of the CSSD feature takes three processes i.e equal arc-length parametrization,
CSS image computation , CSS peak extraction. For ARTD, once the basis functions

are calculated , size normalization is done and ART coefficients are extracted.

In the algorithms used for extracting descriptors from shapes, among the param-
eters and thresholds used ,the order of the ART basis functions and the number of
equidistant points used for sampling of a contour are investigated. For ARTD, the
only parameter used is the number of the basis functions. On the other hand, CSSD
extraction uses many parameters : the number of the sampling points, the thresholds
to eliminate short peaks, thresholds for eccentiricity, circularity, the tolerance value
for peak position matching. When more parameters are involved in the descriptor ex-

traction algorithm, the retrieval performance of the descriptor depends more on these
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parameters. These parameters are generally defined emprically for a set of databases.
For general purposes and wide variety of databases the defined parameter may not give
the best retrieval performances. Therefore , ARTD performance can be considered to
be more stable for general applications.

From the aspect of online matching computation, ART is simpler, the similarity
measurement calculation of ARTD is done by calculating the L1 distance between two
feature vectors. The online matching of two sets of CSSD involves finding the match-
ing and unmatching peaks, calculating the L2 distance between matching peaks and
adding additional penalty for unmatched peaks. Because of these reasons, similarity

matching time for CSSD takes longer than ARTD as shown in Table 5.4.
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CHAPTER 6

CONCLUSION

6.1 Conclusions

The user of an image database often wishes to retrieve all images similar to the one
(s)he already has. In this thesis, techniques for similar shape retrieval are investigated.
Generally, similar shape retrieval has three issues - shape representation, similarity
measure, indexing structure. This thesis is mainly focused on shape representation.
State of art shape representation methods have been reviewed. The purpose of the
review is to understand the problems and issues involved in shape representation, to

identify advantages and disadvantages of different shape descriptors.

Generally, there are two types of approaches in shape representation : contour-
based and region-based. Contour-based approches make use of the boundary points
of shape while region-based methods depend on the pixel distribution of the shape.
Among contour-based representation methods, for image description and retrieval,
using Curvature Scale Space representation is promising. The CSS representation

works by decomposing the shape into convex and concave sections. CSS descriptor
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is extracted by using the curvature zero-crossings behaviour of the contour while
smoothing the contour with low-pass filters.Among region based shape representations
Angular Radial Transform which belongs to a class of moment based techniques is the
most promising. The ART descriptor works by decomposing the shape into a number

of orthogonal 2-D basis functions defined on a unit disk.

The CSSD and ARTD shape feature extraction methods are implemented for a
similar shape retrieval system by software developed in C++. For similarity retrieval
performances of descriptors, a dataset consisting of 1000 images with significant shape

variability and distortions is used.

ARTD has the main strength of application independence. It can describe any
object with holes, without holes , shapes consisting of disjoint regions and convex
shapes. CSSD can also be used for describing holes in a shape or disjoint parts
of shapes, however, similarity measurement of such shapes with CSSD will involve
additional computation. Convex shapes can not be discriminated from each other

using CSSD because of the insufficient characteristic information of the contour.

CSSD’s main strength is to emulate well the shape similarity perception of the
human visual system. Many objects have distinguishing features in their contour
while having similar region properties.The contour-based descriptor CSSD performs
better than ARTD for objects for which characteristic shape features are contained
in their contour. Both descriptors have advantages and disadvantages. When the
choice of approach depends on the properties of the query shape, similarity retrieval

performance will increase.

In similar shape retrieval, one of the issues is to describe and capture essential

properties of any shape. As far as the usage for general application is concerned in
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which query shape property is not known , using both contour-based and region-based
description of shapes can be meaningful. Therefore, for general applications, if instead
of choosing one approach to the other, a method for employing both descriptors to
shape similarity measurement is considered, higher similarity retrieval performances

can be achieved.

6.2 Future Work

Content-based image retrieval is a difficult task. There exists several directions in this
area for future work by researchers. While employing shape description methods to
images, it is assumed that the shape object has already been available and existed in
binary form. In reality , segmentation is a main issue for CBIR systems. The shapes
of segmented objects from general image can be more complex and inaccurate than
shapes from a homogenous shape database. Therefore, a practical shape description
and retrieval system should take segmented objects into consideration.

One of the important issues is to describe image using higher level features. Com-
bining low level features shape, color and texture will make it possible to reach se-
mantic descriptions of images leading to more effective searches in CBIR systems.

Retrieval effectiveness is the main focus in this thesis. Retrieval efficiency issue
has been avoided due to the limited scope of the research. Retrieval efficiency is
a crucial factor in image retrieval,considering image databases are distributed and
large in characteristic. Further research is needed to organize the feature indices into

efficient data structure for remote and fast retrieval.
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APPENDIX A

1. Contour Tracing

The following is a formal description of the square tracing algorithm used for tracking

boundary points of a shape:

Input: A square tesellation T, containing a connected component P of black cells.

Output: A sequence B(by,bo, ..., b;) of boundary pixels i.e. the contour.

Begin
e Set B to be empty.

e From left to right and top to bottom scan the cells of T until a black pixel, s,

of P is found.

e Insert s in B.

e Set the current pixel, p, to be the starting pixel, s.
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e Turn left i.e. visit the left adjacent pixel of p.

e Update p i.e. set it to be the current pixel.

e While bf p not equal to bf s do

— If the current pixel p is black

* Insert p in B and turn left (visit the left adjacent pixel of p).

x Update p i.e. set it to be the current pixel.
— else

* Turn right (visit the right adjacent pixel of p).

x Update p i.e. set it to be the current pixel.

e end While

End

2. Curvature Derivation

Let r be a smooth parametrization of a smooth curve C with tangent T and normal
N. The velocity and acceleration of an object moving along C with position r are

given by

v=|w|T and a=arT+anyN

Then since T x T = 0 we find that

vxa = (||v]|T) % (arT + ayN)
= [llolT x (arT)] + [llvlT x (anN)]
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= ([lvllan)(T x N)

Since ay = ||v]|||dT'/dt|| and since T and N are perpendicular unit vectors,

aT,

_ — o2
loxal = lvllax = [lol*ll—

However,
|dT'/dt|| _ [|dT/dt]|
||dr/dt]| [[v]]
so that
_llvxa]
[Jv]?

r represents an object moving on a curve in the zy plane, we have

r = zi+yj

v o= i—fi—l—%j:m'(t)i—l—y'(t)j
dz . d?*y

a =

prEX + Wj =a"(t)i +y"(t)j
Therefore curvature s becomes:

_ [#'@)y"() —2"()y' () |
[(='(2))% + (v ()%
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3. Peak Transformation and Quantization

After finding the peaks of the CSS image, the x_css and y_css coordinates are trans-
formed using a nonlinear transformation and quantized.

Re-scale x_css coordinates to lie in the range [0.0, 1.0]. The re-scaled coordinates of
the peaks are referred to as xpeak[i]. The transformation and quantization algorithm
[36] used is as below:

y_css[i] )0.6
Nsamples?

Transform all peak heights according to the equation ypeak[i] = 3.8 % (
where Nsamples is the number of equi-distant points from the contour used for

smoothing.

e Shift all peaks so that the highest peak after transformation is at the x_css

coordinate 0.0.

e If the highest peak has a height of less than 0.09, remove all peaks.

e For any peaks which have a height of less than ypeak[0] x 0.05, remove them.

e Linearly quantize all X-coordinates of the peaks to 6-bits.

e Linearly quantize the first (maximum) peak using a maximum value of 1.7, and
7-bits. If the height of this first peak is greater than 1.7, it will be saturated to

1.7.

e Linearly quantize the other peaks, in descending order of height, using a maxi-

mum value of the previous peak height (quantized), and 3bits.

4. Angular Radial Transform

The algorithm for extracting ART magnitudes of a shape are given below for m=12,
n=3J.
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e Step 1 - Basis Function Generation: Since the basis functions are sepa-
rable, V. (z,y) is computed directly in Cartesian coordinate rather than con-
verting it after computing V,,,,,(p, @) in polar coordinate. To do so, first con-
struct a set of complex basis functions of ART in two 4-dimensional arrays,

BasisR[12][3][LUT_SIZE||[LUT_SIZE) and BasisI[12][3|[LUT _SIZE|[LUT SIZE]

for real and imaginary part, respectively.

cx =cy=LUT_SIZE/2; /] center of basis function
for(y=0; y < LUT_SIZE; y+ +)
for(x =0;2 < LUT_SIZE; x + +){
radius = sqrt((z — cz) * (x — cx) + (y — cy) * (y — cy));
angle = atan2(y — cy,x — cx);
for(m=0; m <12; m+ +)
for(n=0; n<3; n++){
temp = cos(radius x m+ n/(LUT_SIZE/2));
BasisR[m][n][z][y] = temp * cos(angle x m);

BasisI[m][n][z][y] = temp * sin(angle x m);

e Step 2 - Size Normalization: The center of mass or the centroid of the object
in the image is aligned to coincide with that of the lookup table. If the size of
the image and that of lookup table are different, linear interpolation is applied
to map the image onto the corresponding lookup table. Here, the size of the

object is defined as twice the maximum distance from the centroid of the object.

68



e Step 3 - ART Transformation: The real and imaginary parts of ART coef-
ficients, ArtR[12][3] and ArtI[12][3] are computed by summing up the multipli-
cation of a pixel in an image to each corresponding pixel in the lookup table in
raster scan order, respectively. Twelve angular and three radial basis functions

are used.

for(y=0; y < LUT-SIZE; y + +)
for(x =0; © < LUT-SIZE; z + +){
for(m=0; m <12; m+ +)
for(n=0; n<3; n++){
ArtR[m][n]+ = Imagelz][y] * BasisR[m|[n][z][y];

ArtI[m][n]— = I'mage[z][y] * BasisI[m][n][z][y];

e Step 4 - Area Normalization: For area normalization, the magnitudes of
ART coefficient ArtM[m][n] is divided by ArtM[0][0] which corresponds to the

area of an object.

for(m=0; m <12; m+ +)
for(n=0; n<3; n++)
ArtM[m][n] = sqrt(ArtR[m|[n] * ArtR[m][n] + ArtI[m][n] * ArtI[m][n]);
for(m =0; m < 12; m + +)
for(n=0; n<3; n++)

ArtM[m][n] = ArtM[m][n]/ArtM[0][0];
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e Step 5 - Quantization: The magnitudes of ART coefficients excluding ArtM [0][0]
are then quantized to 4 bits or 16 levels using the following quantization table
as in Table 4.1 . The resulting quantized magnitude of ART coefficients is called

MagnitudeOfART.

index = 0;
for(m =0; m <12; m + +)
for(n=10; n<3; n++)
if (m! = 0||n! = 0) MagnitudeO f ART [index + +] = Quantize( ArtM[m][n]);
cx =cy=LUT_SIZE/2; /] center of basis function
for(y=0; y < LUT-SIZE; y+ +)

for(x=0;z < LUT_SIZE; z + +)

{
radius = sqrt((z — cz) * (z — cx) + (y — cy) * (y — cy));
angle = atan2(y — cy,  — cx);
for(m=0; m <12; m+ +)
for(n=0; n<3; n++)
{
temp = cos(radius x m+ n/(LUT_SIZE/2));
BasisR[m][n][z][y] = temp * cos(angle * m);
BasisI[m][n][z][y] = temp = sin(angle * m);
}
}
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5. Proof of Rotation Invariance of ART Magnitudes

Let the image f%(p, @) be the rotated image of f(p,#) by an angle o about its origin,

f(p,0) = f(p, e +0).
The ART of the rotated image are the given as

2x 1

Fan= [ | Viin0,0). £(p.2-+ 0)pdps
o Jo

or

Fpm = Fumerp(—jma)

Here, it is seen that the magnitude of the ART of rotated image and the reference

image is the same.

[l = [ |

nm
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