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ABSTRACT

MAGNETIC SPHERICAL PENDULUM

Yildirim, Selma

M. Sc., Department of Mathematics

Supervisor: Prof. Dr. Cem Tezer

July 2003, 49 pages

The magnetic spherical pendulum is a mechanical system consisting of a

pendulum whereof the bob is electrically charged, moving under the influence

of gravitation and the magnetic field induced by a magnetic monopole de-

posited at the origin. Physically not directly realizable, it turns out to be

equivalent to a reduction of the Lagrange top. This work is essentially the log-

book of our attempts at understanding the simplest contemporary approaches

to the magnetic spherical pendulum.

Keywords: Magnetic spherical pendulum, Hamiltonian systems, Poisson brack-

ets.
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ÖZ

MANYETIK KÜRESEL SARKAÇ

Yildirim, Selma

Yüksek Lisans, Matematik Bölümü

Tez Yöneticisi: Prof. Dr. Cem Tezer

Temmuz 2003, 49 sayfa

Manyetik küresel sarkaç, ucundaki kütlesi aynı zamanda elektrikle yüklü

olup, yerçekimi ve merkeze yerleştirilmiş tek bir manyetik kutup tarafindan

üretilen manyetik alanın tesiri altında hareket eden sarkaçtan ibaret bir mekanik

sistemdir. Gerçek bir fizik olayı olarak ortaya çıkmasa da, aslında Lagrange

topaçının indirgenmiş şekline eşdeğer olduğu görülür. Bu çalısma esas itibarıyla,

manyetik küresel sarkaça en basit çağdas yaklasımları anlama gayretlerimizin

kayıtlarından meydana gelmektedir.

Anahtar Kelimeler: Manyetik küresel sarkaç, Hamilton sistemleri, Poisson

parantezleri.
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CHAPTER 1

SPHERICAL PENDULUM AND ITS MAGNETIC

VERSION IN NAIVE TREATMENT

In classical mechanics, the term spherical pendulum refers to the configura-

tion consisting of a massive particle suspended by a rigid weightless rod from

a fixed point and subject to constant uniform gravitational field. Equivalently

the spherical pendulum may be regarded as a particle constrained to move

on a sphere under constant uniform gravitational field. This is an old and

established problem of classical mechanics which has been subjected to very

detailed treatment in numerous textbooks ([Whi],[Pars]). It is known that a

full quantitive solution of the governing equations requires the use of elliptic

functions.

An interesting if rather artificial modification of the problem ensues if the

massive particle is also understood to be electrically charged and a magnetic

monopole is placed at the center of the sphere on which the particle in ques-

tion is constrained to move. In this case the particle is subject not only to the

gravitation and the forces of constraint but also to the Lorentz force that acts

on charged particles that move in magnetic fields. Clearly rather far fetched

from a scientific point of view, the problem has been concocted for the purpose

of illustrating the use of certain recent mathematical artifacts.

Classical treatments which sometimes involve multivalued coordinate sys-

tems and occasionally force the investigator to give separate treatments of
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non-generic orbits are in many respects unsatisfactory from a modern point

of view, yet they are very pleasant mathematically and intuitively satisfying.

We find it important first to go through such a hands-on investigation of the

above mentioned problems to gain insight into the portent of a mathemati-

cal mechanism that clearly originates from similar physical problems. In fact

we adopt an even more extremist stand in that we approach the phenomenon

by direct analysis of the forces acting upon the particle, hence the adjective

“naive” in our title. The position vector is

x =


x1

x2

x3

 =


a sin θ cosϕ

a sin θ sinϕ

−a cos θ


The linear momentum of the particle is p = mẋ and

p = mẋ = ma(


cos θ cosϕ

cos θ sinϕ

sin θ

 θ̇ +


− sin θ sinϕ

sin θ cosϕ

0

 ϕ̇)

The only forces acting on the particle are the gravitational force and the

constraining force that arises from the tension τ in the rod. Consequently

F =


−τ sin θ cosϕ

−τ sin θ sinϕ

τ cos θ −mg


According to the second law of Newton, the motion of the particle can be

described by the differential equation

F =
dp

dt

Explicitly,
−τ sin θ cosϕ

−τ sin θ sinϕ

τ cos θ −mg

 = ma(


− sin θ cosϕ

− sin θ sinϕ

cos θ

 θ̇2 + 2


− cos θ sinϕ

cos θ cosϕ

0

 θ̇ ϕ̇
2



+


cos θ cosϕ

cos θ sinϕ

sin θ

 θ̈ +


− sin θ cosϕ

− sin θ sinϕ

0

 ϕ̇2

+


− sin θ sinϕ

sin θ cosϕ

0

 ϕ̈) (1.1)

Upon taking inner product of both sides with


sinϕ

− cosϕ

0

 we get

0 = ma(−2 cos θ θ̇ ϕ̇− sin θϕ̈) (1.2)

or

2θ̇ϕ̇ cos θ + sin θϕ̈ = 0

and multiplying with sin θ

d

dt
(ϕ̇ sin2 θ) = 0

equivalently

ϕ̇ sin2 θ =
Lz

ma2

where Lz is a constant that may be identified with z-component of the angular

momentum of the particle with respect to the origin.

Upon taking inner product with
cosϕ cos θ

sinϕ cos θ

sin θ


we obtain

−mg sin θ = ma(θ̈ − sin θ cos θϕ̇2) (1.3)

Dividing out ma and multiplying with θ̇

θ̇θ̈ − sin θ cos θθ̇ϕ̇2 = −g
a

sin θθ̇

3



and putting

θ̇ϕ̇ cos θ = −1

2
sin θϕ̈

θ̇θ̈ +
1

2
sin2 θϕ̇ϕ̈ = −g

a
sin θθ̇

replacing sin2 θϕ̇ with
Lz

ma2

θ̇θ̈ +
Lz

2ma2
ϕ̈ = −g

a
sin θθ̇

equivalently
d

dt

(
1

2
θ̇2 +

Lz

2ma2
ϕ̇

)
=

d

dt

(g
a

cos θ
)

and again using sin2 θϕ̇ =
Lz

ma2
we find

d

dt
(
1

2
θ̇2 +

1

2
ϕ̇2 sin2 θ) =

d

dt

g

a
cos θ

Thus,
1

2
(θ̇2 + ϕ̇2 sin2 θ)− g

a
cos θ = constant

As |p|2 = m2a2(θ̇2 + sin2 ϕ̇2) the left hand side can be seen to be E/ma2

where E is the total energy of the system given by

E =
|p|2

2m
−mga cos θ

Before proceeding further, notice the particular case in which Lz = 0, which

implies that ϕ is a constant and therefore the motion takes place in a fixed

vertical plane. Hence,

1

2
ma2θ̇2 −mga cos θ = E

upon differentiation

ma2θ̈ +mga sin θ = 0

or equivalently ,

θ̈ = −g
a

sin θ

4



which is the equation of motion for the planar pendulum.

In general the equations of motion read

1

2
ma2(θ̇2 + ϕ̇2 sin2 θ)−mga cos θ = E

ma2ϕ̇ sin2 θ = Lz

where E, Lz are constants corresponding to the total energy and the z-

component of the angular momentum about the origin.

It is interesting to stop here and see how the equations (1.2) and (1.3) are

modified in the presence of a magnetic monopole of strength µ at the origin

and if the electric charge q is attached to the material particle. The magnetic

induction resulting from the monopole is of the form

β = µ
x

‖x‖3
=

µ

a3
x

This causes the Lorentz force

F = qẋ× β =
qµ

a3
ẋ× x

to act on the particle. Explicitly, the Lorentz force is

qµ

a3
(


cos θ cosϕ

cos θ sinϕ

sin θ

 θ̇ +


− sin θ sinϕ

sin θ cosϕ

0

 ϕ̇)×


sin θ cosϕ

sin θ sinϕ

− cos θ



=
qµ

a3
(


− sinϕ

cosϕ

0

 θ̇ −


cos θ sin θ cosϕ

cos θ sin θ sinϕ

sin2 θ

 ϕ̇)

Adding the Lorentz force to the left hand side of (1.1) and taking inner

product of this modified (1.1) with
sinϕ

− cosϕ

0


5



we obtain the modified form of (1.2) as

qµ

a3
θ̇ = ma(−2 cos θθ̇ϕ̇− sin θϕ̈) (1.4)

and taking inner product with 
cos θ cosϕ

cos θ sinϕ

sin θ


we obtain the modified form of (1.3) as

−mg sin θ − qµ

a3
sin θϕ̇ = ma(θ̈ − sin θ cos θϕ̇2) (1.5)

We observe that (1.4) can be multiplied with θ̇ and written also in the form

d

dt
{ma2 sin2 θ ϕ̇+

qµ

a3
cos θ} = 0. (1.6)

Clearly the quantity within the brackets is a conserved quantity . However,

it may no longer be identified with the z-component of the angular momentum

about the origin.
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CHAPTER 2

NAIVE THEORY OF THE LAGRANGE TOP

Given a material particle with position vector x and mass m, moving under

the action of a force F, the momentum p = mẋ of the particle is related to F

by Newton′s Second Law:
d

dt
p = F.

Similarly the torque N = x × F of the force in question is related to the

angular momentum L = x× p of the particle by

d

dt
L =

dx

dt
× p + x× dp

dt

= 0 + x× F = N

Given a system consisting of finitely many material points with position

vectors xk and masses mk where k = 1, 2, 3, . . ., acted upon by forces Fk the

total torque is N =
∑

Nk and the total angular momentum is L =
∑

Lk where

Lk is the angular momentum of the kth particle and Nk = xk×Fk is the torque

due to force Fk acting on the kth particle. These quantities are obviously

related by
dL

dt
= N.

We shall understand a rigid body as a limiting form of a system of finitely

many points so that

L =

∫
Body

x× ρ(x)ẋ dV ol(x)

where ρ represents the mass density of the rigid body. Note that up to this

point we have only effected a passage from the “discrete” to the “continuous”

and made no use of rigidity assumption. From this point on we shall make the
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assumption that the system of points constitutes a rigid body with one point

thereof is fixed at the origin. This assumption can be made to bear upon our

considerations by writing x = x(t) in the form

x = Ωx(0)

where Ω = Ω(t) ∈ SO(3). With this observation we obtain

dx

dt
= Ω

dΩ

dt
x0

On the other hand as ΩΩT = 1 we have

0 =
d

dt
(ΩΩT ) =

dΩ

dt
ΩT + ΩT dΩ

T

dt

=
dΩ

dt
ΩT + (

dΩ

dt
ΩT )T

equivalently

Ξ =
dΩ

dt
ΩT ∈ so(3)

that is Ξ is a skew symmetric matrix.

We observe that each A ∈ so(3) is of the form

A =


0 a b

−a 0 c

−b −c 0


and for each r ∈ R3

Ar =


−c

b

−a

× r.

Let i : so(3) → R3 be defined by

i(


0 a b

−a 0 c

−b −c 0

) =


−c

b

−a


8



We have already noted that

Ar = i(A)× r

for any r ∈ R3.

Going back to the equation for the angular momentum we put

ω = ω(t) = i(
dΩ

dt
ΩT )

The vector ω is called the angular velocity of the rigid body.

We obtain

d

dt
x =

dΩ

dt
x0 =

dΩ

dt
Ω−1x

= ω × x

and

L =

∫
Body

x× ρ(x)[ω × x]dV ol(x)

=

∫
Body

ρ(x)[xTxω − xTωx]dV ol(x)

= Iω

where

I =

∫
Body

[xTx1− xxT ]ρ(x)dV ol(x)

which is a symmetric matrix referred to as the inertia tensor of the body. Pre-

sented in this form the matrix I is not useful since it is time dependent. This

confronts us with a peculiarity of the rigid body dynamics that the equations

of motion tend to be unmanagable unless they are written in reference to a

system of reference that is fixed in the rigid body.

Quite generally a 3× 1 matrix

y =


y1

y2

y3

 = xe1 + ye2 + ze3

9



where

e1 =


1

0

0

 e2 =


0

1

0

 e3 =


0

0

1


is understood to consists of components x1, x2, x3 of a vector in R3 with re-

spect to a coordinate system xyz. This system is understood to be an inertial

system, that is, with respect to it the laws of Newton are valid.

Let the components of the 3× 1 matrix

yb =


y1b

y2b

y3b


consist of components of the same vector with respect to a coordinate system

xbybzb fixed in the rigid body. Let e1b, e2b, e3b be the unit vectors along the

xb-, yb-,zb-axes. Obviously there exists Ω ∈ SO(3) such that

ekb = Ωek

and

ykb = ekby = eT
kby = (Ωek)

Ty = ekΩ
Ty = (ΩTy)ek

for k = 1, 2, 3. We conclude that

yb = Ω−1y.

Let us assume without loss of generality that the coordinate system xbybzb

fixed in the body coincides with the inertial frame xyz at t = 0. Let us now

compute the inertia tensor of the rigid body in question with respect to the

coordinate system fixed in the rigid body:

Ib =

∫
Body

[xT
b xb1− xbx

T
b ]ρ(xb)dV ol(xb)

=

∫
Ω−1(Body)

[(ΩTx)T (ΩTx)1− (ΩTx)(ΩTx)T ]ρ((ΩTx))dV ol(ΩTx)

10



Nb = Ω−1N = Ω−1dL

dt
= Ω−1Iω = Ω−1IΩωb = Ibωb

It is an interesting exercise in advanced calculus to show that Ib is a constant

matrix.

We now have

Nb = Ω−1N

= Ω−1dL

dt

= Ω−1 d

dt
(Iω)

= Ω−1 d

dt
(ΩIbωb)

= Ω−1[
dΩ

dt
Ibωb + ΩIb

dωb

dt
]

= Ω−1[ω × (ΩIbωb) + ΩIb
dωb

dt
]

= (Ω−1ω)× Ibωb + Ibω̇b

= ωb × Ibωb + Ibω̇b

Making, from this point on, the convention that all quantities are with

reference to a coordinate system fixed in the body and dropping the subscript

“b” we obtain the Euler equations

Iω̇ + ω × Iω = N

Now that we have dropped subscripts, we have

ω = Ω−1i(
d

dt
ΩΩ−1)

Further assuming without loss of generality that with respect to this coor-

dinate system the inertia matrix has the diagonal form

I =


I1

I2

I3


11



we obtain the following explicit system of ordinary differential equations.

I1ω̇1 − (I2 − I3)ω2ω3 = N1

I2ω̇2 − (I3 − I1)ω3ω2 = N2

I3ω̇3 − (I1 − I2)ω1ω2 = N3

Beatiful as the Euler equations are their intuitive content becomes clearer

only after the introduction of the Euler angles. Let Rot(k, α) ∈ SO(3) denote

the rotation about the directed line k through the angle α ∈ R/2πZ. Each

Ω ∈ SO(3) sufficiently close to the identity can be written in the form

Ω = Rot(z′′, ψ) ◦Rot(x′, θ) ◦Rot(z, ϕ)

where z denotes the z-axis, x′ denotes the image of the x-axis under Rot(z, ϕ)

and z′′ denotes the image of the z-axis under Rot(x′, θ) ◦Rot(z, ϕ).

Clearly

Rot(z, ϕ) = R3(ϕ)

where

R3(ϕ) =


cosϕ − sinϕ 0

sinϕ cosϕ 0

0 0 1


Rot(x′, θ) = R3(ϕ)R1(θ)R3(ϕ)

where

R1(θ) =


1 0 0

0 cos θ − sin θ

0 sin θ cos θ


and finally

Rot(z′′, ψ) = [R3(ϕ) ◦R1(θ)]R3(ψ)[R3(ϕ) ◦R1(θ)]
−1

By a simple regrouping, we obtain

Ω = R3(ϕ)R1(θ)R3(ψ)

12



=


cosϕ cosψ − sinϕ sinψ cos θ − cosϕ sinψ − sinϕ cosψ cos θ sinϕ sin θ

sinϕ cosψ + cosϕ sinψ cos θ − sinϕ sinψ + cosϕ cosψ cos θ − cosϕ sin θ

sinψ sin θ cosψ sin θ cos θ



Let us reconsider the map i : so(3) → R3 introduced above and note that

for any A ∈ SO(3) and Ξ ∈ so(3) we have AΞA−1 ∈ so(3) and

i(AΞA−1) = Ai(Ξ).

There seems to be no elegant proof of this fact. The best method is to

consider the map

ϕ : so(3) −→ so(3)

defined by

ϕ(A)(X) = A−1i(Ai−1(X)A−1)

and observe that

Teϕ : Teso(3) u so(3) −→ Teso(3)

is the identity map hence ϕ has to be the identity, too.

ω = Ω−1i(
dΩ

dt
Ω−1)

= i(Ω−1dΩ

dt
)

= i(R3(−ψ)R1(−θ)R3(−ϕ)[R′
3(ϕ)R1(θ)R3(ψ)ϕ̇+R3(ϕ)R′

1(θ)R3(ψ)θ̇

+ R3(ϕ)R1(θ)R
′
3(ψ)ψ̇])

= ϕ̇R3(−ψ)R1(−θ)i(R3(−ϕ)R′
3(ϕ)) + θ̇R3(−ψ)i(R1(−θ)R′

1(θ))

+ ψ̇i(R3(−ψ)R′
3(ψ))

= ϕ̇R3(−ψ)R1(−θ)


0

0

1

 + θ̇R3(−ψ)


1

0

0

 + ψ̇


0

0

1



= ϕ̇


cosψ sinψ 0

− sinψ cosψ 0

0 0 1




1 0 0

0 cos θ sin θ

0 − sin θ cos θ




0

0

1


13



+ θ̇


cosψ sinψ 0

− sinψ cosψ 0

0 0 1




1

0

0

 + ψ̇


0

0

1


Consequently,

ω1 = ϕ̇ sin θ sinψ + θ̇ cosψ

ω2 = ϕ̇ sin θ cosψ + θ̇ sinψ

ω3 = ϕ̇ cos θ + ψ̇

To complete our derivation of the governing equations we still have to

compute the total torque of the forces action upon the particles in the rigid

body. Once again reverting to our approximate picture of the rigid body as

a system of finitely many material particles we assume that the ith material

particle is acted upon by an “external” force Fi = mige3 due to gravitation

and “internal” force fij due to the jth particle j 6= i which obey the third Law

of Newton. Thus, we assume that

fij = aij(xj − xi)

for i 6= j where aij ∈ R and aij = aji.

Consequently

N =
∑

i

xi × [mige3 + aij(xj − xi)]

= g(
∑

i

mix
i)× e3 +

∑
i

aijxi × xj

= g(
∑

i

mixi)× e3

Passing to the limit

N = g(

∫
Body

xρ(x)dV ol(x))× e3

= Mgx× e3

where M is the total mass, x is the position vector of the center of mass of the

rigid body.
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Finally we restrict our attention to the special case called the ”Lagrange

Top”, by making the following assumptions:

1. The body has rotational symmetry about the zb-axis, i.e. the third prin-

cipal axis, as a consequence of which I1 = I2.

2. The center of mass of the body lies on the third principal axis. That is

x = µΩe3.

Therefore

N = Mgµ(Ωe3)× e3

and

Nb = Mgµe3 × Ω−1e3.

Again we drop the subscript and refer everything to the principal axes fixed

in the body and find

N = Mgµe3 ×R3(−ψ)R1(−θ)R3(−ϕ)e3

= Mgµ


0

0

1

×


cosψ sinψ0

sinψ cosψ0

0 0 1




1 0 0

0 cos θ sin θ

0 − sin θ cos θ




0

0

1



= Mgµ


0

0

1

×


cosψ sinψ0

sinψ cosψ0

0 0 1




0

sin θ

cos θ



= Mgµ


0

0

1

×


sinψ sin θ

cosψ sin θ

cos θ



= Mgµ


− cosψ sin θ

sinψ sin θ

0


and obtain

I1ω̇1 − (I2 − I3)ω2ω3 = −Mgµ cosψ sin θ
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I2ω̇2 − (I3 − I1)ω3ω2 = Mgµ sinψ sin θ

I3ω̇3 − (I1 − I2)ω1ω2 = 0

Remembering that I1 = I2 we have

I1ω̇1 − (I1 − I3)Jω2 = −Mg cosψ sin θ (2.1)

I1ω̇2 +
(I1 − I3)J

I3
ω1 = Mg sinψ sin θ (2.2)

I3(ϕ̇ cos θ + ψ̇) = J = constant (2.3)

Expanding (2.1) and (2.2)

I1 (ϕ̈ sin θ sinψ + ϕ̇ cos θ sinψθ̇ + ϕ̇ sin θ cosψψ̇ + θ̈ cosψ − θ̇ sinψψ̇)

− (I1 − I3)
J

I3
(ϕ̇ sin θ cosψ + θ̇ sinψ) = −Mgµ cosψ sin θ (2.4)

and

I1 (ϕ̈ sin θ cosψ + ϕ̇ cos θ cosψθ̇ − ϕ̇ sin θ sinψψ̇ − θ̈ sinψ − θ̇ cosψψ̇)

+ (I1 − I3)
J

I3
(ϕ̇ sin θ sinψ − θ̇ cosψ) = Mgµ sinψ sin θ (2.5)

By multiplying (2.4) with cosψ and (2.5) with sinψ and subtracting we get

I1(ϕ̇ψ̇ sin θ + θ̈)− (I1 − I3)J

I3
(ϕ̇ sin θ) = −Mgµ sin θ

which gives upon substitution

ψ̇ =
J

I3
− ϕ̇ cos θ

I1θ̈ − I1 sin θ cos θϕ̇2 + J sin θϕ̇+Mgµ sin θ = 0 (2.6)

By multiplying (2.4) with sinψ, (2.5) with cosψ and adding we obtain

I1(sin θϕ̈+ 2 cos θϕ̇θ̇)− Jθ̇ = 0

which gives upon multiplication with sin θ

I1(sin
2 θϕ̈+ 2sinθcosθϕ̇θ̇)− J sin θθ̇ = 0
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which can be written in the form

d

dt
{I1 sin2 θϕ̇+ J cos θ} = 0 (2.7)

Observe that the equations (2.6) and (2.7) are the same as (1.5) and (1.6)

in Chapter 1.
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CHAPTER 3

INSTANCES OF THE HAMILTONIAN APPROACH

In this and the following sections we shall denote vectors as

x =


x1

x2

. . .

xn

 ∈ Rn u Rn×1,

covectors

y =
[
y1 y2 . . . yn

]
∈ Rn u R1×n

and make use of the inner product 〈·, ·〉, and cross-product in which we allow

indiscriminate apperance of vector and covector arguments.

A large body of experience suggests that the proper mathematical setting

for classical mechanics (among others) is a symplectic manifold which is an

ordered pair (M,ω) where M is a manifold and ω is a symplectic form on

M. On a sympectic manifold to each scalar field f a vector field Xf on M is

associated which satisfies

df(Y ) = ω(Xf , Y )

for every vector field Y on M .

A classical mechanics problem is formulated in many cases as a system of

differential equations which is equivalent to the integration of a vector field of

the form XH on a symplectic manifold (M,ω) for some smooth H : M → R.

The triple (M,ω,H) completely defines the problem, H : M → R is referred
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to as the Hamiltonian and turns out to be constant along lines of the integral

flow generated by XH .

Example 3.1: Consider the cotangent bundle M = T ∗Rn u R2n in which

we fix each point by its coordinates (xi, yi)1≤i≤n where xis refer to space compo-

nents, yis referring to covector components. Let ω = dxi∧dyi be the canonical

symplectic form.

It can be routinely checked that

XF =
∂F

∂yi

∂

∂xi
− ∂F

∂xi

∂

∂yi

for any scalar field F ∈ C∞(Rn). In particular if H(x, y) = 1
2
< y, y >, we

obtain

XH = yi
∂

∂xi

Thus the equations of motion read

dx

dt
= y

dy

dt
= 0

or
d2x

dt
= 0

These are clearly the equations for motion of a free particle.

Example 3.2 : Let again M = T ∗R3 u R6, ω = dxi ∧ dyi and let

H(x, y) =
1

2
< y, y > +γx3

By a similar calculation as in ( Example 3.1) we can show that

XH = −yi
∂

∂xi
− γ

∂

∂y3

and the equations of motion read

dx

dt
= y

dy

dt
= −γe3

or equivalently,
d2x

dt
= −γe3
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This is obviously the equation for the motion of a free particle under con-

stant uniform gravitational field.

Example 3.3: Let, once again, M = T ∗R3 u R6, ω = dxi ∧ dyi and

introduce a modified symplectic form Ω defined by

Ω = ω +
µ

‖x ‖3
εijk x

i dxj ⊗ dxk.

For an arbitrary scalar field F ∈ C∞(M) it can be routinely checked that

XF =
∂F

∂yi

∂

∂xi
+

(
−∂F
∂xi

+
µ

‖x ‖3
εijk x

j ∂F

∂yk

)
∂

∂yi

In particular, if

H(x, y) =
1

2
〈y, y〉+ γ〈x, e3〉

then

XH = yi
∂

∂xi
+ (−γδi3 +

µ

‖x ‖3
εijk x

iyk)
∂

∂yi

and the equations of motion read

dx

dt
= y,

dy

dt
= −γe3 +

µ

‖x ‖3
x× y

These equations clearly govern the motion of a massive, charged free parti-

cle moving under the action of a uniform homogeneous gravitational field and

a magnetic monopole placed at the origin.

An important development emanating from Hamiltonian mechanics is the

concept of Poisson brackets.

Definition 3.1: Quite generally a Poisson algebra is a commutative al-

gebra A over R with a bilinear binary operation {·, ·} : A × A → A such

that

1. {f, g}= -{g, f}
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2. {f, { g, h}}+ {g, {h, f }}+{h, {f, g}}= 0

3. {f, gh }= {f, g} h+ g {f, h}

for any f, g ∈ A.

In connection with a symplectic manifold (M,ω) there exists a natural

Poisson algebra structure on C∞(M). The Poisson bracket {f, g} of f, g ∈

C∞(M) is defined by

{f, g} = ω(Xf ,Xg).

It is important to notice that the Poisson bracket defined in the above

fashion depends on the choice of the symplectic form.

Example 3.4: For the standard situation M = T ∗Rn u R2n, ω = dxi∧dyi

the Poisson bracket becomes

{f, g} = dxi ∧ dyi(
∂f

∂xq

∂

∂yq

− ∂f

∂yq

∂

∂xq
,
∂g

∂xr

∂

∂yr

− ∂g

∂yr

∂

∂xr
)

=
∂f

∂xi

∂g

∂yi

− ∂f

∂yi

∂g

∂xi

= 〈∂f
∂x
,
∂g

∂y
〉 − 〈∂f

∂y
,
∂g

∂x
〉

Example 3.5: For the symplectic manifold (T ∗R3,Ω), the Poisson bracket

takes the form

{f, g} =
∂f

∂xi

∂g

∂yi

− ∂f

∂yi

∂g

∂xi
− µ

‖x3‖
εijkx

i ∂f

∂yj

∂g

∂yk

Example 3.6: Consider a symplectic manifold (M,ω) quite generally. In

the presence of a chart x = (xi)1≤i≤n on M , let

ω|dom(x) = ωijdx
i ⊗ dxj

and let [ωij]1≤i,j≤n be the inverse of the matrix [ωij]1≤i,j≤n. For any F ∈

C∞(M), as

ω(XF ,
∂

∂xj
)|dom(x) =

∂F

∂xj
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we conclude that

XF |dom(x) = ωij ∂F

∂xj

∂

∂xi

Notice in particular, that

Xxq = ωiq ∂

∂xi

and hence

{xp, xq} = ωijω
ipωjq

= ωpq

The importance of this approach lies in the following observation due to

Poisson: In the presence of a Hamiltonian H, one considers the “dynamical

system”, i.e the flow ϕt(or local flow) on M , generated by XH . For any scalar

field f ∈ C∞(M), the development of f(t) = f(ϕt(m)) for any m ∈ M in

“time” is described by

df

dt
= XHf = df(XH) = ω(Xf , XH)

hence
df

dt
= {f,H}.

This shows that the Poisson algebra structure on C∞(M) alone is sufficient for

a full description of the time development of any “observable” f ∈ C∞(M).

It is an interesting philosophical consideration to notice that as M is a man-

ifold and each point m ∈ M is fully described by choosing a local coordinate

system x = (xi)1≤i≤n on M with m ∈ dom(x) and assigning m the numbers

(xi(m))1≤i≤n, one can write equations of motion of a Hamiltonin system in the

form
dxi

dt
= {xi, H}.

Of course one has to bear in mind the slight difficulty that arises in view of

the fact that the coordinates xi are “local” observable only.

Thus, there is no loss of dynamical information in passing from a symplec-

tic system(M,ω) with a distinguished observable H to the Poisson algabra
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(C(M), {·}) with distinguished element of H ∈ C∞(M). This theme is to be

developed a little further.

For which reason there is much research conducted on Poisson algebras as

pure algebraic entities on the one hand and the so-called Poisson manifolds. A

Poisson manifold is a manifold M in which C∞(M) as a commutative algebra

over R admits a bilinear binary operation {·, ·} obeying the properties 1,2 and

3 above.

As we have seen above, symplectic manifolds have natural structures as

Poisson manifolds. However, there are Poisson manifolds which do not arise

from symplectic manifolds. Indeed, symplectic manifolds are even dimensional

whereas it is possible to construct odd dimensional Poisson manifolds.

Example 3.7: R3 has a Poisson manifold structure. Take and fix an

arbitrary F ∈ C∞(R3). It can be checked that {·, ·} on C∞(R3) defined by

{f, g} = εijk
∂f

∂xj

∂g

∂xk

∂F

∂xi

= (∇f ×∇g) · ∇F

= det(∇f,∇g∇F )

gives rise to a Poisson algebra.

Concerning the Poisson formalism in manifolds one final remark is due : At

first sight it seems impossible to produce a finite table which gives a complete

description of {·, ·} on C∞(M) (which is infinite dimensional) as in the case

of finite dimensional Lie algebras. Upon closer inspection it will be seen to be

possible if the manifold can be covered by finitely many charts(clearly finite).

In this case a multiplication table for the components of charts will be sufficient

to determine everything else, since given f, g ∈ C∞(M) and a chart x =

(xi)1≤i≤n we have

{f, g}|dom(x) = ω(Xf , Xg)|dom(x)

= ωijω
ip ∂f

∂xp
ωjq ∂g

∂xq

= − ∂f

∂xj

∂g

∂xq
ωjp
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=
∂f

∂xj

∂g

∂xq
ωqj

=
∂f

∂xj

∂g

∂xq
{xj, xq}

=
∂f

∂xi

∂g

∂xj
{xi, xj}
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CHAPTER 4

HAMILTONIAN DYNAMICS ON SUBMANIFOLDS

VIA THE DIRAC PRESCRIPTION

Given a Hamiltonian system (M,ω,H) it can be important to restrict the

problem to a submanifold N of M . Of course N has to be even dimensional.

This condition is often automatically fulfilled since typically one has M = T ∗Q

for some manifoldQ andN = T ∗V for some submanifold V ofQ. However even

if this obvious dimension condition is fulfilled the restriction of the symplectic

form to the submanifold can easily fail to be non-degenerate.

Example 4.1: Let M = R4 with the symplectic form ω = dx∧dy+du∧dv.

Consider the submanifold A = {(x, x, u, u)|x, u ∈ R} of R4. We can easily show

that ω(s, t) = 0 for typical tangent vectors s, t to A.

Of course it is possible to deal with each special case separately. However,

the difficulty is alleviated for a large class of submanifols by the following theo-

rem usually ascribed to P. Dirac ([Dir], see [C-B 1] for a modern mathematical

treatment):

Theorem 4.1: Let (M,Ω) be a symplectic manifold and N be a sub-

manifold of M where N = F−1(q) for some regular value q ∈ M of F =

(F1, F2, . . . , Fr) : M → Rr. Ω|N is a symplectic form on N if the matrix

[
{Fi, Fj}

]
1≤r,j≤r

is non- singular at each point of N .

Proof: Appendix.

Example 4.2: Let M = T ∗(R3−{(0, 0, 0)}) with the canonical symplectic
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form ω = dxi ∧ dyi and a submanifold N = T ∗S2 defined by

F1(x, y) = 〈x, x〉 − 1 = 0

F2(x, y) = 〈x, y〉 = 0

Then

XF1 = −2xi ∂

∂yi

, XF2 = xi ∂

∂xi
− yi ∂

∂yi

From {Fi, Fj} = dxi ∧ dyi(XFi
, XFj) for i = 1, 2 we can find the matrix 0 {F1, F2}

{F2, F1} 0

 =

 0 2

−2 0


is non- singular at each point point of T ∗S2. Then Ω|N is a sympectic form on

N .

Apart from the above mentioned difficulty which can be taken care of by

the above theorem there are other inherent difficulties in dealing with sub-

manifolds. For instance as a bonus for working with the Poisson formalism

one might hope to deal with such difficulties by noticing that each element of

C∞(N) the restriction to N of some element of C∞(M) and expecting that

the Poisson bracket of f |N and g|N on N is the restriction of {f, g} to N for

all f, g ∈ C∞(M). However, this is not true. To be precise, it is in general not

true that for any scalar fields f, g on M

{f |N , g|N}N 6= {f, g}|N

where {·, ·}N stands for the Poisson bracket inducted by the symplectic form

ω|N on N .

Example 4.3: Given M = R4 and ω = dx ∧ dy + dz ∧ dt. Let N = R2.

Clearly i∗(ω) = dx ∧ dy. Define

F (x, y, z, t) = f(x, y, z, t) + z

G(x, y, z, t) = g(x, y, z, t) + t
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for some scalar functions f and g.

A simple calculation shows that

{F |R2 , G|R2}R2 =
∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x

On the other hand

{F,G}|R2 =
∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x
+ 1

Therefore

{F |R2 , G|R2}R2 6= {F,G}R4 |R2

Once again it is possible to save a considerable piece of the theory by means

of the following theorem due to P. M. Dirac([Dir]):

Theorem 4.2: For any f, g ∈ C∞(M)

{f |N , g|N}N = {f, g}∗|N

where bracket {·, ·}∗ on C∞(M) is defined by

{f, g}∗ = {f, g} − {f, Fi}Ψij{Fj, g}

with the matrix [
Ψij

]
1≤i,j≤r

being the inverse of the matrix[
{Fi, Fj}

]
1≤i,j≤r

Proof: Appendix.

In our case, M = T ∗(R3 − {(0, 0, 0)}) and a submanifold N = T ∗S2 is

defined by

F1(x, y) = 〈x, x〉 − 1 = 0

F2(x, y) = 〈x, y〉 = 0.
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T ∗S2 is a symplectic manifold of T ∗(R3 − {(0, 0, 0)}) with the symplectic

form Ω̃ = i∗(Ω) where i is the inclusion map from N = F1
−1(0) ∩ F2

−1(0) to

M since the matrix  0 {F1, F2}

{F2, F1} 0

 =

 0 2

−2 0


is non-singular at each point point of T ∗S2. Hence,

Ψij =

 0 −1
2

1
2

0


Thus we find that

{f, g}∗ = {f, g}+
1

2
{f, F1}{F2, g} −

1

2
{f, F2}{F1, g}

More explicitly,

{f, g}∗ = {f, g}+ 〈∂f
∂y
, x〉[〈∂g

∂x
, x〉 − 〈∂g

∂y
, y〉]

− 〈∂g
∂y
, y〉[〈∂f

∂x
, x〉 − 〈∂f

∂y
, y〉]

The magnetic spherical pendulum is the Hamiltonian system

(T ∗S2,Ω|T ∗S2 , H|T ∗S2) where

H : T ∗R3 −→ R

(x, y) 7−→ 1

2
〈y, y〉+ γ〈x, e3〉

Instead of using H|T ∗S2 we can use Dirac’s prescription to compute equa-

tions of motion by using the new bracket {·, ·}∗.

In this case the equations of motion become

dxi

dt
= {xi, H}∗, dyi

dt
= {yi, H}∗

Then

{f, F1} = − ∂f

∂yi

2xi = −2〈∂f
∂y
, x〉

{f, F2} =
∂f

∂xi
xi − ∂f

∂yi

yi −
µ

‖x‖3
εpjkx

p ∂f

∂yj

xk = 〈∂f
∂x
, x〉 − 〈∂f

∂y
, y〉
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Then

dxi

dt
= {xi, H}∗ = yi

dyi

dt
= {yi, H}∗ =

∂yi

∂xp
− ∂yi

∂yp

γδ3p −
µ

‖x‖3
εpjkx

p ∂yi

∂yj

∂H

∂yk

Finally, it follows from the discussion above that the equations of motion

of the magnetic spherical pendulum are

dx

dt
= y

dy

dt
= −γe3 + [< e3, x > γ− < y, y >]x +

µ

‖x‖3
]x× y

by using 〈x, y〉 = 0 on T ∗S2.
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CHAPTER 5

GENERAL REMARKS ON REDUCTION IN

CLASSICAL MECHANICS

In the framework of mechanics the word reduction loosely refers to the process

of obtaining a lower dimensional phase space by taking a suitable quotient in

the presence of a symmetry. Ideally the phase space is a manifold M , the

symmetry is described as the action of a Lie group G on M preserving every-

thing mechanically relevant and the quotient space M/G is a manifold, too.

This ideal situation fails to arise in many important cases. Indeed, despite

numerous attempts at clarifying it, the word reduction seems still to connote

little more than a gentlemen’ s agreement at present.

One should perhaps start with the most basic and best known classical

instance:

Example 5.1: Consider the planar motion of a material particle under

the influence of a central conservative force field. In this case F will be

F = −grad V

= −∂V
∂x

∂

∂x
− ∂V

∂y

∂

∂y

for some potential function V = V (x, y). The condition that F is always

directed towards (0, 0) can be expressed by

y
∂V

∂x
− x

∂V

∂y
= 0

which also shows that, of the usual polar coordinates (r, θ) on R2−({0}×[0,∞))
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V is independent of θ : Indeed

∂V

∂θ
=

∂V

∂x

∂x

∂θ
+
∂V

∂y

∂y

∂θ

=
∂V

∂x
(−r sin θ) +

∂V

∂y
(r cos θ)

= −y∂V
∂x

+ x
∂V

∂y
= 0

Here we have

x = rer

where

er =

 cos θ

sin θ


hence

dx

dt
= ṙer + reθθ̇

where

eθ =

 − sin θ

cos θ


Thus

d2x

dt2
= r̈er + ṙeθθ̇ + ṙeθθ̇ + reθθ̈ − rθ̇2er

or equivalently
d2x

dt2
= (r̈ − rθ̇2)er + (2ṙθ̇ + rθ̈)eθ

On the other hand

F = −∂V
∂r

= −∂V
∂x

e1 +
∂V

∂y
e2

where

e1 = cos θer − sin θeθ

e2 = sin θer + cos θeθ

Therefore

F = (−∂V
∂x

cos θ +
∂V

∂y
sin θ)er + (

∂V

∂x
sin θ +

∂V

∂y
cos θ)eθ

= −∂V
∂r

er
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Consequently the equations of motion read

2ṙθ̇ + rθ̈ = 0

m(r̈ − rθ̇2) = −∂V
∂r

Thus mr2θ̇ is a constant which we denote by l and write

mrθ̇2 =
l2

mr3

and the problem is reduced to the 1-dimensional problem

m
d2r

dt2
= −∂Ṽ

∂r

where

Ṽ (r) = V (r) +
l2

2mr2

In classical texts the new potential function Ṽ = Ṽ (r) is called the “effec-

tive potential”.

Given a Lie group G and a manifold M , a (left) action of G on M is a

smooth map

σ : G×M −→M

such that

σ(g2, σ(g1,m)) = σ(g2g1,m)

σ(e,m) = m

for all m ∈ M , g1, g2 ∈ G where e ∈ G is the neutral element of G. Once it is

clear which group action is being considered and there is no rise of confusion

we shall write gm instead of σ(g,m).

Of course flows constitute the most important class of group actions with

G = R.
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Remember that given topological spaces X, Y a map f : X → Y is called

proper if the inverse image of every compact subset of Y under f is compact

in X. An action of the Lie group G on M is called proper if the map

G×M −→M ×M

sending (g,m) into (gm,m) is proper. Notice that all actions of a compact Lie

group are proper.

For each m ∈M , the set

Gm = {g ∈ G|gm = m}

constitutes a subgroup of G which is called the isotropy group of the action at

m ∈M . An action is called free if Gm is trivial for each m ∈M .

Let g denote the Lie algebra of G consisting of the left invariant vector

fields on G. For every A ∈ g there exist a vector field A∗ on M such that

(t,m) → exp(tA) is the flow on M induced by A∗.

Example 5.2: Consider the Lie group G = S1 = SO(2) u R/2πZ with

its Lie algebra

g = so(2) u R = 〈 ∂
∂θ
〉

and its action on R2 defined by

[θ](x, y) = (x cos θ − y sin θ, x sin θ + y cos θ)

where [θ] ∈ S1 u R/2πZ denotes the residue class of 2πZ in R containing

θ. Note that this is the action which characterises the classical problem of

“central force fields” discussed at the beginning.

As S1 = R/2πZ is compact this action is automatically proper. However

it fails to be free since

G(x,y) = [0] ∈ S1
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for all (x, y) 6= (0, 0) ∈ R2 but G(0,0) = S1.

We have on S1

exp(t
∂

∂θ
) = [t]

and hence

(
∂

∂θ
)∗|(x,y) =

d

dt
|t=0(x cos t− y sin t, x sin t+ y cos t)

= −y ∂
∂x

+ x
∂

∂y
|(x,y)

Given an action of G on M the orbit through m is the set

Orb(m) = {gm|g ∈ G}.

Clearly M is the disjoint union of orbits.

Let M/G denote the set of orbits, let

π : M −→M/G

be the map sending m ∈ M into Orb(m). We shall consider M/G with the

quotient topology induced on it by π.

It is known that M/G has a natural structure as a smooth manifold such that

π is a smooth map if the action of G is free and proper. In the above example

the action of S1 on R2 is compact but not free. Indeed, R2/S1 is homeomor-

phic to [0,∞) and therefore it is not a manifold.

Definition 5.1: Action of G on a symplectic manifold (M,ω) is called

Hamiltonian if for each A ∈ g there exist a scalar field JA ∈ C(M) with A∗ =

XJA
. The map J : M → g∗ is called the momentum map of the Hamiltonian

action. Notice that JA depends linearly on A ∈ g.

Clearly, so does JA(m) depends linearly on A ∈ g. As a consequence, it

is more convenient to think of J as a map from M to g∗(the dual of g, as a
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vector space, that is, with its Lie algebra structure forgotten) assigning to each

m ∈M the linear map sending A ∈ g to JA(m) ∈ R, clearly an elementof g∗.

Example 5.3: ([L-M-S]) Consider the S1 = SO(2) action on R2 extended

to T ∗R2 with the canonical symplectic form ω = dx1 ∧ dy1 + dx2 ∧ dy2 defined

by 
x1

x2

y1

y2

 =


x1 cos t− x2 sin t

x1 sin t+ x2 cos t

y1 cos t− y2 sin t

y1 sin t− y2 cos t



It can be checked that this action is Hamiltonian and admits

J = x1y2 − x2y1

as momentum map. If one wishes to be pedantic, one might insist on remem-

bering G = SO(2), g = so(2) and considers J to be actually a map from M

into so(2)∗ = 〈dθ〉 and put

J = (x1y2 − x2y1)dθ

We do not. Indeed, it can be routinly checked that

Xx1y2−x2y1
= −x2 ∂

∂x1
+ x1 ∂

∂x2
− y2

∂

∂y1

+ y2
∂

∂y1

Clearly, each set of the form J−1(a) is invariant under the action of SO(2) u

R/2πZ. In this particular case

(−x2 ∂

∂x1
+ x1 ∂

∂x2
− y2

∂

∂y1

+ y2
∂

∂y2

)(x1y2 − x2y1) = 0

More generally
d

dt
J = XJJ = {J, J} = 0

When a ∈ R is a regular value of J then J−1(a) is a 3 dimensional sub-

manifold of T ∗R2 u R4 which is invariant under the action of S1 u SO(2). In

such a situation we may consider the problem to have been effectively reduced
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to a lower dimensional problem. Of course J−1(a) is odd dimensional and the

restriction of ω to J−1(a) is not non-degenerate. However this difficulty can

be surmounted by taking quotient under S1 u SO(2) and noticing that the

nondegeneracy of ω is lifted by this means. This process will be revisited below.

0 ∈ R, however, is not a regular value of J . In this case we observe that

J−1(0) = K0 ∪K1

where

K0 = {(0, 0, 0, 0)}

K1 = {(x1, x2, y1, y2) ∈ T ∗R2|x1y2 − x2y1 = 0, (x1, x2, y1, y2) 6= (0, 0, 0, 0)}

K1 is a submanifold. Moreover, the action of S1 u SO(2) on K1 is free and

(trivially) proper. Therefore K1/SO(2) is a two dimensional smooth manifold.

An interesting and useful coincidence(or not?) is the following. The restriction

of ω to K1 is degenerate. But it can be checked that for every m ∈ K1

(TmK1)
⊥ = {m ∈ TmT

∗R2| ω(u, v) = 0 ∀ v ∈ TmK1} ⊆ TmK1

and indeed (TmK1)
⊥ is exactly the one dimensional subspace of TmK1 gen-

erated by the action of S1 u SO(2) on K1. Consequently, the exterior form

ω̃ = ω/SO(2) induced on K1 is non-degenerate, that is (K1/SO(2), ω̃) is a

smooth symplectic manifold. K0 is a singleton on which S1 = SO(2) acts

trivially. It is, however, to be noticed, that J−1(0) = K0 ∪K1 is not a smooth

manifold.

One can obtain a more concrete picture of J−1(0) by considering

Λ = {(x1, 0, y1, 0) ∈ T ∗R2}

and noticing that the null-set J−1(0) of the momentum map J completely

contains Λ which is a smooth submanifold of T ∗R2 diffeomorphic to R2 and

the S1-orbit of any point (x, y) ∈ J−1(0) intersects Λ in exactly two points.
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Moreover, a point (x, y) in J−1(0) if and only if x and y are collinear as vectors

in R2.

Thus J−1(0) may be obtained by identifying (x, y) and (−x,−y) in R2.

There is yet another way of investigating the dynamics on J−1(0)/SO(2)

rather than its structure.

Following polynomials in R[x1, x2, y1, y2] are invariant under the action of

S1 = SO(2).

X = (x1)2 + (x2)2

Y = (y1)
2 + (y2)

2

Z = x1y1 + x2y2

U = x1y2 − x2y1

It is known that each polynomial in R[x1, x2, y1, y2] which is invariant under

the action of S1 = SO(2) can be expressed as a polynomial in X,Y, Z, U and

this set is minimal.([Weyl])

With the map

Θ : T ∗R2 −→ R4

(x1, x2, y1, y2) 7−→ (X, Y, Z, U)

Θ(J−1(0)) ∈ R4 may be identified with R3 = {(X, Y, Z, U) ∈ R4| U = 0}.

Therefore the invariants satisfy the equations

Z2 = XY

X, Y > 0

U = 0

This is a topological submanifold of R3 which is smooth except at (0, 0, 0).
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CHAPTER 6

SPHERICAL PENDULUM

In this chapter, we will construct the Poisson brackets on a suitably reduced

phase space for the spherical pendulum by using the method invariant poly-

nomials as presented in the previous chapter.

Consider the action of S1 = SO(2) u R/2πZ on (T ∗R3, ω) defined by

SO(2)× T ∗R3 −→ T ∗R3

([t], (x, y)) 7−→ (Rtx, Rty)

where

Rt =


cos t − sin t 0

sin t cos t 0

0 0 1


Note that this map leaves the subspace defined by {x3 = y3 = 0} invariant.

The following polynomials are invariant under this action of S1 and they

generate the algebra of all S1-invariant polynomials in R[x1, x2, y1, y2](weyl)

X = x3

Y = y3

Z = (y1)
2 + (y2)

2 + (y3)
2

U = x1y1 + x2y2

V = (x1)2 + (x2)2

W = x1y2 − x2y1

Define the Hilbert map σ for the S1- action as

T ∗R3 u R6 −→ R6
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(x1, x2, x3, y1, y2, y3) 7−→ (X, Y, Z, U, V,W )

Then (X, Y, Z, U, V,W ) coordinates satisfy

U2 +W 2 = V (Z − Y 2)

Z > 0

V > 0

The non-zero Poisson brackets of X, Y, Z, U, V,W are

{X, Y }R6 = 1

{X,Z}R6 = 2Y

{Z,U}R6 = −2(Z − Y 2)

{Z, V }R6 = −4U

{U, V }R6 = −2V

Recall that submanifold T ∗S2 of T ∗R3 is defined by the equations

F1(x, y) = 〈x, x〉 − 1 = V +X2 − 1 = 0

F2(x, y) = 〈x, y〉 = U +XY = 0

It can be routinly checked that T ∗S2 is invariant under the action of S1.

ω|T ∗S2 is a symplectic form on T ∗S2 since

[{Fi, Fj}]1≤i,j≤2 =

 0 2

−2 0


is non-singular at each point of T ∗S2.

Therefore the image of T ∗S2 under σ consists of points (X, Y, Z, U, V,W ) ∈ R6

satisfying

U2 +W 2 = V (Z − Y 2)

V +X2 = 1

U +XY = 0

Z > 0

V > 0
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It can be checked that the action of S1 u SO(2) on T ∗R3 is Hamiltonian with

momentum mapping J = x1y2 − x2y1 = W .

Substituting U = −XY, V = 1−X2 and W = l in the first equation we obtain

X2Y 2 + l2 = (1−X2)(Z − Y 2)

and hence

(1−X2)Z = Y 2 + l2

and |X| < 1 as V > 0.

Consequently the set of S1 u SO(2)-orbits in J−1(l) are seen to be in 1-1

correspondance with the set

Ml = {(X,Y, Z)|(1−X2)Z = Y 2 + l2,−1 > X > 1}

If l 6= 0, then |X| < 1 and Ml is as the graph of the function Z = Y 2+l2

1−X2

and as such it is diffeomorphic to R2.

As for l = 0 , we note that although M0 is still homeohophic to R2 it is not

the graph of a fuction in R3 since it contains the vertical lines (1, 0, Z) and

(−1, 0, Z).

Now let us compute the Poisson structure on T ∗S2/S1. X, Y, Z being

invariant under the action of S1 u SO(2), their Poisson brackets on T ∗S2 will

be sufficient to describe the dynamics on Ml . Since the matrix [{Fi, Fj}]1≤i,j≤2

is invertible the Poisson bracket on T ∗S2/S1 may be computed using the Dirac

process.([Dir]). It can be checked that

{X, Y }T ∗S2/S1 = 1−X2 (6.1)

{X,Z}T ∗S2/S1 = 2Y

{Y, Z}T ∗S2/S1 = −2XZ

It is interesting to note, that putting X1 = X, X2 = Y, X3 = Z and

setting ψ(X, Y, Z) = Z(1−X2)−Y 2− l2 the equations (6.2)can be written in

the form

{X i, Xj} = εijk
∂ψ

∂Xk
(6.2)
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By using (6.2) we can deduce that

{f, g} = (∇f ×∇g) · ∇ψ

Therefore Hamiltonian equations for H ∈ C∞(Ml) can be written as

dX i

dt
= (∇H ×∇ψ)i

Now putting

H =
1

2
〈y, y〉+ γx3

=
1

2
Z + γX

We can write the equations of motion as

dX

dt
= {X,H} = Y

dY

dt
= {Y,H} = −γ(1−X2)−XZ

dZ

dt
= {Z,H} = −2γY
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CHAPTER 7

MAGNETIC SPHERICAL PENDULUM

Consider the S1 = SO(3)- action on T ∗R3 defined in the previous chapter.

Working with the symplectic form

Ω = ω +
µ

‖x‖3
εijkx

idxj ⊗ dxk

it can be checked that this action is Hamiltonian and has a momentum mapping

L

L(x, y) = 〈x× y, e3〉+ µ〈 x

|x|
, e3〉

= x1y2 − x2y1 + µ
x3

‖x‖3

Indeed it can be checked that

(
∂

∂t
)∗ = −x2 ∂

∂x1
+ x1 ∂

∂x2
− y2

∂

∂y1

+ y1
∂

∂y2

= XJ

Again employing the invariant polynomials X, Y, Z, U, V, W introduced

in the previous chapter we remember that they satisfy the relations

U2 +W 2 = V (Z − Y 2)

Z > 0

V > 0

Now working with the symplectic form Ω we find the non-zero Poisson

brackets to be

{X, Y } = 1
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{X,Z} = 2Y

{Y, Z} =
2µ

|x|3
W

{Y, V } =
µ

|x|3
V

{Z,U} =
2µ

|x|3
XW + 2Y 2 − 2Z

{Z, V } = −4U

{Z,W} = − 2µ

|x|3
(XU + Y V )

{U, V } = 2V

{U,W} = − µ

|x|3
XV

For the points on T ∗S2 ⊆ T ∗R3 we again have

V +X2 = 1

U +XY = 0

and for the points on T ∗S2 ∩ L−1(l) we have

(1−X2)Z = Y 2 +W 2

where |X| < 1 and Z > 0.

However, in this case

l = L = W + µX

and

(1−X2)Z = (l − µX)2 + Y 2

with |X| < 1 and Z > 0.

When j 6= ±µ, the set of orbits of S1 u SO(2) in T ∗S2 ∩ L−1(l) is diffeo-

morphic to R2. It is indeed the graph of function

Z =
(j − µX)2 + Y 2

1−X2
, |X| < 1

When j = ±µ, Mj is still homeomorphic to R2, although Mj is not the

graph of a function, because it contains vertical lines {(±1, 0, Z) ∈ R3|Z > 0}.
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H|T ∗S2 induces the Hamiltonian Hj|Mj
where

Hj : R3 −→ R

(X, Y, Z) 7−→ 1

2
Z + γX

Now we compute the Poisson structure on C∞(Mj). Recall that a Poisson

bracket {·, ·}T ∗R3 on C∞(T ∗R3) is

{f, g}T ∗R3 =
∂f

∂ξi

∂g

∂ξj
{ξi, ξj}R3

where (ξi)1≤i≤6 are coordinates of T ∗R3. Then the structure matrix [{ξi, ξj}]1≤i,j≤6

is a skew- symmetric matrix whose nonzero elements are listed below:

{x1, y1} = {x2, y2} = {x3, y3} = 1

{y1, y2} = −µ x3

|x|3

{y1, y3} = µ
x1

|x|3

{y2, y3} = −µ x2

|x|3

{F1, F2} = {V +X2, U +XY }R6|T ∗S2/S1 = 2

Therefore, the Poisson bracket on T ∗S2/S1 may be computed using the

Dirac prescription. Recall that we can write Hamiltonian equations for H ∈

C∞(Ml) as
dX i

dt
= (∇H ×∇ψ)i

In particular for the Hamiltonian function

H =
1

2
Z + γX

we obtain the governing equations for the motion of the magnetic spherical

pendulum as

dX

dt
= Y

dY

dt
= −γ(1−X2) + µ(j − µX)−XZ

dZ

dt
= −2γY
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CHAPTER 8

CONCLUSION

Our work on the governing equations of quite standard objects of classical

mechanics seems to indicate that much clarity can be achieved by expressing

such problems within the framework of symplectic manifolds. In this respect

the importance of the ideas of P. M. Dirac is quite striking. Finally the Poisson

formalism represents the most efficient category for higher classical mechanics.
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APPENDIX A

Theorem A.1 Let (M,Ω) be a symplectic manifold and N be a submanifold

of M where N = F−1(q) for some regular value q ∈M of F = (F1, F2, . . . , Fr) :

M → Rr. Ω|N is a symplectic form on N if the matrix[
{Fi, Fj}

]
1≤r,j≤r

is non- singular at each point of N .

Proof: Consider p ∈ N . Let VpM be the subspace of TpM spanned by the

vectors XF1|p, XF2|p, . . . , XFr |p. If u ∈ TpN ≤ TpM , then

ω(XFk
, u) = uFk = 0

Consequently TpN ≤ VpM
⊥ω. On the other hand

dimTpN = dimTpM − dim ∩r
k=1 ker dFk = dimTpM − r = dimVpM

⊥ω

as ω is non-degenerate. We conclude that

TpN = VpM = 〈XF1|p, . . . , XFr |p〉.

and ω|TpN is non-singular as

ω(XFi
, XFj

) = {Fi, Fj}.
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APPENDIX B

Theorem B.1 For any f, g ∈ C∞(M)

{f |N , g|N}N = {f, g}∗|N

where bracket {·, ·}∗ on C∞(M) is defined by

{f, g}∗ = {f, g} − {f, Fi}Ψij{Fj, g}

with the matrix [
Ψij

]
1≤i,j≤r

being the inverse of the matrix[
{Fi, Fj}

]
1≤i,j≤r

Proof: First observe that for any f ∈ C∞(M), if we define

f ? = f − {f, Fi}ψijFj

we have

{f ∗, Fk} = {f, Fk} − {{f, Fi}ψijFj, Fk}

and

{f ∗, Fk}|N = {f, Fk}|N − {{f, Fi}, Fk}|NψijFj − {{f, Fi}, {ψij, Fk}|NFj

− {f, Fi}|Nψij{Fj, Fk}|N

= {f, Fk}|N − {f, Fi}|Nδi
k = 0

Consequently N is invariant under Xf∗ for any f ∈ C∞(M). Clearly

Xf∗|N = Xf∗|N
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Secondly we notice that for any f, g ∈ C∞(M)

{f ∗, g∗}|N = {f − {f, Fi}ψijFj, g − {{g, Fk}ψklFl}|N

= {f, g}|N − {g, Fk}ψkl{f, Fl|N − {f, Fi}ψijψkl{Fj, Fl}|N

+ {f, Fi}{g, Fk}ψijψkl{Fj, Fl}|N

= {f, g}|N − {f.Fi}ψij{Fj, g}|N

= {f, g}∗|N
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