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ABSTRACT

MAGNETIC SPHERICAL PENDULUM

Yildirim, Selma
M. Sc., Department of Mathematics

Supervisor: Prof. Dr. Cem Tezer

July 2003, 49 pages

The magnetic spherical pendulum is a mechanical system consisting of a
pendulum whereof the bob is electrically charged, moving under the influence
of gravitation and the magnetic field induced by a magnetic monopole de-
posited at the origin. Physically not directly realizable, it turns out to be
equivalent to a reduction of the Lagrange top. This work is essentially the log-
book of our attempts at understanding the simplest contemporary approaches

to the magnetic spherical pendulum.

Keywords: Magnetic spherical pendulum, Hamiltonian systems, Poisson brack-

ets.
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Oz

MANYETIK KURESEL SARKAC

Yildirim, Selma
Yiiksek Lisans, Matematik Boliimi

Tez Yoneticisi: Prof. Dr. Cem Tezer

Temmuz 2003, 49 sayfa

Manyetik kiiresel sarkag, ucundaki kiitlesi ayni zamanda elektrikle ytkli
olup, yergekimi ve merkeze yerlestirilmis tek bir manyetik kutup tarafindan
iiretilen manyetik alanin tesiri altinda hareket eden sarkactan ibaret bir mekanik
sistemdir. Gercek bir fizik olay1 olarak ortaya cikmasa da, aslinda Lagrange
topacinin indirgenmis sekline egdeger oldugu goriiliir. Bu ¢alisma esas itibariyla,
manyetik kiiresel sarkaga en basit ¢agdas yaklasimlar: anlama gayretlerimizin

kayitlarindan meydana gelmektedir.

Anahtar Kelimeler: Manyetik kiiresel sarkag, Hamilton sistemleri, Poisson

parantezleri.
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CHAPTER 1

SPHERICAL PENDULUM AND ITS MAGNETIC
VERSION IN NAIVE TREATMENT

In classical mechanics, the term spherical pendulum refers to the configura-
tion consisting of a massive particle suspended by a rigid weightless rod from
a fixed point and subject to constant uniform gravitational field. Equivalently
the spherical pendulum may be regarded as a particle constrained to move
on a sphere under constant uniform gravitational field. This is an old and
established problem of classical mechanics which has been subjected to very
detailed treatment in numerous textbooks ([Whi],[Pars]). It is known that a
full quantitive solution of the governing equations requires the use of elliptic

functions.

An interesting if rather artificial modification of the problem ensues if the
massive particle is also understood to be electrically charged and a magnetic
monopole is placed at the center of the sphere on which the particle in ques-
tion is constrained to move. In this case the particle is subject not only to the
gravitation and the forces of constraint but also to the Lorentz force that acts
on charged particles that move in magnetic fields. Clearly rather far fetched
from a scientific point of view, the problem has been concocted for the purpose

of illustrating the use of certain recent mathematical artifacts.

(Classical treatments which sometimes involve multivalued coordinate sys-

tems and occasionally force the investigator to give separate treatments of



non-generic orbits are in many respects unsatisfactory from a modern point
of view, yet they are very pleasant mathematically and intuitively satisfying.
We find it important first to go through such a hands-on investigation of the
above mentioned problems to gain insight into the portent of a mathemati-
cal mechanism that clearly originates from similar physical problems. In fact
we adopt an even more extremist stand in that we approach the phenomenon
by direct analysis of the forces acting upon the particle, hence the adjective

“naive” in our title. The position vector is

x! asin @ cos ¢
x= | 22 | = | asinfsiny
3 —acosf

The linear momentum of the particle is p = mx and

cos @ cos ¢ —sinfsin
p=mx=ma(| cosfsing 0+ sinfcosg | @)

sin 6 0

The only forces acting on the particle are the gravitational force and the

constraining force that arises from the tension 7 in the rod. Consequently

—7sinf cos ¢
F=1| —7sinfsinyp

Tcosf —mg

According to the second law of Newton, the motion of the particle can be

described by the differential equation

dp
e
dt
Explicitly,
—7sinf cos —sinf cos —cosfsing
—7sinfsin = ma(| —sinfsing 0% 42 cos 6 cos ¢ 0 ¢
Tcost —mg cos 6 0



[ cos b cos p —sinf cos
+ cos fsin ¢ 0+ —sinfsing | ¢
sin 6 0
[ _ sin 6 sin ¢
+ sinfcosp | @) (1.1)
I 0
sin ¢

Upon taking inner product of both sides with | —cos¢ | we get
0

0 =ma(—2cosf 6 ¢ — sinfp) (1.2)
or
20 cos § + sin fp = 0
and multiplying with sin 6

d
%(gp sin?6) =0

equivalently
L,
ma?

Qpsin?f =
where L, is a constant that may be identified with z-component of the angular

momentum of the particle with respect to the origin.

Upon taking inner product with

cos p cos 6
sin  cos 6

sin 6

we obtain

—mgsinf = ma(f — sin 6 cos ¢?) (1.3)

Dividing out ma and multiplying with 0
0 — sin 0 cos 0% = — I siné
a
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and putting
: 1
Opcost = —3 sin 8¢

1 )
06 + = sin20pp = — sin 06
2 a

replacing sin® ¢ with
L,

ma?

N .
66 + ¢ =9 sinod
2ma? a

d (1., L, . _d g
dt (59 +2ma290> Cdt <acos(9>

L,
and again using sin® 0 = — we find
ma

equivalently

d 1., 1., o5, dg
dt(20 +2g0 sin G)fdtacosﬁ

Thus,
Lo oo 9
5(9 + $*sin 0) — = cos 0 = constant
a
As |p|? = m2a?(6% + sin® $?) the left hand side can be seen to be E/ma?
where F is the total energy of the system given by

_ e
2m

E

— mga cos

Before proceeding further, notice the particular case in which L, = 0, which
implies that ¢ is a constant and therefore the motion takes place in a fixed

vertical plane. Hence,

1 .
§ma26’2 —mgacost = F

upon differentiation

ma?6 + mgasin @ = 0

or equivalently ,

6 = —gsinﬁ



which is the equation of motion for the planar pendulum.

In general the equations of motion read

1 .
éma2(92 + p*sin® ) —mgacosf = E

ma*psin®f = L,

where E, L, are constants corresponding to the total energy and the z-

component of the angular momentum about the origin.

It is interesting to stop here and see how the equations (1.2) and (1.3) are
modified in the presence of a magnetic monopole of strength p at the origin
and if the electric charge ¢ is attached to the material particle. The magnetic
induction resulting from the monopole is of the form

_ X _®
P= I = @

This causes the Lorentz force

qp

F=gxx[="xXx
a

to act on the particle. Explicitly, the Lorentz force is

cos 6 cos —sin#@sin @ sin @ cos ¢
ZL—'[; ( cosfsing | 0+ | sinfcose | @) x | sinfsing
sin ¢ 0 —cosf
—sing cos fsin f cos

= qa_,t;< Cos 0 — cosfsinfsing | @)
0 sin® @
Adding the Lorentz force to the left hand side of (1.1) and taking inner
product of this modified (1.1) with
sin ¢
—Cos ¢

0



we obtain the modified form of (1.2) as

qu ; - . .
a—g@ = ma(—2 cos #0p — sin 6¢) (1.4)

and taking inner product with

cos # cos
cos fsin

sin 0
we obtain the modified form of (1.3) as

—mgsinf — % sin 0 = ma(f — sin 0 cos 0?) (1.5)
a

We observe that (1.4) can be multiplied with § and written also in the form
i{mcﬁ sin?6 ¢ + I o 0} = 0. (1.6)
dt a’

Clearly the quantity within the brackets is a conserved quantity . However,
it may no longer be identified with the z-component of the angular momentum

about the origin.



CHAPTER 2

NAIVE THEORY OF THE LAGRANGE TOP

Given a material particle with position vector x and mass m, moving under
the action of a force F, the momentum p = mx of the particle is related to F
by Newton's Second Law:

d

4 _F
at’

Similarly the torque N = x x F of the force in question is related to the

angular momentum L = x x p of the particle by

d dx dp
EL = EXP"‘XX%
= 0+xxF=N

Given a system consisting of finitely many material points with position
vectors x; and masses my where k = 1,2,3,..., acted upon by forces Fj the
total torque is N = > N and the total angular momentum is L = > Ly where
L, is the angular momentum of the kth particle and Ny = x; x F, is the torque
due to force F, acting on the kth particle. These quantities are obviously

related by
dL

— =N.
dt

We shall understand a rigid body as a limiting form of a system of finitely

many points so that
L= / x X p(x)x dVol(x)
Body

where p represents the mass density of the rigid body. Note that up to this
point we have only effected a passage from the “discrete” to the “continuous”

and made no use of rigidity assumption. From this point on we shall make the
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assumption that the system of points constitutes a rigid body with one point
thereof is fixed at the origin. This assumption can be made to bear upon our

considerations by writing x = x(¢) in the form
x = (Qx(0)

where 2 = Q(t) € SO(3). With this observation we obtain

dx ds?

dt o dt

On the other hand as QQT = 1 we have

T
0= %(QQT) = Cfl—?QT + QT%
_ %QT + (%QT)T
equivalently
E= %QT € s0(3)

that is = is a skew symmetric matrix.

We observe that each A € so(3) is of the form

0 a D
A=1| —-a 0 ¢
—b —c 0
and for each r € R3
—c
Ar = b X r.
—a

0 a b —c
i(| —a 0 ¢|)= b
-b —¢c 0 —a



We have already noted that
Ar=1i(A) x r

for any r € R3.

Going back to the equation for the angular momentum we put

w =w(t) = (=97

The vector w is called the angular velocity of the rigid body.

We obtain
ix = @x = @ ~Ix
at” — dt’° dt
= wxX
and
L = / x X p(x)[w x x]dV ol(x)
Body
= / p(x)[2" 2w — 2T wr]dV ol (x)
Body
= lw
where

I= /B ) (2721 — z2”]p(x)dV ol (x)

which is a symmetric matrix referred to as the inertia tensor of the body. Pre-

sented in this form the matrix [ is not useful since it is time dependent. This

confronts us with a peculiarity of the rigid body dynamics that the equations

of motion tend to be unmanagable unless they are written in reference to a

system of reference that is fixed in the rigid body.

Quite generally a 3 x 1 matrix

n
y = Yo = xe; + yer + ze3

Ys



e1= 1|0 e2= |1 e3= | 0

0 0 1

is understood to consists of components x;, xs, x5 of a vector in R? with re-
spect to a coordinate system xyz. This system is understood to be an inertial

system, that is, with respect to it the laws of Newton are valid.

Let the components of the 3 x 1 matrix

Y1
Yo = | Y2
Y3b

consist of components of the same vector with respect to a coordinate system
Tpyp2p fixed in the rigid body. Let ey, eqy, e, be the unit vectors along the

Ty, Yp-,zp-axes. Obviously there exists 2 € SO(3) such that
€rp = Qek

and
ks = ey = ey = (Qe) 'y = "y = (Q"y)ey
for k =1, 2, 3. We conclude that
yo = Q7 y.

Let us assume without loss of generality that the coordinate system ;2
fixed in the body coincides with the inertial frame zyz at t = 0. Let us now
compute the inertia tensor of the rigid body in question with respect to the

coordinate system fixed in the rigid body:

I, = / [z} w1 — 2l | p(x)dV ol (x3)
Body

= /Q o )KQT%‘)T(QT@“‘ — (") (") p((T ) AV ol ()

10



dL
Nb = QilN = Qila = Qiljw = Qillgwb = Ibwb

It is an interesting exercise in advanced calculus to show that [}, is a constant
matrix.

We now have

N, = Q!N
dL

B O R

dt

. d

d
= Q_IE (QIbwb)

e _1 — —
= 0 [ ; Ibwb + QIb / ]
dwb

= Q_l[w X (QIbWb) + Q]bﬁ]
= (Qilw) X Ibwb + Ibd}b

= Wy X Ibwb + [bwb

Making, from this point on, the convention that all quantities are with
reference to a coordinate system fixed in the body and dropping the subscript

“b” we obtain the Euler equations
Iw+wxIw=N

Now that we have dropped subscripts, we have

d
w =700

Further assuming without loss of generality that with respect to this coor-

dinate system the inertia matrix has the diagonal form

I

11



we obtain the following explicit system of ordinary differential equations.

Ilw'l - ([2 - Ig)(x)gu)g = N1
Iy — (I3 — I1)wswy = N

I3ws — (11 - ]2)w1w2 = Nj

Beatiful as the Euler equations are their intuitive content becomes clearer
only after the introduction of the Euler angles. Let Rot(k,a) € SO(3) denote
the rotation about the directed line k through the angle o € R/27Z. Each
) € SO(3) sufficiently close to the identity can be written in the form

Q = Rot(z",1) o Rot(z',0) o Rot(z, )

where z denotes the z-axis, 2’ denotes the image of the xz-axis under Rot(z, ¢)

and z” denotes the image of the z-axis under Rot(2’,8) o Rot(z, ).

Clearly
Rot(z,p) = Rs(p)
where
cosp —sing 0
R3(p) = | sing cosp 0
0 0 1
Rot(2',0) = Rs(p)Ri(0)Rs(p)
where
1 0 0
Ri(0) = | 0 cos§ —sind
0 sinf cosf
and finally

Rot(2",4) = [Ra() o Ri(0)]Rs(4)[Rs(0) o Ri (0)] ™
By a simple regrouping, we obtain

2 = Ry(p)R1(0)Rs(v)

12



cos p cosY — sinpsiny cosf —cospsiny — sinpcosycosf  sinpsinf
= | sinpcosvy + cospsiny cosf —sinpsiny + cospcoscosf — cospsin b

sin ¢ sin 6 cos 1 sin 6 cos 6

Let us reconsider the map 7 : so(3) — R? introduced above and note that

for any A € SO(3) and = € s0(3) we have AZA™! € s50(3) and
i(AZA™Y) = Ai(2).
There seems to be no elegant proof of this fact. The best method is to
consider the map
¢ :50(3) — so(3)

defined by

and observe that

Tep : Teso(3) & so(3) — T.so(3)

is the identity map hence ¢ has to be the identity, too.

I
.
—~
=

L
!

I
oy
&
|
<
ey
n
=
=
&
|
&
=
oy
&
ey
=
oy
&
=
.
_l’_
=
S
=
=
oy
&
=
>

)
+ Rs(@)Ri(0)R5(¥)Y)])
GR3(—Y) Ry (—0)i(Rs(—¢) Ry()) + ORs(—)i(Ri (—0) R (9))

+ Vi(Ry(—) Ry(v))

0 1 0

= PRy(—)Ri(=0) | 0 | +0Rs(—¢) | 0 |+ | 0
1 0 1

cosy siny 0 1 0 0 0

= ¢ | —siny cosyp 0 0 cosf siné 0
0 0 1 0 —sinf® cos6 1

13



cosy siny 0 1 0
+ 0 —siny cosy 0 0|+ o0
0 0 1 0 1

Consequently,
wi = ¢sinfsiny + 0 cosy
wy = ¢sinfcost) + Osiny
wy = ¢cosh+
To complete our derivation of the governing equations we still have to
compute the total torque of the forces action upon the particles in the rigid
body. Once again reverting to our approximate picture of the rigid body as
a system of finitely many material particles we assume that the ¢th material
particle is acted upon by an “external” force F;, = m;ges due to gravitation
and “internal” force f;; due to the jth particle j # 7 which obey the third Law
of Newton. Thus, we assume that
fij = aij(x; —xi)
for i # j where a;; € R and a;; = aj;.
Consequently
N = in X [migeg + aij(xj — Xi)]
i
= g(z mixi) X €3 + Zaijxi X Xj
i i
= Q(Z mix;) X es
i

Passing to the limit

N = g( xp(x)dVol(x)) x e3
Body
= Mgx X e3

where M is the total mass, T is the position vector of the center of mass of the

rigid body.

14



Finally we restrict our attention to the special case called the ”Lagrange

Top”, by making the following assumptions:

1. The body has rotational symmetry about the z,-axis, i.e. the third prin-

cipal axis, as a consequence of which I; = I5.
2. The center of mass of the body lies on the third principal axis. That is
X = ufles.
Therefore
N = Mgu(Qes) x e3

and

Nb = Mgueg X Qileg.

Again we drop the subscript and refer everything to the principal axes fixed

in the body and find

N = Mg,ueg:x 1?3(—1_#)31(—9)}?/3(—90)63

0 cosy siny0 1 0 0 0
= Mgp | 0 | X | sinyy cos0 0 cosf sinf 0
1 0 0 1 0 —sinf cosf 1
[ 0 ] [ costy  siny0 17 0
= Mgu | 0 | X | sineg cost0 sin 6
1 0 0 1 cos 6
[ 0 ] [ sin 1) sin 6
= Mgpu | 0 | X | costsin
1 cosf
[ _ cos 1 sin 6

= Mgp | sinisinf
0

and obtain
Ly — (Iy — I3)wows = —Mgpcosipsind

15



IQQ}Q — (Ig — Il)W3WQ = MgMSiH¢SiH9

[3(4)3 — (Il — Ig)wlwg = 0

Remembering that I; = I, we have

Ilwl—(fl—lg)JWQ = —Mgcoswsine (2].)
L -1

1wy + (11—3)Jw1 = Mgsinysinf (2.2)
3

Is(pcos+1)) = J = constant (2.3)

Expanding (2.1) and (2.2)

and

I (@sinfsinty + ¢ cosfsind + ¢sin f cos hip + 6 cos 1 — O sin )

— (L — 1 J ¢ sin b cos) 4 sinv)) = —M g cossin 0 2.4
I
3

I (psinfcosty + cosfcoshl — ¢sin O sin ) — Osintp — 6 cos 1))

+ (I - 13)‘[] (¢sin@sinty — O cos)) = Mgusin sin (2.5)

3

By multiplying (2.4) with cosv and (2.5) with sint and subtracting we get

(I, — I3)J

L(¢psinf + 6) — 7
3

(psinf) = —Mgusin 6

which gives upon substitution

-
V= - pcosf
16 — I, sin 0 cos 0> + Jsin0p + Mgusinf = 0 (2.6)

By multiplying (2.4) with sin, (2.5) with cos and adding we obtain

I (sin 0 + 2 cos 0p) — JO =0

which gives upon multiplication with sin

I (sin? ¢ + 2sinfcosfph) — J sin 0 = 0

16



which can be written in the form
d 9.
%{Il sin“f¢ + Jcos0} =0 (2.7)

Observe that the equations (2.6) and (2.7) are the same as (1.5) and (1.6)
in Chapter 1.

17



CHAPTER 3

INSTANCES OF THE HAMILTONIAN APPROACH

In this and the following sections we shall denote vectors as

_ " _
2
x=|" | erraRrm
- — )
$n
covectors
y:[yl Yo ... Yo | ERPERY

and make use of the inner product (-,-), and cross-product in which we allow

indiscriminate apperance of vector and covector arguments.

A large body of experience suggests that the proper mathematical setting
for classical mechanics (among others) is a symplectic manifold which is an
ordered pair (M,w) where M is a manifold and w is a symplectic form on
M. On a sympectic manifold to each scalar field f a vector field X¢ on M is
associated which satisfies

df (V) = w(Xy,Y)

for every vector field Y on M.

A classical mechanics problem is formulated in many cases as a system of
differential equations which is equivalent to the integration of a vector field of
the form Xy on a symplectic manifold (M,w) for some smooth H : M — R.
The triple (M,w, H) completely defines the problem, H : M — R is referred

18



to as the Hamiltonian and turns out to be constant along lines of the integral
flow generated by Xpg.

Example 3.1: Consider the cotangent bundle M = T*R" &= R?" in which
we fix each point by its coordinates (z?, y;)1<i<, Where z's refer to space compo-
nents, y;s referring to covector components. Let w = da’ Ady; be the canonical
symplectic form.

It can be routinely checked that

_OF 0 OF 0
Oy 0xt 02t Oy,

Xp

for any scalar field I € C*(R"). In particular if H(x,y) = 1 <vy,y >, we

obtain
Xy = yi%
Thus the equations of motion read
X
or ,
d"x
o 0

These are clearly the equations for motion of a free particle.

Example 3.2 : Let again M = T*R? ® R, w = dz* A dy; and let
1 3
H(x,y) =5 <y,y > 472

By a similar calculation as in ( Example 3.1) we can show that

0 0

X = Y ~— — YV —
H y(‘?xl 78y3

and the equations of motion read

dx dy .
at 7@ ®
or equivalently,
d?x
— = —~e
dt €3

19



This is obviously the equation for the motion of a free particle under con-
stant uniform gravitational field.
Example 3.3: Let, once again, M = T*R® = RS w = dz' A dy; and
introduce a modified symplectic form 2 defined by
O=w+ # €ijk 2t da? @ dat.

For an arbitrary scalar field F' € C*°(M) it can be routinely checked that

Xp

OF <aF " jaF>a

dy; Ox' T\ Tow Ix B By, ) oy,

In particular, if

H(x,y) = %<y7y> + 7(x, e3)

then
0 1 , 0
A M
and the equations of motion read
dx dy o+ o
—_— = _— = — X
a~V a BT xptY

These equations clearly govern the motion of a massive, charged free parti-
cle moving under the action of a uniform homogeneous gravitational field and

a magnetic monopole placed at the origin.

An important development emanating from Hamiltonian mechanics is the

concept of Poisson brackets.

Definition 3.1: Quite generally a Poisson algebra is a commutative al-
gebra 2 over R with a bilinear binary operation {-,-} : 2 x 2 — 2 such
that

L {f, g}=-{g, f}

20



2. {f, { g ht}+ {g, {h, £ }}+{h, {f g}}=0
3. {f, gh }={f, g} h+ g {f, b}

for any f,g € 2.

In connection with a symplectic manifold (M,w) there exists a natural
Poisson algebra structure on C*°(M). The Poisson bracket {f, g} of f,g €
C>°(M) is defined by

{f,9} = w(Xe, Xg).

It is important to notice that the Poisson bracket defined in the above

fashion depends on the choice of the symplectic form.

Example 3.4: For the standard situation M = T*R" = R?", w = da' Ady;

the Poisson bracket becomes

of & af & dg & g

Uah = de Nyl s = By 0en’ 9 By, By, O

_9f oy Of O
 0xi0y; Oy, Oxt
of dg, ,0f 9g

Example 3.5: For the symplectic manifold (T*R?,2), the Poisson bracket

takes the form

_0f 99  Of dg It ;0f Og

{f.9} =55 9y, 0y 0 3" By, oy

Example 3.6: Consider a symplectic manifold (M, w) quite generally. In

the presence of a chart x = (2%)1<;<, on M, let
w|dom(z) = wijdxi &® d!L’j

and let [u)ij]lgi’jgn be the inverse of the matrix [wij]lgi’jgn. For any F €

C>®(M), as
0 or
CU(XF, axj)|dom(ac) = O

21



we conclude that
_O0F 0

Xrldom(z) = WY — —

Fldom(e) = @ oxd Ozt

Notice in particular, that

0
X;(;q =w" -
oxt
and hence
{a? 29} = wijwPwit
= Wpq

The importance of this approach lies in the following observation due to
Poisson: In the presence of a Hamiltonian H, one considers the “dynamical
system”, i.e the flow ¢;(or local flow) on M, generated by Xpy. For any scalar
field f € C*(M), the development of f(t) = f(pi(m)) for any m € M in

“time” is described by

Z_J; = Xuf = df(Xu) = w(X;, Xp)

hence

d

4 —(rmy
This shows that the Poisson algebra structure on C*°(M) alone is sufficient for
a full description of the time development of any “observable” f € C*°(M).
It is an interesting philosophical consideration to notice that as M is a man-
ifold and each point m € M is fully described by choosing a local coordinate
system x = (2%)1<j<, on M with m € dom(z) and assigning m the numbers
(x%(m))1<i<n, one can write equations of motion of a Hamiltonin system in the

form
dz’
dt

Of course one has to bear in mind the slight difficulty that arises in view of

= {2' H}.

the fact that the coordinates x' are “local” observable only.
Thus, there is no loss of dynamical information in passing from a symplec-

tic system(M,w) with a distinguished observable H to the Poisson algabra
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(C(M),{-}) with distinguished element of H € C*°(M). This theme is to be
developed a little further.

For which reason there is much research conducted on Poisson algebras as
pure algebraic entities on the one hand and the so-called Poisson manifolds. A
Poisson manifold is a manifold M in which C*°(M) as a commutative algebra
over R admits a bilinear binary operation {-, -} obeying the properties 1,2 and
3 above.

As we have seen above, symplectic manifolds have natural structures as
Poisson manifolds. However, there are Poisson manifolds which do not arise
from symplectic manifolds. Indeed, symplectic manifolds are even dimensional
whereas it is possible to construct odd dimensional Poisson manifolds.

Example 3.7: R3? has a Poisson manifold structure. Take and fix an

arbitrary F' € C°°(R3). It can be checked that {-,-} on C*(R?) defined by

oy e OF D008

= (VfxVg)-VF
= det(Vf,VgVF)

gives rise to a Poisson algebra.

Concerning the Poisson formalism in manifolds one final remark is due : At
first sight it seems impossible to produce a finite table which gives a complete
description of {-,-} on C*°(M) (which is infinite dimensional) as in the case
of finite dimensional Lie algebras. Upon closer inspection it will be seen to be
possible if the manifold can be covered by finitely many charts(clearly finite).
In this case a multiplication table for the components of charts will be sufficient
to determine everything else, since given f,g € C*°(M) and a chart x =

(%)1<i<n we have

{fﬂg}ldom(z) - W(Xqug>|dom(ac)



Of 09 o
OxJ Ox

of dg ,

B g
of dg i
ozt Ozl {z,27}
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CHAPTER 4

HAMILTONIAN DYNAMICS ON SUBMANIFOLDS
VIA THE DIRAC PRESCRIPTION

Given a Hamiltonian system (M,w, H) it can be important to restrict the
problem to a submanifold N of M. Of course N has to be even dimensional.
This condition is often automatically fulfilled since typically one has M = T*(Q)
for some manifold @) and N = T*V for some submanifold V' of (). However even
if this obvious dimension condition is fulfilled the restriction of the symplectic
form to the submanifold can easily fail to be non-degenerate.

Example 4.1: Let M = R* with the symplectic form w = dx Ady+dudv.
Consider the submanifold A = {(x, z,u, u)|z,u € R} of R*. We can easily show
that w(s,t) = 0 for typical tangent vectors s, t to A.

Of course it is possible to deal with each special case separately. However,
the difficulty is alleviated for a large class of submanifols by the following theo-
rem usually ascribed to P. Dirac ([Dir], see [C-B 1] for a modern mathematical
treatment):

Theorem 4.1: Let (M,2) be a symplectic manifold and N be a sub-
manifold of M where N = F~!(q) for some regular value ¢ € M of F =
(F1, Fy, ..., F) : M — R". Q|y is a symplectic form on N if the matrix

| (F.F |

1<rj<r

is non- singular at each point of N.
Proof: Appendix.
Example 4.2: Let M = T*(R*—{(0,0,0)}) with the canonical symplectic
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form w = dz® A dy; and a submanifold N = T*S? defined by

Fi(x,y) = (x,x)—=1=0
F2<X7 y) - <X7 y> =0
Then

0 -0 0
Xpn =2t ot
oy;’ L oz Y Oy;

From {F}, F;} = dz' A dy;(XF,, Xr;) for i = 1,2 we can find the matrix

XF1 = —in

0 {F\, F5} 0 2
{Fs, Fi} 0 -2 0

is non- singular at each point point of 7*S?. Then €|y is a sympectic form on

N.

Apart from the above mentioned difficulty which can be taken care of by
the above theorem there are other inherent difficulties in dealing with sub-
manifolds. For instance as a bonus for working with the Poisson formalism
one might hope to deal with such difficulties by noticing that each element of
C*°(N) the restriction to N of some element of C*°(M) and expecting that
the Poisson bracket of f|y and g|nx on N is the restriction of {f, g} to N for
all f,g € C*°(M). However, this is not true. To be precise, it is in general not

true that for any scalar fields f,g on M

{flv glntn #{f, 9}

where {-, -}y stands for the Poisson bracket inducted by the symplectic form
w|ny on N.

Example 4.3: Given M = R* and w = dv A dy + dz A dt. Let N = R2.
Clearly i,(w) = dx A dy. Define

F<x7y7 z? t) = f(x7 y? Z7t> +z

G(x,y,2,t) = g(v,y,2,t)+1
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for some scalar functions f and g.

A simple calculation shows that

dfdg 0Of Og
Flp2 2R — — — — — —
{Fle2, Glez}r Oxdy Oy ox
On the other hand
~ 0fdyg B df Og
{F, Gl = Oxdy Oy oz

Therefore

{F|R27 G|R2}]R2 7é {F, G}R4|R2

Once again it is possible to save a considerable piece of the theory by means
of the following theorem due to P. M. Dirac([Dir]):
Theorem 4.2: For any f,g € C*(M)

{f|N>g|N}N = {f79}*|N

where bracket {-,-}* on C*°(M) is defined by

with the matrix

1<i,j<r

being the inverse of the matrix

| (F.F} ]

1<ij<r

Proof: Appendix.
In our case, M = T*(R* — {(0,0,0)}) and a submanifold N = T*S? is
defined by
Fi(x,y) = (x,x)—1=0
B(xy) = (xy)=0.
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T*S?% is a symplectic manifold of T*(R3 — {(0,0,0)}) with the symplectic
form Q = i,(€2) where i is the inclusion map from N = F;~*(0) N F,~'(0) to
M since the matrix

0 {F,F) 0 2
{F2, F1} 0 -2 0

is non-singular at each point point of 7*S%. Hence,

(@)
I
N

Wi —

N [—=
@)

Thus we find that

U 9) = (.0} + 51 F} s, 0} - 5 (. BHFLg)

More explicitly,

(g} = () + (500 = (G
dg . Of of

- Gy ligex =5,y

The magnetic spherical pendulum is the Hamiltonian system

(T*S2,0

T*52, H|T*5‘2) where

H: T"R* — R

(xy) %(y, y) +7{x e3)

Instead of using H|;+g2 we can use Dirac’s prescription to compute equa-
tions of motion by using the new bracket {-,-}*.

In this case the equations of motion become

dt —{.I',H}, dt —{y’HH}
Then
af , of
R = — 21" = —2(—=—,x
(LR} = -5 G
of . of p ,Of . _Of  Of

— i R I k2L — (=
{f7 F2} - Ot T ayz Yi ||X||3€p]kx 3y] x <aX7X> <ay7y>

28



Then

dxt -
— {2 HY =y,
o {o", H} =y
dy; oy, Oy Iz Oy, OH
= (g HV =Y i B OO
i~ e e T 0 T W By, o

Finally, it follows from the discussion above that the equations of motion

of the magnetic spherical pendulum are

=Y = et [<es x> = <y St oglxoxy

dx ﬂ W
|2

by using (x,y) = 0 on T*5%.
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CHAPTER 5

GENERAL REMARKS ON REDUCTION IN
CLASSICAL MECHANICS

In the framework of mechanics the word reduction loosely refers to the process
of obtaining a lower dimensional phase space by taking a suitable quotient in
the presence of a symmetry. Ideally the phase space is a manifold M, the
symmetry is described as the action of a Lie group G on M preserving every-
thing mechanically relevant and the quotient space M/G is a manifold, too.
This ideal situation fails to arise in many important cases. Indeed, despite
numerous attempts at clarifying it, the word reduction seems still to connote

little more than a gentlemen’ s agreement at present.

One should perhaps start with the most basic and best known classical
instance:
Example 5.1: Consider the planar motion of a material particle under

the influence of a central conservative force field. In this case F will be

F = —gradV
_ Vo _ovo
N Or 0r Oy Oy

for some potential function V' = V(x,y). The condition that F is always

directed towards (0,0) can be expressed by

v v

which also shows that, of the usual polar coordinates (r, 8) on R*—({0} %[0, 00))
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V' is independent of 6 : Indeed

o _ oVor ovoy
00  Ox 90 oy 00
— aa—‘;(—r sinf) + Z—‘y/(r cos @)
- a_v + xa_v =0
- Y or oy
Here we have
X = re,
where
cos
e, =
sin 6
hence
dx e, + re 0
0 = Te T T€
dt
where
—sinf
€yp =
cos
Thus
d’>x LA i 12
ol 7e, + regh + reghd + regd — rf-e,
or equivalently
X (5= r%)e, + (206 + 1)
Iz r—rb°)e, T TV )€g
On the other hand
f_ OV _ v v
T o ox dy 2
where
e = cosbe, —sinfeg
ey = sinfe, + cosfey
Therefore
F = (—% cosf + 86—‘; sinf)e, + (88—‘; sin 6 + aa—y cosf)ep
_ 9V,
a or "

31



Consequently the equations of motion read

%O +rl = 0
v
or

m(i —rf?) =

Thus mr26 is a constant which we denote by [ and write
. 12

mré? = —
mr

and the problem is reduced to the 1-dimensional problem

L ov
a2 or
where
~ 12
Viry=V
() =V()+5—

In classical texts the new potential function V= X7(7“) is called the “effec-

tive potential”.

Given a Lie group G and a manifold M, a (left) action of G on M is a

smooth map

o GxM—M

such that

0'(927 U(glv m)) = 0(92917 TTL)

ole,m) = m

for all m € M, g1, 9> € G where e € GG is the neutral element of G. Once it is
clear which group action is being considered and there is no rise of confusion

we shall write gm instead of (g, m).

Of course flows constitute the most important class of group actions with

G =R
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Remember that given topological spaces X, Y amap f: X — Y is called
proper if the inverse image of every compact subset of Y under f is compact

in X. An action of the Lie group G on M is called proper if the map
GxM-—MxM

sending (g, m) into (gm,m) is proper. Notice that all actions of a compact Lie
group are proper.

For each m € M, the set
Gm = {g € Glgm = m}

constitutes a subgroup of G which is called the isotropy group of the action at

m € M. An action is called free if GG, is trivial for each m € M.

Let g denote the Lie algebra of G' consisting of the left invariant vector
fields on G. For every A € g there exist a vector field A, on M such that
(t,m) — exp(tA) is the flow on M induced by A,.

Example 5.2: Consider the Lie group G = S' = SO(2) & R/27Z with
its Lie algebra

and its action on R? defined by
0](z,y) = (xcosh —ysinb, xsinh + y cos )

where [f] € S' & R/27Z denotes the residue class of 27Z in R containing
0. Note that this is the action which characterises the classical problem of

“central force fields” discussed at the beginning.

As S' = R/277Z is compact this action is automatically proper. However
it fails to be free since

Gloy) = 0] € S
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for all (z,y) # (0,0) € R? but Ggo = S
We have on S*

0
t—) =t
exp(t05) = 1
and hence
0 d . .
(%M(z,y) = Eh:o(zcost—ysmt,azsmt—{—ycost)
00

Given an action of G on M the orbit through m is the set
Orb(m) = {gm|g € G}.

Clearly M is the disjoint union of orbits.

Let M /G denote the set of orbits, let
T M — M/G

be the map sending m € M into Orb(m). We shall consider M/G with the
quotient topology induced on it by .

It is known that M /G has a natural structure as a smooth manifold such that
7 is a smooth map if the action of GG is free and proper. In the above example
the action of S' on R? is compact but not free. Indeed, R?/S! is homeomor-

phic to [0, 00) and therefore it is not a manifold.

Definition 5.1: Action of G on a symplectic manifold (M,w) is called
Hamiltonian if for each A € g there exist a scalar field J4 € C(M) with A, =
Xj,. The map J : M — g* is called the momentum map of the Hamiltonian

action. Notice that J4 depends linearly on A € g.

Clearly, so does J4(m) depends linearly on A € g. As a consequence, it

is more convenient to think of J as a map from M to g*(the dual of g, as a
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vector space, that is, with its Lie algebra structure forgotten) assigning to each
m € M the linear map sending A € g to J4(m) € R, clearly an elementof g*.

Example 5.3: ([L-M-S]) Consider the S* = SO(2) action on R? extended
to T*R? with the canonical symplectic form w = dz* A dy; + dz? A dy, defined
by

x! xlcost — x%sint
a? || o'sint + 2% cost
Y1 N y1cost — ygsint
Yo y1sint — yo cost

It can be checked that this action is Hamiltonian and admits
J = $1y2 - x2y1

as momentum map. If one wishes to be pedantic, one might insist on remem-
bering G = SO(2),g = so(2) and considers J to be actually a map from M
into so(2)* = (df) and put

J = (a:lyg — x2y1)d0

We do not. Indeed, it can be routinly checked that

X i_|_ i_ 8 + 6
Pt = 0 5T T g 250, T oy,

Clearly, each set of the form J~!(a) is invariant under the action of SO(2) &

R/27Z. In this particular case

0 0 0
(—1’2@+ lﬁ—yza +y28 )@ Yo —27y1) =0
More generally
d
EJ X;J=4{J,J} =0

When a € R is a regular value of J then J~!(a) is a 3 dimensional sub-
manifold of T*R? & R* which is invariant under the action of S* & SO(2). In

such a situation we may consider the problem to have been effectively reduced
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to a lower dimensional problem. Of course J'(a) is odd dimensional and the
restriction of w to J~!(a) is not non-degenerate. However this difficulty can
be surmounted by taking quotient under S' & SO(2) and noticing that the

nondegeneracy of w is lifted by this means. This process will be revisited below.

0 € R, however, is not a regular value of .J. In this case we observe that

J_1<O) = K() U Kl

Ky = {(0,0,0,0)}

Kl = {($1,$2,y1,y2) € T*R2|xly2 - CCle = Oa (9517332,%73/2) 7é (0707070)}

K is a submanifold. Moreover, the action of S & SO(2) on K is free and
(trivially) proper. Therefore K;/SO(2) is a two dimensional smooth manifold.
An interesting and useful coincidence(or not?) is the following. The restriction

of w to K is degenerate. But it can be checked that for every m € K;
(T, K1) = {m € T, T*R?| w(u,v) =0V v e T,K}CT,K,

and indeed (T;,K;)* is exactly the one dimensional subspace of T, K; gen-
erated by the action of S' & SO(2) on K;. Consequently, the exterior form
© = w/SO(2) induced on K; is non-degenerate, that is (K;/S0(2),0) is a
smooth symplectic manifold. Kj is a singleton on which S* = SO(2) acts
trivially. It is, however, to be noticed, that J~(0) = Ky U K is not a smooth

manifold.

One can obtain a more concrete picture of J~1(0) by considering
A ={(z",0,41,0) € T*R?}

and noticing that the null-set J~'(0) of the momentum map J completely
contains A which is a smooth submanifold of T*R? diffeomorphic to R? and

the S'-orbit of any point (x,y) € J~(0) intersects A in exactly two points.
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Moreover, a point (x,y) in J~!(0) if and only if x and y are collinear as vectors
in R?.
Thus J~!(0) may be obtained by identifying (x,y) and (—x, —y) in R2.

There is yet another way of investigating the dynamics on J1(0)/SO(2)

rather than its structure.

Following polynomials in R[z!, 2%y, y»] are invariant under the action of
St — SO(2).
— (l’l)Q + (:L‘2)2
(y1)* + (32)°

= 2y + 2%y,

S NN
I

1 2
= TY2—THN

It is known that each polynomial in R[z!, 2%, y;, yo] which is invariant under
the action of S* = SO(2) can be expressed as a polynomial in XY, Z, U and
this set is minimal.([Weyl])

With the map

0:T"R*> — R?
(', 2%y, p2) — (X,Y,Z,U)

O(J71(0)) € R* may be identified with R* = {(X,Y, Z,U) € R U = 0}.

Therefore the invariants satisfy the equations

7> = XY
XY > 0
U = 0

This is a topological submanifold of R* which is smooth except at (0,0, 0).
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CHAPTER 6

SPHERICAL PENDULUM

In this chapter, we will construct the Poisson brackets on a suitably reduced
phase space for the spherical pendulum by using the method invariant poly-
nomials as presented in the previous chapter.
Consider the action of S' = SO(2) ® R/27Z on (T*R3,w) defined by
SO12) x T*'R* — T'R?
([t (xy)) = (Rex, Ryy)
where
cost —sint 0
Ry = | sint cost 0
0 0 1
Note that this map leaves the subspace defined by {z* = y3 = 0} invariant.

The following polynomials are invariant under this action of S* and they

generate the algebra of all S'-invariant polynomials in R[z!, 2%, yy, yo](weyl)

X = 2

Y = ys

Z = () + ()* + (1)
U = z'y + 2%y,

Vo= (z') 4+ (2?)?

W = $1?J2 - 352?/1
Define the Hilbert map o for the S'- action as
T"R*~R° — R

38



($1>$27$3ayl7y27?/3) L (X’KZ7 Uv‘/:W)
Then (X,Y, Z,U,V,W) coordinates satisfy

UP+W? = V(Z-Y?)
Z

WV

0

V=0
The non-zero Poisson brackets of X, Y, Z, U, V,W are

{X,Y}Rfi - 1
{X,Z}pe = 2V

{Z,Ulgse = —2(Z-Y?
{Z, Ve = —4U
{U,V}ge = =2V

Recall that submanifold T*S? of T*R3 is defined by the equations

Fix,y) = (x,x)=1=V+X>-1=0
Fxy) = xy)=U+XY =0
It can be routinly checked that 7*S? is invariant under the action of S*.
w|T*S? is a symplectic form on T*S? since

0 2
-2 0

H{E Fith<ij<2 =

is non-singular at each point of 7*S52.
Therefore the image of T*S? under o consists of points (X,Y, Z, U, V,W) € R°
satisfying
UP+W? = V(Z-Y?
V4+X? =1

U+ XY 0

Z

WV
o

v

WV
o



It can be checked that the action of S' & SO(2) on T*R? is Hamiltonian with
momentum mapping J = zly, — 2%y, = W.

Substituting U = —XY, V = 1—X? and W = [ in the first equation we obtain
X324 1P=(1-X*)(Z-Y?

and hence

1-X)Z=Y>+1?

and | X| < 1lasV > 0.

Consequently the set of S & SO(2)-orbits in J~*({) are seen to be in 1-1

correspondance with the set

M ={(X,Y,2)|(1-X)HZ=Y*+1*-1>X>1}

If [ # 0, then |X| < 1 and M, is as the graph of the function Z = ’i}l;
and as such it is diffeomorphic to R2.

As for | = 0, we note that although M, is still homeohophic to R? it is not
the graph of a fuction in R? since it contains the vertical lines (1,0, Z) and
(—=1,0,2).

Now let us compute the Poisson structure on 7*S?/S'. XY, Z being
invariant under the action of S* & SO(2), their Poisson brackets on T*S5? will
be sufficient to describe the dynamics on M;. Since the matrix [{ £}, F}}1<i j<o

is invertible the Poisson bracket on T*S5?/S' may be computed using the Dirac

process. ([Dir]). It can be checked that

{X,Y}pegey;o = 1—X? (6.1)
(X, Z}pes2yn = 2V

(Y, Zypegoysr = —2XZ

It is interesting to note, that putting X' = X, X2 =Y, X?® = Z and
setting ¥(X,Y,Z) = Z(1 — X?) — Y? — [? the equations (6.2)can be written in

the form

O

{Xi, Xj} = Eijkm

(6.2)
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By using (6.2) we can deduce that

{f,9} =(VfxVg) V¢

Therefore Hamiltonian equations for H € C*°(M;) can be written as

X’
dt

= (VH x V),
Now putting

1
H = 50y) +

1

We can write the equations of motion as

dX

= VH} = (- X)Xz
dz

=< = {Z,H}=-2vY

7 {Z, H} ot
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CHAPTER 7

MAGNETIC SPHERICAL PENDULUM

Consider the S' = SO(3)- action on T*R? defined in the previous chapter.

Working with the symplectic form

O =w+ ——€p ida? @ dat

I H3

it can be checked that this action is Hamiltonian and has a momentum mapping

L

Lixy) = (xxy,es) +M<|§’,e3>

[L’3

= 'y, — 2Py + MW

Indeed it can be checked that

((? ) 5 O L 0 0 N
—_— = —r — r — —

ot ort 0w oy, T oy,
Again employing the invariant polynomials X, Y, Z, U, V, W introduced

in the previous chapter we remember that they satisfy the relations

U+ W? = V(Z-Y?)
Z

WV

0
Vi =20

Now working with the symplectic form {2 we find the non-zero Poisson

brackets to be
{X,Y}
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(X,7} = 2v

21
Y, 7} = Lw
2y = o5

W
vV} =
vl = sv
70} = 2LXW vt ooz
{z,U} = [P + -
(Z,V} = —4U

2
{ZW} = —EXU+YV)
{U,v}y = 2v

7

For the points on T*S? C T*R3 we again have

V4+X* =1

U+XY =0
and for the points on T*S* N L71(]) we have
(1-XHZ=Y*+W?

where |X| <1 and Z > 0.
However, in this case
I=L=W+4puX
and
(1-XZ=(—-pX)?+Y?

with | X| <1 and Z > 0.

When j # 4, the set of orbits of S* & SO(2) in T*S* N L71(1) is diffeo-
morphic to R2. It is indeed the graph of function

(= pX)?+ V2
—x>

Z = X <1

When j = £p, M; is still homeomorphic to R?, although M; is not the

graph of a function, because it contains vertical lines {(+1,0, 7) € R?*|Z > 0}.
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H

r-g2 induces the Hamiltonian H}|y;, where
H; ‘R — R
1
(X,Y.Z) — §Z+7X

Now we compute the Poisson structure on C*°(1/;). Recall that a Poisson
bracket {-,-}p«gs on C®(T*R?) is
of dg
{f,g}rms = a&a—&{fz,fg}m

where (&;)1<;<¢ are coordinates of T*R3. Then the structure matrix [{&;, & }1<ij<6

is a skew- symmetric matrix whose nonzero elements are listed below:

{zt ) = {2% ) ={% ) =1

{Z/lny} = —Hi 3
{yl,y3} = MW

{y2,y3} = —p—

{Fi, R} ={V + X*,U + XY }gs|r-s52/51 = 2

Therefore, the Poisson bracket on T*S?/S' may be computed using the
Dirac prescription. Recall that we can write Hamiltonian equations for H €

C>®(M,) as
dx’
dt

In particular for the Hamiltonian function

= (VH x V1),

1

we obtain the governing equations for the motion of the magnetic spherical

pendulum as

ax
dt
av
dt
az
dt

= (1= X*) +u(j - pX) - XZ
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CHAPTER 8

CONCLUSION

Our work on the governing equations of quite standard objects of classical
mechanics seems to indicate that much clarity can be achieved by expressing
such problems within the framework of symplectic manifolds. In this respect
the importance of the ideas of P. M. Dirac is quite striking. Finally the Poisson

formalism represents the most efficient category for higher classical mechanics.
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APPENDIX A

Theorem A.1 Let (M,Q) be a symplectic manifold and N be a submanifold
of M where N = F~(q) for some reqular value g € M of F = (F\, Fs,..., F}) :

M — R". Q|y is a symplectic form on N if the matriz

Rzl

1<rj<r

1s non- singular at each point of N.

Proof: Consider p € N. Let V,M be the subspace of T,,M spanned by the
vectors Xp |p, Xpylps ooy X lp. fu € T,N < T,M, then

w(Xp,u) =uFp =0
Consequently T,N < V,M*“. On the other hand
dimT,N = dimT,M — dim N,_, ker dFy = dimT,M — r = dimV, M
as w is non-degenerate. We conclude that
T,N =V,M = (Xpgl|p, .., Xp|p)-
and w|Tp ~ 1S non-singular as

W<XF2'>XFJ‘) = {F, Fj}
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APPENDIX B

Theorem B.1 For any f,g € C*(M)

{fIn.glntn ={f. 9} |n
where bracket {-,-}* on C°(M) is defined by

with the matrix

v
1<i,j<r
being the inverse of the matriz
(B} |

Proof: First observe that for any f € C*(M), if we define

1<ij<r

fr=f—={f, E}o7F,
we have
{f B} = {f, B} — {{f. B0V Ey, By}
and
{f BdIn = {f, Bty — {5 B B v Fy — {{f, B {0V, B I E)
— {f, B}y Fy, Fi} v
= {f,Fi}lv —{f, Fi}In0, =0
Consequently N is invariant under X for any f € C%(M). Clearly

X

N:Xf*lN
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Secondly we notice that for any f,g € C*°(M)

(9N = {f={f, EYWF,g9 - {{g, B}o" B} |n
= {f, 9}y —{g, F}0"{f, Filx — {f, B3P Fy, B}y
+ {f, Fi} g, B0 M Fy, B} v
= {f,9}In —{f-Fi}v{E}, 9} v
= {f.9}"In
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