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Abstract

ON THE HAMILTONIAN CIRCLE ACTIONS AND

SYMPLECTIC REDUCTION

Demir, Ali Sait

M.Sc., Department of Mathematics

Supervisor: Assoc. Prof. Dr. Yıldıray OZAN

August 2003, 32 pages

Given a symplectic manifold, it is of interest how Lie group actions, their orbit

spaces look like and what are some topological requirements on the existence of

such actions. In this thesis we present the work of Ono, giving some sufficient

conditions for non-existence of circle actions on symplectic manifolds and work

of Li, describing the fundamental groups of symplectic reductions of circle actions.

Keywords: Symplectic Manifold, Circle Action, Symplectic Reduction.
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Öz

HAMİLTON ÇEMBER ETKİLERİ VE SİMPLEKTİK

BÖLÜM UZAYLARI

Demir, Ali Sait

Yüksek Lisans, Matematik Bölümü

Tez Yöneticisi: Doç. Dr. Yıldıray Ozan

Ağustos 2003, 32 sayfa

Bir simplektik manifold üzerindeki Lie gruplarının etkisinin ve orbit uzay-

larının özelliklerinin ve bu tür etkilerin var olması için gerekli topolojik şartların

neler olduğunun incelenmesi önemli bir problemdir. Bu tezde Ono’nun, simplektik

yapıyı koruyan çember etkisinin oluşmaması için yeterli bazı şartların verildiği,

ve Li’nin simplektik bölüm uzaylarının temel grupları ile ilgili çalışmaları ince-

lenmiştir.

Anahtar Kelimeler: Simplektik Manifoldlar, Çember etkisi, Simplektik bölüm

uzayları.
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Chapter 1

introduction

A symplectic form is a closed, non-degenerate 2-form. A symplectic mani-

fold is a manifold equipped with a symplectic form. Due to the non-degeneracy

condition all symplectic manifolds are necessarily even dimensional. Also non-

degeneracy forces a symplectic manifold to be orientable. By Darboux’s theorem

all symplectic manifolds have locally the same symplectic structure; namely that

of the Euclidian space.

Symplectic topology was first used in Hamiltonian mechanics. Its relation

with mechanics is expressed as, “The phase space of a mechanical system is a

symplectic manifold and the time evolution of a (conservative) dynamical sys-

tem is a one-parameter family of symplectic diffeomorphisms”. The role of the

symplectic structure had first appeared, at least implicitly, in Lagrange’s work

on the variation of the orbital parameters of the planets in celestial mechanics.

Its central importance emerged, however, from the work of Hamilton.

The concept of a moment map is a generalization of that of a Hamiltonian

function. The notion of a moment map associated to a group action on a symplec-

tic manifold formalizes the Noether principle which states that to every symmetry

(such as a group action) in a mechanical system, there corresponds a conserved

quantity. The angular momentum in R3 is an example of this which is the origin of

the term “moment map”. Therefore, the question that “when a Lie group action

on a symplectic manifold admits a moment map” becomes important. Symplec-

tic geometers mostly deal with the case when the group is S1 (i.e. circle actions

on symplectic manifolds). Hamiltonian circle actions on 4-manifolds have been
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classified by Karshon. However, the general structure of these actions is not yet

fully understood. In this thesis, we consider the following result of Ono [11];

Theorem 1.0.1 (Ono). Let (M,ω) be a closed symplectic manifold.

1) If the second homotopy group π2(M) vanishes, then there is no circle group

action on M preserving ω with non-empty fixed point set. (i.e. If π2(M) = 0,

then every S1-action preserving ω is fixed point free)

2) If every abelian subgroup of π1(M) is cyclic, there is no S1 action preserving

ω. Therefore there is no compact, connected Lie Group action preserving ω.

An obvious necessary condition for a circle action to be Hamiltonian is the

following: “A Hamiltonian action on a compact symplectic manifold must have

fixed points which correspond to the critical points of the Hamiltonian function

of this action”. In [12] Ono proved that a symplectic circle action on a compact

connected symplectic manifold (M, ω) such that the map

∧ωn−1 : H1(M,R) → H2n−1(M,R)

is an isomorphism, is Hamiltonian if and only if it has fixed points. Note that

this condition is satisfied for Kähler manifolds by the Hard-Lefschetz theorem.

An earlier version of the above theorem was proved by Frankel [5].

If M is a compact 4-manifold then the reduced spaces are 2-dimensional and

the situation becomes quite easy to understand. In [8], McDuff , by looking at

what happens to the reduced spaces as one passes a critical level, proved that a

symplectic S1 action on a closed 4-manifold is hamiltonian if and only if it has

fixed points.

However, in the same paper there is an example of a symplectic but non-

Hamiltonian action of S1 on a compact 6-manifold with fixed points. Thus one

needs some conditions either on M or on the action to extend the result in the

preceeding theorem to higher dimensions, though it is not clear that the one given

by Ono in [12] is the best possible. It is also conceivable that a symplectic circle

action with isolated fixed points must be Hamiltonian. No counter example is

yet known: the fixed points in the 6-dimensional example mentioned above form
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submanifolds of dimension 2.

The phase space of a system of n-particles is the space parametrizing the

position and momenta of the particles. The mathematical model for the phase

space is a symplectic manifold. Classical physicists realized that, whenever there

is a symmetry group of dimension k acting on a mechanical system, then the

number of degrees of freedom for the position and momenta of the particles may

be reduced by 2k. Symplectic reduction formulates this feature mathematically.

The quotient of a symplectic manifold may not be a symplectic manifold. It

may even fail to be even dimensional. Symplectic reduction brings a solution to

this conflict. In [7], it is proved that the orbit space of a Hamiltonian G-space on

which G acts freely is a symplectic manifold.

In this thesis we will stick to G = S1 and investigate some topological proper-

ties of the orbit space of S1-actions. We will analyze the work of Li in [6] which

formulates the fundamental groups of symplectic reductions. In Chapter 4 we

will prove

Theorem 1.0.2 (Li). Let (M, ω) be a connected, compact symplectic manifold

equipped with a Hamiltonian S1 action. Then

π1(M) = π1(minimum) = π1(maximum) = π1(Mred),

where Mred is the symplectic quotient at any value in the image of moment map

µ and maximum and minimum are level sets of the maximum and the minimum

of the moment map.

This thesis is organized as follows: In Chapter 2 we will define symplectic

manifolds, Lie group actions on symplectic manifolds, and give a brief discussion

of Morse Theory. We will prove Ono’s theorem in Chapter 3. The last chapter is

devoted to the theorem of Li.

3



Chapter 2

necessary tools

2.1 Symplectic Manifolds

A topological manifold is a Hausdorff, second countable space which is lo-

cally Euclidean. Some properties of topological manifolds are summarized in the

following theorem.

Theorem 2.1.1. A topological manifold M is locally connected, locally compact

and a union of a countable collection of compact subsets; furthermore it is normal

and metrizable.

Definition 2.1.2. A smooth structure on a topological manifold M is a family

U = {(Uα, ϕα)}α∈Λ of coordinate neighborhoods such that:

(1) the Uα cover M and ϕα : Uα → Vα ⊆ Rn a homeomorphism,

(2) for any α, β the neighborhoods (Uα, ϕα) and (Uβ, ϕβ) are C∞-compatible. In

other words the change of coordinate functions are smooth.

(3) any coordinate neighborhood (V, ψ) compatible with every (Uα, ϕα) ∈ U is

also in U .

A smooth manifold is a topological manifold with a smooth structure. This

form of smooth manifolds was first introduced by Weyl. Just as Riemannian

Geometry deals with manifolds that have a Riemannian structure (a positive-

definite, symmetric bilinear map called a Riemannian metric), Symplectic Geom-

etry studies those manifolds carrying a so called symplectic form.
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Definition 2.1.3. Let M be a smooth manifold. A symplectic structure (or a

symplectic form) is a 2-form ω ∈ Ω2(M) satisfying:

i) ω is closed, i.e., dω = 0,

ii) ω is non-degenerate, in other words for p ∈ M and u ∈ TpM if ω(u, v) = 0 for

all v ∈ TpM , then u must be zero.

A symplectic manifold is a pair (M, ω) where M is a smooth manifold and ω is

a symplectic structure on M .

It follows from this definition that all symplectic manifolds are necessarily

even dimensional. Note that ω is non-degenerate means ωn 6= 0, where n is the

half of the dimension of the manifold. So ωn is actually a volume form on M .

Another consequence of the non-degeneracy condition is that M be orientable,

because the volume form determines a canonical orientation for the symplectic

manifold M .

Example 2.1.4. Let M = R2n with linear coordinates x1, ..., xn, y1, ..., yn. The

form

ω0 =
n∑

i=1

dxi ∧ dyi

is a symplectic form on M .

Example 2.1.5. Let M = Cn with linear coordinates z1, ..., zn. The form

ω0 =
1

2

n∑

k=1

dzk ∧ dz̄k

is symplectic. In fact, this form equals to that of the previous example under the

identification zk = xk + iyk.

Example 2.1.6. Let M = S2 regarded as the set of unit vectors in R3. Tangent

vectors to S2 at p ∈ S2 may then be identified with vectors orthogonal to p. The

standard symplectic form on S2 induced by the inner and exterior products:

ωp(u, v) = 〈p, u× v〉, for u, v ∈ TpS
2 = {p}⊥
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This form is closed because it is of top degree; it is non-degenerate because

〈p, u× v〉 6= 0 when u 6= 0 and we take for instance, v = u× p.

Definition 2.1.7. Let (M, ω) be a symplectic manifold. A submanifold Y is

called symplectic symplectic if ω|Y is a symplectic form on Y .

Definition 2.1.8. Let (M1, ω1) and (M2, ω2) be 2n-dimensional symplectic man-

ifolds, and let g : M1 → M2 be a diffeomorphism. Then g is called a symplecto-

morphism if g∗ω2 = ω1.

Note that for any symplectomorphism g, g−1 is also a symplectomorphism.

Therefore all symplectomorphisms on a symplectic manifold (M, ω) form a group

denoted by Symp(M, ω).

The following theorem implies that locally all the symplectic forms are the

same provided that the manifolds have the same dimension.

Theorem 2.1.9 (Darboux). Let (M, ω) be a 2n-dimensional symplectic mani-

fold, and let p be any point in M . Then there is a coordinate chart (U, x1, ..., xn, y1, ..., yn)

centered at p such that on U

ω =
n∑

i=1

dxi ∧ dyi.

2.2 Complex Structures

Definition 2.2.1. Let V be a vector space. A complex structure on V is a linear

map:

J : V → V with J2 = −Id.

The pair (V, J) is called a complex vector space.

A complex structure J is equivalent to a stucture of a vector space over C if

we identify the map J with multiplication by
√−1.

Definition 2.2.2. Let (V, Ω) be a symplectic vector space. A complex structure

J on V is said to be compatible (with Ω) if

GJ(u, v) = Ω(u, Jv), for all u, v ∈ V
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is an inner product on V . That is J is Ω-compatible if and only if Ω(Ju, Jv) =

Ω(u, v) (symplectomorphism) and for all non-zero u, Ω(u, Ju) > 0 (taming con-

dition).

Compatible complex structures always exist on symplectic vector spaces:

Proposition 2.2.3. Let (V, Ω) be a symplectic vector space. Then there is a

compatible complex structure J on V .

Definition 2.2.4. An almost complex structure J on a manifold M is a smooth

field of complex structures on the tangent spaces:

x 7→ (Jx : TxM → TxM is linear and J2
x = −Id).

The pair (M, J) is then called an almost complex manifold.

Definition 2.2.5. Let (M, ω) be a symplectic manifold. An almost complex

structure J on M is called compatible (with ω) if the assignment

x(7→ gx : TxM × TxM → R)

defined by gx(u, v) = ωx(u, Jxv) is a Riemannian metric on M .

The triple (ω, g, J) is called a compatible triple when g(·, ·) = ω(·, J ·).
Proposition 2.2.6. 1)Any symplectic manifold has compatible almost complex

structures. The space J(M,ω) of such structures is path connected.

2) The set J(TxM,ωx) is contractible for any x in M .

An almost complex structure J on a smooth manifold M is called integrable

if J is naturally induced by a complex manifold structure of M . In other words,

for any point p ∈ M , there is a coordinate chart (U,ϕ) where ϕ : U → R2n is a

coordinate map, such that dϕ ◦ J = J ◦ dϕ.

Definition 2.2.7. A Kähler manifold is a symplectic manifold (M, ω) equipped

with an integrable compatible almost complex structure.

By definition, Kähler manifolds are both symplectic and complex. There are

examples by Thurston in [14] that some symplectic manifolds are not Kähler.

7



2.3 Actions

Let M be a manifold and X a complete vector field on M . Let ρt : M → M ,

t ∈ R be the family of diffeomorphisms generated by X. For each p ∈ M , ρt(p)

is by definition the unique integral curve of X passing through p at time 0. In

other words ρt(p) satisfies:





ρ0(p) = p
dρt(p)

dt
= X(ρt(p)).

The curve ρt(p) is called the trajectory of the field X that passes through p

at t = 0.

Note that we have ρt ◦ ρs = ρt+s and ρ−1
t = ρ−t. These make the following map

a group homomorphism:

(R, +) → Diff(M)

t 7−→ ρt,

where Diff(M) is the group of all diffeomorphisms on M . The family {ρt | t ∈ R}
is called a one-parameter group of diffeomorphisms and satisfies

ρt = exp tX.

Here the isotopy exp tX is (also) called the flow of X. These concepts are regularly

used in Lie group actions on manifolds.

Definition 2.3.1. A Lie group is a smooth manifold G equipped with a group

structure where the group operations are smooth.

Example 2.3.2. The following are well known examples of Lie groups:

1) R with addition.

2) S1, regarded as unit complex numbers with multiplication.

3) U(n): unitary linear transformations of Cn.

4) SU(n): unitary linear transformations of Cn with determinant equals to 1.

5) O(n): orthogonal linear transformations of Rn.
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6) SO(n): elements of O(n) with with determinant equals to 1.

7) GL(V ): invertible linear transformations of a vector space V .

Definition 2.3.3. A representation of a Lie group G on a vector space V is a

group homomorphism G → GL(V ).

Actions of Lie groups play an important role in symplectic geometry.

Definition 2.3.4. An action of a Lie group G on a manifold M is a group

homomorphism

ψ : G → Diff(M)

g 7→ ψg.

The evaluation map associated with an action ψ is defined as follows:

evψ : M ×G → M

(p, g) 7→ ψg(p)

for all p ∈ M, g ∈ G. The action ψ is called smooth if evψ is a smooth map.

Example 2.3.5. If X is a complete vector field on M , then

ρ : R → Diff(M)

t 7→ ρt = exp tX

is a smooth action of R on M .

There is a 1-1 correspondence between complete vector fields on M and

smooth actions of R on M .

2.3.1 Orbit Spaces

Let ψ : G → Diff(M) be any action

Definition 2.3.6. The orbit of G through p ∈ M is the set {ψg(p) | g ∈ G}. The

stabilizer (or isotropy) of p ∈ M is the subgroup Gp = {g ∈ G | ψg(p) = p}.

Note that, if q is in the orbit of p, then Gp and Gq are conjugate subgroups.

9



Definition 2.3.7. We say that the action of G on M is

• transitive if there is just one orbit,

• free if all stabilizers are trivial {e},
• locally free if all stabilizers are discrete.

Let ∼ be the orbit equivalence relation on M , i.e.,

p ∼ q ⇐⇒ p and q are in the same orbit.

The space of orbits M/∼ = M/G is called the orbit space. Let

π : M → M/G

p 7→ orbit through p

be the point-orbit projection. We equip M/G with the strongest topology for

which π is continuous, so that U ⊆ M/G is open if and only if π−1(U) is open in

M . Note that his is the quotient topology.

Example 2.3.8. Let G = R act on M = R by multiplication by et. There are

three orbits R+,R−, {0}. The point in the three-point orbit space corresponding

to the orbit {0} is not open, so the orbit space with quotient topology is not

Hausdorff.

Definition 2.3.9. The Lie derivative is the operator Lv : Ωk(M) → Ωk(M)

defined by

Lvω =
d

dt
((exp tv)∗ω)|t=0,

for ω ∈ Ωk(M).

When a vector field vt is time dependent, its flow, that is, the corresponding

isotopy ρ, still locally exists by Picard’s Theorem. More precisely, in the neigh-

borhood of any point p and for sufficiently small time t, there is a one-parameter

family of local diffeomorphisms ρt satisfying:

dρt

dt
= vt ◦ ρt and ρ0 = id, for any t ∈ R.

10



Hence we say that the Lie derivative by vt is Lvtω =
d

dt
((ρt)

∗ω)|t=0. The following

are the most used identities involving Lie Derivatives. See [1] [16].

Proposition 2.3.10. 1) (Cartan Magic Formula): Lvω = ıvdω + dıvω.

2)
d

dt
ρ∗t ω = ρ∗tLvtω

2.4 Morse Functions

For this section we mostly follow [10] and [2].

Let f be a real valued function on a manifold M . A point p ∈ M is called a

critical point of f if the induced map on the tangent spaces

f∗ : TpM → Tf(p)M

is zero. If we choose a local coordinate system (x1, ..., xn) in a neighbourhood U

of p this means that
∂f

∂x1

(p) = · · · = ∂f

∂xn

(p) = 0.

Here f(p) is called a critical value of f .

We denote by Ma the set of all points x ∈ M such that f(x) ≤ a. If a is not a

critical value of f then it follows from the implicit function theorem that Ma is a

smooth manifold with boundary. The boundary f−1(a) is a smooth submanifold

of M .

A critical point p is called non-degenerate if and only if the Hessian of f at p,

(
∂2f

∂xi∂xj

(p)

)

is non-singular.

Definition 2.4.1. A Morse function on M is a function h : M → R whose critical

points are all non-degenerate.

Definition 2.4.2. A smooth function f : M → R on a compact Riemannian

11



manifold M is called a Morse-Bott function if its critical set

Crit(f) = {p ∈ M |df(p) = 0}

is a submanifold of M and for every p ∈ Crit(f), TpCrit(f) = ker∇2f(p) where

∇2f(p) : TpM → TpM denotes the linear operator obtained from Hessian via the

Riemannian metric.

This is the natural generalization of the notion of Morse function to the case

where the critical set is not just isolated points. If f is a Morse-Bott function,

then Crit(f) decomposes into finitely many connected critical manifolds C. The

tangent space TpM at p ∈ C decompose as a direct sum

TpM = TpC ⊕ E+
p ⊕ E−

p ,

where E+
p and E−

p are spanned by the positive and negative eigenspaces of∇2f(p).

The index of a connected critical submanifolds C is defined to be the integer

n−C = dim E−
p , for any p ∈ C, whereas the coindex of C is defined as n+

C = dim E+
p .

2.5 Some Algebraic Topology

The followings can be found in any algebraic topology book. We follow [3].

Definition 2.5.1. The nth homotopy group of a space Y at a point y0 ∈ Y is

the set of homotopy classes of continuous maps (Sn, p0) → (Y, y0) and denoted

by πn(Y ). If n = 1, this group is called the fundamental group of Y .

Definition 2.5.2. A map p : X → Y is called a covering map (and X is a covering

space of Y ) if each y ∈ Y has an arcwise connected neighborhood U such that

p−1(U) is a non-empty disjoint union of sets Uα (which are the arc components

of p−1(U)) on each of which the restriction p|Uα of p to Uαis a homeomorphism

of Uα onto U .

Consider the exponential map p : R → S1 defined by p(t) = e2πit, which is a

covering map. Let f : I → S1 be any loop at 1 ∈ S1. Let f̃ : I → R be a lifting of
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f such that f̃(0) = 0. Then f̃(1) ∈ p−1({1}) = Z. Let n = f̃(1), which depends

only on the homotopy class [f ] ∈ π1(S
1). This integer n is called the degree of f

and we write deg(f) = n.

Theorem 2.5.3 (Van Kampen). Let X = U ∪V with U, V and U ∩V all open,

non-empty and arcwise connected. Let the base point of all these be some point

x0 ∈ U ∩ V . Then the canonical maps of the fundamental groups of U, V and

U ∩ V into that of X induce an isomorphism:

θ : π1(U) ∗π1(U∩V ) π1(V )
≈−→ π1(X),

where ∗ is the free product of groups with amalgamation.

We finish this section with Hurewicz Theorem.

Proposition 2.5.4 (Hurewicz). Let n ≥ 2 be an integer. Then, if X is (n-1)-

connected, the map hn : πn(X) → Hn(X) is an isomorphism.
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Chapter 3

obstruction to circle group

actions

3.1 Preliminaries

Let (M,ω) be a symplectic manifold and G be a Lie group.

Let ψ : G −→ Diff(M) be a (smooth) action. In other words, G acts on M by

diffeomorphisms.

Definition 3.1.1. The action ψ is called a symplectic action if

ψ : G −→ Symp(M, ω) ⊂ Diff(M).

i.e., G acts by symplectomorphisms.

Definition 3.1.2. An action ψ of S1 or R on (M, ω) is Hamiltonian if there is a

function,

H : M −→ R

with dH = ıXω, where X is the vector field generated by the action. Here H is

called a Hamiltonian function for the action.

Now using the Cartan Magic Formula (Proposition 2.3.10)

LXω = ıXdω + dıXω
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we see that LXω = dıXω since ω is closed. So, the action is symplectic if and

only if LXω = 0, and hence if and only if ıXω is closed. Moreover, if the closed

1-form ıXω is exact i.e. ıXω = dH then the action is Hamiltonian.

More generally, let (M, ω) be a symplectic manifold, G a Lie Group, g Lie al-

gebra of G, g∗ the dual vector space of g and ψ : G −→ Symp(M, ω) a symplectic

action.

Definition 3.1.3. The action ψ is a Hamiltonian action if there exists a map

µ : M −→ g∗

satisfying;

1. For each X ∈ g, let

∗ µX : M −→ R, µX(p) := 〈µ(p), X〉 be the component of µ along X,

∗ X] be the vector field on M generated by the one-parameter subgroup

{exp tX | t ∈ R} ⊆ G. Then

dµX = ıX]ω.

In other words, µX is a Hamiltonian function for the vector field X].

2. µ is equivariant with respect to the given action ψ of G on M and the coadjoint

action Ad∗ of G on g∗:

µ ◦ ψg = Ad∗g ◦ µ, for all g ∈ G.

The vector (M,ω, G, µ) is then called a Hamiltonian G-space and µ is a moment

map.

We will work mostly with the group G = S1. So g w g∗ w R and the moment

map µ : M −→ R satisfies:

1) For the generator X = 1 of g, we have µX = µ(p) · 1, i.e., µX = µ, and X] is

the vector field on M generated by S1. Then dµ = ıX]ω.

2) µ is invariant: LX]µ = ıX]dµ = 0

Definition 3.1.4. Let (M, ω) be a symplectic manifold such that the cohomol-

ogy class [ω] ∈ H2(M,R) lies in the image of the canonical map H2(M ;Z) →
H2(M ;R):
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[ω] ∈ Im{H2(M ;Z) −→ H2(M ;R)}.

If the S1 action on M is only symplectic but not Hamiltonian, then there is,

by [15], a so called generalised moment map µ : M −→ S1 such that

ıXω + µ∗
dθ

2π
= 0.

Lemma 3.1.5 ([8]). Let ω be an S1-invariant symplectic form on M such that

ıXω is nonzero. Then there is an S1-invariant symplectic form which admits a

generalized moment map µ.

Proof. First of all note that if [ω] is rational then so is [ıXω]. Let φt be the flow of

X. Then [ıXω] on a loop λ equals the value of [ω] on the 2−cycle [φt(λ) : 0 ≤ t ≤ 1].

If [ω] is not rational, there is always a symplectic form whose cohomology class

is rational and which is so close to ω that its average ω̂ over S1 is symplectic and

satisfies [ıX ω̂] 6= 0. Thus a multiple of ω̂ admits a generalized moment map.

Remark 3.1.6. Since any S1-invariant Riemannian metric ĝ is related to ω by the

identity ĝ(·, ·) = ω(·, A·) for a unique A, which is non-singular, skew-symmetric

and S1-invariant, there is always an S1-invariant metric g on M which is com-

patible with ω. (i.e. g(·, ·) = ω(·, J ·), where J is an S1-invariant almost complex

structure on M .) Now using Λ = −A2 which is positive-definite and S1-invariant

and we see that

g(·, ·) = ĝ(·, Λ−1
2 A·)

has the desired property.

Remark 3.1.7. If we identify S1 with R/Z in the usual way, we may define the

gradient vector field of µ with respect to g. It is easy to check that this is just

JX so that it commutes with X. Observe that

[X, JX] = LX(JX) = LX(J)X + JLXX = 0
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Lemma 3.1.8. Assume that the generalized moment map µ : M −→ S1 can not

be lifted to a continuous map M −→ R. Then given any point p ∈ M , there

exists a homologically non-trivial loop γ : S1 −→ M passing through p such that

dθ(µ∗γ̇) > 0 everywhere except at fixed points.

Remark 3.1.9. µ lifts to a map M −→ R if and only if the map

µ∗ : π1(M) −→ π1(S
1)

is trivial.

Remark 3.1.10. Let S1 act on Cn in the following way,

S1 × Cn −→ Cn

(ω, z1, ..., zn) 7−→ (ωk1z1, ..., ω
knzn)

where k1, ..., kn are fixed integers. Then the moment map of this action is of the

form

µ = −1
2

∑
ki|zi|2 = −1

2

∑
ki(x

2
i + y2

i )

For example if n=2,

µ = −1
2
k1(x

2
1 + y2

1)− 1
2
k2(x

2
2 + y2

2)

The Hessian of µ will be the diagonal matrix:

H(µ) =




−k1

−k1

−k2

−k2




Note that the index of the Hessian will always be even for such an action. Since

we have an S1-invariant almost complex structure on M, at a fixed point p ∈ M

of the action identifying (TpM, Jp) with Cn, we get an action of S1 on Cn. Thus

the index of the Hessian of a moment map at any critical point will be even.
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Proof. of the Lemma. By Remark 3.1.6 we can always choose an S1-invariant

Rimannian metric and an S1-invariant almost complex structure compatible with

ω. (Actually since g and ω determines J, it should be S1-invariant if g and ω

are.)

Now, if we regard a generalized moment map locally as a function, we can define

the Hessian at critical points, their indices (number of negative eigenvalues) and

the gradient flow of µ.

If M has a critical point at which the Hessian is positive or negative definite (i.e.

that point is maximum or minimum) the moment map induces a trivial map in

the fundamental groups. By Remark 3.1.9 µ lifts to a map M → R, which is not

the case by the assumption of the lemma. So by the hypothesis we may assume

that all critical points are indefinite.

Let X be the quotient space of M by the equivalence relation:

x ∼ y ⇐⇒ ∃t ∈ S1 such that x and y belong to the same connected component

of µ−1(t).

By Remark 3.1.10, since the index of the Hessian of the moment map at a critical

point is even, X has no branch point. Also since the Hessian at critical points are

indefinite, X has no boundary points, and thus homeomorphic to S1. Thus we

can deform the trajectories of the gradient flow of µ to X which has the properties

of a loop as in the lemma.

Now we are ready to state and prove Ono’s main results.

Theorem 3.1.11. Let (M,ω) be a closed symplectic manifold,

1) If the second homotopy group π2(M) vanishes, there is no circle group action

on M preserving ω with non-empty fixed point set.

(i.e. If π2(M) = 0, every S1-action preserving ω is fixed point free.)

2) If every abelian subgroup of π1(M) is cyclic, there is no S1 action preserving

ω. Therefore there is no compact, connected Lie Group action preserving ω.

Lemma 3.1.12. If π2(M) = 0 then there is no S1 action admitting a moment

map.
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Proof. Suppose µ : M −→ R is a moment map. Now consider the Hurewicz

homomorphism π2(M) −→ H2(M,Z). Let p ∈ M and set

M(p) =
⋃

t∈S1

t(γp),

where γp is the trajectory of the gradient flow of the moment map passing through

the generic point p. Note that

M(p) =
⋃

t∈S1

t(γp) ' S2

which is the image of a continuous map S2 → M . But we have

∫

M(p)

ω > 0

which implies that [M(p)] 6= 0 in H2(M,Z). Hence, [M(p)] 6= 0 in π2(M). But

this contradicts with π2(M) = 0.

Proof. (of theorem 3.1.11) Assume that S1 acts symplectically on M and π2(M) =

0. By Lemma 3.1.5, we may assume that there is a generalized moment map

µ : M → S1. By the above lemma this map can not be lifted to a map M → R.

We must show that this map does not have any fixed points. Suppose p is a

fixed point of µ. Then by Lemma 3.1.8 there is a loop γ passing through p such

that dθ(µ∗γ̇) > 0 everywhere except at fixed points. Let f : S2 → M defined by

(t, γ) 7→ t · γ which induces f∗ : π2(S
2) → H2(M,Z). Then C =

⋃
t∈S1 (t · (γp))

is the image of a continuous map from S2 and since π2(M) = 0, [C] is zero in

H2(M,Z). But this is a contradiction to the fact that
∫

C
ω > 0.

To see the last inequality, let γ̇ be the velocity vector field of γ. Then

ω(γ̇, v) = ıvω(γ̇) = dµ(γ̇) = µ∗(dθ)(γ̇) = dθ(µ∗(γ̇)) > 0,
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where v is the symplectic vector field generated by the action and dµ is the pull

back of dθ.

For the second part of theorem, since we have shown that there is no fixed points,

C =
⋃

t∈S1

t · (γ)

is the image of a continuous map

F : T 2 → M

which induces a homomorphism

F∗ : π1(T
2) → π1(M)

The induced map can not be injective because a cyclic group can not contain

a copy of Z ⊕ Z. Therefore, there exists a homologically non-trivial loop on T 2

which is mapped to a null-homotopic loop. This implies that F is homotopic to

a map which maps this loop to a point. Thus C is the image of the composition

of a continuous map from S2 to T 2 (which identifies the poles of the sphere) with

a map to C as in Figure 3.1 .

C

q

X Y

Figure 3.1: C as image of a sphere

Therefore [C] is represented by a continuous map from a 2-sphere. But
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π2(M) = 0 implies [C] = 0 in H2(M,Z). On the other hand we have
∫

C
ω > 0

which is a contradiction again . Therefore there is no S1 action preserving ω.
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Chapter 4

π1 of hamiltonian S1 manifolds

4.1 Preliminaries

Definition 4.1.1. Let (M, ω) be a connected,compact, symplectic manifold such

that S1 acts on M in a Hamiltonian way. Let µ : M → R be a correspond-

ing moment map, which is a Perfect Morse-Bott function. For a ∈ im(µ), and

µ−1(a) = {x ∈ M | µ(x) = a} define

Ma = µ−1(a)/S1

to be the symplectic quotient or reduced space of M.

More generally we have the following theorem:

Theorem 4.1.2 (Marsden-Weinstein-Meyer). Let (M,ω, G, µ) be a Hamil-

tonian G-space for a compact Lie group G. Let ı : µ−1(0) ↪→ M be the inclusion

map. Assume that G acts freely on µ−1(0). Then

• The orbit space Mred = µ−1(0)/G is a smooth manifold

• π : µ−1 → Mred is a principal G-bundle, and

• there is a symplectic form ωred on Mred satisfying i∗ω = π∗ωred.

Here, the pair (Mred, ωred) is called the reduction, or the symplectic quo-

tient of (M, ω) with respect to G,µ, .

22



Remark 4.1.3. If a is a regular value of µ, and if the circle action on µ−1(a) is

not free, then Ma is an orbifold, and we have an orbi-bundle

S1 ↪→ µ−1(a)

↓
Ma.

If a is a critical value of µ, then Ma is a stratified space [13].

Example 4.1.4. Let

ω =
i

2

∑
dzj ∧ dzj =

∑
dxj ∧ dyj =

∑
rjdrj ∧ dθj

and assume S1 acts on (Cn, ω) with t ∈ S1 7−→ ψt, multiplication by eit. Then

the action ψ is hamiltonian with moment map

µ : Cn → R
z 7→ −|z|2

2
+ constant.

Since dµ = −1
2
d(

∑
r2
j ) we have

X] =
∂

∂θ1

+
∂

∂θ2

+ ... +
∂

∂θn

so that

ıX]ω = −
∑

rjdrj = −1

2

∑
dr2

j .

Now if we choose the constant to be 1/2, then µ−1(0) = S2n−1 is the unit sphere.

The orbit space of the zero level of the moment map is

µ−1(0)/S1 = S2n−1/S1 = CPn−1.

Hence, CPn−1 is a reduced space.
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4.2 Some Morse Theory

The aim of this chapter is to prove Li’s theorem which states that the fun-

damental group of the symplectic quotient is the same as that of the original

manifold. Namely we will prove:

Theorem 4.2.1. Let (M, ω) be a connected, compact symplectic manifold equipped

with a Hamiltonian S1 action. Then

π1(M) = π1(minimum) = π1(maximum) = π1(Mred),

where Mred is the symplectic quotient at any value in the image of moment map

µ.

Remark 4.2.2. Since the action is Hamiltonian, the moment map µ : M → R is

a perfect Morse-Bott function. Its critical sets are precisely the fixed point sets

MS1
of the S1 action, and MS1

is a disjoint union of symplectic submanifolds.

Each fixed point set has even index. By Atiyah, µ has a unique local minimum

and a local maximum. The spaces minimum and maximum in Theorem 4.2.1

are the level sets of these points.

In order to prove Theorem 4.2.1, we need some lemmas from Morse Theory.

We begin with a definition.

Definition 4.2.3. For any real number a ∈ R, define

Ma = {x ∈ M |µ(x) ≤ a}.

Lemma 4.2.4 ([10]). Assume [a, b] ⊆ im(µ) is an interval consisting of regular

values, then Ma is diffeomorphic to M b.

Lemma 4.2.5 ([10]). If c ∈ (a, b) is the only critical value of µ in [a, b], let

F ⊂ µ−1(c) be the fixed point set component, D− be the negative disk bundle of F

and S(D−) its sphere bundle. Then M b is homotopy equivalent to Ma∪S(D−) D
−.

Milnor states the above lemma in a different way:
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Lemma 4.2.6. Let f : M → R be a smooth function and let p be a non-degenerate

critical point with index λ. Setting f(p) = c suppose that F−1[c − ε, c + ε] is

compact and contains no critical points of f other than p, for some ε > 0. Then

for sufficiently small ε, the set M c+ε has the homotopy type of M c−ε with a λ-cell

attached.

Proof. (Sketch) The idea of the proof is as follows. Introduce a new function

F : M → R which coincides with the height function f except that F < f

in a small neighborhood of p. Thus the region F−1(−∞, c − ε) will consist of

M c−ε together with a region H near p. Choosing a suitable cell eλ ⊂ H, a direct

argument (i.e. pushing in along the horizontal lines) will show that M c−ε ∪ eλ is

a deformation retract of M c−ε ∪H. Finally, by applying previous lemma to the

function and the region F−1[c−ε, c+ε] we will see that M c−ε∪H is a deformation

retract of M c+ε.

These ideas can also be used in proving,

Lemma 4.2.7. Under the same hypothesis of Lemma 4.2.5 µ−1(a)∪S(D−) D
− has

the homotopy type of µ−1(c).

Also the quotients of the spaces by S1 in Lemma 4.2.7 will give,

Lemma 4.2.8. Under the same hypothesis of Lemma 4.2.5, M c has the same

homotopy type of Ma ∪S(D−)/S1 D−/S1.

Finally we will need the following lemma to prove the main result of this

chapter.

Lemma 4.2.9. Assume F is a critical set, µ(F ) ∈ (a, b) and there are no other

critical sets in µ−1([a, b]). If index(F ) = 2, then there is an emdedding i, from

F to Ma, such that S(D−) can be identified with the restriction of µ−1(a) to F .

i.e., we have the following bundle identification

S1 ↪→ S(D−)
g−→ µ−1(a)

↓ ↓
F

i−→ Ma.
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Proof. Since µ is a perfect Morse-Bott function its critical sets are even dimen-

sional manifolds of even index and coindex. As Atiyah noted, TpM splits as

TpM = TpF ⊕D+⊕D−, where D+ and D− are spanned by positive and negative

eigenspaces of ∇2(µ). Dimension of D− gives the index of F . Assume the positive

normal bundle D+ of F has rank m. We may arrange (by adding some constant)

µ so that, µ(F ) = 0. Since there are no other critical sets in µ−1([a, b]), we can

assume a = −ε and b = ε for ε small.

By the equivariant symplectic embedding theorem, a tubular neighborhood of F is

diffeomorphic to P×G(C×Cm), where G = S1×U(m) and P is a principle G bun-

dle over F . The moment map can be written µ = −p0|z0|2+p1|z1|2+···+pm|zm|2,
where p0, p1, ..., pm are positive integers. Then µ = −ε gives

p0|z0|2 = ε + p1|z1|2 + · · ·+ pm|zm|2 > 0.

Therefore z0 6= 0 and µ−1(−ε) = P ×G (S1 × Cm) and

µ−1(−ε)/S1 = P ×G (S1 × Cm)/S1.

To project the tubular neighborhood around F we must have z1 = z2 = · · · =

zm = 0. Therefore F is diffeomorphic to P×G(S1×0)/S1 ⊂ M−ε and the negative

sphere bundle of F , S(D−) is P ×G S1 which is the restriction of µ−1(−ε) to F

as required.

4.3 Proof of Li’s Theorem

Now we are ready to prove Theorem 4.2.1.

Proof. First we will prove π1(min) = π1(Mred) = π1(max).

Let’s put the critical values of µ in the order

minimal = 0 < a1 < a2 < · · · < ak = maximal.

For a ∈ (0, a1), by the equivariant symplectic embedding theorem, µ−1(a) is a
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sphere bundle over the minimum. Assume the fiber of this sphere bundle is S2l+1,

then Ma is diffeomorphic to a weighted CPl bundle over the minimum (possibly

an orbifold). Note that disk bundles are even dimensional so their sphere bundles

must be odd dimensional.

Setting F = µ−1(0), a tubular neighborhood v(F ) of F is diffeomorphic to

P ×G Cl+1.

Here G is just U(l + 1) but not S1 × U(·) because bundle is over the minimum.

P is a principle U(l + 1) bundle over F .

U(l + 1) → P

↓
F.

S1 acts on v(F ) by z(w1, ..., wl+1) = (zp1w1, ..., z
pl+1wl+1). If we had p1 = ... =

pl+1 = 1 then

Ma = P ×U(L+1) S2l+1/S1 = S2l+1/S1 = CPl.

In this case the action may not be free and thus the quotient may not be a smooth

manifold but an orbifold. Therefore Ma is diffeomorphic to a weighted projective

space denoted wCPl(which is an orbifold). This gives a fibration

wCPl → Ma

↓
F.

This fibration induces a sequence in homotopy groups

· · · → π2(F ) → π1(wCPl) → π1(Ma) → π1(F ) → 0.
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We claim that π1(wCPl) = 0. To prove the claim we use the following fact: If

K → Y

↓
X

is a fibration such that K is connected then π1(Y ) → π1(X) is onto.

To see this, note that by the homotopy lifting property any loop in X can be

lifted which is not necessarily a path. But since fibers are connected the lifts of

these paths may be completed to a loop. Now using the fact in the following

fibration
S1 → S2l+1

↓
wCPl

where S1 is clearly connected and π1(S
2l+1) = 0, we have proved result of the

claim. Therefore, we proved that π1(Ma) = π1(F ) = π1(minimum).

Next let b ∈ (a1, a2) and F ⊂ µ−1(a1) be the critical set. By Lemma 4.2.8,

Ma1 is homotopy equivalent to

Ma ∪S(D−)/S1 D−/S1

where Ma1 = µ−1(a1)/S
1. By Van-Kampen theorem we have

π1(Ma1) = π1(Ma) ∗π1(S(D−)/S1) π1(D
−/S1).

Since S(D−)/S1 is a weighted projectivized bundle over F and D−/S1 is homo-

topy equivalent to F we have π1(Ma1) = π1(Ma). This can be seen by analyzing

the induced homotopy sequence of the following bundle:

wCPl → S(D−)/S1

↓
F.
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We have π1(wCPl) = 0 in the sequence

· · · → π2(F ) → π1(wCPl) → π1(S(D−)/S1) → π1(F ) → 0

which implies the above result.

Now using −µ as above we can obtain π1(Mb) = π1(Ma1). By induction on the

critical values, repeating the argument each time µ crosses a critical level, we see

that if a′ ∈ (ak−1, ak), then π1(Ma′) = π1(minimum). Similar to the proof of

π1(Ma) = π1(minimum) when a ∈ (0, a1), we have π1(Ma′) = π1(maximum).

Therefore we proved that π1(Mred) = π1(minimum) = π1(maximum).

Next we prove π1(minimum) = π1(M).

If a ∈ (0, a1) then Ma is a complex disk bundle over the minimum i.e.,

D− → Ma

↓
F.

Since D− is contractible π1(M
a) = π1(F ) = π1(minimum).

Consider b ∈ (a1, a2) and let F ⊂ µ−1(a1) be the critical set. We have two cases

depending on the index of F .

If index(F ) = 2, by Lemma 4.2.5 we have M b = Ma ∪S(D−) D− so that

· · · → π2(Ma) → π1(S
1)

j→ π1(µ
−1(a))

f→ π1(Ma) → 0.

Since f is surjective the image of ker(f) = im(j) in π1(Ma) is 0. But we have

found that π1(Ma) = π1(M
a). Therefore, the image of ker(f) is also 0 in π1(M

a).

This implies that there is no new generator in the free product

π1(M
a) ∗π1(S(D−)) π1(F )

and hence we have π1(M
b) = π1(M

a) = π1(minimum).

The other case is when index(F ) > 2 which is almost obvious. Here we have the
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following fibration

Si → S(D−)

↓
F

where i ≥ 3 and its homotopy exact sequence is

π2(F ) → π1(S
i) → π1(S(D−)) → π1(F ) → 0

in which π1(S
i) = 0. Therefore π1(S(D−)) = π1(F ) and we have π1(M

b) =

π1(M
a).

By induction we get π1(M) = π1(minimum).
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