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ABSTRACT 

 

IDENTIFICATION  OF  

PERIODIC  AUTOREGRESSIVE  MOVING-AVERAGE  

MODELS 
 

Akgün,  Burçin 

M.S.,  Department  of  Statistics 

Supervisor:  Prof.  Dr.  H.  Öztaş  AYHAN 

Co-Supervisor:  Prof.  Dr.  Taylan  A.  ULA 

 

September  2003,  127  pages 

 

 

In  this  thesis,  identification  of  periodically  varying  orders  of  univariate  

Periodic  Autoregressive  Moving-Average  (PARMA)  processes  is  mainly  studied.   

 

The  identification  of  the  varying  orders  of  PARMA  process  is  carried  

out  by  generalizing  the  well-known  Box-Jenkins  techniques  to  a  seasonwise  

manner.  The  identification  of  pure  periodic  moving-average  (PMA)  and  pure  

periodic  autoregressive  (PAR)  models  are  considered  only.  For  PARMA  model  

identification,  the  Periodic Autocorrelation  Function  (PeACF)  and  Periodic  Partial  

Autocorrelation  Function  (PePACF),  which  play  the  same  role  as  their  ARMA  

counterparts,  are  employed.   

 

For  parameter  estimation,  which  is  considered  only  to  refine  model  

identification,  the  conditional  least  squares  estimation  (LSE)  method  is  used  

which  is  applicable  to  PAR  models.  Estimation  becomes  very  complicated,  



difficult  and  may  give  unsatisfactory  results  when  a  moving-average  (MA)  

component  exists  in  the  model.  On  account  of  overcoming  this  difficulty,  

seasons  following  PMA  processes  are  tried  to  be  modeled  as  PAR  processes  

with  reasonable  orders  in  order  to  employ  LSE.  Diagnostic  checking,  through  

residuals  of  the  fitted  model,  is  also  performed  stating  its  reasons  and  methods. 

 

The  last  part  of  the  study  demonstrates  application  of  identification  

techniques  through  analysis  of  two  seasonal  hydrologic  time  series,  which  

consist  of  average  monthly  streamflows.  For  this  purpose,  computer  programs  

were  developed  specially  for  PARMA  model  identification.  

 

Keywords:  PARMA  Process,  Periodic  Process,  Identification,  Autocorrelation  

Function, Partial  Autocorrelation  Function,  Least  Squares  Estimation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

ÖZ 
 

PERİYODİK   

OTOREGRESİF  HAREKETLİ-ORTALAMALAR  

MODELLERİNİN  BELİRLENMESİ 
 

 

Akgün,  Burçin 

Yüksek  Lisans,  İstatistik  Bölümü 

Tez  Yöneticisi:  Prof.  Dr.  H.  Öztaş  AYHAN 

Ortak Tez  Yöneticisi:  Prof.  Dr.  Taylan  A.  ULA 
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Bu  tezde,  Periyodik  Otoregresif  Hareketli–Ortalamalar  (PARMA)  

süreçlerinin  periyodik  olarak  değişen  derecelerinin belirlenmesi  esas  olarak  

çalışılmıştır. 

 

PARMA  sürecinin  değişken  derecelerinin  belirlenmesi,  iyi  bilinen  Box–

Jenkins  tekniklerinin  mevsimsel  bir  usule  genelleştirilmesiyle  gerçekleştirilmiştir.  

Yalnızca  periyodik  hareketli-ortalamalar  (PMA)  ve  periyodik  otoregresif  (PAR)  

modellerinin  belirlenmesi  dikkate  alınmıştır.  PARMA  model  belirlenmesi  için,  

ARMA  modellerindeki  karşılıklarıyla  aynı  rolü  üstlenen  Periyodik  Otokorelasyon  

Fonksiyonu  (PeACF)  ve  Periyodik  Kısmi  Otokorelasyon  Fonksiyonu  (PePACF)  

kullanılmıştır. 

 

 

Model  belirlemesini  iyileştirmek  amacıyla  uygulanan  parametre  tahmini  

için,  PAR  modellerine  uygulanabilir  olan  koşullu  en  küçük  kareler  tahmini  

metodu  kullanılmıştır.  Modelde  bir  hareketli–ortalamalar  (MA)  kısmı  



bulunduğunda  tahmin  çok  kompleks  ve  zor  bir  hale  gelmekte  ve  tatminkar  

olmayan  sonuçlar  verebilmektedir.    Bu  problemi  çözmek   için,  PMA  süreci  

izleyen  mevsimler  makul  dereceli  PAR  süreçlerine  dönüştürülerek  modellenmeye  

çalışılmıştır.  Uygunluk incelenmesi,  tahmin edilen  modelden  oluşan  artık  değerler  

aracılığıyla,  sebep  ve  metotları  açıklanarak  yapılmıştır. 

 

Çalışmanın  son  kısmı,  aylık  ortalama  su  akımlarından  oluşan  iki  

mevsimsel  hidrolojik  zaman  serisinin  analizi  aracılığıyla  belirlenme  tekniklerinin  

uygulanmasını  göstermektedir.  Bu  amaçla,  özel  olarak  PARMA  model  

belirlenmesi  için  bilgisayar  programları  geliştirilmiştir. 

 

Anahtar  Kelimeler:   PARMA  Süreci,  Periyodik  Süreç,  Belirlenme,  Otokorelasyon      

Fonksiyonu,  Kısmi  Otokorelasyon  Fonksiyonu,  En  Küçük  

Kareler  Tahmini 
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CHAPTER 1 

 

INTRODUCTION 
 

 

1.1  Introduction  to  Time  Series 

 

A  time  series   { }TtX t ∈;    can  be  defined  as  an  ordered  sequence  of   

random  variables  over  time,  where  T  denotes  an  index  time  points  set.  It  is  the  

historical  record  of  some  activity,  with  observations  taken  at  equally  spaced  

intervals.  

 

Much  of  statistical  methodology  deals  with  models  in  which  the  

observations  are  assumed  be  independent.  However,  a  great  deal  of  data  in  

business,  economics,  engineering  and  natural  sciences  occur  in  the  form  of  time  

series  where  observations  are  dependent  and  where  the  nature  of  this  internal  

structure  is  of  interest  itself.  This  obvious  correlation  resulted  from  collecting  

the observations  over  time  severely  restrict  the  applicability  of  many  traditional  

statistical  methods  depending  on  the  assumption  that  these  adjacent  observations  

are  independent  and  identically  distributed.  On  the  other  hand,  the  body  of  

techniques  available  for  the  analysis  of  such  series  of  dependent  observations  is  

called  time  series  analysis.  In  most  statistical  problems,  estimating  the  

properties  of  a  population  from  a  selected  sample  is  of  concern.  In  time  series  

analysis,  however,  it  is  often  impossible  to  have  more  than  a  single  observation   

 

 

at  a  given  time  point. 

 

The  number  of  areas  in  which  time  series  are  observed  and  analyzed  is  

endless.  Virtually  any  quantity  recorded  over  time  yields  a  time  series.  In  



economics  the  recorded  history  of  the  economy  is  often  in  the  form  of  time  

series,  the  natural  sciences  and  social  sciences  also  supply  many  examples  of    

time  series. 

 

The  fundamental  aim  of  time  series  analysis  is  generally  two-fold:  to  

understand  and  identify  the  stochastic process  that  produced  the  observed  series  

and,  in  turn,  to  forecast  future  values  of  a  series  from  past  values  alone. 

 

1.2 Preliminaries 

 

Being  a  stochastic  process  consisting  of  sequential  random  variables,  in  

time  series  analysis  some  assumptions  had  to  be  set  in  order  to  make  statistical  

analysis  based  on  a  finite  observed  record.  The  most  vital  and  common  such  

assumption  in  time  series  techniques  is  the  stationarity.  The  basic  idea  of  

stationarity  is  that  the  probability  laws  ruling  the  process  do  not  change  with  

time  -  that  is,  the  process  is  in  statistical  equilibrium. 

 

Specifically,  a  time  series  is  said  to  be  strictly  stationary  if  the  joint  

distribution  of  
nttt XXX ,,,

21
Κ   is  the  same  as  the  joint  distribution  of 

knkk ttt XXX
+++

,,,
21

Κ ,  hence  its  statistical  properties  are  unaffected  by  a  change  

of  time  origin.  In  addition,  a  series  is  said  to  be   covariance  stationary  (or,  

second-order  stationary)  if  its  mean  function  is  constant  over  time  and  its  

second  order  moments  are  functions  of  time  difference  (which  is  termed  lag  )  

only,  i.e.,  its  first  and  second  order  moments  do  not  depend  on  time  t.  The  

version  of  strict  stationarity  is  too  strong  for  most  applications,  hence  second- 

 

 

order  type  of  stationarity  is  the  most  common  version  and  is  often  sufficient  in  

practice.  In  addition,  a  strict  stationary  process  is  always  covariance  stationary,  

while  the  opposite  is  satisfied  if  and  only  if  the  covariance  stationary  process  



is  normally  distributed.  In   this  thesis,  the  term  “stationary”  when  used  alone  is  

taken  to  mean  “covariance  stationary”.  

 

Further,  there  is  an  important  consequence  of  stationarity.  The  fact  that  

the  covariance  of  a  stationary  process  do  not  depend  on  time  but  only  on  time  

lag  allows  us  to  define  a  fundamental  quantity  of  time  series  analysis:  the  

autocovariance  function  (ACVF).  This  leads  to  the  autocorrelation  function  

(ACF)  and  partial  autocorrelation  function  (PACF).  The  autocorrelation  

functions  are  easier  to  interpret  since  they  are  unitless;  they  provide  insight  into  

the  dependence  between  the  observations  of  the  series,  besides,  they  are  

essential  tools  in  model  identification  stage  which  will  be  analyzed  later  in  

detail.  

 

One  of  the  primary   objectives  of   time  series  analysis  is  to  develop  

mathematical   models  which  describes  the  character  of  the  process.  A  broad  

parametric  family  of  such  models  is  the  Autoregressive  Moving-Average              

(ARMA)  models  (or,  Box-Jenkins  models)  which  are  stationary  time  series  

models.  Before  specifying  the  three  special  models  of  ARMA  family,  it  should  

be  noted  that  a  time  series  generated  from  zero-mean,  finite  variance,  

uncorrelated  variables  is  called  a  “white  noise”  series,  it is  not  only  an  

interesting  model  itself,  but  also  many  useful  models  can  be  constructed  from  

white  noise.  If  a  series  is  represented  as  a  linear  combination  of  the  present  

and   q   past  terms  of  a  white  noise  process,  then  it  is  the  so-called  Moving-

Average  (MA (q))  model,  where   q  denotes  the  order  of  the  model.  Secondly,  if  

a  series  is  a  linear  combination  of  the  p  most  recent  lagged  (past)  values  of   

itself  plus  a  noise  term  is  added,  then  it  is  called  as  an  Autoregressive  model  

of  order  p  (AR (p)).  And,  the  mixed  type  of  series  which  are  explained  both   

 

 

by  its  own  lagged  values  and  by  lagged  noise  terms  is  called  as  Autoregressive  

Moving-Average  models  of  order  (p, q),  denoted  by  ARMA (p, q).  A  general  

mathematical  expression  of  an  ARMA (p,  q)  model  is  given  as 



 

 

      qtqttptpttt aaaXXXX −−−−− −−−++++= θθφφφ ΛΛ 112211  

 

for  all integers  t,  where  { }ta  is  a  white  noise  process,  and  the  φ   and  θ   

coefficients  are  the  autoregressive  (AR)  and  moving-average  (MA)  parameters  

respectively.  Note  that,  when  p  =  0,  the  process becomes  a  pure  moving-

average  (MA)  model,  and  when  q  =  0,   it  becomes  a  pure  autoregressive  (AR)  

model. 

 

This  systematic  class  of  stationary  time  series  models  carries  great  

importance  and  usefulness  especially  in  real-life  situations.  If  the  process  is  

stationary,  then  one  shall  seek  a  suitable  ARMA   model  to  represent  the  data. If  

not,  then  first  of  all  stationarity  must  be  achieved  by  for  example,  differencing,  

and  this  leads  to  the    Autoregressive  Integrated  Moving  Average  ( ARIMA )  

models,  which  are  nonstationary  models  that  surely  become  stationary  after  

appropriate  differencing.  All  these  models  mentioned  up  to   now  are  widely  

studied  in  the  literature,  and  efficient  methodologies  for  their  identification  and  

estimation  are  well  developed. 

 

1.3  PARMA  Models 

 

Time  series  which  display  a  periodic  structure  are  often  faced  in  real  

life,  for  example,  in  economic,  geophysical  and  hydrologic  time  series.  If  a  

strong  and  stable  seasonal  component  causes  a  series  to  be  nonstationary,  it  is  

usually  passed  through  a  filter  or  an  appropriate  seasonal  differencing  is applied.   

 

 

An  ARIMA  extended  class  of  models  that  accounts  for  modeling  univariate  

seasonal  time  series  is  the  widely used  multiplicative  seasonal  autoregressive  

integrated  moving  average  models  (Box  and  Jenkins,  1976).  Those  are  

(1.1) 



nonstationary  models  which  can  be  transformed  into  stationary  ARMA  processes  

after  applying some  appropriate  differencing.   

 

Seasonal  ARIMA  models  considers  a  very  simplified  form  of  seasonality,  

which  means  that  despite  its  usefulness,  implicit  in  such  models  is  the  

assumption  of  homogeneity  or   time  invariance,  that  is,  the  seasonally  

differenced  series  is  sure  to  become  stationary.  However,  many  seasonal  time  

series  cannot  be  filtered,  standardized  or  differenced  to  achieve  second-order  

stationarity  because  the  series  exhibits  a  strong  seasonal  behaviour  such  that  the  

entire  correlation  structure  of  the  series  depends  on  the  season,  hence  such  

homogeneity  assumption  sometimes  fails  (Tiao  and  Grupe,  1980) .  For  instance,  

in  a  river  where  high  runoffs  occur  in  the  spring  and  low  flows  occur  in  the  

summer,  the  streamflow  correlations  between  spring  months  may  be  different  

from  the  correlations  between  summer  months  (Vecchia,  1985).  A  more  realistic  

family  of  models  characterizing  those  kind  of  seasonal  time  series  is  the  

Periodic  Autoregressive  Moving  Average  (PARMA)  models,  which  are  actually  

extensions  of  ARMA  models  in  which  the  model  orders  and  parameters  are  

allowed  to  vary  among  seasons.  It  should  be  pointed  out  that,  a  PARMA  

model  is  again  of  PARMA  type  even  after  seasonal  differencing.  Shortly,  it  can  

be  said  that    PARMA  model  is  somewhat  a  periodic  version  of  the  ordinary  

ARMA  model,  yet  any  PARMA  model  can  also  be  expressed  as  a  vector  

ARMA  model  which  will be  shown  fully  later.  Being  completely  different  from  

seasonal  ARIMA  models,  PARMA  is  a  more  realistic  but  complicated  class  of  

models  which  are  fully  suited  to  the  nature  of  sesonal  time  series. 

 

PARMA  processes  are  receiving  considerable  attention  in  many  different  

fields.  For  instance,  they  have  found  wide  applications  in  modeling  hydrological   

 

 

time  series  (Delleur  et  al.,  1976;  Salas  et  al.,  1980;  Vecchia,  1985),  in  signal  

processing  (Sakai,  1982),  and  in  climatology  (Hannan,  1955;  Monin,  1963;  

Jones  and  Brelsford,  1967).     



 

The  univariate  ω-period  PARMA  model  with varying  orders  (p(1),q(1); 

p(2),q(2); ... ;p(ω),q(ω)),  denoted  by  PARMAω(p(v),  q(v)),  is  defined  as  
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where  v  is  the period  index  (  v = 1,...,  ω ),   k  is  the  year  index  ( k=0,±1, ±2,…) 

and  )(v
iφ    and  )(v

iθ   are  the  autoregressive  and  moving-average  coefficients,  

respectively,  during  season  v.  Further,  the  periodic  sequence  { }vka +ω   is  a  white  

noise  process  with  mean  zero  and  periodic  variance  )(2 vaσ .  In  this  model,  it  is  

assumed  that  0)( =+vkXE ω .  If,  however,  0)( ≠=+ vvkXE µω ,  then  without  loss  

of  generality  vkX +ω   is  replaced  by  vvkX µω −+ .  It  is  seen  appearently  that,  (1.2)  

is  simply  an  extension  of  the  standard  ARMA  difference  equation  with  orders  

and  coefficients  varying  among  seasons.   If  p(1)  =  ...  =  p(ω)  =  0,  then  it  is  

called  a  pure  periodic  moving-average  model  and  denoted  by  PMAω( q(v) ),  and  

if  q(1)  =  ...  =  q((ω)  =  0,  then  it  becomes  a  pure  periodic  autoregressive  model  

which  is  denoted  by  PARω( p(v) ).  Furthermore,  if the  white  noise  terms  are  

independently  and  normally  distributed,  then  (1.2)  is called  a  Gaussian  PARMA  

process. 

 

Writing  the  time  index  parameter  t   as   kω  +  v  gives  a  more  practical  

understanding  besides  displaying  the  periodicity  notationally.  For  example,  in  

the  case  of  a  quarterly  data  where  ω  =  4  and  say  (k  +  1)   and  v  represents  

the  year  and  the  season,  (v  =  1,  2,  ..., ω) ,  respectively,  it  is  easily  understood   

 

that  time  point  11  means  the  3rd  season  of  year  3.  The  subscripts  in  (1.2),  

must  be  between  1  and  ω.  So,  whenever  )( lv −   is  less  than  or  equal  to  zero,  

number  of  periods  ω   is  added  to  the  subscript,  so  that  when  0=− lv ,  

(1.2) 



this  time  point  in  fact  belongs  to  season  ω,  and  1−=− lv   belongs  to  

season   -1  +  ω,  and  so  on.  Furthermore,   the  speciality  in  the  formula  (1.2)  is  

that  for  a  year,  k,  the  model  is  represented  by  a  number  of  ω  equations,  such  

that  a  different  ARMA  model  is  presented  for  each  season  v  of  the  process. 

 

Any  PARMA  model  can  be  expressed  as  a  vector  ARMA  model  which  

is  the  so-called  “lumped”  vector  process,  whose  elements  are  the  seasonal  

variables  for  all  ω  periods.  Consider  a  periodic  process  { }vkX +ω ,  the  lumped  

vector  process  is  then  denoted  for  all  integers  k  by 
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For  a  PARMAω(p(v),  q(v))  process  with  periodically  varying  orders,  it  is  

known  that  { }kY ,  which  is  referred  as  the  lumped-vector  process,  follows  a  ω-

variate  ARMA ( p*,  q* )  process  (Tiao and Grupe, 1980),  where   
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where  [x]  denotes  the  integral  part  of  the  x. 

 

When  modeling  a  time  series  with  an  ordinary  ARMA  model,  recall  that  

it  is  necessary  to  assume  that  the  series  is  stationary,  and  if  not,  it  should  be  

(1.3) 

(1.4) 



transformed  into  stationary  type.  In  much  the  same  manner,  PARMA  models  

requires  periodic  covariance  stationarity,  i.e.,  its  mean  and  autocovariance  

function  are  periodic  functions  of  time  with  period  ω :  that  is,  the  first  and 

second  order  moments  of  the  process  do  depend  on  the  period  and  the  lag  but   

 

not  on  the  absolute  time,  and  hence  it  imposes  some  constraints  on  AR  

parameters  (Vecchia,  1985;  Ula,  1990;  Ula  and  Smadi,  1997). If  it  is  shown  

mathematically, 
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 The  periodic  stationarity  conditions,  however,  are  not  easily  stated  in  

terms  of  the  PARMA  model  as  defined  by   (1.2)  but  can  be  deduced from  its  

vector  ARMA  counterpart.  Gladyšev  (1961)  proved  that  a  periodic  process  with  

period  ω  is  periodically  stationary  if  and  only  if  the  ω -variate  vector  process  

is  stationary.  As  a  result,  the  periodic  stationarity  of  a  PARMA  process  is  

equivalent  to  the  stationarity  conditions  of  its  corresponding  lumped-vector  

process  whose  stationarity  conditions  depend  only  on  the  AR( p* )  part  and  are  

readily  available.  The  lumped  ARMA ( p*,  q* )  process  is  stationary  if  and  only  

if   the  ωp*  roots  of  the characteristic  equation  are  all  less  than  1  in  absolute  

value  (Fuller  1976,  p. 72-73).  Similarly,  the  invertibility  of  a  PARMA  process  

is  equivalent  to  the  invertibility  of  its  corresponding  lumped-vector   process,  

whose  invertibility  conditions  depend  only  on  the  MA ( q* )  part.  Invertibility  is  

not  a  prerequisite  to  analysis  of  PARMA  processes  and  not  covered  in  this   

 

 

study,  however,  it  is  important  to  state  that  an  ARMA  model  can  be  written  as  

an  infinite  order  AR  model  if  and  only  if  it  is  invertible,  and  same  statement  

holds  for  PARMA  case  too. 

 

(1.5) 



Analysis  of  PARMA  models  is  usually  based  on  some  extension  of  Box-

Jenkins  approach  to  a  periodic  case.  Periodic  stationarity  of  the  PARMA  model  

leads  to   a  periodic  autocovariance  function  (PeACVF),  periodic  autocorrelation  

function  (PeACF),  and  periodic  partial  autocorrelation  function  (PePACF)  in  

analogy  with  the  periodic  versions  of  ordinary  ACVF,  ACF  and  PACF  of  a  

sttaionary  process.  PeACF  and  PePACF  functions  can  be  used  for  model  

identification.   

Literature  on  PARMA  models  is  scarce  compared  to  univariate  and  

multivariate  ARMA  models.  Tiao  and  Grupe  (1980)  explored  some  properties  

of  the  periodic  models  investigating  the  consequences  of  applying  standard  

analysis  to  periodic  data  and  stated  the  relationships  between  periodic  models  

and  multiple  autoregressive  moving  average  models.  Tiao  and  Grupe  (1980),  

and  Salas,  et  al.  (1982)  considered  models  containing  both  periodic  

autoregressive  and  moving  average  parts  and  investigated  their  correlation  

properties.   

 

Gladyšev  (1961),  Vecchia  (1985),  Ula  (1990),  and  Ula  and  Smadi  (1997)  

investigated  the  various  aspects  of  periodic  stationarity  conditions  for  PARMA  

models.  Ula  and  Smadi  (1997)   showed  that  periodic  covariance  stationarity  

conditions  for  univariate  and  multivariate  PARMA  processes  can  be  reduced  to  

eigenvalue  problems  which  are  analytically  easier  to  deal  with.  The  ω-span  

lumping  over  all  ω  periods  and  the  p-span  lumping  of  the  pth  order  PAR  

process  over  p  periods  are  investigated  respectively  and  it  is  shown  that  the  p-

span  lumping  provides  the  periodic  stationarity  conditions  in  an  analytically  

simpler  form  as  compared  to  the  ω-span  lumping  in  case  of  p  <  ω .  Whatever  

the  AR  order  p*   of  the  lumped  vector  is,  the  stationarity  conditions  can  be   

 

 

reduced  to  an  eigenvalue  problem  (Fuller,  1976,  p.50;  Barone  and  Roy,  1983;  

Barone,  1987;  Smadi  and  Ula,  1997).   

 



 Anderson  and  Vecchia  (1993)  developed  some  asymptotic  results  for  the  

sample  periodic  autocorrelation  function  of  univariate  PARMA  processes.  Sakai  

(1982)  studied  partial  autocorrelations  of  PAR  processes.   

 

Smadi  (1994),  Smadi  and  Ula  (1998),  and  Ula  and  Smadi  (2003a) 

studied  the  identification  of  periodic  moving-average  (PMA)  models  by  using  

PeACF.  Again  Ula  and  Smadi  (2003b)  considered  the  identification  of  PAR  

models  by  making  use  of  PePACF.  Authors  derived  some  useful  results  from                      

available  asymptotic  theory  for  obtaining  band  limits  on  sample  PeACF  and  

sample  PePACF.  

 

The  estimation  of  PARMA  models  has  received  considerable  attention.  

Jones  and  Brelsford  (1967)  considered  moment  estimation  for  periodic  

autoregressive  models.  Vecchia  (1985)  gave  an  overview  of  some  of  the  more  

useful  results  regarding  correlation  structure  and  parameter  estimation  presenting  

some  correlation  properties  of  PARMA  processes,  discussing  the  moment  

estimation  and  maximum  likelihood  estimation  and  also  demonstrated  an  

application  of  those  techniques.  Again  Vecchia  (1985)  developed  an  

approximation  to  the  exact  likelihood  for  Gaussian  PARMA  process,  and  a  

straightforward  algorithm  for  its  maximization  is  presented.  Lund  and  Basawa  

(1998)  explored  recursive  prediction  and  likelihood  evaluation  techniques  for  

PARMA  and  developed  a  simple  recursive  scheme  for  computing  one-step-

ahead  predictors  and  their  mean  squared  errors  using  the  innovations  algorithm.  

Anderson,  Meerschaert,  and  Vecchia  (1999)  developed  the  innovations  algorithm  

for  periodically  stationary  processes  and  showed  how  to  obtain  estimates  for  the  

parameters  of  the  PARMA  model.  Again,  Basawa  and  Lund  (1999)  studied  the  

asymptotic  properties  of  parameter  estimates  for  casual  and  invertible  PARMA   

 

 

models  and  derived  a  general  limit  result  for  PARMA  parameter  estimates   with  

a  moving  average  component . 

 



 1.4  Aims  and  Scope  of  the  Study 

 

The  primary  aim  of  this  thesis  study  is  to  contribute  to  the  identification  

of  the  seasonally  varying  orders  of  the  PARMA  model  and  to  develop  a  

practical  program  which  decides  those  orders.  The  absence  of  a  real  life  

application  to    the  model  identification  process  of  a  periodically  stationary  

PARMA  type  series  is  the  main  motivation  behind  this  thesis.     

 

Analysis  of  PARMA  models  is  established  on  the  extension  of  Box-

Jenkins  methodology  to  a  seasonwise  case.  The  definition  and  a  brief  

introduction  of   PARMA  models  was  presented  in  this  chapter.  In  addition,  the  

determination  of  the  periodic  stationarity  conditions  of  PARMA  processes  was  

explained.  Since  PARMA  models  are  quite  new  compared  to  others  of  the  

similar  kind,  many  aspects  about  them  are  still  shaded. 

 

Chapter  II  focuses  on  identification  of  PARMA  models  showing  that  

periodic  autocorrelation  function,  PeACF  and  periodic  partial  autocorrelation  

function,  PePACF  serve  as  essential  tools  for  the  choice  of  a  suitable  model, 

similar  to  the  ACF  and  PACF  as  in  ARMA  model  identification.  Both  PeACF  

and  PePACF  have  similar  cut-off  and  sampling  properties  with  ordinary  ACF  

and  PACF  in  the  case  of  pure  PMA  and  PAR  processes  respectively.  Emphasis  

is  given  on  the  properties  and  results  of  the  sample  periodic  ACF  and  sample  

periodic  PACF,  and  the  asymptotic  bands  are  developed  for  the  decision  of  the  

cut-off  situations  of  these  periodic  functions.  The  more  complicated  problem  of  

mixed  PARMA  identification  is  not  covered  in  this  study,  since  no  general  

method  is  available. 

 

Although  estimation  of  PARMA  models  is  not  a  major  objective  in  this  

thesis,  Chapter  III  considers  the  model  estimation  in  order  to  refine  the  model  

identification  stage  and  achieve  a  final  specification  of  the  most  appropriate  

model  among  suitable  candidates.  The  estimation  of  PARMA  models  is  not  

straightforward,  especially  the  estimation  of  mixed  PARMA  models  and  PMA  



models  is  technically  difficult.  Since  it  is  not  the  intention to  go  far  into   the  

details  of  estimation  algorithms  in  this  study,  Chapter  III  involves  the  least  

squares  estimation  (LSE)  method  for  periodic  autoregressive  (PAR)  models,  

both  its  versatility  and  pitfalls;  re-expressing  periodic  moving-average  (PMA)  

models  as  large  order  PAR  models  to  perform  LSE;  and  the  basics  of  model  

diagnostics  which  are  performed  on  the  residuals  of  the  fitted  model. 

 

In  Chapter  IV,  application  on  two  actual  hydrologic  series,  namely  Atnos  

Creek  and  Nilüfer  Creek,  is  presented.  The  usage  and  results  of  the  computer  

programs  developed  especially  for  model  identification  is  demonstrated.  Besides,  

a  program  which  performs  LSE  for  PAR  models  is  given.  The  mentioned  

programs  are  created  in  Visual  Fortran,  Professional  Edition  5.0A.  All  three  

stages  of  model  development,  i.e.,  model  identification,  estimation  and  

diagnostic  checking  are  illustrated  with  the  Atnos  series,  such  that  the  

concluded  orders  for  each  season,  the  results  of  the  diagnostic  checks  and  the  

general  model  representing  the  whole  process  are  given  for  Atnos  series.  For   

Nilüfer  series,  only  model  identification  is  proceeded  again  presenting  a  

seperate  model  for  each  season  and  a  general  model  representing  the  whole  

process. 

 

Finally,  in  Chapter  V,  summary  and  conclusions  on  the  findings  are  

given. 

 

 

 

 

 

 

 

 

 



CHAPTER  II 
 

IDENTIFICATION  OF  PARMA  PROCESSES 
 

 

There  are  three  basic  stages  to  fitting  a  model  to  a  time  series  data,  

these  stages  involve  model  identification,  parameter  estimation  and  model  

diagnostics. 

 

Model  identification  is  the  identification  of  a  possible  model  based  on  

an  available  realization,  i.e.,  determining  the  type  of  the  model  with  appropriate  

orders. Parameter  estimation  is  the  estimation  of  the  model  parameters.  At  this 

stage, the orders of the model may be further reduced by significance tests on 

parameters.  Diagnostic  checks  are  directed  to  the  residuals  of  the  fitted  model 

to verify the assumptions on the white noise terms such as independence and 

normality. If  verifications  fail,  model  identification  stage  is  to  be  repeated 

leading  to  a  new  possible  model.  

 

For  ARMA  models,  the  autocorrelation  function  (ACF)  and  the  partial  

autocorrelation  function  (PACF)  serve  as  useful  indicators  of  the  correlation  or  

of  the  dependence  between  the  values  of  the  series  so  that  they  play  an  

important  role  in  model  identification  (Box  and  Jenkins,  1976).  This  chapter  

considers  the  identification  of  the  seasonally  varying  orders  of  PARMA  

processes  making  use  of  two  similar  functions,  namely  Periodic  Autocorrelation  

Function  (PeACF)  and  Periodic  Partial  Autocorrelation  Function  (PePACF).  The   

choice  of  orders  of  the  MA  and  AR  parts  requires  a  detailed  analysis  of  these   

 

functions,  respectively,  whose  shape  and  value  determine  the  order  of  the  

model.  It  should  be  pointed  out  that,  this  thesis  considers  the  identification  of   

pure  PAR  and   pure  PMA  models  only.  No  satisfactory  generalized  method  is  

available  for  deciding  the  mixed  PARMA  model  orders.  

 



The  determination  of  period  ω  is  not  considered  in  this  study,  since  in 

practice,  it  is  often  known  by  the  nature  of  the  data  collected.   

 

2.1  Periodic  Autocorrelation  Function 

 

For  the  univariate  periodic  stationary  PARMA  process   { }vkX +ω   defined  

by  (1.2),  in  which  the  white  noise  terms  { }vka +ω   are  assumed  to  be  

independent,  the  periodic  autocovariance  function  ( PeACVF )  is  defined  as 
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for  season  v  at  backward  lag   l  ≥  0. 

 

Then,   the   PeACF  for   season  v  at  backward  lag  l  ≥  0  is  defined  as   
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where )(0 vγ   is the variance  for  the  vth  season  and  { }vkZ +ω   denotes  the  

periodically  standardized  time  series. 

 

A  delicate  point  is  that,  )(vlρ   is  defined  for  nonnegative  time  lags  

only,  since  it  is  not  symmetric  with  respect  to  time  lag  l,  that  is,  

(2.1) 

(2.2) 



)()( vv ll −≠ ρρ .  This  is  because  the  periodic  autocovariance  function  )(vlγ   is  

not  strictly  equal  to  )(vl−γ ,  unless  l  is  a multiple  of  the  period  ω.  However,  it  

can   be  shown  that  (Smadi,  1994;  p.29) 

 

                    ( ) ( ) )()( )( lvZZEZZEv lllvklvklvkvkl −=== −−−−+−+−++ ρρ ωωωω  

 

Another  important  point  is  that  the  ordinary  ACF  of  a  stationary  series  

goes  to  zero  as  time  lag  increases.  A  similar  property  holds  also  for  )(vlρ   

that,  for  a  univariate  periodic  stationary  PARMA  process ,  )(lim vll ρ∞→   =  0  for  

any  season  v  (Smadi,  1994;  p.29). 

 

 From  the  point  of  identification,  an  important  property  of  the  PeACF  is  

that,  for  a  season  following  a  pure  PMA  (q(v))  process,  such  that  q(v)  >  0  and  

p(v)  =  0,  which  is  given  by, 
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then  )(vlρ   =  0  for  all  l  >  q(v),   which  is  namely  the  cut-off  property  of  the  

autocorrelation  function  of  pure  MA  processes.  However,  in  applications  only  a  

finite  series  is  available  in  hand,  thus,  only  the  estimate  of  the  theoretical  

PeACF  can  be  obtained  and  used  as  a  tool  to  check  whether  vth  season  follows  

a  pure  PMA  or  not  and  to  decide   its  order  q(v). 

 

 

2.1.1  Sample  Periodic  Autocorrelation  Function 

 

Let  { }ωNXXX Κ,, 21   be  a  series  of  size Nω  ( say,  N  years  and  ω  

periods )  coming  from  a  periodic  stationary  process  { }vkX +ω .  Then  the  sample  

estimate  of  )(vlρ   is  called  as  the  sample  periodic  autocorrelation  function  and  

it  is  given  by, 

(2.4) 
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where  )(ˆ vlγ   is  the  sample  periodic  autocovariance  function  calculated  from 

 

,))((1)(ˆ
1

0
∑
−

=
−−++ −−=

N

k
lvlvkvvkl XXXX

N
v ωωγ  

 

in  which   

 

∑
−

=
+=

1

0

1 N

k
vkv X

N
X ω  

 

is  the  sample  mean  for  season  v.  In  addition,  the  terms  in  (2.6)  are  set  to  zero  

whenever  kω  +  v  -  l  <  1.   If  it  is  assumed  that  the  white  noise  terms  are  

independent  and   normal,  so  that  { }vkX +ω   is  a  Gaussian  PARMA  process,  then  

proved  by  Pagano  (1978),  )(ˆ vlγ   are  consistent,  asymptotically  independent,  joint  

normal  and  unbiased  estimates  and  converge  almost  surely to  )(vlγ .  Besides,  

vX   are  also  consistent  and  unbiased  estimates  of   vµ . 

 

 The  asymptotic  properties  of  the  ordinary  sample  ACF  of  stationary  

ARMA  processes,  have  been  extensively  studied  in  the  literature,  Bartlett  (1946)   

 

has  originally  derived  the  asymptotic  normality  and  unbiasedness  of  the  sample  

ACF  and  asymptotic  variance-covariance  matrix  has  been  specified  by  Box  and  

Jenkins  (1976; p. 35).  These  results  were  then  generalized  to  periodic  stationary  

processes  by  Anderson  and  Vecchia  (1993).  The  sampling  properties  of  )(vrl   

can  not  be  easily  obtained.  Even  the  expected  value  of  )(vrl   is  difficult  to  

find,  so  one  might  expect  that  the  variance  of  the  estimated  PeACF  is  much  

more  complicated  and  daunting. 

(2.5) 

(2.6) 

(2.7) 



 

An  approximate  solution  for  the  first  and  second  order  moments  of   

)(vrl   is  obtained  by  Smadi  (1994),  pretending  that  the  sample  means, vX ,  and  

variances, )(ˆ0 vγ ,  in  the  formula  of  )(vrl   are  equal  to  their  population  

counterparts, vµ   and  )(0 vγ ,  respectively.  Such  an  assumption  will  obviously  be  

reasonable  for  large  samples  owing  to  the  consistency  of  those  estimates  as  

mentioned  before.  Moreover,  Smadi’s  result  is  somewhat  an  approximate  version  

of  the  fairly  complicated  formula  of  Anderson  and  Vecchia  (1993),   it  only  

differs  in  terms  of  third  and  higher  orders,  which  are  usually  negligible,  and  

more  importantly,  Smadi  (1994)  showed  that  his  result  is  identical  with  that  of  

Anderson  and  Vecchia  (1993)   for  pure  PMA  processes  and  as  applicable  as  

theirs. 

 

Consequently,  { }vkX +ω   being  a  periodic  stationary  PARMAω(p(v),  q(v))  

process,  if  an  arbitrary  season  v  follows  a  MA (q(v))  process  as  given  by  (2.4),  

then  for  positive  integers  l  >  q(v),  the  following   results  are  derived  for    

[ ])(vrVar l   (Smadi,  1994); 

 

(I) For   q(v)  <  ω, 

a. [ ] [ ]{ } )(,)(11)( 2 vqlv
N

vrVar ll ≤+≅ ρ  

b. [ ] )(,1)( vql
N
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(II) For   kω  ≤  q(v)  <  (k+1)ω,  k=1,2,… 
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c. if  )()( vqlvq ≤<−ω  
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d. and  if  )(vql >  
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Case (b)  of  part  I  and  (d)  of  part  II,  which  are  both  defined  for  

)(vql > ,  are  relevant  to  the  assessment  of  the  cut-off  property  of  the  PeACF.  

Thus,  these  two  cases  will  lead  to  the  computation  of  band  limits  of  the  

sample  periodic  autocorrelation  function.  

  

The  result  of  Anderson  and  Vecchia  (1993)  about  )(vrl   being  

asymptotically  normal  with  mean  )(vlρ   and  variance  [ ])(vrVar l   as  given  in  the   

 

 

above  formula  is  applied  for  identification  of  a  season  v  which  follows  a 

PMA (q(v))  process.  Hence,  the  large  sample  distribution  of   )(vrl   is  normal  

with  mean  zero  and  variance  (2.8) - I(b)   as  long  as   q(v)  <  ω  and   l  >  q(v),  

so  that  the  approximate  95%  band  ( )NN /96.1,/96.1−   is  applied  to  the  

sample  PeACF  where  -1.96  and  1.96  are  the  upper  α/2-point  and  lower α/2-

point  of  standard  normal  distribution  when  significance  level  α  is  equal  to  0.05.  

And,  as  q(v)  ≥  ω  and  l  >  q(v),  (2.8) - II(d)  should  be  used,  so,  the  

(2.8) 



approximate  95%  band  ( ))((96.1,)((96.1 vrVarvrVar ll−   should  be  applied  with  

unknown  periodic  autocorrelations  replaced  by  their  estimates.  Shortly,  for  a  

season  v  which  follows  a  pure  PMA  process,  successive  values  for   q(v)  is  

checked  initially  with   q(v) = 1  according  to  the  appropriate  band  limits.  

Therefore,  the  final  lag  of  which  the  value  of  sample  PeACF  falls  outside  the  

band  limits  indicates  the  order  of  the  MA  process  of  the  corresponding  season. 

 

2.2   Periodic  Partial  Autocorrelation  Function 

 

In  time  series  analysis,  the  partial  autocorrelation  function  is  well  

adapted  to  the  identification  of  pure  AR  processes.  The  partial  autocorrelation  

function,  like  the  autocorrelation  function,  carries  vital  information  about  the  

dependence  structure  of  a  stationary   series. 

 

If  vth  season  of  a  univariate  PARMAω(p(v),  q(v))  process  { }vkX +ω   

follows  pure  AR  process  such  that  p(v)  >  0,  and  q(v)  =  0,  given  by, 
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then  this  equation  can  be  considered  as  a  classical  “regression”  equation,  in  

which  the  present  value  of  the  series,   Xkω+v   is  regressed  on    its  own   p   most   

 

 

recent  past  values    Xkω+v-1 ,..., Xkω+v-p .  

 

The  periodic  partial  autocorrelation  function  ( PePACF ),  )(vllφ ,  is  

pursued  as  a   measure  of  the  exact  relationship  between   Xkω+v   and  Xkω+v-l ,   

removing  the  effect  of  the  intervening  observations  and  it  is  defined  for  

integers  l  ≥  1  as 

 

(2.9) 

(2.10) 



( )11 ,,,)( +−+−+−++= lvkvklvkvkll XXXXCorrv ωωωωφ Κ  

 

A  regression  interpretation  of  PePACF  is  given  by  Smadi  (1994),  and  

Ula  and  Smadi  (submitted  for  publication  to  Environmetrics,  2003b). 

 

It  was  mentioned  that  for  a  pure  PMA  process,  the  PeACF  is  zero  for  

lags  beyond  q(v)  and  the  order  of  the  process  can  be  decided  according  to  the  

sample  PeACF.  Likewise,  for  pure  PAR  processes,  the  PePACF  becomes  zero  

for  lags  beyond  p(v),  so  if  the  correct  order  is   p(v)  for  season  v,  then  

0)( =vllφ   for  all  l  >  p(v).  This  is  the  cut-off  property  of   periodic  partial   

autocorrelation  function  for  PAR  processes. 

 

For  the  computation  of  the  PePACF,  )(vllφ ,  Sakai’s  (1982)  algorithm  for  

calculating  )(vllφ   iteratively  is  used.  This  approach  is  as  follows:   

 

 

(1)  Initial   Conditions 
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(2)  Order  update  from  p  to  p+1  (p=0,1,2,…) 

 

i. Compute; 
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ii. Update; 
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                   and  for  i  =  1,2,…,p, 
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iii. Calculate; 
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where  )(vlγ   is  the  periodic  autocovariance  function  as  defined  before  and  the  

subscript  v-l  =  0  is  always  replaced  by  ω  again  as  mentioned  in  previous  

chapter. 

 

2.2.1  Sample  Periodic  Partial  Autocorrelation  Function   

 

Similar  to  that  of  PeACF,  this  time  the  sample  PePACF,  denoted  by  

)(ˆ vllφ ,  is  a  valuable  identification  tool  and  can  simply  be  obtained  from  (2.11)  

by  replacing  the  periodic  autocovariances, )(vlγ ,  by   their  corresponding  sample  

(2.11) 



estimates, )(ˆ vlγ .  Besides  developing  the  mentioned  algorithm  for  the  calculation  

of  PePACF,  Sakai  (1982)  also  derived  the  distribution  of   )(ˆ vllφ :  If  a  season  v  

follows  a  PAR (p(v))  process,  then  for  all  v  and   l  >  p(v),   )(ˆ vllφ   are  

asymptotically  independent,  and  normally  distributed  with  zero  mean  and  

variance  1/N.    Therefore,  for  large  N,  for  order  identification,  the  approximate  

95%  band  )/96.1,/96.1( NN−   should  be  applied  for  )(ˆ vllφ   for  all  l  >  p(v),  

again  -1.96  and  1.96  representing  the upper  α/2-point  and  lower α/2-point  of  

standard  normal  distribution  when  significance  level  α  is  equal  to  0.05.  Hence,  

the  final  lag  of  which  the  value  of  sample  PePACF  falls  outside  the  band  

limits  indicates  the  order  of  the  AR  process  of  the  corresponding  season. 

 

As  being  a  sequence  of  uncorrelated  zero-mean  and  finite   variance  

random  variables,  white  noise  is  also  one  of  the  most  important  time  series  

models  and  needs  an  identification  rule  either.  Henceforth,  for  an  arbitrary  

season  v,  if  the  values  of  both  sample  PeACF  and  sample  PePACF  all  lie  

within  )/96.1,/96.1( NN−   band  limits,  then  that  season  is  said  to  follow  a  

white  noise  process. 

     

 

 

 

 

 

 

 

CHAPTER  III 
 

ESTIMATION  OF  PARMA  MODELS 
 

 



The  main  motivation  behind  this  thesis  is  to  emphasize  on  model  

identification  as  stated  many  times.  However,  in  order  to  refine  model  

identification  and  achieve  the  selection  of  the  most  appropriate  model,  model  

estimation  and  diagnostic  checks  will  also  be  handled  in  a  simple  manner. 

 

Once  an  appropriate  model  is  proposed  for  the  periodic  process  using  

identification  procedures,  next  stage  is  to  estimate  the  model  parameters.  

Estimation  and  likelihood  evaluation  methods  for  PARMA  processes  remain  

complicated  (see  various  references  in  Section  1.3).  Further,  when  the  number  

of  seasons,  ω,  is  large,  estimation  becomes  harder,  since  this  large  number  of  

seasons  results  in  a  ω-fold  increase  in  the  number  of  parameters  to  be  

estimated.  

 

The  method  of  moments,  least  squares  estimation  method  and  maximum  

likelihood  estimation  method  are  widely  used  parameter  estimation  methods  in  

statistical  inference  and  in  time  series  analysis  as  well.  The  method  of  

moments  is  one  of  the  most  common  in  time  series  context  but  it  has  serious  

disadvantages  for  some  situations.  Although  method  of  moments  can  produce  

good  estimators  in  the  case  of  pure  AR  processes,  they  lead  to  unsatisfactory  

or  even  infeasible  estimates  when  the  model  involves  an  MA  component.   

 

 

Further,  estimation  becomes  difficult  because  a  number  of  non-linear  equations  

arise  which  are  to  be  solved  simultaneously.  Similarly,  for  PAR  processes,  

method  of  moments  is  straightforward  and  satisfactory,  but  same  problems  arise  

for  PARMA  and  PMA  processes.  Pagano  (1978)  showed  that  the  moment  

estimators  of  a  univariate  Gaussian  PAR  process  are  almost  surely  consistent,  

asymptotically  efficient  and  asymptotically  joint  normal  and  unbiased.  

 

Secondly,  it  is  known  from  standard  AR  model  estimation  that  the  

conditional  least  squares  (LS) procedures  can  be  used  to  obtain  efficient  

estimators  for  the  parameters  of  AR  model  since  AR  equation  is  somewhat  



similar  to  the  classical  regression  equation.  This  fact  also  holds  for  PAR  

models  adopting  the  LS  method  to  a  seasonwise  case  in  order  to  obtain  LS  

estimates  of  PAR  parameters.  The  term  conditional  actually  comes  from  the  

conditional  likelihood  function  which  will  be  explained  later  in  brief.  Moreover,  

LS  estimates  are  superior  to  method  of  moments  estimates  for  small  samples,  

yet  for  large  samples  the  difference  between  the  estimates  of  two  methods  is  

negligible.  A  significant  feature  of  the  conditional  LS  is  that,  if  the  PAR  

process  is  Gaussian,  then  the  conditional  LS  estimates  are  identical  with  the  

conditional  maximum  likelihood  (ML)  estimates. 

 

Smadi  (1994;  pp.74-84)  compared  the  three  estimation  methods,  namely  

the  method  of  moments,  method  of  conditional  LS,  and  method  of  conditional  

ML,  theoretically  and  also  through  a  simulation  study  for  three  different  PAR  

models  and  investigated  their  behaviours  for  various  cases.  He  showed  that,  all  

methods  produce  estimates  which  are  close  to  the  actual  values  of  the  

parameters,  and  conditional  LS  estimates  and  conditional  ML  estimates  of  the  

PAR  parameters  are  same;  and  also  identical  to  moment  estimates  except  for  

some  initial  seasons  in  which  some  observations  are  lost.  Finally,  he  concluded  

that  the  conditional  LS  estimates  are  superior  to  moment  estimation  in  terms  of  

bias  and  mean  squared  error. 

 

If,  however,  more  accurate  and  efficient  estimates  are  required,  then  

exact  (unconditional)  MLE  should  be  considered.  On  the  other  hand,  it  is  very   

 

difficult  to  obtain  the  exact  likelihood  function  as  an  explicit  function  of  the  

parameters  even  for  standard  ARMA  models,  that  it  becomes  indeed  more  

tedious  for  PARMA  family.  Moreover,  very  complicated  numerical  optimization   

routines  are  required  for  maximization  of  the  resulting  non-linear  equations.   

     

Since  it  is  not  the   intention  to  go  far  into  the  details  of  estimation  

algorithms  in  this  study,  only  the  least  squares  estimation  technique  for  PAR  

processes  will  be  discussed  and  used  pointing  some  important  problems.   
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If  noise  terms  { }vka +ω   are  set  alone  on  the  left  hand   side  of  the  equations  

above,  then  the  conditional  sum  of  squares  is  written  as   
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again  [ x ]  representing  the  integral  part  of  the  real  number  x.  Note  that,  the  

equations  involving  any   unknown  observations  like   X0 ,  X-1 ,  X-2  are  omitted,  

so  that  the  sum  of  squares  for  season  v,  Sv ,  contains  only  N-kv   terms.  The  

term  “conditional”  is  related  to  this  fact  that,  for  example  1a   can  not  be  

(3.1) 

(3.2) 

(3.3) 



obtained  since  it  involves  unknown  observations,  so  that  the  summation  in  

formula  (3.2)  starts  from   vk .  Here,  it  should  be  noted  that  the  conditional  ML  

estimates  can  be  obtained  optimizing  the  conditional  likelihood  function,  

conditional  with  respect  to  X1  in  (3.2),  which  is  assumed  to  be  fixed. 

 

It  can  be  seen  from  (3.2)  that,  each  season  v  has  its  own  sum  of  

squares  of  errors  Sv  and  those  sum  up  to  the  conditional  sum  of  squares  S.  

Thus,  it  is  appearent  that,  for  any  season  v,  minimizing  S  with  respect  to  phi  

coefficients  in  order  to   obtain  least  squares  estimates  ( LSE )  is  equivalent  to  

minimizing  Sv  for  each  season  seperately.  In  addition,  if  the  process  has  a  non-

zero  mean,  then  minimizing  Sv  loses  its  simplicity  and  becomes  problematic.  It  

is  because  the  conditional  sum  of  squares,  Sv,  involves  parameters  except  

seasonal  ones  (vth  season  parameters ),  so  that  seasonwise  minimization  can  not  

be  performed.  This  non-zero  mean  problem  is  usually  achieved  by  estimating  

vµ   by  vX ,  the  sample  mean  of  season  v  and  adding  an  intercept  parameter  in  

the  regression  equation  for  each  season.  

 

Generalization  of  the  least  squares  method  for  regression  to  a  seasonwise  

case  is  straightforward,  yet  it  brings  some  vital  assumptions.  The  classical   

 

regression  theory  crucially  assumes  that  the  regressor  (or,  independent)  variables  

are  nonrandom.  However,  in  many  situations,  the  assumption  about  regressors  

being  nonrandom  is  inappropriate.  Autoregressive  models  in  time  series  analysis  

is  one  such  situation,  where  the  regressors  are  observations  from  a  stochastic   

process  and  they  are  the  lagged  - or,  past -  values  of  the  response  variable.  

Fortunately,  most  of  the  results  concerning  LS  parameter  estimation  still  holds  

for  the  situations  where  regressors  are  random  provided  that  the  response  and  

regressor  variables  are  distributed  as  multivariate  joint  normal.  The  multivariate  

joint  normality  is  satisfied  if  the  process  is  a  Gaussian  PAR  process,  i.e.,  if  the  

white  noise  terms  in  the  model  are  assumed  to  be  independent  and  normal.   

  



The  problem  of  regressors  being  random  is  overcome  this  way.  

However,  another  pitfall  is  that,  in  PAR  processes,  the  response  variables,  i.e.,  

the  dependent  variables  of  regression  are  correlated,  since  one  is  a  past  or  

future  value  of  another.  This  gravely  violates  the  assumption  of  independence  

between  response  variables.  On  the  other  hand,  this  problem  is  negligible  in  a  

periodic  process,  since  for  any  season  v,  responses  will  be  at  least  ω  units  far  

apart  from  each  other,  so  that  the  correlation  will  be  very  weak  by  the  nature  

of  autocorrelation  especially  for  large  seasons  ω,  which  means  independence  for  

a  Gaussian  process.  Note  that  the  uncorrelation  of   the  variables  also  implies  

their  independence  if  and  only  if  the  process  is  Gaussian,  so  a  Gaussian  PAR  

model  satisfies  the  independence  assumption  of  regression  theory,  too. 

 

The  overall  difficulties  of  pursuing  estimation  to  MA  models  were  

explained  in  the  beginning  stating  the  reasons,  so  that  if  any  season  v  is  

decided  to  follow  a  PMA  model,  again  the  least  squares  estimation  will  be  

applied.  At  first  glance,  it  is  not  appearent  how  a  LSE  method  can  be  applied  

to  MA  type  models,  since  they  do  not  have  the  form  of  a  classical    regression  

equation   like  AR  models.  However,  it  is  known  that  any  invertible  MA  model  

can  be  expressed   as  an  infinite  order  AR  model,  but  in  practice  that  infinite   

 

 

order  is  of  course  finite,  yet  reasonably  large  to  represent  the  autocorrelation  

behaviour  of  the  series.  Thus,  LS  method  can  be  meaningfully  carried  out  by  

setting  a  maximal  value  for  AR  order.  Hence,  in   this  thesis,  seasons  which  are   

found  to  follow  pure  PMA  processes  are  re-expressed  as  PAR  processes,  setting  

some  maximal  orders  p(v)  and  fitting,  in  turn,  the  most  suitable  PAR  model   

 

according  to  the  results  of  hypothesis  tests  which  are  similar  to  the  tests  on   

individual  regression  coefficients  in  multiple  regression  (Newbold, 1994;  p.723).  

These  tests  concerning  the  individual  PAR  coefficients  of  any  arbitrary  season,    
)(v

iφ ,  (i = 1, 2, ..., p(v)),  have  the  following  alternatives:  
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The  mentioned  maximal  order  may  be  set  as  a  sufficiently  large  lag  number  

and  then  significance  testing  is  employed  iteratively.  Finally,  this  iterative  

procedure  terminates  when  a  value  p(v)  is  found  for  which  the  null  hypothesis  

is  rejected.  An  application  of  this  method  will  be  shown  in  Chapter  IV. 

 

Besides  estimating  PAR  parameters  with  regression  method,  the  model  

diagnostics,  which  are  the  the  last  and  third  stage  of  model  development,  are  

performed  by  using  residuals  of  the  fitted  model. 

 

Diagnostic  checking,  or  model  criticism,  is  concerned  with  the  goodness-

of-fit   of  a  model,  and,  if  the  fit  is  poor,  suggests  necessary  modifications  

which  means  that  the  whole  process  of  model  identification,  estimation  and  

diagnostic  checking  must  be  repeated.  The  analysis  on  residuals  resulting  from  

the  fitted  model  is  one  approach  for  diagnostic  checking. 

  

Recall  from  the  definition  of  PARMA  process  given  in  (1.2)  that,  the  

sequence  of  error  terms,  { }vka +ω ,  is  assumed  to  be  zero-mean,  finite  variance,  

uncorrelated  variables,  which  is  named  as  white  noise.  In  particular,  

independence  and  normality  assumptions  are  added  for  estimation.  Diagnostic  

checks,  shortly,  test  if  these  assumptions  on  error  terms  are  verified  or  not.  

Therefore,  these  checks  include  the  following  analysis  on  residuals  of  a  fitted  

model: 

 

 

1. if  residuals  are  random  (independent)  or  not 

2. if  residuals  are  white  noise  or  not 

3. if  residuals  are  normally  distributed  or  not 

 

(3.4) 



In   order  to  test  the  randomness  of  residuals,  Runs  Test  is  performed.  

Runs  Test  is  a  nonparametric  procedure  for  examining  whether  or  not  a  set  of  

observations  are  of  a  random  nature,  whose  null  hypothesis  that  residuals  come  

from  a  random  process  is  tested  against  the  opposite  alternative. 

 

By  the  end  of  Chapter  II,  it  was  given  that  a  series  is  said  to  be  white  

noise  if  its  ACF  and  PACF  values  all  fall  inside   N/96.1±   limits.  Hence, in  

order  to  test  the  white  noise  assumption  on  residuals,  the  ACF  and  PACF  plot  

of  the  residuals  are  analyzed. 

 

The  normality  of  residuals,  which  provides  stronger  conclusions  on  the  

model,  is  tested  through  the  Anderson – Darling  Test  for  Normality.  The  null  

hypothesis  that  residuals  follow  normal  distribution  is  tested  against  the  opposite  

alternative.  The  critical  values  for  the  test  are  dependent  on  the  specific  

distribution  that  is  being  tested,  and  the  tabulated  values  are  available  for  a  

few  of  them  like  normal,  lognormal,  exponential  etc..  If  the  normality  

assumption  is  not  achieved,  then  it  means  that  transformation  is  needed,  such  

as  logarithmic  transformation  or  some  other.  Transformation  of  a  series  in  order  

to  satisfy  normality  is  however  not  covered  in  this  study.  All  these  tests  

concerning  diagnostic  checks  are  performed   through  MINITAB, Release  13.1. 

 

 

 

 

 

CHAPTER  IV 

 

APPLICATION 
 

 



This  thesis  is  intended  to  emphasize  on  PARMA  model  identification  

and  to  offer  practical  computer  programs  which  compute  sample  seasonal  

means,  autocovariances  and  autocorrelations,  mainly  perform  model  identification  

using  PeACF  and  PePACF,  and estimate  parameters  of  pure  PAR  processes  

using  LSE  method  for  any given  actual  series  displaying  periodic  structure.  

Thus,  in this  chapter,  the  usage  of  the  mentioned  programs  which  are  listed  

fully  in  appendices,  is  demonstrated  by presenting  applications  on  two  seasonal  

hydrologic  time  series.  The  model  identification  is  applied  utilizing  the  

programs  provided  in  Appendix  B  and  C.  

 

The  program  in  Appendix  B  computes  the  sample  PeACF  with  

corresponding  band  limits,  specifies  the  significant  lags  and  decides  the  suitable  

PMA  model  for  each  season  of  the  series,  and  the  other  program  in  Appendix  

C  computes  the  sample  PePACF,  and  similarly  decides  the  suitable  PAR  model  

for  each  season.  The  least  squares  estimation,  hypothesis  testing  and  diagnostic  

checking  are  performed  through  MINITAB  statistical  software,  Release  13.1.  

Though,  for  seasons  which  surely  follow  PAR  models,  LSE  can  either be  

performed  utilizing  the  program  in  Appendix  D. 

 

Both  series  considered  consist  of  average  monthly  streamflows  (in m3 / 

sec.)  which  are  presented  in  Appendix  E.  Data  is  obtained  from  Book  of   

Average  Monthly  Streamflow  of  EIE  which  is  available  in  Water  Resources  

Division,  Dept.  Of  Civil  Eng.,  METU.  First  series  is  observed  from  Atnos 

Creek,  Balıkesir,  while  the  second  one  from  Nilüfer  Creek,  Bursa  and  their  

time  plot  are  given  in  Figure  4.1.1  and  Figure  4.2.1  respectively. 

 

All  three  stages  of  model  development,  i.e.,  identification,  estimation  and    

diagnostic  checking  are  illustrated  with  the  first  series,  while  only  the  model  

identification  is  proceeded  with  the  second.   

 



4.1 Application  on  Atnos  Creek 

 

The  series  consists  of  average  monthly  streamflow  (in m3 / sec.)  values  

for  the  Atnos  Creek  in  Balıkesir,  Turkey  from  October  1963  to  September  

1995,  where  season  1  corresponds  to  October  and  season  12  corresponds  to  

September.  The  number  of  observations  is  396,  and  since  observations  are  

recorded  monthly,  the  period  ω  is  equal  to  12.  The  time  plot  of  the  series  is  

given  in  Figure  4.1.1  in  which  the  periodic  behaviour  is  appearent.  
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                Figure  4.1.1  Time  plot  of  Atnos  Creek 

In  Table  4.1.1,  the  sample  means  and  sample  variances,  which  are  

computed  through  the  program  listed  in  Appendix A,  is  presented  for  each  of  

12  seasons.  

 

 

Table  4.1.1  Sample  statistics  for  seasons  of  Atnos  Creek 

 

    

 

 

Season 
v  

Sample  Mean 
vX  

Sample  Variance 
)(ˆ0 vγ  

 
1 
2 
3 
4 
5 
6 
7

 
             1.50961 
             3.56882 
           17.29515 
           23.66397 
           23.05264 
           18.99136 

10 94206

 
0.77816 

              5.15689 
          345.30518 
          425.31482 
          389.47153 
          107.54240 

52 33360



 

 

 

 

 

 

 

 

 

 

 

Once  deciding  on  a  PARMA  type  model,  the  next  step  is  the  

identification  of  suitable  models  for  each  12  seasons  of  Atnos.  This  task  is  

done  by  executing  the  programs  listed  in  Appendix  B  and  Appendix  C,  whose  

outputs  are  the  values  of  PeACF  and  PePACF,  respectively,  with  the  

corresponding  band  limits  from  which  the  significant  lags  are  specified.   

  

4.1.1 Model  Identification 

 

The  sample  PeACF  and  sample  PePACF  graphs  for  each  12  seasons  are  

presented  in  Appendix  F  in  which  the  autocorrelation  and  partial  autocorrelation   

values  are  drawn  versus  time  lag.  In  practice,  maximum  lag  is  taken  as  one  

fourth  of  the  number  of  years,  however,  this  value  here  is,  N / 4 = 33 /4 ≈ 8,  

which  is  very  small  to  give  an  appropriate  decision  on  identification.  Therefore,  

maximum  lag  number  is  taken  as  16  in  these  graphs.  Recall  from  the  sampling  

properties  of  the  sample  PeACF  that,  its  variance  and  hence  the  band  limit  

changes  only  when  the  order,  q(v),  of  the  PMA  process  is  greater  or  equal  to  

ω,  otherwise  it  stays  fixed  at  a  value  of  N/96.1µ . The  PeACF  and  PePACF  

graphs  of  season  1  is  given  below  in  Figure  4.1.2  (a) - (b),  respectively,  as  an  

example. 

         Figure  4.1.2  (a)  Sample  PeACF  of  season  1  of  Atnos 



Figure  4.1.2  (b)  Sample  PePACF  of  season  1  of  Atnos 

 

Also,  as  an  example  of  the  computer  output,  Table  4.1.2  is  given  again  

for  the  first  season  of  Atnos.  Significant  lags,  if  exists,  are  marked  with  a  star. 

 

 

       Table  4.1.2  PeACF  and  PePACF  of  Atnos  season  1  

 

 
Lag 

       

  
- Band 

 
PeACF 

 
+ Band 

  
- Band 

 
PePACF 

 
+ Band 

 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

 
-0.34119 
-0.34119 
-0.34119 
-0.34119 
-0.34119 
-0.34119 
-0.34119 
-0.34119 
-0.34119 
-0.34119 
-0.34119 
-0.34119 
-0.34218 
-0.34789 
-0.34593 
-0.33975 

 
0.20607 
0.06580 
0.00544 
0.03297 
0.09381 
0.07441 
-0.08915 
0.07272 
0.08802 
-0.01287 
-0.17599 
0.03313 
-0.17061 
-0.21697 
-0.11187 
0.03685 

 
0.34119 
0.34119 
0.34119 
0.34119 
0.34119 
0.34119 
0.34119 
0.34119 
0.34119 
0.34119 
0.34119 
0.34119 
0.34218 
0.34789 
0.34593 
0.33975 

  
-0.34119 
-0.34119 
-0.34119 
-0.34119 
-0.34119 
-0.34119 
-0.34119 
-0.34119 
-0.34119 
-0.34119 
-0.34119 
-0.34119 
-0.34119 
-0.34119 
-0.34119 
-0.34119 

 
0.20607 
-0.05808 
-0.06865 
0.01659 
0.11492 
0.03028 
-0.16695 
0.02569 
0.04751 
-0.08444 
-0.21865 
0.20096 
-0.27924 
-0.18766 
0.25950 
0.12160 

 
0.34119 
0.34119 
0.34119 
0.34119 
0.34119 
0.34119 
0.34119 
0.34119 
0.34119 
0.34119 
0.34119 
0.34119 
0.34119 
0.34119 
0.34119 
0.34119 

 

 

Analyzing  the  PeACF  and  PePACF  together,  which  are  presented  in  

Appendix  F,  respectively,  it  can  be  said  that  the  first,  second,  third  and  the  

fourth  seasons  follow  white  noise  process  without  any  doubt,  since  all  values  

fall  inside  the  bands  for  both  functions.  

 

For  season  five,  6th  lag  in  PeACF  is  outside  the  bands,  but  since  that  

value  is  close  to  band  limits,  it  may  be  ignorable.  And  in  PePACF  all values  

fall  inside  band   limits.  This  indicates  that  the  process  may  be  an  MA(6)  or  



 

 

white  noise  with  a  negligibly  small  correlation  close  to  the  band  value,  where  

the  latter  one  is  more  plausible,  but  final  decision  will  be  given  after  

estimation  and  diagnostic  checks. 

 

In  season  six,  both  PeACF  and  PePACF  show  cut-off  after   lag  13,  but  

since  PeACF  shows  better  cut-off,  this  season  is  said  to  follow  MA(13)  model. 

On  the  other  hand,  since  only  PAR  models  is  to  be  specified  in  this  section  in  

order  to  employ  LSE,  this  MA (13)  should  be  re-expressed  as  an  AR  model  of  

sufficient  order  which  will  be  investigated  in  the  next  section. 

 

It  is  appearant  that  season  seven  follows  a  MA (2)  model  with  its  

perfect  cut-off  after  lag  2  of  PeACF.  Note  that  PePACF  shows  a  very  large  

value  greater  than  the  limits  lately.  That  is,  season  seven    follows  a  MA (2)  

model. 

 

Analyzing  the  PeACF  &  PePACF  of  season  eight,  one  may  claim  that  

this  season can  either  be  a  MA (5)  or  an  AR (5)  since  both  functions  show  cut-

off  after  lag  5.  Since  PePACF  enjoys  better  cut-off  and  it  is  proper  to LS  

estimation,  AR (5)  is  preferred  as  the  suitable  model  for  this  season. 

 

In  season  nine,  it  is  clear  that  the  PeACF  shows  cut-off  after  lag  1  

while  PePACF  insists  not  to  because  of  its  14th  lag.  This  indicates  that  season  

nine  follows  a  MA (1)  process. 

 

Season  ten  and  season  eleven  are  indeed  troublesome;  for  both  seasons  

neither  PeACF  nor  PePACF  show  satisfactory  cut-offs.  However,  in  season  ten,  

compared  to  PePACF,  it  is  seen  that  PeACF  values  lie  within  bands  after  lag  

12,  i.e  the  season  may  be  claimed  to  follow  a  MA (12)  model.  In  addition,  for  

season  eleven,  MA(13)  seems  to  be  the  suitable  model. 

 



Season  twelve  may  follow  a  MA (2)  model  since  PeACF  displays  

satisfactory  cut-off  after  lag  2,  and  PePACF  cuts-off  after  lag  14.  Hence,  this  

season  has  a  MA(2)  model. 

 

To  sum up,  PMA  and  PAR  models  are  recommended  for  each  twelve  

seasons  of  Atnos  Creek  indicating  four  white noise,  one  AR,  and  seven  MA  

models.  The  results  of  initial  models  recommended  in  this  section  is  

summarized  in  Table  4.1.3.  The  final  decisions  on  model  specification,  which  

are  summarized in  Table  4.1.4,  will  be  made  after  estimation  and  diagnostic  

checking.   

 

 

Table  4.1.3  Model  identification  for  Atnos  Creek  

prior  to  estimation  and  diagnostic  checks 

 

 
Season 

v 

 
p(v) 

 
q(v) 

 
Model 

 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
 

 
0 
0 
0 
0 
0 
0 
0 
5   
0 
0 
0 
0 
 

 
0 
0 
0 
0 
6 
13 
2 
0   
1 
12 
13 
2 

 
   White Noise  (WN) 
   WN 
   WN 
   WN 
   MA(6) 
   MA(13) 
   MA(2) 
   AR(5) 
   MA(1) 
   MA(12) 
   MA(13) 
   MA(2) 

    

 

 

 

 

 



4.1.2 Model  Estimation 

 

Prior  to  PAR  estimation  for  Atnos  series,  a  short  description  on  the  

method  and  hypothesis  test  should  be  given.  As  mentioned  before,  the  equation  

of  a  PAR   model  can  be  considered  as  a  multiple  regression  equation,  so  that  

estimation  and  testing  of  PAR  coefficients,  can  be  carried  out  similar  to  that  of  

individual  regression  coefficients.  Therefore,  tests  concerning  the  individual  PAR  

coefficients  of  an  arbitrary  season,  )(v
iφ  ( i = 1, 2, ..., p(v) ),  have  the  following  

alternatives  
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where  the  test  is  based  on  the  fact  that,  the  parameter  estimator  divided  by  its  

estimated  standard  error  follows  t-distribution  when  the  null  hypothesis  is  true.  

The  test  statistic,  then,  is 

   

 

 

 

where  )(ˆ v
iφ   is  the  parameter  estimate  and  )ˆ( )(v

ise φ   is  its  standard  error.  The  

null  hypothesis  is  rejected  with  a  significance  level  of  α  if  absolute  value  of  

the  calculated  t-stat  is  greater  than  the  tabulated  value. 

 

In  the  previous  section,  models  have  been  tentatively  specified  much  or  

less  for  each  season,  and  with  regard  to  those  specified  models,  this  section  

considers  parameter  estimation  by  LSE.  Also  note  that,  since  all  seasons  are  

found  to  have  non-zero  mean,  an   intercept  parameter  must  be  added  into  the  

models  and  estimated  in  turn.   
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(4.1) 

(4.2) 



Since  for  the  first  through  fourth  seasons,  white  noise  process  is  found  

suitable  which does  not  contain  any  parameters,  but  only  uncorrelated  terms,  

estimation  is  not  of  consideration. 

 

For  season  five,  we  doubt  of  an  MA (6)  model  or  a  white  noise  process  

with  a  negligibly  small  value  of  autocorrelation  at  6th   lag.  This  MA (6)  model  

is  expressed  initially  as  an  AR (15)  model  where  maximum  lag  l = 15  is   

 

decided  to  be  the  maximal  order  set  following  the  procedure  explained  a  

chapter  before.  To  gain  further understanding,  the  mentioned  method  is  shown  

here  with  an  example  on  season  five.  For  instance,  fixing  the  maximal  order  

p(5)   as  15,  i.e.,  p(5) = 15,  the  fitted  AR(15)  is, 

 

,...2,1,387.24212.096.28 1012412512 =−++= −++ kXXX kkk Κ  

 

 

where  the  values  in  parantheses  beneath  the  coefficient  estimates  are  the  

corresponding  p-values  of  the  t-test.  It  is  obvious  that  the  null hypothesis  that   

0)5(
15 =φ   is  accepted  by  0.05  significance  level  since  0.05 <  0.186,  so  omitting  

this  parameter  from  the model,  next  AR(14)  model  is  fitted  as, 

 

 ,...2,1,1384.04303.050.16 912412512 =+++= −++ kXXX kkk Κ  

 

 

Since  the  null hypothesis  that   0)5(
14 =φ   is  also  accepted  at  0.05  significance  

level,  AR(13)  should  be  tried  in  turn.  Accordingly,  the  hypothesis  tests  will  

continue  to  proceed  until  the  appropriate  PAR  order  p(5)  is  found  for  season  

five.  Not  all  of  the  trials  are  presented,  but  as  the  procedure  performed,  all  

null  hypotheses  are  accepted  with  5%  significance  level.  Thus,  this  season  can   

 

 

             (0.117)     (0.107)                         (0.186) 

             (0.298)     (0.107)                         (0.637) 

(4.3) 

(4.4) 



not  be  modeled  with  a  PAR  process  and  white  noise  claim  is  accepted  to  be  

proper. 

Season  six  which  is  said  to  follow  an  MA (13)  model,  is  here  

reconsidered  as  an  AR (15)  initially,  whose  starting  null  hypothesis  is  )6(
15φ   

being  equal  to  zero,  is  terminated  at  lag  13.  Hence,  AR (13)  can  possibly  be  

suitable  for  this  season. 

 

Exactly  the  same  statements  cover  season  seven,  which  follows  MA(2),  

too,  but  this  time  the  AR  model  of  maximal  order  15  iterates  until  lag  2,  i.e.,  

season  seven  can  be  modeled  as  an  AR (2)  model. 

 

Season  eight  is  decided  to  be  an  AR (5)  model  and  LSE  is  applied  by  

MINITAB.  Besides,  since  this  season is  claimed  to  be  an  AR(5)  doubtless,  the  

program  listed  in  Appendix  D  can  directly  be  utilized  also  in  order  to  obtain  

LS  estimates  of    )8(
1φ   through   )8(

5φ    along  with  the  resulting  residuals. 

 

For season  nine,  MA(1)  model  is  also  reconsidered  as  an  AR  model 

beginning  with  an  order  of  15  and  ending  at  1,  so  that  season  nine  can  

possibly  be  modeled  as   AR(1). 

 

For  seasons  ten  and  eleven,  beginning  with  AR (15),  the  trials  end  at  

lag  10  for  season  10,  and  at  12  for  season  eleven.  Hence,  AR (10)  and  AR(12)  

are  said  to  be  the  appropriate  models  for  seasons  ten  and  eleven,  respectively. 

 

MA(2)  model  was  specified  for  the  12th  and  the  last  season,  and  the  

iterative  tests  end  at  lag  8  this  time,  so  that  season  twelve  can  possibly  be  

modeled  as  an  AR(8)  model.   

 

 

 

 

Table  4.1.4  Model  identification  for  Atnos  Creek  after  estimation  



 

 
Season 

v 

 
p(v) 

 
q(v) 

 
Model 

 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
 

 
0 
0 
0 
0 
0 
13 
2 
5   
14 
11 
11 
8   
 

 
0 
0 
0 
0 
0 
0 
0 
0   
0 
0 
0 
0   

 
   WN 
   WN 
   WN 
   WN 
   WN 
   AR(13) 
   AR(2) 
   AR(5)   
   AR(1) 
   AR(10) 
   AR(12) 
   AR(8) 

    

 

In  view  of  this  section,  some problems  must  be  stated  which  especially  

arise  because  of  trying  to  model  all  seasons  as  PAR  processes.  Firstly,  it  is  

seen  that  re-expressing  a  PMA  process  as  a  PAR  process  results  in  a  

significant  increase  in  the  number  of  parameters  which  is  not  a  desired  

situation  since  it  hardens  the  estimation  and  most  of  all  violates  the  parsimony.  

In  addition,  when  the  order  of  PAR  model  is  tried  to  be  reduced  more  than  

the  specified  one  according  to  significance  tests,  it  is  seen  that  diagnostic  

checks  become  unsatisfactory.  It  should  be  stated  that,  if  PAR  models  which  

are  found  suitable  and  used  instead  of  PMA  model  do  have  very  large  orders,  

then  this  method  loses  its  meaning  and  usefulness.  The  problem  of  estimation  

of  PMA  processes  may  be  achieved  by  other  estimation  methods  like  MLE,  but  

then  mathematical  difficulties  shall  arise.  However,  a  new  method  for  the  

preliminary  estimation  of  the  MA  parameters  is  proposed  by  Monti (1995),  in  

which  the  estimator  is  called  Random  Initial  Values  Estimator  (RIVE).  The  

method  is  based  on  artificially  generating  white  noise  series  which  replace  the   

 

actual  noise.  The  idea  is  that  all  information  relating  the  parameter  is  conveyed  

by  the  observed  series,  so  that  the  knowledge  of  the  actual  noise  is  not  



essential  for  estimation.  It  is  proved  that  this  estimator  is  consistent,  

asymptotically  normal  and  performs  well  also  in  small  samples.  Suitability  of  

this  procedure  to  periodic  case  may  be  taken  into  consideration  in  order  to  be  

able  to  perform  preliminary  estimation  for  PMA  models,  but  needs  investigation  

and  detailed  study  on  its  applicability. 

 

Secondly,   mixed  PARMA  models  may  be  more  suitable  for  some  of  the  

seasons,  but  since  standard  ARMA  identification  procedure  does  not  work  for  

the  identification  of  mixed  PARMA  model,  and  since  there  exists  no  other  

available  method,  further  investigation  should  be   made  for  this  case. 

 

4.1.3 Diagnostic  Checks 

 

In  the  previous  sections,  white noise process  was  found  suitable  for 

seasons  one  through  five,  while  different  PAR  models  are  fitted  for  the  rest.  

This  section  involves  model  diagnostics  on  these  seasons  in  order  to  give  final  

decisions  about  models. 

 

Recall  that,  in   order  to  test  the  randomness  of  residuals,  Runs  Test  is  

performed,  whose  null  hypothesis  is  that  residuals  are  random.  To  test  

normality  of  residuals,  Anderson-Darling  test  is  applied  where  the  null  

hypothesis  is  that  residuals  are  normally  sidtributed.  For  both  tests,  significance  

level  α  is  accepted  as  0.05,  so  that  the  null  hypotheses  are  rejected  

(assumption  is  not  verified)  if  α  is  greater  than  the  p-value.  And  in  order  to  

test  the  white  noise  assumption  on  residuals,  the  ACF  and  PACF  plot  of  the  

residuals  are  analyzed. 

 

Diagnostic  checks  on  Atnos  series  are  mostly  satisfactory,  such  as  for  

seasons  6,  8,  10,  11 and  12,  all  tests  on  residuals  give  affirmative  results  for   

 

the  corresponding  fitted  models.  However,  for  seasons  7  and  9,  normality  

assumption  fails  which  indicates  the  necessity  of  an  appropriate  transformation.  



Consequently,  model  identification  had  to  be  repeated  over  the  transformed  

series  which  may   lead  to  a  new  possible  model. 

 

Table  4.1.5  presents  the  corresponding  p-values  and  decisions  of  the  tests  

on  residuals  for  each  12  seasons  seperately. 

 

Table  4.1.5  Summary  of  diagnostic  checks  on  Atnos  Creek 

 

 

Season 

v 

 

Run   Test  for 

Independence 

 

Being 

White  Noise 

 

 

Anderson-Darling  

Test 

for  Normality 

 
1 
 

- 
 
- 

 
- 

 
2 
 

 
- 

 
- 

 
- 

 
3 
 

 
- 

 
- 

 
- 

 
4 
 

 
- 

 
- 

 
- 

 
5 
 

 
- 

 
- 

 
- 

 
6 

 
VERIFIED 
p-value =  0.2809 

 
VERIFIED 
 

 
VERIFIED 
p-value =  0.812 
 

 
7 
 

 
VERIFIED 
p-value = 0.1533 

 
VERIFIED 
 

 
NOT  VERIFIED 
p-value = 0.002 
 

 
8 

 
VERIFIED 
p-value = 0.4961 

 
VERIFIED 
 

 
VERIFIED 
p-value = 0.197 
 

 

Table  4.1.5  (cont’d)  Summary  of  diagnostic  checks  on  Atnos  Creek 

 



 

Season 

v 

 

Run   Test  for 

Independence 

 

Being 

White  Noise 

 

 

Anderson-Darling  

Test 

for  Normality 

 

9 

 
VERIFIED 

p-value = 0.0659 

 
 VERIFIED 

 
NOT  VERIFIED 

p-value =  0.000 

 

 

10 

 
VERIFIED 

p-value = 0.5226 

 
VERIFIED 

 
VERIFIED 

p-value = 0.278 

 

 

11 

 
VERIFIED 

p-value = 0.4567 

 
VERIFIED 

 

 
VERIFIED 

p-value = 0.482 

 

 

12 

 
VERIFIED 

p-value = 0.2099 

 
VERIFIED 

 

 
VERIFIED 

p-value = 0.089 

 

 

 

Finally,  the  general  model  representing  the  Atnos  series  is  found  as  

PAR12 ( 0; 0; 0; 0; 0; 13; 2; 5; 1; 10; 12; 8 ). 

 

4.2 Application  on  Nilüfer  Creek 

 

The  series  consists  of  average  monthly  streamflow  (in m3 / sec.)  values  

for  the  Nilüfer  Creek  in  Bursa,  Turkey  from  October  1954  to  September  1995,   

 

 



where  season  1  corresponds  to  October  and  season  12  corresponds  to  

September.  The  number  of  observations  is  504,  and  since  observations  are  

recorded  monthly,  the  period  ω  is  equal  to  12. 

 

The  time  plot  of  the  series  is  given  in  Figure  4.2.1  in  which  the  strong  

periodic  behaviour  is  displayed. 

100 200 300 400

0

10

20

30

40

50

60

70

80

Av
er

ag
e 

 S
tre

am
flo

w
  (

m
  /

 s
ec

.)
   

   
   

   
   

   
   

   
   

   
   

   
   

 3

Month

                 Figure  4.2.1  Time  plot  of  Nilüfer  Creek 

 

 

Once  deciding  that  the  model  should  be  of  PARMA  type,  the  next  step  

is  the  identification  of  suitable  models  for  each  12  seasons  of  Nilüfer.  Again  

executing  the  programs  listed  in  Appendix  B  and  C  whose  outputs  are  the  

values  of  PeACF  and  PePACF,  respectively,  with  the  corresponding   band  limits  

from  which  the  significant  lags  are  specified.   

 

In  Table  4.2.1,  the  sample  means  and  sample  variances,  which  are  

computed  through  the  program  listed  in  Appendix A,  is  presented  for  each  12  

seasons  of  the  creek. 

 

 



Table  4.2.1  Sample  statistics  for  seasons  of  Nilüfer  Creek 

   

Season 
v  

Sample  Mean 
vX  

Sample  Variance 
)(ˆ0 vγ  

 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

 
               4.75200 
               7.34255 
             17.28931 
             20.3324 
             22.54998 
             25.30845 
             31.16897 
             29.18558 
             14.86316 
               5.13607 
               2.59871 
               2.74981 

 
            10.49473 
            17.24455 
          182.38977 
          184.89177 
          148.53142 
            99.66177 
          141.49802 
          118.99061 
            37.61295 
              8.99974 
              3.41349 
              2.34262 

 

 

 

4.2.1 Model  Identification 

 

The  PeACF  and  PePACF  plots  of  Nilüfer  Creek  are  presented  in  

Appendix  F,  analyzing  the  plots  together,  PARMA  model  identification  will  be  

performed  for  each  season.   

 

For  season  one,  the  PeACF  plot  shows  perfect  cut-off  after  1st  lag,  

while  PePACF  shows  cut-off  after  lag  5.  This  states  that  season  one  either  

follows  an  MA(1)  or  an  AR(5)  model.  Since  PeACF  shows  better  cut-off  and  

suits  the  rule  of  parsimony,  MA(1)  is  more  preferable.   

 

For  season  two,  both  PeACF  and  PePACF  values  fall  inside  band  limits  

after  1st  lag,  which  indicates  that  this  season  may  be  an  MA(1)  or  an  AR(1).  

 



The  PePACF  shows  better  cut-off  at  first  glance,  but  it  is  seen  that  its  late  

lags  become  larger  again  while  PeACF  keeps  cut-off.  Thus,  MA(1)  seems  the  

suitable  model  for  season  two. 

 

For  season  three,  11th  lag  in  PeACF  and  9th  lag  in  PePACF  are  the  

final  lags  which  are  outside  the  bands.  This  indicates  that  the  process  may  be  

an  MA(11)  or  an  AR(9),  where  the  latter  one  is  more  plausible  with  its  better  

cut-off  and  less  number  of  order. 

 

In  the  PeACF  of  season  four,  values  fall  inside  band  limits  after  lag  10,  

and  in  PePACF  after  lag  13.  Neither  PeACF  nor  PePACF  show  satisfactory  

cut-offs,  so  MA(10)  or  AR(13)  are  both  suitable  candidates  for  season  four.  A  

final  decision  requires  diagnostic  checks. 

  

For  season  five,  the  PeACF  shows  perfect  cut-off  after  lag  2,  that  is,  

this  season  may  be  an  MA(2).  And  in  PePACF,  the  1st  and  16th  lags  are  

significant,  16th  lag  is  a  sign  that  the  cut-off  property  of  PePACF  is  ruined.  

But  still,  AR(1)  may  be  considered  as  another  suitable  model  for  this  season. 

 

For  season  six,  MA(13)  is  suspected  from  PeACF,  and  AR(16)  from  

PePACF.  None  of  this  models  seem  superior  to  other  just  by  looking  

autocorrelation  plots,  that  the  final  decision  on  specification  can  only  be  given  

after  estimation  and  diagnostic  checks.  

 

For  season  seven,  PeACF  shows  cut-off  after  lag  4,  and  PePACF  shows  

cut-off  after  lag  1.  Though,  10th  and  15th  lags  of  PePACF  are  outside  the  

limits,  note  that  they  are  very  close  to  band  values  so  that  they  may  be  

negligible.  Therefore,  among  MA(4)  and  AR(1),  the  latter  seems  more  suitable  

to  season  seven. 

 

 

 



Analyzing  the  PeACF  &  PePACF  of  season  eight,  it  is  seen  that  

PePACF  shows  nice  cut-off  after  2nd  lag,  while  PeACF  does  not.  However,   

 

10th-13th  lags  of  PePACF  fall  outside  band  limits  ruining  the  cut-off.  Also,  for  

this  season  the  suitable  AR  order  should  be  decided  after  estimation  and  

diagnostic  checks. 

  

In  season  nine,  it  is  clear  that  the  PePACF  shows  perfect  cut-off  after  

lag  1  while  PeACF  rather  decays.  This  indicates  that  season  nine  almost  surely  

follows  an  AR(1)  model.  

 

Season  ten  displays  a  decay  rather  than  cut-off  in  PeACF,  but  it  can   be  

said  that  the  model  may  be  AR(16)  or  AR(10)  by  looking  PePACF,  AR(1)  

may  be  a  choice, too.  After  testing  these  choices  with  the  iterative  testing  

procedure  the  most  suitable  model  for  this  season  should  be  found. 

 

For  season  eleven,  MA(4)  is  the  most  suitable  with  the  cut-off  of  

PeACF  after  lag  4,  while  PePACF  insists  on  larger  values  than  the  band  limits. 

  

Season  twelve  may  follow  an  MA (8)  model  as  well  as  an  AR (8)  

model,  since  both  PeACF  and  PePACF  display  cut-off  after  lag  8.  MA(8)  is  

more  suitable  with  a  better  cut-off  in  PeACF.  

 

Consequently,  for  Nilüfer  series,  mostly  PMA  models  are  found  suitable  

for  the  seasons.  Unfortunately,  for  this  series,  the  method  of  using  PAR  models  

with  reasonable  orders  instead  of  PMA  models  does  not  work  efficiently,  that  

especially  the  normality  test  in  diagnostic  checks  generally  failed.   

 

For  season  1,  MA(1)  is  tried  to   be  re-expressed  as  an  AR  model  with  

a  suitable  order,  and  the  iterative  significance  tests  stopped  at  AR(5),  but   

 

 



normality  assumption  can  not  be  verified.  For  season  2,  significance  test  

continued  until  AR(1)  but  the  normality  assumption  fails  for  this  case, too.  For  

season  4,  5,  11  and  12,  same  problem  on  normality  arises  if  MA  models  are  

tried  to  be  re-expressed  as  AR  type.  Only,  season  6  which  follows  an  MA(13)   

 

model  can  be modeled as  an  AR(10)  model,  and  satisfy  all  residual  checks.  For  

seasons  8  and  10,  the  least  squares  states  AR(2)  and  AR(10)  models  are  

suitable,  respectively. 

 

To  sum up,  PMA  and  PAR  models  are  recommended  for  each  season  of  

Nilüfer  Creek   and  when  PAR  models  are  tried  to  be  fitted ,  it  is  seen  that  the  

general  violation  is  on  normality  assumption  rather  than  independence  or  white  

noise.  This  indicates  that  Nilüfer  series  may  itself  need  an  appropriate  

transformation  to  achieve  normality,   or  series  does  not  satisfy  periodic  

stationarity,  although  the  nonstationary  behaviour  is  surely  not  displayed  in  

periodic  autocorrelation  or  partial  autocorrelation  functions.  The  recommended  

models  are  summarized  in  Table  4.2.2.    

 

Table  4.2.2  Model  identification  for  Nilüfer  Creek  

 

 
Season 

v 

 
p(v) 

 
q(v) 

 
Model 

 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
 

 
0 
0 
9 
0 
0 
10 
1 
2 
1 
10 
0 
0 
 

 
1 
1 
0 
10 
2 
0 
0 
0 
0 
0 
4 
8 

 
   MA(1) 
   MA(1) 
   AR(9) 
   MA(10) 
   MA(2) 
   AR(10) 
   AR(1) 
   AR(2) 
   AR(1) 
   AR(10) 
   MA(4) 
   MA(8) 

 



Consequently,  the  PARMA  model  representing  the  whole  process  for  

Nilüfer  Creek  is  recommended  as  PARMA12 ( 0,1;   0,1;  9,0;  0,10;  0,2;  10,0;  

1,0;  2,0;  1,0;  10,0;  0,4;  0,8 ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

CHAPTER  V 

 

SUMMARY  AND  CONCLUSIONS 
 

 

Periodic  autoregressive  moving-average  (PARMA)  models  proved  to  be   

useful  in  practice  and  received  considerable  attention  in  many  fields.  They  

become  popular  with  seasonal  series  recently  as  the  techniques  for  their  

analysis  develop. 

 

The  major  aim  of  this  thesis  is  the  PARMA  model  identification,  i.e.,  

the  determination  of  the  seasonally  varying  orders  of  the  PARMA  model,  and  

to  develop  a  practical  computer  program  which  performs  model  identification  

for  any  given  actual  periodic  stationary  series. 

 

In  the  first  part  of  the  thesis,  posterior  to  a  general   information  on  time  

series  analysis,  the  basics  of  PARMA  process  are  explained.  It  is  shown  that  

any  PARMA  model  can  be  expressed  as  a  vector  ARMA  model  which  is  

named  as  the  “lumped”  vector  process.  Through  this  property,  it  is  given  that  

the  periodic  stationarity  conditions  and  also  the  invertibility  conditions  of  a  

univariate  PARMA  process  can  be  obtained  from  its  corresponding  lumped  

vector  process. 

 

The  determination  of  an  appropriate  PARMAω(p(v), q(v))  model  to  

represent  an  observed  periodic  stationary  series  involves  a  number  of  inter- 

 

 



related  subjects.  These  include  the  order  identification,  parameter  estimation  and  

diagnostic  checks.   

 

For  PARMA  model  identification,  which  is  the  main  body  of  this  study,  

the  Box-Jenkins  methodology  for  the  identification  of  ordinary  ARMA  processes  

is  generalized  to  a  seasonwise  identification  procedure.  For  identification  of  

standard  ARMA  models,  the  autocorrelation  function  (ACF)  and  the  partial  

autocorrelation  function  (PACF)  serve  as  useful  tools,  similarly  for  PARMA  

processes,  the  periodic  autocorrelation  function  (PeACF)  and  periodic  partial  

autocorrelation  function  (PePACF)  play  the  same  role. 

 

The  PeACF  is  used  for  the  identification  of  seasons  which  follow  pure  

periodic  moving-average  (PMA)  processes.  It  is  given  that  PeACF  becomes  

zero,  namely  cuts-off,  for  lags  beyond  the  appropriate  order,  q(v),  of  the  PMA  

process.  For  the  assesment  of  this  cut-off  property  for  a  finite  realization,  the  

sample  PeACF  is  utilized  which  is  the  sample  estimate  of  the  theoretical  

PeACF.  The  asymptotic  results  for  the  first  and   second  order  moments  of  the  

sample  PeACF,  and  its  asymptotic  normality  had  already  been  proved,  so  that  

they  are  used  together  to  obtain  band  limits  for  the  application  of  cut-off  

property. 

 

On  the  other  hand,  for  the  identification  of  seasons  following  pure  

autoregressive  (PAR)  processes,  the  PePACF  is  well  adapted.  The  computation  

of  partial  autocorrelations  as  in  standard  AR  context  does  not  work  with  

PePACF,  so   that  a  different  algorithm  is  used  for  its  computation .  Similar  to  

the  PeACF  of  pure  PMA  processes,  this  time  the  PePACF  shows  cut-off  for  

lags  beyond  the  appropriate  order,  p(v),  of  the  PAR  process.  The  sample  

PePACF,  which  is  the  sample  estimate  of  its  population  counterpart,  is  

employed  for  the  assessment  of  cut-off  property  for  a  finite  series  coming  from  

a  pure  PAR  process. 

 

 



The  model  estimation  is  considered  in  the  simplest  manner  not  for  

estimation  purposes  but  for  refining  and  developing  the  model  identification  

stage.  Surely,  estimation  together  with  significance  tests  may  suggest  which  of  

the  possible  candidates  is  a  suitable  model  for  representing  the  data.  Previous  

studies  on  estimation  methods  are  summarized  mentioning  that  the  estimation  of  

PARMA  models  with  a  MA  part  is  very  complicated  and  technically  difficult.  

Only  the  conditional  least  squares  estimation  (LSE)  method  is  considered  in  

this  study  for  pure  PAR  processes.  It  is  shown  that  conditional  LS  estimation  

of  PAR  parameters  is  simply  a  generalization  of  the  least  squares  method  to  a  

seasonwise  case.  For  the  estimation  of  PMA  models,  again  LSE  is  proposed  

but  first  PMA  model  is  re-expressed  as  a  PAR  model  with  a  reasonable  order  

which  is  able  to  represent  the  autocorrelation  behaviour  of  the  series.  This  

proposed  method  may  not  be  pretentious  but  at  least  useful  for  practical   

purposes.  Diagnostic  checking  is  also  mentioned  stating  its  reasons  and  

methods.  Through  this  thesis,  diagnostic  checks  are  made  by  residual  analysis. 

 

The  last  part  of  the  study  is  devoted  to  application  on  two  actual  series  

of  hydrologic  processes.  Both  series  consist  of  average  monthly  streamflow  

observations  from  Atnos  Creek,  Balıkesir,  and  from  Nilüfer  Creek,  Bursa.  Their  

time   plots  both  display  the  strong  periodic  structure  and  indicate  the  necessity  

of  including  periodically  varying  parameters  in  the  model. 

 

All  three  stages  of  model  development,  i.e.,  identification,  estimation  and  

diagnostic  checking  are  illustrated  with  Atnos  series  by  making  use  of  the  

programs  developed  for  identification  purposes.  The  sample  means,  variances  

and  sample  autocovariances  are  computed  and  summarized  for  each  twelve  

seasons,  in  addition  the  sample  PeACF  and  PePACF  of  each  season  is  obtained  

and  represented  graphically.  Some  seasons  of  the  series  are  found  to  follow  

white  noise,  while  some  PMA  or  PAR  models.  The  method  of  changing  PMA  

models  to  PAR  type  is  achieved  and  conditional  LSE  is  performed  for  all   

 

 



seasons  except  the  ones  which  follow  white  noise.  Results  of  the  diagnostic  

checks  are  given  for  each  fitted  model,  where  nearly  all  seasons  satisfy  the  

tests  on  residuals,  but  normality  assumption  is  failed  for  only  two  of  them.  The  

initial  and  final  decisions  on  model  identification  of  seasons  of  Atnos  are   

presented  through  tables,  so  that  12  different  models  are  specified  seperately  for  

each  season.  Thus,  the  general  model  for  Atnos  Creek  is    recommended  

initially  as  PARMA12 ( 0,0;  0,0;  0,0;  0,0;  0,6;  0,13;  0,2;  5,0;  0,1;  0,12;  0,13;  

0,2 ),  and  after  changing  all  seasons  into  PAR  type,  the  general  model  becomes  

PAR12 ( 0; 0; 0; 0; 0; 13; 2; 5; 1; 10; 12; 8 ). 

 

For  Nilüfer  Creek,  only  model  identification  is  considered.  PMA  models  

are  found  suitable  for  most  of  the  seasons,  and  PAR  for  the  rest.  The  final  

general  model  representing   the  whole  series  is  found  as  PARMA12 (0,1;   0,1;  

9,0;  0,10;  0,2;  0,3;  1,0;  10,0;  0,4;  0,8). 

 

The  developed  programs,  which  are  implemented  with  Visual  Fortran,  

Professional  Edition  5.0A,  are  listed  fully  in  appendices  with  input  and  output  

examples.  For  all  programs,  the  series  of  interest  can  either  be  entered  

manually  by  the  user,  or  the  program  reads  it  from  a  stored  file  itself.  The  

execution  of  the  model  identification  program  is  performed  in  two  phases.  

Firstly,  computation  of  PeACF  values  specifying  significant  lags  according  to   

band  limits  and  proposition  of  suitable  PMA  processes  for  each  season  are  

made.  Secondly,  the  computation  of  PePACF  values  specifying  significant  lags  

is  made  again  and  suitable  PAR  processes  are  proposed.  The  LSE  and  

diagnostic  checks  are   performed  through  MINITAB  statistical  software,  Release  

13.1.  However,  the  program  listed  in  Appendix  D  also  performs  LSE  of  the  

PAR  coefficients  along  with  the  resulting  residuals. 

 

Since  PARMA  models  are  quite  new,  many  questions  about  them  are  

still  unanswered  and  need  further  studies.  Some  problems  faced  throughout  this   

 

 



study  should  be  stated  such  as  identification  of  mixed  PARMA  processes,  an  

applicable  preliminary  estimation  method  for  mixed  PARMA  and  PMA   

 

processes.  It  is  known  that  there  exists  general  methods  for  the  identification  of  

standard  ARMA  models  of  mixed  type,  however  no  such  satisfactory  method  is  

available  for  mixed  PARMA  processes.  In  the  application  part  of  this  thesis,  

mixed  PARMA  models  may  be  more  suitable  for  some  seasons.  Moreover,  in  

order  to  be  able  to  perform  a  simple  preliminary  estimation,  even  PMA  models  

are  re-expressed  as  PAR  models  and  this  results  in  a  significant  increase  in  the  

number   of  parameters  which  violates  parsimony.  This  study  involves   only  the  

periodic  stationarity  case  and  the  programs  work  only  for  periodic  stationary  

processes.  There  exists  well-known  methods  like  differencing  or  filtering  to  

achieve  stationarity   of  standard  ARMA  models,  such  methods  for  achieving  

periodic  stationarity  should  also   be  investigated. 
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APPENDIX A 
 

COMPUTER  PROGRAM  FOR  COMPUTATION  OF  

SAMPLE  PERIODIC  MEANS,  AUTOCOVARIANCES 

AND  AUTOCORRELATIONS 
 

Description: 

 

Programs  listed  in  these  appendices  were  all  written  in  Visual  Fortran,  

Professional  Edition  5.0A. 

 

This  program  computes  the  sample  periodic  means,  sample  periodic  

autocovariances,  and  sample  periodic  autocorrelation  and  partial  autocorrelations  

for  each  season  of  any  periodic  process.  User  may  enter  the  series  manually  or  

program  can  read  the  series  from  a  stored  file.  The  computations  are  performed  

up  to  a  desired  lag  if  specified,  or  up  to  a  default  lag ,  which  is  the  one  

fourth  of  total  number  of  years,  if  nothing  is  specified. 

 

Inputs: 

 

N:  Number  of  years 

IW:  Number  of  periods 

NOLAG:  default  number   of  lags  (N /4 ) 

CANS:  Name  of   the  text  file  in  which  the  series  of  interest  is  stored 

 



Outputs: 

 

XSUM ( ):  Sum  of  the  observations  in  each  season   

XMEAN ( ):  Sample  mean  for  each  season   

XP0 ( ): Sample  variance  for  each  season   

XPACVF ( ):  Sample  periodic  autocovariances  for  each  season   

XPACF ( ): Sample  periodic  autocorrelation  for  each  season   

PHI ( ):  Sample  periodic  partial  autocorrelation  for  each  season   

ALPHA ( ) / BETA ( ) / TAOSQ ( ) / DELTASQ ( ) / DELTA ( )/ CDELTA ( ) 

Parameters  used  in  Sakai’s  algortihm 

Program  Listing: 

 

THE  OUTPUTS  OF  THIS  PROGRAM  ARE  STORED  IN  FILE  'STATatnos.txt' 

 
C /* -------------------  
C program that finds PeAcf and PePacf 
C 
C (c) 2002 
C by Burcin Akgun 
C 
C    ------------------- */ 
 PROGRAM PeSTATS 
 REAL X(-500:500),XSUM(1000),XMEAN(-500:500),XP(12,500) 
 REAL XPACVF(12,1000),XP0(1000),XP00(-500:500),SUM,TEMP1,TEMP2 
 REAL TPACVF(-500:500,200) 
 REAL DELTSQ(-2:12,0:200),TAOSQ(-2:12,-1:200) 
 REAL ALPHA(-1:12,0:200,0:200),BETA(-1:12,0:200,0:200) 
 REAL CDELTA(-1:12,0:200),PHI(0:12,0:200,0:200) 
 REAL DSUM 
 INTEGER ICON,IV,IW,N,NW,NOLAG,NMAXLG,IP,IM 
 CHARACTER FNAME*20, CANS*1 
C // open the output file 
 OPEN (2, FILE='STATatnos.txt') 
C // 
 DO 3 I=1,100 
    XSUM(I)=0 
    XP0(I)=0 
3 CONTINUE 
 DO 4 I=-100,100 
    X(I)=0 
    XMEAN(I)=0 
    XP00(I)=0 
 
 
4 CONTINUE 



 DO 5 J=1,12 
   DO 6 I=1,100 
    XP(J,I)=0 
    XPACVF(J,I)=0 
6   CONTINUE 
5 CONTINUE 
 PRINT*,' ENTER YEAR(N), PERIOD(W):' 
 WRITE(2,*) ' ENTER YEAR(N), PERIOD(W):' 
 READ*, N,IW 
 WRITE(2,*) N, IW 
 PRINT*,' ENTER NUMBER OF LAGS (NOLAG):' 
 WRITE(2,*) ' ENTER NUMBER OF LAGS (NOLAG):' 
 READ*, NOLAG 
 NW=N*IW 
 IF (NW.GE.40) NOLAG=N/4 
 PRINT*, '# OF LAGS :' , NOLAG 
 WRITE(2,*) '# OF LAGS :' , NOLAG 
C // -------------------- 
 PRINT 88,'THERE ARE',NW,'OBSERVATIONS' 
 WRITE(2,88) 'THERE ARE',NW,'OBSERVATIONS' 
 PRINT*, 'THE MAXIMUM NUMBER OF LAGS IS',NOLAG 
 WRITE(2,*) 'THE MAXIMUM NUMBER OF LAGS IS',NOLAG 
 PRINT *,'.' 
 WRITE(2,*) '.' 
 PRINT*, ' READ INPUTS FROM A (F)ILE OR ENTER (M)ANUALLY ? F/M :' 
 WRITE(2,*) ' READ INPUTS FROM A (F)ILE OR ENTER (M)ANUALLY ? F/M :' 
 READ 81, CANS 
 WRITE(2,*) CANS 
 IF ((CANS.EQ.'F').OR.(CANS.EQ.'f')) THEN 
    PRINT*, ' ENTER FILE NAME ?;' 
    WRITE(2,*)  ' ENTER FILE NAME ?;' 
    READ 82, FNAME 
    PRINT*, FNAME 
    WRITE(2,*) FNAME 
    OPEN (1, FILE=FNAME) 
    REWIND 1 
    READ(1,*,END=99) (X(I), I=1, NW) 
    CLOSE (1) 
 ELSE 
    PRINT 89,'ENTER',NW,'OBSERVATIONS IN TIME SEQUENCE;' 
    WRITE(2,89) 'ENTER',NW,'OBSERVATIONS IN TIME SEQUENCE;' 
    READ*,(X(I), I=1, NW) 
 ENDIF 
 DO 7 K=1,N 
    PRINT 85,'year',K,'period' 
    WRITE(2,85) 'year',K,'period' 
    PRINT 86, ((I-K*IW+IW), X(I), I=((K-1)*IW)+1, K*IW) 
    WRITE(2,86) ((I-K*IW+IW), X(I), I=((K-1)*IW)+1, K*IW) 
    PRINT *,' ---' 
    WRITE(2,*) ' ---' 
7 CONTINUE 
 PRINT*, ' enter 0 to exit any integer to continue' 
 WRITE(2,*) ' enter 0 to exit any integer to continue' 
 READ *, ICON 
  
 
IF (ICON.EQ.0) STOP 
C // -------------------- 



C // finding the periodic means() 
 DO 10 IV=1,IW 
    DO 11 I=IV,NW,IW 
       XSUM(IV)=XSUM(IV)+X(I) 
       XMEAN(IV)=XSUM(IV)/N 
11    CONTINUE 
    PRINT 90,'SUM OF',IV,'TH PERIOD IS',XSUM(IV) 
    WRITE(2,90) 'SUM OF',IV,'TH PERIOD IS',XSUM(IV) 
    PRINT 90,'MEAN OF',IV,'TH PERIOD IS',XMEAN(IV) 
    WRITE(2,90) 'MEAN OF',IV,'TH PERIOD IS',XMEAN(IV) 
10 CONTINUE 
    PRINT*, ' enter 0 to exit any integer to continue' 
    WRITE (2,*) ' enter 0 to exit any integer to continue' 
    READ*, ICON 
    IF (ICON.EQ.0) STOP 
C // end of finding means() 
C // ---------------- 
C // finding the sample PeACVF of period v at lag l() --- Gamma(l)(v) 
 SUM=0.0 
 DO 15 IV=1,IW 
    DO 16 L=1,NOLAG 
       DO 17 I=IV,NW,IW 
  IF ((I-L).LT.1) THEN 
     TEMP1=0.0 
  ELSE 
     TEMP1=X(I-L) 
  ENDIF 
  IF ((IV-L).GE.1) THEN 
     TEMP2=XMEAN(IV-L) 
  ELSE 
    DO 18 K=IV-L,0,IW 
      IT=K+IW 
18    CONTINUE 
    TEMP2=XMEAN(IT) 
  ENDIF 
  SUM=SUM+((X(I)-XMEAN(IV))*(TEMP1-TEMP2)) 
C // if kw+v-l<1 set elements to zero  
  IF ((I-L).LT.1) SUM=0.0 
17       CONTINUE 
       XPACVF(IV,L)=SUM / N 
       SUM=0.0 
       PRINT 91,'THE PEACVF AT',IV,'TH PERIOD AT LAG',L, 
     *  'IS',XPACVF(IV,L) 
    WRITE(2,91) 'THE PEACVF AT',IV,'TH PERIOD AT LAG',L, 
     *  'IS',XPACVF(IV,L) 
16    CONTINUE 
15 CONTINUE 
    PRINT*, ' enter 0 to exit any integer to continue' 
    WRITE(2,*) ' enter 0 to exit any integer to continue' 
    READ*, ICON 
    IF (ICON.EQ.0) STOP 
C // 
C // end of finding sample PeACVF's() 
 
 
C // ------------------- 
C // finding the sample PeACVF of period v at lag 0() - Gamma0(v) 
 SUM=0.0 



 DO 20 IV=1,IW 
    L=0 
    DO 21 I=IV,NW,IW 
       TEMP1=X(I-L) 
       TEMP2=XMEAN(IV-L) 
       SUM=SUM+((X(I)-XMEAN(IV))*(TEMP1-TEMP2)) 
21    CONTINUE 
    XP0(IV)=SUM / N 
    SUM=0.0 
    PRINT 92,'PEACVF AT',IV,'TH PERIOD AT LAG',L, 
     *       'IS',XP0(IV) 
    WRITE(2,92) 'PEACVF AT',IV,'TH PERIOD AT LAG',L, 
     *       'IS',XP0(IV) 
20 CONTINUE 
 PRINT*, ' enter 0 to exit any integer to continue' 
 WRITE(2,*) ' enter 0 to exit any integer to continue' 
 READ*, ICON 
 IF (ICON.EQ.0) STOP 
C // 
C // end of finding sample PeACVF of period v at lag 0() 
C // ---------------------- 
C // finding the sample PeACVF of period v-l at lag 0() - Gamma0(v-l) 
C // for v-l <= 0, gamma0(v-l) ==> gamma0(v-l+w) 
 DO 25 IV=1,IW 
    DO 26 L=1,NOLAG 
       IF ((IV-L).GT.0) THEN 
          XP00(IV-L)=XP0(IV-L) 
       ELSE 
          IF ((IV-L+IW).GT.0) THEN 
      XP00(IV-L)=XP0(IV-L+IW) 
   ELSE 
      XP00(IV-L)=XP00(IV-L+IW) 
   ENDIF 
       ENDIF 
26    CONTINUE 
25 CONTINUE 
 XP00(IW)=XP0(IW) 
C // end of finding sample PeACVF of period v-l at lag 0() 
C // -------------------- 
C // just for control....................... 
 DO 30 K=IW-1,1-NOLAG,-1 
       PRINT 93,'GAMMA 0 (V-L=',K,') IS',XP00(K) 
       WRITE(2,93) 'GAMMA 0 (V-L=',K,') IS',XP00(K) 
30 CONTINUE 
 PRINT*, ' enter 0 to exit any integer to continue' 
 WRITE(2,*) ' enter 0 to exit any integer to continue' 
 READ*, ICON 
 IF (ICON.EQ.0) STOP 
C // end of controlling part................ 
C // -------------------- 
C // finding the sample PeACF of period v at lag l - r(l)(v) 
 DO 35 IV=1,IW 
 
 
    DO 36 L=1,NOLAG 
              XP(IV,L)=XPACVF(IV,L)/(SQRT(XP0(IV)*XP00(IV-L))) 
       PRINT 94,'THE SAMPLE PEACF AT',IV,'TH PERIOD AT LAG', 
     *         L,'IS',XP(IV,L) 



    WRITE(2,94) 'THE SAMPLE PEACF AT',IV,'TH PERIOD AT LAG', 
     *         L,'IS',XP(IV,L) 
36    CONTINUE 
35 CONTINUE 
    PRINT*, ' enter 0 to exit any integer to continue' 
    WRITE(2,*) ' enter 0 to exit any integer to continue' 
    READ*, ICON 
    IF (ICON.EQ.0) STOP 
C // end of finding sample PeACF of period v at lag l 
C // ------------------- 
C // cloning xpacvf(iv,il) array to temporary tpacvf(jv,jl) 
C //  where iv=1,..,iw but jv=1-nolag,..,iw 
C // 
 DO 40 JV=1-NOLAG,IW 
    DO 41 JL=1,NOLAG 
      IF (JV.GE.1) THEN 
         TPACVF(JV,JL)=XPACVF(JV,JL) 
      ELSE 
  DO 42 I=JV,0,IW 
    IT=I+IW 
42  CONTINUE 
         TPACVF(JV,JL)=XPACVF(IT,JL) 
      ENDIF 
41   CONTINUE 
40   CONTINUE 
C // 
C //  end of cloning 
C // --------------------------- 
C //     initial values; 
C // 
 DO 45 IV=1,IW 
   DO 46 IL=1,NOLAG 
     ALPHA(IV,IL-1,0)=1 
46   CONTINUE 
   DELTSQ(IV,0)=XP0(IV) 
   TAOSQ(IV,0)=XP0(IV) 
45 CONTINUE 
C // 
C // ---------------------------------- 
C //    calculating Updates; 
C //      cdelta,alpha,beta,gamma,deltasq, and taosq 
C // 
 DSUM=0 
 DO 50 IL=1,NOLAG 
   DO 51 IV=1,IW 
     DO 52 IM=0,IL-1 
       DSUM=DSUM+(TPACVF(IV-IM,IL-IM)*ALPHA(IV,IL-1,IM)) 
52     CONTINUE 
     CDELTA(IV,IL-1)=DSUM 
     DSUM=0 
     IF ((IV-1).EQ.0) TAOSQ(IV-1,IL-1)=TAOSQ(IW,IL-1) 
 
 
     ALPHA(IV,IL,IL)=(-CDELTA(IV,IL-1))/TAOSQ(IV-1,IL-1) 
     BETA(IV,IL,IL)=(-CDELTA(IV,IL-1))/DELTSQ(IV,IL-1) 
     DELTSQ(IV,IL)=DELTSQ(IV,IL-1)* 
     *   (1-ALPHA(IV,IL,IL)*BETA(IV,IL,IL)) 
     TAOSQ(IV,IL)=TAOSQ(IV-1,IL-1)* 



     *      (1-ALPHA(IV,IL,IL)*BETA(IV,IL,IL)) 
     DO 53 I=1,IL-1 
       IF ((IV-1).EQ.0) THEN 
         BETA(IV-1,IL-1,IL-I)=BETA(IW,IL-1,IL-I) 
         BETA(IV-1,IL-1,I)=BETA(IW,IL-1,I) 
       ENDIF 
       ALPHA(IV,IL,I)=ALPHA(IV,IL-1,I)+ 
     *         (ALPHA(IV,IL,IL)*BETA(IV-1,IL-1,IL-I)) 
       BETA(IV,IL,I)=BETA(IV-1,IL-1,I)+ 
     *        (BETA(IV,IL,IL)*ALPHA(IV,IL-1,IL-I)) 
    PRINT 80, 'alpha(',1,2,1,')',ALPHA(1,2,1) 
       WRITE(2,80) 'alpha(',1,2,1,')',ALPHA(1,2,1) 
    PRINT 80, 'alpha(',2,2,1,')',ALPHA(2,2,1) 
       WRITE(2,80) 'alpha(',2,2,1,')',ALPHA(2,2,1) 
    PRINT 80, 'alpha(',3,2,1,')',ALPHA(3,2,1) 
       WRITE(2,80) 'alpha(',3,2,1,')',ALPHA(3,2,1) 
53     CONTINUE 
     PRINT 95, 'PERIOD= ',IV,'LAG= ',IL 
     WRITE(2,95) 'PERIOD= ',IV,'LAG= ',IL 
     PRINT 96, 'alpha(',IV,IL,IL,')',ALPHA(IV,IL,IL) 
     WRITE(2,96) 'alpha(',IV,IL,IL,')',ALPHA(IV,IL,IL) 
     PRINT 96, 'beta(',IV,IL,IL,')',BETA(IV,IL,IL) 
     WRITE(2,96) 'beta(',IV,IL,IL,')',BETA(IV,IL,IL) 
     PRINT 97, 'deltasq(',IV,IL,')',DELTSQ(IV,IL) 
     WRITE(2,97) 'deltasq(',IV,IL,')',DELTSQ(IV,IL) 
  IF (DELTSQ(IV,IL).LE.0) THEN 
      PRINT*, ' enter 0 to exit any integer to continue' 
      WRITE(2,*) ' enter 0 to exit any integer to continue' 
      READ*, ICON 
   ICON=1 
  ENDIF 
     PRINT 97, 'taosq(',IV,IL,')',TAOSQ(IV,IL) 
     WRITE(2,97) 'taosq(',IV,IL,')',TAOSQ(IV,IL) 
  IF (TAOSQ(IV,IL).LE.0) THEN 
      PRINT*, ' enter 0 to exit any integer to continue' 
      WRITE(2,*) ' enter 0 to exit any integer to continue' 
      READ*, ICON 
   ICON=1 
  ENDIF 
     PRINT 97, 'DELTA(',IV,IL-1,')',CDELTA(IV,IL-1) 
     WRITE(2,97) 'DELTA(',IV,IL-1,')',CDELTA(IV,IL-1) 
     IF (ICON.EQ.0) STOP 
51   CONTINUE 
50 CONTINUE 
     PRINT*, ' enter 0 to exit any integer to continue' 
     WRITE(2,*) ' enter 0 to exit any integer to continue' 
     READ*, ICON 
  ICON=1 
C // 
C //   end of calculating Updates 
 
 
C // -------------------------------------------- 
C // calculating phi(); 
 PRINT*, '  calculating phi()' 
C // 
 DO 110 IV=1,IW 
   DO 111 IL=1,NOLAG 



     PRINT 190,'CDELTA(',IV,IL-1,')','DELTASQ(',IV,IL-1, 
     *        ')','TAOSQ(',IV-1,IL-1,')' 
     WRITE(2,190) 'CDELTA(',IV,IL-1,')','DELTASQ(',IV,IL-1, 
     *        ')','TAOSQ(',IV-1,IL-1,')' 
     PRINT 191,CDELTA(IV,IL-1),DELTSQ(IV,IL-1),TAOSQ(IV-1,IL-1) 
      

PHI(IV,IL,IL)=CDELTA(IV,IL-1)/ 
     *       ((SQRT(DELTSQ(IV,IL-1))) * (SQRT(TAOSQ(IV-1,IL-1)))) 
     WRITE(2,191) CDELTA(IV,IL-1),DELTSQ(IV,IL-1),TAOSQ(IV-1,IL-1) 
     PHI(IV,IL,IL)=CDELTA(IV,IL-1)/ 
     *       ((SQRT(DELTSQ(IV,IL-1))) * (SQRT(TAOSQ(IV-1,IL-1)))) 
 PRINT 98, PHI(IV,IL,IL),' IS THE PEPACF AT LAG', 
     *   IL,'OF PERIOD',IV 
 WRITE(2,98) PHI(IV,IL,IL),' IS THE PEPACF AT LAG', 
     *   IL,'OF PERIOD',IV 
111 CONTINUE 
110 CONTINUE 
C // 
C // end of calculating phi; 
C // ------------------------------- 
C // 
C // single result obtained manually() 
 PRINT*,'DO YOU WANT TO OBTAIN PEPACF MANUALLY?' 
 WRITE(2,*) 'DO YOU WANT TO OBTAIN PEPACF MANUALLY?' 
 PRINT*,'IF YES TYPE 1, IF NO TYPE 0' 
 WRITE(2,*) 'IF YES TYPE 1, IF NO TYPE 0' 
 READ*,ID 
200 IF (ID.EQ.1) THEN 
  PRINT*,'ENTER THE PERIOD & THE LAG ; ' 
     WRITE(2,*) 'ENTER THE PERIOD & THE LAG ; ' 
  READ*,IV,L 
   PRINT 94,'THE SAMPLE PEACF AT',IV,'TH PERIOD AT LAG', 
     *   L,'IS',XP(IV,L) 
         WRITE(2,94) 'THE SAMPLE PEACF AT',IV,'TH PERIOD AT LAG', 
     *   L,'IS',XP(IV,L) 
   GO TO 200 
 ELSEIF (ID.EQ.0) THEN 
  PRINT*, ' enter 0 to exit any integer to continue' 
     WRITE(2,*) ' enter 0 to exit any integer to continue' 
  READ*, ICON 
  IF (ICON.EQ.0) THEN 
   STOP 
  ELSE 
   GOTO 200 
  ENDIF 
 ENDIF 
C // end of single result obtained manually() 
C // ----------------- 
C // 
 
 
C // close the output file : 
C 
 CLOSE (2) 
C 
C // formatting 
81 FORMAT(A1) 
82 FORMAT(A20) 



85 FORMAT(A4,I3,2X,A6) 
86 FORMAT(9X,I3,'. ',F15.5) 
88 FORMAT(A10,2X,I3,3X,A14) 
89 FORMAT(A10,2X,I3,3X,A32) 
90 FORMAT(A8,3X,I2,A13,2X,F15.5) 
91      FORMAT(A14,2X,I3,A17,1X,I3,2X,A2,1X,F15.5) 
92      FORMAT(A14,2X,I3,A17,1X,I3,2X,A2,1X,F15.5) 
93      FORMAT(A15,I3,A4,2X,F15.5) 
94      FORMAT(A20,2X,I3,A17,1X,I3,2X,A2,1X,F15.5) 
95 FORMAT(A10,I2,A7,I2) 
96 FORMAT(A10,I3,I3,I3,A2,F15.5) 
97 FORMAT(A10,I3,I3,A3,2X,F15.5) 
80 FORMAT(A10,I2,I2,I2,A2,F15.5) 
98 FORMAT(F15.5,A22,I2,A12,I2) 
190 FORMAT(A11,I2,I2,A2,A12,I2,I2,A2,A9,I2,I2,A2) 
191 FORMAT(F15.5,1X,F15.5,1X,F15.5) 
99 ENDFILE 1 
C // 
C // 
 STOP 

 END 
 

Output  Example: 

 

A  PART  OF  THE  OUTPUT  IS  GIVEN  BELOW. 

 
  ENTER YEAR(N), PERIOD(W): 
          33          12 
  ENTER NUMBER OF LAGS (NOLAG): 
 # OF LAGS :           8 
 THERE ARE  396     OBSERVATIONS 
 THE MAXIMUM NUMBER OF LAGS IS           8 
 . 
  READ INPUTS FROM A (F)ILE OR ENTER (M)ANUALLY ? F/M : 
 f 
  ENTER FILE NAME ?; 
 atnos.txt           
 
  --- 
  enter 0 to exit any integer to continue 
 
  SUM OF    1 TH PERIOD IS         49.81700 
 MEAN OF    1 TH PERIOD IS          1.50961 
  SUM OF    2 TH PERIOD IS        117.77100 
 
 
 MEAN OF    2 TH PERIOD IS          3.56882 
  SUM OF    3 TH PERIOD IS        570.74005 
 MEAN OF    3 TH PERIOD IS         17.29515 
  SUM OF    4 TH PERIOD IS        780.91107 
 MEAN OF    4 TH PERIOD IS         23.66397 
  SUM OF    5 TH PERIOD IS        760.73700 
 MEAN OF    5 TH PERIOD IS         23.05264 



  SUM OF    6 TH PERIOD IS        626.71503 
 MEAN OF    6 TH PERIOD IS         18.99136 
  SUM OF    7 TH PERIOD IS        361.08795 
 MEAN OF    7 TH PERIOD IS         10.94206 
  SUM OF    8 TH PERIOD IS        179.33305 
 MEAN OF    8 TH PERIOD IS          5.43433 
  SUM OF    9 TH PERIOD IS         90.13300 
 MEAN OF    9 TH PERIOD IS          2.73130 
  
 SUM OF   10 TH PERIOD IS         37.70499 
 MEAN OF   10 TH PERIOD IS          1.14258 
  SUM OF   11 TH PERIOD IS         30.98600 
 MEAN OF   11 TH PERIOD IS          0.93897 
  SUM OF   12 TH PERIOD IS         42.18499 
 MEAN OF   12 TH PERIOD IS          1.27833 
 
  enter 0 to exit any integer to continue 
 
. 
. 
THE PEACVF AT    6 TH PERIOD AT LAG   1  IS        59.22530 
 THE PEACVF AT    6 TH PERIOD AT LAG   2  IS        90.38964 
 THE PEACVF AT    6 TH PERIOD AT LAG   3  IS         2.45501 
 THE PEACVF AT    6 TH PERIOD AT LAG   4  IS        -4.92702 
 THE PEACVF AT    6 TH PERIOD AT LAG   5  IS         0.55248 
 THE PEACVF AT    6 TH PERIOD AT LAG   6  IS        -3.32227 
 THE PEACVF AT    6 TH PERIOD AT LAG   7  IS        -1.10589 
. 
. 
enter 0 to exit any integer to continue 
 
     PEACVF AT    1 TH PERIOD AT LAG   0  IS         0.77816 
     PEACVF AT    2 TH PERIOD AT LAG   0  IS         5.15689 
     PEACVF AT    3 TH PERIOD AT LAG   0  IS       345.30518 
     PEACVF AT    4 TH PERIOD AT LAG   0  IS       425.31482 
     PEACVF AT    5 TH PERIOD AT LAG   0  IS       389.47153 
     PEACVF AT    6 TH PERIOD AT LAG   0  IS       107.54240 
     PEACVF AT    7 TH PERIOD AT LAG   0  IS        52.33360 
     PEACVF AT    8 TH PERIOD AT LAG   0  IS        14.23912 
     PEACVF AT    9 TH PERIOD AT LAG   0  IS         2.58686 
     PEACVF AT   10 TH PERIOD AT LAG   0  IS         0.79756 
     PEACVF AT   11 TH PERIOD AT LAG   0  IS         0.54926 
     PEACVF AT   12 TH PERIOD AT LAG   0  IS         1.13483 
 
  enter 0 to exit any integer to continue 
. 
. 
THE SAMPLE PEACF AT    6 TH PERIOD AT LAG   1  IS         0.28939 
  
 
THE SAMPLE PEACF AT    6 TH PERIOD AT LAG   2  IS         0.42264 
 THE SAMPLE PEACF AT    6 TH PERIOD AT LAG   3  IS         0.01274 
 THE SAMPLE PEACF AT    6 TH PERIOD AT LAG   4  IS        -0.20922 
 THE SAMPLE PEACF AT    6 TH PERIOD AT LAG   5  IS         0.06039 
 THE SAMPLE PEACF AT    6 TH PERIOD AT LAG   6  IS        -0.30073 
 THE SAMPLE PEACF AT    6 TH PERIOD AT LAG   7  IS        -0.14389 
 THE SAMPLE PEACF AT    6 TH PERIOD AT LAG   8  IS        -0.06122 
. 



. 
  enter 0 to exit any integer to continue 
. 
. 
  PERIOD=  6  LAG=  1 
    alpha(  6  1  1 )  -0.1520657986 
     beta(  6  1  1 )  -0.5507158041 
  deltasq(  6  1  )    98.5362548828 
    taosq(  6  1  )   356.8552246094 
    DELTA(  6  0  )    59.2252960205 
. 
. 
  enter 0 to exit any integer to continue 
 
    CDELTA( 6 0 )    DELTASQ( 6 0 )   TAOSQ( 5 0 ) 
       59.22530       107.54240       389.47153 
        0.28939  IS THE PEPACF AT LAG 1   OF PERIOD 6 
    CDELTA( 6 1 )    DELTASQ( 6 1 )   TAOSQ( 5 1 ) 
       74.35857        98.53625       396.77930 
        0.37606  IS THE PEPACF AT LAG 2   OF PERIOD 6 
    CDELTA( 6 2 )    DELTASQ( 6 2 )   TAOSQ( 5 2 ) 
      -20.33564        84.60106       317.83087 
       -0.12401  IS THE PEPACF AT LAG 3   OF PERIOD 6 
    CDELTA( 6 3 )    DELTASQ( 6 3 )   TAOSQ( 5 3 ) 
       -4.39001        83.29993         4.75019 
       -0.22069  IS THE PEPACF AT LAG 4   OF PERIOD 6 
    CDELTA( 6 4 )    DELTASQ( 6 4 )   TAOSQ( 5 4 ) 
        1.48797        79.24281         0.72223 
        0.19669  IS THE PEPACF AT LAG 5   OF PERIOD 6 
    CDELTA( 6 5 )    DELTASQ( 6 5 )   TAOSQ( 5 5 ) 
       -2.64319        76.17721         1.01500 
       -0.30060  IS THE PEPACF AT LAG 6   OF PERIOD 6 
    CDELTA( 6 6 )    DELTASQ( 6 6 )   TAOSQ( 5 6 ) 
        0.87473        69.29400         0.32601 
        0.18404  IS THE PEPACF AT LAG 7   OF PERIOD 6 
    CDELTA( 6 7 )    DELTASQ( 6 7 )   TAOSQ( 5 7 ) 
        0.18407        66.94695         0.18982 
        0.05164  IS THE PEPACF AT LAG 8   OF PERIOD 6 
 

 

 

 

 

 

 

 

 

 



APPENDIX B 
 

COMPUTER  PROGRAM  FOR   

IDENTIFICATION  OF   

PURE  PERIODIC  MOVING-AVERAGE    MODELS 
 

 

Description: 

 

This  program  computes  the  sample  periodic  autocorrelations  and  

corresponding  band  limits  for  each  season  of  any  periodic  process  entered  as  

an  input.  User  may  enter  the  series  manually  or  program  can  read  the  series  

from  a  stored  file.  The  computations  are  performed  up  to  a  default  lag ,  which  

is  the  one  fourth  of  total  number  of  years,  and  additionally  up  to  a maximum  

lag  which  is   twice  the  number  of  seasons.  The  PMA  model  identification  for  

each  season  is  given  as  output. 

 

Inputs: 

 

N:  Number  of  years 

IW:  Number  of  periods 

NOLAG:  Default  number   of  lags  ( N/ 4 ) 

CANS:  Name  of   the  text  file  in  which  the  series  of  interest  is  stored 

MAXLAG:  Maximum  number  of  lags  which  is  twice  the  period  ω  

 

Outputs: 

 

XPACF ( ):  Sample  periodic  autocorrelation  for  each  season   



FBAND ( ):  Critical  band  limits  for  q(v) < ω  case 

SBAND ( ):  Critical  band  limits  for  q(v) ≥ ω  case  

PMA  IDENTIFICATION  when  maximum lag  number  is  MAXLAG 

PMA  IDENTIFICATION  when  maximum lag  number  is  NOLAG 

 

Program  Listing: 

 

THE  OUTPUTS  OF  THIS  PROGRAM  ARE  STORED  IN  FILE   'ACFatnos.txt' 

 
C /* -------------------  
C program   that  finds  PeACF  and  confidence  bands 
 
C Definitions : 
 
C X(): observations 
C XSUM():  sample  sum  of  observations  for  period  v 
C XMEAN: sample  mean  of  period  v 
C XP(): sample PeACF value for period v at lag l (r(l)(v)); 
C XPACVF(): sample PeACVF value for period v at lag l (gamma(l)(v)); 
C XP0(): sample PeACVF value for period v at lag 0 (gamma(0)(v)); 
C XP00(): sample PeACF value for period v-l at lag 0 (gamma(0)(v-l)); 
C FBAND(): first band value for the PeACF 
C SBAND(): second band value for the PeACF 
C TEMP1,TEMP2: temporary values; 
C N:  number  of  years 
C IV:  season  number 
C NW:  total  number  of  observations 
C 
C (c) 2002 
C by Burcin Akgun 
C 
C    ------------------- */ 
 PROGRAM PeACFBAND 
 REAL X(-500:500),XSUM(1000),XMEAN(-500:500),XP(12,500),FBAND(12,500) 
 REAL XPACVF(12,1000),XP0(1000),XP00(-500:500),SUM,TEMP1,TEMP2 
 REAL SBAND(12,500),XPC(-500:500,500) 
 REAL XPSUM,XPCSUM 
 REAL DSUM 
 INTEGER ICON,N,IV,IW,NW,NOLAG,NMAXLG,IP,IM,MAXLAG 
 INTEGER XIOUT(12),XIOUT2(12),XFOUT(50),XSOUT 
 INTEGER Q(12) 
  
 
   CHARACTER FNAME*20, CANS*1 
C 
C // open the output file 
 OPEN (2, FILE='ACFatnos.txt') 
C // 
C 



 DO 3 I=1,100 
  XSUM(I)=0 
     XP0(I)=0 
3 CONTINUE 
 DO 4 I=-100,100 
     X(I)=0 
     XMEAN(I)=0 
     XP00(I)=0 
4 CONTINUE 
 DO 5 J=1,12 
     DO 6 I=1,100 
     XP(J,I)=0 
     XPACVF(J,I)=0 
6     CONTINUE 
5 CONTINUE 
 PRINT*,' ENTER YEAR(N), PERIOD(W):' 
 WRITE(2,*) ' ENTER YEAR(N), PERIOD(W):' 
 READ*, N,IW 
 WRITE(2,*) N, IW 
 PRINT*,' ENTER NUMBER OF LAGS (NOLAG):' 
 WRITE(2,*) ' ENTER NUMBER OF LAGS (NOLAG):' 
 READ*, NOLAG 
 NW=N*IW 
 IF (NW.GE.40) NOLAG=N/4 
 PRINT*, '# OF LAGS :' , NOLAG 
 WRITE(2,*) '# OF LAGS :' , NOLAG 
C // -------------------- 
 PRINT 88,'THERE ARE',NW,'OBSERVATIONS' 
 WRITE(2,88) 'THERE ARE',NW,'OBSERVATIONS' 
 PRINT*, 'THE MAXIMUM NUMBER OF LAGS IS',NOLAG 
 WRITE(2,*) 'THE MAXIMUM NUMBER OF LAGS IS',NOLAG 
 PRINT *,'.' 
 WRITE(2,*) '.' 
 PRINT*, ' READ INPUTS FROM A (F)ILE OR ENTER (M)ANUALLY ? F/M :' 
 WRITE(2,*) ' READ INPUTS FROM A (F)ILE OR ENTER (M)ANUALLY ? F/M :' 
 READ 81, CANS 
 WRITE(2,*) CANS 
 IF ((CANS.EQ.'F').OR.(CANS.EQ.'f')) THEN 
  PRINT*, ' ENTER FILE NAME ?;' 
     WRITE(2,*)  ' ENTER FILE NAME ?;' 
     READ 82, FNAME 
     PRINT*, FNAME 
     WRITE(2,*) FNAME 
     OPEN (1, FILE=FNAME) 
     REWIND 1 
     READ(1,*,END=99) (X(I), I=1, NW) 
     CLOSE (1) 
 ELSE 
     PRINT 89,'ENTER',NW,'OBSERVATIONS IN TIME SEQUENCE;' 
 
 
     WRITE(2,89) 'ENTER',NW,'OBSERVATIONS IN TIME SEQUENCE;' 

    READ*,(X(I), I=1, NW) 
 ENDIF 
 DO 7 IK=1,N 
     PRINT 85,'year',IK,'period' 

    WRITE(2,85) 'year',IK,'period' 
     PRINT 86, ((I-IK*IW+IW), X(I), I=((IK-1)*IW)+1, IK*IW) 



     WRITE(2,86) ((I-IK*IW+IW), X(I), I=((IK-1)*IW)+1, IK*IW) 
     PRINT *,' ---' 
     WRITE(2,*) ' ---' 
7 CONTINUE 
 PRINT*, ' enter 0 to exit any integer to continue' 
 WRITE(2,*) ' enter 0 to exit any integer to continue' 
 READ *, ICON 
 IF (ICON.EQ.0) STOP 
C // -------------------- 
C // finding the periodic means() 
 DO 10 IV=1,IW 
        DO 11 I=IV,NW,IW 
        XSUM(IV)=XSUM(IV)+X(I) 
        XMEAN(IV)=XSUM(IV)/N 
11        CONTINUE 
10 CONTINUE 
C // end of finding means() 
C // ---------------- 
C // finding the sample PeACVF of period v at lag l() --- Gamma(l)(v) 
 IF ((2*IW).GT.NOLAG) THEN 
  MAXLAG=2*IW 
 ELSE 
  MAXLAG=NOLAG 
 ENDIF 
 
 SUM=0.0 
 DO 15 IV=1,IW 
        DO 16 L=1,MAXLAG 
               DO 17 I=IV,NW,IW 
   IF ((I-L).LT.1) THEN 
       TEMP1=0.0 
   ELSE 
       TEMP1=X(I-L) 
   ENDIF 
   IF ((IV-L).GE.1) THEN 
       TEMP2=XMEAN(IV-L) 
   ELSE 
      DO 18 K=IV-L,0,IW 
         IT=K+IW 
18      CONTINUE 
     TEMP2=XMEAN(IT) 
   ENDIF 
   SUM=SUM+((X(I)-XMEAN(IV))*(TEMP1-TEMP2)) 
C // if kw+v-l<1 set elements to zero  
   IF ((I-L).LT.1) SUM=0.0 
17          CONTINUE 
          XPACVF(IV,L)=SUM / N 
          SUM=0.0 
 
 
16       CONTINUE 
15 CONTINUE 
C // 
C // end of finding sample PeACVF's() 
C // ------------------- 
C // finding the sample PeACVF of period v at lag 0() - Gamma0(v) 
 SUM=0.0 
 DO 20 IV=1,IW 



        L=0 
        DO 21 I=IV,NW,IW 
        TEMP1=X(I-L) 
        TEMP2=XMEAN(IV-L) 
        SUM=SUM+((X(I)-XMEAN(IV))*(TEMP1-TEMP2)) 
21       CONTINUE 
       XP0(IV)=SUM / N 
       SUM=0.0 
20 CONTINUE 
C // 
C // end of finding sample PeACVF of period v at lag 0() 
C // ---------------------- 
C // finding the sample PeACVF of period v-l at lag 0() - Gamma0(v-l) 
 
 DO 25 IV=1,IW 
        DO 26 L=1,MAXLAG 
             IF ((IV-L).GT.0) THEN 
        XP00(IV-L)=XP0(IV-L) 
                  ELSE 
              IF ((IV-L+IW).GT.0) THEN 
       XP00(IV-L)=XP0(IV-L+IW) 
       ELSE 
       XP00(IV-L)=XP00(IV-L+IW) 
       ENDIF 
                     ENDIF 
26        CONTINUE 
25 CONTINUE 
 XP00(IW)=XP0(IW) 
C // end of finding sample PeACVF of period v-l at lag 0() 
C // -------------------- 
 
C // -------------------- 
C // finding the sample PeACF of period v at lag l - r(l)(v) and 1. Band 
 
 
 PRINT 103, 'MODEL IDENTIFICATION WHEN MAX LAG IS',MAXLAG 
 WRITE(2,103) 'MODEL IDENTIFICATION WHEN MAX LAG IS',MAXLAG 
 PRINT*, '*****************************************************' 
 WRITE(2,*) '**************************************************' 
 
 DO 35 IV=1,IW 
    DO 36 L=1,MAXLAG 
  XP(IV,L)=XPACVF(IV,L)/(SQRT(XP0(IV)*XP00(IV-L))) 
  FBAND(IV,L)=1.96/SQRT(1.0*N) 
       IF ((XP(IV,L).GT.FBAND(IV,L)).OR.(XP(IV,L).LT.(-1*FBAND(IV,L)))) THEN 
    PRINT 102, 'PERIOD:',IV, 'LAG:',L,'RHO(',L,',',IV,'):' 
     
 
 
     *            ,XP(IV,L),'-->FBAND:',FBAND(IV,L),'*' 
    WRITE (2,102) 'PERIOD:',IV, 'LAG:',L,'RHO(',L,',',IV,'):' 
     *            ,XP(IV,L),'-->FBAND:',FBAND(IV,L),'*' 
     ELSE 
    PRINT 97, 'PERIOD:',IV, 'LAG:',L,'RHO(',L,',',IV,'):' 
     *            ,XP(IV,L),'-->FBAND:',FBAND(IV,L) 
    WRITE (2,97) 'PERIOD:',IV, 'LAG:',L,'RHO(',L,',',IV,'):' 
     *            ,XP(IV,L),'-->FBAND:',FBAND(IV,L) 
          ENDIF 



36    CONTINUE 
35      CONTINUE 

 
 PRINT*, ' enter 0 to exit any integer to continue' 
 WRITE(2,*) ' enter 0 to exit any integer to continue' 
 
 READ*, ICON 
 IF (ICON.EQ.0) STOP 
C 
 DO 234 L=1,MAXLAG 
       XFOUT(L)=0 
234 CONTINUE 
 DO 235 IV=1,IW 
   XIOUT(IV)=0 
235 CONTINUE 
 DO 236 IV=1,IW 
    DO 237 L=1,MAXLAG 
  IF ((XP(IV,L).GT.FBAND(IV,L)).OR.(XP(IV,L).LT.(-1*FBAND(IV,L)) 
     * )) XIOUT(IV)=L 
237    CONTINUE 
236 CONTINUE 
 
 
 SUM=0.0 
 DO 37 IV=1,IW 
         IF (XIOUT(IV).GE.IW) THEN 
        K=N/(4*IW) 
        IF (K.EQ.0) THEN 
            K=1 
        ELSE 
            K=K 
        ENDIF 
        PRINT 101, 'FOR PERIOD',IV,'WE NEED TO CALCULATE 2. BAND, 
     *  WHERE K HAS A MAXIMUM VALUE OF',K 
        WRITE (2,101) 'FOR PERIOD',IV,'WE NEED TO CALCULATE 2. BAND 
     *, WHERE K HAS A MAXIMUM VALUE OF',K 
        DO 526 L=IW,MAXLAG 
           DO 527 I=IV,NW,IW 
          IF ((I-L).LT.1) THEN 
            TEMP1=0.0 
          ELSE 
            TEMP1=X(I-L) 
          ENDIF 
          IF ((IV-L).GE.1) THEN 
            TEMP2=XMEAN(IV-L) 
          ELSE 
 
 
            DO 528 KZ=IV-L,0,IW 
               IT=KZ+IW 
528            CONTINUE 
            TEMP2=XMEAN(IT) 
          ENDIF 
          SUM=SUM+((X(I)-XMEAN(IV))*(TEMP1-TEMP2)) 
C // if kw+v-l<1 set elements to zero  
          IF ((I-L).LT.1) SUM=0.0 
 
527           CONTINUE 



           XPACVF(IV,L)=SUM / N 
           SUM=0.0 
                IF ((IV-L).GT.0) THEN 
             XP00(IV-L)=XP0(IV-L) 
           ELSE 
          IF ((IV-L+(K*IW)).GT.0) THEN 
        XP00(IV-L)=XP0(IV-L+(K*IW)) 
          ELSE 
           IF ((IV-L+((K+1)*IW)).GT.0) THEN 
             XP00(IV-L)=XP0(IV-L+((K+1)*IW)) 
              ENDIF 
          ENDIF 
           ENDIF 
526        CONTINUE 
    DO 536 L=IW,MAXLAG 
       XP(IV,L)=XPACVF(IV,L)/(SQRT(XP0(IV)*XP00(IV-L))) 
536    CONTINUE 
    DO 38 L=IW,MAXLAG 
           IF ((IV-L).GT.0) THEN 
          XPC(IV-L,IW)=XP(IV-L,IW) 
      ELSE 
       IF ((IV-L+IW).GT.0) THEN 
      XPC(IV-L,IW)=XP(IV-L+IW,IW) 
    ELSE 
      XPC(IV-L,IW)=XP(IV-L+IW+IW,IW) 
    ENDIF 
      ENDIF 
   XPSUM=0.0 
   XPCSUM=0.0   
      DO 202 M=1,K 
     XPSUM=XPSUM+XP(IV,IW*M) 
     XPCSUM=XPCSUM+XPC(IV-L,IW*M)     
202   CONTINUE 
   SBAND(IV,L)=1.96*SQRT((1/(1.0*N))*(1+ 
     *               (2*XPSUM*XPCSUM))) 
38    CONTINUE 
 
 XIOUT2(IV)=0 
    DO 436 L=IW,MAXLAG 
   XP(IV,L)=XPACVF(IV,L)/(SQRT(XP0(IV)*XP00(IV-L))) 
      IF ((XP(IV,L).GT.SBAND(IV,L)).OR.(XP(IV,L).LT.(-1*SBAND(IV,L)) 
     *   )) THEN 
     PRINT 102, 'PERIOD:',IV, 'LAG:',L,'rho(',L,',',IV,'):' 
     *            ,XP(IV,L),'-->SBAND:',SBAND(IV,L),'*' 
     WRITE (2,102) 'PERIOD:',IV, 'LAG:',L,'rho(',L,',',IV,'):' 
     *            ,XP(IV,L),'-->SBAND:',SBAND(IV,L),'*' 
       
   ELSE 
     PRINT 97, 'PERIOD:',IV, 'LAG:',L,'rho(',L,',',IV,'):' 
     *            ,XP(IV,L),'-->SBAND:',SBAND(IV,L) 
     WRITE (2,97) 'PERIOD:',IV, 'LAG:',L,'rho(',L,',',IV,'):' 
     *            ,XP(IV,L),'-->SBAND:',SBAND(IV,L) 
      ENDIF 
436    CONTINUE 
 PRINT*, ' enter 0 to exit any integer to continue' 
  

WRITE(2,*) ' enter 0 to exit any integer to continue' 
 READ*, ICON 



 IF (ICON.EQ.0) STOP 
 DO 444 L=1,MAXLAG 
       XFOUT(L)=0 
444 CONTINUE 
 XSOUT=0 
 
 DO 447 L=IW,MAXLAG 
     IF ((XP(IV,L).GT.SBAND(IV,L)).OR.(XP(IV,L).LT.(-1*SBAND(IV,L)) 
     * ))   XIOUT2(IV)=L-IW 
447 CONTINUE 
      ENDIF 
37 CONTINUE 
  
 DO 39 IV=1,IW 
   PRINT 90,'PERIOD',IV,':' 
   WRITE(2,90) 'PERIOD',IV,':' 
   IF(XIOUT(IV).LT.IW) THEN 
     Q(IV)=XIOUT(IV) 
   ELSE 
     Q(IV)=IW+XIOUT2(IV) 
   ENDIF 
   PRINT 96, '*This is a MA(',Q(IV),') model for period ',IV  
   WRITE (2,96) '*This is a MA(',Q(IV),') model for period ',IV 
   PRINT*,'____________________________________________________' 
   WRITE(2,*) '________________________________________________' 
39 CONTINUE 
       
 IF (MAXLAG.GT.NOLAG) THEN 
 PRINT 103, 'MODEL IDENTIFICATION WHEN MAX LAG IS',NOLAG 
 WRITE(2,103) 'MODEL IDENTIFICATION WHEN MAX LAG IS',NOLAG 
 PRINT*, '*****************************************************' 
 WRITE(2,*) '***************************************************' 
 DO 1035 IV=1,IW 
    DO 1036 L=1,NOLAG 
       IF ((XP(IV,L).GT.FBAND(IV,L)).OR.(XP(IV,L).LT.(-1*FBAND(IV,L)) 
     *  )) THEN 
    PRINT 102, 'PERIOD:',IV, 'LAG:',L,'RHO(',L,',',IV,'):' 
     *            ,XP(IV,L),'-->FBAND:',FBAND(IV,L),'*' 
    WRITE (2,102) 'PERIOD:',IV, 'LAG:',L,'RHO(',L,',',IV,'):' 
     *            ,XP(IV,L),'-->FBAND:',FBAND(IV,L),'*' 
     ELSE 
    PRINT 97, 'PERIOD:',IV, 'LAG:',L,'RHO(',L,',',IV,'):' 
     *            ,XP(IV,L),'-->FBAND:',FBAND(IV,L) 
    WRITE (2,97) 'PERIOD:',IV, 'LAG:',L,'RHO(',L,',',IV,'):' 
     
 
 *            ,XP(IV,L),'-->FBAND:',FBAND(IV,L) 
          ENDIF 
1036    CONTINUE 
1035 CONTINUE 
 
 DO 1234 L=1,NOLAG 
       XFOUT(L)=0 
1234 CONTINUE 
 DO 1235 IV=1,IW 
   XIOUT(IV)=0 
1235 CONTINUE 
 DO 1236 IV=1,IW 



    DO 1237 L=1,NOLAG 
  IF ((XP(IV,L).GT.FBAND(IV,L)).OR.(XP(IV,L).LT.(-1*FBAND(IV,L)) 
     * )) XIOUT(IV)=L 
1237    CONTINUE 
1236 CONTINUE 
 
 SUM=0.0 
 DO 1037 IV=1,IW 
         IF (XIOUT(IV).GE.IW) THEN 
        K=N/(4*IW) 
        IF (K.EQ.0) THEN 
            K=1 
        ELSE 
            K=K 
        ENDIF 
        PRINT 101, 'FOR PERIOD',IV,'WE NEED TO CALCULATE 2. BAND, 
     *  WHERE K HAS A MAXIMUM VALUE OF',K 
        WRITE (2,101) 'FOR PERIOD',IV,'WE NEED TO CALCULATE 2. BAND 
     *, WHERE K HAS A MAXIMUM VALUE OF',K 
        DO 1526 L=IW,NOLAG 
           DO 1527 I=IV,NW,IW 
          IF ((I-L).LT.1) THEN 
            TEMP1=0.0 
          ELSE 
            TEMP1=X(I-L) 
          ENDIF 
          IF ((IV-L).GE.1) THEN 
            TEMP2=XMEAN(IV-L) 
          ELSE 
            DO 1528 KZ=IV-L,0,IW 
               IT=KZ+IW 
1528            CONTINUE 
            TEMP2=XMEAN(IT) 
          ENDIF 
          SUM=SUM+((X(I)-XMEAN(IV))*(TEMP1-TEMP2)) 
C // if kw+v-l<1 set elements to zero  
          IF ((I-L).LT.1) SUM=0.0 
1527           CONTINUE 
           XPACVF(IV,L)=SUM / N 
           SUM=0.0 
                IF ((IV-L).GT.0) THEN 
             XP00(IV-L)=XP0(IV-L) 
           ELSE 
 
 
          IF ((IV-L+(K*IW)).GT.0) THEN 
        XP00(IV-L)=XP0(IV-L+(K*IW)) 
          ELSE 
           IF ((IV-L+((K+1)*IW)).GT.0) THEN 
             XP00(IV-L)=XP0(IV-L+((K+1)*IW)) 
              ENDIF 
          ENDIF 
           ENDIF 
1526        CONTINUE 
    DO 1536 L=IW,NOLAG 
       XP(IV,L)=XPACVF(IV,L)/(SQRT(XP0(IV)*XP00(IV-L))) 
1536    CONTINUE 
     



   DO 1038 L=IW,NOLAG 
           IF ((IV-L).GT.0) THEN 
          XPC(IV-L,IW)=XP(IV-L,IW) 
      ELSE 
       IF ((IV-L+IW).GT.0) THEN 
      XPC(IV-L,IW)=XP(IV-L+IW,IW) 
    ELSE 
      XPC(IV-L,IW)=XP(IV-L+IW+IW,IW) 
    ENDIF 
      ENDIF 
   XPSUM=0.0 
   XPCSUM=0.0   
      DO 1202 M=1,K 
     XPSUM=XPSUM+XP(IV,IW*M) 
     XPCSUM=XPCSUM+XPC(IV-L,IW*M)     
1202   CONTINUE 
   SBAND(IV,L)=1.96*SQRT((1/(1.0*N))*(1+ 
     *               (2*XPSUM*XPCSUM))) 
1038    CONTINUE 
 
 XIOUT2(IV)=0 
    DO 1436 L=IW,NOLAG 
   XP(IV,L)=XPACVF(IV,L)/(SQRT(XP0(IV)*XP00(IV-L))) 
      IF ((XP(IV,L).GT.SBAND(IV,L)).OR.(XP(IV,L).LT.(-1*SBAND(IV,L)) 
     *   )) THEN 
     PRINT 102, 'PERIOD:',IV, 'LAG:',L,'rho(',L,',',IV,'):' 
     *            ,XP(IV,L),'-->SBAND:',SBAND(IV,L),'*' 
     WRITE (2,102) 'PERIOD:',IV, 'LAG:',L,'rho(',L,',',IV,'):' 
     *            ,XP(IV,L),'-->SBAND:',SBAND(IV,L),'*' 
       
   ELSE 
     PRINT 97, 'PERIOD:',IV, 'LAG:',L,'rho(',L,',',IV,'):' 
     *            ,XP(IV,L),'-->SBAND:',SBAND(IV,L) 
     WRITE (2,97) 'PERIOD:',IV, 'LAG:',L,'rho(',L,',',IV,'):' 
     *            ,XP(IV,L),'-->SBAND:',SBAND(IV,L) 
      ENDIF 
1436    CONTINUE 
 PRINT*, ' enter 0 to exit any integer to continue' 
 WRITE(2,*) ' enter 0 to exit any integer to continue' 
 READ*, ICON 
 IF (ICON.EQ.0) STOP 
 DO 1444 L=1,NOLAG 
       XFOUT(L)=0 
 
1444 CONTINUE 
 XSOUT=0 
 
 DO 1447 L=IW,NOLAG 
     IF ((XP(IV,L).GT.SBAND(IV,L)).OR.(XP(IV,L).LT.(-1*SBAND(IV,L)) 
     * ))   XIOUT2(IV)=L-IW 
1447 CONTINUE 
      ENDIF 
1037 CONTINUE 
 
 DO 1039 IV=1,IW 
   PRINT 90,'PERIOD',IV,':' 
   WRITE(2,90) 'PERIOD',IV,':' 
   IF(XIOUT(IV).LT.IW) THEN 



     Q(IV)=XIOUT(IV) 
   ELSE 
     Q(IV)=IW+XIOUT2(IV) 
   ENDIF 
   PRINT 96, '*This is a MA(',Q(IV),') model for period ',IV  
   WRITE (2,96) '*This is a MA(',Q(IV),') model for period ',IV 
   PRINT*,'____________________________________________________' 
   WRITE(2,*) '__________________________________________________' 
1039 CONTINUE 
 ELSE 
 CLOSE (2) 
 ENDIF 
 
C // 
C // close the output file : 
C 
 CLOSE (2) 
C 
C // formatting 
81 FORMAT(A1) 
82 FORMAT(A20) 
85 FORMAT(A4,I3,2X,A6) 
86 FORMAT(9X,I3,'. ',F15.5) 
88 FORMAT(A10,2X,I3,3X,A14) 
89 FORMAT(A10,2X,I3,3X,A32) 
90 FORMAT(A6,1X,I2,1X,A1) 
91    FORMAT(A14,2X,I3,A17,1X,I3,2X,A2,1X,F15.5) 
92    FORMAT(A14,2X,I3,A17,1X,I3,2X,A2,1X,F15.5) 
93    FORMAT(A15,I3,A4,2X,F15.5) 
94    FORMAT(A13,2X,I3,A17,1X,I3,2X,A2,1X,F15.5) 
95 FORMAT(A5,2X,I3,2X,A28) 
96 FORMAT(A14,I2,A18,1X,I3) 
97 FORMAT(A7,I3,3X,A4,I3,3X,A4,I2,A1,I2,A2,F10.5,3X,A9,F10.5) 
98 FORMAT(A3,I2,2X,A3,I2,2X,A4,I2,A1,I2,A3,F10.5,2X,A4,I2,A1, 
     *I2,A1,I2,A3,F10.5,2X,A9,F10.5) 
100   FORMAT(A55,1X,I3)  
101 FORMAT(A10,1X,I2,1X,A61,1X,I3) 
102 FORMAT(A7,I3,3X,A4,I3,3X,A4,I2,A1,I2,A2,F10.5,3X,A9,F10.5,2X,A1) 
103 FORMAT(A36,2X,I3) 
99 ENDFILE 1 
C // 
 
 
 STOP 
 END 
 
 

Output  Example: 

 

A  PART  OF  THE  OUTPUT  IS  GIVEN  BELOW. 

 
  ENTER YEAR(N), PERIOD(W): 
          33          12 



  ENTER NUMBER OF LAGS (NOLAG): 
 # OF LAGS :           8 
 THERE ARE  396     OBSERVATIONS 
 THE MAXIMUM NUMBER OF LAGS IS           8 
 . 
  READ INPUTS FROM A (F)ILE OR ENTER (M)ANUALLY ? F/M : 
 f 
  ENTER FILE NAME ?; 
 atnos.txt         
 
  enter 0 to exit any integer to continue 
 
MODEL IDENTIFICATION WHEN MAX LAG IS   24 
 ***************************************************** 
. 
. 
PERIOD:  6   LAG:  1   RHO( 1, 6):   0.28939   -->FBAND:   0.34119 
PERIOD:  6   LAG:  2   RHO( 2, 6):   0.42264   -->FBAND:   0.34119  * 
PERIOD:  6   LAG:  3   RHO( 3, 6):   0.01274   -->FBAND:   0.34119 
PERIOD:  6   LAG:  4   RHO( 4, 6):  -0.20922   -->FBAND:   0.34119 
PERIOD:  6   LAG:  5   RHO( 5, 6):   0.06039   -->FBAND:   0.34119 
PERIOD:  6   LAG:  6   RHO( 6, 6):  -0.30073   -->FBAND:   0.34119 
PERIOD:  6   LAG:  7   RHO( 7, 6):  -0.14389   -->FBAND:   0.34119 
PERIOD:  6   LAG:  8   RHO( 8, 6):  -0.06122   -->FBAND:   0.34119 
PERIOD:  6   LAG:  9   RHO( 9, 6):   0.03533   -->FBAND:   0.34119 
PERIOD:  6   LAG: 10   RHO(10, 6):   0.14955   -->FBAND:   0.34119 
PERIOD:  6   LAG: 11   RHO(11, 6):   0.19934   -->FBAND:   0.34119 
PERIOD:  6   LAG: 12   RHO(12, 6):  -0.01319   -->FBAND:   0.34119 
PERIOD:  6   LAG: 13   RHO(13, 6):   0.52922   -->FBAND:   0.34119  * 
PERIOD:  6   LAG: 14   RHO(14, 6):   0.13491   -->FBAND:   0.34119 
PERIOD:  6   LAG: 15   RHO(15, 6):   0.06802   -->FBAND:   0.34119 
PERIOD:  6   LAG: 16   RHO(16, 6):  -0.16383   -->FBAND:   0.34119 
PERIOD:  6   LAG: 17   RHO(17, 6):   0.13848   -->FBAND:   0.34119 
PERIOD:  6   LAG: 18   RHO(18, 6):   0.00103   -->FBAND:   0.34119 
PERIOD:  6   LAG: 19   RHO(19, 6):  -0.24191   -->FBAND:   0.34119 
PERIOD:  6   LAG: 20   RHO(20, 6):  -0.03653   -->FBAND:   0.34119 
PERIOD:  6   LAG: 21   RHO(21, 6):  -0.06288   -->FBAND:   0.34119 
PERIOD:  6   LAG: 22   RHO(22, 6):  -0.02140   -->FBAND:   0.34119 
PERIOD:  6   LAG: 23   RHO(23, 6):   0.07405   -->FBAND:   0.34119 
PERIOD:  6   LAG: 24   RHO(24, 6):   0.04523   -->FBAND:   0.34119 
. 
. 
FOR PERIOD  6  WE NEED TO CALCULATE 2. BAND, WHERE K HAS A MAXIMUM VALUE 
OF   1 
PERIOD:  6   LAG: 12   rho(12, 6):  -0.01319   -->SBAND:   0.34125 
PERIOD:  6   LAG: 13   rho(13, 6):   0.52922   -->SBAND:   0.34125  * 
PERIOD:  6   LAG: 14   rho(14, 6):   0.13491   -->SBAND:   0.33968 
PERIOD:  6   LAG: 15   rho(15, 6):   0.06802   -->SBAND:   0.34086 
PERIOD:  6   LAG: 16   rho(16, 6):  -0.16383   -->SBAND:   0.34184 
PERIOD:  6   LAG: 17   rho(17, 6):   0.13848   -->SBAND:   0.34104 
PERIOD:  6   LAG: 18   rho(18, 6):   0.00103   -->SBAND:   0.34080 
PERIOD:  6   LAG: 19   rho(19, 6):  -0.24191   -->SBAND:   0.33849 
PERIOD:  6   LAG: 20   rho(20, 6):  -0.03653   -->SBAND:   0.33929 
PERIOD:  6   LAG: 21   rho(21, 6):  -0.06288   -->SBAND:   0.34177 
PERIOD:  6   LAG: 22   rho(22, 6):  -0.02140   -->SBAND:   0.34111 
PERIOD:  6   LAG: 23   rho(23, 6):   0.07405   -->SBAND:   0.34184 
PERIOD:  6   LAG: 24   rho(24, 6):   0.04523   -->SBAND:   0.34125 
  enter 0 to exit any integer to continue 



 
PERIOD  1 : 
*This is a MA( 0) model for period   1 
 ____________________________________________________ 
PERIOD  2 : 
*This is a MA( 0) model for period   2 
 ____________________________________________________ 
PERIOD  3 : 
*This is a MA(18) model for period   3 
 ____________________________________________________ 
PERIOD  4 : 
*This is a MA( 0) model for period   4 
 ____________________________________________________ 
PERIOD  5 : 
*This is a MA( 6) model for period   5 
 ____________________________________________________ 
PERIOD  6 : 
*This is a MA(13) model for period   6 
 ____________________________________________________ 
PERIOD  7 : 
*This is a MA(17) model for period   7 
 ____________________________________________________ 
PERIOD  8 : 
*This is a MA( 5) model for period   8 
 ____________________________________________________ 
PERIOD  9 : 
*This is a MA( 1) model for period   9 
 ____________________________________________________ 
PERIOD 10 : 
*This is a MA(12) model for period  10 
 ____________________________________________________ 
PERIOD 11 : 
*This is a MA(24) model for period  11 
 ____________________________________________________ 
PERIOD 12 : 
*This is a MA( 2) model for period  12 
 ____________________________________________________ 
 
MODEL IDENTIFICATION WHEN MAX LAG IS    8 
 ***************************************************** 
. 
. 
PERIOD:  6   LAG:  1   RHO( 1, 6):   0.28939   -->FBAND:   0.34119 
PERIOD:  6   LAG:  2   RHO( 2, 6):   0.42264   -->FBAND:   0.34119  * 
PERIOD:  6   LAG:  3   RHO( 3, 6):   0.01274   -->FBAND:   0.34119 
PERIOD:  6   LAG:  4   RHO( 4, 6):  -0.20922   -->FBAND:   0.34119 
PERIOD:  6   LAG:  5   RHO( 5, 6):   0.06039   -->FBAND:   0.34119 
PERIOD:  6   LAG:  6   RHO( 6, 6):  -0.30073   -->FBAND:   0.34119 
PERIOD:  6   LAG:  7   RHO( 7, 6):  -0.14389   -->FBAND:   0.34119 
PERIOD:  6   LAG:  8   RHO( 8, 6):  -0.06122   -->FBAND:   0.34119 
. 
. 
*This is a MA( 0) model for period   1 
 ____________________________________________________ 
PERIOD  2 : 
*This is a MA( 0) model for period   2 
 ____________________________________________________ 
 



PERIOD  3 : 
*This is a MA( 0) model for period   3 
 ____________________________________________________ 
PERIOD  4 : 
*This is a MA( 0) model for period   4 
 ____________________________________________________ 
PERIOD  5 : 
*This is a MA( 6) model for period   5 
 ____________________________________________________ 
PERIOD  6 : 
*This is a MA( 2) model for period   6 
 ____________________________________________________ 
PERIOD  7 : 
*This is a MA( 2) model for period   7 
 ____________________________________________________ 
PERIOD  8 : 
*This is a MA( 5) model for period   8 
 ____________________________________________________ 
PERIOD  9 : 
*This is a MA( 1) model for period   9 
 ____________________________________________________ 
PERIOD 10 : 
*This is a MA( 1) model for period  10 
 ____________________________________________________ 
PERIOD 11 : 
*This is a MA( 1) model for period  11 
 ____________________________________________________ 
PERIOD 12 : 
*This is a MA( 2) model for period  12 
 ____________________________________________________ 
 

 

 

 

 

 

 

 

 

 

APPENDIX  C 
 



COMPUTER  PROGRAM  FOR   

IDENTIFICATION  OF   

PURE  PERIODIC  AUTOREGRESSIVE    MODELS 
 

 

Description: 

 

This  program  computes  the  sample  periodic  partial  autocorrelations  using  

Sakai’s  algorithm  and  corresponding  band  limits  for  each  season  of  any  

periodic  process  entered  as  an  input.  User  may  enter  the  series  manually  or  

program  can  read  the  series  from  a  stored  file.  The  computations  are  performed  

up  to  a  default  lag ,  which  is  one  fourth  of  total  number  of  years,  and  

additionally  up  to  a maximum  lag  which  is   twice  the  number  of  seasons.  The  

PAR  model  identification  for  each  season  is  given  as  output. 

 

Inputs: 

 

N:  Number  of  years 

IW:  Number  of  periods 

NOLAG:  Default  number   of  lags  (N /4 ) 

CANS:  Name  of   the  text  file  in  which  the  series  of  interest  is  stored 

MAXLAG:  Maximum  number  of  lags  which  is  twice  the  period  ω  

 

Outputs: 

 

PHI ( ):  Sample  periodic  autocorrelation  for  each  season   

BAND ( ):  Critical  band  limits   

PAR  IDENTIFICATION  when  maximum lag  number  is  MAXLAG 

PAR  IDENTIFICATION  when  maximum lag  number  is  NOLAG 



 

Program Listing: 

 

THE  OUTPUTS  OF  THIS  PROGRAM  ARE  STORED  IN  FILE  'PACFatnos.txt' 

 
C /* -------------------  
C program that finds PePacf and Bands 
C 
C (c) 2002 
C by Burcin Akgun 
C 
C    ------------------- */ 
 PROGRAM PePACFBAND 
 REAL X(-500:500),XSUM(1000),XMEAN(-500:500),XP(12,500) 
 REAL XPACVF(12,1000),XP0(1000),XP00(-500:500),SUM,TEMP1,TEMP2 
 REAL TPACVF(-500:500,200) 
 REAL DELTSQ(-2:12,0:200),TAOSQ(-2:12,-1:200) 
 REAL ALPHA(-1:12,0:200,0:200),BETA(-1:12,0:200,0:200) 
 REAL CDELTA(-1:12,0:200),PHI(0:12,0:200,0:200) 
 REAL DSUM 
 REAL BAND(12,500) 
 INTEGER ICON,IV,IW,N,NW,NOLAG,NMAXLG,IP,IM,MAXLAG 
 INTEGER XIOUT(12),XIOUT2(12) 
 INTEGER P(12) 
 CHARACTER FNAME*20, CANS*1 
C // open the output file 
 OPEN (2, FILE='PACFatnos.txt') 
C // 
 DO 3 I=1,100 
    XSUM(I)=0 
    XP0(I)=0 
3 CONTINUE 
 DO 4 I=-100,100 
    X(I)=0 
    XMEAN(I)=0 
    XP00(I)=0 
4 CONTINUE 
 DO 5 J=1,12 
 
 
   DO 6 I=1,100 
    XP(J,I)=0 
    XPACVF(J,I)=0 
6   CONTINUE 
5 CONTINUE 
 PRINT*,' ENTER YEAR(N), PERIOD(W):' 
 WRITE(2,*) ' ENTER YEAR(N), PERIOD(W):' 
 READ*, N,IW 
 WRITE(2,*) N, IW 
 PRINT*,' ENTER NUMBER OF LAGS (NOLAG):' 
 WRITE(2,*) ' ENTER NUMBER OF LAGS (NOLAG):' 
 READ*, NOLAG 



 NW=N*IW 
 IF (NW.GE.40) NOLAG=N/4 
 PRINT*, '# OF LAGS :' , NOLAG 
 WRITE(2,*) '# OF LAGS :' , NOLAG 
C // -------------------- 
 PRINT 88,'THERE ARE',NW,'OBSERVATIONS' 
 WRITE(2,88) 'THERE ARE',NW,'OBSERVATIONS' 
 PRINT*, 'THE MAXIMUM NUMBER OF LAGS IS',NOLAG 
 WRITE(2,*) 'THE MAXIMUM NUMBER OF LAGS IS',NOLAG 
 PRINT *,'.' 
 WRITE(2,*) '.' 
 PRINT*, ' READ INPUTS FROM A (F)ILE OR ENTER (M)ANUALLY ? F/M :' 
 WRITE(2,*) ' READ INPUTS FROM A (F)ILE OR ENTER (M)ANUALLY ? F/M :' 
 READ 81, CANS 
 WRITE(2,*) CANS 
 IF ((CANS.EQ.'F').OR.(CANS.EQ.'f')) THEN 
    PRINT*, ' ENTER FILE NAME ?;' 
    WRITE(2,*)  ' ENTER FILE NAME ?;' 
    READ 82, FNAME 
    PRINT*, FNAME 
    WRITE(2,*) FNAME 
    OPEN (1, FILE=FNAME) 
    REWIND 1 
    READ(1,*,END=99) (X(I), I=1, NW) 
    CLOSE (1) 
 ELSE 
    PRINT 89,'ENTER',NW,'OBSERVATIONS IN TIME SEQUENCE;' 
    WRITE(2,89) 'ENTER',NW,'OBSERVATIONS IN TIME SEQUENCE;' 
    READ*,(X(I), I=1, NW) 
 ENDIF 
 DO 7 IK=1,N 
    PRINT 85,'year',IK,'period' 
    WRITE(2,85) 'year',IK,'period' 
    PRINT 86, ((I-IK*IW+IW), X(I), I=((IK-1)*IW)+1, IK*IW) 
    WRITE(2,86) ((I-IK*IW+IW), X(I), I=((IK-1)*IW)+1, IK*IW) 
    PRINT *,' ---' 
    WRITE(2,*) ' ---' 
7 CONTINUE 
 PRINT*, ' enter 0 to exit any integer to continue' 
 WRITE(2,*) ' enter 0 to exit any integer to continue' 
 READ *, ICON 
 IF (ICON.EQ.0) STOP 
C // -------------------- 
 
 
C // finding the periodic means() 
 DO 10 IV=1,IW 
    DO 11 I=IV,NW,IW 
       XSUM(IV)=XSUM(IV)+X(I) 
       XMEAN(IV)=XSUM(IV)/N 
11    CONTINUE 
10 CONTINUE 
 
C // end of finding means() 
C // ---------------- 
C // finding the sample PeACVF of period v at lag l() --- Gamma(l)(v) 
 
 IF ((2*IW).GT.NOLAG) THEN 



  MAXLAG=2*IW 
 ELSE 
  MAXLAG=NOLAG 
 ENDIF 
 
 SUM=0.0 
 DO 15 IV=1,IW 
    DO 16 L=1,MAXLAG 
       DO 17 I=IV,NW,IW 
  IF ((I-L).LT.1) THEN 
     TEMP1=0.0 
  ELSE 
     TEMP1=X(I-L) 
  ENDIF 
  IF ((IV-L).GE.1) THEN 
     TEMP2=XMEAN(IV-L) 
  ELSE 
    DO 18 K=IV-L,0,IW 
      IT=K+IW 
18    CONTINUE 
    TEMP2=XMEAN(IT) 
  ENDIF 
  SUM=SUM+((X(I)-XMEAN(IV))*(TEMP1-TEMP2)) 
C // if kw+v-l<1 set elements to zero  
  IF ((I-L).LT.1) SUM=0.0 
17       CONTINUE 
       XPACVF(IV,L)=SUM / N 
       SUM=0.0 
16    CONTINUE 
15 CONTINUE 
 
C // 
C // 
C // end of finding sample PeACVF's() 
C // ------------------- 
C // finding the sample PeACVF of period v at lag 0() - Gamma0(v) 
 SUM=0.0 
 DO 20 IV=1,IW 
    L=0 
    DO 21 I=IV,NW,IW 
       TEMP1=X(I-L) 
       TEMP2=XMEAN(IV-L) 
 
 
       SUM=SUM+((X(I)-XMEAN(IV))*(TEMP1-TEMP2)) 
21    CONTINUE 
    XP0(IV)=SUM / N 
    SUM=0.0 
20 CONTINUE 
C // 
C // end of finding sample PeACVF of period v at lag 0() 
C // ---------------------- 
C // finding the sample PeACVF of period v-l at lag 0() - Gamma0(v-l) 
C // for v-l <= 0, gamma0(v-l) ==> gamma0(v-l+w) 
 DO 25 IV=1,IW 
    DO 26 L=1,MAXLAG 
       IF ((IV-L).GT.0) THEN 
          XP00(IV-L)=XP0(IV-L) 



       ELSE 
          IF ((IV-L+IW).GT.0) THEN 
      XP00(IV-L)=XP0(IV-L+IW) 
   ELSE 
      XP00(IV-L)=XP00(IV-L+IW) 
   ENDIF 
       ENDIF 
26    CONTINUE 
25 CONTINUE 
 XP00(IW)=XP0(IW) 
C // end of finding sample PeACVF of period v-l at lag 0() 
C // -------------------- 
C // -------------------- 
C // finding the sample PeACF of period v at lag l - Rho(l)(v) 
 DO 35 IV=1,IW 
    DO 36 L=1,MAXLAG 
              XP(IV,L)=XPACVF(IV,L)/(SQRT(XP0(IV)*XP00(IV-L))) 
36    CONTINUE 
35 CONTINUE 
 
C // end of finding sample PeACF of period v at lag l 
C // ------------------- 
C // cloning xpacvf(iv,il) array to temporary tpacvf(jv,jl) 
C //  where iv=1,..,iw but jv=1-nolag,..,iw 
C // 
 DO 40 JV=1-MAXLAG,IW 
    DO 41 JL=1,MAXLAG 
      IF (JV.GE.1) THEN 
         TPACVF(JV,JL)=XPACVF(JV,JL) 
      ELSE 
  DO 42 I=JV,0,IW 
    IT=I+IW 
42  CONTINUE 
         TPACVF(JV,JL)=XPACVF(IT,JL) 
      ENDIF 
41   CONTINUE 
40   CONTINUE 
C // 
C //  end of cloning 
C // --------------------------- 
C //     initial values; 
 
 
C // 
 DO 45 IV=1,IW 
   DO 46 L=1,MAXLAG 
     ALPHA(IV,L-1,0)=1 
46   CONTINUE 
   DELTSQ(IV,0)=XP0(IV) 
   TAOSQ(IV,0)=XP0(IV) 
45 CONTINUE 
C // 
C // ---------------------------------- 
C //    calculating Updates; 
C //    cdelta,alpha,beta,gamma,deltasq, and taosq 
C // 
 DSUM=0 
 DO 50 L=1,MAXLAG 



   DO 51 IV=1,IW 
     DO 52 IM=0,L-1 
       DSUM=DSUM+(TPACVF(IV-IM,L-IM)*ALPHA(IV,L-1,IM)) 
52     CONTINUE 
     CDELTA(IV,L-1)=DSUM 
     DSUM=0 
     IF ((IV-1).EQ.0) TAOSQ(IV-1,L-1)=TAOSQ(IW,L-1) 
     ALPHA(IV,L,L)=(-CDELTA(IV,L-1))/TAOSQ(IV-1,L-1) 
     BETA(IV,L,L)=(-CDELTA(IV,L-1))/DELTSQ(IV,L-1) 
     DELTSQ(IV,L)=DELTSQ(IV,L-1)* 
     *   (1-ALPHA(IV,L,L)*BETA(IV,L,L)) 
     TAOSQ(IV,L)=TAOSQ(IV-1,L-1)* 
     *      (1-ALPHA(IV,L,L)*BETA(IV,L,L)) 
     DO 53 I=1,L-1 
       IF ((IV-1).EQ.0) THEN 
         BETA(IV-1,L-1,L-I)=BETA(IW,L-1,L-I) 
         BETA(IV-1,L-1,I)=BETA(IW,L-1,I) 
       ENDIF 
       ALPHA(IV,L,I)=ALPHA(IV,L-1,I)+ 
     *         (ALPHA(IV,L,L)*BETA(IV-1,L-1,L-I)) 
       BETA(IV,L,I)=BETA(IV-1,L-1,I)+ 
     *        (BETA(IV,L,L)*ALPHA(IV,L-1,L-I)) 
53     CONTINUE 
51   CONTINUE 
50 CONTINUE 
 
C // 
C //   end of calculating Updates 
C // -------------------------------------------- 
C // calculating phi() AND Bands; 
 PRINT 103, 'MODEL IDENTIFICATION WHEN MAX LAG IS',MAXLAG 
 WRITE(2,103) 'MODEL IDENTIFICATION WHEN MAX LAG IS',MAXLAG 
 PRINT*, '*****************************************************' 
 WRITE(2,*) '***************************************************' 
 
 DO 110 IV=1,IW 
   DO 111 L=1,MAXLAG 
     PHI(IV,L,L)=CDELTA(IV,L-1)/ 
     *       ((SQRT(DELTSQ(IV,L-1))) * (SQRT(TAOSQ(IV-1,L-1)))) 
 
 
 
     PHI(IV,L,L)=CDELTA(IV,L-1)/ 
     *       ((SQRT(DELTSQ(IV,L-1))) * (SQRT(TAOSQ(IV-1,L-1)))) 
  BAND(IV,L)=1.96/SQRT(1.0*N) 
  IF((PHI(IV,L,L).GT.BAND(IV,L)).OR. 
     *      (PHI(IV,L,L).LT.(-1*BAND(IV,L)) ) ) THEN 
        PRINT 194,'PERIOD:',IV,'LAG:',L,'PePACF:',PHI(IV,L,L), 
     *        '-->BAND:',BAND(IV,L),'*' 
     WRITE(2,194) 'PERIOD:',IV,'LAG:',L,'PePACF:',PHI(IV,L,L), 
     *  '-->BAND:',BAND(IV,L),'*' 
     ELSE 
        PRINT 98,'PERIOD:',IV,'LAG:',L,'PePACF:',PHI(IV,L,L), 
     *        '-->BAND:',BAND(IV,L) 
           WRITE(2,98) 'PERIOD:',IV,'LAG:',L,'PePACF:',PHI(IV,L,L), 
     *  '-->BAND:',BAND(IV,L) 
     ENDIF 
111   CONTINUE 



110 CONTINUE 
 PRINT*, ' enter 0 to exit any integer to continue' 
 WRITE(2,*) ' enter 0 to exit any integer to continue' 
 READ*, ICON 
 IF (ICON.EQ.0) STOP 
 
 DO 116 IV=1,IW 
  XIOUT(IV)=0 
116 CONTINUE 
 DO 117 IV=1,IW 
  DO 118 L=1,MAXLAG 
   IF((PHI(IV,L,L).GT.BAND(IV,L)).OR. 
     *            (PHI(IV,L,L).LT.(-1*BAND(IV,L)) ) ) XIOUT(IV)=L 
118    CONTINUE 
117 CONTINUE 
 
 DO 127 IV=1,IW 
     PRINT*,'PERIOD',IV,':' 
     WRITE(2,*) 'PERIOD',IV,':' 
   P(IV)=XIOUT(IV) 
     PRINT 101,'*This is an AR(',P(IV),') model for period',IV 
     WRITE(2,101) '*This is an AR(',P(IV),') model for period',IV 
     PRINT*,'___________________________________________' 
     WRITE(2,*) '___________________________________________' 
127   CONTINUE 
 
 IF (MAXLAG.GT.NOLAG) THEN 
 PRINT 103, 'MODEL IDENTIFICATION WHEN MAX LAG IS',NOLAG 
 WRITE(2,103) 'MODEL IDENTIFICATION WHEN MAX LAG IS',NOLAG 
 PRINT*, '*****************************************************' 
 WRITE(2,*) '***************************************************' 
 
      DO 1110 IV=1,IW 
   DO 1111 L=1,NOLAG 
  IF((PHI(IV,L,L).GT.BAND(IV,L)).OR. 
     *      (PHI(IV,L,L).LT.(-1*BAND(IV,L)) ) ) THEN 
        PRINT 194,'PERIOD:',IV,'LAG:',L,'PePACF:',PHI(IV,L,L), 
     *        '-->BAND:',BAND(IV,L),'*' 
     WRITE(2,194) 'PERIOD:',IV,'LAG:',L,'PePACF:',PHI(IV,L,L), 
 
 
*  '-->BAND:',BAND(IV,L),'*' 
     ELSE 
        PRINT 98,'PERIOD:',IV,'LAG:',L,'PePACF:',PHI(IV,L,L), 
     *        '-->BAND:',BAND(IV,L) 
           WRITE(2,98) 'PERIOD:',IV,'LAG:',L,'PePACF:',PHI(IV,L,L), 
     *  '-->BAND:',BAND(IV,L) 
     ENDIF 
1111   CONTINUE 
1110 CONTINUE 
 
      DO 1116 IV=1,IW 
  XIOUT(IV)=0 
1116 CONTINUE 
 DO 1117 IV=1,IW 
  DO 1118 L=1,NOLAG 
   IF((PHI(IV,L,L).GT.BAND(IV,L)).OR. 
     *            (PHI(IV,L,L).LT.(-1*BAND(IV,L)) ) ) XIOUT(IV)=L 



1118    CONTINUE 
1117 CONTINUE 
 
 DO 1127 IV=1,IW 
     PRINT*,'PERIOD',IV,':' 
     WRITE(2,*) 'PERIOD',IV,':' 
   P(IV)=XIOUT(IV) 
     PRINT 101,'*This is an AR(',P(IV),') model for period',IV 
     WRITE(2,101) '*This is an AR(',P(IV),') model for period',IV 
     PRINT*,'___________________________________________' 
     WRITE(2,*) '___________________________________________' 
1127   CONTINUE 
 ELSE 
 CLOSE (2) 
 ENDIF 
 
C // end of calculating phi and bands; 
C // ------------------------------- 
 
C // close the output file : 
C 
 CLOSE (2) 
C 
C // formatting 
81 FORMAT(A1) 
82 FORMAT(A20) 
85 FORMAT(A4,I3,2X,A6) 
86 FORMAT(9X,I3,'. ',F15.5) 
88 FORMAT(A10,2X,I3,3X,A14) 
89 FORMAT(A10,2X,I3,3X,A32) 
90 FORMAT(A8,3X,I2,A13,2X,F15.5) 
91      FORMAT(A14,2X,I3,A17,1X,I3,2X,A2,1X,F15.5) 
92      FORMAT(A14,2X,I3,A17,1X,I3,2X,A2,1X,F15.5) 
93      FORMAT(A15,I3,A4,2X,F15.5) 
94      FORMAT(A20,2X,I3,A17,1X,I3,2X,A2,1X,F15.5) 
95 FORMAT(A10,I2,A7,I2) 
96 FORMAT(A10,I3,I3,I3,A2,F15.5) 
97 FORMAT(A10,I3,I3,A3,2X,F15.5) 
 
 
80 FORMAT(A10,I2,I2,I2,A2,F15.5) 
98 FORMAT(A7,I2,2X,A4,I2,2X,A7,F10.5,2X,A9,F10.5) 
100 FORMAT(A5,2X,I3,2X,A26) 
101 FORMAT(A15,I2,A18,2X,I3) 
103 FORMAT(A36,1X,I3) 
190 FORMAT(A11,I2,I2,A2,A12,I2,I2,A2,A9,I2,I2,A2) 
191 FORMAT(F15.5,1X,F15.5,1X,F15.5) 
192 FORMAT(A2,I2,2X,A2,I2,2X,A4,I2,A1,I2,A2,F10.5) 
193 FORMAT(A55,1X,I3) 
194 FORMAT(A7,I2,2X,A4,I2,2X,A7,F10.5,2X,A9,F10.5,2X,A1) 
99 ENDFILE 1 
C // 
 STOP 
 END 



Output  Example: 

 

A  PART  OF  THE  OUTPUT  IS  GIVEN  BELOW. 
 
 
  ENTER YEAR(N), PERIOD(W): 
          33          12 
  ENTER NUMBER OF LAGS (NOLAG): 
 # OF LAGS :           8 
 THERE ARE  396     OBSERVATIONS 
 THE MAXIMUM NUMBER OF LAGS IS           8 
 . 
  READ INPUTS FROM A (F)ILE OR ENTER (M)ANUALLY ? F/M : 
 f 
  ENTER FILE NAME ?; 
 atnos.txt           
 
  enter 0 to exit any integer to continue 
 
MODEL IDENTIFICATION WHEN MAX LAG IS  24 
 ***************************************************** 
. 
. 
PERIOD: 6  LAG: 1  PePACF:   0.28939   -->BAND:   0.34119 
PERIOD: 6  LAG: 2  PePACF:   0.37606   -->BAND:   0.34119  * 
PERIOD: 6  LAG: 3  PePACF:  -0.12401   -->BAND:   0.34119 
PERIOD: 6  LAG: 4  PePACF:  -0.22069   -->BAND:   0.34119 
PERIOD: 6  LAG: 5  PePACF:   0.19669   -->BAND:   0.34119 
PERIOD: 6  LAG: 6  PePACF:  -0.30060   -->BAND:   0.34119 
PERIOD: 6  LAG: 7  PePACF:   0.18404   -->BAND:   0.34119 
PERIOD: 6  LAG: 8  PePACF:   0.05164   -->BAND:   0.34119 
PERIOD: 6  LAG: 9  PePACF:  -0.05279   -->BAND:   0.34119 
PERIOD: 6  LAG:10  PePACF:   0.09710   -->BAND:   0.34119 
PERIOD: 6  LAG:11  PePACF:   0.10564   -->BAND:   0.34119 
PERIOD: 6  LAG:12  PePACF:  -0.03074   -->BAND:   0.34119 
PERIOD: 6  LAG:13  PePACF:   0.70048   -->BAND:   0.34119  * 
PERIOD: 6  LAG:14  PePACF:   0.24630   -->BAND:   0.34119 
 
 
PERIOD: 6  LAG:15  PePACF:   0.21351   -->BAND:   0.34119 
PERIOD: 6  LAG:16  PePACF:  -0.29216   -->BAND:   0.34119 
PERIOD: 6  LAG:17  PePACF:   0.21100   -->BAND:   0.34119 
PERIOD: 6  LAG:18  PePACF:  -0.11819   -->BAND:   0.34119 
PERIOD: 6  LAG:19  PePACF:  -0.01044   -->BAND:   0.34119 
PERIOD: 6  LAG:20  PePACF:   0.49543   -->BAND:   0.34119  * 
PERIOD: 6  LAG:21  PePACF:   0.02357   -->BAND:   0.34119 
PERIOD: 6  LAG:22  PePACF:  -0.33499   -->BAND:   0.34119 
PERIOD: 6  LAG:23  PePACF:   0.02739   -->BAND:   0.34119 
PERIOD: 6  LAG:24  PePACF:  -0.07716   -->BAND:   0.34119 
. 
. 
  enter 0 to exit any integer to continue 
 
 PERIOD           1: 
*This is an AR(24) model for period    1 



 ___________________________________________ 
 PERIOD           2: 
*This is an AR(24) model for period    2 
 ___________________________________________ 
 PERIOD           3: 
*This is an AR(21) model for period    3 
 ___________________________________________ 
 PERIOD           4: 
*This is an AR(21) model for period    4 
 ___________________________________________ 
 PERIOD           5: 
*This is an AR( 0) model for period    5 
 ___________________________________________ 
 PERIOD           6: 
*This is an AR(20) model for period    6 
 ___________________________________________ 
 PERIOD           7: 
*This is an AR(16) model for period    7 
 ___________________________________________ 
 PERIOD           8: 
*This is an AR(23) model for period    8 
 ___________________________________________ 
 PERIOD           9: 
*This is an AR(24) model for period    9 
 ___________________________________________ 
 PERIOD          10: 
*This is an AR(22) model for period   10 
 ___________________________________________ 
 PERIOD          11: 
*This is an AR(23) model for period   11 
 ___________________________________________ 
 PERIOD          12: 
*This is an AR(14) model for period   12 
 ___________________________________________ 
 
MODEL IDENTIFICATION WHEN MAX LAG IS   8 
 ***************************************************** 
. 
. 
 
 
PERIOD: 6  LAG: 1  PePACF:   0.28939   -->BAND:   0.34119 
PERIOD: 6  LAG: 2  PePACF:   0.37606   -->BAND:   0.34119  * 
PERIOD: 6  LAG: 3  PePACF:  -0.12401   -->BAND:   0.34119 
PERIOD: 6  LAG: 4  PePACF:  -0.22069   -->BAND:   0.34119 
PERIOD: 6  LAG: 5  PePACF:   0.19669   -->BAND:   0.34119 
PERIOD: 6  LAG: 6  PePACF:  -0.30060   -->BAND:   0.34119 
PERIOD: 6  LAG: 7  PePACF:   0.18404   -->BAND:   0.34119 
PERIOD: 6  LAG: 8  PePACF:   0.05164   -->BAND:   0.34119 
. 
. 
PERIOD           1: 
*This is an AR( 0) model for period    1 
 ___________________________________________ 
 PERIOD           2: 
*This is an AR( 0) model for period    2 
 ___________________________________________ 
 PERIOD           3: 



*This is an AR( 0) model for period    3 
 ___________________________________________ 
 PERIOD           4: 
*This is an AR( 0) model for period    4 
 ___________________________________________ 
 PERIOD           5: 
*This is an AR( 0) model for period    5 
 ___________________________________________ 
 PERIOD           6: 
*This is an AR( 2) model for period    6 
 ___________________________________________ 
 PERIOD           7: 
*This is an AR( 2) model for period    7 
 ___________________________________________ 
 PERIOD           8: 
*This is an AR( 5) model for period    8 
 ___________________________________________ 
 PERIOD           9: 
*This is an AR( 1) model for period    9 
 ___________________________________________ 
 PERIOD          10: 
*This is an AR( 1) model for period   10 
 ___________________________________________ 
 PERIOD          11: 
*This is an AR( 1) model for period   11 
 ___________________________________________ 
 PERIOD          12: 
*This is an AR( 8) model for period   12 
 ___________________________________________ 
 

 

 

 

 

 

 

 

 

 

APPENDIX  D 
 



COMPUTER  PROGRAM  FOR   

LEAST  SQUARES  ESTIMATION  

 OF  PAR  MODELS 
 

 

Description: 

 

This  program  performs  least  squares  estimation  for  PAR  coefficients  for  

any  season  of  a  given  actual  series.  The  multiple  regression  subroutine  in  the  

IMSL  Stat  Library  is  extended  to  periodic  case  for  an  ordered  sequence. 

Besides  computing  the  LS  etimates  of  the  coefficients,  program  also  stores  the  

residuals  which  are   used  further  in  diagnostic  checks. 

 

Inputs: 

 

N:  Number  of  years 

IW:  Number  of  periods 

CANS: Name  of  the  file  in  which  series  is  stored 

IV:  Period  performed  LSE 

INTCEP:  This  value  states  if  there  exists  intercept  or  not in  the  model 

NIND: The  order  of  the  PAR  process  for  season  v   

 

Outputs: 

 

B ( ):  Estimated  coefficients  of  the  PAR  process for  season  v 

RES ( ):  Residuals  resulted  from  the  fitted  model   

SST: Sum  of  squares  of  total 

SSE:  Sum  of  squares  of  errors 

 



Note:  If  an  intercep  parameter  is  included  in  the  model,  it  is  

automatically  denoted  with  B(0)  in  the  outputs. 

 

Program  Listing: 

 

THE  OUTPUTS  OF  THIS  PROGRAM  ARE  STORED  IN  FILE   'LSEatnos.txt 

 
C// 
C//  program  for  lse 
C 
      PROGRAM LSE 
      PARAMETER  (INTCEP=1, NIND=8, NOBS=33, LDX=NOBS,IV=12, 
     *           NCOEF=INTCEP+NIND) 
 
 INTEGER    NW, N, IW, I, J, T, INDICE 
      INTEGER    IOFF, ICON 
      INTEGER    NOUT 
      REAL       B(NCOEF), SSE, SST, XSUB(LDX,NIND), YSUB(NOBS),RES(500) 
      EXTERNAL   RLSE, UMACH, WRRRN 
 REAL    D(500),X(20,150),SUM  
 CHARACTER  FNAME*20, CANS*1 
       
  
C// open the output file  
 OPEN (2, FILE='LSEatnos.txt') 
C 
 PRINT*,' ENTER YEAR(N), PERIOD(W):' 
 WRITE(2,*) ' ENTER YEAR(N), PERIOD(W):' 
 READ*, N,IW 
 WRITE(2,*) N,IW 
 
 
 
C 
 NW=N*IW 
 
 
C 
C 
      PRINT*, ' ENTER FILE NAME ?;' 
 WRITE(2,*)  ' ENTER FILE NAME ?;' 
 READ 82, FNAME 
 PRINT*, FNAME 
 WRITE(2,*) FNAME 
 OPEN (1, FILE=FNAME) 
 REWIND 1 
 READ(1,*,END=99) (D(I), I=1, NW) 
 CLOSE (1) 
 
C// fill the xsub matrix and ysub array for subroutine 
 DO 4 I=1,N 



 INDICE=IW*(I-1)+IV 
 IF((INDICE-NIND).GT.0)THEN 
  DO 5 J=1,NIND 
   XSUB(I-IOFF,J)=D(INDICE-J) 
5 CONTINUE 
 ELSE 
  IOFF=I 
 ENDIF 
4 CONTINUE 
 
 DO 6 I=1,N 
 INDICE=IW*(I-1)+IV 
 IF((INDICE-NIND).GT.0)THEN 
  YSUB(I-IOFF)=D(INDICE) 
 ELSE 
  IOFF=I 
 ENDIF 
6 CONTINUE  
 
      CALL RLSE (NOBS, YSUB, NIND, XSUB, LDX, INTCEP, B, SST, SSE) 
      CALL WRRRN ('B', NCOEF, 1, B, NCOEF, 0) 
      WRITE (*,99999) 'SST = ', SST, '  SSE = ', SSE 
 
 DO 7 I=1,NOBS 
 SUM = B(1) 
  DO 8 J=1,NIND   
  SUM = SUM+ B(J+1)* XSUB(I,J) 

8 CONTINUE 
 
C// calculating residuals 
 
 RES(I)=YSUB(I)-SUM 
7 CONTINUE 
 DO 12 I=1,NCOEF 
  PRINT 84,'B( ', I ,')=',B(I) 
  WRITE (2,84) 'B( ', I ,')=',B(I) 
12 CONTINUE 
 
 DO 13 I=1,NOBS   
           PRINT 83,'RES(',I,')=',RES(I) 
   WRITE (2,83) 'RES(',I,')=',RES(I)  
 
 
13 CONTINUE 
   
 PRINT *,'SST = ', SST, '  SSE = ', SSE 
 WRITE (2,*) 'SST = ', SST, '  SSE = ', SSE 
 
82 FORMAT(A20) 
84 FORMAT(A2,I2,A2,F10.5) 
83 FORMAT(A4,I3,A2,F10.5) 
99 ENDFILE 1 
       END 
 



Output  Example: 

 

THE  OUTPUT  OF  THIS  PROGRAM  IS  AS  FOLLOWS, 

 
  ENTER YEAR(N), PERIOD(W): 
          33          12 
  ENTER FILE NAME ?; 
 atnos2.txt           
B( 1)=  11.88494 
B( 2)=   0.12092 
B( 3)=   0.16902 
B( 4)=   0.01306 
B( 5)=  -0.99822 
B( 6)=   2.16752 
B( 7)=  -3.34290 
B( 8)=   3.56133 
B( 9)=   0.54212 
B(10)=   0.75493 
B(11)=  -1.17774 
B(12)=  -0.32088 
B(13)=  -0.14686 
B(14)=   0.48753 
 
 
RES(  1)=   5.95337 
RES(  2)=  -2.50174 
RES(  3)=   0.35670 
RES(  4)=   2.34907 
RES(  5)=   3.56994 
RES(  6)=   2.74192 
RES(  7)=  -2.84329 
RES(  8)=  15.28082 
RES(  9)=  -6.50660 
RES( 10)=  -2.69373 
RES( 11)=   3.78721 
RES( 12)=  -0.95144 
RES( 13)=  -4.73891 
RES( 14)=  -0.83926 
RES( 15)=   3.15578 
 
 
RES( 16)= -12.66762 
RES( 17)=   3.09277 
RES( 18)=  -0.65772 
RES( 19)=  -1.32405 
RES( 20)=   1.67526 
RES( 21)=   1.85140 
RES( 22)=  -1.87665 
RES( 23)=   0.70174 
RES( 24)=  -6.89446 
RES( 25)=   9.02119 
RES( 26)=   3.34445 
RES( 27)=  -4.33182 
RES( 28)=  -3.44289 



RES( 29)=   5.04392 
RES( 30)=   8.20067 
RES( 31)= -10.71815 
RES( 32)=  -7.13802 
 SST =    3540.473      SSE =    1018.867     
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX  E 
 



APPLIED  SERIES 
 

E1.  Atnos  Creek 
 
YEAR 

 
OCT     NOV     DEC     JAN     FEB     MAR     APR       MAY    JUNE   JULY    AUG     SEP   
 

 
 
1963 
1964 
1965 
1966 
1967 
1968 
1969 
1970 
1971 
1972 
1973 
1974 
1975 
1976 
1977 
1978 
1979 
1980 
1981 
1982 
1983 
1984 
1985 
1986 
1987 
1988 
1989 
1990 
1991 
1992 
1993 
1994 
1995 

 
 
1.680   4.970   71.61   59.06   52.75   21.85   11.92   6.790   3.070   0.994   0.455   0.590       
1.110   1.530   19.62   3.550   15.18   34.60   5.560   3.710   1.670   0.383   0.160   0.560       
0.904   1.740   36.21   10.12   107.0   21.06   33.57   21.33   4.050   1.700   1.070   1.170       
1.600   3.820   18.44   54.85   13.76   40.13   17.76   6.600   2.840   0.916   0.573   1.640       
1.310   2.190   21.61   46.10   16.18   11.46   8.310   3.960   1.860   0.344   0.580   0.655       
1.270   1.480   7.000   73.51   36.90   34.05   7.490   5.810   2.570   0.500   0.982   5.410       
2.030   3.740   9.350   30.78   34.61   16.17   14.42   5.500   2.670   2.780   0.648   0.583       
1.200   1.840   16.30   26.01   45.23   27.16   14.18   4.560   1.860   0.530   0.719   0.261       
1.580   3.020   7.920   16.69   23.06   44.81   13.16   4.020   2.080   0.271   0.014   0.182       
0.838   2.164   13.16   5.010   9.251   4.035   5.230   4.434   1.560   0.090   0.000   0.757       
5.372   3.330   1.656   2.450   29.11   17.18   7.945   2.745   2.105   0.178   0.614   0.005       
2.412   4.529   17.99   3.654   29.82   30.58   7.706   5.427   1.726   0.183   0.000   0.097       
0.271   2.119   5.808   35.68   17.01   19.83   6.707   8.480   2.948   0.253   0.041   0.143       
0.683   2.830   17.90   11.30   24.08   6.129   17.53   4.835   1.982   0.232   0.248   0.362       
1.727   2.783   14.99   14.54   15.22   17.32   5.049   2.510   0.359   0.019   0.000   0.320       
1.275   6.014   15.02   47.95   54.88   26.25   22.72   7.296   2.985   0.872   0.689   2.778       
2.566   8.142   8.727   30.03   20.26   7.202   5.207   3.362   1.288   0.312   0.156   0.632       
1.045   2.997   9.828   39.49   16.31   25.80   13.10   6.595   10.09   1.112   0.645   1.164       
1.088   3.603   30.23   72.42   27.52   24.77   6.911   8.867   2.574   1.485   0.995   1.174       
2.142   4.671   89.55   22.31   15.57   16.85   11.58   14.43   4.061   1.791   1.591   1.188       
1.817   1.663   2.926   7.763   15.68   9.222   6.743   2.639   1.618   1.668   1.272   1.233       
1.140   6.132   8.725   21.52   20.51   19.87   24.25   7.524   3.547   3.222   2.597   2.012       
1.346   2.078   1.768   18.01   8.647   12.35   6.392   2.938   1.987   1.088   0.903   0.918       
0.932   7.687   3.825   30.45   31.36   15.05   4.998   2.853   3.078   1.518   1.596   1.244       
1.500   1.197   9.837   43.56   17.41   29.43   9.695   5.782   4.723   2.177   1.737   2.177       
2.496   6.603   24.99   5.687   8.996   20.00   8.063   4.330   3.325   1.557   1.645   2.596       
1.726   9.448   23.81   5.057   2.693   5.327   2.092   2.016   1.067   0.232   0.489   1.074       
0.640   1.400   10.50   3.430   6.060   5.560   3.970   2.350   1.880   0.838   0.837   1.320       
0.637   7.300   34.30   7.780   6.890   3.670   8.380   6.100   3.050   2.170   1.670   2.350       
0.813   0.601   2.390   2.220   1.530   13.20   10.30   1.940   3.450   2.680   2.080   2.540       
1.690   1.180   6.410   6.550   16.10   21.90   8.150   4.470   3.920   2.830   2.800   2.200       
2.030   1.450   3.340   1.980   15.20   10.20   3.800   2.380   2.040   1.230   1.570   1.100       
0.947   3.520   5.000   21.40   5.960   13.70   28.20   2.750   2.100   1.550   1.610   1.750       

 

Location:                                 Susurluk Basin ,  Balıkesir  /  Turkey 

Elavation:                                94 m. 

Drainage Area :                      1384.0 Km2 

Period of observation:            1963 –  1995 

Long-term Mean Discharge:  9.116     m3/sn.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E2.  Nilüfer  Creek 
 
YEAR 

 
OCT     NOV     DEC     JAN     FEB     MAR     APR       MAY    JUNE   JULY    AUG     SEP   
 

 
1954 
1955 
1956 
1957 
1958 

 
4.210   4.560   6.600   20.32   29.88   25.33   26.45   35.33   14.08   2.400   1.390   1.370         
1.830   2.700   3.420   9.220   17.71   13.40  19.65   16.41   6.300   1.870   2.440   1.420         
2.240   20.36   14.98   19.45   36.11   29.69   27.76   28.18   14.05   3.270   1.550   1.660         
2.150   2.870   3.100   3.110   7.650   13.63   8.950   15.66   4.690   1.340   1.250   1.360        
1.360   2.170   9.970   14.20   14.54   35.40   51.16   37.82   18.82   4.270   2.460   3.580         



1959 
1960 
1961 
1962 
1963 
1964 
1965 
1966 
1967 
1968 
1969 
1970 
1971 
1972 
1973 
1974 
1975 
1976 
1977 
1978 
1979 
1980 
1981 
1982 
1983 
1984 
1985 
1986 
1987 
1988 
1989 
1990 
1991 
1992 
1993 
1994 
1995 

4.280   4.940   6.990   21.73   14.16   26.07   20.73   33.39   24.02   9.290   1.660   2.760         
4.200   6.770   7.010   23.53   19.67  21.36   28.19   21.13   15.28   4.990   1.450   2.170         
2.780   3.790   13.30   16.60   18.60   14.70   21.20   15.70   7.910   2.490   1.220   1.420         
2.290   3.100   5.150   5.290   15.47   32.09   37.32   20.12   6.690   2.560   1.050   1.130         
7.920   11.55   42.31   70.54   51.60   33.56   37.63   35.08   18.95   6.910   1.370   2.520         
3.830   5.300   43.23   11.15   18.06   31.01   20.75   21.96   13.06   2.020   1.560   3.150         
3.490   5.780   35.07   19.66  44.14   42.96   47.77   51.41   23.59   9.890   2.650   2.190         
2.720   7.230   17.30   35.69   20.88   28.11   49.57   27.57   14.63   4.580   2.710   2.830         
3.650   3.130   9.910   20.45   16.10   23.09   33.99   39.37   19.49   7.010   1.020   3.130         
5.030   4.610   17.56   50.63   50.77   42.45   39.10   28.02   12.93   4.260   1.490   8.730         
10.11   11.57   18.10   22.82   36.04   27.73   37.37   48.86   19.43   9.150   2.310   1.600         
2.490   2.740   10.90  29.79   57.33   39.05   54.07   31.19   17.95   6.340   2.470   2.060         
6.000   8.290   34.68   25.86   20.96   41.15   33.24   33.14   13.53   2.500   1.590   1.660         
3.647   6.183   24.57   8.415   12.74   12.06   24.71   17.22   14.20  4.902   1.650   3.217         
15.28   11.98   7.094   10.27   17.71   26.95   32.58   27.00   15.92   2.850   3.064   1.910         
8.266   10.26   29.27   11.54   19.36   28.27   27.19   43.34   17.51   3.337   4.839   3.216         
3.559   8.305   14.39   13.43   18.27   29.37   29.83   40.63   19.38   4.056   2.109   1.571         
3.113   4.924   14.17   13.33   13.96   11.22   21.60   22.14   9.882   1.877   2.415   2.267         
5.193   5.212   16.08   10.66   14.02   20.58   23.38   16.63  4.992   1.189   0.574   1.079         
2.804   7.604   17.61   23.22   30.89   31.43   41.31   34.81   13.32   3.619   1.694   3.202         
5.212   5.916   13.24   32.50   23.22   15.87   21.84   20.88   12.45   2.834   1.388   3.322         
3.920   10.76   19.13   29.69   36.56   34.42   38.90   39.75   29.03   7.404   2.807   1.952         
3.094   9.164   25.84   40.45   34.05   49.51   33.86   49.32   21.87   8.848   3.248   7.235         
7.078   14.71   74.11   48.69   36.34   32.55   57.71  39.86   25.58   14.81   3.526   3.077         
4.243   4.806   5.493   13.55   17.76   32.47   38.90   24.17   12.68   7.312   4.910   2.231         
4.149   7.857   11.96   14.71   20.13   27.61   43.47   43.26   20.11   11.63   12.31   2.648 
1.713   3.138   3.740   9.871   16.73   20.48   20.46   19.80   7.077   2.909   1.302   1.276 
2.050   11.50   11.41   24.76   27.61   24.28   20.17   13.42   9.989   3.701   1.906   1.613 
2.983   4.343   9.004   35.59   21.35   26.06   30.83   28.53   17.32   7.923   4.513   3.992         
5.406   7.366   28.95   11.81   11.10   23.10   23.09   24.73   10.14   5.134   3.101   2.715        
3.234   7.209   15.89   11.41   5.439   8.035   9.567   7.764   5.573   2.610   2.010   1.939         
17.20   20.60   25.70  16.80   15.90   14.00   18.70   27.50   12.80   5.430   3.100   3.470         
4.240   9.320   25.70   12.50   18.30   16.80   48.70   45.90   28.80   8.940   4.250   6.100         
8.870   6.340   8.110   8.140   12.50   15.80   32.60   26.40   18.10  5.890   3.230   3.200         
6.620   5.830   9.950   6.890   12.00   15.10   20.60   29.90   10.80   4.000   3.090   2.750         
3.050   5.340   6.390   5.830   6.790   6.110   11.90   10.70   7.730   3.130   2.800   2.640         
4.080   8.260   8.770   19.90   14.70   20.10   42.30   31.80   13.60   6.240   3.670   4.130         
 

 

Location:                     Susurluk Basin,  Bursa / Turkey 

Elavation:                    63 m. 

Drainage Area:           1290.8  Km2 

 

 

 

 

APPENDIX  F 
 



PeACF  AND  PePACF  GRAPHS 
 

 

In  this  appendice,  the  PeACF  and  PePACf  graphs  for  each  season  of  

Atnos  creek  and  Nilüfer  creek,  which  are  drawn  using  MATLAB  6.1,  are  

presented.  The  graphs  are  created  from  the  values  of  periodic  autocorrelations  

and  periodic  partial  autocorrelations  with  the  corresponding  band  limits  from  

which  the  significant  lags  are  specified.  These  values  are  obtaind  through  the  

programs  listed  in  appendices  B  and  C.  In  the  graphs,  the  black  vertical  lines  

at  each  lag  show  the  value  of  periodic  autocorrelation  or  periodic  partial  

autocorrelation  at  that  lag,  and  the  red  dotted  lines  show  the  band  limits.  
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F1.  PeACF  and  PePACF  Graphs  Of  Atnos  Creek 

 

Figure  F1.1 (a)  PeACF  graph  of  Atnos  season  1 

Figure F1.1 (b)  PePACF  graph  of  Atnos  season 1 



 

Figure  F1.2 (a)  PeACF  graph  of  Atnos  season  2 

 

Figure  F1.2 (b)  PePACF  graph  of  Atnos  season  2 



 

Figure  F1.3 (a)  PeACF  graph  of  Atnos  season 3 

 

Figure  F1.3 (b)  PePACF  graph  of  Atnos  season  3 



 

Figure  F1.4 (a)  PeACF  graph  of  Atnos  season  4 

 

Figure  F1.4 (b)  PePACF  graph  of  Atnos  season  4 



 

Figure  F1.5 (a)  PeACF  graph  of  Atnos  season  5 

 

Figure  F1.5 (b)  PePACF  graph  of  Atnos  season  5 



 

Figure  F1.6 (a)  PeACF  graph  of  Atnos  season  6 

 

Figure  F1.6 (b)  PePACF  graph  of  Atnos  season  6 



 

Figure  F1.7 (a)  PeACF  graph  of  atnos  season  7 

 

Figure  F1.7 (b)  PePACF  graph  of  Atnos  season  7 



 

Figure  F1.8 (a)  PeACF  graph  of  Atnos  season  8 

 

Figure  F1. 8 (b)  PePACF  graph  of  Atnos  season  8 



 

Figure  F1.9 (a)  PeACF  graph  of  Atnos  season  9 

 

Figure  F1.9 (b)  PePACF  graph  of  Atnos  season  9 



 

Figure  F1.10 (a)  PeACF  graph  of  Atnos  season  10 

 

Figure  F1.10 (b)  PePACF  graph  of  atnos  season  10 



 

Figure  F1.11 (a)  PeACF  graph  of  Atnos  season  11 

 

Figure  F1.11 (b)  PePACF  graph  of  Atnos  season  11 



 

Figure F1.12 (a)  PeACF  graph  of  Atnos  season  12 

 

Figure F1.12 (b)  PePACF  graph  of  Atnos  season  12 



F2.  PeACF  and  PePACF  Graphs  Of  Nilufer  Creek 

 

Figure  F2.1 (a)  PeACF  graph  of   Nilüfer  season  1 

Figure  F2.1 (b)   PePACF  graph  of  Nilüfer  season  1 



 

Figure  F2.2 (a)  PeACF  graph  of  Nilüfer  season  2 

 

Figure  F2.2 (b)  PePACF  graph  of  Nilüfer  season  2 



 

Figure  F2.3 (a)  PeACF  graph  of  Nilüfer  season  3 

 

Figure  F2.3 (b)  PePACF  graph  of  Nilüfer  season  3 



 

Figure  F2.4 (a)  PeACF  graph  of  Nilüfer  season  4 

 

Figure  F2.4 (b)  PePACF  graph  of  Nilüfer  season  4 



 

Figure  F2.5 (a)  PeACF  graph  of  Nilüfer  season  5 

 

Figure  F2.5 (b)  PePACF  graph  of  Nilüfer  season  5 



 

Figure  F2.6 (a)  PeACF  graph  of  Nilüfer  season  6 

 

Figure  F2.6 (b)  PePACF  graph  of  Nilüfer  season  6 



 

Figure  F2.7 (a)  PeACF  graph  of  Nilüfer  season  7 

 

Figure  F2.7 (b)  PePACF  graph  of  Nilüfer  season  7 



 

Figure  F2.8 (a)  PeACF  graph  of  Nilüfer  season  8 

 

Figure  F2.8 (b)  PePACF  graph  of  Nilüfer  season  8 



 

Figure  F2.9 (a)  PeACF  graph  of  Nilüfer  season  9 

 

Figure  F2.9 (b)  PePACF  graph  of  Nilüfer  season  9 



 

          Figure  F2.10 (a)  PeACF  graph  of  Nilüfer  season  10 

 

Figure  F2.10 (b)  PePACF  graph  of  Nilüfer  season  10 



 

Figure  F2.11 (a)  PeACF  graph  of  Nilüfer  season  11 

 

Figure  F2.11 (b)  PePACF  graph  of  Nilüfer  season  11 



 

Figure  F2.12 (a)  PeACF  graph  of  Nilüfer  season  12 

 

Figure  F2.12 (b)  PePACF  graph  of  Nilüfer  season  12 


