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ABSTRACT

CRYPTOLOGICAL VIEWPOINT OF BOOLEAN FUNCTIONS

Sağdıçoğlu, Serhat

M. Sc., Department of Mathematics

Supervisor: Assoc. Prof. Dr. Ali Doğanaksoy

September 2003, 99 pages

Boolean functions are the main building blocks of most cipher systems.

Various aspects of their cryptological characteristics are examined and inves-

tigated by many researchers from different fields. This thesis has no claim to

obtain original results but consists in an attempt at giving a unified survey of

the main results of the subject. In this thesis, the theory of boolean functions

is presented in details, emphasizing some important cryptological properties

such as balance, nonlinearity, strict avalanche criterion and propagation crite-

rion. After presenting many results about these criteria with detailed proofs,

two upper bounds and two lower bounds on the nonlinearity of a boolean

function due to Zhang and Zheng are proved. Because of their importance in

the theory of boolean functions, construction of Sylvester-Hadamard matrices

are shown and most of their properties used in cryptography are proved. The

Walsh transform is investigated in detail by proving many properties. By us-

ing a property of Sylvester-Hadamard matrices, the fast Walsh transform is

presented and its application in finding the nonlinearity of a boolean function

is demonstrated. One of the most important classes of boolean functions, so

called bent functions, are presented with many properties and by giving sev-

eral examples, from the paper of Rothaus. By using bent functions, relations

between balance, nonlinearity and propagation criterion are presented and it
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is shown that not all these criteria can be simultaneously satisfied completely.

For this reason, several constructions of functions optimizing these criteria

which are due to Seberry, Zhang and Zheng are presented.

Keywords: Cryptography, Boolean functions, Hadamard matrices, Sylvester-

Hadamard matrices, Nonlinearity, Strict avalanche criterion, Propagation cri-

terion, Walsh transform, Fast Walsh transform, Bent function.
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ÖZ

KRİPTOLOJİK BAKIŞ AÇISIYLA BOOLE FONKSİYONLARI

Sağdıçoğlu, Serhat

Yüksek Lisans, Matematik Bölümü

Tez Yöneticisi: Assoc. Prof. Dr. Ali Doğanaksoy

Eylül 2003, 99 sayfa

Boole fonksiyonları bir çok şifre sisteminin ana yapı taşıdır. Bunların

muhtelif kriptolojik karakteristikleri farklı alanlardan bir çok araştırmacı tara-

fından ele alınmış ve incelenmiştir. Bu tez hiç bir özgün sonuç elde etme

iddiasında bulunmamakta, sadece konunun ana sonuçlarının bütünleşik bir

mütalaasını vermeye teşebbüs etmektedir. Bu tezde Boole fonksiyonlarının

teorisi dengelilik, doğrusal olmama, tam çığ ölçütü ve yayılma ölçütü gibi

bazı önemli kriptolojik özellikler vurgulanarak detayları ile sunulmaktadır.

Bu ölçütler hakkındaki birçok sonucu detaylı ispatlar ile sunduktan sonra

bir Boole fonksiyonunun doğrusal olmaması üzerinde Zhang ve Zheng’e ait

iki üst sınır ve iki alt sınır ispatlanmıştır. Boole fonksiyonlar teorisindeki

önemlerinden dolayı, Sylvester-Hadamard matrislerinin inşaası gösterilmiş ve

kriptografide kullanılan birçok özellikleri ispatlanmıştır. Walsh dönüşümü

birçok özellikleri ispatlanarak detayları ile incelenmiştir. Sylvester-Hadamard

matrislerinin bir özelliğini kullanarak hızlı Walsh dönüşümü sunulmuş ve bir

Boole fonksiyonunun doğrusal olmama değerinin bulunmasındaki uygulaması

gösterilmiştir. Bükük (bent) fonksiyonlar olarak anılan Boole fonksiyonlarının

en önemli sınıflarından birisi Rothaus’un makalesinden birçok özellikler ve

çeşitli örnekler vererek sunulmuştur. Bükük fonksiyonları kullanarak den-

gelilik, doğrusal olmama ve yayılma ölçütü arasındaki ilişkiler sunulmuş ve
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bu kriterlerin hepsinin aynı zamanda tamamen sağlanamayacağı gösterilmiştir.

Bu nedenden dolayı, Seberry, Zhang ve Zheng’e ait olan ve bu kriterleri opti-

mize eden birçok fonksiyon inşaası sunulmuştur.

Anahtar Kelimeler: Kriptografi, Boole fonksiyonları, Hadamard matrisleri,

Sylvester-Hadamard matrisleri, Doğrusal olmama, Tam çığ ölçütü, Yayılma

ölçütü, Walsh dönüşümü, Hızlı Walsh dönüşümü, Bükük fonksiyon.
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for his guidance, insight and cooperation throughout the research without

whom this work would never be finished.
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CHAPTER 1

INTRODUCTION

The concepts completeness and the avalanche effect were first introduced by

Kam and Davida [20] and Feistel [16]. Completeness means that each cipher-

text bit depends on all bits of the plaintext. This means that if each cipher-

text bit were written as a boolean function of each of the plaintext bits, then

this function would contain all the plaintext bits, if the system is complete.

Avalanche effect means that an average of one half of the output bits should

change whenever a single bit of the plaintext is complemented. The concepts

of completeness and avalanche effect are combined to define a new property

called strict avalanche criterion [55]. Strict avalanche criterion means that

each ciphertext bit should change with a probability of one half whenever a

single input bit is complemented. As seen from the definitions of completeness,

avalanche effect and strict avalanche criterion, they are all milestone concepts

to define the theory of any cryptological function, in particular the block ci-

phers. These three concepts were defined to investigate block ciphers, not

the S-boxes or small functions appearing in a block cipher. However, as seen

from the definitions, the applicability of these statements is infeasible even for

very small functions. These definitions and many successors were later defined

for boolean functions. Instead of seeking for necessary properties for design-

ing block ciphers and trying to overcome intractable amount of computations

whether those properties are satisfied or not, the properties and theory are

developed on core components of block ciphers, namely boolean functions and

S-boxes. Then, “cryptologically strong” core functions are either looked for by

exhaustive search or constructed theoretically by using this theory. Finally,
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they are combined suitably to design strong block ciphers. One other advan-

tage of this approach besides getting rid of infeasible calculations is that an

important theory of boolean functions related to cryptology is obtained which

is developed by mathematicians, engineers and statisticians.

After having presented some basic definitions and the situation of boolean

functions in the theory, the contents of this thesis is as follows :

In Chapter 2, the theory of boolean functions with various definitions are

constructed. Many well-known facts are also proved in detail for complete-

ness. The definition of nonlinearity and cryptologically important properties

of Hadamard matrices and Sylvester-Hadamard matrices are presented. The

difference function of a boolean function f corresponding to a vector α is pre-

sented with its properties. The autocorrelation of f with a shift α is presented

and finally a special form of the Wiener-Khintchine theorem is presented.

In Chapter 3, two upper and two lower bounds on the nonlinearity of a

boolean function is presented. Moreover, for any boolean function, the non-

linearity, balance, linearity dimension and the number of vectors for which the

propagation criterion is satisfied are shown to be invariant under nonsingular

affine transformations on the input coordinates.

In Chapter 4, the Walsh transform of a boolean function and the Walsh

transform of the sign function of a boolean function are presented with their

relations to each other. The properties of the Walsh transform of the sign

function of a boolean function are listed. The fast Walsh transform is given

with a demonstrating example.

In Chapter 5, the definitions of strict avalanche criterion and propagation

criterion of degree k are presented. Lower bounds on the number of functions

satisfying strict avalanche criterion and asymptotics for S(n, 1) and S(n, 2)

are given where S(n, k) denotes the number of functions for which the output

changes with probability exactly one half if any of the input variables x1, x2

, . . . , xk among x = (x1, x2, . . . , xn) is complemented. An example of an unbal-

anced SAC fulfilling function is given and a method to construct SAC fulfilling

functions is given.

2



In Chapter 6, bent functions are presented. The fact that they have the

largest nonlinearity among all boolean functions is proved. An upper bound

on the degree of a bent function is proved. The fact that they satisfy the

propagation criterion for any nonzero vector is emphasized. Finally, some

known classes of bent functions including Maiorana-McFarland construction

and the relation of bent functions with difference sets are mentioned.

In Chapter 7, construction of highly nonlinear balanced functions, con-

struction of highly nonlinear balanced functions satisfying SAC and finally

construction of highly nonlinear balanced functions having good propagation

characteristics are presented with several examples. Most of these construc-

tions use bent functions by concatenating, splitting or modifying the sequence

of bent functions.
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CHAPTER 2

PRELIMINARIES

2.1 Boolean Functions and (0,1)-Sequences

Let Vn be the set of all n-tuples of elements of the field GF (2), endowed with

the natural vector space structure over GF (2).

Vn possesses a natural ordering known as the lexicographic ordering defined

as follows :

For α = (a1, a2, . . . , an), β = (b1, b2, . . . , bn) in Vn, set α < β if there exists

k, 1 ≤ k ≤ n such that a1 = b1, a2 = b2, . . . , ak−1 = bk−1; ak = 0 and

bk = 1. It follows that we can list all elements of Vn as α0, α1, . . . , α2n−1 so

that α0 < α1 < . . . < α2n−1.

An element αk = (a1, a2, . . . , an) in Vn can be represented by the integer
n∑

i=1

ai.2
n−i, where 0 ≤ k ≤ 2n − 1. With this representation of Vn, it can

be shown that αk corresponds to the integer k and the ordering defined above

coincides with the natural ordering of integers. Thus, there is a correspondence

between Vn and Z2n via

ψ : Vn −→ Z2n (2.1)

x = (x1, x2, . . . , xn) 7−→ x1.2
n−1 + x2.2

n−2 + . . .+ xn

where Z2n is the ring of integers modulo 2n.

The Hamming distance between two vectors in Vn is defined to be the

number of unequal (corresponding) components. It follows that the Hamming

distance d(α, β), for α, β in Vn, is the number of nonzero components of α+β.

The Hamming weight w(α) of a vector α in Vn is the Hamming distance of α
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to the zero vector. In other words, w(α) is the number of nonzero components

of α. From now on, “the distance” and “the weight” will be used instead of

“the Hamming distance” and “the Hamming weight”, respectively.

A GF (2)-valued function on Vn is referred to as a boolean function. Unless

otherwise stated explicitly, by a function, we shall mean a boolean function.

The set of all boolean functions will be denoted by Fn.

Fn is a vector space over the field GF (2) where the addition of two vectors

in Fn and the multiplication of a vector in Fn with a scalar in GF (2) is defined

as follows :

for all f, g in Fn, x in Vn and c in GF (2)

(f + g) (x) = f(x) + g(x), (2.2)

(c · f) (x) = c · f(x) . (2.3)

For a function f , the ordered 2n-tuple

Tf = (f(α0), f(α1), . . . , f(α2n−1))

is called the truth table of f . It is clear that any function f can be uniquely

described by its truth table Tf .

So far, we have seen some definitions and properties of Vn. Now, we will

see analogies of some definitions made for elements of Vn with elements of Fn.

Recall how the distance d(α, β) of two vectors α, β in Vn and the weight w(α)

of a vector α in Vn were made.

For any function f , the weight of f is the weight of its truth table Tf in

Vn. Namely, it is the number of vectors α in Vn such that f(α) = 1.

The distance between two functions f, g in Fn is the distance between

their truth tables Tf and Tg in Vn. It is denoted by d(f, g). It follows that

d(f, g) = |{x ∈ Vn|f(x) 6= g(x)}|. Note that, as w(f + g) is the number of

unequal (corresponding) components of Tf and Tg, we have d(f, g) = w(f+g).

A (0, 1)-sequence α = (a1, a2, . . . , an) is called 0,1 balanced or simply bal-

anced if it has an equal number of 0’s and 1’s. Similarly, a function f in Fn

is balanced if w(f) = 2n−1. Note that a function f is balanced if and only if

5



w(f) = w(f +1) where 1 denotes the all-one constant function in Fn. Namely,

it is the function having the property w(f) = 2n.

For a function f the support of f , denoted by Supp(f), is defined as

Supp(f) = {x ∈ Vn|f(x) = 1}. Note that |Supp(f)| = w(f). Now, consider

two functions f, g. Then,

Supp(f + g) = {x ∈ Vn|(f + g)(x) = 1}

= {x ∈ Vn|f(x) = 1, g(x) = 0} ∪ {x ∈ Vn|f(x) = 0, g(x) = 1}

= [Supp(f) ∩ (Vn \ Supp(g))] ∪ [Supp(g) ∩ (Vn \ Supp(f))]

= (Supp(f) \ Supp(g)) ∪ (Supp(g) \ Supp(f))

= Supp(f)4 Supp(g) (2.4)

where A\B denotes the difference and A4B denotes the symmetric difference

of the sets A and B.

Let F be a finite field. f is a polynomial in the indeterminates x1, x2, . . . , xn

over the field F , denoted by f ∈ F [x1, x2, . . . , xn], means that f is a formal

sum of the form ∑
~i=(i1,i2,...,in)∈Nn

c~i . x
i1
1 x

i2
2 . . . x

in
n =

∑
~i∈Nn

c~i X
~i (2.5)

where c~i ∈ F and all but finite c~i’s are equal to 0F . By N and Nn we mean the

set of nonnegative integers and n copies of the set N, respectively.

Given a polynomial f ∈ F [x1, x2, . . . , xn] of the form (2.5), any X
~i is called

a term of f if c~i 6= 0F . c~i is called the coefficient of the corresponding term.

For any term X
~i = xi1

1 x
i2
2 . . . x

in
n of f , the degree of this term is the number of

nonzero k’s where ik 6= 0 for 1 ≤ k ≤ n. In other words, it is the number of

indeterminates (variables) appearing in that term. The degree of f denoted

by deg(f) is the degree of the highest degree term appearing in f . The degree

of a variable xi in f , denoted by deg(f, xi), is the degree of the highest degree

term among all terms in which xi appears. Note that the degree of f and the

degree of any variable xi in f can take values from 0 to n.

For any term X
~i = xi1

1 x
i2
2 . . . x

in
n of f , the power of a variable xk in this

term, denoted by pow(X
~i, xk), is the nonnegative integer ik where 1 ≤ k ≤ n.

6



Similarly, the power of any variable xk in f , denoted by pow(f, xk), is the

largest integer among all pow(X
~i, xk)’s where ~i runs through all vectors in Nn

for which c~i 6= 0F .

For any f =
∑
~i∈Nn

c~i . x
i1
1 x

i2
2 . . . x

in
n ∈ F [x1, x2, . . . , xn] and any α = (a1, a2, . . .

, an) ∈ F n, we write f(α) for the element
∑
~i∈Nn

c~i . a
i1
1 a

i2
2 . . . a

in
n of F . This cor-

respondence α 7−→ f(α) defines a function on F n which is determined by the

polynomial f . It is called the polynomial function on F n determined by the

polynomial f .

Now, we claim that for any function f : Vn −→ GF (2), there exists a

polynomial f̃ ∈ GF (2)[x1, x2, . . . , xn] such that f̃(α) = f(α) for all α in Vn.

This claim can easily be seen to be true if one can show this result for the

functions χα in Fn which attains the value 1 at exactly one point α in Vn. In

other words,

χα(β) =

 1 if β = α,

0 if β 6= α.

χα is called the characteristic function of α in Vn.

It is clear that we can express any function f as a linear combination of

these functions :

f =
∑
α∈Vn

f(α).χα . (2.6)

Let α = (a1, a2, . . . , an) be in Vn. Consider χ̃α, the following polynomial in

GF (2)[x1, x2, . . . , xn] :

χ̃(a1,a2,...,an)(x1, x2, . . . , xn) =
n∏

i=1

(xi + ai + 1). (2.7)

Clearly, χ̃(a1,a2,...,an)(b1, b2, . . . , bn) = 1 if and only if ai = bi for all i =

1, 2, . . . n. In other words, χ̃α(β) = χα(β) for all β in Vn. Thus, χ(a1,a2,...,an)

can be represented by the polynomial χ̃(a1,a2,...,an). Note that any variable xi

has power at most one in χ̃α for all i = 1, 2, . . . , n and for all α ∈ Vn.

By straightforward computation, we obtain that f is represented by the

7



polynomial f̃ , which is equal to

f̃(x1, x2, . . . , xn) =
∑

α=(a1,a2,...,an)∈Vn

f(α)
n∏

i=1

(xi + ai + 1) (2.8)

=
∑

α=(a1,a2,...,an)∈Vn

f(α)
∑
B⊆I

∏
i6∈B

(ai + 1)
∏
i∈B

xi (2.9)

=
∑
B⊆I

(∑
α∈Vn

f(α)
∏
i6∈B

(ai + 1)

)∏
i∈B

xi (2.10)

=
∑
B⊆I

 ∑
α ∈ Vn

Supp(α)⊆B

f(α)

∏
i∈B

xi (2.11)

=
∑

β=(b1,b2,...,bn)∈Vn

cβ . x
b1
1 x

b2
2 . . . xbn

n (2.12)

=
∑
β∈Vn

cβ X
β . (2.13)

f̃ is a polynomial in which each variable appears with power at most one. Now,

a few remarks and explanations will certainly clarify the above expressions

greatly.

First of all let us explain the notations and definitions used above. By

I, we mean the set I = {1, 2, . . . , n}. For any α = (a1, a2, . . . , an) in Vn the

support of α, denoted by Supp(α), is defined to be the set of i’s where ai 6= 0.

Namely Supp(α) = { i | ai 6= 0}. It is clear that the function Supp : Vn −→ I

defined as above is a bijection.

Turning back to the equations above, note that (2.8) follows directly from

(2.6) and (2.7). (2.9) follows from the observation that for any subset B of

I, the coefficient of
∏
i∈B

xi in
n∏

i=1

(xi + ai + 1) is
∏
i6∈B

(ai + 1). (2.10) is just the

reordering of (2.9). (2.11) follows from (2.10) by the following :

In (2.10),
∏
i6∈B

(ai + 1) is zero if and only if ai = 1 for some i ∈ I \ B. In

other words,
∏
i6∈B

(ai + 1) = 1 if and only if Supp(α) ∩ (I \ B) = ∅ if and only

if Supp(α) ⊆ B. (2.12) follows from (2.11) easily by using the correspondence
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between a subset B of I and an element β of Vn via

B = { i | i ∈ I} 7−→ β = (b1, b2, . . . , bn)

where bi = 1 if and only if i ∈ B. Note that this function is in fact the inverse

of Supp : Vn −→ I. Finally, (2.13) trivially follows from (2.12) by using (2.5).

Thus, it is proved that for any f : Vn −→ GF (2), there exists a polynomial

f̃ ∈ GF (2)[x1, x2, . . . , xn] such that f̃(α) = f(α) for any α in Vn and each

variable appears with power at most one in f̃ .

Lemma 2.1.1 Let f̃ ∈ GF (2)[x1, x2, . . . , xn] be a polynomial which vanishes

for all α in Vn and each variable appears with power at most one in f̃ . Then,

f̃ is the zero function. Namely, if f̃(X) =
∑
α∈Vn

cα Xα, then all cα’s are zero

for all α in Vn.

Proof. We have,

f̃(X) =
∑
α∈Vn

cα X
α

f̃(x1, x2, . . . , xn) =
∑

α=(b1,b2,...,bn)∈Vn

cα . x
b1
1 x

b2
2 . . . xbn

n .

Since each variable appears with power at most one in f̃ , it can be written as

f̃(x1, x2, . . . , xn) = xn.f̃1(x1, x2, . . . , xn−1) + f̃2(x1, x2, . . . , xn−1)(2.14)

where f̃1 and f̃2 are functions in Fn−1. The proof will be made by induction

on n.

For n = 1, the lemma clearly holds. Suppose that the lemma is true for

n − 1, that is, for any polynomial f̃ ∈ GF (2)[x1, x2, . . . , xn−1] which vanishes

for all α in Vn−1 and in which each variable appears with power at most one,

f̃ is the zero function, namely if f̃(X) =
∑

α∈Vn−1

cα Xα, then all cα’s are zero

for all α in Vn−1.

Let f̃ be a polynomial inGF (2)[x1, x2, . . . , xn] which satisfies all hypotheses

in the lemma. Using (2.14), we get that f̃(x1, x2, . . . , xn−1, xn) = 0 for all

9



(x1, x2, . . . , xn−1) in Vn−1 and for all xn in GF (2). It follows that

f̃(x1, x2, . . . , xn−1, 0) = 0 and f̃(x1, x2, . . . , xn−1, 1) = 0 (2.15)

for all (x1, x2, . . . , xn−1) in Vn−1.

Using (2.14) with both equations in (2.15), we get that f̃1(X) = 0 and

f̃2(X) = 0 for all X in Vn−1. By induction hypothesis, all coefficients of f̃1

and f̃2 are zero implying that all coefficients of f̃ are zero, which we wanted

to prove. 2

Lemma 2.1.1 is in fact equivalent to the following fact :

Let f be a function in Fn having two representations f̃1, f̃2 in GF (2)[x1, x2,

. . . , xn] such that each variable appears with power at most one in f̃i for

i = 1, 2. Then, f̃1 = f̃2.

This gives the following theorem :

Theorem 2.1.2 Any function f in Fn can be uniquely represented by a mul-

tivariate polynomial f̃ in GF (2)[x1, x2, . . . , xn] in which each variable appears

with power at most one.

Note that the assumption that each variable appears with power at most

one in the representing polynomial function is crucial for the uniqueness of the

representation. If this assumption is not satisfied, then the representation of

a function f is not unique.

Given a function f , the function

f̃(X) =
∑
α∈Vn

cα X
α (2.16)

=
∑

α=(a1,a2,...,an)∈Vn

cα . x
a1
1 x

a2
2 . . . xan

n (2.17)

is called the algebraic normal form of f . By a simple rearrangement, f̃ can be

written as

f̃(X) = a0 +

(
n∑

i=1

aixi

)
+

( ∑
1≤i<j≤n

aijxixj

)
+ · · ·+ a12...nx1x2 . . . xn

10



where the coefficients a0, ai, aij, . . . , a12...n are all in GF (2). Recall the def-

inition of the degree of a variable xi in f , denoted by deg(f, xi), for any i

satisfying 1 ≤ i ≤ n. If deg(f, xi) = 1, then f is said to depend on xi lin-

early and such a term of length one is called a linear term. Analogously, if

deg(f, xi) > 1, then f is said to depend on xi nonlinearly and such a term is

called a nonlinear term.

Now, we give an example of obtaining the algebraic normal form of a func-

tion when its truth table is given.

Example 2.1.1

Let f : V4 −→ GF (2) be the function given by

Tf = (0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1).

Using (2.11), we have :

f̃(x1, x2, x3, x4) = (f(α0)) +(f(α0) + f(α8)).x1 +(f(α0) + f(α4)).x2

+(f(α0) + f(α2)).x3 +(f(α0) + f(α1)).x4

+(f(α0) + f(α4) + f(α8) + f(α12)). x1x2

+(f(α0) + f(α2) + f(α8) + f(α10)). x1x3

+(f(α0) + f(α1) + f(α8) + f(α9)). x1x4

+(f(α0) + f(α2) + f(α4) + f(α6)). x2x3

+(f(α0) + f(α1) + f(α4) + f(α5)). x2x4

+(f(α0) + f(α1) + f(α2) + f(α3)). x3x4

+

(
7∑

i=0

f(α2i)

)
. x1x2x3 +

(
3∑

i=0

(f(α4i) + f(α4i+1))

)
. x1x2x4

+

(
1∑

i=0

(f(α8i) + f(α8i+1) + f(α8i+2) + f(α8i+3))

)
. x1x3x4

+

(
7∑

i=0

f(αi)

)
. x2x3x4 +

(
15∑
i=0

f(αi)

)
. x1x2x3x4 .

Thus, we find the algebraic normal form of f which is equal to

f̃(x1, x2, x3, x4) = x3 + x4 + x1x4 + x2x3 + x3x4 + x1x2x3 + x2x3x4.

11



Note that if B = ∅, then all α in Vn satisfying Supp(α) ⊆ B in (2.11) is α0

only. Similarly, if B = {1, 2, 3}, then this set is equal to { α2i | i = 0, 1, . . . , 7}.

Remark 2.1.3 From now on, we will make no distinction between the boolean

function f and its algebraic normal form f̃ . Both of them we will be denoted

by f .

Recall that any function f can be uniquely represented by its truth table

Tf which is a 2n-bit sequence. In other words, the function

Ξ : Fn −→ V2n (2.18)

f 7−→ Tf

is an isomorphism between the vector spaces Fn and V2n . It follows that

|Fn| = 22n
.

Recall that a balanced function f is a function with weight 2n−1. We denote

the set of all balanced functions in Fn by Bn. By a simple counting argument

|Bn| =

 2n

2n−1

.

Now, we will mention an important relationship between GF (2n), the Ga-

lois field of order 2n and Vn.

It is well-known that GF (2n) is a vector space over GF (2) for all positive

integers n. Let θ = {η0, η1, . . . , ηn−1} be a basis of GF (2n) over GF (2) and let

x = (x1, x2, . . . , xn) be in Vn. The following function

Φ : Vn −→ GF (2n) (2.19)

x = (x1, x2, . . . , xn) 7−→ x1.η0 + x2.η1 + · · ·+ xn.ηn−1

is an isomorphism when both Vn and GF (2n) are regarded as vector spaces

over GF (2). Let θd = {δ0, δ1, . . . , δn−1} be the dual basis of θ. That is, θd is a

basis for GF (2n) over GF (2) and θ, θd have the following property :

TrGF (2n)/GF (2)(ηi.δj) =

 1 if i = j,

0 if i 6= j.
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where TrGF (2n)/GF (2)(x) = Tr(x) = x+x2+· · ·+x2n−1
is the trace function from

GF (2n) to GF (2). Using the trace function and θd, one can easily compute

the coordinates of x in GF (2n) with respect to the basis θ by [24] :

x = (x1, x2, . . . , xn) = (Tr(δ0.x), T r(δ1.x), . . . , T r(δn−1.x)) . (2.20)

Two cryptographically weak but important classes of functions, linear and

affine functions, are commonly defined as follows :

A function f is called linear if

f(x+ y) = f(x) + f(y), (2.21)

f(c · x) = c · f(x) (2.22)

for any x, y in Vn and for any c in GF (2). It is clear that any function f having

f(α0) = 0 satisfies (2.22). In other words, f(α0) = 0 for any linear function

f . We denote the set of all linear functions in Fn by Ln. If f and g are both

linear functions, then f + g is also a linear function since

(f + g)(x+ y) = f(x+ y) + g(x+ y) = (f + g)(x) + (f + g)(y)

for any x, y in Vn.

It follows that Ln is a vector space over GF (2).

Consider the set of all functions in Fn of the form

f(x1, x2, . . . , xn) = a1.x1 + a2.x2 + · · ·+ an.xn (2.23)

where ai’s are in GF (2) for i = 1, 2, . . . , n. It is clear that f is a linear function.

Consider the standard ordered bases ε = {e1, e2, . . . , en} for Vn over GF (2) and

κ = {1} for GF (2) over GF (2). In fact, f is represented by the 1× n matrix

A = [a1, a2, . . . , an] relative to the bases ε and κ.

Conversely, every linear function is of this form for some a1, a2, . . . , an in

GF (2). This follows easily from the following :

Let f be a linear function. Then,

f(x) = f(x1, x2, . . . , xn) = f(x1.e1 + x2.e2 + · · ·+ xn.en)

= f(e1).x1 + f(e2).x2 + · · ·+ f(en).xn

= a1.x1 + a2.x2 + · · ·+ an.xn

13



where ai = f(ei) for i = 1, 2, . . . , n.

Recall that Ln is a vector space over GF (2). The dimension of this space

is given by the following :

Theorem 2.1.4 ([19]) The set of all linear functions is an n-dimensional

vector space over GF (2).

Proof. It is clear that the dimension of Vn over GF (2) is n and the dimen-

sion of GF (2) over GF (2) is 1. By linear algebra, the dimension of all linear

functions from Vn to GF (2), namely the dual space of Vn, denoted by Vn
?, has

dimension n.1 = n. 2

By the above theorem or using the algebraic normal form of a linear func-

tion, one obtains that |Ln| = 2n.

Given a vector α = (a1, a2, . . . , an) in Vn. We denote a linear function of

the form in (2.23) by fα. Thus, the set of all linear functions is equal to

Ln = { fα | α ∈ Vn}.

Let α = (a1, a2, . . . , an), β = (b1, b2, . . . , bn) be in Vn. The standard inner

product 〈., .〉 is defined on Vn as follows :

〈α, β〉 =
n∑

i=1

ai.bi (2.24)

where the addition and multiplication in (2.24) are the corresponding field

operations in GF (2).

It is well-known that for any ordered basis µ = {c1, c2, . . . , cn} for Vn over

GF (2), the standard inner product is completely determined by the values

aij = 〈cj, ci〉 for any cj, ci in µ. For example, if α1 =
n∑

j=1

uj.cj and α2 =

n∑
i=1

vi.ci, then

〈α1, α2〉 = 〈
n∑

j=1

uj.cj,

n∑
i=1

vi.ci〉
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=
n∑

j=1

uj

n∑
i=1

vi〈cj, ci〉

=
n∑

i,j=1

vi.aij.uj

= V.A.U (2.25)

where A = (aij) is the matrix with aij = 〈cj, ci〉 for i, j = 1, 2, . . . , n and V, U

are the coordinate matrices of α1 and α2 in the ordered basis µ, respectively

[19].

Let α, β be in Vn. Consider the standard inner product on Vn. We say that

α and β are orthogonal if 〈α, β〉 = 0. Any subset W of Vn is an orthogonal set

provided that all pairs of distinct vectors in W are orthogonal.

Theorem 2.1.5 ([19]) For any linear function f , there exists a unique vector

α in Vn such that f(β) = 〈α, β〉 for all β in Vn.

Proof. Let ε = {e1, e2, . . . , en} denote the standard ordered basis for Vn over

GF (2). We know that any linear function f is of the form

f(x) = f(x1, x2, . . . , xn) = a1.x1 + a2.x2 + · · ·+ an.xn

for some fixed ai’s in GF (2) for i = 1, 2, . . . , n. Clearly, f(x) = 〈α, x〉 where

α = (a1, a2, . . . , an) = (f(e1), f(e2), . . . , f(en)).

For the uniqueness part, suppose that there exists σ in Vn which satisfies

〈α, β〉 = 〈σ, β〉 for all β in Vn. Then, 〈α+σ, β〉 = 0 for all β in Vn. This means

that 〈α+ σ, ei〉 = 0 for all i = 1, 2, . . . , n. This is equivalent to saying that all

components of α+ σ are zero giving that σ = α. 2

It becomes more clear why the set of all linear functions are denoted by

Ln = { fα | α ∈ Vn}. By the above result, we can also represent Ln by

Ln = { 〈α, x〉 | α, x ∈ Vn and x = (x1, x2, . . . , xn)} . (2.26)

A function f is said to be an affine function if it is of the form

f(x) = f(x1, x2, . . . , xn) = a0 + a1.x1 + a2.x2 + · · ·+ an.xn (2.27)
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for a0, a1, . . . , an in GF (2).

The class of affine functions is denoted by An. Clearly if a0 = 0, then f is

a linear function. In other words, Ln is properly contained in An. Note that

for any affine function f , either f(x+ y) = f(x) + f(y) holds for all x, y in Vn

or never holds for any x, y in Vn. The first case happens for affine functions

which are in Ln, whereas the latter holds for functions in An \ Ln.

For any function f , the function denoted by f̄ is given by f̄(x) = (f+1)(x)

where 1 denotes the all-one constant function 1 : Vn −→ GF (2). f̄ is called

as the complement function, simply the complement of f . In other words,

f̄(x) = f(x)+1 for any f and for any x in Vn. So, if Tf is the truth table of f ,

then Tf̄ , the truth table of f̄ , is obtained from Tf by simply writing 0 instead

of 1 and 1 instead of 0. For any α = (a1, a2, . . . , an) in Vn, the complement of

α denoted by ᾱ, is similarly defined to be ᾱ = (ā1, ā2, . . . , ān) where āi = ai +1

for i = 1, 2, . . . , n. With this identification, one gets that Tf̄ = T̄f .

Note also that Supp(f̄) = Vn\Supp(f) which implies that w(f̄) = 2n−w(f).

It follows that f is balanced if and only if f̄ is balanced. Similarly, d(f, ḡ) =

2n − d(f, g).

A well-known fact about affine functions is the following which we prove

by using algebra :

Lemma 2.1.6 For every nonconstant affine function f , w(f) = 2n−1. Hence,

any nonconstant affine function is balanced.

Proof. Let f be a nonconstant linear function. The kernel of f , defined as

Ker(f) = { x ∈ Vn | f(x) = 0} is a subspace of Vn. As Vn/Ker(f) ' GF (2),

one gets that Ker(f) ' Vn−1. In other words, |Ker(f)| = |Vn−1| = 2n−1. This

implies that |Supp(f)| = 2n−1 giving that f is balanced.

If f is a nonconstant affine function which is not linear, then f is the com-

plement of some linear function. That is, f(x) = f̄α(x) = fα(x) + 1 for some

nonzero α in Vn. Since w(f) = 2n −w(fα) and as fα is linear, one gets that f

is balanced. 2
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2.2 (1,-1)-Sequences

Recall the definition of the truth table Tf of a function f . In this section, an

important structure of f which is related to both the function f and its truth

table Tf will be investigated.

For any function f , consider the real-valued function f̂ which is defined on

Vn as follows :

f̂(x) =

 1 if f(x) = 0,

−1 if f(x) = 1.

It is easy to see that the function f̂ : Vn −→ R can be expressed as

f̂(x) = (−1)f(x) = 1− 2f(x)

for all x in Vn.

The truth table of the function f̂ is called as the sequence of f and denoted

by ζf [44]. In other words,

ζf = Tf̂ =
(
(−1)f(α0), (−1)f(α1), . . . , (−1)f(α2n−1)

)
.

If we denote the i-th component in Tf and ζf by Tf [i] and ζf [i], respectively,

then Tf and ζf are related to each other by the obvious relation (−1)Tf [i] = ζf [i]

for all i = 0, 1, . . . , 2n−1. Hence, the weight w(f) of f and the distance d(f, g)

of two functions f, g can also be stated in terms of their sequences as follows :

The weight w(f) of a function f is the number of -1’s in ζf and the distance

between two functions f, g is the distance between their sequences ζf and

ζg, where the distance between two (1,−1)-sequences is defined to be the

number of unequal (corresponding) components. A function f is balanced if

its sequence ζf has an equal number of 1’s and -1’s.

For any two functions f, g, it is easy to see that (f̂ + g)(x) = f̂(x).ĝ(x)

for all x in Vn [11]. Thus, the sequence of the function f + g is the product

of ζf and ζg where this product is the componentwise multiplication of real

numbers. If this operation is denoted by ∗, then ζf+g = ζf ∗ ζg [44]. Similarly,

for any function f , the sequence of the complement of f satisfies the relation
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ζf̄ = −ζf [44] where the multiplication of ζf by a real number c is defined to

be the multiplication of all its components by c.

For any function f its sequence ζf is a (1,−1)-sequence of length 2n. We

denote the set of all (1,−1)-sequences of length 2n by V 2n
. It is well-known

that the set of all real vectors of length 2n, denoted by R2n
is a vector space

with the addition of two vectors being the real addition of components and the

scalar multiplication being the multiplication of components with the elements

of R. Also, it is clear that V 2n
is contained in R2n

but it is not a subspace.

Given two functions f, g, their inner product in R2n
is defined to be [11] :

〈f̂ , ĝ〉 =
2n−1∑
i=0

f̂(αi).ĝ(αi) (2.28)

where the addition and multiplication are the usual operations in R. It is clear

that we can write the above equation as

〈ζf , ζg〉 =
2n−1∑
i=0

ζf [i].ζg[i] . (2.29)

Note that the norm of any function f induced by this inner product is

constant. Namely, ‖f‖ =

√
〈f̂ , f̂〉 = 2

n
2 [11].

An important fact about the set { ζfα | α ∈ Vn}, where ζfα is the sequence

of the linear function fα(x) = 〈α, x〉, is that this set forms an orthogonal basis

for R2n
over R with respect to the inner product defined in (2.28) [11]. The

fact that this set is a basis can be simply seen by noting that the dimension of

R2n
over R and the cardinality of this set are both 2n and this set is a linearly

independent set. The orthogonality follows from this observation :

Let α, β be vectors in Vn. Then,

〈ζfα , ζfβ
〉 =

∑
x∈Vn

(−1)〈α+β,x〉

=

 2n if α = β,

0 if α 6= β.

= 2nδ(α+ β) (2.30)

where δ(u) is the Kronecker delta function which is equal to one if u is equal

to the zero vector and zero otherwise.
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Thus, for any function f , its associated real-valued function f̂ can be writ-

ten in terms of the associated real-valued functions to the set of linear func-

tions. In other words,

f̂(x) =
∑
α∈Vn

cα.f̂α(x) (2.31)

where cα’s are the corresponding real coefficients to f̂α’s, namely to the orthog-

onal basis of R2n
over R. In Chapter 4, it will be seen that the coefficients cα’s

can easily be determined by an important function, called Walsh transform.

The following is a simple but important lemma which will be frequently

used in the coming chapters since it relates the distance between two functions

to their sequences.

Lemma 2.2.1 ([44]) Let f, g be functions with sequences ζf , ζg, respectively.

Then, d(f, g) = 2n−1 − 1
2
〈ζf , ζg〉.

Proof. We have

〈ζf , ζg〉 =
∑
x∈Vn

(−1)(f+g)(x)

= 2n − 2 w(f + g).

Since w(f + g) = d(f, g), the result follows. 2

2.3 Nonlinearity

Let ϕ0, ϕ1, . . . , ϕ2n+1−1 denote all affine functions so that the first half con-

sists of linear functions ordered according to the relation ϕi = fαi
for all i =

0, 1, . . . , 2n− 1 and the second half consists of the (respective) complements of

the functions in the first half. Thus, ϕi = f̄αi
for all i = 2n, 2n +1, . . . , 2n+1−1.

The nonlinearity of a function f is defined as [29] :

Nf = min
i=0,1,...,2n+1−1

d(f, ϕi). (2.32)
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In other words, the nonlinearity of a function is the distance between the

function and the set An. High nonlinearity is a crucial criterion for a good

cryptographic design since it assures resistance against linear cryptanalysis

introduced by Matsui [27]. The concept of nonlinearity was introduced by

Pieprzyk and Finkelstein [36].

Note that if f is an affine function, then f = ϕik for some 0 ≤ ik ≤ 2n+1−1.

In other words, d(f, ϕik) = 0 which implies that Nf = 0. If f is not an affine

function, then Nf > 0 as d(f, ϕi) > 0 for all i = 0, 1, . . . , 2n+1 − 1. Hence,

Nf = 0 if and only if f is an affine function.

Thus, the nonlinearity criterion simply divides all functions as affine func-

tions and nonaffine functions. By abuse of terminology, the first set is some-

times called as linear functions (affine functions) whereas the second set is

called as nonlinear functions (nonaffine functions).

Introducing a new method of cryptanalysis of a specific cryptographic de-

sign commonly leads to a new design criterion for the similar cryptographic

designs. Linear cryptanalysis and nonlinearity is an example to this situa-

tion. Nonlinearity measures the quality of a function via its distance to affine

functions. In other words, it measures how well a function under consideration

may be linearly approximated. Linear cryptanalysis tries to find the best linear

approximation, called “effective” linear expression of an algorithm, by finding

good approximations to the nonlinear part of the algorithm and extends these

approximations to the round function.

In general, exploring the theoretical facts about a cryptological criterion is

not enough to understand why a particular design should or should not sat-

isfy it. It is extremely important to work on concrete examples and to apply

cryptanalysis methods to systems which are weak in satisfying that criterion.

Although two cryptanalysis methods applied to two different designs may seem

totally different, they may be based exactly on the same idea and depend on

the same kind of pathology occurring in both designs. Similar to cryptanalysis

methods, this may happen for cryptographic criteria also. Two cryptographic

criteria may seem totally different, although they may be imposing crypto-
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graphically equivalent conditions. By cryptographically equivalent conditions,

we mean two criteria such that when a design is tested with respect to one of

the criteria, then testing with the other one is redundant.

From the designer’s point of view, an example to this situation is the non-

linearity criterion. The definition of nonlinearity in this section is the simplest

and the most widely accepted one. It is clear that by using this definition of

nonlinearity, it is difficult to make a healthy comparison between two func-

tions one of which is in, say F5 and the other is in, say F9. By defining the

nonlinearity so that the nonlinearity of a function takes values between 0 and

1 would of course handle this problem. However, it is wise not to consider such

a form of nonlinearity as a different cryptological criterion from the one stated

in (2.32) unless the new form behaves more sensitive in separating cryptologi-

cally strong and weak functions or the new form helps in making an algorithm

resistant to a cryptanalysis method different from linear cryptanalysis.

In [29], Meier and Staffelbach investigate some properties of the form of

nonlinearity which is defined in (2.32) and two additional forms of nonlinearity.

One form is defined as the distance to the set of functions having linear struc-

tures, called distance to linear structures and the other form is defined as the

degree of the considered function, called nonlinear order. We haven’t defined

what a linear structure means yet. It will be defined in Section 2.6. However,

it is worth to mention that the set of functions having linear structures contain

the set of affine functions properly and the nonlinear order takes integer values

from 0 to n, as noted in Section 2.1. Properties of the nonlinear order are also

investigated by O’Connor and Klapper in [33]. They call this form of non-

linearity as algebraic nonlinearity. Hence, from the explanations in the above

paragraph, it is clear that the nonlinear order and the algebraic nonlinearity

are in fact the same criterion. However, the distance to affine functions (2.32),

the distance to linear structures and the nonlinear order should be treated as

different cryptological criteria. Meier and Staffelbach proved the invariance

of the nonlinearity criterion under nonsingular affine transformations on the

input coordinates [29]. This fact will be proved in Section 3.4.
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2.4 Sylvester-Hadamard Matrices

The class of square matrices which will be described in this section are very

useful in the subsequent sections. We start by a definition :

An n× n matrix H with entries 1,-1 is called a Hadamard matrix if

H.H t = n.In (2.33)

where H t is the transpose of H and In is the n × n identity matrix. Instead

of using “an n × n matrix”, we may sometimes use “a matrix of order n” for

square matrices.

Theorem 2.4.1 [40] If a Hadamard matrix of order n exists, then n = 1, 2

or n ≡ 0 (mod 4).

Proof. Let H be a Hadamard matrix of order n. It is clear by definition that

all distinct rows of H are orthogonal. If we change the sign of every entry

in any column of H, i.e. if we multiply any column by -1, then the resulting

matrix is also a Hadamard matrix. Hence, any matrix obtained from H by

multiplying some columns with -1 is also a Hadamard matrix. By changing

the signs of all columns for which the entry in the first row is -1, we can make

all entries in the first row 1.

Since every other row is orthogonal to the first row, one gets that all these

rows have m entries equal to 1 and m entries equal to -1, where n = 2m.

Moreover, if n > 2, then the first three rows are as follows :

+1 · · ·+ 1 + 1 · · ·+ 1 + 1 · · ·+ 1 + 1 · · ·+ 1

+1 · · ·+ 1 + 1 · · ·+ 1 − 1 · · · − 1 − 1 · · · − 1

+1 · · ·+ 1 − 1 · · · − 1 + 1 · · ·+ 1 − 1 · · · − 1

Thus, one gets that n = 4k, where k is the length of each subsequence above. 2

It is conjectured that there is a Hadamard matrix of every order divisible

by 4. This is equivalent to saying that the necessary condition in the above
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theorem is also sufficient. The smallest multiple of 4 for which no Hadamard

matrix has been constructed is currently 428 [40].

Note that by the proof of the above theorem, one gets that there are several

operations which preserve the Hadamard property [40] :

1. Permuting rows and multiplying any row by -1.

2. Permuting columns and multiplying any column by -1.

3. Transposition. In other words, if H is a Hadamard matrix, then H t is

also a Hadamard matrix. This is obvious from (2.33).

Any Hadamard matrix which has every element of its first row and first

column +1 is called normalized [40].

It is well-known that if H is a normalized Hadamard matrix of order 4n,

then every row (column) except the first has 2n entries equal to -1 and 2n

entries equal to +1. Furthermore, n -1’s in any row (column) overlap with n

-1’s in any other row (column) [40].

Definition 2.4.1 ([25]) If A = (aij) is an m × n matrix and B = (bij) is a

p × q matrix, then the Kronecker product of A and B is the mp × nq matrix

given as follows :

A⊗B =


a11B a12B · · · a1nB

a21B a22B · · · a2nB
...

...
...

am1B am2B · · · amnB

 . (2.34)

That is, A⊗B is an mp×nq matrix made up of m×n blocks where the (i, j)

block is aijB. Here, aijB denotes the p × q matrix obtained by multiplying

each entry of B with aij.

Lemma 2.4.2 ([25]) Let A = (aij), B = (bij), C = (cij) and D = (dij) be

matrices. The Kronecker product satisfies the following :

(1) A⊗ (B ⊗ C) = (A⊗B)⊗ C (Associativity).
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(2) (A+B)⊗ C = A⊗ C +B ⊗ C (Distributivity).

(3) (A⊗B)(C ⊗D) = AC ⊗BD.

Proof. Only the third property will be proved. The first two are easy to prove.

Note that for the first property A,B and C may be any matrices, while for

the second property the matrices A and B should have the same dimensions

whereas C may be of any dimension.

(3) ([51]) First, note that in order to have the operations on both sides to

be well-defined, the number of columns of A should be equal to the number of

rows of C. This is also true for C and D. For these reasons, without loss of

generality letA,B,C andD bem×n, p×q, n×t and q×r matrices, respectively.

By definition A⊗B = (aijB) and C⊗D = (cijD). Let (A⊗B)(C⊗D) = (θij),

an mp× tr matrix. Then,

θij =

nq∑
k=1

(aikB) (ckjD) =

nq∑
k=1

aikckj BD.

Also, let AC = (βij). Then, βij =
n∑

k=1

aikckj. Since, AC ⊗ BD = (βij BD) an

mp× tr matrix, one gets that (A⊗B)(C ⊗D) = AC ⊗BD 2

Some examples of Hadamard matrices are
[

1
]

,

 1 1

1 −1

,


−1 1 1 1

1 −1 1 1

1 1 −1 1

1 1 1 −1

 and


1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1

 . (2.35)

Theorem 2.4.3 (Hadamard [18])

Let H1 and H2 be Hadamard matrices of orders n1 and n2. Then, H1⊗H2

is a Hadamard matrix of order n1n2.

We have seen that the matrix

 1 1

1 −1

 is a Hadamard matrix. By

24



Hadamard’s theorem, the 4× 4 matrix

 1 1

1 −1

⊗
 1 1

1 −1

 =


1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1


is also a Hadamard matrix. In fact, using Hadamard’s theorem repeatedly, the

iterated Kronecker product of n copies of the Hadamard matrix

 1 1

1 −1

 is

a Hadamard matrix of order 2n. In literature, this class of Hadamard matrices

is called as Sylvester-Hadamard matrices. Thus, we have the following :

Theorem 2.4.4 (Sylvester [50])

There is a Hadamard matrix of order 2n for all nonnegative integers n.

Hence, the recursion generating all Sylvester-Hadamard matrices are given

as follows :

H0 =
[

1
]
, H1 =

 1 1

1 −1

 (2.36)

and

Hn =

 1 1

1 −1

⊗Hn−1 =

 Hn−1 Hn−1

Hn−1 −Hn−1

 . (2.37)

Note that Hn is a matrix of order 2n. Thus the equation (2.33) turns out to

be Hn.Hn
t = 2n.I2n where I2n is the identity matrix of order 2n.

By using (2.37) for n = 2, one obtains the last matrix in (2.35) as H2 and

25



for n = 3 H3 is found as

H3 =



1 1 1 1 1 1 1 1

1 −1 1 −1 1 −1 1 −1

1 1 −1 −1 1 1 −1 −1

1 −1 −1 1 1 −1 −1 1

1 1 1 1 −1 −1 −1 −1

1 −1 1 −1 −1 1 −1 1

1 1 −1 −1 −1 −1 1 1

1 −1 −1 1 −1 1 1 −1



. (2.38)

2.5 Relationships Among Sylvester-Hadamard Matri-

ces and Linear Functions Ln

Sylvester-Hadamard matrices are useful because of their relation with linear

functions in Fn.

Lemma 2.5.1 ([41]) Let Hn =


l0

l1
...

l2n−1

 denote the Sylvester-Hadamard ma-

trix of order 2n for n ≥ 0 where li denotes the i-th row of Hn. Then, li is the

sequence of the linear function fαi
(x) = 〈αi, x〉 for any i = 0, 1, . . . , 2n − 1

where αi is in Vn .

Proof. We use induction on n.

For n = 1, H1 is given in (2.36). It is easy to see that l0 is the sequence of

fα0(x1) = 〈α0, x1〉 = 0 and l1 is the sequence of fα1(x1) = 〈α1, x1〉 = x1, where

fα0 and fα1 are linear functions F1.

Suppose that the lemma is true for n. Since Hn+1 = H1 ⊗Hn from (2.36)

and (2.37), it is easy to see that each row δi of Hn+1 is the Kronecker product

of a row (1, 1) or (1,−1) of H1 and a row of Hn. Thus, any row δi of Hn+1 is

either (li, li) or (li,−li) for some row li of Hn. By induction hypothesis, li is

the sequence of the linear function fαi
(x2, x3, . . . , xn+1) = 〈αi, x〉 where αi is
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in Vn and x = (x2, x3, . . . , xn+1). However, observe that (li, li) and (li,−li) are

the sequences of the linear functions fγi
(x1, x2, . . . , xn+1) = 〈γi, x〉 where γi is

in Vn+1 for γi = (0, αi) in the first case and γi = (1, αi) in the second case, αi

is in Vn and x = (x1, x2, . . . , xn+1). 2

The above theorem tells us that the i-th row li ofHn is the sequence ζi of the

linear function corresponding to the binary representation αi of the integer i.

The main importance of this fact is that, the n-th Sylvester-Hadamard matrix

is itself nothing but a complete table of the sequences of all linear functions

in Fn. Using the trivial relation between the sequence and the truth table of

a function, one has the truth tables of all linear functions. What is meant by

“to have the truth tables of all linear functions” is obtaining them without

performing the evaluation of any linear function on Vn or on any ordered basis

of Vn. This work is reduced to only a simple iterated matrix operation.

Another simple observation is that since Hn is a symmetric matrix, the

above lemma is also true for columns of Hn.

Note that if li is the sequence of the linear function fαi
(x) = 〈αi, x〉 for

αi in Vn, then −li is the sequence of the complement of fαi
. Thus, the rows

of the matrix −Hn contain the sequences of the complements of all linear

functions. Consequently, Hn and −Hn together contain the sequences of all

affine functions ϕ0, ϕ1, . . . , ϕ2n+1−1. As in Lemma 2.5.1, the ones corresponding

to linear functions are denoted by l0, l1, . . . , l2n−1 and the ones corresponding

to the complements of linear functions are denoted by l2n , l2n+1, . . . , l2n+1−1.

Thus, li+2n = −li for all i = 0, 1, . . . , 2n − 1. By using Lemma 2.5.1, one can

find the nonlinearity of a function with a simple algorithm as follows :

Let ζf .Hn = µ where µ = [a0, a1, . . . , a2n−1], ai’s are integers and f is

a function with sequence ζf . Then, µ̃ = (ãi) is the 1 × 2n matrix which

contains the distances of f to all linear functions where ãi = 2n−1 − 1
2
ai. By

multiplying ζf with −Hn, one gets that −µ = [−a0,−a1, . . . ,−a2n−1] and

−̃µ = (b̃i) where b̃i = 2n−1 + 1
2
ai. −̃µ is the matrix containing the distances

of f to the complements of all linear functions. Hence, we have the set which
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contains the distances of f to all affine functions. Taking the minimum over

this set, one gets the nonlinearity of f .

Indeed, performing the multiplication with −Hn is not necessary when find-

ing the nonlinearity of a function. This slight improvement will be proved in

this section. Moreover, this simple algorithm can be significantly improved in

terms of decreasing the operations made. This is due to an important prop-

erty satisfied by Sylvester-Hadamard matrices. This property of Sylvester-

Hadamard matrices will be proved and the improved algorithm will be demon-

strated for n = 3 in the chapter devoted to Walsh transform and its properties.

An important question about nonlinearity is the following :

What is the largest possible nonlinearity that can be attained by a function?

The following lemma answers this question.

Lemma 2.5.2 ([41]) For any function f , its nonlinearity Nf satisfies the re-

lation Nf ≤ 2n−1 − 2
n
2
−1.

Proof. Let Hn =


l0

l1
...

l2n−1

 denote the Sylvester-Hadamard matrix of order

2n where li denotes the i-th row of Hn for i = 0, 1, . . . , 2n − 1. Since Hn is a

symmetric matrix, one has

ζf .Hn = (〈ζf , l0〉, 〈ζf , l1〉, . . . , 〈ζf , l2n−1〉) . (2.39)

Also,

(ζf .Hn) (ζf .Hn)t = ζfHnHn
tζf

t = 2n.ζfζf
t = 22n. (2.40)

Computing the left hand side of (2.40) using (2.39), one gets that

(ζf .Hn) (ζf .Hn)t =
2n−1∑
j=0

〈ζf , lj〉2.

By combining these results, one obtains that

2n−1∑
j=0

〈ζf , lj〉2 = 22n. (2.41)
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From (2.41), there exists a jk satisfying 0 ≤ jk ≤ 2n−1 such that 〈ζf , ljk
〉2 ≥ 2n.

From this, it follows that 〈ζf , ljk
〉 ≥ 2

n
2 or 〈ζf , ljk

〉 ≤ −2
n
2 . Now,

• If the first case is true, then by Lemma 2.2.1 d(f, ϕjk
) ≤ 2n−1 − 2

n
2
−1.

• If the second case holds, then 〈ζf ,−ljk
〉 = 〈ζf , ljk+2n〉 ≥ 2

n
2 where ljk+2n =

−ljk
. Again, by Lemma 2.2.1 d(f, ϕjk+2n) = d(f, ϕ̄jk

) ≤ 2n−1 − 2
n
2
−1.

However, by the choice of jk, either 〈ζf , ljk
〉 or 〈ζf , ljk+2n〉 is the largest among

all j’s for j = 0, 1, . . . , 2n+1 − 1, giving that either d(f, ϕjk
) or d(f, ϕ̄jk

) is

the smallest among all affine functions ϕ0, ϕ1, . . . , ϕ2n+1−1. Hence, Nf ≤

2n−1 − 2
n
2
−1. 2

Lemma 2.5.3 ([45]) Let f be a function with sequence ζf . The nonlinearity

Nf of f can be found by Nf = 2n−1− 1
2

max
i=0,1,...,2n−1

{|〈ζf , li〉|} where li is the i-th

row of Hn.

Proof. Let ϕi be an arbitrary linear function for i = 0, 1, . . . , 2n−1. As in the

proof of Lemma 2.5.2, d(f, ϕ̄i) = 2n−1− 1
2
〈ζf , li+2n〉 where li+2n is the i-th row

of −Hn, i.e. li+2n = −li is the sequence of ϕ̄i. Hence, d(f, ϕ̄i) = 2n−1+ 1
2
〈ζf , li〉.

It follows that, Nf = min
i=0,1,...,2n+1−1

d(f, ϕi) = 2n−1 − 1

2
max

i=0,1,...,2n−1
{|〈ζf , li〉|}. 2

Lemma 2.5.3 shows why it is unnecessary to perform the multiplication with

−Hn in order to find the nonlinearity of the function. Lemma 2.5.3 states that

it is enough to use µ̃ where µ̃ = (ãi) is the 1 × 2n matrix for which ãi =

2n−1 − 1
2
|ai| and ai’s are integers such that ai = 〈ζf , li〉 for i = 0, 1, . . . , 2n − 1.

Lemma 2.5.4 Let α, β be two vectors in Vn with even weight. Then, d(α, β)

is also even.

Proof. Let α = (a1, a2, . . . , an) and β = (b1, b2, . . . , bn). Since

w(α+ β) = |Supp(α+ β)| = |Supp(α)|+ |Supp(β)| − 2|Supp(α) ∩ Supp(β)|
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and as the right hand side of the above equation is even, we conclude that

w(α+ β) is also even. Thus, d(α, β) is even. 2

Remark 2.5.5 The above lemma can be found in [41] with an additional hy-

pothesis that the length of α and β should be even. Its proof is different than

the proof we have made above and uses this assumption. However, the proof

above does not use this assumption. This shows that n may be arbitrary. In

any case, this extra assumption does not effect the following corollary since the

length of the truth table of any function in Fn is always even.

Corollary 2.5.6 [44] Let f be a balanced function for n ≥ 3. Then,

Nf ≤

 2n−1 − 2
n
2
−1 if n is even,⌊

2n−1 − 2
n
2
−1
⌋

if n is odd.

where bxc denotes the largest even integer not exceeding x.

Proof. If n is even, then 2n−1 − 2
n
2
−1 is an integer and by Lemma 2.5.2,

Nf ≤ 2n−1 − 2
n
2
−1.

Now, let n be odd. Since f and all ϕi’s are balanced for i = 0, 1, . . . , 2n+1−1,

their weights are even. By Lemma 2.5.4, d(f, ϕi) is even for all i. As n is odd,

2n−1 − 2
n
2
−1 is not an integer implying that Nf < 2n−1 − 2

n
2
−1. This gives the

desired result. 2

2.6 Difference Function, Linear Structures, Auto-corre-

lation of f and Properties

Let f be a function with sequence ζf . For any α in Vn, the sequence of the

function h(x) = f(x+ α) is denoted by ζf (α) [57]. Clearly, ζf = ζf (α0).

The difference function corresponding to α in Vn is defined as the function

fα(x) = f(x) + f(x+ α) in the literature.

The auto-correlation of f with a shift α is defined as in [57] :

∆f (α) = 〈ζf , ζf (α)〉. (2.42)
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Lemma 2.6.1 ([57]) Let f be a function. The weight of the function fα for

any α in Vn is equal to 2n−1 − 1
2
∆f (α).

Proof. It is enough to observe that

∆f (α) = 〈ζf , ζf (α)〉 =
∑
x∈Vn

(−1)f(x)+f(x+α)

= 2n − 2w(fα).

2

Note that ∆f (α0) = 2n for any function f .

Corollary 2.6.2 For any function f and for any nonzero α in Vn, f
α is bal-

anced if and only if ∆f (α) = 0.

It is obvious that for any function f , |∆f (α)| = 2n if and only if the function

fα is constant. This situation is given a special name in the literature.

Definition 2.6.1 [6] A vector α is said to be a linear structure of the function

f if fα is a constant function.

The following well-known fact can be found in [33] without proof. For the

sake of completeness, we prove it :

Lemma 2.6.3 For any function f , the set of all linear structures of f forms

a vector space over GF (2).

Proof. Let α, β be linear structures of f . Thus, the functions fα(x) =

f(x) + f(x + α) and fβ(x) = f(x) + f(x + β) are constant. It follows

that, g(x) = fα(x) + fβ(x) = f(x + α) + f(x + β) is constant. Note that

g(x) = f(x) + f(x + α + β) for any x in Vn. Since g is constant, we get that

α+ β is a linear structure of f . 2

We denote the set of all linear structures of a fixed function f by LSf . By

previous lemma, LSf is a subspace of Vn. The dimension of LSf as a vector

space is said to be the linearity dimension of f [46].
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Now, |∆f (α)| = 2n if and only if the function fα is constant. This can be

stated in terms of linear structures as follows :

|∆f (α)| = 2n if and only if α is a linear structure of f , i.e. LSf contains α.

Consider the equation in (2.41). It states that

2n−1∑
j=0

〈ζf , lj〉2 = 22n

holds for any function f , where ζf is the sequence of f and l0, l1, . . . , l2n−1

are the rows of Hn. This equation is called as “Parseval’s equation” [25]. In

Chapter 4, this equation will be written in terms of the Walsh transform of f .

In the literature this one is more common than the one in (2.41).

For any function f , the square matrix Mf of order 2n given by Mf = (mij)

where mij = (−1)f(αi+αj) is called the matrix of f [58]. This matrix will be an

important tool in proving the important connection between 〈ζf , lj〉2 in (2.41)

and ∆f (αj) = 〈ζf , ζf (αj)〉 in (2.42).

First of all, it is obvious that Mf is a symmetric matrix. Since, the first

row of Mf is ζf (α0) and the i-th column is ζf (αi) for i = 0, 1, . . . , 2n − 1, one

gets that the first row of Mf .Mf
t is (〈ζf , ζf〉, 〈ζf , ζf (α1)〉, . . . , 〈ζf , ζf (α2n−1)〉),

which is equal to

(∆f (α0),∆f (α1), . . . ,∆f (α2n−1)) . (2.43)

According to a result by McFarland (see [14]), the matrix Mf can be repre-

sented as

Mf = 2−n Hn


〈ζf , l0〉

〈ζf , l1〉
. . .

〈ζf , l2n−1〉

Hn

where the matrix in the middle is a diagonal matrix of order 2n having zeros

outside the diagonal. This matrix will be denoted by

diag (〈ζf , l0〉, 〈ζf , l1〉, . . . , 〈ζf , l2n−1〉)
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as in [57]. Thus,

Mf = 2−n Hn.diag (〈ζf , l0〉, 〈ζf , l1〉, . . . , 〈ζf , l2n−1〉) .Hn . (2.44)

By using (2.44), we get that

Mf .Mf
t = 2−n Hn.diag

(
〈ζf , l0〉2, 〈ζf , l1〉2, . . . , 〈ζf , l2n−1〉2

)
.Hn . (2.45)

By using (2.45), the first row of Mf .Mf
t is equal to

2−n
(
〈ζf , l0〉2, 〈ζf , l1〉2, . . . , 〈ζf , l2n−1〉2

)
.Hn . (2.46)

By writing (2.46) explicitly, the first row of Mf .Mf
t is equal to

2−n (〈ξ, l0〉, 〈ξ, l1〉, . . . , 〈ξ, l2n−1〉) (2.47)

where

ξ =
(
〈ζf , l0〉2, 〈ζf , l1〉2, . . . , 〈ζf , l2n−1〉2

)
. (2.48)

By combining (2.43) and (2.46) and by writing ∆(αi) instead of ∆f (αi) and ζ

instead of ζf , we get that

(∆(α0),∆(α1), . . . ,∆(α2n−1)) = 2−n(〈ζ, l0〉2, 〈ζ, l1〉2, . . . , 〈ζ, l2n−1〉2)Hn.(2.49)

Hence, the following theorem is obtained :

Theorem 2.6.4 ([57]) For any function f , the equality

(∆f (α0),∆f (α1), . . . ,∆f (α2n−1))Hn = (〈ζf , l0〉2, 〈ζf , l1〉2, . . . , 〈ζf , l2n−1〉2)

holds where ζf is the sequence of f , ∆f (αi) is the auto-correlation of f with a

shift αi and Hn is the Sylvester-Hadamard matrix of order 2n with li’s as its

rows for i = 0, 1, . . . , 2n − 1.

Theorem 2.6.4 is a special form of the Wiener-Khintchine theorem [4].
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CHAPTER 3

Two Upper and Two Lower Bounds On Nonlinearity

3.1 Motivation

In the previous sections, we have seen that the nonlinearity Nf of a function

f is bounded above by 2n−1 − 2
n
2
−1. Since the nonlinearity of a function is an

integer, it is clear that this upper bound may be achieved only when n is even.

If n is odd, the nonlinearity of any function is strictly less than this bound.

Additionally, we also know that the nonlinearity of a balanced function should

be an even number, as proved in Corollary 2.5.6.

Note that we haven’t mentioned whether there exists functions having non-

linearity 2n−1 − 2
n
2
−1 or not, when n is even. In Chapter 6, we will see that

such functions do exist. Bent functions have many applications in digital com-

munications, coding theory and cryptography [3, 1, 13, 22, 23, 29, 25, 31, 34]

as stated in [42].

In addition to the known results, there are some important questions about

nonlinearity which have not been answered yet. One of them is the upper

bound on the nonlinearity of balanced functions for some odd values of n. This

question has also a lot in common with another important question of cryp-

tography, which we simply may state as the construction of cryptographically

important boolean functions. In Chapter 7, some cryptographically important

constructions of boolean functions will be presented [44].

Consider a cryptosystem which is composed of only linear functions or

composed of functions which are very close to linear functions. If the functions

under consideration are in Fn, then by the results of Section 2.1, it is enough
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to know only n outputs which come from n linearly independent vectors in Vn

to identify those functions completely. In particular, it is enough to know only

the action of these functions on the standard ordered basis of Vn over GF (2).

This simple example shows how 2n operations is reduced to n operations only.

What this example suggests as a security criterion is that the functions used

in a cryptosystem should be as highly nonlinear as possible. Of course, one

should always keep in the mind that, the situation we are talking about can

not be generalized blindly. What we mean, when saying “the functions should

be highly nonlinear” does not mean that a cryptosystem should not contain

any linear function.

The weight of the functions employed in cryptosystems is also important.

The use of an unbalanced function repeatedly may result in the outputs of the

cryptosystem being biased and hence the cryptosystem can be easily distin-

guished from a true random source (or a pseudo-random source). This causes a

large class of cryptanalysis methods to be applied to the cryptosystem ranging

from trivial statistical attacks to much more complex attacks.

Apart from these specific examples, an informal definition for a secure

boolean function may be given as follows. A secure boolean function is a func-

tion which satisfies the cryptographically important properties in an optimized

way. “In an optimized way”, is due to the fact that some cryptographically

necessary criteria are challenging. That is, strongly satisfying one criterion

may cause the function to be the weakest with respect to some other criteria.

Keeping these in our mind, the first step is to identify the cryptographic prop-

erties which a function should satisfy for being strong. We have already seen

some of these criteria, like balance and nonlinearity. In the following chapters,

some other cryptographically important criteria will be presented. Note that

this thesis does not include all cryptologically important criteria related to

boolean functions. Our main interest with these criteria is narrowed by the

use of boolean functions in block ciphers .
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3.2 Upper Bounds

It is well-known that the bound in Lemma 2.5.2 coincides with the covering

radius of the first order Reed-Muller code RM(1, n) of length 2n [25].

In contrast to this well-known upper bound, less is known about the lower

bound on nonlinearity except some progress made in [48] and [56] and some

trivial facts as Nf > 0 if and only if f is nonlinear.

There are two main questions concerning the nonlinearity. One is how

to find the nonlinearity if some additional information is available about the

function. The other is that, if the exact value of the nonlinearity can not be

easily obtained, how to estimate the nonlinearity using some extra information

about the function.

In the following two sections, four formulas will be given in order to estimate

the nonlinearity of a function. Two of these bounds are upper bounds while

the remaining two are lower bounds. All results in Section 3.2 and Section 3.3

are from the article of Zhang and Zheng [58].

We start with a result which follows easily from Theorem 2.6.4.

Corollary 3.2.1 ([57]) Let f be any function. Then,

2n−1∑
i=0

∆f (αi)
2 = 2−n

2n−1∑
i=0

〈ζf , li〉4.

Proof. Let ξ = (〈ζf , l0〉2, 〈ζf , l1〉2, . . . , 〈ζf , l2n−1〉2) as in the proof of The-

orem 2.6.4. Then, ξξt = 2n

2n−1∑
i=0

∆f (αi)
2 by using Theorem 2.6.4. Since

ξξt =
2n−1∑
i=0

〈ζf , li〉4, the result follows. 2

3.2.1 The First Upper Bound

The first upper bound is a straightforward application of Corollary 3.2.1. Since

2n

2n−1∑
i=0

∆f (αi)
2 =

2n−1∑
i=0

〈ζf , li〉4, there exists an i0 satisfying 0 ≤ i0 ≤ 2n−1 such
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that 〈ζf , li0〉
4 ≥

2n−1∑
i=0

∆f (αi)
2. In other words, |〈ζf , li0〉| ≥ 4

√√√√2n−1∑
i=0

∆f (αi)
2.

By using Lemma 2.5.3, one obtains that

Nf ≤ 2n−1 − 1

2
4

√√√√22n +
2n−1∑
i=1

∆f (αi)
2. (3.1)

3.2.2 The Second Upper Bound

It is easy to see that Hn, the n-th Sylvester-Hadamard matrix, satisfies Hn =

Hn−t ⊗Ht for any integer t such that 0 ≤ t ≤ n.

By using this, the equation in Theorem 2.6.4 turns out to be

(∆(α0),∆(α1), . . . ,∆(α2n−1))(Hn−t ⊗Ht) = (〈ζ, l0〉2, 〈ζ, l1〉2, . . . , 〈ζ, l2n−1〉2).

Set σi =
2t−1∑
k=0

〈ζf , l2t.i+k〉2 for i = 0, 1, . . . , 2n−t−1. That is, σ0 =
2t−1∑
k=0

〈ζf , lk〉2,

σ1 =
2t−1∑
k=0

〈ζf , l2t+k〉2,. . . , σ2n−t−1 =
2t−1∑
k=0

〈ζf , l2n−2t+k〉2.

Let e = (1, 1, . . . , 1) be the all-one vector of length 2t and I2n−t be the iden-

tity matrix of order 2n−t. Note that (Hn−t ⊗Ht) (I2n−t ⊗ et) = (Hn−tI2n−t) ⊗

(Hte
t) = Hn−t⊗(2t, 0, . . . , 0)

t
by using (3) of Lemma 2.4.2, where (2t, 0, . . . , 0)

is a vector of length 2t and (2t, 0, . . . , 0)
t
denotes the transpose of (2t, 0, . . . , 0).

If we multiply both sides of the equation

(∆(α0),∆(α1), . . . ,∆(α2n−1))(Hn−t ⊗Ht) = (〈ζ, l0〉2, 〈ζ, l1〉2, . . . , 〈ζ, l2n−1〉2)

with (I2n−t ⊗ et), then the left hand side is obtained as

(∆(α0),∆(α1), . . . ,∆(α2n−1))(Hn−t ⊗Ht)(I2n−t ⊗ et).

The left hand side of this equation is in fact equal to

(∆(α0),∆(α1), . . . ,∆(α2n−1))(Hn−t ⊗ (2t, 0, . . . , 0)
t
).

The right hand side of the above equation after multiplication with (I2n−t ⊗ et)

is equal to

(σ0, σ1, . . . , σ2n−t−1) .
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Thus,

(∆(α0),∆(α1), . . . ,∆(α2n−1))(Hn−t ⊗ (2t, 0, . . . , 0)
t
) = (σ0, σ1, . . . , σ2n−t−1).

It is easy to see that the left hand side of the above equation is equal to

2t
(
∆(α0),∆(α2t), . . . ,∆(α2t.(2n−t−1))

)
Hn−t.

It follows that the equation in Theorem 2.6.4 turns out to be

2t
(
∆(α0),∆(α2t), . . . ,∆(α2t.(2n−t−1))

)
Hn−t = (σ0, σ1, . . . , σ2n−t−1) . (3.2)

Note that the above equation is a generalization of the equation in Theorem

2.6.4. Clearly, two equations become identical when t = 0.

By comparing the i-th components of both sides of (3.2), one has

2t

2n−t−1∑
k=0

hi,k∆f (αk.2t) = σi

where li = (hi,0, hi,1, . . . , hi,2n−t−1) is the i-th row (column) of Hn−t for i =

0, 1, . . . , 2n−t − 1. However, since σi is defined as σi =
2t−1∑
k=0

〈ζf , l2t.i+k〉2 for

i = 0, 1, . . . , 2n−t − 1, there is a k0 0 ≤ k0 ≤ 2t − 1 such that |〈ζf , l2t.i+k0〉| ≥√√√√2n−t−1∑
k=0

hi,k∆f (αk.2t) for any fixed i. By using Lemma 2.5.3, one has

Nf ≤ 2n−1 − 1

2

√√√√2n +
2n−t−1∑

k=1

hi,k∆f (αk.2t) (3.3)

where t is a fixed integer satisfying 0 ≤ t ≤ n, li = (hi,0, hi,1, . . . , hi,2n−t−1) is

the i-th row (column) of Hn−t.

Remark 3.2.2 (1) Note that for 0 ≤ t ≤ n, the set

Ω = {α0, α2t , α2.2t , . . . , α(2n−t−1).2t}

forms an n − t dimensional subspace of Vn with basis = = {α2t , α2t+1 , . . .

, α2n−t−1.2t}.
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(2) The nonlinearity of a function is invariant under a nonsingular affine

transformation on the input coordinates. This is easy to prove with the theory

introduced up to now. Later, this result will be proved in the section which is to-

tally devoted to invariant properties of a function under such transformations.

For the time being, we assume that this is true.

By using a nonsingular linear transformation on the input coordinates and

setting r = n− t, the following lemma is obtained :

Lemma 3.2.3 Let β1, β2, . . . , βr be r linearly independent vectors in Vn for

0 ≤ r ≤ n and Ω be the subspace of Vn spanned by β1, β2, . . . , βr. In other

words, Ω = {γk | k = 0, 1, . . . , 2r − 1} where γk = a1.β1 + a2.β2 + · · · + ar.βr

for some a1, a2, . . . , ar in GF (2) such that ψ(a1, a2, . . . , ar) = k, ψ being the

function in (2.1). Then,

Nf ≤ 2n−1 − 1

2

√√√√2n +
2r−1∑
k=1

hi,k∆f (γk)

holds for every row (column) li = (hi,0, hi,1, . . . , hi,2r−1) of Hr where i =

0, 1, . . . , 2r − 1.

Remark 3.2.4 (1) In some situations, it is sufficient to take r = 1 in Lemma

3.2.3. This means that for any nonzero vector β in Vn,

Nf ≤ 2n−1 − 1

2

√
2n ±∆f (β) (3.4)

holds. Since (3.4) holds for any β in Vn, the following bound is obtained :

For any function f , the nonlinearity Nf of f satisfies

Nf ≤ 2n−1 − 1

2

√
2n + ∆max (3.5)

where ∆max = max
α∈Vn,α 6=0

{ |∆f (α)| }.

(2) If r = 2 is used in Lemma 3.2.3, then a better estimate of nonlinearity

than the one above is obtained. Specialization of Lemma 3.2.3 for r = 2 is as

follows :
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For any function f and for any two different, nonzero vectors β1, β2 in Vn,

the nonlinearity Nf of f satisfies

Nf ≤ 2n−1 − 1

2

√√√√2n +
3∑

k=1

hi,k∆f (γk) (3.6)

where li = (hi,0, hi,1, hi,2, hi,3) is the i-th row of H2 for i = 0, 1, 2, 3. By using

H2 in (2.35), the inequality in (3.6) turns to the following four inequalities.

Nf ≤ 2n−1 − 1

2

√
2n + ∆f (β1) + ∆f (β2) + ∆f (β1 + β2),

Nf ≤ 2n−1 − 1

2

√
2n −∆f (β1) + ∆f (β2)−∆f (β1 + β2),

Nf ≤ 2n−1 − 1

2

√
2n + ∆f (β1)−∆f (β2)−∆f (β1 + β2),

Nf ≤ 2n−1 − 1

2

√
2n −∆f (β1)−∆f (β2) + ∆f (β1 + β2).

By collecting these inequalities, the following bound is obtained.

Corollary 3.2.5 Let f be any function. Then,

(1) For any two different, nonzero vectors β1, β2 in Vn, the nonlinearity

Nf of f satisfies

Nf ≤ 2n−1 − 1

2

√
2n + |∆f (β1)|+ |∆f (β2)| − |∆f (β1 + β2)|. (3.7)

(2) Let α, β, γ be three nonzero vectors of Vn with the property that |∆f (α)| ≥

|∆f (β)| ≥ |∆f (γ)| ≥ |∆f (θ)| where θ is any nonzero vector in Vn distinct from

α, β and γ. Then, the nonlinearity Nf of f satisfies

Nf ≤ 2n−1 − 1

2

√
2n + |∆f (α))|+ |∆f (β))| − |∆f (γ))|. (3.8)

3.3 Lower Bounds

3.3.1 The First Lower Bound

Let f be a function with sequence ζf = (a0, a1, . . . , a2n−1). Set âi = (a2i, a2i+1)

for all i = 0, 1, . . . , 2n−1 − 1. It is obvious that ζf = (â0, â1, . . . , â2n−1−1), i.e.

ζf is the concatenation of âi’s for i = 0, 1, . . . , 2n−1 − 1.
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Each âi is referred to as a basis. If âi = (1, 1) or (−1,−1), then âi is called

a (++)-basis and if âi = (+1,−1) or (−1,+1), then âi is called a (+−)-basis.

Given a function f , its sequence ζf may be written as a concatenation of

(++) and (+−)-bases. Denote the number of (++) and (+−)-bases in the

sequence of a function f by nf
+ and nf

−, respectively.

Lemma 3.3.1 Let f be a function with sequence ζf . Then, nf
+ = 2n−2 +

1
4
∆f (α1) and nf

− = 2n−2 − 1
4
∆f (α1).

Proof. With the notation used previously, the sequence of the function

h(x) = f(x + α) for any α in Vn is ζf (α). Write ζf as the concatenation

of the (++) and (+−)-bases âi’s where âi = (a2i, a2i+1). Then, ζf (α1) with

respect to (++) and (+−)-bases is b̂i = (a2i+1, a2i). From this, it is easy

to see that ∆f (α1) = 〈ζf , ζf (α1)〉 = 2(nf
+ − nf

−). The result follows since

nf
+ + nf

− = 2n−1 holds always. 2

Lemma 3.3.2 The nonlinearity Nf of any function f satisfies Nf ≥ 2n−2 −
1
4
|∆f (α1)|.

Proof. Since w(f) ≥ nf
−, we get that w(f) ≥ 2n−2− 1

4
∆f (α1) by Lemma 3.3.1.

Set gj(x) = f(x) + ϕj(x) where ϕj is a linear function for j = 0, 1, . . . , 2n − 1.

It is easy to see that

∆gj
(α1) =

 ∆f (α1) if ϕj(α1) = 0,

−∆f (α1) if ϕj(α1) = 1.
(3.9)

By Lemma 3.3.1, w(gj) ≥ 2n−2 − 1
4
∆gj

(α1). Since w(gj) = d(f, ϕj), we get

that

d(f, ϕj) ≥

 2n−2 − 1
4
∆f (α1) if ϕj(α1) = 0,

2n−2 + 1
4
∆f (α1) if ϕj(α1) = 1.

where ϕj denotes all linear functions.

Now, set ḡj(x) = f(x) + ϕ̄j(x) = f(x) + ϕj(x) + 1 where ϕj is a linear

function for j = 0, 1, . . . , 2n − 1. It is easy to show that (3.9) also holds for ḡj
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for j = 0, 1, . . . , 2n − 1. It follows that

d(f, ϕj) ≥

 2n−2 − 1
4
∆f (α1) if ϕj(α1) = 0,

2n−2 + 1
4
∆f (α1) if ϕj(α1) = 1.

holds for any affine function ϕj. The definition of nonlinearity gives the result.

2

Theorem 3.3.3 For any function f , the nonlinearity Nf of f satisfies

Nf ≥ 2n−2 − 1

4
∆min (3.10)

where ∆min = min
α∈Vn,α 6=0

{ |∆f (α)| }.

Proof. Choose a nonsingular matrix A of order n which satisfies α1A = αk

for any fixed k satisfying 0 ≤ k ≤ 2n − 1. In fact, this is equivalent to finding

n−1 vectors σ1, σ2, . . . , σn−1 in Vn for which the set Ω = {σ1, σ2, . . . , σn−1, αk}

becomes a linearly independent set. Then, A may be any matrix containing

αk as its last row where the first n− 1 rows of A are any permutation of σi’s

for i = 1, 2, . . . , n− 1.

Set g(x) = f(xA). Then, gα1(x) = g(x) + g(x + α1) = f(xA) + f(xA +

α1A) = f(u) + f(u + αk) where u = xA. Since A is nonsingular, for any x in

Vn, there exists a unique u in Vn satisfying u = xA and conversely. This yields

that ∆g(α1) = ∆f (αk).

By Lemma 3.3.2, Ng ≥ 2n−2 − 1
4
|∆g(α1)| = 2n−2 − 1

4
|∆f (αk)|. Since A is

nonsingular, we have Ng = Nf by (2) of Remark 3.2.2. By combining these,

Nf ≥ 2n−2− 1
4
|∆f (αk)| for any arbitrary but specific k satisfying 0 ≤ k ≤ 2n−1.

Hence, Nf ≥ 2n−2 − 1
4
∆min where ∆min = min

α∈Vn,α 6=0
{ |∆f (α)| }. 2

3.3.2 The Second Lower Bound

In [5] it was pointed out that, for any function f , if the difference functions

fα’s are balanced with respect to all but a subset <f of vectors in Vn, then the
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nonlinearity Nf of f satisfies

Nf ≥ 2n−1 − 2
n
2
−1|<f |

1
2 . (3.11)

Another improvement which has been made in [48] (See Theorem 11) is

Nf ≥ 2n−1 − 2n− 1
2
ρ−1 (3.12)

where ρ is the maximum dimension of the subspaces of (Vn \ <f ) ∪ {α0}.

An important shortcoming of (3.11) and (3.12) is that when |<f | is large,

the estimates provided by them are far from the real value of Nf .

Let f be a function for which fα is balanced with respect to all but a subset

<f of vectors in Vn. Recall from (1) of Remark 3.2.2 that the set

Ω = {α0, α2t , α2.2t , . . . , α(2n−t−1).2t}

is an n−t dimensional subspace of Vn with basis = = {α2t , α2t+1 , . . . , α2n−t−1.2t}

for any integer t satisfying 0 ≤ t ≤ n. Also, recall that 2t

2n−t−1∑
k=0

hi,k∆f (αk.2t) =

σi where li = (hi,0, hi,1, . . . , hi,2n−t−1) is the i-th row (column) of Hn−t for

i = 0, 1, . . . , 2n−t − 1 and σi =
2t−1∑
k=0

〈ζf , l2t.i+k〉2 for i = 0, 1, . . . , 2n−t − 1.

By using these, one obtains that

σi = 2t

2n−t−1∑
k=0

hi,k∆f (αk.2t)

≤ 2t(∆f (α0) + (|<f ∩ Ω| − 1)∆max). (3.13)

This inequality is clear since for any α in Vn \<f , ∆f (α) = 0 as fα is balanced.

Thus, in Ω \ {α0}, ∆f (αk.2t) may be nonzero at most for |<f ∩Ω| − 1 values of

k’s where k = 1, 2, . . . , 2n−t− 1. Also, note that ∆f (α) ≤ ∆max for all α in Vn.

It follows that 〈ζf , l2t.i+k〉2 ≤ 2t(2n + (|<f ∩ Ω| − 1)∆max) for any i =

0, 1, . . . , 2n−t − 1 and k = 0, 1, . . . , 2t − 1, since ∆f (α0) = 2n and by using the

definition of σi and (3.13). By using Lemma (2.5.3), one has

Nf ≥ 2n−1 − 1

2

√
2t(2n + (|<f ∩ Ω| − 1)∆max).
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By simplifying this expression, one concludes that

Nf ≥ 2n−1 − 2
t
2
−1
√

2n + (|<f ∩ Ω| − 1)∆max. (3.14)

By setting r = n − t and using a nonsingular linear transformation on the

input variables, the following theorem is obtained :

Theorem 3.3.4 Let f be a function for which fα is balanced with respect to

all but a subset <f of vectors in Vn and let Ω be any r dimensional subspace

of Vn for r = 0, 1, . . . , n. Then, the nonlinearity Nf of f satisfies

Nf ≥ 2n−1 − 2
1
2
(n−r)−1

√
2n + (|<f ∩ Ω| − 1)∆max

where ∆max = max
α∈Vn,α 6=0

{ |∆f (α)| }.

Since |∆f (α)| ≤ 2n for any α in Vn, it is clear that ∆max ≤ 2n. If one

substitutes 2n for ∆max in Theorem 3.3.4, the following corollary is obtained :

Corollary 3.3.5 Let f be a function for which fα is balanced with respect to

all but a subset <f of vectors in Vn. Let Ω be any r dimensional subspace of

Vn for r = 0, 1, . . . , n. Then, the nonlinearity Nf of f satisfies

Nf ≥ 2n−1 − 2n− 1
2
r−1
√
|<f ∩ Ω|.

Theorem 3.3.4 is more general and gives a better estimate of lower bound

than the bound in (3.11) because of the following :

Let Ω = Vn, i.e. r = n. As ∆max ≤ 2n, we have (|<f | − 1)∆max ≤ 2
n
2 |<f |

1
2 .

Thus, Nf ≥ 2n−1 − 1
2

√
2n + (|<f | − 1)∆max ≥ 2n−1 − 2

n
2
−1|<f |

1
2 giving the

result.

Theorem 3.3.4 gives also a better estimate of lower bound than the bound

in (3.12) because of the following :

Let Ω be such that <f ∩ Ω = {α0} only. Then, by Corollary 3.3.5, Nf ≥

2n−1 − 2n− 1
2
r−1 which is equal to (3.12).

Given a function f , if there exists an integer r, 0 ≤ r ≤ n and an integer

p > 0 such that Nf ≤ 2n−1−2n− 1
2
r−1p, then as Nf ≥ 2n−1−2n− 1

2
r−1
√
|<f ∩ Ω|
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holds for any r dimensional subspace Ω of Vn, one concludes that there is an r

dimensional subspace of Vn such that |<f ∩ Ω| ≥ p2. This in turn shows that

the nonlinearity of f is not only related to <f but also to the distribution of

<f .

3.4 Relations With Nonsingular Affine Transformations

Recall that in (2) of Remark 3.2.2, it was mentioned but not proved that the

nonlinearity of a function is invariant under a nonsingular affine transformation

on the input coordinates. In this section, the proof of this fact will be given.

In fact, this section is completely devoted to the properties of the functions

which remain invariant under nonsingular affine transformations on the input

coordinates.

Let f be a function, A be a nonsingular matrix of order n with entries from

GF (2) and α be a vector in Vn. We denote the composition of two functions f

and θ by (f ◦θ)(x) = f(θ(x)) where θ(x) = xA+α denotes a nonsingular affine

transformation on Vn. In particular if α is the zero vector, then θ is called a

linear transformation. Note that θ is a bijection from Vn to Vn and f ◦ θ is in

Fn.

Consider the degree of f , which is the degree of the highest degree term

appearing in the algebraic normal form of f . The degree of f takes values from

0 to n. It is obvious that the degree of f is equal to the degree of f ◦ θ for any

nonsingular affine transformation θ [29].

Now, consider the weight of f . By definition, it is the weight of Tf =

(f(α0), f(α1), . . . , f(α2n−1)). The weight of f ◦ θ is the weight of Tf◦θ =(
f(αi0), f(αi1), . . . , f(αi2n−1

)
)

where {i0, i1, . . . , i2n−1} is a permutation of {0, 1,

. . . , 2n − 1} since θ is a bijection. This yields that w(f) = w(f ◦ θ). In other

words, the balance of a function is preserved under any nonsingular affine

transformation on the input coordinates [44].

In order to show that the nonlinearity Nf of the function f is invariant

under any nonsingular affine transformation on the input coordinates, we need
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the following result.

Lemma 3.4.1 Let f be a function, θ be a nonsingular affine transformation

corresponding to a nonsingular matrix A of order n and to a vector α in Vn

and let ϕ be any affine function. Then, d(f, ϕ) = d(f ◦ θ, ϕ ◦ θ).

Proof.

Let Tf = (f(α0), f(α1), . . . , f(α2n−1)), Tϕ = (ϕ(α0), ϕ(α1), . . . , ϕ(α2n−1)).

Assume that Tf◦θ =
(
f(αi0), f(αi1), . . . , f(αi2n−1

)
)

where {i0, i1, . . . , i2n−1} is a

permutation of {0, 1, . . . , 2n−1}. Then, Tϕ◦θ =
(
ϕ(αi0), ϕ(αi1), . . . , ϕ(αi2n−1

)
)
.

Thus, f(αk) = ϕ(αk) if and only if f(αik) = ϕ(αik), giving that d(f, ϕ) =

d(f ◦ θ, ϕ ◦ θ). 2

Given a function f , its nonlinearity is defined as Nf = min
ϕi∈An

d(f, ϕi) where

An = { ϕi | i = 0, 1, . . . , 2n+1 − 1 } denotes the set of all affine functions.

Consider the set An′ = { ϕi ◦ θ | i = 0, 1, . . . , 2n+1 − 1 } where θ is defined as

above. Since θ is nonsingular, An = An′ as sets. Thus,

Nf = min
ϕi∈An

d(f, ϕi) = min
(ϕi◦θ)∈An′

d(f ◦ θ, ϕi ◦ θ) = Nf◦θ.

This gives that the nonlinearity Nf of a function f is invariant under any

nonsingular affine transformation on the input coordinates [29, 44].

Now, consider the set of all α’s in Vn such that the difference function fα

is balanced. Recall that the set of all α’s for which the difference function fα

is not balanced is the set <f . Thus, the set under consideration is Vn \<f . We

claim that the number of elements of this set is invariant under any nonsingular

affine transformation on the input coordinates. That is, |Vn \<f | = |Vn \<f◦θ|

[44] :

Let β be a nonzero vector in Vn, θ(x) = xA + α where A is a nonsingular

matrix of order n and α is any vector in Vn. The function (f ◦ θ)β is balanced

if and only if

(f ◦ θ)β(x) = f(xA+ α) + f((x+ β)A+ α)
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= f(u) + f(u+ v)

= f v(u) (3.15)

is balanced where u = xA + α and v = βA. Since A is nonsingular, if x runs

through all vectors in Vn, then so does u. Also, v is nonzero since β is nonzero.

From these, we get the desired result.

In particular, any nonzero β in Vn is a linear structure of (f ◦ θ) if and only

if the nonzero vector v = βA is a linear structure of f . This means that, the

number of linear structures of f and f ◦ θ and hence the linearity dimension

of f and f ◦ θ are the same.

By summarizing what is proved in this section, we get that

Theorem 3.4.2 ([44, 29]) For any function f , the degree, the weight, the

nonlinearity, the linearity dimension and the number of α’s for which fα is

balanced are invariant under a nonsingular affine transformation on the input

coordinates.

In [29], the two additional forms of nonlinearity (the distance to linear

structures and the nonlinear order) mentioned in Section 2.3 are also shown to

be invariant under nonsingular affine transformations on the input coordinates.

Hence, they also serve as useful nonlinearity criteria.
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CHAPTER 4

Walsh Transform and Properties

Recall that in Section 2.5, a simple algorithm to calculate the nonlinearity of

a function is presented by using the sequence ζf of f and the n-th Sylvester-

Hadamard matrix Hn. By using Lemma 2.5.3 in that section, a slight improve-

ment of this algorithm is also mentioned.

The main purpose of this chapter is to introduce one of the most important

functions in cryptology, the Walsh transform (or Hadamard or discrete Fourier

transform) of a function. After examining the Walsh transform with its various

properties, a fast method of computing the nonlinearity will be presented at

the end of the chapter.

4.1 Walsh Transform

If ζ is a (1,−1)-sequence in V 2n
, then its Walsh transform is defined as [25] :

ζ̂ = ζHn. (4.1)

Let f be a function. The Walsh transform of f is commonly defined in the

literature as

Wf (α) =
∑
x∈Vn

f(x)(−1)〈α,x〉 (4.2)

where α is in Vn.

Although this form of Walsh transform is sometimes used in the literature,

the form which will be used in this thesis differs from the one in (4.2) and is

also commonly used in the literature. After presenting this form, the simple
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relation between these two forms of Walsh transform will be proved in this

chapter. Any property of Walsh transform enjoyed by one of these forms can

be rewritten in terms of the other form.

Recall from Section 2.2 that the real-valued function f̂ associated to a

function f is defined as f̂(x) = (−1)f(x) = 1 − 2f(x) for all x in Vn. The

function f̂ is called as the “sign function” of f . In some places, this function

is represented by χf , but in order not to make a confusion with the usage of

the characteristic function χα in Section 2.1, we prefer this notation.

The Walsh transform of the sign function of a function f is defined as

Wf̂ (α) =
∑
x∈Vn

f̂(x)(−1)〈α,x〉 =
∑
x∈Vn

(−1)f(x)+〈α,x〉 (4.3)

where α is in Vn. Note that the Walsh transform of the sign function of f

takes integer values in [−2n, 2n]. If we denote by TWf̂
the ordered values of the

Walsh transform of the sign function of f as

TWf̂
=
(
Wf̂ (α0),Wf̂ (α1), . . . ,Wf̂ (α2n−1)

)
and by Tf̂ = ζf the truth table of the sign function of f as usual, then we get

that

TWf̂
= ζfHn. (4.4)

(4.1) and (4.4) show that the Walsh transform of the sign function of f is equal

to obtaining the Walsh transform of ζf via multiplying by Hn. By multiplying

(4.4) with Hn, one obtains that ζf = 1
2nTWf̂

Hn. Thus,

f̂(x) =
1

2n

∑
α∈Vn

Wf̂ (α)(−1)〈α,x〉 (4.5)

where x is in Vn.

The equation in (4.5) is called as the inverse Walsh transform or the inver-

sion formula for (4.3). Note that the equation in (4.5) and the equation

f̂(x) =
∑
α∈Vn

cα.f̂α(x)

49



in (2.31) are the same except the appearance of the constant 1
2n since f̂α(x) =

(−1)〈α,x〉. Thus, for any function f and for any α, the value Wf̂ (α) appearing

in TWf̂
is a constant multiple (2n) of the coefficient cα in the representation

of the function f with respect to the orthogonal basis { ζfα | α ∈ Vn} where

ζfα is the sequence of the linear function fα(x) = 〈α, x〉. This fact gives a

method for the representation of a function with respect to the orthogonal

basis { ζfα | α ∈ Vn} by using the Walsh transform, as mentioned in Section

2.2. The Walsh transform is sometimes called as the spectral distribution or

the spectrum of f in the literature.

Now, consider the Walsh transform of the sign function of f given by

Wf̂ (α) =
∑
x∈Vn

(−1)f(x)+〈α,x〉. It is easy to see from this equation that Wf̂ (α)

is equal to the number of 0’s minus the number of 1’s of the function f + fα.

Thus, Wf̂ (α) = 2n − 2w(f + fα) = 2n − 2d(f, fα). In particular, if α = α0 is

the zero vector, then Wf̂ (α0) = 2n − 2w(f).

It follows that for a function f and a fixed linear function fα(x) = 〈α, x〉,

we have the following equality :

d(f, fα) =
1

2
(2n −Wf̂ (α)). (4.6)

Since d(f, ḡ) = 2n−d(f, g) for any two functions f, g, we also have the following

equality :

d(f, f̄α) =
1

2
(2n +Wf̂ (α)). (4.7)

The equations (4.6) and (4.7) imply that the nearest affine function ϕα(x) =

a0 + 〈α, x〉, a0 ∈ GF (2), to f in the sense of the Hamming distance is the

function for which |Wf̂ (α)| is the largest. We give an example to demonstrate

these facts about the Walsh transform.

Example 4.1.1

Let n = 3. Consider the function f(x1, x2, x3) = 1 + x1 + x2 + x2x3 + x1x2x3

with Tf = (1, 1, 0, 1, 0, 0, 1, 1) and Tf̂ = ζf = (−1,−1,+1,−1,+1,+1,−1,−1).
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By using (4.3), Wf̂ (α0) = −2, Wf̂ (α1) = +2, Wf̂ (α2) = +2, Wf̂ (α3) = −2,

Wf̂ (α4) = −2, Wf̂ (α5) = +2, Wf̂ (α6) = −6 and Wf̂ (α7) = −2. Thus,

TWf̂
= (−2,+2,+2,−2,−2,+2,−6,−2) .

We can verify the above computations by using (4.5). From these calculations,

we obtain that f̂(α0) = −1, f̂(α1) = −1, f̂(α2) = 1, f̂(α3) = −1, f̂(α4) =

1, f̂(α5) = 1, f̂(α6) = −1 and f̂(α7) = −1 which are compatible with ζf .

Since |Wf̂ (α)| is the largest when α = α6, we conclude that the function

ϕα6(x) = 1 + x1 + x2 is the nearest function to f . Note that since Wf̂ (α6) =

23− 2d(f, fα6) = −6, we get that d(f, fα6) = 7 giving that f and ϕα6 agree on

7 points out of 8.

By using (4.2) and (4.3), we can now prove the relationship between the

two forms of Walsh transforms. This result can be found in [17, 38] without

proof. Since Wf (α) =
∑
x∈Vn

f(x)(−1)〈α,x〉 and Wf̂ (α) =
∑
x∈Vn

(−1)f(x)+〈α,x〉, it is

easy to see that Wf (α) =
∑

x∈Supp(f)

(−1)〈α,x〉 and

Wf̂ (α) =
∑

x∈Vn\Supp(f)

(−1)〈α,x〉 −
∑

x∈Supp(f)

(−1)〈α,x〉.

However, it is known that∑
x∈Vn\Supp(f)

(−1)〈α,x〉 +
∑

x∈Supp(f)

(−1)〈α,x〉 = 0

for any nonzero α in Vn. So,
∑

x∈Vn\Supp(f)

(−1)〈α,x〉 = −
∑

x∈Supp(f)

(−1)〈α,x〉 imply-

ing that Wf̂ (α) = −2Wf (α) for any nonzero α in Vn. Note that if α = α0 is

the zero vector, then Wf (α0) = w(f) and Wf̂ (α0) = 2n − 2w(f). It follows

that Wf̂ (α0) = 2n − 2Wf (α0).

4.2 Cross-Correlation of f

Now, pausing for some time about the Walsh transform, another important

function which operates on two functions f, g will be investigated. This func-

tion is a generalization of (2.42) on two functions f, g instead of one and also
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generalizes the correlation concept given in [29] and [11]. Its outputs are be-

tween 0 and 1. The definition is as follows :

Let f, g be two functions. Their cross-correlation with a shift α or simply

α-correlation is defined as

C(f, g)(α) =
1

2n

∑
x∈Vn

(−1)f(x)+g(x+α). (4.8)

Note that C(f, g)(α) = 1
2n 〈ζf , ζg(α)〉 where ζf is the sequence of f and ζg(α)

is the sequence of g(x + α). The auto-correlation of f with a shift α, defined

as ∆f (α) = 〈ζf , ζf (α)〉 in (2.42), is actually 2n.C(f, f)(α).

What C(f, g)(α) measures can be seen from the observation below :

〈ζf , ζg(α)〉 = 2|{ x ∈ Vn | f(x) = g(x+ α) }| − 2n. (4.9)

It follows that C(f, g)(α) = 1
2n 〈ζf , ζg(α)〉 = 2.P{f(x) = g(x + α)} − 1 where

P{A} denotes the probability of an event A.

We call the α0-correlation between a function f and a linear function

fα(x) = 〈α, x〉 for α in Vn as the 0-correlation and we denote it by C(f, fα)(0).

Thus, C(f, fα)(0) = 1
2n

∑
x∈Vn

(−1)f(x)+fα(x) = 1
2nWf̂ (α). Using this, C(f, fα)(αi)

= 1
2n (−1)〈α,αi〉Wf̂ (α) for all i = 0, 1, . . . , 2n− 1. Moreover, C(f, fα + a0)(αi) =

1
2n (−1)〈α,αi〉+a0Wf̂ (α) for all i = 0, 1, . . . , 2n − 1 and for any a0 in GF (2).

Thus, by using (4.5) and the above results, one obtains that

f̂(x) =
1

2n

∑
α∈Vn

Wf̂ (α)(−1)〈α,x〉

=
∑
α∈Vn

C(f, fα)(0) (−1)fα(x)

=
∑
α∈Vn

C(f, fα) (−1)fα(x) (4.10)

where C(f, fα)(0) is denoted by C(f, fα). This is meaningful since C(f, fα)(0)

coincides with the definition of the correlation between f and fα denoted by

C(f, fα) in [29] and [11].

Now, we turn back to Example 4.1.1. By using (4.10), we get that f̂(x) =

−1
4
f̂α0(x)+

1
4
f̂α1(x)+

1
4
f̂α2(x)− 1

4
f̂α3(x)− 1

4
f̂α4(x)+

1
4
f̂α5(x)− 3

4
f̂α6(x)− 1

4
f̂α7(x).
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4.3 Properties of The Walsh Transform

Lemma 4.3.1 ([25])
∑
α∈Vn

Wf̂ (α) Wf̂ (α+ β) =

 22n if β = 0,

0 if β 6= 0.

Proof. By writing the left hand side of the above equation explicitly, one gets

that

LHS =
∑
α∈Vn

∑
x∈Vn

f̂(x)(−1)〈α,x〉
∑
y∈Vn

f̂(y)(−1)〈α+β,y〉

=
∑
x∈Vn

∑
y∈Vn

(−1)〈β,y〉f̂(x)f̂(y)
∑
α∈Vn

(−1)〈α,x+y〉.

Since
∑
α∈Vn

(−1)〈α,x+y〉 = 2nδ(x+y) where δ(x) is the Kronecker delta, the above

expression turns out to be

LHS = 2n
∑
x∈Vn

(−1)〈β,x〉f̂(x)
2

= 22nδ(β)

which is the desired result. 2

Corollary 4.3.2 ([25], Parseval’s equation)∑
α∈Vn

Wf̂ (α)2 = 22n.

Note that this result was already proved in Lemma 2.5.3. There, the equa-

tion was in the form
2n−1∑
j=0

〈ζf , lj〉2 = 22n where ζf is the sequence of f and lj’s

are the rows of Hn for j = 0, 1, . . . , 2n − 1. The equivalence of these two fact

is due to Wf̂ (αj) = 〈ζf , lj〉 where lj is the sequence of the linear function fαj
.

Theorem 4.3.3 ([11],[39],[25]) Let f, g be functions and f̂ , ĝ denote their sign

functions, respectively. Let z = (x, y) be in Vn+m such that x is in Vn and y is

in Vm. Define the functions r(x) = f̄(x), h(x) = (f + g)(x), k(x) = f(x)g(x),

t(x) = f(x) + fβ(x) where fβ(x) = 〈β, x〉 is the linear function corresponding

to β in Vn and s(z) = f(x) + g(y). Thus, r, h, k, t are functions in Fn and s
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is a function in Fn+m. Then, the following hold :

(a) Wĥ(α) = 1
2n

∑
x∈Vn

Wf̂ (x) Wĝ(x+ α).

(b) Wr̂(α) = −Wf̂ (α).

(c) Wt̂(α) = Wf̂ (α+ β).

(d) Wk̂(α) = 1
2

(
2nδ(α) +Wf̂ (α) +Wĝ(α)−Wĥ(α)

)
where δ(α) is the Kro-

necker delta.

(e) Wŝ(α) = Wf̂ (β).Wĝ(γ) for any α = (β, γ) in Vn+m where β is in Vn and

γ is in Vm.

(f) Wf̂ (α0) = 0 if and only if f is balanced.

(g)
∑
α∈Vn

C(f, fα)2 = 1 where fα is the linear function corresponding to 〈α, x〉

for any α in Vn.

Proof. Only (a) and (d) are proved. The rest follow from the definitions.

(a) Write (4.10) for h :

ĥ(x) = f̂(x)ĝ(x)

=

(∑
α∈Vn

C(f, fα)(−1)fα(x)

)(∑
β∈Vn

C(g, fβ)(−1)fβ(x)

)

=
∑
β∈Vn

∑
α∈Vn

C(f, fα)C(g, fβ)(−1)fα+β(x)

=
∑
σ∈Vn

(∑
β∈Vn

C(f, fβ+σ)C(g, fβ)

)
(−1)fσ(x).

Thus, C(h, fσ) =
∑
β∈Vn

C(f, fβ+σ).C(g, fβ) by (4.10) and the above equations.

Equivalently, C(h, fσ) = 1
2nWĥ(σ) = 1

22n

∑
β∈Vn

Wf̂ (β+σ)Wĝ(β). Hence,Wĥ(σ) =

1
2n

∑
β∈Vn

Wf̂ (β + σ)Wĝ(β) giving the result.

(d) First of all note that k̂(x) = 1
2
(1 + f̂(x) + ĝ(x)− f̂(x).ĝ(x)). Use this

in Wk̂(α) =
∑
x∈Vn

k̂(x)(−1)fα(x) and note that
∑
x∈Vn

(−1)fα(x) = 2nδ(α). Since

h(x) = (f + g)(x) and by using part (a), the result follows. 2
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4.4 Fast Walsh Transform

The calculation of the Walsh transform of the sign function of a function, de-

noted by Wf̂ (α), would require about 2n×2n = 22n additions and subtractions.

However, there is a faster way to obtain TWf̂
which is called the Fast Walsh

Transform. It is a discrete version of the so-called Fast Fourier Transform. This

faster algorithm is the one which we mentioned in Section 2.5. The efficiency

of this algorithm comes from the fact that Hn can be written as the product

of n matrices of order 2n where these matrices have only two nonzero elements

per column. In other words, by writing Hn as a product of n sparse matrices,

it is enough to perform only n2n additions and subtractions to compute TWf̂
.

The following lemma gives the method to write Hn in the form mentioned

above. This result is used in (4.4) for n = 3 to demonstrate the faster algorithm

[25].

Lemma 4.4.1 ([25]) Let Hn be the Sylvester-Hadamard matrix of order 2n.

Hn can be written as the product Hn = H
(1)
n .H

(2)
n . . . H

(n)
n of n matrices H

(1)
n ,

H
(2)
n , . . . , H

(n)
n each containing only two nonzero elements per column where

H
(i)
n = I2n−i ⊗ H2 ⊗ I2i−1 for i = 1, 2, . . . , n and I2i is the identity matrix of

order 2i.

Proof. Use induction on n. For n = 1, the result is obvious. Assume that the

result is true for n. Then,

Hn+1 = H2 ⊗Hn

= H2 ⊗ (H(1)
n .H(2)

n . . . H(n)
n )

= (I2 ⊗H(1)
n )(I2 ⊗H(2)

n ) . . . (I2 ⊗H(n)
n )(H2 ⊗ I2n)

= (I2 ⊗ (I2n−1 ⊗H2 ⊗ I1))(I2 ⊗ (I2n−2 ⊗H2 ⊗ I2)) . . .

(I2 ⊗ (I0 ⊗H2 ⊗ I2n−1))(I0 ⊗H2 ⊗ I2n+1−1)

= H
(1)
n+1.H

(2)
n+1 . . . H

(n)
n+1.H

(n+1)
n+1 .

Note that the third equality is due to (3) of Lemma 2.4.2. 2
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Example 4.4.1 ([25])

(a) Let n = 2. H2 is given in (2.35). Now, H
(1)
2 and H

(2)
2 are as follows :

H
(1)
2 = I2 ⊗H2 =


1 1 0 0

1 −1 0 0

0 0 1 1

0 0 1 −1

 ,

H
(2)
2 = H2 ⊗ I2 =


1 0 1 0

0 1 0 1

1 0 −1 0

0 1 0 −1

 .

It is easy to see that H2 = H
(1)
2 .H

(2)
2 .

(b) Let n = 3. H3 is given in (2.38). H
(1)
3 , H

(2)
3 and H

(3)
3 are as follows :

H
(1)
3 = I22 ⊗H2 ⊗ I1 =



1 1 0 0 0 0 0 0

1 −1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 1 −1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 1 −1 0 0

0 0 0 0 0 0 1 1

0 0 0 0 0 0 1 −1



,
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H
(2)
3 = I2 ⊗H2 ⊗ I2 =



1 0 1 0 0 0 0 0

0 1 0 1 0 0 0 0

1 0 −1 0 0 0 0 0

0 1 0 −1 0 0 0 0

0 0 0 0 1 0 1 0

0 0 0 0 0 1 0 1

0 0 0 0 1 0 −1 0

0 0 0 0 0 1 1 −1



,

H
(3)
3 = I1 ⊗H2 ⊗ I22 =



1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1

1 0 0 0 −1 0 0 0

0 1 0 0 0 −1 0 0

0 0 1 0 0 0 −1 0

0 0 0 1 0 0 0 −1



.

By some tedious work, one can easily verify that indeed H3 = H
(1)
3 .H

(2)
3 .H

(3)
3 .

Now, let n = 3 and f be in F3 with ζf = (a0, a1, a2, a3, a4, a5, a6, a7). Since

TWf̂
= ζfH3, by using H3 = H

(1)
3 .H

(2)
3 .H

(3)
3 , i.e. by multiplying ζf first with

H
(1)
3 , second with H

(2)
3 and finally with H

(3)
3 , one obtains that

ζf
(1) = ζfH

(1)
3 = (x0, x1, x2, x3, x4, x5, x6, x7),

ζf
(2) = ζf

(1)H
(2)
3 = (y0, y1, y2, y3, y4, y5, y6, y7),

ζf
(3) = ζf

(2)H
(3)
3 = (z0, z1, z2, z3, z4, z5, z6, z7),
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where

x0 = a0 + a1

x1 = a0 − a1

x2 = a2 + a3

x3 = a2 − a3

x4 = a4 + a5

x5 = a4 − a5

x6 = a6 + a7

x7 = a6 − a7

y0 = x0 + x2

y1 = x1 + x3

y2 = x0 − x2

y3 = x1 − x3

y4 = x4 + x6

y5 = x5 + x7

y6 = x4 − x6

y7 = x5 − x7

z0 = y0 + y4

z1 = y1 + y5

z2 = y2 + y6

z3 = y3 + y7

z4 = y0 − y4

z5 = y1 − y5

z6 = y2 − y6

z7 = y3 − y7.

Thus, starting from ai’s for i = 1, 2, . . . , 7, after three steps one obtains zi’s

for i = 1, 2, . . . , 7. It is clear that these three matrix multiplications take 3.23

operations instead of 26 operations if direct multiplication of ζf and Hn is

performed.

By writing yi’s and zi’s in terms of ai’s for i = 1, 2, . . . , 7, after each mul-
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tiplication we have

a0 → a0 + a1 → a0 + a1 + a2 + a3 → . . .

a1 → a0 − a1 → a0 − a1 + a2 − a3 → . . .

a2 → a2 + a3 → a0 + a1 − a2 − a3 → . . .

a3 → a2 − a3 → a0 − a1 − a2 + a3 → . . .

a4 → a4 + a5 → a4 + a5 + a6 + a7 → . . .

a5 → a4 − a5 → a4 − a5 + a6 − a7 → . . .

a6 → a6 + a7 → a4 + a5 − a6 − a7 → . . .

a7 → a6 − a7 → a4 − a5 − a6 + a7 → . . .

. . . → a0 + a1 + a2 + a3 + a4 + a5 + a6 + a7

. . . → a0 − a1 + a2 − a3 + a4 − a5 + a6 − a7

. . . → a0 + a1 − a2 − a3 + a4 + a5 − a6 − a7

. . . → a0 − a1 − a2 + a3 + a4 − a5 − a6 + a7

. . . → a0 + a1 + a2 + a3 − a4 − a5 − a6 − a7

. . . → a0 − a1 + a2 − a3 − a4 + a5 − a6 + a7

. . . → a0 + a1 − a2 − a3 − a4 − a5 + a6 + a7

. . . → a0 − a1 − a2 + a3 − a4 + a5 + a6 − a7.

showing each obtained intermediate result which occurs as a result of the three

matrix multiplications.
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CHAPTER 5

More Cryptological Properties

5.1 Strict Avalanche Criterion and Propagation Crite-

rion Of Degree k

The strict avalanche criterion is introduced by Webster and Tavares [55]. A

function f is said to satisfy the strict avalanche criterion if complementing any

single input coordinate results in the output of f changing with probability

exactly one half. In other words, the difference function fα is a balanced

function for any α in Vn with w(α) = 1. Hence, strict avalanche criterion or

in short SAC characterizes the output of the function when there is a single

bit change on the input.

An important generalization of the strict avalanche criterion which was

introduced in [2] and [38] is the following :

Definition 5.1.1 A function f is said to satisfy

(a) the propagation criterion with respect to a nonzero vector α in Vn if the

difference function fα is balanced.

(b) the propagation criterion of degree k if it satisfies the propagation criterion

with respect to all α in Vn with 1 ≤ w(α) ≤ k. In this case, f is said to satisfy

PC(k) and f is said to be a PC(k) function.

Note that SAC is equivalent to the propagation criterion of degree 1 which

is denoted by PC(1).

Recall from Section 3.4 that the number of vectors for which fα is balanced,
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i.e. the number of vectors for which f satisfies the propagation criterion is in-

variant under any affine transformation on the input coordinates. This is not

true for SAC. In other words, the strict avalanche criterion is not invariant

under affine transformations on the input coordinates. Thus, by an affine trans-

formation on coordinates, one can construct a SAC fulfilling function from a

function which does not satisfy SAC and conversely. This is an indicator that

SAC itself is not a strong measurement of propagation criterion. A function

may very well be a PC(1) function whereas it may not satisfy the propagation

criterion for many vectors with weight greater than one. Moreover, it may even

have nonzero linear structures with weight greater than one. It is obvious that

having nonzero linear structures is the worst case with respect to propagation

criterion. The following result shows how to obtain a SAC fulfilling function

from any function by an affine transformation of input coordinates.

Theorem 5.1.1 ([43]) Let f be a function and A be a nonsingular matrix of

order n with entries from GF (2). If f satisfies the propagation criterion with

respect to each row of A when a row of A is considered as a vector of Vn, then

ψ(x) = f(xA) satisfies SAC.

Proof. Let {e0, e1, . . . , en} be the standard ordered basis of Vn. Then, ψ(x)+

ψ(x+ ei) = f(xA) + f((x+ ei)A) = f(xA) + f(xA+ γi) where γi = eiA is the

i-th row of A. Hence, ψ(x)+ψ(x+ei) = f(u)+f(u+γi) where u = xA. Since

A is nonsingular, u runs through Vn when x runs through Vn. By hypothesis,

fγi is balanced for any row γi of A which implies that ψ satisfies SAC. 2

An important remark is that a function satisfying SAC need not necessarily

be balanced. By using the definition, a function f satisfies SAC if and only if∑
x∈Vn

(f(x) + f(x+ ei)) = 2n−1 for all i = 1, 2, . . . , n where ei is the vector in Vn

with all entries except the i-th are zero. Equivalently, f satisfies SAC if and

only if
∑
x∈Vn

(f̂(x).f̂(x+ ei)) = 0 for all i = 1, 2, . . . , n.
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Example 5.1.1 ([17]) Let f be in F3 with Tf = (0, 0, 0, 1, 1, 0, 0, 0). Note that∑
x∈Vn

(f(x) + f(x + ei)) = 4 for i = 1, 2, 3. Thus, f satisfies SAC but f is not

balanced.

In [32], S(n, k) denotes the number of functions for which the output

changes with probability exactly one half if any of the input variables x1, x2

, . . . , xk among x = (x1, x2, . . . , xn) is complemented and S(n, n) denotes the

number of functions satisfying SAC. We use Sn for the number of functions

satisfying SAC as used in [8].

In [32], explicit formulas for S(n, 1) and S(n, 2) are given both of which are

in fact upper bounds for the number of functions satisfying SAC. In [8] and

[53], asymptotics for the sizes of S(n, 1) and S(n, 2) are given, quantifying the

number of functions satisfying SAC.

Lemma 5.1.2 ([8]) S(n, 1) ∼ 2π−
1
2 22n−n

2 .

Proof. From Lemma 1 of [32], S(n, 1) =

 2n−1

2n−2

. By applying Stirling’s

formula n! = (2πn)
1
2 (n

e
)n to the binomial coefficient, the result follows. 2

Lemma 5.1.3 ([8]) For n ≥ 2, S(n, 2) > 22n−n.

The following theorem gives a lower bound for Sn.

Theorem 5.1.4 ([8]) One can explicitly construct 22n−2
functions which satify

SAC.

By construction, all functions in Theorem 5.1.4 are balanced.

In [8], tn is defined as tn = log2 Sn

2n . By Theorem 5.1.4, we get that tn ≥ 1
4
.

In [8], a stronger result is proposed as Conjecture 4 and it is proved in [9].

Conjecture 4 (of [8]): Given any choice of the values f(αi) for i = 0, 1, . . . ,

2n−1 − 1, there exists a choice of f(αi), for 2n−1 ≤ i ≤ 2n − 1 such that the

resulting function f satisfies SAC.
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The proof of Conjecture 4 implies that there are at least 22n−1
functions

which satisfy SAC and improve the bound from tn ≥ 1
4

to tn ≥ 1
2
. This

inequality was proved independently in [54] by using a different method. Later,

Daniel Biss has given a much more complicated argument that shows tn = 1,

thereby disproving the Conjecture 1 of [8].
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CHAPTER 6

Bent Functions and Properties

6.1 Bent Functions

In this chapter, a non-exhaustive survey is given about the properties of one

of the most important classes of functions in Fn, so called bent functions.

Almost all results of this chapter are from the article of Rothaus [39] in which

bent functions are introduced and from MacWilliams and Sloane [25]. In this

chapter, the characterization of bent functions by using the Walsh transform

and by other cryptological means will be presented.

A function f in Fn is called bent if all the Walsh transform coefficients

Wf̂ (α) given in (4.3) have the same absolute value, i.e. |Wf̂ (α)| is constant

for all α in Vn. By using Parseval’s equation in Corollary 4.3.2, f is a bent

function if and only if |Wf̂ (α)| = 2n/2 for all α in Vn. Since Wf̂ (α) is an integer

for all α in Vn, if f is a bent function, then n must be even. In this chapter,

unless otherwise stated explicitly, we assume that n is even and n ≥ 2.

Lemma 6.1.1 ([39, 14]) Let f be a function.

(a) f is bent if and only if f̄ , the complement of f , is bent.

(b) Being bent is invariant under nonsingular affine transformations on the

input coordinates. In other words, f is bent if and only if the function h = f ◦θ

is bent where θ(x) = xA + α, A is a nonsingular matrix of order n and α is

any vector in Vn.

(c) f is bent if and only if the function f + ϕ is bent where ϕ as an affine

function.

(d) f is bent if and only if 〈ζf , ζϕ〉 = ±2n/2 where ζϕ is the sequence of an
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affine function ϕ. The sequence of an affine function is called an affine se-

quence.

(e) f is bent if and only if the function h = f + fα, where fα(x) = 〈α, x〉, has

weight 2n−1 ± 2
n
2
−1.

Proof. Only the proof of (b) is given. The others can be deduced easily from

the definition of a bent function.

(b) f is bent if and only if |Wf̂ (α)| = 2n/2 for all α in Vn. Let θ(x) = xA+α

where A is nonsingular and α in Vn. By Lemma 3.4.1, d(f, fα) = d(f ◦θ, fα◦θ)

where fα is the linear function corresponding to α. Note that |Wf̂ (α)| = 2n/2 =

|2n − 2d(f, fα)| = |2n − 2d(f ◦ θ, fα ◦ θ)| = |2n − 2d(h, fβ)| = |Wĥ(β)| where

h = f ◦ θ and fβ = 〈β, x〉 + a0 = fα ◦ θ for some a0 in GF (2). Since A is

nonsingular, as θ runs through all nonsingular affine transformations fβ runs

through all linear functions giving that h = f ◦ θ is also bent. 2

One of the most important characterizations of bent functions is the fol-

lowing :

Theorem 6.1.2 ([25]) Let f be a function. Then, f is bent if and only if

d(f,An) = Nmax where Nmax = 2n−1−2
n
2
−1 is the largest value of nonlinearity

as proved in Lemma 2.5.2 and An is the set of all affine functions. In other

words, f is the furthest function away from the set of all affine functions with

respect to the Hamming distance.

Proof. Let f be bent. Then, |Wf̂ (α)| = 2n/2 for all α in Vn. Thus, d(f, fα) =

1
2
(2n −Wf̂ (α)) = 2n−1 ± 2n/2−1 and d(f, f̄α) = 1

2
(2n +Wf̂ (α)) = 2n−1 ∓ 2n/2−1

implies that d(f, ϕ) = 2n−1±2n/2−1 for any affine function ϕ inAn. It is obvious

that Nf = min
ϕ∈An

{d(f, ϕ)} = min{2n−1+2n/2−1, 2n−1−2n/2−1} = 2n−1−2n/2−1 =

Nmax.

For the converse, suppose that f is a not bent. Then, |Wf̂ (α)| 6= 2n/2 for

all α in Vn. By Parseval’s equation there exists α in Vn such that |Wf̂ (α)| ≥

2n/2. Since d(f, fα) = 1
2
(2n − Wf̂ (α)) and d(f, f̄α) = 1

2
(2n + Wf̂ (α)), either
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d(f, fα) < Nmax or d(f, f̄α) < Nmax. Thus, Nf < Nmax. 2

The upper bound Nmax = 2n−1− 2
n
2
−1 in Lemma 2.5.2 is an integer, hence

it is attainable if n is even. However, even if n is even, this does not imply that

there exist functions having this nonlinearity. The above theorem guarantees

that there exists a certain class of functions attaining the largest nonlinearity.

Furthermore, this class may be solely described in terms of its property of

having the largest nonlinearity. Although they have the largest nonlinearity

among all functions, bent functions have an important drawback to be used in

cryptography directly, as shown in the following lemma.

Lemma 6.1.3 ([39]) Let f be a bent function. Then, w(f) = 2n−1 ± 2
n
2
−1.

Proof. Since Wf̂ (α0) = 2n − 2w(f), |Wf̂ (α0)| = |2n − 2w(f)| = 2n/2. This

implies that w(f) = 2n−1 ± 2n/2−1. 2

Thus, by Lemma 6.1.3, bent functions are not balanced. So, a necessary

caution should be taken when using a bent function in a cryptosystem. Another

important fact obtained from Theorem 6.1.2 and Lemma 6.1.3 is that balanced

functions can not attain the largest nonlinearity. In other words, balance and

largest nonlinearity can not be simultaneously satisfied.

Although bent functions are not balanced and can not be used directly, they

are used as building blocks of many cryptologically important constructions

such as the construction of highly nonlinear balanced functions with good

propagation characteristics [44], the construction of cryptographically robust

S-boxes [47] and many more.

Since the introduction of bent functions [39], although a significant amount

of work has been spent on them, still very few distinct classes of bent functions

are known. An important problem in this theory is to construct new classes

of bent functions either by using the previously known classes or by different

methods. From the cryptological point of view, the nonlinearity and the prop-

agation characteristics of bent functions are very attractive. The propagation
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characteristics of bent functions will also be investigated in this chapter. The

result is that bent functions are also the best among all functions with re-

spect to the propagation criterion. In other words, bent functions are PC(n).

As mentioned in the above paragraph, bent functions are a good source to

construct cryptological functions or mappings. In the following chapter, meth-

ods of constructing highly nonlinear balanced functions with good propagation

characteristics will be presented [44]. Most of the methods presented in the fol-

lowing chapter will be based on concatenating, splitting and modifying known

bent functions.

Bent functions are also useful to observe the relations between cryptolog-

ically important properties. As noted in the relation of balance and largest

nonlinearity, not all these properties can be simultaneously satisfied. This is

also true if one considers balance and nonlinearity with propagation criterion

and correlation immunity (or resiliency) [49]. It is well-known that bent func-

tions are not correlation immune. These facts show that there are important

trade offs between cryptologically important properties. Hence, if one looks for

a function which satisfies a list of properties (possibly some of them are con-

flicting), then the best he can do is to seek a function in some special subsets of

Fn by exhaustive search or to construct a function explicitly which optimizes

these properties.

We continue to investigate the properties of bent functions. Let f be a

bent function. Define the function g by setting (−1)g(α) =
Wf̂ (α)

2n/2 for all α in Vn

where Wf̂ (α) denotes the Walsh transform of the sign function of f . Since f is

bent, it is clear that g is in Fn. Note that for any α in Vn the Walsh transform

coefficients of the sign function of g are also ±2n/2 since :

f̂(x) =
1

2n

∑
α∈Vn

Wf̂ (α)(−1)〈α,x〉 =
1

2n/2

∑
α∈Vn

(−1)g(α)+〈α,x〉

=
1

2n/2
Wĝ(x).

Thus, g defined as above is also a bent function. This fact can be stated

equivalently in terms of the sequence of f as follows :
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Let f be a bent function with sequence ζf . Then, the (1,−1)-sequence

2−n/2ζfHn is the sequence of a bent function. The sequence of a bent function

is commonly called as a bent sequence in the literature.

Consider now a bent function f and the function g obtained via f as above.

Define a function h by using g exactly in the same way as g is defined by using

f as (−1)h(α) =
Wĝ(α)

2n/2 . It is obvious that h = f . This shows that there is a

natural pairing f ←→ g of bent functions [39].

Lemma 6.1.4 ([39],[25]) A function f is bent if and only if the matrix A =

(aij) of order 2n where aij = 1
2n/2Wf̂ (αi + αj) for 0 ≤ i, j ≤ 2n − 1 is a

Hadamard matrix.

Proof. Let AAt = (xij) where xij = 1
2n

2n−1∑
k=0

Wf̂ (αi + αk)Wf̂ (αj + αk). By

using Lemma 4.3.1, we get that

xij =

 2n if i = j,

0 if i 6= j.

Thus, A is a Hadamard matrix. The converse is trivial. 2

By using Theorem 2.6.4 and the definition of a bent function, the following

important property of bent functions is obtained.

Theorem 6.1.5 ([14]) A function f is bent if and only if fα is balanced for

any nonzero α in Vn. Equivalently, f is bent if and only if f satisfies PC(n).

In the literature, the difference function fα corresponding to α in Vn is

sometimes called as the directional derivative of f in the direction of α. By

Theorem 6.1.5, another characterization of bent functions is obtained via their

propagation characteristics. A simple but worth to mention fact is that a

balanced function can not be PC(n). This shows that balance and PC(n) can

not be simultaneously satisfied.

Lemma 6.1.6 ([39]) A function f is bent if and only if the matrix of f ,

Mf = (mij) where mij = (−1)f(αi+αj) for 0 ≤ i, j ≤ 2n − 1, is a Hadamard

matrix.
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Proof. Let MfMf
t = (yij) where yij =

∑
αk∈Vn

(−1)f(αi+αk)+f(αj+αk). By a

simple change of variable in the bound of this summation, one can obtain that

yij =
∑
θ∈Vn

(−1)f(θ)+f(αi+αj+θ). Since the function inside the summation is the

directional derivative of f in the direction of αi +αj, Theorem 6.1.5 gives that

yij =

 2n if i = j,

0 if i 6= j.

Thus, Mf is a Hadamard matrix. The converse is also true again by using

Theorem 6.1.5. 2

An important fact about the degree of bent functions is that if a function

has degree strictly greater than n/2, then that function can not be bent.

Proposition 6.1.7 ([39]) If f is a bent function and n > 2, then the degree

of f is less than or equal to n/2, i.e. deg(f) ≤ n/2.

Proof. Since f is bent, let n = 2k where k > 1. Let r be an integer

satisfying 1 < k < r ≤ n. Define f(x1, x2, . . . , xk, . . . , xr, 0, 0, . . . , 0) =

g(x1, x2, . . . , xk, . . . , xr). By (4.5),

(−1)g(x1,x2,...,xr) =
1

2r

∑
α1,α2,...,αr∈GF (2)

Wĝ(α1, α2, . . . , αr)(−1)α1x1+···+αrxr

and

(−1)f(x1,x2,...,xr,0,...,0) =
1

2n

∑
α1,α2,...,αn∈GF (2)

Wf̂ (α1, α2, . . . , αn)(−1)α1x1+···+αrxr .

Since the left hand sides of these two equations are equal, so are the right hand

sides. Equating them and by using the uniqueness of the expansion in (4.5),

one obtains that

Wĝ(α1, α2, . . . , αr) =
1

2n−r

∑
αr+1,αr+2,...,αn∈GF (2)

Wf̂ (α1, α2, . . . , αr;αr+1, . . . , αn).

Since Wĝ(α0) = 2r − 2w(g) where α0 is in Vr, the number of zeros of the

function g(x1, x2, . . . , xr) is equal to 2r−1 + 1
2
Wĝ(0, 0, . . . , 0). By using the
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above equation, the number of zeros of g is equal to

2r−1 +
1

2n−r+1

∑
αr+1,αr+2,...,αn∈GF (2)

Wf̂ (0, 0, . . . , 0;αr+1, . . . , αn).

Thus, the number of zeros of g is equal to

2r−1 + 2r−n−1
∑

αr+1,αr+2,...,αn∈GF (2)

Wf̂ (0, 0, . . . , 0;αr+1, . . . , αn).

There are 2n−r summands in the above summation and since f is bent,

|Wf̂ (0, 0, . . . , 0;αr+1, . . . , αn)| = 2
n
2

for any αr+1, . . . , αn ∈ GF (2). Hence, the number of zeros of g is even. How-

ever, w(g) ≡ a12...r (mod 2) by (2.11) where a12...r is the coefficient of the term

x1x2 . . . xr in g. Thus, a12...r = 0. In other words, the degree of g is strictly

less than r. Since r is arbitrary in the range 1 < k < r ≤ n, deg(f) ≤ k. 2

Proposition 6.1.8 ([39]) Let the function h be defined as h(z) = f(x) + g(y)

for z = (x, y) in Vn+m, x in Vn and y in Vm. Then, h is bent if and only if f

and g are bent.

Proof. ([25]) Let α = (β, γ) be in Vn+m for β in Vn and γ in Vm. By (e) of

Theorem 4.3.3, |Wĥ(α)| = |Wf̂ (β)|.|Wĝ(γ)|.

If f and g are both bent then, |Wf̂ (β)| = 2
n
2 and |Wĝ(γ)| = 2

m
2 for any β

in Vn and for any γ in Vm. Thus, |Wĥ(α)| = 2
n+m

2 for any α in Vn+m giving

that h is bent.

Conversely, assume that h is bent but f is not bent. Thus, there exists

some β in Vn such that |Wf̂ (β)| > 2
n
2 . Then, for any α = (β, γ) in Vn+m

2
n+m

2 = |Wf̂ (β)|.|Wĝ(γ)|. It follows that |Wĝ(γ)| < 2
m
2 for all γ in Vm. How-

ever, this is impossible due to Corollary 4.3.2. 2

The functions of type h used in Proposition 6.1.8 are given a special name

in [25] as follows :
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Definition 6.1.1 A function h is called decomposable if there is a linear trans-

formation on the input coordinates such that h can be written as a sum of

functions on disjoint variables as in Proposition 6.1.8.

In other words, h in Fn is decomposable if there exists a binary matrix of

order n such that h(zA) = f(x) + g(y) where z = (x, y) is in Vn for x in Vk

and y in Vt satisfying k + t = n. If there exists no such matrix, then h is said

to be indecomposable.

If h is a decomposable bent function for n = 2k, then by Proposition 6.1.7

the degree of each function f and g is necessarily strictly less than k, except

in the case when k = 2. This gives the following :

Proposition 6.1.9 ([39]) If f is a bent function in Fn where n = 2k for

k ≥ 3, then f is indecomposable.

After having investigated many properties of bent functions, it is time to

see some examples of bent functions.

Theorem 6.1.10 ([39]) Let n = 2k and g be any function in Fk. The func-

tion, f(z) = f(x, y) = 〈x, y〉+g(x) = x1y1+x2y2+· · ·+xkyk+g(x) is bent where

z = (x, y) in Vn, x, y are in Vk with x = (x1, x2, . . . , xk) and y = (y1, y2, . . . , yk).

Proof. Let f be in Fn of the form described in the statement of the theorem

and let fα be the linear function corresponding to 〈α, z〉 for any α in Vn. It is

enough to show that (f + fα)(z) has 22k−1 ± 2k−1 zeros. Part (e) of Lemma

6.1.1 yields the result.

Write α = (β, γ) where β, γ are in Vk. Then, fα(z) = fβ(x) + fγ(y). Set

h(z) = (f + fα)(z). Then, h(z) = h(x, y) = g(x) + 〈β, x〉+ 〈x+ γ, y〉.

For the values of x where x + γ = α0, h(z) = h(γ, y) = g(γ) + 〈β, γ〉 and

is a constant for any y, i.e. independent of y1, y2, . . . , yk. If g(γ) + 〈β, γ〉 = 0,

then h has 2k zeros and no zeros otherwise.

For the values of x where x + γ 6= α0, the function h(z) is a nonconstant

linear function in the variable y and hence has 2k−1 zeros. Since, there are

2k − 1 choices for x, h has 2k−1.(2k − 1) = 22k−1 − 2k−1 zeros.

71



Thus, h has in total 22k−1 ± 2k−1 zeros. This gives the result. 2

As a corollary of Theorem 6.1.10, the function defined as f(x1, x2, . . . , xn) =

x1x2 + x3x4 + · · ·+ xn−1xn is a bent function when n is even [25].

Theorem 6.1.11 ([25]) Let f be the function defined as f(x1, x2, . . . , xn) =

x1x2 + x1x3 + . . .+ xn−1xn where n is even. Then, f is bent.

Definition 6.1.2 ([25]) Two functions f, g are said to be equivalent if the

difference h(x) = f(x) + g(x) is an affine function. If f, g are equivalent, then

they are denoted by f ∼ g.

Theorem 6.1.12 ([25]) Let n = 2k and f be the function defined as f(z) =

f(x, y) = 〈x, y〉 where z = (x, y) in Vn, x, y are in Vk with x = (x1, x2, . . . , xk)

and y = (y1, y2, . . . , yk), i.e. take g = 0 in Theorem 6.1.10. Then, the functions

f, f + x1x2x3, f + x1x2x3x4, . . . , f + x1x2 . . . xk are k − 1 inequivalent bent

functions of degrees 2, 3, . . . , k.

Theorem 6.1.13 ([39]) Let n = 2k and f, g, h be in Fn such that f + g +

h is bent. Define the function θ in Fn+2 as θ(z) = θ(x1, x2, . . . , xn, u, v) =

f(x).g(x) + g(x).h(x) + h(x).f(x) + (f(x) + g(x)).u + (f(x) + h(x)).v + u.v

where z = (x, u, v) is in Vn+2 for x = (x1, x2, . . . , xn) in Vn and u, v in GF (2).

Then, θ is also bent.

Proof. The proof proceeds exactly as the proof of Theorem 6.1.10 and can be

found in [39]. 2

Remark 6.1.14 The class of bent functions in Theorem 6.1.13 give the most

general polynomial of the form θ(x, u, v) = u.v + f(x).v + g(x).u+ h(x).

The class of bent functions in Theorem 6.1.13 contains the class in Theorem

6.1.10.

Now, an important construction of bent functions is given without proof.

We state the form as in [25].
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Theorem 6.1.15 (Maiorana-McFarland) Let g be any function in Fn and ϕ

be a bijective transformation of Vn given by

ϕ(x) = (ϕ1(x1, x2, . . . , xn), ϕ2(x1, x2, . . . , xn), . . . , ϕn(x1, x2, . . . , xn))

where x = (x1, x2, . . . , xn) is in Vn. Then, f(x, y) = 〈ϕ(x), y〉 + g(y) =

ϕ1(x).y1 + ϕ2(x).y2 + . . . + ϕn(x).yn + g(y) is a bent function in Fn where

x, y in Vn with x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn).

The following paragraph is from [31] :

The general case when q = pn, a prime power and g, ϕ over Zn
q instead

of Vn is due to [21]. When q = 2, it was proved by Maiorana (unpublished,

see [15]) generalizing the construction method of Rothaus [39]. An equivalent

method is given by McFarland [28]. A third equivalent way of looking at this

construction when q = 2 is to make use of Hadamard matrices as in [22]. The

constructions given in [3] and [52] are special cases of Theorem 6.1.15.

As mentioned in [30], different choices for ϕ and g in Theorem 6.1.15 yield

different bent functions. It follows that, the number of bent functions is lower

bounded by 22
n
2 .(2

n
2 !).

Definition 6.1.3 ([30]) Let G be an additive abelian group of order v. A

subset D of G is called a (v, k, λ)-difference set if the order of D is k and

if every element a ∈ D can be expressed in λ different ways as a difference

a = b− c where b, c are in D.

The following theorem is stated as it is in [30].

Theorem 6.1.16 ([15]) A function f in Fn is bent if and only if it is a char-

acteristic function of a difference set in Vn where the parameters of a difference

set in Vn are (2n, 2n−1 ± 2
n
2
−1, 2n−2 ± 2

n
2
−1) due to [26].

The main result of [15] is that for k > 3 there exist bent functions in F2k

which are not equivalent to any functions in Theorem 6.1.15 [30].
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CHAPTER 7

Constructions

7.1 Constructing Highly Nonlinear Functions

All constructions in this chapter are from the article of Seberry, Zhang and

Zheng [44].

Let f1, f2 be in Fn. Consider g in Fn+1 defined as

g(z) = (y + 1)f1(x1, x2, . . . , xn) + yf2(x1, x2, . . . , xn) (7.1)

where z = (y, x1, x2, . . . , xn) is in Vn+1. Siegenthaler [49] showed that if f1 and

f2 are m-th order correlation immune functions in Fn, then g is an m-th order

correlation immune function in Fn+1.

It is clear from (7.1) that g(0, α) = f1(α) for any β = (0, α) in Vn+1 and

g(1, α) = f2(α) for any β = (1, α) in Vn+1 where α is arbitrary in Vn. This

gives that the truth table of g is the concatenation of the truth tables of f1

and f2. In such a case, g is said to be the concatenation of f1, f2 and the truth

table of g is denoted by Tg = (Tf1 , Tf2). The following lemma gives a lower

bound on the nonlinearity of a function obtained by the concatenation of two

special functions.

Lemma 7.1.1 Let f1, f2 be in Fn and g be a function in Fn+1 obtained as in

(7.1). Suppose that 〈ζfi
, l〉 ≤ Pi holds where ζfi

is the sequence of fi, l is the

sequence of any affine function and Pi is a positive integer for i = 1, 2. Then,

the nonlinearity of g satisfies Ng ≥ 2n − 1
2
(P1 + P2).

Proof. By construction, the sequence ζg of g is equal to ζg = (ζf1 , ζf2). Let

ϕ be an arbitrary affine function in An+1 with sequence ζϕ. By Lemma 2.5.1,
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ζϕ = (li,±li) where li is the sequence of an affine function in Fn . Thus,

〈ζg, ζϕ〉 = 〈ζf1 , li〉± 〈ζf2 , li〉 which implies that |〈ζg, ζϕ〉| ≤ P1 +P2. By Lemma

2.2.1, d(g, ϕ) = 2n− 1
2
〈ζg, ζϕ〉 ≥ 2n− 1

2
(P1 +P2). Since ϕ is arbitrary, the result

follows. 2

The construction which was introduced by Meier and Staffelbach [29] as

a special case of Lemma 7.1.1 shows that highly nonlinear functions may be

obtained by concatenating bent sequences.

Corollary 7.1.2 Let n = 2k and f1, f2 be bent functions in Fn. Then, g

constructed as in Lemma 7.1.1 has nonlinearity Ng ≥ 22k − 2k.

One can also get similar results by concatenating four functions instead of

two :

Lemma 7.1.3 Let fi be in Fn with sequence ζfi
and suppose that 〈ζfi

, l〉 ≤ Pi

holds for any affine sequence l of length 2n where Pi’s are positive integers for

i = 0, 1, 2, 3. Let g be in Fn+2 obtained by the concatenation of fi’s. In other

words, g(z) =
3∑

i=0

χαi
(y).fi(x) where z = (y, x) is in Vn+2 for y = (y1, y2) in

V2, x = (x1, x2, . . . , xn) in Vn and χαi
is the characteristic function of αi in

V2. Then, Ng ≥ 2n+1− 1
2
(P0 +P1 +P2 +P3). As in Lemma 7.1.1, if n is even

and fi’s are bent functions for i = 0, 1, 2, 3, then Ng ≥ 2n+1 − 2
n
2
+1.

Proof. The proof is exactly the same with the proof of Lemma 7.1.1. Just note

that Hn+2 = H2 ⊗ Hn. It follows that the sequence ζϕ of any affine function

ϕ is equal to (li, li, li, li) or (li,−li, li,−li) or (li, li,−li,−li) or (li,−li,−li, li)

where li is the sequence of some affine function in Fn. The rest is the same. 2

Remark 7.1.4 (a) Lemma 7.1.3 can easily be generalized to the case where

2t functions are concatenated.

(b) In Lemma 7.1.1 and Lemma 7.1.3, one can obtain balanced functions by

using suitable functions. In Lemma 7.1.1, if f0 and f1 are both balanced or
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more generally if f0, f1 satisfy w(f0) + w(f1) = 2n, then g is balanced. These

are also true for the function in Lemma 7.1.3.

Another way to obtain highly nonlinear balanced functions apart from con-

catenating bent functions is by splitting bent sequences.

Lemma 7.1.5 Let n = 2k and f(x1, x2, . . . , xn) be a bent function. Define

two functions g0, g1 in Fn−1 by g0(x2, x3, . . . , xn) = f(0, x2, x3, . . . , xn) and

g1(x2, x3, . . . , xn) = f(1, x2, x3, . . . , xn) with sequences ζg0 , ζg1 respectively. For

any affine sequence l of length 2n−1 and for i = 0, 1, the following holds :

−2k ≤ 〈ζgi
, l〉 ≤ 2k.

Proof. Note that f(x) = (x1 + 1)g0(x2, x3, . . . , xn) + x1g1(x2, x3, . . . , xn). Let

L be an affine sequence of length 2n. Since Hn = H1 ⊗ Hn−1, L = (l, l) or

L = (l,−l) for some affine sequence l of length 2n−1.

Assume that −2k ≤ 〈ζg0 , l〉 ≤ 2k is not true. Without loss of generality,

let 〈ζg0 , l〉 > 2k. We have, 〈ζf , L〉 = 〈ζg0 , l〉 ± 〈ζg1 , l〉 according to L = (l, l) or

L = (l,−l).

If 〈ζg1 , l〉 > 0, then 〈ζf , L〉 > 2k for L = (l, l) and if 〈ζg1 , l〉 < 0, then

〈ζf , L〉 > 2k for L = (l,−l), both of which contradict the fact that 〈ζf , L〉 =

±2k. Thus, −2k ≤ 〈ζg0 , l〉 ≤ 2k holds for any affine sequence l of length 2n−1.

The fact −2k ≤ 〈ζg1 , l〉 ≤ 2k is proved exactly in the same way. 2

Let n = 2k and f be a bent function. Then, by using Lemma 7.1.5 one

concludes that Ngi
≥ 22k−2 − 2k−1 for i = 0, 1.

Note that the concatenation of two bent functions in F2k−2 by using Corol-

lary 7.1.2 yields a function g with Ng ≥ 22k−2 − 2k−1. Thus, concatenating

two bent functions in F2k−2 and splitting a bent function in F2k both result in

functions having nonlinearities bounded below by the same value.

We have seen that concatenating two bent functions properly yields a bal-

anced function. Similarly, one can also obtain a balanced function by splitting

a bent function. For this, the result obtained by Adams and Tavares [2] will
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be used. It states that the concatenation of the rows l0, l1, . . . , l2k−1 of Hk is a

bent sequence of length 22k. Denote the resulting function by f(x1, x2, . . . , x2k).

Since f(x) = (x1 + 1)g0(x2, x3, . . . , x2k) + x1g1(x2, x3, . . . , x2k), where g0 and

g1 are as in Lemma 7.1.5, the second half of the sequence of f is the sequence

of g1(x2, x3, . . . , x2k). This sequence is equal to ζg1 = (l2k−1 , l2k−1+1, . . . , l2k−1).

Since all rows of Hk except the all-one sequence l0 is balanced, g1 is a balanced

function with nonlinearity Ng1 ≥ 22k−2 − 2k−1.

By permuting the li’s appearing in the sequence of g1 for 2k−1 ≤ i ≤ 2k−1,

one obtains a different balanced sequence ζ?
g1

= (li
2k−1

, li
2k−1+1

, . . . , li
2k−1

) where

{i2k−1 , i2k−1+1, . . . , i2k−1} is any permutation of {2k−1, 2k−1+1, . . . , 2k−1}. The

function corresponding to ζ?
g1

has also the same nonlinearity as the function cor-

responding to ζg1 . Thus, ζ? = (a2k−1 .li
2k−1

, a2k−1+1.li2k−1+1
, . . . , a2k−1.li2k−1

) are

balanced sequences with the same nonlinearity as ζg1 where ai ∈ {+1,−1} for

2k−1 ≤ i ≤ 2k − 1. Hence, there are 22k−1
.(2k−1!) different balanced sequences

with this nonlinearity which are obtained by permuting li’s and changing the

signs of ai’s for i = 2k−1, 2k−1 + 1, . . . , 2k − 1.

Now, bent sequences of length 22k obtained by concatenating the rows of the

Sylvester-Hadamard matrices will be modified so that the resulting functions

on V2k are balanced and have a much higher nonlinearity than those which are

obtained by concatenating four bent sequences. This result with the sequences

in [35] will lead to the construction of balanced functions on V2k+1 for k ≥ 14.

These functions have higher nonlinearities than those which are obtained by

concatenating or splitting bent sequences . These results bring significant

improvements to the previously known construction methods. Even and odd

dimensional cases will be considered separately.

(a) On V2k :

Lemma 7.1.6 For any integer t ≥ 1, there exists

(i) a balanced function f on V4t such that Nf ≥ 24t−1 − 22t−1 − 2t.

(ii) a balanced function f on V4t+2 such that Nf ≥ 24t+1 − 22t − 2t.

Proof. First of all, note that an even number n ≥ 4 can be expressed as
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n = 4t or n = 4t+ 2 where t ≥ 1.

(i) The concatenation of all li’s is a bent sequence of length 24t where li

is the i-th row of H2t for i = 0, 1, . . . , 22t − 1. Since all rows of H2t except

l0 are balanced, replacing l0 with a balanced sequence of length 22t makes

ζ = (l0, l1, . . . , l22t−1) a balanced sequence. Thus, the crucial point here is a

replacement which makes the function balanced while making the function as

nonlinear as possible.

Denote the rows of Ht by e0, e1, . . . , e2t−1. Set l0
′
= (e1, e1, e2, e3, . . . , e2t−1)

which is a balanced sequence of length 22t. Hence, ζ
′
= (l0

′
, l1, . . . , l22t−1) is a

balanced sequence. Now, a lower bound for the nonlinearity of the function f

with sequence ζ
′
will be given.

Let ϕ be an affine function in F4t with sequence ζϕ which is a row of ±H4t.

Since H4t = H2t ⊗ H2t, we get that ζϕ = ±li ⊗ lj where li and lj are rows of

H2t. Denote li = (hi,1, hi,2, . . . , hi,22t). Then, ζϕ = ±(hi,1.lj, hi,2.lj, . . . , hi,22t .lj).

It follows that |〈ζ ′ , ζϕ〉| ≤ |〈l0
′
, lj〉| + |〈lj, lj〉| = |〈l0

′
, lj〉| + 22t since any two

distinct rows of H2t are orthogonal.

As H2t = Ht⊗Ht, lj = ek⊗el where lj is a row of H2t and ek, el are rows of

Ht. Denote ek by (a1, a2, . . . , a2t). Then, lj = (a1.el, a2.el, . . . , a2t .el). Hence,

one obtains that

|〈l0
′
, lj〉| ≤ |〈e1, el〉|+ |〈e1, el〉|+ |〈e2, el〉|+ · · ·+ |〈e2t−1, el〉|

=


2t+1 if l = 1,

2t if l = 2, 3, . . . , 2t − 1,

0 if l = 0.

Thus, |〈ζ ′ , ζϕ〉| ≤ |〈l0
′
, lj〉| + 22t ≤ 2t+1 + 22t. By using Lemma 2.2.1, one

can conclude that d(f, ϕ) ≥ 24t−1 − 1
2
〈ζ ′ , ζϕ〉 ≥ 24t−1 − 22t−1 − 2t. Since ϕ is

arbitrary, Nf ≥ 24t−1 − 22t−1 − 2t.

(ii) Consider this time H2t+1. The concatenation ζ = (l0, l1, . . . , l22t+1−1)

of the rows of H2t+1 is a bent sequence. As in part (i), replace l0 by the

balanced sequence l0
′
= (e2t , e2t+1, . . . , e2t+1−1) where ei’s are the rows of Ht+1

for 2t ≤ i ≤ 2t+1 − 1 with length 2t+1. Also, let ζ
′
= (l0

′
, l1, . . . , l2t+1−1).
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Let ϕ be an affine function in F4t+2 with sequence ζϕ. It is equal to ζϕ =

±li ⊗ lj where li, lj are rows of H2t+1. Thus, |〈ζ ′ , ζϕ〉| ≤ |〈l0
′
, lj〉|+ 22t+1.

Since l0
′
= (e2t , e2t+1, . . . , e2t+1−1) is the sequence of the function

g1(x2, x3, . . . , x2t+2)

and obtained from the bent sequence (e0, e1, . . . , e2t+1−1) by splitting as in

Lemma 7.1.5, |〈l0
′
, lj〉| ≤ 2t+1. Hence, |〈ζ ′ , ζϕ〉| ≤ 2t+1 + 22t+1 which yields

that Nf ≥ 24t+1 − 22t − 2t. 2

By using Lemma 7.1.6 and applying it iteratively, the nonlinearity of a

balanced function can be further improved as the following theorem suggests.

Theorem 7.1.7 For any even number n ≥ 4, there exists a balanced function

f with nonlinearity Nf satisfying

Nf ≥


22m−1 − 1

2
(22m−1

+ 22m−2
+ · · ·+ 222

+ 221
) if n = 2m,

22s(2t+1)−1 − 1
2
(22s−1(2t+1) + 22s−2(2t+1) + · · ·+ if n = 2s(2t+ 1).

22(2t+1) + 2(2t+1) + 2t+1)

Proof. First of all, observe that an even number n ≥ 4 can be expressed as

n = 2m for m ≥ 2 or n = 2s(2t+ 1) for s ≥ 1 and t ≥ 1.

Case 1 : n = 2m for m ≥ 2.

Consider H2m−1 . The concatenation of the rows of H2m−1 is a bent sequence

which contains 22m−1
sequences of length 22m−1

. Replace the first all-one se-

quence with a bent sequence of the same length 22m−1
. The bent sequence

of length 22m−1
needed is obtained through the concatenation of the rows of

H2m−2 which are of length 22m−2
. The first all-one row of H2m−2 appears now

in the new sequence. We replace this all-one sequence by a bent sequence

of the same length. We continue this process until the length of the all-one

leading sequence becomes 22 = 4. Finally, the all-one sequence of length four

is replaced with the sequence (+1,−1,+1,−1). By means of all these replace-

ments, the resulting sequence turns out to be a balanced sequence. It can be
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proved by induction that the nonlinearity of the final function satisfies

Nf ≥ 22m−1 − 1

2
(22m−1

+ 22m−2

+ · · ·+ 222

+ 221

).

Case 2 : n = 2s(2t+ 1) for s ≥ 1 and t ≥ 1.

In this case, the replacing process continues until the length of the leading

all-one sequence is 22t+1. The final leading all-one sequence is replaced by

l0
′

= (e2t , e2t+1, . . . , e2t+1−1) where ei’s are the rows of Ht+1 for i = 2t, 2t +

1, . . . , 2t+1 − 1. Note that l0
′

is the second half of the sequence of the bent

function obtained by the concatenation of the rows of Ht+1. It can be shown

by induction that the nonlinearity of the function obtained satisfies

Nf ≥ 22s(2t+1)−1 − 1

2
(22s−1(2t+1) + 22s−2(2t+1) + · · ·+ 22(2t+1) + 2(2t+1) + 2t+1).

2

Let ζ = (ζ0, ζ1, . . . , ζ2k−1) be a sequence of length 22k which is obtained

from a bent sequence by modifying the leading all-one sequence as in Theorem

7.1.7. By permuting ζi’s and by changing their signs for i = 0, 1, . . . , 2k − 1 as

it is done in splitting a bent sequence, one obtains 22k
.(2k!) different balanced

sequences of length 22k all of which have the same nonlinearity. In fact, note

that the final leading sequence ζ0 has the same structure as the large sequence

ζ. Thus, permuting and changing signs can also be applied to ζ0.

In the following table, entries in the first row are the upper bounds on the

nonlinearities of balanced functions in Fn given by the bound in Corollary 2.5.6

where n = 4, 6, 8, 10, 12, 14. Entries in the second row are the lower bounds

obtained by Theorem 7.1.7 on the nonlinearities of balanced functions. The

third row contains the lower bounds on the nonlinearities of balanced functions

due to Lemma 7.1.3.
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Vector Spaces V4 V6 V8 V10 V12 V14

Lemma 2.5.6, Nf ≤ 4 26 118 494 2014 8126

Theorem 7.1.7, Nf ≥ 4 26 116 492 2010 8120

Lemma 7.1.3, Nf ≥ 4 24 112 480 1984 8064

(b) On V2k+1 :

The proof of the following lemma can be made easily.

Lemma 7.1.8 Let f be defined in Fn+m as f(z) = f1(x) + f2(y) where z =

(x, y) is in Vn+m for x in Vn, y in Vm, x = (x1, x2, . . . , xn), y = (y1, y2, . . . , ym).

Then, the following hold :

(i) f is balanced if and only if f1 or f2 is balanced.

(ii) The sequence ζf of f is equal to ζf = ζf1 ⊗ ζf2 where ζfi
is the sequence

of fi for i = 1, 2.

Lemma 7.1.9 Let f in Fn+m be defined as in Lemma 7.1.8 from f1 in Fn

and f2 in Fm. Assume that 〈ζf1 , l1〉 ≤ P1 and 〈ζf2 , l2〉 ≤ P2 hold for any

affine sequence l1, l2 of length 2n and 2m, respectively where P1, P2 are positive

integers. Then, Nf ≥ 2n+m−1 − 1
2
P1P2.

Proof. Let ϕ be an affine function in Fn+m with sequence ζϕ. Then, ζϕ =

±l1 ⊗ l2 where l1 is a row of Hn and l2 is a row of Hm. It follows that,

〈ζf , ζϕ〉 = 〈ζf1 ⊗ ζf2 ,±l1 ⊗ l2〉 = ±〈ζf1 , l1〉 〈ζf2 , l2〉 by (3) of Lemma 2.4.2, giv-

ing that |〈ζf , ζϕ〉| = |〈ζf1 , l1〉|.|〈ζf2 , l2〉| ≤ P1P2. Since ϕ is arbitrary, Lemma

2.2.1 implies that Nf ≥ 2n+m−1 − 1
2
P1P2. 2

By using Lemma 7.1.9 and a result of [35], one can obtain a function in

F2k+15 with nonlinearity greater than all those obtained by concatenating or

splitting bent sequences for all k ≥ 7 as follows :

Let ζ1 be a balanced sequence of length 22k which is obtained by using the

method in the proof of Theorem 7.1.7 for k ≥ 2. Let ζ2 be a sequence of length

215 obtained by [35]. The nonlinearity of the function with sequence ζ2 is 16276

and there are 13021 such sequences. Denote the functions corresponding to
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ζ1, ζ2 by f1, f2 respectively. Using these two functions in Lemma 7.1.8, one

gets a function f in F2k+15 defined as f(x1, x2, . . . , x2k, x2k+1, . . . , x2k+15) =

f1(x1, x2, . . . , x2k)+f2(x2k+1, x2k+2, . . . , x2k+15). By Theorem 7.1.7 and Lemma

2.2.1, it is known that

〈ζ1, l1〉 ≤


22m−1

+ 22m−2
+ · · ·+ 222

+ 221
if 2k = 2m,

22s−1(2t+1) + 22s−2(2t+1) + . . .+ if 2k = 2s(2t+ 1).

22(2t+1) + 22t+1 + 2t+1

and 〈ζ2, l2〉 ≤ 2(214 − 16276) = 216 where l1 is an affine sequence of length

22k and l2 is an affine sequence of length 215. Then, the following theorem is

obtained by using Lemma 7.1.9.

Theorem 7.1.10 Let f be a function in F2k+15 defined by f1 and f2 as above

for k ≥ 2. Then, the nonlinearity Nf of f satisfies

Nf ≥


22m+14 − 108(22m−1

+ 22m−2
+ . . .+ 222

+ 221
) if 2k = 2m,

22s(2t+1)+14 − 108(22s−1(2t+1) + 22s−2(2t+1) + · · ·+ if 2k = 2s(2t+ 1).

22(2t+1) + 2(2t+1) + 2t+1)

7.2 Constructing Highly Nonlinear Balanced Functions

Satisfying Strict Avalanche Criterion

In this section, methods for constructing highly nonlinear balanced functions

satisfying strict avalanche criterion will be presented.

(a) On V2k+1 :

Let n = 2k for k ≥ 1, f be a bent function and g be a nonconstant affine

function both of which are in Fn. By (c) of Lemma 6.1.1, it is clear that the

function f(x) + g(x) is also bent. Thus, the weight of f + g is 2n−1 ± 2
n
2
−1 by

(e) of the same lemma. Since f is bent, the weight of f is also 2n−1 ± 2
n
2
−1.

It follows that after fixing a bent function f , one can always find an affine

function g such that the weight of f is different from the weight of f + g. In

other words, if w(f) = w(f + g) for any bent function f and for any affine

function g, then ḡ, the complement of g, is the desired function. By using
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those properly chosen f and g, define the function h in Fn+1 as follows :

h(z) = (y + 1)f(x1, x2, . . . , x2k) + y(f(x1, x2, . . . , x2k) + g(x1, x2, . . . , x2k))

where z = (y, x) is in Vn+1 for y in GF (2) and x = (x1, x2, . . . , x2k) in Vn.

Thus, h is the concatenation of the bent functions f and f + g. It is easy to

see that the function h is in fact equal to

h(y, x1, x2, . . . , x2k) = f(x1, x2, . . . , x2k) + yg(x1, x2, . . . , x2k).

The properties of this construction are as follows :

Theorem 7.2.1 The function h in Fn+1 defined as above is a balanced func-

tion with nonlinearity Nh ≥ 22k − 2k satisfying strict avalanche criterion.

Moreover, the degree of h is equal to the degree of the bent function used in

the construction of h. Additionally, the number of vectors in Vn+1 such that

h satisfies the propagation criterion is 22k + 22k−1. In other words, h satisfies

the propagation criterion with respect to 75% of all vectors in Vn+1.

Proof. h is balanced since w(h) = w(f) + w(f + g) = 22k.

By using Corollary 7.1.2, Nh ≥ 22k − 2k. h satisfies the strict avalanche

criterion since :

Let α = (u, v1, v2, . . . , v2k) be a vector in Vn+1 with w(α) = 1. It is enough

to show that the directional derivative of h in the direction of α is a balanced

function. There are two cases :

(i) u = 0. Since w(α) = 1, this implies that w(β) = 1 where β =

(v1, v2, . . . , v2k) in Vn. Then, hα(z) = h(z) + h(z + α) = f(x) + f(x + β) +

y(g(x)+ g(x+β)). Since g is affine, g(x)+ g(x+β) is constant, say equal to θ

in GF (2). Thus, hα(z) = fβ(x)+θy. As f is bent, fβ is balanced by Theorem

6.1.5 since β is nonzero in Vn. By using Lemma 7.1.8, hα is balanced.

(ii) u = 1. Since w(α) = 1, this implies that w(β) = 0, i.e. vi is zero

for all i = 1, 2, . . . , 2k. Then, hα(z) = h(z) + h(z + α) = g(x). Since g is a

nonconstant affine function, by Lemma 2.1.6, g is balanced implying that hα

is balanced.
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Thus, h satisfies the strict avalanche criterion.

Since g is a nonconstant affine function, the degree of g is one. By Propo-

sition 6.1.7, the degree of f satisfies 1 ≤ deg(f) ≤ k. From the construction

of h, the degree of h is equal to the degree of f .

In order to prove the propagation characteristics of h, the number of α =

(u, v1, v2, . . . , v2k)’s in Vn+1 for which h satisfies the propagation criterion will

be counted. Let β = (v1, v2, . . . , v2k). Now,

hα(z) = h(z) + h(z + α)

= f(x) + f(x+ β) + y(g(x) + g(x+ β)) + ug(x+ β). (7.2)

There are three cases in (7.2). These are (i) u = 0, β 6= 0; (ii) u 6= 0,

β = 0 and (iii) u 6= 0, β 6= 0.

(i) u = 0, β 6= 0. Then, hα(z) = fβ(x) + yθ where gβ(x) is constant, say

equal to θ in GF (2), since g is affine. As f is bent and β 6= 0, fβ is balanced.

The number of vectors α = (0, β) in Vn+1 where β 6= 0 and h satisfies the

propagation criterion is 22k − 1.

(ii) u 6= 0, β = 0. Then, hα(z) = g(x) giving that w(hα) = 2.22k−1 since

w(g) = 22k−1. Hence, hα is balanced. In other words, for α = (1, 0, 0, . . . , 0),

the function hα is balanced.

(iii) u 6= 0, β 6= 0. Now,

hα(z) = f(x) + f(x+ β) + y(g(x) + g(x+ β)) + g(x+ β)

where α = (1, β) is in Vn+1 and β = (v1, v2, . . . , v2k) is in Vn. Since g is

affine, gβ(x) = g(x) + g(x + β) is constant, say equal to θ in GF (2). Hence,

hα(z) = f(x) + f(x+ β) + g(x+ β) + θy. There are two cases :

(1) θ = 1 : We have hα(z) = f(x) + f(x + β) + g(x + β) + y. By Lemma

7.1.8, hα(z) is balanced. There are 22k−1 vectors β in Vn satisfying gβ(x) = 1.

(2) θ = 0 : We have hα(z) = fβ(x)+ g(x) since θ = gβ(x) = 0 implies that

g(x+ β) = g(x). By using (2.4), we get that

w(hα) = |Supp(fβ)|+ |Supp(g)| − 2|Supp(fβ) ∩ Supp(g)|.
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Since f is bent and β 6= 0, we get that fβ is a balanced function. Hence,

|Supp(fβ)| = 22k−1. Also, since g is a nonconstant affine function, |Supp(g)| =

22k−1. Thus, w(hα) = 22k − 2|Supp(fβ) ∩ Supp(g)|. In order for hα(z) to

be balanced, Supp(fβ) ∩ Supp(g) must be the empty set. However, this is

impossible implying that hα(z) is not balanced.

Thus, the number of vectors for which h satisfies the propagation criterion

is (22k − 1) + 1 + 22k−1 = 22k + 22k−1. 2

(b) On V2k :

Let k ≥ 2, n = 2k−2 and f be a bent function in Fn. Also let g1, g2 and g3

be three nonconstant affine functions in Fn such that gi +gj is nonconstant for

any 1 ≤ i < j ≤ 3. It is clear that for k ≥ 2, such affine functions exist in Fn.

It is possible to choose g1, g2 and g3 in such a way that w(f) = w(f + g1) =

22k−3 + 2k−2 and w(f + g2) = w(f + g3) = 22k−3− 2k−2 since f and f + gi’s are

all bent functions for i = 1, 2, 3. By using these functions, define the function

h in Fn+2 as

h(z) = h(y, x) =
3∑

i=0

χαi
(y)hi(x)

where z = (y, x) is in Vn+2 for y = (y1, y2) in V2 and x = (x1, x2, . . . , x2k−2) in

Vn. The function χαi
is the characteristic function of αi in V2 and the functions

hi’s are defined as h0(x) = f(x), h1(x) = (f + g1)(x), h2(x) = (f + g2)(x) and

h3(x) = (f + g3)(x). Thus, it is clear that the function h is the concatenation

of four bent functions each of which differs from another by a suitably chosen

affine function in Fn. By using the definitions of hi’s in the algebraic normal

form of h, one obtains that h is in fact equal to

h(z) = h(y, x) = f(x) + y2g1(x) + y1g2(x) + y1y2(g1(x) + g2(x) + g3(x))

where z = (y, x), y = (y1, y2) and x = (x1, x2, . . . , x2k−2).

The properties of this construction are as follows :

Theorem 7.2.2 The function h in Fn+2 defined as above is a balanced func-

tion with nonlinearity Nh ≥ 22k−1 − 2k satisfying strict avalanche criterion.
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Moreover, the degree of h is equal to the degree of the bent function f used

in the construction and the number of vectors in Vn+2 for which h satisfies

the propagation criterion is at least 22k−2 + 1. In other words, h satisfies the

propagation criterion with respect to at least 25% of all vectors in Vn+2.

Proof. Since h is the concatenation of hi’s for i = 0, 1, 2, 3, it follows that

w(h) =
3∑

i=0

w(hi). However, the functions g1, g2, g3 are chosen according to

f in such a way that w(h0) = w(h1) = 22k−3 + 2k−2 and w(h2) = w(h3) =

22k−3 − 2k−2 where h0, h1, h2 and h3 are defined as in the construction above.

Hence, w(f) = 22k−1 implying that h is balanced.

By using Lemma 7.1.3, the nonlinearity Nh of h satisfies Nh ≥ 22k−1 − 2k.

h satisfies the strict avalanche criterion since :

Let α = (u, t, v1, v2, . . . , v2k−2) be a vector in Vn+2 with w(α) = 1. There

are three cases :

(i) u = 1. Then, t = 0 and w(β) = 0 for β = (v1, v2, . . . , v2k−2) in

Vn. Now, hα(z) = g2(x) + y2(g1(x) + g2(x) + g3(x)). Equivalently, hα(z) =

y2g1(x) + (y2 + 1)g2(x) + y2g3(x). If y2 = 0, then hα(z) = g2(x) and if y2 = 1,

then hα(z) = g1(x)+g3(x). Hence, w(hα) = 2w(g2)+2w(g1 +g3) = 22k−1 since

g2 and g1 + g3 are nonconstant affine functions by the choices of g1, g2 and g3.

This gives that hα is balanced.

(ii) t = 1. Then, u = 0 and w(β) = 0. Now, hα(z) = (y1 + 1)g1(x) +

y1g2(x) + y1g3(x). If y1 = 0, then hα(z) = g1(x) and if y1 = 1, then hα(z) =

g2(x) + g3(x). Similar to part (i), one gets that w(hα) = 22k−1 giving that hα

is balanced.

(iii) u = 0, t = 0. Then, w(β) = 1. Now, hα(z) = h(y1, y2, x) = fβ(x) +

a1y2 + a2y1 + (a1 + a2 + a3)y1y2 where ai = gi(x) + gi(x + β) is a constant in

GF (2) since gi is an affine function for i = 1, 2, 3. As β 6= 0 and f is bent, fβ

is balanced. By Lemma 7.1.8, hα is balanced.

Thus, h satisfies the strict avalanche criterion.

As proved in Theorem 7.2.1 the degree of h is equal to the degree of f .

The proof showing that h satisfies the propagation criterion for at least
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22k−2 + 1 vectors in Vn+2 is similar to the proof done in detail in Theorem

7.2.1. 2

Remark 7.2.3 An important note is that by using bent functions which have

degrees 2, 3, . . . , k and Theorem 7.2.1, one can obtain new functions having

degrees 2, 3, . . . , k. Similarly, using bent functions with degrees 2, 3, . . . , k in

Theorem 7.2.2, one obtains functions with degrees 2, 3, . . . , k − 1. Recall that

a simple way to obtain bent functions with all possible degrees (2, 3, . . . , k) is

to use Theorem 6.1.15.

7.3 Constructing Highly Nonlinear Balanced Functions

With Good Propagation Characteristics

In this section, methods of constructing highly nonlinear balanced functions

with good propagation characteristics will be given. Recall from Theorem 6.1.5

that bent functions are the only class of functions in F2k to satisfy PC(2k).

However, bent functions are not balanced. Thus, if a function is to meet several

cryptological properties including balance, nonlinearity and the propagation

criterion, then it is clear that no function can satisfy most of these properties

completely. Thus, to construct highly nonlinear, balanced functions which do

not satisfy PC(n) but satisfy the propagation criterion for almost all vectors

in Vn is an important problem in cryptology.

Moreover, it will be shown in this section that there are some functions

which satisfy only PC(0) although they satisfy the propagation criterion for

almost all vectors in Vn. This is due to the fact that those functions sat-

isfy the propagation criterion for almost all vectors except for some vectors

α with weight one. However, recall from Theorem 3.4.2 that for any func-

tion f , the balance, the degree, the nonlinearity and the number of vectors

for which f satisfies the propagation criterion are invariant under nonsingular

affine transformations on the input coordinates. Hence, by a suitable affine

transformation, the vectors for which f does not satisfy the propagation crite-
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rion can be transformed into vectors with larger weights. This new obtained

function satisfies the propagation criterion of a higher degree having the same

degree, weight and nonlinearity with the starting function. This is the main

technique employed in this section. The two cases are considered separately :

(a) On V2k+1 :

Let n = 2k and f be a bent function in Fn. Define the function g in Fn+1

by using f as follows :

g(z) = g(y, x) = (y + 1)f(x) + yf̄(x)

= y + f(x1, x2, . . . , x2k)

where z = (y, x) is in Vn+1 for y in GF (2) and x = (x1, x2, . . . , x2k) in Vn.

In other words, g is the concatenation of f and f̄ . Rewriting the variables

{y, x1, x2, . . . , x2k} as {x1, x2, . . . , x2k+1}, g is in fact equal to

g(x1, x2, . . . , x2k+1) = x1 + f(x2, x3, . . . , x2k+1).

Theorem 7.3.1 The function g in Fn+1 defined as above is a balanced func-

tion with Ng ≥ 22k − 2k satisfying the propagation criterion with respect to

all nonzero vectors α in Vn+1 except for α = (1, 0, 0, . . . , 0). Furthermore,

by a linear transformation on the input coordinates, the function g?(x) =

g?(x1, x2, . . . , x2k+1) = g(xA) is a balanced function with nonlinearity Ng? ≥

22k − 2k and it satisfies the propagation criterion with respect to all nonzero

vectors α in Vn+1 except for α = (1, 1, . . . , 1). In other words, g? satisfies

PC(n).

Proof. It is easy to see that g is balanced and Ng ≥ 22k− 2k. Moreover, as in

the proof of Theorem 7.2.1, it can be shown that g satisfies the propagation cri-

terion with respect to all nonzero vectors α in Vn+1 except for α = (1, 1, . . . , 1).

Now, the last part of the theorem will be proved. Let β1, β2 be subsets of

Vn+1 such that β1 = {α, e2, . . . , e2k+1} and β1 = {e1, e2, . . . , e2k+1} where ei is

the vector in Vn+1 whose all coordinates are 0 except the i-th one. It is clear

that β1 and β2 are bases of Vn+1 over GF (2). From linear algebra, there exists
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a unique linear transformation θ : Vn+1 −→ Vn+1 such that θ(α) = e1 and

θ(ei) = ei for i = 2, 3, . . . , 2k + 1. This linear transformation can be written

as θ(x) = xA where A is nonsingular matrix of order n+ 1 given by

A =


1 1 · · · 1 1

0 1 · · · 0 0
...

...
...

...

0 0 · · · 0 1

 .

Now, consider the function g? in Fn+1 defined as

g?(x) = g?(x1, x2, . . . , x2k+1) = g(xA).

g? is also a balanced function with Ng? ≥ 22k − 2k. Explicitly, g? is equal to

g?(x1, x2, . . . , x2k+1) = g(x1, x1 + x2, . . . , x1 + x2k+1)

= x1 + f(x1 + x2, x1 + x3, . . . , x1 + x2k+1).

It is easy to see that g? satisfies the propagation criterion with respect to all

nonzero vectors α in Vn+1 except for α = (1, 1, . . . , 1). In other words, g?

satisfies PC(n). 2

(b) On V2k :

Let n = 2k − 2 and f be a bent function in Fn. The function g in Fn+2 is

defined as

g(z) = g(y, x) =
3∑

i=0

χαi
(y)fi(x)

where z = (y, x) is in Vn+2 for y = (y1, y2) in V2 and x = (x1, x2, . . . , x2k−2)

in Vn and χαi
is the characteristic function of αi in V2. The functions fi’s are

defined as f0 = f , f1 = f̄ , f2 = f̄ and f3 = f . Hence, g is the concatenation

of four bent functions. Rewriting the variables {y1, y2, x1, x2, . . . , x2k−2} as

{x1, x2, . . . , x2k} and simplifying the above summation, g is in fact equal to

g(x1, x2, . . . , x2k) = x1 + x2 + f(x3, x4, . . . , x2k).
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Theorem 7.3.2 The function g in Fn+2 defined as above is a balanced func-

tion with Ng ≥ 22k−1 − 2k satisfying the propagation criterion with respect to

all nonzero vectors α in Vn+2 except for α = (1, 0, 0, . . . , 0), β = (0, 1, . . . , 0)

and α+β = (1, 1, 0, . . . , 0). Furthermore, by a linear transformation on the in-

put coordinates, the function g?(x) = g?(x1, x2, . . . , x2k) = g(xA) is a balanced

function with nonlinearity Ng? ≥ 22k−1 − 2k and it satisfies the propagation

criterion of degree at most 4
3
k.

Proof. It is easy to see that g is balanced and Ng ≥ 22k−1 − 2k. The propa-

gation characteristics of g can be shown as in the proof of Theorem 7.2.1.

Let β1, β2 be two bases of Vn+2 such that β1 = {α1
?, α2

?, δ3, . . . , δ2k} and

β2 = {e1, e2, γ3, . . . , γ2k} where α1
?, α2

? are two nonzero, distinct (hence lin-

early independent) vectors in Vn+2, ei’s are as in Theorem 7.3.1 for i = 1, 2 and

δi, γi’s are arbitrary vectors which make β1, β2 bases of Vn+2 for i = 3, 4, . . . , 2k.

Let A denote the matrix of the linear transformation sending β1 to β2 in that

order. Then, the function g?(x) = g?(x1, x2, . . . , x2k) = g(xA) satisfies the

propagation criterion with respect to all but the vectors α1
?, α2

? and α1
? +α2

?.

Choosing α1
? and α2

? properly, it will be shown that g? satisfies the propaga-

tion criterion of degree at most 4
3
k.

Note that 2k can be written as 3t+ c where t is an integer and c = 0, 1 or

2. Let α1
? = (v1, v2, . . . , v3t+c) and α2

? = (u1, u2, . . . , u3t+c) where

vi =

 1 for i = 1, 2, . . . , 2t+ c1,

0 for i = 2t+ c1 + 1, 2t+ c1 + 2, . . . , 3t+ c.

and

ui =

 0 for i = 1, 2, . . . , t+ c1,

1 for i = t+ c1 + 1, t+ c1 + 2, . . . , 3t+ c.

for c1 =

 0 if c = 1,

c
2

otherwise.
and c2 =

 1 if c = 1,

c
2

otherwise.
.

Note that w(α1
?) = 2t+c1, w(α2

?) = 2t+c2 and w(α1
?+α2

?) = 2t+c. Since

α1
? has the minimum weight among α1

?, α2
? and α1

? + α2
?, for any nonzero
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α in Vn+2 with w(α) ≤ 2t + c1 − 1 it is clear that α 6= α1
?, α2

?, α1
? + α2

?.

Hence, g? satisfies the propagation criterion of degree 2t + c1 − 1. By using

the definition of c1, if c = 0 or 1, then g? satisfies the propagation criterion of

degree 2t− 1 and if c = 2, then g? satisfies the propagation criterion of degree

2t. 2

Remark 7.3.3 Note that the constructions in Theorems 7.2.1 and 7.3.1 dif-

fer only in the selection of the affine functions used. Theorem 7.2.1 uses a

nonconstant affine function while Theorem 7.3.1 uses the constant function 1.

This is also true for the constructions in Theorems 7.2.2 and 7.3.2.
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