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ABSTRACT

CRYPTOLOGICAL VIEWPOINT OF BOOLEAN FUNCTIONS

Sagdicoglu, Serhat
M. Sc., Department of Mathematics
Supervisor: Assoc. Prof. Dr. Ali Doganaksoy

September 2003, 99 pages

Boolean functions are the main building blocks of most cipher systems.
Various aspects of their cryptological characteristics are examined and inves-
tigated by many researchers from different fields. This thesis has no claim to
obtain original results but consists in an attempt at giving a unified survey of
the main results of the subject. In this thesis, the theory of boolean functions
is presented in details, emphasizing some important cryptological properties
such as balance, nonlinearity, strict avalanche criterion and propagation crite-
rion. After presenting many results about these criteria with detailed proofs,
two upper bounds and two lower bounds on the nonlinearity of a boolean
function due to Zhang and Zheng are proved. Because of their importance in
the theory of boolean functions, construction of Sylvester-Hadamard matrices
are shown and most of their properties used in cryptography are proved. The
Walsh transform is investigated in detail by proving many properties. By us-
ing a property of Sylvester-Hadamard matrices, the fast Walsh transform is
presented and its application in finding the nonlinearity of a boolean function
is demonstrated. One of the most important classes of boolean functions, so
called bent functions, are presented with many properties and by giving sev-
eral examples, from the paper of Rothaus. By using bent functions, relations

between balance, nonlinearity and propagation criterion are presented and it
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is shown that not all these criteria can be simultaneously satisfied completely.
For this reason, several constructions of functions optimizing these criteria

which are due to Seberry, Zhang and Zheng are presented.

Keywords: Cryptography, Boolean functions, Hadamard matrices, Sylvester-
Hadamard matrices, Nonlinearity, Strict avalanche criterion, Propagation cri-

terion, Walsh transform, Fast Walsh transform, Bent function.
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0z

KRIPTOLOJIK BAKIS ACISIYLA BOOLE FONKSIYONLARI

Sagdicoglu, Serhat
Yiiksek Lisans, Matematik Bolimi

Tez Yoneticisi: Assoc. Prof. Dr. Ali Doganaksoy

Eylil 2003, 99 sayfa

Boole fonksiyonlar1 bir ¢ok sgifre sisteminin ana yapi1 tagidir. Bunlarin
muhtelif kriptolojik karakteristikleri farkli alanlardan bir ¢cok aragtirmaci tara-
findan ele alinmig ve incelenmistir. Bu tez hi¢ bir 0zgiin sonug¢ elde etme
iddiasinda bulunmamakta, sadece konunun ana sonuclarinin bitiinlesik bir
miitalaasini vermeye tesebbiis etmektedir. Bu tezde Boole fonksiyonlarinin
teorisi dengelilik, dogrusal olmama, tam c¢ig ol¢iitii ve yayilma olclitii gibi
bazi onemli kriptolojik oOzellikler vurgulanarak detaylari ile sunulmaktadir.
Bu olgiitler hakkindaki bir¢ok sonucu detayli ispatlar ile sunduktan sonra
bir Boole fonksiyonunun dogrusal olmamasi iizerinde Zhang ve Zheng'e ait
iki tist smir ve iki alt smir ispatlanmistir. Boole fonksiyonlar teorisindeki
onemlerinden dolay1, Sylvester-Hadamard matrislerinin ingaasi gosterilmis ve
kriptografide kullanilan bircok ozellikleri ispatlanmigtir. Walsh doniigiimii
bircok ozellikleri ispatlanarak detaylar: ile incelenmistir. Sylvester-Hadamard
matrislerinin bir ozelligini kullanarak hizli Walsh doniigimii sunulmus ve bir
Boole fonksiyonunun dogrusal olmama degerinin bulunmasindaki uygulamasi
gosterilmigtir. Biikiik (bent) fonksiyonlar olarak amlan Boole fonksiyonlarinin
en onemli simiflarindan birisi Rothaus’un makalesinden birgok ozellikler ve
gesitli ornekler vererek sunulmustur. Biikiik fonksiyonlar1 kullanarak den-

gelilik, dogrusal olmama ve yayilma oOlgiitii arasindaki iligkiler sunulmus ve



bu kriterlerin hepsinin ayni zamanda tamamen saglanamayacagi gosterilmistir.
Bu nedenden dolayi, Seberry, Zhang ve Zheng’e ait olan ve bu kriterleri opti-

mize eden bir¢ok fonksiyon ingaasi sunulmustur.
Anahtar Kelimeler: Kriptografi, Boole fonksiyonlari, Hadamard matrisleri,
Sylvester-Hadamard matrisleri, Dogrusal olmama, Tam cig olciitii, Yayilma

olctitii, Walsh dontisiimi, Hizli Walsh dontigiimii, Biikiik fonksiyon.
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CHAPTER 1

INTRODUCTION

The concepts completeness and the avalanche effect were first introduced by
Kam and Davida [20] and Feistel [16]. Completeness means that each cipher-
text bit depends on all bits of the plaintext. This means that if each cipher-
text bit were written as a boolean function of each of the plaintext bits, then
this function would contain all the plaintext bits, if the system is complete.
Avalanche effect means that an average of one half of the output bits should
change whenever a single bit of the plaintext is complemented. The concepts
of completeness and avalanche effect are combined to define a new property
called strict avalanche criterion [55]. Strict avalanche criterion means that
each ciphertext bit should change with a probability of one half whenever a
single input bit is complemented. As seen from the definitions of completeness,
avalanche effect and strict avalanche criterion, they are all milestone concepts
to define the theory of any cryptological function, in particular the block ci-
phers. These three concepts were defined to investigate block ciphers, not
the S-boxes or small functions appearing in a block cipher. However, as seen
from the definitions, the applicability of these statements is infeasible even for
very small functions. These definitions and many successors were later defined
for boolean functions. Instead of seeking for necessary properties for design-
ing block ciphers and trying to overcome intractable amount of computations
whether those properties are satisfied or not, the properties and theory are
developed on core components of block ciphers, namely boolean functions and
S-boxes. Then, “cryptologically strong” core functions are either looked for by

exhaustive search or constructed theoretically by using this theory. Finally,



they are combined suitably to design strong block ciphers. One other advan-
tage of this approach besides getting rid of infeasible calculations is that an
important theory of boolean functions related to cryptology is obtained which
is developed by mathematicians, engineers and statisticians.

After having presented some basic definitions and the situation of boolean
functions in the theory, the contents of this thesis is as follows :

In Chapter 2, the theory of boolean functions with various definitions are
constructed. Many well-known facts are also proved in detail for complete-
ness. The definition of nonlinearity and cryptologically important properties
of Hadamard matrices and Sylvester-Hadamard matrices are presented. The
difference function of a boolean function f corresponding to a vector « is pre-
sented with its properties. The autocorrelation of f with a shift « is presented
and finally a special form of the Wiener-Khintchine theorem is presented.

In Chapter 3, two upper and two lower bounds on the nonlinearity of a
boolean function is presented. Moreover, for any boolean function, the non-
linearity, balance, linearity dimension and the number of vectors for which the
propagation criterion is satisfied are shown to be invariant under nonsingular
affine transformations on the input coordinates.

In Chapter 4, the Walsh transform of a boolean function and the Walsh
transform of the sign function of a boolean function are presented with their
relations to each other. The properties of the Walsh transform of the sign
function of a boolean function are listed. The fast Walsh transform is given
with a demonstrating example.

In Chapter 5, the definitions of strict avalanche criterion and propagation
criterion of degree k are presented. Lower bounds on the number of functions
satisfying strict avalanche criterion and asymptotics for S(n,1) and S(n,2)
are given where S(n, k) denotes the number of functions for which the output
changes with probability exactly one half if any of the input variables xy, z2
,..., Tk among x = (xy1, T, ...,T,) is complemented. An example of an unbal-
anced SAC fulfilling function is given and a method to construct SAC fulfilling

functions is given.



In Chapter 6, bent functions are presented. The fact that they have the
largest nonlinearity among all boolean functions is proved. An upper bound
on the degree of a bent function is proved. The fact that they satisfy the
propagation criterion for any nonzero vector is emphasized. Finally, some
known classes of bent functions including Maiorana-McFarland construction
and the relation of bent functions with difference sets are mentioned.

In Chapter 7, construction of highly nonlinear balanced functions, con-
struction of highly nonlinear balanced functions satisfying SAC and finally
construction of highly nonlinear balanced functions having good propagation
characteristics are presented with several examples. Most of these construc-
tions use bent functions by concatenating, splitting or modifying the sequence

of bent functions.



CHAPTER 2

PRELIMINARIES

2.1 Boolean Functions and (0,1)-Sequences

Let V,, be the set of all n-tuples of elements of the field GF(2), endowed with
the natural vector space structure over GF(2).

V,, possesses a natural ordering known as the lexicographic ordering defined
as follows :

For o = (a1, as,...,a,), 8= (b1,be,...,b,) in V,, set a < 3 if there exists
k, 1 < k < n such that a; = by, as = b, ..., a1 = bp_1; a = 0 and
b, = 1. It follows that we can list all elements of V,, as ag, aq,...,qon_1 SO
that ap < o < ... < agn_1.

An element oy = (ay,as,...,a,) in V, can be represented by the integer

n
Zai‘Q”_i, where 0 < k£ < 2" — 1. With this representation of V,,, it can
i=1
be shown that a4 corresponds to the integer k and the ordering defined above
coincides with the natural ordering of integers. Thus, there is a correspondence

between V,, and Zyn via

e v, s T (2.1)

-1 —2
r=(21,Tay...,2,) 012" 22"+ F oy,

where Zyn is the ring of integers modulo 2.

The Hamming distance between two vectors in V), is defined to be the
number of unequal (corresponding) components. It follows that the Hamming
distance d(a, 3), for a, B in V,,, is the number of nonzero components of a + (3.

The Hamming weight w(«) of a vector « in V,, is the Hamming distance of «
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to the zero vector. In other words, w(a) is the number of nonzero components
of a. From now on, “the distance” and “the weight” will be used instead of
“the Hamming distance” and “the Hamming weight”, respectively.

A GF(2)-valued function on V,, is referred to as a boolean function. Unless
otherwise stated explicitly, by a function, we shall mean a boolean function.
The set of all boolean functions will be denoted by F,.

F. is a vector space over the field GF(2) where the addition of two vectors
in F,, and the multiplication of a vector in F,, with a scalar in GF'(2) is defined
as follows :

for all f,g in F,, zin V,, and ¢ in GF(2)

(f+9) (2) = [f(z)+g(x), (2.2)
(- f) (z) =c-flx). (2.3)

For a function f, the ordered 2"-tuple

Tf = (f(a0)7 f(al)v SR f(OJQ"fl))

is called the truth table of f. It is clear that any function f can be uniquely
described by its truth table T%.

So far, we have seen some definitions and properties of V,,. Now, we will
see analogies of some definitions made for elements of V,, with elements of F,,.
Recall how the distance d(«, ) of two vectors a, 5 in V,, and the weight w(«)
of a vector « in V,, were made.

For any function f, the weight of f is the weight of its truth table 7 in
V.. Namely, it is the number of vectors « in V}, such that f(«a) = 1.

The distance between two functions f,g in F, is the distance between
their truth tables Ty and T, in V,. It is denoted by d(f,g). It follows that
d(f,g9) = {x € V,|f(x) # g(x)}|. Note that, as w(f + ¢) is the number of
unequal (corresponding) components of Ty and Ty, we have d(f, g) = w(f +g).

A (0,1)-sequence o = (ay, as, ..., a,) is called 0,1 balanced or simply bal-
anced if it has an equal number of 0’s and 1’s. Similarly, a function f in F,

is balanced if w(f) = 2"~!. Note that a function f is balanced if and only if

bt



w(f) = w(f+1) where 1 denotes the all-one constant function in F,,. Namely,
it is the function having the property w(f) = 2".

For a function f the support of f, denoted by Supp(f), is defined as
Supp(f) = {z € V,|f(z) = 1}. Note that |Supp(f)| = w(f). Now, consider

two functions f, g. Then,

Supp(f +g) = {z e Vil(f +9)(x) =1}

{z e Valf(z) =1,9(x) = 0} U{z € Vi|f(2) = 0,9(z) = 1}
= [Supp(f) N (Vi \ Supp(9))] U [Supp(g) 0 (Vi \ Supp(f))]

= (Supp(f) \ Supp(g)) U (Supp(g) \ Supp(f))

Supp(f) & Supp(g) (2.4)

where A\ B denotes the difference and A/ B denotes the symmetric difference
of the sets A and B.

Let F be a finite field. f is a polynomial in the indeterminates x1, xs, ..., 2,
over the field F', denoted by f € F[xy,xs,...,2,]|, means that f is a formal
sum of the form

Z c; . ay . aln = Z cz bd (2.5)

i=(i1,i2,...,in) ENT ieNn

where ¢; € F' and all but finite ¢;’s are equal to Op. By N and N we mean the
set of nonnegative integers and n copies of the set N, respectively.

Given a polynomial f € Flxy, o, ..., x,] of the form (2.5), any X7 is called
a term of f if ¢; # Op. ¢; is called the coefficient of the corresponding term.
For any term X i = a:’fw? ...xi of f, the degree of this term is the number of
nonzero k’s where i, # 0 for 1 < k < n. In other words, it is the number of
indeterminates (variables) appearing in that term. The degree of f denoted
by deg(f) is the degree of the highest degree term appearing in f. The degree
of a variable z; in f, denoted by deg(f, x;), is the degree of the highest degree
term among all terms in which z; appears. Note that the degree of f and the
degree of any variable x; in f can take values from 0 to n.

i o

For any term X = itz of f, the power of a variable zy in this

term, denoted by pow(X ;, xy), is the nonnegative integer i where 1 < k < n.
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Similarly, the power of any variable z; in f, denoted by pow(f,xy), is the
largest integer among all pow(X Z, xy)’s where i runs through all vectors in N”

for which ¢; # Op.

For any f = E c:.xiay . ..x € Flry, xo,..., 2, and any a = (a1, as, . ..
iENm
,a,) € F™ we write f(«) for the element E cz . at'ay ...a,;» of F. This cor-
ieNn

respondence o — f(a) defines a function on F™ which is determined by the
polynomial f. It is called the polynomial function on F™ determined by the
polynomial f.

Now, we claim that for any function f : V,, — GF(2), there exists a
polynomial f € GF(2)[z1,2a,...,x,] such that f(a) = f(a) for all o in V.
This claim can easily be seen to be true if one can show this result for the
functions x, in JF,, which attains the value 1 at exactly one point a in V,,. In
other words,

1 if g=a,
0 if B#a.

Xa is called the characteristic function of o in V,.

Xa(6> =

It is clear that we can express any function f as a linear combination of

these functions :

f=2 fl@)Xa- (2.6)

acV,
Let o = (a1, as, ..., a,) be in V,. Consider x,, the following polynomial in
GF(Q)[IMZE% s 7‘rn} :
X(al,ag,.,.,an)(xla T, ... ,$n> = H(xz +a; + ]-) (27)

i=1

Clearly, X(ay,as,...an)(01,02,...,b0,) = 1 if and only if a; = b; for all i =
1,2,...n. In other words, Xo(f) = Xxa(B) for all §in V,,. Thus, X(a; as,....an)
can be represented by the polynomial X (4, a,,..4,). Note that any variable z;
has power at most one in y, for allv=1,2,....,n and for all a € V,.

By straightforward computation, we obtain that f is represented by the

7



polynomial f , which is equal to

n

flazr, @, ) = > fla) [+ ai+1) (2.8)

a=(a1,a2,...,an) €V, i=1

- Y @) M@+ [Te 9
a=(a1,a2,...,an)EVn BCI i¢B ieB

= 2| 2 f@ ]+ 1)) I E (2.10)
BCI \a€V, i¢B i€eB

= > | > fo|]]= (2.11)

Bl | g eV, i€B
Supp(a)CB
= Z cg . alabr . b (2.12)

ﬁ:(b1:b2 77777 bn)evn

= ) X7, (2.13)

BEVR

f is a polynomial in which each variable appears with power at most one. Now,
a few remarks and explanations will certainly clarify the above expressions

greatly.

First of all let us explain the notations and definitions used above. By
I, we mean the set [ = {1,2,...,n}. For any a = (a1, as,...,a,) in V, the
support of «, denoted by Supp(«), is defined to be the set of i’s where a; # 0.
Namely Supp(a) = { i | a; # 0}. It is clear that the function Supp : V,, — I

defined as above is a bijection.

Turning back to the equations above, note that (2.8) follows directly from
(2.6) and (2.7). (2.9) follows from the observation that for any subset B of

I, the coefficient of 1_[:6Z in H(xl +a; +1)is H(ai +1). (2.10) is just the
i€B i=1 i¢B
reordering of (2.9). (2.11) follows from (2.10) by the following :

In (2.10), H(ai + 1) is zero if and only if a; = 1 for some ¢ € I \ B. In
i¢B

other words, H(ai + 1) = 1 if and only if Supp(a) N (I'\ B) = 0 if and only
i¢B

if Supp(a) C B. (2.12) follows from (2.11) easily by using the correspondence

8



between a subset B of I and an element ( of V,, via

where b; = 1 if and only if 7 € B. Note that this function is in fact the inverse
of Supp : V,, — I. Finally, (2.13) trivially follows from (2.12) by using (2.5).

Thus, it is proved that for any f : V,, — GF(2), there exists a polynomial
f € GF(2)[x1,29,...,2,] such that f(a) = f(a) for any « in V, and each

variable appears with power at most one in f.

Lemma 2.1.1 Let f € GF(2)[xy, 2, ...,x,] be a polynomial which vanishes
for all o in 'V, and each variable appears with power at most one in f Then,

f is the zero function. Namely, if f(X) = Z Cco X%, then all c,’s are zero

acV,
for all o in V.

Proof. We have,

le,xg,...,xn = N A L
1 %2 n

a:(b17b2 ----- bn)evn

Since each variable appears with power at most one in f , it can be written as

fxr, 20, 0) = @nfi(xy,@e, . Tay) + fol@r, o, ) (2.14)
where f, and f, are functions in F,_;. The proof will be made by induction
on n.

For n = 1, the lemma clearly holds. Suppose that the lemma is true for
n — 1, that is, for any polynomial f € GF(2)[x1,Zs, ..., 2n_1] which vanishes
for all & in V,,_; and in which each variable appears with power at most one,

f is the zero function, namely if f(X) = Z Co X, then all ¢,’s are zero
a€Vy_1
for all o in V,,_.

Let f be a polynomial in GF(2)[x1, s, . . . , 2] which satisfies all hypotheses
in the lemma. Using (2.14), we get that f(xl,a:Q,...,xn_l,xn) = 0 for all

9



(x1,29,...,2,_1) in V,_; and for all z,, in GF(2). It follows that

f(x1, 29, 2p_1,0) =0 and f(x1,29,...,25_1,1) =0 (2.15)
for all (z1,z9,...,2,_1) in V,,_1.

Using (2.14) with both equations in (2.15), we get that f;(X) = 0 and
fQ(X ) = 0 for all X in V,,_;. By induction hypothesis, all coefficients of fi
and f, are zero implying that all coefficients of f are zero, which we wanted

to prove. O

Lemma 2.1.1 is in fact equivalent to the following fact :

Let f be a function in F,, having two representations fl, fg in GF(2)[z1, za,
..., x,] such that each variable appears with power at most one in f; for
1 =1,2. Then, fl = fg.

This gives the following theorem :

Theorem 2.1.2 Any function f in F, can be uniquely represented by a mul-
twariate polynomial f in GF(2)[x1, &s, . .., 2] in which each variable appears

with power at most one.

Note that the assumption that each variable appears with power at most
one in the representing polynomial function is crucial for the uniqueness of the
representation. If this assumption is not satisfied, then the representation of
a function f is not unique.

Given a function f, the function

fX) = > caX® (2.16)

OéGVn

= Z Co - TP T o (2.17)

a=(a1,a2,...,an)EVy

is called the algebraic normal form of f. By a simple rearrangement, f can be

written as

f(X) =ag+ (Z aﬂi) + ( Z aij%%) + -t a2 0 T1T2 ... Xy

i=1 1<i<j<n

10



where the coefficients ag, a;, a;j, ..., a12.., are all in GF(2). Recall the def-
inition of the degree of a variable x; in f, denoted by deg(f,z;), for any i
satisfying 1 < ¢ < n. If deg(f,x;) = 1, then f is said to depend on z; lin-
early and such a term of length one is called a linear term. Analogously, if
deg(f,z;) > 1, then f is said to depend on x; nonlinearly and such a term is
called a nonlinear term.

Now, we give an example of obtaining the algebraic normal form of a func-

tion when its truth table is given.
Example 2.1.1
Let f: V4 — GF(2) be the function given by
Ty =(0,1,1,1,0,1,0,1,0,0,1,0,0,0,1,1).

Using (2.11), we have :

f(x1, 29,23, 24) = (f(an)) +(f(a0) + flag))- 21 +(f(w) + flaa)). 72
+(f(ao) + flag)).zs +(f(ao) + flau)). 24
+(f(w) + flou) + flas) + flaa2)). z122
+(f () + floo) + flas) + f(ouo)). z123
+(f(ao) + flan) + flag) + f(ag)). z124
+(f(ao) + flag) + flau) + flae)). w223
+(f(ao) + flar) + flaa) + flas)). waz4
+(f(ao) + flar) + flaz) + flaz)). w324

+ Zf(o%)) . T1T223 + Z(f(om) + f(Oé4i+1))> . T1ToTy

+ Z(f(@&') + flagit1) + fasiy2) + f(a8i+3))> . X1T3%4

+ Zf(o@) . ToT3Ty + (Z f(ozi)> . X1ToT3Ty .

Thus, we find the algebraic normal form of f which is equal to

f(z1, 0, 23, 4) = T3 + T4 + 174 + ToT3 + T3T4 + T1T2T3 + ToT3T4.

11



Note that if B = {), then all « in V;, satisfying Supp(«) C B in (2.11) is «p
only. Similarly, if B = {1, 2,3}, then this set is equal to { aw; |7 =0,1,...,7}.

Remark 2.1.3 From now on, we will make no distinction between the boolean

function f and its algebraic normal form f. Both of them we will be denoted

by f.

Recall that any function f can be uniquely represented by its truth table

Ty which is a 2"-bit sequence. In other words, the function

=: F, — Van (2.18)

f »—>Tf

is an isomorphism between the vector spaces F,, and Van. It follows that
| Fu| = 22",
Recall that a balanced function f is a function with weight 2"~!. We denote

the set of all balanced functions in F,, by B,. By a simple counting argument

’Bn’ =
2n—1

Now, we will mention an important relationship between GF(2"), the Ga-
lois field of order 2™ and V/,.

It is well-known that GF(2") is a vector space over GF'(2) for all positive
integers n. Let 0 = {ng,m,...,Mm—1} be a basis of GF(2") over GF(2) and let

x = (x1,22,...,2,) be in V,,. The following function
o v, — GF(2Y) (2.19)
x=(21,Ta,...,&,) — T1.00+ To + 0+ Ty M

is an isomorphism when both V,, and GF'(2") are regarded as vector spaces
over GF(2). Let 0% = {8y,01,...,0,_1} be the dual basis of . That is, ¢ is a
basis for GF(2") over GF(2) and 6, #% have the following property :

1 if =7,

Trareny/are)(m:05) =
0 if i+
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where Trapany jar@ (r) = Tr(z) = o+a?+- - +2?" " is the trace function from
GF(2") to GF(2). Using the trace function and %, one can easily compute
the coordinates of x in GF(2") with respect to the basis 6 by [24] :

r = (21,22,...,2,) = (Tr(dp.x), Tr(d1.x),...,Tr(0n_1.7)) . (2.20)

Two cryptographically weak but important classes of functions, linear and
affine functions, are commonly defined as follows :

A function f is called linear if

flz+y) = flz)+f(y) (2.21)
fle-z) =c- f(x) (2.22)
for any x,y in V,, and for any ¢ in GF'(2). It is clear that any function f having
f(ap) = 0 satisfies (2.22). In other words, f(ag) = 0 for any linear function

f- We denote the set of all linear functions in F,, by £,. If f and g are both

linear functions, then f + g is also a linear function since

(f+g)z+y)=flx+y) +gxz+y)=(f+g)(x)+(f+9)(y)

for any z,y in V.
It follows that £, is a vector space over GF'(2).

Consider the set of all functions in F,, of the form
flxy, zoy. . 2p) = @171 + G920 + + -+ + ap.Ty, (2.23)

where a;’s are in GF(2) fori = 1,2,...,n. It is clear that f is a linear function.
Consider the standard ordered bases € = {ey, e, ..., e,} for V,, over GF(2) and
k = {1} for GF(2) over GF(2). In fact, f is represented by the 1 x n matrix
A = [ay,as,...,a,] relative to the bases € and k.

Conversely, every linear function is of this form for some aq,as, ..., a, in
GF(2). This follows easily from the following :

Let f be a linear function. Then,

f(x) = f(x1,22,...,0,) = f(xr.e1+ 2260+ -+ Tp.€p)
= fler).x1 + flez).wa+ -+ flen).2n

= a1.Z1+ a2.T9 + -+ ap.Ty

13



where a; = f(e;) fori =1,2,... n.
Recall that £, is a vector space over GF'(2). The dimension of this space

is given by the following :

Theorem 2.1.4 (/19]) The set of all linear functions is an n-dimensional

vector space over GF(2).

Proof. It is clear that the dimension of V,, over GF(2) is n and the dimen-
sion of GF'(2) over GF(2) is 1. By linear algebra, the dimension of all linear
functions from V,, to GF(2), namely the dual space of V,,, denoted by V,,*, has

dimension n.1 =n. O

By the above theorem or using the algebraic normal form of a linear func-
tion, one obtains that |£,| = 2".
Given a vector a = (ay,as,...,a,) in V,. We denote a linear function of

the form in (2.23) by f,. Thus, the set of all linear functions is equal to

L,={falaeV,}

Let o = (ay,a9,...,a,), B = (b1,bs,...,b,) be in V,,. The standard inner

product (.,.) is defined on V,, as follows :
i=1

where the addition and multiplication in (2.24) are the corresponding field
operations in GF(2).
It is well-known that for any ordered basis u = {¢1, ¢, ..., ¢, } for V,, over

GF(2), the standard inner product is completely determined by the values

a;; = (¢j,¢) for any c¢j,¢; in p. For example, if a; = E u;.c; and ay =

n
E V;.Cq, then
=1

J=1

n n
(o, a9) = (Z u;.c;, Z V;.Ci)
j=1 i=1

14



n n

= E u]‘E vi(cj, )
j=1 =1
n

= E Vi Q5. Uy

ij=1

= Y;A.U (2.25)

where A = (a;;) is the matrix with a;; = (¢;,¢;) fori,j =1,2,...,nand V, U

are the coordinate matrices of a; and ay in the ordered basis u, respectively
[19].

Let a, # bein V,,. Consider the standard inner product on V,,. We say that

a and [ are orthogonal if (o, 3) = 0. Any subset W of V,, is an orthogonal set

provided that all pairs of distinct vectors in W are orthogonal.

Theorem 2.1.5 ([19]) For any linear function f, there exists a unique vector

a in 'V, such that f(5) = (a, ) for all § in V,.

Proof. Let € = {ej,ea,...,e,} denote the standard ordered basis for V,, over

GF(2). We know that any linear function f is of the form
f(ﬂ:) = f(xlu T, ... 7xn) = a1.7y + 9.7 + e+ Qp . Ty

for some fixed @;’s in GF(2) for i = 1,2,...,n. Clearly, f(z) = (a,x) where
o = (ah ag, . .. 7an) = <f<61>7 f(€2), ceey f(en>>

For the uniqueness part, suppose that there exists o in V,, which satisfies
(o, B) = (o, B) for all 5in V,,. Then, (a+ o, 3) = 0 for all § in V,,. This means
that (a + o,e;) =0 for all i = 1,2,...,n. This is equivalent to saying that all

components of « + ¢ are zero giving that o0 = o. O

It becomes more clear why the set of all linear functions are denoted by

L, ={ fa|a€V,}. By the above result, we can also represent L, by
L,={{a,x) | o,z €V, and x = (z1,22,...,2,)} . (2.26)
A function f is said to be an affine function if it is of the form
flz) = f(x1,29,...,2,) = ag + a1.x1 + 9.2 + -+ - + ap. T, (2.27)
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for ag,as,...,a, in GF(2).

The class of affine functions is denoted by A,,. Clearly if ay = 0, then f is
a linear function. In other words, £,, is properly contained in A,,. Note that
for any affine function f, either f(x+y) = f(z) + f(y) holds for all z,y in V,,
or never holds for any z,y in V,,. The first case happens for affine functions
which are in £,,, whereas the latter holds for functions in A, \ £,,.

For any function f, the function denoted by f is given by f(x) = (f+1)(z)
where 1 denotes the all-one constant function 1 : V,, — GF(2). f is called
as the complement function, simply the complement of f. In other words,
f(z) = f(x) +1for any f and for any x in V,,. So, if T} is the truth table of f,
then T%, the truth table of f, is obtained from T} by simply writing 0 instead
of 1 and 1 instead of 0. For any a = (a1, as,...,a,) in V,, the complement of
« denoted by @, is similarly defined to be & = (ay, as, . . ., a,) where @; = a;+1
for i =1,2,...,n. With this identification, one gets that TF = Ty.

Note also that Supp(f) = V,,\Supp(f) which implies that w(f) = 2" —w(f).
It follows that f is balanced if and only if f is balanced. Similarly, d(f,g) =
2~ d(f,g).

A well-known fact about affine functions is the following which we prove

by using algebra :

Lemma 2.1.6 For every nonconstant affine function f, w(f) = 2""1. Hence,

any nonconstant affine function is balanced.

Proof. Let f be a nonconstant linear function. The kernel of f, defined as
Ker(f)={x €V, | f(x) =0} is a subspace of V,,. As'V,,/Ker(f) ~ GF(2),
one gets that Ker(f) ~ V,_;. In other words, |Ker(f)| = |V;_1| = 2""!. This
implies that |Supp(f)| = 2" giving that f is balanced.

If f is a nonconstant affine function which is not linear, then f is the com-
plement of some linear function. That is, f(z) = f.(z) = fa(z) + 1 for some
nonzero « in V,. Since w(f) = 2" — w(f,) and as f, is linear, one gets that f

is balanced. O
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2.2 (1,-1)-Sequences

Recall the definition of the truth table T of a function f. In this section, an
important structure of f which is related to both the function f and its truth
table T will be investigated.

For any function f, consider the real-valued function f which is defined on

V., as follows :

foy={ MW
-1 if f(2)

It is easy to see that the function f : 'V, — R can be expressed as

0,
L.

f(z) = (1) =1 -2f(x)
for all x in V,,.

The truth table of the function f is called as the sequence of f and denoted
by (s [44]. In other words,

(= Tp = (1), (=1)/r), (=)o),

If we denote the i-th component in 7y and (s by Ty[i] and (f[i], respectively,
then T and (; are related to each other by the obvious relation (—1)%! = (;]i]
foralli =0,1,...,2"—1. Hence, the weight w(f) of f and the distance d(f, g)
of two functions f, g can also be stated in terms of their sequences as follows :

The weight w(f) of a function f is the number of -1’s in (; and the distance
between two functions f, g is the distance between their sequences (; and
¢y, where the distance between two (1,—1)-sequences is defined to be the
number of unequal (corresponding) components. A function f is balanced if
its sequence (; has an equal number of 1’s and -1’s.

For any two functions f,g, it is easy to see that (f/—i—\g)(x) = f(x).9(x)
for all z in V,, [11]. Thus, the sequence of the function f + ¢ is the product
of ¢y and ¢, where this product is the componentwise multiplication of real
numbers. If this operation is denoted by *, then (y;4 = (s * (, [44]. Similarly,

for any function f, the sequence of the complement of f satisfies the relation
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Cf = —(y [44] where the multiplication of (; by a real number c is defined to
be the multiplication of all its components by c.

For any function f its sequence (y is a (1, —1)-sequence of length 2". We
denote the set of all (1, —1)-sequences of length 2" by V*". Tt is well-known
that the set of all real vectors of length 27, denoted by R?" is a vector space
with the addition of two vectors being the real addition of components and the
scalar multiplication being the multiplication of components with the elements
of R. Also, it is clear that V2" is contained in R?" but it is not a subspace.

Given two functions f, g, their inner product in R?" is defined to be [11] :

(F.9) = Y fle) glan) 2:25)

where the addition and multiplication are the usual operations in R. It is clear

that we can write the above equation as

2n—1

(G God = 2 Gl Gl (2.29)

Note that the norm of any function f induced by this inner product is
constant. Namely, || f]| = m =22 [11].

An important fact about the set { (y, | @ € V,,}, where (;, is the sequence
of the linear function f,(x) = (a, ), is that this set forms an orthogonal basis
for R?" over R with respect to the inner product defined in (2.28) [11]. The
fact that this set is a basis can be simply seen by noting that the dimension of
R?" over R and the cardinality of this set are both 2" and this set is a linearly
independent set. The orthogonality follows from this observation :

Let «, B be vectors in V,,. Then,

<<fa7 Cfﬁ> = Z (—1)<0‘+B’I>

zeV,
2 it a=5,
o if azgs
= 2"0(a+p) (2.30)

where 6(u) is the Kronecker delta function which is equal to one if u is equal

to the zero vector and zero otherwise.
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Thus, for any function f, its associated real-valued function f can be writ-
ten in terms of the associated real-valued functions to the set of linear func-

tions. In other words,

f@) =" ca-folx) (2.31)

a€Vy

where ¢, ’s are the corresponding real coefficients to fa’s, namely to the orthog-
onal basis of R?" over R. In Chapter 4, it will be seen that the coefficients ¢, ’s
can easily be determined by an important function, called Walsh transform.
The following is a simple but important lemma which will be frequently
used in the coming chapters since it relates the distance between two functions

to their sequences.

Lemma 2.2.1 ([44]) Let f,g be functions with sequences (s, (,, respectively.
Then, d<f7 g) =" — %<Cf> Cg>

Proof. We have

(Cri ) = Z(_1)(f+g)(z)

eV,
= 2 2u(f +9)

Since w(f + g) = d(f, g), the result follows. O

2.3 Nonlinearity

Let ¢g, ©1,...,pam+1_1 denote all affine functions so that the first half con-

sists of linear functions ordered according to the relation ¢; = f,, for all 7 =

0,1,...,2" —1 and the second half consists of the (respective) complements of

the functions in the first half. Thus, ¢; = f,, foralli =2",2"+1,..., 2" 1.
The nonlinearity of a function f is defined as [29] :

Ny = min d(f, vi). (2.32)

i=0,1,...,2n+1—1
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In other words, the nonlinearity of a function is the distance between the
function and the set A,. High nonlinearity is a crucial criterion for a good
cryptographic design since it assures resistance against linear cryptanalysis
introduced by Matsui [27]. The concept of nonlinearity was introduced by
Pieprzyk and Finkelstein [36].

Note that if f is an affine function, then f = ¢;, for some 0 < i;, < 2" —1.
In other words, d(f, ;) = 0 which implies that Ny = 0. If f is not an affine
function, then Ny > 0 as d(f,¢;) > 0 for all 4 = 0,1,...,2""" — 1. Hence,
Ny =0 if and only if f is an affine function.

Thus, the nonlinearity criterion simply divides all functions as affine func-
tions and nonaffine functions. By abuse of terminology, the first set is some-
times called as linear functions (affine functions) whereas the second set is
called as nonlinear functions (nonaffine functions).

Introducing a new method of cryptanalysis of a specific cryptographic de-
sign commonly leads to a new design criterion for the similar cryptographic
designs. Linear cryptanalysis and nonlinearity is an example to this situa-
tion. Nonlinearity measures the quality of a function via its distance to affine
functions. In other words, it measures how well a function under consideration
may be linearly approximated. Linear cryptanalysis tries to find the best linear
approximation, called “effective” linear expression of an algorithm, by finding
good approximations to the nonlinear part of the algorithm and extends these
approximations to the round function.

In general, exploring the theoretical facts about a cryptological criterion is
not enough to understand why a particular design should or should not sat-
isfy it. It is extremely important to work on concrete examples and to apply
cryptanalysis methods to systems which are weak in satisfying that criterion.
Although two cryptanalysis methods applied to two different designs may seem
totally different, they may be based exactly on the same idea and depend on
the same kind of pathology occurring in both designs. Similar to cryptanalysis
methods, this may happen for cryptographic criteria also. Two cryptographic

criteria may seem totally different, although they may be imposing crypto-
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graphically equivalent conditions. By cryptographically equivalent conditions,
we mean two criteria such that when a design is tested with respect to one of
the criteria, then testing with the other one is redundant.

From the designer’s point of view, an example to this situation is the non-
linearity criterion. The definition of nonlinearity in this section is the simplest
and the most widely accepted one. It is clear that by using this definition of
nonlinearity, it is difficult to make a healthy comparison between two func-
tions one of which is in, say F5 and the other is in, say Fy. By defining the
nonlinearity so that the nonlinearity of a function takes values between 0 and
1 would of course handle this problem. However, it is wise not to consider such
a form of nonlinearity as a different cryptological criterion from the one stated
in (2.32) unless the new form behaves more sensitive in separating cryptologi-
cally strong and weak functions or the new form helps in making an algorithm
resistant to a cryptanalysis method different from linear cryptanalysis.

In [29], Meier and Staffelbach investigate some properties of the form of
nonlinearity which is defined in (2.32) and two additional forms of nonlinearity.
One form is defined as the distance to the set of functions having linear struc-
tures, called distance to linear structures and the other form is defined as the
degree of the considered function, called nonlinear order. We haven’t defined
what a linear structure means yet. It will be defined in Section 2.6. However,
it is worth to mention that the set of functions having linear structures contain
the set of affine functions properly and the nonlinear order takes integer values
from 0 to n, as noted in Section 2.1. Properties of the nonlinear order are also
investigated by O’Connor and Klapper in [33]. They call this form of non-
linearity as algebraic nonlinearity. Hence, from the explanations in the above
paragraph, it is clear that the nonlinear order and the algebraic nonlinearity
are in fact the same criterion. However, the distance to affine functions (2.32),
the distance to linear structures and the nonlinear order should be treated as
different cryptological criteria. Meier and Staffelbach proved the invariance
of the nonlinearity criterion under nonsingular affine transformations on the

input coordinates [29]. This fact will be proved in Section 3.4.
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2.4 Sylvester-Hadamard Matrices

The class of square matrices which will be described in this section are very
useful in the subsequent sections. We start by a definition :

An n x n matrix H with entries 1,-1 is called a Hadamard matrix if
HH' =n.l, (2.33)

where H' is the transpose of H and I, is the n x n identity matrix. Instead
of using “an n x n matrix”, we may sometimes use “a matrix of order n” for

square matrices.

Theorem 2.4.1 [40] If a Hadamard matriz of order n exists, then n = 1,2
orn =0 (mod 4).

Proof. Let H be a Hadamard matrix of order n. It is clear by definition that
all distinct rows of H are orthogonal. If we change the sign of every entry
in any column of H, i.e. if we multiply any column by -1, then the resulting
matrix is also a Hadamard matrix. Hence, any matrix obtained from H by
multiplying some columns with -1 is also a Hadamard matrix. By changing
the signs of all columns for which the entry in the first row is -1, we can make
all entries in the first row 1.

Since every other row is orthogonal to the first row, one gets that all these
rows have m entries equal to 1 and m entries equal to -1, where n = 2m.

Moreover, if n > 2, then the first three rows are as follows :

Floodl 11 1ol 11
Hlooo+1 4141 —1eoo=1 —1.--—1

1o+l —1ooo=1 4141 —1---—1

Thus, one gets that n = 4k, where k is the length of each subsequence above. O

It is conjectured that there is a Hadamard matrix of every order divisible

by 4. This is equivalent to saying that the necessary condition in the above
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theorem is also sufficient. The smallest multiple of 4 for which no Hadamard
matrix has been constructed is currently 428 [40].
Note that by the proof of the above theorem, one gets that there are several

operations which preserve the Hadamard property [40] :
1. Permuting rows and multiplying any row by -1.
2. Permuting columns and multiplying any column by -1.

3. Transposition. In other words, if H is a Hadamard matrix, then H' is

also a Hadamard matrix. This is obvious from (2.33).

Any Hadamard matrix which has every element of its first row and first
column +1 is called normalized [40].

It is well-known that if H is a normalized Hadamard matrix of order 4n,
then every row (column) except the first has 2n entries equal to -1 and 2n
entries equal to +1. Furthermore, n -1’s in any row (column) overlap with n

-1’s in any other row (column) [40].

Definition 2.4.1 (/25]) If A = (a;;) is an m x n matriz and B = (b;;) is a
p X q matriz, then the Kronecker product of A and B is the mp X nqg matrizc

given as follows :

(IllB algB s alnB
anB apB - ay,B

AgB=| " o (2.34)
amiB amaB - amnB

That is, A® B is an mp x ng matrix made up of m xn blocks where the (i, )
block is a;;B. Here, a;; B denotes the p X ¢ matrix obtained by multiplying

each entry of B with a;;.

Lemma 2.4.2 (/25]) Let A = (a;;),B = (bi;),C = (ci;) and D = (d;;) be
matrices. The Kronecker product satisfies the following :

(1) A (B®C) =(A® B)® C (Associativity).
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(2) A+ B)®C =A®C+ B®C (Distributivity).
(3) (A® B)(C ® D) = AC ® BD.

Proof. Only the third property will be proved. The first two are easy to prove.
Note that for the first property A, B and C may be any matrices, while for
the second property the matrices A and B should have the same dimensions
whereas C' may be of any dimension.

(3) ([p1]) First, note that in order to have the operations on both sides to
be well-defined, the number of columns of A should be equal to the number of
rows of C'. This is also true for C' and D. For these reasons, without loss of
generality let A, B, C and D be mxn, pxq, nxt and ¢xr matrices, respectively.
By definition A® B = (a;;B) and C®D = (¢;; D). Let (A® B)(C®D) = (6;5),
an mp X tr matrix. Then,

n

_Q

ng
Gij = (alkB) (ijD) = Zaikckj BD.
k=1 k=1

n

Also, let AC' = (B;;). Then, B; = aucy;. Since, AC ® BD = (3;; BD) an

k=1
mp X tr matrix, one gets that (A ® B)(C ® D) = AC ® BD O

1 1
Some examples of Hadamard matrices are [ 1 } , ,

1 -1

-1 1 1 1 1 1 1 1

1 -1 1 1 1 -1 1 -1

and . (2.35)
1 1 -1 1 1 1 -1 -1
1 1 1 -1 1 -1 -1 1

Theorem 2.4.3 (Hadamard [18])
Let Hy and Hy be Hadamard matrices of orders ny and ny. Then, Hy ® Hy

is a Hadamard matriz of order nins.

1
We have seen that the matrix is a Hadamard matrix. By

1 -1
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Hadamard’s theorem, the 4 x 4 matrix

1 1 1 1

1 1 1 1 1 -1 1 -1
® =

1 -1 1 -1 1 1 -1 -1

1 -1 -1 1

is also a Hadamard matrix. In fact, using Hadamard’s theorem repeatedly, the

1 1
iterated Kronecker product of n copies of the Hadamard matrix is

1 —1
a Hadamard matrix of order 2”. In literature, this class of Hadamard matrices

is called as Sylvester-Hadamard matrices. Thus, we have the following :

Theorem 2.4.4 (Sylvester [50])

There is a Hadamard matriz of order 2" for all nonnegative integers n.

Hence, the recursion generating all Sylvester-Hadamard matrices are given

as follows :
1 1
Hoz[l], Hy = (2.36)
1 -1
and
]_ 1 Hn—l Hn—l
H, = QH, = . (2.37)
1 —1 Hn—l —1Lin—1

Note that H, is a matrix of order 2". Thus the equation (2.33) turns out to
be H,.H," = 2" .I,» where I is the identity matrix of order 2".

By using (2.37) for n = 2, one obtains the last matrix in (2.35) as Hs and
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for n = 3 Hj is found as

11 1 1 1 1 1 1
1 -1 1 -1 1 -1 1 -1
1 1-1 -1 1 1 -1 -1
1, — 1 -1 -1 1 1 -1 -1 1 ‘ (2.38)

2.5 Relationships Among Sylvester-Hadamard Matri-

ces and Linear Functions £,

Sylvester-Hadamard matrices are useful because of their relation with linear

functions in F,,.

Lemma 2.5.1 ([41]) Let H,, = ' denote the Sylvester-Hadamard ma-

lon_1q
triz of order 2" for n > 0 where l; denotes the i-th row of H,. Then, l; is the

sequence of the linear function fo,(z) = (o, x) for any i = 0,1,...,2" — 1

where «; is in 'V, .

Proof. We use induction on n.

For n =1, H; is given in (2.36). It is easy to see that [y is the sequence of
Jao(x1) = {ap, z1) = 0 and [; is the sequence of f,,(z1) = (a1, 1) = x1, where
fao and f,, are linear functions F;.

Suppose that the lemma is true for n. Since H, 1 = H; ® H,, from (2.36)
and (2.37), it is easy to see that each row §; of H,, 1 is the Kronecker product
of arow (1,1) or (1,—1) of H; and a row of H,,. Thus, any row §; of H,; is
either (l;,1;) or (I;,—(;) for some row [; of H,. By induction hypothesis, I; is

the sequence of the linear function f,, (2, z3,...,2,11) = {4, x) where «; is
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in V,, and = = (x9,x3,...,2,.1). However, observe that (I;,1;) and (I;, —[;) are
the sequences of the linear functions f,, (z1,22,...,2Zn41) = (Vi, ) where ; is
in V11 for 7; = (0, ;) in the first case and +; = (1, «;) in the second case, «;

isin V,, and z = (x1,29,...,2p11). O

The above theorem tells us that the i-th row [; of H,, is the sequence (; of the
linear function corresponding to the binary representation «; of the integer 7.
The main importance of this fact is that, the n-th Sylvester-Hadamard matrix
is itself nothing but a complete table of the sequences of all linear functions
in F,. Using the trivial relation between the sequence and the truth table of
a function, one has the truth tables of all linear functions. What is meant by
“to have the truth tables of all linear functions” is obtaining them without
performing the evaluation of any linear function on V,, or on any ordered basis
of V,,. This work is reduced to only a simple iterated matrix operation.

Another simple observation is that since H, is a symmetric matrix, the
above lemma is also true for columns of H,,.

Note that if [; is the sequence of the linear function f,,(z) = (a4, x) for
a; in V,,, then —[; is the sequence of the complement of f,,. Thus, the rows
of the matrix —H,, contain the sequences of the complements of all linear
functions. Consequently, H, and —H,, together contain the sequences of all
affine functions ¢g, @1, ..., Yan+1_1. Asin Lemma 2.5.1, the ones corresponding
to linear functions are denoted by [y, [1,...,lsn_; and the ones corresponding
to the complements of linear functions are denoted by lon, lon i1, ... lon+1_1.
Thus, l;yon = —[; for all i = 0,1,...,2" — 1. By using Lemma 2.5.1, one can
find the nonlinearity of a function with a simple algorithm as follows :

Let (;.H, = p where p = [ag,aq,...,am_1], a;'s are integers and f is
a function with sequence (. Then, i = (a;) is the 1 x 2" matrix which
contains the distances of f to all linear functions where @; = 271 — %ai. By
multiplying (; with —H,,, one gets that —u = [—ag, —ay,..., —a_1] and
—u = (b;) where b; = 2" + $a;. —p is the matrix containing the distances

of f to the complements of all linear functions. Hence, we have the set which
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contains the distances of f to all affine functions. Taking the minimum over
this set, one gets the nonlinearity of f.

Indeed, performing the multiplication with — H,, is not necessary when find-
ing the nonlinearity of a function. This slight improvement will be proved in
this section. Moreover, this simple algorithm can be significantly improved in
terms of decreasing the operations made. This is due to an important prop-
erty satisfied by Sylvester-Hadamard matrices. This property of Sylvester-
Hadamard matrices will be proved and the improved algorithm will be demon-
strated for n = 3 in the chapter devoted to Walsh transform and its properties.

An important question about nonlinearity is the following :

What is the largest possible nonlinearity that can be attained by a function?

The following lemma answers this question.

Lemma 2.5.2 ([{1]) For any function f, its nonlinearity Ny satisfies the re-

lation Ny < on—1 _ 951

lo

l
Proof. Let H, = 1 denote the Sylvester-Hadamard matrix of order

lan 1
2" where [; denotes the i-th row of H,, for i = 0,1,...,2" — 1. Since H,, is a

symmetric matrix, one has

Cr-Hy = ((Crl0)s (Cpola)y - (Cry lana) - (2.39)

Also,

(Cr-Hn) (Cp-Ha)' = GHLHL ' =20 (¢ =27 (2.40)

Computing the left hand side of (2.40) using (2.39), one gets that

2m—1

(Cr-Hn) (Gp-Ha)' =D (Gl

=0
By combining these results, one obtains that

2"—1

> (G =2 (2.41)

=0
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From (2.41), there exists a jj, satisfying 0 < j; < 2"—1 such that ({1, )* > 2.
From this, it follows that ((;,1;,) > 2% or ((s,1;,) < —23. Now,

e If the first case is true, then by Lemma 2.2.1 d(f, p;,) < 2771 — 2271,

e Ifthe second case holds, then ((r, —1;,) = (Cs, lj, +on) > 22 where [j, 1on =

2
—lj,. Again, by Lemma 2.2.1 d(f, pj, 420) = d(f, @;,) < 2771 — 2571,
However, by the choice of ji, either (Cy,(;,) or ((f, 1, +on) is the largest among
all j’s for j = 0,1,...,2""" — 1, giving that either d(f, ;) or d(f, @) is
the smallest among all affine functions ¢g, p1,...,pont1_;. Hence, Ny <

on—1 _95-1 ¢

Lemma 2.5.3 ([{5]) Let f be a function with sequence (s. The nonlinearity
Ny of f can be found by Ny =2""'—%  max  {|((f,l;)|} wherel; is the i-th

0,1,...,2n—1
row of H,.

Proof. Let ; be an arbitrary linear function for ¢ = 0,1,...,2" —1. Asin the
proof of Lemma 2.5.2, d(f, #;) = 2"~' — 3((y, lizon) where [ on is the i-th row
of —H,, i.e. l;1on = —I; is the sequence of @;. Hence, d(f, p;) = 2"_1+%<Cf, l;).

1
() =2 =S max (G )} O

It follows that, Ny = min 5
i=0,1 +=0,1,...,

i A, on+1__

Lemma 2.5.3 shows why it is unnecessary to perform the multiplication with
—H,, in order to find the nonlinearity of the function. Lemma 2.5.3 states that
it is enough to use fi where fi = (a;) is the 1 x 2" matrix for which a; =

277! — la;| and a;’s are integers such that a; = ((y,l;) for i =0,1,...,2" — 1.

Lemma 2.5.4 Let o, 5 be two vectors in V,, with even weight. Then, d(«, [3)

18 also even.
Proof. Let o = (ay,as,...,a,) and = (b1, by, ..., by,). Since

w(a + B) = |Supp(a + B)| = |[Supp(a)| + [Supp(B)| — 2|Supp(a) N Supp(B)]
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and as the right hand side of the above equation is even, we conclude that

w(a + () is also even. Thus, d(a, ) is even. O

Remark 2.5.5 The above lemma can be found in [41] with an additional hy-
pothesis that the length of a and (3 should be even. Its proof is different than
the proof we have made above and uses this assumption. However, the proof
above does not use this assumption. This shows that n may be arbitrary. In
any case, this extra assumption does not effect the following corollary since the

length of the truth table of any function in F, is always even.

Corollary 2.5.6 [//] Let [ be a balanced function for n > 3. Then,

2=t _ 251 if n is even,
Ny < .
|27t =287 if nois odd.

where || denotes the largest even integer not exceeding .

Proof. If n is even, then 2! — 227! is an integer and by Lemma 2.5.2,
Ny <2nt— 2571

Now, let n be odd. Since f and all ¢;’s are balanced fori = 0,1,...,2" " 1,
their weights are even. By Lemma 2.5.4, d(f, ;) is even for all . As n is odd,
27=1 _ 23~1 is not an integer implying that Ny <2n7t — 251, This gives the

desired result. O

2.6 Difference Function, Linear Structures, Auto-corre-
lation of f and Properties
Let f be a function with sequence (. For any « in V,,, the sequence of the
function h(z) = f(z + «) is denoted by (¢(a) [57]. Clearly, (f = (f(ap).
The difference function corresponding to « in V, is defined as the function
fex) = f(x) + f(x 4+ «) in the literature.

The auto-correlation of f with a shift « is defined as in [57] :
Ap(a) = (Cr, Crla)). (2.42)
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Lemma 2.6.1 (/57]) Let f be a function. The weight of the function f for

any « in V,, is equal to 2" — 1A ¢(a).

Proof. It is enough to observe that

Ap(a) = (¢f, () = Z(_l)f(r)+f(x+a)

$€Vn

= 2" —2uw(f%).

Note that Af(ag) = 2" for any function f.

Corollary 2.6.2 For any function f and for any nonzero o in V,, f is bal-

anced if and only if Ay(a) = 0.

It is obvious that for any function f, |Af(a)| = 2" if and only if the function

f% is constant. This situation is given a special name in the literature.

Definition 2.6.1 [6] A vector « is said to be a linear structure of the function

fof f¢ 1s a constant function.

The following well-known fact can be found in [33] without proof. For the

sake of completeness, we prove it :

Lemma 2.6.3 For any function f, the set of all linear structures of f forms

a vector space over GF(2).

Proof. Let «,( be linear structures of f. Thus, the functions f*(z) =
f(x) + f(z + a) and fP(z) = f(z) + f(z + B) are constant. It follows
that, g(z) = f*(z) + fP(z) = f(z + a) + f(z + ) is constant. Note that
g(x) = f(x) + f(z + a+ () for any x in V,,. Since g is constant, we get that

a + [ is a linear structure of f. O

We denote the set of all linear structures of a fixed function f by LS. By
previous lemma, £S; is a subspace of V,,. The dimension of LS as a vector

space is said to be the linearity dimension of f [46].
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Now, |Af(a)| = 2™ if and only if the function f“ is constant. This can be
stated in terms of linear structures as follows :
|Af(a)| = 2" if and only if « is a linear structure of f, i.e. LS contains a.

Consider the equation in (2.41). It states that

an—1
> (Gl =2
=0
holds for any function f, where (; is the sequence of f and lo,ly,...,lon_y

are the rows of H,,. This equation is called as “Parseval’s equation” [25]. In
Chapter 4, this equation will be written in terms of the Walsh transform of f.
In the literature this one is more common than the one in (2.41).

For any function f, the square matrix My of order 2" given by M; = (m;;)
where m;; = (—1)7(@+2) is called the matrix of f [58]. This matrix will be an
important tool in proving the important connection between ((y,[;)? in (2.41)
and A(ay) = (¢, C(ay)) in (2.42).

First of all, it is obvious that My is a symmetric matrix. Since, the first
row of My is (f(ap) and the i-th column is (f(a;) for ¢ =0,1,...,2" — 1, one
gets that the first row of M. M;" is ((¢r,Cr), (Cr, Cr(an)), oo, (G, Cr(aan 1)),

which is equal to

(Ap(a), Ap(ar), ..., Ap(agn_y)). (2.43)

According to a result by McFarland (see [14]), the matrix My can be repre-

sented as

<Cf7 l0>
<Cf7 l1>

<Cf7 l2"71> ]

where the matrix in the middle is a diagonal matrix of order 2" having zeros

outside the diagonal. This matrix will be denoted by

diag ((gfv lo), <Cf7 L), ..., <<f7 lyn1))
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as in [57]. Thus,

Mf =2"" Hndlag ((Cf’ l0>> <Cf7 l1>a R <Cf7 l2”—1>) Hn .

By using (2.44), we get that

My.M;" =27" H,.diag ((Cr, lo)?, (Cr 1), ..o (Crolansn)?) H,y

By using (2.45), the first row of M;.M;" is equal to

27" (<<f’ l0>27 <Cf7 ll>27 ce <Cf7 l2”71>2) H, .

By writing (2.46) explicitly, the first row of M;.M;" is equal to

27" (<§7 l0>7 <€7 l1>7 ] <§7 l2”—1>)

where

5 - ((Cf’ l0>27 <Cf> l1>27 sy <Cf7 l2”—1>2) .

(2.44)

(2.45)

(2.46)

(2.47)

(2.48)

By combining (2.43) and (2.46) and by writing A(«;) instead of As(«;) and ¢

instead of (y, we get that

(Aao), A(ar), ..., Alasn_1)) = 27((C 1) (G, 12, o (Colanr)?) Hop(2.49)

Hence, the following theorem is obtained :

Theorem 2.6.4 ([57]) For any function f, the equality

(Ap(ao), Ag(an), ..., Ap(agn 1)) Hy = ((Cr,l0)?, (Cry 1), - o (Cpolann)?)

holds where (s is the sequence of f, Ar(«;) is the auto-correlation of f with a

shift o; and H, s the Sylvester-Hadamard matrix of order 2™ with l;’s as its

rows foriv=0,1,...,2" — 1.

Theorem 2.6.4 is a special form of the Wiener-Khintchine theorem [4].
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CHAPTER 3

Two Upper and Two Lower Bounds On Nonlinearity

3.1 Motivation

In the previous sections, we have seen that the nonlinearity Ny of a function
f is bounded above by 2"~' —25~1_ Since the nonlinearity of a function is an
integer, it is clear that this upper bound may be achieved only when n is even.
If n is odd, the nonlinearity of any function is strictly less than this bound.
Additionally, we also know that the nonlinearity of a balanced function should
be an even number, as proved in Corollary 2.5.6.

Note that we haven’t mentioned whether there exists functions having non-
linearity 2"~! — 227! or not, when n is even. In Chapter 6, we will see that
such functions do exist. Bent functions have many applications in digital com-
munications, coding theory and cryptography [3, 1, 13, 22, 23, 29, 25, 31, 34|
as stated in [42].

In addition to the known results, there are some important questions about
nonlinearity which have not been answered yet. One of them is the upper
bound on the nonlinearity of balanced functions for some odd values of n. This
question has also a lot in common with another important question of cryp-
tography, which we simply may state as the construction of cryptographically
important boolean functions. In Chapter 7, some cryptographically important
constructions of boolean functions will be presented [44].

Consider a cryptosystem which is composed of only linear functions or
composed of functions which are very close to linear functions. If the functions

under consideration are in JF,,, then by the results of Section 2.1, it is enough
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to know only n outputs which come from n linearly independent vectors in V,,
to identify those functions completely. In particular, it is enough to know only
the action of these functions on the standard ordered basis of V,, over GF'(2).
This simple example shows how 2" operations is reduced to n operations only.
What this example suggests as a security criterion is that the functions used
in a cryptosystem should be as highly nonlinear as possible. Of course, one
should always keep in the mind that, the situation we are talking about can
not be generalized blindly. What we mean, when saying “the functions should
be highly nonlinear” does not mean that a cryptosystem should not contain

any linear function.

The weight of the functions employed in cryptosystems is also important.
The use of an unbalanced function repeatedly may result in the outputs of the
cryptosystem being biased and hence the cryptosystem can be easily distin-
guished from a true random source (or a pseudo-random source). This causes a
large class of cryptanalysis methods to be applied to the cryptosystem ranging

from trivial statistical attacks to much more complex attacks.

Apart from these specific examples, an informal definition for a secure
boolean function may be given as follows. A secure boolean function is a func-
tion which satisfies the cryptographically important properties in an optimized
way. “In an optimized way”, is due to the fact that some cryptographically
necessary criteria are challenging. That is, strongly satisfying one criterion
may cause the function to be the weakest with respect to some other criteria.
Keeping these in our mind, the first step is to identify the cryptographic prop-
erties which a function should satisfy for being strong. We have already seen
some of these criteria, like balance and nonlinearity. In the following chapters,
some other cryptographically important criteria will be presented. Note that
this thesis does not include all cryptologically important criteria related to
boolean functions. Our main interest with these criteria is narrowed by the

use of boolean functions in block ciphers .
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3.2 Upper Bounds

It is well-known that the bound in Lemma 2.5.2 coincides with the covering
radius of the first order Reed-Muller code RM (1, n) of length 2" [25].

In contrast to this well-known upper bound, less is known about the lower
bound on nonlinearity except some progress made in [48] and [56] and some
trivial facts as Ny > 0 if and only if f is nonlinear.

There are two main questions concerning the nonlinearity. One is how
to find the nonlinearity if some additional information is available about the
function. The other is that, if the exact value of the nonlinearity can not be
easily obtained, how to estimate the nonlinearity using some extra information
about the function.

In the following two sections, four formulas will be given in order to estimate
the nonlinearity of a function. Two of these bounds are upper bounds while
the remaining two are lower bounds. All results in Section 3.2 and Section 3.3
are from the article of Zhang and Zheng [58].

We start with a result which follows easily from Theorem 2.6.4.

Corollary 3.2.1 ([57]) Let f be any function. Then,

on 1 on 1
Z Ap(a)® =27" Z (Cr )"
i=0 i=0
Proof. Let & = ((Cs,10)% (Cr, 1), ..., ((s,lan—1)?) as in the proof of The-
on 1
orem 2.6.4. Then, £ = 2° Z As(y)® by using Theorem 2.6.4. Since
- i=0
€= (¢p, 1), the result follows. O
i=0

3.2.1 The First Upper Bound

The first upper bound is a straightforward application of Corollary 3.2.1. Since
on_1 on—1

2" Z Asley)’ = Z (Cs, ;)% there exists an 7o satisfying 0 < iy < 2" —1 such
=0 =0
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an—1
that (Cp, L))" > Z Af(e;)?. In other words, [(Cf,li,)| > &
i=0
By using Lemma 2.5.3, one obtains that

271
1
Ny <ot SA| 2 > Ap(en) (3.1)

i=1
3.2.2 The Second Upper Bound

It is easy to see that H,,, the n-th Sylvester-Hadamard matrix, satisfies H,, =
H,_; ® H; for any integer t such that 0 <t < n.

By using this, the equation in Theorem 2.6.4 turns out to be

(A(a0)7 A(al)a SR A<a2"—1))(Hn—t ® Ht) = (<C7 lO>27 <C’ l1>27 R <C7 l2"—1>2)'

21 201
Set 0 = 3 (G, ot ford = 0,1,...,2°~ 1. Thatis, 00 = ¥ (Cr. le)>,
k=0 k=0
2t—1 ot_q1
1= Z <Cfa l2t+k>2>- <oy Ogn—t_1 = Z <Cf> 12"—2t+k>2'

k=0 k=0
Let e = (1,1,...,1) be the all-one vector of length 2" and I5.—« be the iden-

tity matrix of order 2"~ *. Note that (H,_; ® Hy) (Ion— @ €') = (Hp_¢Ion—+) @
(Hpe') = H,_,®(2',0,...,0)" by using (3) of Lemma 2.4.2, where (2¢,0,...,0)
is a vector of length 2 and (2,0, ...,0)" denotes the transpose of (2,0, ... ,0).

If we multiply both sides of the equation
(Aao), Alan), ., Aazn—1)) (Hnt ® He) = (G, 10)*, (G 1), -, (G lonn)?)
with (Iyn—+ ® €'), then the left hand side is obtained as
(A(ag), Ar), .-, Alagn 1)) (Hp—t @ Hy)(Ign-t @ €').
The left hand side of this equation is in fact equal to
(Aag), Alew), .., Alaze_1))(Hoy @ (24,0,...,0)").

The right hand side of the above equation after multiplication with (lon—+ ® €')
is equal to

(00,01, ... ,090-t_1).
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Thus,
(A(ag), Ar), .., Alagn 1)) (Hpy @ (24,0, . ... ,O)t) = (00,01, ..,09m—t_1).
It is easy to see that the left hand side of the above equation is equal to
2! (A(ao), Alagt), ... ,A(O{Qt‘(znft_l)>> H,_ ..
It follows that the equation in Theorem 2.6.4 turns out to be
2" (A(ap), Alaar), ..., Alage gn—t-1))) Hooy = (00,01, ..., 090-1_1) . (3.2)

Note that the above equation is a generalization of the equation in Theorem
2.6.4. Clearly, two equations become identical when ¢ = 0.

By comparing the i-th components of both sides of (3.2), one has

gn—t_1
2t Z hiJCAf(ak.Qt) = 0;
k=0
where l; = (hio,hi1,...,hion—t_y1) is the i-th row (column) of H,,_, for i =

2t—1
0,1,...,2"%* — 1. However, since o; is defined as o; = Z <Cf712t.i+k>2 for

k=0
i=0,1,...,2"" — 1, there is a kg 0 < ko < 2" — 1 such that |((f, lotiyr,)| >
2t

Z hi xAf(agor) for any fixed i. By using Lemma 2.5.3, one has

k=0

2n—t—]
1
n—1 n .
Nf S 2 - 5 2 + Z h%kAf(ak,Qt) (33)
k=1
where ¢ is a fixed integer satisfying 0 <t < n, l; = (hjo, hi1,..., hian—t_1) is

the i-th row (column) of H,,_;.

Remark 3.2.2 (1) Note that for 0 <t < n, the set
Q = {Oz(), Qigt, Qg 9ty . .. ,a(ant_l).Qt}

forms an n — t dimensional subspace of V, with basis S = {age, ages1, ...

5 OéQn—t—th}.
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(2) The nonlinearity of a function is invariant under a nonsingular affine
transformation on the input coordinates. This is easy to prove with the theory
introduced up to now. Later, this result will be proved in the section which is to-
tally devoted to invariant properties of a function under such transformations.

For the time being, we assume that this is true.

By using a nonsingular linear transformation on the input coordinates and

setting r = n — ¢, the following lemma is obtained :

Lemma 3.2.3 Let 31, 0s,...,03, be r linearly independent vectors in V,, for
0 <r <mn and$ be the subspace of V,, spanned by (1, 2,...,05.. In other
words, @ ={v, | k=0,1,...,2" — 1} where v, = a1.01 + a2.02 + -+ + a,.0,
for some ay,as,...,a, in GF(2) such that ¥(ay,as,...,a,) = k, ¥ being the
function in (2.1). Then,

2"—1

_ 1
Nf S 2" - 5 2n 4 Z h@kAf(’}/k)
k=1

holds for every row (column) l; = (hio,hi1,...,hiar—1) of H, where i =
0,1,....2" 1.

Remark 3.2.4 (1) In some situations, it is sufficient to take r = 1 in Lemma

3.2.3. This means that for any nonzero vector 3 in V,,

1
Ny <2mt— 3 [2n 4+ As(B) (3.4)

holds. Since (3.4) holds for any (8 in 'V, the following bound is obtained :
For any function f, the nonlinearity Ny of f satisfies

1
Ny <2vt— 5\/271 + Appas (3.5)

here A e = A )

where . {|As()] }
(2) If r = 2 is used in Lemma 3.2.3, then a better estimate of nonlinearity

than the one above is obtained. Specialization of Lemma 3.2.3 for r = 2 is as

follows :
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For any function f and for any two different, nonzero vectors 31, B2 in V,,

the nonlinearity Ny of f satisfies

3
1
Ny <2t — S| 2"t D harp(n) (3.6)

k=1

where l; = (hio, hi1, hig, hi3) is the i-th row of Hy for i = 0,1,2,3. By using
Hy in (2.35), the inequality in (3.6) turns to the following four inequalities.

Ny <2mt— %\/2" + Ap(Br) + Ap(B2) + Ap(Br + B),
Ny £ 207 = S f2 = A () + Ag(2) — Ag(Bi + ),
Ny <20 = o A8 — Ap(8) — As(81 + ),

Ny <2t - Lo A8~ As(3) + A8+ ).

By collecting these inequalities, the following bound is obtained.

Corollary 3.2.5 Let f be any function. Then,

(1) For any two different, nonzero vectors (31, 3y in Vi, the nonlinearity

Ny of f satisfies

Ny <27 S o A0+ 1A - 1A+ B (3)

(2) Let o, 3,7y be three nonzero vectors of V,, with the property that |Ag(a)| >
1Ar(B)| = |Ap(7)] = |Af(0)] where 6 is any nonzero vector in V,, distinct from
a, 3 and vy. Then, the nonlinearity Ny of f satisfies

Np<2" - %\/2” A+ 1A BN = 1A (3.8)

3.3 Lower Bounds

3.3.1 The First Lower Bound

Let f be a function with sequence (f = (ag, @1, - .., am_1). Set a; = (ag;, a2i+1)
for all ¢ = 0,1,...,2"t — 1. It is obvious that {; = (dg, a1, ..., dm-1_1), Le.

is the concatenation of @;’s fori =0,1,...,2" 1 —1.
Cf y L P
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Each a; is referred to as a basis. If a; = (1,1) or (=1, —1), then a; is called
a (+-+)-basis and if a; = (+1, —1) or (—1,+1), then a; is called a (+—)-basis.
Given a function f, its sequence ¢y may be written as a concatenation of
(++) and (+—)-bases. Denote the number of (++) and (+—)-bases in the

sequence of a function f by n;* and ns~, respectively.

Lemma 3.3.1 Let f be a function with sequence ;. Then, nyt = 2772 4
TAp(on) and nym =2""% — 1A (o).

Proof. With the notation used previously, the sequence of the function
h(z) = f(r + «) for any a in V,, is (f(a). Write (; as the concatenation
of the (++) and (4+—)-bases a;’s where a; = (ag;, asi+1). Then, (s(a;) with
respect to (++) and (+—)-bases is b; = (agi1,a2;). From this, it is easy
to see that Ay(ay) = ((r,(f(a1)) = 2(nyt —ny~). The result follows since

ngt +npm =271 holds always. O

Lemma 3.3.2 The nonlinearity Ny of any function f satisfies Ny > 2772 —
1A (a)l.

Proof. Since w(f) > n;~, we get that w(f) > 2""2—1Af(a;) by Lemma 3.3.1.
Set g;(z) = f(z) + ¢;(z) where @; is a linear function for j =0,1,...,2" — 1.

It is easy to see that

A, (ar) = (3.9)

By Lemma 3.3.1, w(g;) > 2"% — 3 Ay (aq). Since w(g;) = d(f, ¢;), we get

1
4
that
n—2 lAf(Oél) if QO'(CYl) =0,
d(f7 90]) Z 5 le ) !
2"+ 3 Ap(an) i gian) =1
where ¢; denotes all linear functions.

Now, set g;(xz) = f(x) + ¢;(z) = f(z) + ¢;(x) + 1 where ¢, is a linear
function for 7 =0,1,...,2" — 1. It is easy to show that (3.9) also holds for g;
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for j =0,1,...,2" — 1. It follows that

gy | 2B =0
y¥i) =
1

2n—2 —+ iAf(Oél) if <pj(oz1) =

holds for any affine function ¢;. The definition of nonlinearity gives the result.

O

Theorem 3.3.3 For any function f, the nonlinearity Ny of f satisfies

1
Ny >2"2 — ZAmm (3.10)

where Ay = min { |Ag(a)| }.

a€Vy,a#0

Proof. Choose a nonsingular matrix A of order n which satisfies a; A = ay,
for any fixed k satisfying 0 < k < 2" — 1. In fact, this is equivalent to finding
n—1 vectors o1, 09, . ..,0,_1 in V,, for which the set Q = {01, 09, ..., 0,1, 1}
becomes a linearly independent set. Then, A may be any matrix containing
ay as its last row where the first n — 1 rows of A are any permutation of ;s
fori=1,2,...,n— 1.

Set g(x) = f(zA). Then, g™ (z) = g(z) + g(z + o) = f(zA) + f(zA +
a1A) = f(u) + f(u+ ag) where u = zA. Since A is nonsingular, for any = in
V,,, there exists a unique v in V,, satisfying u = x A and conversely. This yields
that Ag(ay) = Ay(aw).

By Lemma 3.3.2, Ny > 272 — 1A ()| = 2% — }|Af(ay)|. Since A is
nonsingular, we have N, = Ny by (2) of Remark 3.2.2. By combining these,
Ny > 22— 1]|Ag(ay)| for any arbitrary but specific k satisfying 0 < k < 2"—1.

Hence, Ny > 272 — 1A,,;,, where A, = aer‘%i’gﬂ{ |Af(a)| }. O

3.3.2 The Second Lower Bound

In [5] it was pointed out that, for any function f, if the difference functions

f’s are balanced with respect to all but a subset ¥ of vectors in V,,, then the
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nonlinearity N of f satisfies
Ny >2m 1t — 25 Rz, (3.11)
Another improvement which has been made in [48] (See Theorem 11) is
Ny >2mt —gnmar-l (3.12)

where p is the maximum dimension of the subspaces of (V,, \ &) U {ao}.

An important shortcoming of (3.11) and (3.12) is that when |R| is large,
the estimates provided by them are far from the real value of Ny.

Let f be a function for which f* is balanced with respect to all but a subset

R¢ of vectors in V,,. Recall from (1) of Remark 3.2.2 that the set
Q= {Oéo, Qat, g 9ty . . . ,O{(znft_l)_Qt}

is an n—t dimensional subspace of V,, with basis & = {awt, age+1, ..., aign—t-1.9¢ }
gn—t_1
for any integer ¢ satisfying 0 < t < n. Also, recall that 2¢ Z hi g Af(agar) =
o; where l; = (hio,hi1,...,hijon—t_1) is the i-th row (cglzlfmn) of H,_, for
2t_1
i=0,1,.... 27" —lando; = ) (G, lorpa)” for i =0,1,...,2"" — 1.

k=0
By using these, one obtains that

n—t_q

o; = Qt Z hiykAf(ozk.Qt)

k=0

< 2(Ag(o0) + (1R Q| — DA u). (3.13)

This inequality is clear since for any a in V,,\ Rs, Af(a) = 0 as f* is balanced.
Thus, in Q\ {ao}, Ag(ay.2r) may be nonzero at most for |Ry N 2| — 1 values of
k’s where k = 1,2,...,2"7" —1. Also, note that Af(a) < A, for all ain V.

It follows that (Cs,ly k)’ < 242" + (IR; N Q| — 1)Apee) for any i =
0,1,...,2""—Tland k=0,1,...,2" — 1, since Ay(ap) = 2" and by using the

definition of ¢; and (3.13). By using Lemma (2.5.3), one has

1
Ny >o2m 5\/2t(2” (1R N QY — 1A ma)-
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By simplifying this expression, one concludes that

Ny > 2771 = 2571 /20 4 (1R 1.9 — 1A (3.14)

By setting r = n — ¢ and using a nonsingular linear transformation on the

input variables, the following theorem is obtained :

Theorem 3.3.4 Let f be a function for which f is balanced with respect to
all but a subset Ry of vectors in V,, and let Q) be any r dimensional subspace

of Vi, forr =0,1,...,n. Then, the nonlinearity Ny of f satisfies

Ny > 2771 = 250070 fon (1R 010 — 1) A

where Amam = GI\I}Hagf;éO{ ‘Af( )| }

Since |Af(a)| < 2" for any « in V,,, it is clear that A,,,, < 2". If one

substitutes 2" for A, .4, in Theorem 3.3.4, the following corollary is obtained :

Corollary 3.3.5 Let f be a function for which f< is balanced with respect to
all but a subset Ry of vectors in V,,. Let Q be any r dimensional subspace of

Vo forr=0,1,...,n. Then, the nonlinearity Ny of f satisfies

Ny > 20t — 2L IR, N Q).

Theorem 3.3.4 is more general and gives a better estimate of lower bound
than the bound in (3.11) because of the following :

Let Q = V,, ie. 7= n. AS Apar < 27, we have (R — 1)Apmae < 25|R;]2.
Thus, Ny > 2~ — L /27 (R = DA > 27 — 257LR|2 giving the

result.

Theorem 3.3.4 gives also a better estimate of lower bound than the bound
in (3.12) because of the following :

Let © be such that ®; N Q = {ap} only. Then, by Corollary 3.3.5, Ny >
o1 _ 9n=37=1 which is equal to (3.12).

Given a function f, if there exists an integer r, 0 < r < n and an integer

p > 0 such that N, < 27! —92n=37=1p then as Ny > 2=t 2 - WIR, N Q|
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holds for any r dimensional subspace €2 of V,,, one concludes that there is an r
dimensional subspace of V;, such that |®; N Q| > p? This in turn shows that
the nonlinearity of f is not only related to ¥ but also to the distribution of
Ry

3.4 Relations With Nonsingular Affine Transformations

Recall that in (2) of Remark 3.2.2, it was mentioned but not proved that the
nonlinearity of a function is invariant under a nonsingular affine transformation
on the input coordinates. In this section, the proof of this fact will be given.
In fact, this section is completely devoted to the properties of the functions
which remain invariant under nonsingular affine transformations on the input
coordinates.

Let f be a function, A be a nonsingular matrix of order n with entries from
GF(2) and « be a vector in V,,. We denote the composition of two functions f
and 0 by (fof0)(x) = f(6(x)) where 0(z) = x A+« denotes a nonsingular affine
transformation on V,,. In particular if « is the zero vector, then 6 is called a
linear transformation. Note that 6 is a bijection from V,, to V,, and f o6 is in
Fo.

Consider the degree of f, which is the degree of the highest degree term
appearing in the algebraic normal form of f. The degree of f takes values from
0 to n. It is obvious that the degree of f is equal to the degree of f 0@ for any
nonsingular affine transformation 6 [29].

Now, consider the weight of f. By definition, it is the weight of T} =
(f(aw), f(a1), ..., f(agn_q)). The weight of f o 6 is the weight of Ty =
(f(aip), fleu),- ., f(cip ) where {ig, 41, ..., 42n_1 } is a permutation of {0, 1,
...,2" — 1} since 0 is a bijection. This yields that w(f) = w(f o). In other
words, the balance of a function is preserved under any nonsingular affine
transformation on the input coordinates [44].

In order to show that the nonlinearity N; of the function f is invariant

under any nonsingular affine transformation on the input coordinates, we need
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the following result.

Lemma 3.4.1 Let f be a function, 6 be a nonsingular affine transformation

corresponding to a nonsingular matrix A of order n and to a vector o in 'V,

and let ¢ be any affine function. Then, d(f,¢) =d(f o8,po00).

Proof.
Let Ty = (f(ao), flan), .-, flazn 1)), Tp = (@), p(a), - - -, pagn-1)).
Assume that Treg = (f (i), f(i), - -+ s f(Qipn 1)) where {ig,i1,...,in 1} is a

permutation of {0, 1,...,2"—1}. Then, Twog = (i), p(as), - o(igu ).
Thus, f(ax) = ¢(ag) if and only if f(a;,) = ¢(ay,), giving that d(f,¢) =
A(f o8, 00). O

Given a function f, its nonlinearity is defined as Ny = golirg\ln d(f,p;) where

={ ¢ |i=0,1,...,2"" — 1 } denotes the set of all affine functions.
Consider the set A,/ ={ p;00]i=0,1,...,2"" — 1 } where 6 is defined as
above. Since 6 is nonsingular, A, = A,/ as sets. Thus,

Ny = d(f, o; in  d(fo0,p;060) = Ny
s = pin d(f, i) = oin (fo0,piob) =Ny

This gives that the nonlinearity Ny of a function f is invariant under any
nonsingular affine transformation on the input coordinates [29, 44].

Now, consider the set of all a’s in V), such that the difference function f¢
is balanced. Recall that the set of all a’s for which the difference function f¢
is not balanced is the set R;. Thus, the set under consideration is V,,\ ®;. We
claim that the number of elements of this set is invariant under any nonsingular
affine transformation on the input coordinates. That is, |V, \ ®¢| = |V}, \ Ryo0|
44] -

Let 5 be a nonzero vector in V,,, 0(x) = A + a where A is a nonsingular
matrix of order n and « is any vector in V,,. The function (f o 6)5 is balanced

if and only if

(fo0)’(x) = flzA+a)+ f((z+B)A+a)
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= f(u)+ flut)
= S (3.15)

is balanced where u = A + o and v = A. Since A is nonsingular, if z runs
through all vectors in V,,, then so does u. Also, v is nonzero since 3 is nonzero.
From these, we get the desired result.

In particular, any nonzero 3 in V,, is a linear structure of (f o) if and only
if the nonzero vector v = A is a linear structure of f. This means that, the
number of linear structures of f and f o # and hence the linearity dimension
of f and f o 6 are the same.

By summarizing what is proved in this section, we get that

Theorem 3.4.2 ([/4, 29]) For any function f, the degree, the weight, the
nonlinearity, the linearity dimension and the number of a’s for which f* is
balanced are invariant under a nonsingular affine transformation on the input

coordinates.

In [29], the two additional forms of nonlinearity (the distance to linear
structures and the nonlinear order) mentioned in Section 2.3 are also shown to
be invariant under nonsingular affine transformations on the input coordinates.

Hence, they also serve as useful nonlinearity criteria.
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CHAPTER 4

Walsh Transform and Properties

Recall that in Section 2.5, a simple algorithm to calculate the nonlinearity of
a function is presented by using the sequence (y of f and the n-th Sylvester-
Hadamard matrix H,,. By using Lemma 2.5.3 in that section, a slight improve-
ment of this algorithm is also mentioned.

The main purpose of this chapter is to introduce one of the most important
functions in cryptology, the Walsh transform (or Hadamard or discrete Fourier
transform) of a function. After examining the Walsh transform with its various
properties, a fast method of computing the nonlinearity will be presented at

the end of the chapter.

4.1 Walsh Transform

If ¢ is a (1, —1)-sequence in V*"| then its Walsh transform is defined as [25] :

Let f be a function. The Walsh transform of f is commonly defined in the

literature as
Wi(a) =Y fla)(=1)" (4.2)
z€Vy
where « is in V,.
Although this form of Walsh transform is sometimes used in the literature,
the form which will be used in this thesis differs from the one in (4.2) and is

also commonly used in the literature. After presenting this form, the simple
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relation between these two forms of Walsh transform will be proved in this
chapter. Any property of Walsh transform enjoyed by one of these forms can
be rewritten in terms of the other form.

Recall from Section 2.2 that the real-valued function f associated to a
function f is defined as f(z) = (=1)/@) = 1 — 2f(z) for all z in V,,. The
function f is called as the “sign function” of f. In some places, this function
is represented by xy, but in order not to make a confusion with the usage of
the characteristic function x, in Section 2.1, we prefer this notation.

The Walsh transform of the sign function of a function f is defined as
Wia) = 3 Fa)(-1e) = 3 (-1feies (4.3
€V T€Vn

where « is in V,,. Note that the Walsh transform of the sign function of f
takes integer values in [—2",2"]. If we denote by T W, the ordered values of the

Walsh transform of the sign function of f as

Tiv, = (Wlao), Wilen), ..., Wylaze 1))

and by T'; = (y the truth table of the sign function of f as usual, then we get
that

Ty, = (s H,. (4.4)

(4.1) and (4.4) show that the Walsh transform of the sign function of f is equal
to obtaining the Walsh transform of (; via multiplying by H,,. By multiplying
(4.4) with H,, one obtains that (; = 2inTWan. Thus,

)= 35 S Wil (1.5

where z is in V,,.
The equation in (4.5) is called as the inverse Walsh transform or the inver-

sion formula for (4.3). Note that the equation in (4.5) and the equation

f@)= Y cofula)



in (2.31) are the same except the appearance of the constant 5 since fa(a:) =
(—1){® Thus, for any function f and for any «, the value W (a) appearing
in wa is a constant multiple (2") of the coefficient ¢, in the representation
of the function f with respect to the orthogonal basis { (y, | @ € V,,} where
(s, is the sequence of the linear function f,(x) = (a,z). This fact gives a
method for the representation of a function with respect to the orthogonal
basis { (s, | @ € V,,} by using the Walsh transform, as mentioned in Section
2.2. The Walsh transform is sometimes called as the spectral distribution or
the spectrum of f in the literature.

Now, consider the Walsh transform of the sign function of f given by

Wila) = Z (—=1)/ @+ Tt is easy to see from this equation that Wi(a)

zeV,
is equal to the number of 0’s minus the number of 1’s of the function f + f,.

Thus, Wi(a) = 2" = 2w(f + fo) = 2" — 2d(f, fa). In particular, if o = ay is
the zero vector, then Wi(ag) = 2" — 2w(f).
It follows that for a function f and a fixed linear function f,(z) = (o, z),

we have the following equality :

d(f, fa) = 52" = Wi(a)). (4.6)

1
2
Since d(f, g) = 2"—d(f, g) for any two functions f, g, we also have the following
equality :

(S, Ja) = 52"+ Wila). (17)

The equations (4.6) and (4.7) imply that the nearest affine function ¢, (z) =
ap + (o, x), ap € GF(2), to f in the sense of the Hamming distance is the
function for which [W;(a)| is the largest. We give an example to demonstrate

these facts about the Walsh transform.
Example 4.1.1

Let n = 3. Consider the function f(zq,x2,23) = 1+ 21 + 29 + Toxs + 127273

with Ty = (1,1,0,1,0,0,1,1) and T; = ( = (—1,~1,+1, —1,+1,+1,~1,-1).
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By using (4.3), Wi(ap) = =2, Wi(an) = 42, Wi(ag) = +2, Wi(az) = -2,
Wi(as) = =2, Wias) = +2, Wi(as) = —6 and Wi(a7) = —2. Thus,

Tw, = (=2,42,+2, -2, -2, 42, -6,-2) .

We can verify the above computations by using (4.5). From these calculations,
we obtain that f(ao) = —1, f(al) = —1, f(ag) =1, f(ag) = -1, f(a4) =
1, f(as) = 1, f(ag) = —1 and f(az) = —1 which are compatible with (;.
Since [Wi(a)| is the largest when o = s, we conclude that the function
Pag(x) = 1 + 21 + 22 is the nearest function to f. Note that since W(ag) =
23 —2d(f, fas) = —6, we get that d(f, fa) = 7 giving that f and ¢, agree on
7 points out of 8.

By using (4.2) and (4.3), we can now prove the relationship between the

two forms of Walsh transforms. This result can be found in [17, 38] without

proof. Since Wy(a) = Z f(@)(=1)f*® and Wi(a) = Z(—l)f(x)+<a’z>, it is

z€VR €V,
easy to see that Wy(a) = Z (—1){®) and
z€Supp(f)
Wia)= > (=D — Y (=l
z€Vn\Supp(f) z€Supp(f)

However, it is known that

PRI ED DI CI

€V \Supp(f) x€Supp(f)

for any nonzero o in V;,. So, Z (1)) = — Z (—=1)*® imply-

z€Vn\Supp(f) ze€Supp(f)
ing that W(a) = —2W;(a) for any nonzero a in V;,. Note that if o = ap is

the zero vector, then Wy(ag) = w(f) and Wi(ag) = 2" — 2w(f). It follows
that Wi(ag) = 2" — 2Wy(ao).

4.2 Cross-Correlation of f

Now, pausing for some time about the Walsh transform, another important
function which operates on two functions f, g will be investigated. This func-

tion is a generalization of (2.42) on two functions f, g instead of one and also
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generalizes the correlation concept given in [29] and [11]. Its outputs are be-
tween 0 and 1. The definition is as follows :
Let f, g be two functions. Their cross-correlation with a shift o or simply

a-correlation is defined as

C(f,9)(a) = 21n Z(_l)ﬂx)ﬂ(ﬁa)‘ (4.8)

x€Vp
Note that C(f,g)(a) = 5 ((r, (@) where (s is the sequence of f and (y(c)
is the sequence of g(x + a). The auto-correlation of f with a shift a, defined
as Ar(a) = ((f, (f()) in (2.42), is actually 2".C(f, f)().

What C(f,g)(«) measures can be seen from the observation below :

(€ Gola)) =2{ z e Vo | fz) = g(z + ) }[ 2", (4.9)

It follows that C(f, g)(e) = 5= ((s, {y(a)) = 2.P{f(z) = g(z + a)} — 1 where
P{A} denotes the probability of an event A.
We call the agp-correlation between a function f and a linear function

fa(z) = (o, x) for o in V}, as the 0-correlation and we denote it by C(f, fa)(0).
Thus, C(f, fa)(0) = 5= > (=1)/ @) = LW (a). Using this, C(f, fo) (i)

€V,
= 2%(—1)<°"“1’>Wf(a) foralli =0,1,...,2" — 1. Moreover, C(f, fa + ao)(a;) =
2%(—1)<°"ai>+a0Wf(oz) for alli =0,1,...,2" — 1 and for any ay in GF(2).

Thus, by using (4.5) and the above results, one obtains that

fla) = o 3 Wia)(-

OLEVn

= D C(f, fa)(0) (~1)/=

a€Vn

= ) C(f fa) (1) (4.10)

acVy,

where C(f, f)(0) is denoted by C(f, fa). This is meaningful since C(f, f,)(0)

coincides with the definition of the correlation between f and f, denoted by
C(f, fa) in [29] and [11].

Now, we turn back to Example 4.1.1. By using (4.10), we get that f(z) =
— 1 oo () + 4 fon (2) 44 fao (£) = 3 fay (2) = 1o (@) + 3 s (2) = 2 fag (2) = § fur ().
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4.3 Properties of The Walsh Transform
22n ; =0
Lemma 4.3.1 ([25]) 3 W;(a) Wi(a + ) = ¥ E=0
aeV, 0 i BF#0.

Proof. By writing the left hand side of the above equation explicitly, one gets
that

LHS =YY" f(z)(-1)t*" f(y)(_1)<a+ﬁ,y>

OéEVn Z'EVn

:ZZ(_ ,@yf f Z ocz-l-y
€V

zeVy, yGVn

Since Z (—1){@m+Y) = 2n§(x4y) where §(z) is the Kronecker delta, the above

acVy
expression turns out to be

LHS = 2" (1) f(z)’

which is the desired result. O

Corollary 4.3.2 ([25], Parseval’s equation)

> Wia)® =27

aEVn

Note that this result was already proved in Lemma 2.5.3. There, the equa-

-1

tion was in the form Z (Cy, lj>2 = 2%" where (; is the sequence of f and [;’s
§=0

are the rows of H, for 7 =0,1,...,2" — 1. The equivalence of these two fact

is due to Wi(a;) = ((y,1;) where [; is the sequence of the linear function f,;.

Theorem 4.3.3 ([11],/39],/25]) Let f, g be functions and f, § denote their sign

functions, respectively. Let z = (x,y) be in Vyym such that x is in V,, and y is

f(@), h(z) = (f + 9)(x), k(z) = f()g(x),
{8,

x) is the linear function corresponding

in Vi,. Define the functions r(z) =
t(x) = f(x) + fg(z) where fg(z) =
9(

to B in V,, and s(z) = f(z) + g(y). Thus, r,h,k,t are functions in F,, and s
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8 a functz’on mn Foim. Then, the followmg hold :

(a) Wi(a) =5z Y Wi +a).

(b) Wila) - —v?fa(V&).

(e) Wila) = Wy(a + ).

(d) Wi(a) = 3 <2"5(a) + Wila) + Wy(a) — W,;(a)) where 0(«) is the Kro-
necker delta.

(e) Wi(a) = Wi(3).Wy(7) for any a = (B,7) in Vi where B is in V,, and
v s in Vi,.

(f) Wi(awo) = 0 if and only if f is balanced.

(9) Z C(f, foé)2 = 1 where f, is the linear function corresponding to {(a, x)

aEVn
for any o in V.

Proof. Only (a) and (d) are proved. The rest follow from the definitions.
(a) Write (4.10) for h :

- (ZCffa )(chfﬁ fﬁ(ﬂ:)
aEVn BeV,
- Z Z C(f7 fa)C(g, fﬁ)(—l)fa+5(ff)
BEVL acVy
— Z (Z C(f7 fﬁ+o‘>0<g, fﬂ)) (_1)f0(-'l‘)
oc€Vy \BeV,

Thus, C(h, f,) = Y _ C(f, fa10)-C(g, f3) by (4.10) and the above equations.

BeVR
Equivalently, C(h, f,) = 5=W;,(0) = 5= Z Wi(B+0)W;y(8). Hence, Wy, (o) =
BEV,,
= Z Wi(B + 0)W;(B) giving the result.
6(Ec‘l/n) First of all note that k(z) = 11+ f(@) + g(x) — f(z).g(z)). Use this
in Wi (« Z k(z)(—=1)"® and note that Z 1)/2@) = 2"§(a). Since
z€VR x€VR

h(z) = (f + g)(x) and by using part (a), the result follows. O
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4.4 Fast Walsh Transform

The calculation of the Walsh transform of the sign function of a function, de-
noted by Wf(a), would require about 2" x 2" = 22" additions and subtractions.
However, there is a faster way to obtain wa which is called the Fast Walsh
Transform. It is a discrete version of the so-called Fast Fourier Transform. This
faster algorithm is the one which we mentioned in Section 2.5. The efficiency
of this algorithm comes from the fact that H,, can be written as the product
of n matrices of order 2" where these matrices have only two nonzero elements
per column. In other words, by writing H,, as a product of n sparse matrices,
it is enough to perform only n2" additions and subtractions to compute wa-

The following lemma gives the method to write H,, in the form mentioned
above. This result is used in (4.4) for n = 3 to demonstrate the faster algorithm

[25].

Lemma 4.4.1 (/25]) Let H, be the Sylvester-Hadamard matriz of order 2".
H,, can be written as the product H, = gV Y .. g of n matrices Hf,(Ll),
H722), .. .,H,g") each containing only two nonzero elements per column where
qY = Ion—i @ Hy ® Iyi—1 for v =1,2,...,n and Iy 1s the identity matriz of

order 2¢.

Proof. Use induction on n. For n = 1, the result is obvious. Assume that the

result is true for n. Then,

H,., = Hy®H,
= Hyo (HY.HP .. HM)
(I, @ HVY(I, @ H?) ... (I, ® H™M)(Hy ® I5n)
= (I5® (-1 @ Hy® 1)) (1o @ (Ign—2 @ Hy ® I3)) . ..
(1o ® (1o ® Hy ® Ion-1))(1y ® Hy ® Ion+1-1)

1 2 n+1
N )

Note that the third equality is due to (3) of Lemma 2.4.2. O
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Example 4.4.1 (/25])

(a) Let n = 2. H, is given in (2.35). Now, Hz(l) and Hf) are as follows :

oY =1I® Hy =

HY =Hy® I, =

It is easy to see that Hy = HQ(I).HSQ).
(b) Let n = 3. Hj is given in (2.38).

HY =Ie @ Hy® I, =

o O O o o o ==

1
1
0
0

10
-1 0
01
01

01 0

H:,El), H§2) and Hég) are as follows :

10 0
-1 0 0
01 1
01 -1
00 O
00 0
00 O
00 0
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(10 1 000 0 0]
01 0 100 0 0
10-1 000 0 0
HO _nemen_ |01 07100 0 0]
00 0 010 1 0
00 0 001 0 1
00 0 010 -1 0
00 0 001 1 -1
(1000 1 0 0 0]
0100 0 1 0 0
0010 0 0 1 0
HO om0 001 0 0 0 1
1000 -1 0 0 0
0100 0 -1 0 0
0010 0 0 -1 0
0001 0 0 0 -1

By some tedious work, one can easily verify that indeed Hs = H?El).Héz).Hé:s).

Now, let n = 3 and f be in F3 with (y = (ao, a1, as, as, as, as, ag, ay). Since
TWf = (yHs, by using Hs = Hél).Héz).Hég), i.e. by multiplying (; first with
Hél), second with H§2) and finally with H3(3), one obtains that

GV = GHSY = (w0, 71,70, 23, T4, T5, T, T7),
2

Cf(2) = Cf(l)H?E ) = (yo)ylay2ay37y4ay5ay67y7)v

Cf(g) - Cf(Q)HEE:S) = (ZQ,Zl,ZQ,2’3,24,25,2:6727),
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where

Tog = G+ a
T = ag— ay
Ty = az+as
T3 = ag — ag
Ty = a4+ as
Ts = a4 — as
Tg = ag+ ay
Tr = ag— ar
Yo = To+ T2
Y1 = T1+x3
Y2 = Top— T2
Ys = T1— T3
Yg = T4+ Tg
Ys = Ts+ a7
Yo = T4 — T
Y. = s — X7
20 = Yot Ua
21 = N1 t+Ys
22 = Y2+t U
23 = Ys+tuyr
24 = Yo — Ya
s = Y1—Ys
%6 = Y2—UYs
T = Ys—Yr.
Thus, starting from a;’s for ¢ = 1,2,...,7, after three steps one obtains z;’s
for i =1,2,...,7. It is clear that these three matrix multiplications take 3.23

operations instead of 2° operations if direct multiplication of ¢; and H, is
performed.

By writing y;’s and z;’s in terms of a;’s for i« = 1,2,...,7, after each mul-
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tiplication we have

apg — a+a — aq+a+ax+a3 —
a, — ay—a; — ay—a;+ay—a3 —
a — Q2+az — GQy+a —as—az —
as — Gy —ag3 — Qyp—a] —ag+a3 —
ag — as+as — agtas+agt+ar —
as — QA4 — Ay — Q4 — Q5+ ag — ay —
ag — ag+a; — a4+as—ag—ay —

a; — ag—ay — Q4 — a5 — ag+ a7 —

— ag+ a1 +as+ asz+aqg + as + ag + ar
— Qgp— a1+ a3 — a3+ a4 — a5+ ag — Gy
— Qo+ a; —az — a3+ a4+ as — ag — Gy
— ay—a —az+az3+ay —as — ag + ar
— ag+ay+as+ a3 —ag — as — ag — ay
— Qg — Qa1 +0as — a3 — G4 + a5 — Ag + Q7
— Qo+ a; —az —as— a4 —as +ag + as
— ayp— a1 — ay +as — a4 + as + ag — ay.
showing each obtained intermediate result which occurs as a result of the three

matrix multiplications.
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CHAPTER 5

More Cryptological Properties

5.1 Strict Avalanche Criterion and Propagation Crite-

rion Of Degree k

The strict avalanche criterion is introduced by Webster and Tavares [55]. A
function f is said to satisfy the strict avalanche criterion if complementing any
single input coordinate results in the output of f changing with probability
exactly one half. In other words, the difference function f¢ is a balanced
function for any « in V,, with w(a) = 1. Hence, strict avalanche criterion or
in short SAC characterizes the output of the function when there is a single
bit change on the input.

An important generalization of the strict avalanche criterion which was

introduced in [2] and [38] is the following :

Definition 5.1.1 A function f is said to satisfy

(a) the propagation criterion with respect to a nonzero vector a in V,, if the
difference function f* is balanced.

(b) the propagation criterion of degree k if it satisfies the propagation criterion
with respect to all o in 'V, with 1 < w(a) < k. In this case, f is said to satisfy
PC(k) and f is said to be a PC(k) function.

Note that SAC is equivalent to the propagation criterion of degree 1 which
is denoted by PC(1).

Recall from Section 3.4 that the number of vectors for which f¢ is balanced,
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i.e. the number of vectors for which f satisfies the propagation criterion is in-
variant under any affine transformation on the input coordinates. This is not
true for SAC. In other words, the strict avalanche criterion is not invariant
under affine transformations on the input coordinates. Thus, by an affine trans-
formation on coordinates, one can construct a SAC fulfilling function from a
function which does not satisfy SAC and conversely. This is an indicator that
SAC itself is not a strong measurement of propagation criterion. A function
may very well be a PC(1) function whereas it may not satisfy the propagation
criterion for many vectors with weight greater than one. Moreover, it may even
have nonzero linear structures with weight greater than one. It is obvious that
having nonzero linear structures is the worst case with respect to propagation
criterion. The following result shows how to obtain a SAC' fulfilling function

from any function by an affine transformation of input coordinates.

Theorem 5.1.1 ([43]) Let f be a function and A be a nonsingular matriz of
order n with entries from GF(2). If f satisfies the propagation criterion with

respect to each row of A when a row of A is considered as a vector of V,,, then

W(x) = f(xA) satisfies SAC.

Proof. Let {eg,e1,...,e,} be the standard ordered basis of V;,. Then, ¢(x) +
vz +e) = f(xA)+ f((x+e)A) = f(xA) + f(xA+ ;) where v; = ¢;A is the
i-th row of A. Hence, ¢¥(x)+¢(x+¢;) = f(u)+ f(u+;) where u = zA. Since
A is nonsingular, u runs through V,, when x runs through V,,. By hypothesis,

f7 is balanced for any row 7; of A which implies that 1 satisfies SAC. O

An important remark is that a function satisfying S AC need not necessarily
be balanced. By using the definition, a function f satisfies SAC if and only if
Z (f(x)+ f(z+e)) =2"""foralli = 1,2,...,n where ¢; is the vector in V,

:EEVn
with all entries except the i-th are zero. Equivalently, f satisfies SAC' if and

only if Z(f(:v)f(x+e,)) =0foralli=1,2,...,n.

.Z‘GVTL
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Example 5.1.1 ([17]) Let f be in Fs with Ty = (0,0,0,1,1,0,0,0). Note that
Z(f(x) + f(z+e)) =4 fori=1,2,3. Thus, f satisfies SAC but f is not
zz‘l/gnced.

In [32], S(n,k) denotes the number of functions for which the output
changes with probability exactly one half if any of the input variables x1, xo
y. .., xp among x = (X1, Ty, ...,x,) is complemented and S(n,n) denotes the
number of functions satisfying SAC. We use S,, for the number of functions
satisfying SAC as used in [8].

In [32], explicit formulas for S(n, 1) and S(n,2) are given both of which are
in fact upper bounds for the number of functions satisfying SAC. In [8] and
[53], asymptotics for the sizes of S(n,1) and S(n,2) are given, quantifying the

number of functions satisfying SAC.

n

Lemma 5.1.2 (/8]) S(n,1) ~ 27 22" "%,

Proof. From Lemma 1 of [32], S(n,1) = , | By applying Stirling’s
A

formula n! = (27m)%(§)" to the binomial coefficient, the result follows. O

Lemma 5.1.3 (/8]) Forn > 2, S(n,2) > 22",
The following theorem gives a lower bound for S,,.

Theorem 5.1.4 ([8]) One can explicitly construct 22""* functions which satify
SAC.

By construction, all functions in Theorem 5.1.4 are balanced.
In [8], ¢, is defined as t,, = bg2+s”. By Theorem 5.1.4, we get that ¢, > 411‘
In [8], a stronger result is proposed as Conjecture 4 and it is proved in [9].
Conjecture 4 (of [8]): Given any choice of the values f(«;) fori=0,1,...,
2=t — 1, there exists a choice of f(q;), for 2"~1 <4 < 2" — 1 such that the

resulting function f satisfies SAC.
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The proof of Conjecture 4 implies that there are at least 22" functions
which satisfy SAC and improve the bound from ¢, > % to t, > % This
inequality was proved independently in [54] by using a different method. Later,
Daniel Biss has given a much more complicated argument that shows ¢, = 1,

thereby disproving the Conjecture 1 of [8].
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CHAPTER 6

Bent Functions and Properties

6.1 Bent Functions

In this chapter, a non-exhaustive survey is given about the properties of one
of the most important classes of functions in F,, so called bent functions.
Almost all results of this chapter are from the article of Rothaus [39] in which
bent functions are introduced and from MacWilliams and Sloane [25]. In this
chapter, the characterization of bent functions by using the Walsh transform
and by other cryptological means will be presented.

A function f in F, is called bent if all the Walsh transform coefficients
Wi(a) given in (4.3) have the same absolute value, i.e. [W(a)| is constant
for all a in V,,. By using Parseval’s equation in Corollary 4.3.2, f is a bent
function if and only if [W3(a)| = 2"/2 for all ain V,,. Since Wi () is an integer
for all a in V,,, if f is a bent function, then n must be even. In this chapter,

unless otherwise stated explicitly, we assume that n is even and n > 2.

Lemma 6.1.1 (/39, 14]) Let f be a function.

(a) f is bent if and only if f, the complement of f, is bent.

(b) Being bent is invariant under nonsingular affine transformations on the
input coordinates. In other words, f is bent if and only if the function h = fo#f
is bent where (x) = xA+ a, A is a nonsingular matriz of order n and o is
any vector in V.

(c) [ is bent if and only if the function f + ¢ is bent where ¢ as an affine
function.

(d) f is bent if and only if ((;,(,) = £2/% where (, is the sequence of an
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affine function ¢. The sequence of an affine function is called an affine se-
quence.

(e) f is bent if and only if the function h = f + f,, where fo(x) = (o, x), has
weight 271 42271,

Proof. Only the proof of (b) is given. The others can be deduced easily from
the definition of a bent function.

(b) [ is bent if and only if [W(a)| = 2"/ for all ain V,,. Let 6(z) = A+«
where A is nonsingular and « in V,,. By Lemma 3.4.1, d(f, f,) = d(f o0, f,00)
where f, is the linear function corresponding to «. Note that |Wf(a)| =2 =
20— 20(f, fu)| = 2 = 2d(f 0 0, fu 0 6)] = |2" — 2d(h, £5)| = [W; ()| where
h = fof and fzs = (6,2) + ap = fo 0 0 for some ap in GF(2). Since A is
nonsingular, as ¢ runs through all nonsingular affine transformations f3 runs

through all linear functions giving that h = f o # is also bent. O

One of the most important characterizations of bent functions is the fol-

lowing :

Theorem 6.1.2 (/25]) Let f be a function. Then, f is bent if and only if
d(f, An) = Npaz where Npap = 271 =221 is the largest value of nonlinearity
as proved in Lemma 2.5.2 and A, is the set of all affine functions. In other
words, f s the furthest function away from the set of all affine functions with

respect to the Hamming distance.

Proof. Let f be bent. Then, [W;(a)| = 272 for all o in Vj,. Thus, d(f, f.) =
52" = Wi(e) =21 £ 2727 and d(f, fo) = 5(2" + Wi(a)) = 21 F 2/
implies that d( f, p) = 2"~142"/271 for any affine function ¢ in A,,. It is obvious
that Ny = égag{d(f, @)} = min{2" 4 2n/27t gnl_ogn/2-1y — gn=l_on/2-1
Niaz-

For the converse, suppose that f is a not bent. Then, [W;(«a)| # 27/2 for
all @ in V,,. By Parseval’s equation there exists a in Vj, such that [W;(a)| >

22, Since d(f, fo) = 5(2" — Wi(a)) and d(f, fo) = 5(2" + Wi(a)), either
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d(fv fa) < Nmaaﬂ or d(fv fa) < Nmaa:- ThUS, Nf < Nmaz- o

The upper bound N,,ep = 2" ' — 22! in Lemma 2.5.2 is an integer, hence
it is attainable if n is even. However, even if n is even, this does not imply that
there exist functions having this nonlinearity. The above theorem guarantees
that there exists a certain class of functions attaining the largest nonlinearity.
Furthermore, this class may be solely described in terms of its property of
having the largest nonlinearity. Although they have the largest nonlinearity
among all functions, bent functions have an important drawback to be used in

cryptography directly, as shown in the following lemma.
Lemma 6.1.3 (/39]) Let f be a bent function. Then, w(f) =21 42571,

Proof. Since Wi(ap) = 2" — 2w(f), [Wi(ao)| = [2" — 2w(f)| = 2"/2. This
implies that w(f) = 271 £ 27271 O

Thus, by Lemma 6.1.3, bent functions are not balanced. So, a necessary
caution should be taken when using a bent function in a cryptosystem. Another
important fact obtained from Theorem 6.1.2 and Lemma 6.1.3 is that balanced
functions can not attain the largest nonlinearity. In other words, balance and
largest nonlinearity can not be simultaneously satisfied.

Although bent functions are not balanced and can not be used directly, they
are used as building blocks of many cryptologically important constructions
such as the construction of highly nonlinear balanced functions with good
propagation characteristics [44], the construction of cryptographically robust
S-boxes [47] and many more.

Since the introduction of bent functions [39], although a significant amount
of work has been spent on them, still very few distinct classes of bent functions
are known. An important problem in this theory is to construct new classes
of bent functions either by using the previously known classes or by different
methods. From the cryptological point of view, the nonlinearity and the prop-

agation characteristics of bent functions are very attractive. The propagation
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characteristics of bent functions will also be investigated in this chapter. The
result is that bent functions are also the best among all functions with re-
spect to the propagation criterion. In other words, bent functions are PC(n).
As mentioned in the above paragraph, bent functions are a good source to
construct cryptological functions or mappings. In the following chapter, meth-
ods of constructing highly nonlinear balanced functions with good propagation
characteristics will be presented [44]. Most of the methods presented in the fol-
lowing chapter will be based on concatenating, splitting and modifying known
bent functions.

Bent functions are also useful to observe the relations between cryptolog-
ically important properties. As noted in the relation of balance and largest
nonlinearity, not all these properties can be simultaneously satisfied. This is
also true if one considers balance and nonlinearity with propagation criterion
and correlation immunity (or resiliency) [49]. It is well-known that bent func-
tions are not correlation immune. These facts show that there are important
trade offs between cryptologically important properties. Hence, if one looks for
a function which satisfies a list of properties (possibly some of them are con-
flicting), then the best he can do is to seek a function in some special subsets of
F,. by exhaustive search or to construct a function explicitly which optimizes
these properties.

We continue to investigate the properties of bent functions. Let f be a

Wi(a)
on/2

bent function. Define the function g by setting (—1)9(®) = for all o in V,,
where W;(a) denotes the Walsh transform of the sign function of f. Since f is
bent, it is clear that g is in F,,. Note that for any « in V,, the Walsh transform

coefficients of the sign function of g are also +2"/? since :

~ 1 1
fla) = o > W) (-1l = 72 > (—pyslertien

OéEVn aEVn

1

Thus, g defined as above is also a bent function. This fact can be stated

equivalently in terms of the sequence of f as follows :

67



Let f be a bent function with sequence (f. Then, the (1, —1)-sequence
27"2(:H, is the sequence of a bent function. The sequence of a bent function
is commonly called as a bent sequence in the literature.

Consider now a bent function f and the function g obtained via f as above.
Define a function h by using g exactly in the same way as ¢ is defined by using

fas (1)) = Vggﬁ‘;‘) It is obvious that A = f. This shows that there is a

natural pairing f «— ¢ of bent functions [39].

Lemma 6.1.4 (/39],[25]) A function f is bent if and only if the matriz A =
(a;j) of order 2" where a;; = 2,%I/Vf(ai +aj) for 0 < d,j <2"—1isa

Hadamard matriz.
on_q

Proof. Let AA" = (x;;) where z;; = 5+ Z Wi(ai + ap)Wi(a; + ai). By
k=0

using Lemma 4.3.1, we get that
2" it =7,
0 if @ # .

Thus, A is a Hadamard matrix. The converse is trivial. O

ZEZ']‘ =

By using Theorem 2.6.4 and the definition of a bent function, the following

important property of bent functions is obtained.

Theorem 6.1.5 ([14]) A function f is bent if and only if f is balanced for
any nonzero « in'V,. Equivalently, f is bent if and only if f satisfies PC(n).

In the literature, the difference function f* corresponding to « in V,, is
sometimes called as the directional derivative of f in the direction of a. By
Theorem 6.1.5, another characterization of bent functions is obtained via their
propagation characteristics. A simple but worth to mention fact is that a
balanced function can not be PC(n). This shows that balance and PC(n) can

not be simultaneously satisfied.

Lemma 6.1.6 (/39]) A function f is bent if and only if the matriz of f,
M; = (my;) where my; = (—1)f@+%9) for 0 < i,j < 2" — 1, is a Hadamard

matriz.
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Proof. Let M;M;' = (y;;) where y;; = Z (—1)f(itar)+farar) By g
ap€Vy
simple change of variable in the bound of this summation, one can obtain that

Yij = Z(—l)f(6)+f(o‘i+aj+9). Since the function inside the summation is the

0EVn
directional derivative of f in the direction of ; + a;, Theorem 6.1.5 gives that

o if =3,
0 if i#j.

Yij =

Thus, My is a Hadamard matrix. The converse is also true again by using

Theorem 6.1.5. O

An important fact about the degree of bent functions is that if a function

has degree strictly greater than n/2, then that function can not be bent.

Proposition 6.1.7 ([39]) If f is a bent function and n > 2, then the degree
of f is less than or equal to n/2, i.e. deg(f) < n/2.

Proof. Since f is bent, let n = 2k where £ > 1. Let r be an integer
satisfying 1 < k < r < n. Define f(zy,29,...,24,...,2,,0,0,...,0) =

g(x1, T2, ..., 2k, ..., x). By (4.5),

1
(i) = LS i a, a1y

and

1
(_1)f(x1,xg,...,l’r,o,...,o) — 2_n Z Wf-(Oél, 052, L 7an)(_1)alxl+...+arx7,'

a1,02,...,0n EGF(2)
Since the left hand sides of these two equations are equal, so are the right hand
sides. Equating them and by using the uniqueness of the expansion in (4.5),

one obtains that

1
Wilag, ag,...,0p) = T Z Wilar, ag, ... o g, oo Q).

Qg 1,0 42,...,an EGF(2)
Since Wj(a) = 2" — 2w(g) where ag is in V;, the number of zeros of the

function g(zy,zo,...,x,) is equal to 2"t + %WQ(O,O, ...,0). By using the
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above equation, the number of zeros of g is equal to

-~ |
2 1+2n77“+1 Z Wf(0,0,...,O;ar+1,...,Qn).

Qp 1,0 -25eeny Qn EGF(Q)
Thus, the number of zeros of g is equal to
o=t 4 grn-l > W30,0,...,0; g1, . ., ).
Qg 1,0 42,...,an EGF(2)

There are 2"~ summands in the above summation and since f is bent,

w3

(W50,0,..., 050041, an)| =2

for any a,41,...,a, € GF(2). Hence, the number of zeros of g is even. How-
ever, w(g) = aqa.., (mod 2) by (2.11) where a5, is the coefficient of the term
1Ty ...x, in g. Thus, ajs. , = 0. In other words, the degree of g is strictly

less than r. Since r is arbitrary in the range 1 < k < r <mn, deg(f) < k. O

Proposition 6.1.8 (/39]) Let the function h be defined as h(z) = f(z)+ g(y)
for z = (z,y) in Vyim, © in V, and y in V,,. Then, h is bent if and only if f

and g are bent.

Proof. ([25]) Let a = (,7) be in V,4,, for fin V,, and v in V,,,. By (e) of
Theorem 4.3.3, [Wj, (o) = [W(B)|-[W5 (7).

If f and g are both bent then, [W;(8)| = 22 and |W;(v)| = 2% for any f3
in V,, and for any v in V,,. Thus, |W;(a)| = 2"5" for any « in Virm giving
that h is bent.

Conversely, assume that h is bent but f is not bent. Thus, there exists
some 3 in V,, such that [W;(8)| > 22. Then, for any o = (8,7) in Viim

n+m

272 = [Wi(B)[.IW(7)|. Tt follows that [W;(v)| < 2% for all v in V,,. How-

ever, this is impossible due to Corollary 4.3.2. O

The functions of type h used in Proposition 6.1.8 are given a special name

in [25] as follows :
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Definition 6.1.1 A function h is called decomposable if there is a linear trans-
formation on the input coordinates such that h can be written as a sum of
functions on disjoint variables as in Proposition 6.1.8.

In other words, h in JF, is decomposable if there exists a binary matrix of
order n such that h(zA) = f(x) + g(y) where z = (z,y) is in V,, for x in Vj
and y in V; satisfying k +t = n. If there exists no such matriz, then h is said

to be indecomposable.

If h is a decomposable bent function for n = 2k, then by Proposition 6.1.7
the degree of each function f and g is necessarily strictly less than k, except

in the case when k£ = 2. This gives the following :

Proposition 6.1.9 (/39]) If f is a bent function in F,, where n = 2k for

k > 3, then f is indecomposable.

After having investigated many properties of bent functions, it is time to

see some examples of bent functions.

Theorem 6.1.10 (/39]) Let n = 2k and g be any function in Fy. The func-
tion, f(2) = f(z,y) = (z,y)+9(r) = T1y1+22y2++ - -+ Txyx+9(x) is bent where

z = (z,y) inV,, x,y are in Vj, withx = (z1,%2, ..., %) andy = (Y1, Y2, - - -, Yx)-

Proof. Let f be in F,, of the form described in the statement of the theorem
and let f, be the linear function corresponding to («, z) for any « in V,,. It is
enough to show that (f + f,)(2) has 22*=! 4 28=1 zeros. Part (e) of Lemma
6.1.1 yields the result.

Write a = (3,7) where 3,7 are in Vj. Then, f,(2) = fs(z) + f,(y). Set
h(z) = (f + fa)(2). Then, h(2) = h(z,y) = g(x) + (B,2) + {z + 7,y).

For the values of x where x + v = g, h(z) = h(v,y) = g(v) + (5,7) and
is a constant for any y, i.e. independent of yi,ys, ...,y If g(v) + (B,7) =0,
then h has 2% zeros and no zeros otherwise.

For the values of x where x + v # «p, the function h(z) is a nonconstant
linear function in the variable y and hence has 2¢~! zeros. Since, there are

2% — 1 choices for z, h has 2F71.(2F — 1) = 221 — 2k=1 zeros.
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Thus, h has in total 22=! 4 281 zeros. This gives the result. O

As a corollary of Theorem 6.1.10, the function defined as f(xy, za, ..., x,) =

T1T9 + 3Ty + + -+ + Tp_12, 1S a bent function when n is even [25].

Theorem 6.1.11 (/25]) Let f be the function defined as f(xq,x2,...,2,) =

T1T9 + 123+ ... + T 1T, where n is even. Then, f is bent.

Definition 6.1.2 (/25]) Two functions f,g are said to be equivalent if the
difference h(x) = f(x)+ g(x) is an affine function. If f, g are equivalent, then
they are denoted by f ~ g.

Theorem 6.1.12 (/25]) Let n = 2k and f be the function defined as f(z) =
fz,y) = (x,y) where z = (x,y) in V,, x,y are in Vi with v = (x1, o, ..., Tx)
andy = (Y1, Y2, - - -, Yx), i.e. take g =0 in Theorem 6.1.10. Then, the functions
i f + xiwoxs, f 4+ v1x0x32y, ..., f + T129 ... are k — 1 inequivalent bent

functions of degrees 2,3, ... k.

Theorem 6.1.13 ([39]) Let n = 2k and f,g,h be in F, such that f + g +
h is bent. Define the function 6 in F,io as 0(z) = 0(x1,xe,...,2,,u,v) =
F@)-9() + 9(@)h(x) + h@)-f@) + (@) + g(e)u+ (F@) + b)) + wo
where z = (x,u,v) is in Vyio for x = (x1,29,...,2,) in V, and u,v in GF(2).

Then, 0 is also bent.

Proof. The proof proceeds exactly as the proof of Theorem 6.1.10 and can be
found in [39]. O

Remark 6.1.14 The class of bent functions in Theorem 6.1.13 give the most
general polynomial of the form 0(x,u,v) = u.v + f(x).v + g(z).u+ h(x).
The class of bent functions in Theorem 6.1.13 contains the class in Theorem

6.1.10.

Now, an important construction of bent functions is given without proof.

We state the form as in [25].
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Theorem 6.1.15 (Maiorana-McFarland) Let g be any function in F,, and ¢

be a bijective transformation of V,, given by

o(x) = (p1(x1, 2o, .., xn), 02(T1, Ty oo X))y e oy Pu(T1, X, o, )

where v = (x1,Ta,...,2,) s in V,. Then, f(z,y) = {p(x),y) + g(y) =
o1(x)y1 + wo(2).y2 + ... + pu(®).yn + g(y) is a bent function in F, where
x,y in V, with x = (v1,22,...,2,) and y = (Y1,Y2, - -, Yn)-

The following paragraph is from [31] :

The general case when ¢ = p", a prime power and g,y over Z; instead
of V,, is due to [21]. When ¢ = 2, it was proved by Maiorana (unpublished,
see [15]) generalizing the construction method of Rothaus [39]. An equivalent
method is given by McFarland [28]. A third equivalent way of looking at this
construction when ¢ = 2 is to make use of Hadamard matrices as in [22]. The
constructions given in [3] and [52] are special cases of Theorem 6.1.15.

As mentioned in [30], different choices for ¢ and g in Theorem 6.1.15 yield
different bent functions. It follows that, the number of bent functions is lower

bounded by 22% .(231).

Definition 6.1.3 (/30]) Let G be an additive abelian group of order v. A
subset D of G is called a (v, k,\)-difference set if the order of D is k and
if every element a € D can be expressed in A\ different ways as a difference

a =b— c where b,c are in D.

The following theorem is stated as it is in [30].

Theorem 6.1.16 ([15/) A function f in F, is bent if and only if it is a char-
acteristic function of a difference set in V,, where the parameters of a difference

set in Vi, are (27,2771 £ 2571 2772 4 251) due to [26].

The main result of [15] is that for k£ > 3 there exist bent functions in Foy

which are not equivalent to any functions in Theorem 6.1.15 [30].
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CHAPTER 7

Constructions

7.1 Constructing Highly Nonlinear Functions

All constructions in this chapter are from the article of Seberry, Zhang and
Zheng [44].
Let fi1, fo be in F,,. Consider g in F,; defined as

9(2) = (y+ 1) fi(z1, 22, ..., 20) + yfolz1,22,...,20) (7.1)

where z = (y, 1,22, ...,x,) is in V, 1. Siegenthaler [49] showed that if f; and
f2 are m-th order correlation immune functions in F,,, then g is an m-th order
correlation immune function in F;, 1.

It is clear from (7.1) that g(0,a) = fi(«) for any 8 = (0,«) in V41 and
g(1,a) = fa(a) for any § = (1, ) in V,,11 where « is arbitrary in V,. This
gives that the truth table of g is the concatenation of the truth tables of f;
and fy. In such a case, ¢ is said to be the concatenation of f;, fo and the truth
table of g is denoted by T, = (1%,,T},). The following lemma gives a lower
bound on the nonlinearity of a function obtained by the concatenation of two

special functions.

Lemma 7.1.1 Let fi, fo be in F,, and g be a function in F, .1 obtained as in
(7.1). Suppose that (Cys,,1) < P; holds where (y, is the sequence of f;, 1 is the
sequence of any affine function and P; is a positive integer for i = 1,2. Then,

the nonlinearity of g satisfies Ny > 2" — %(Pl + Py).

Proof. By construction, the sequence ¢, of ¢ is equal to ¢, = ({s,,(s,). Let

¢ be an arbitrary affine function in A, with sequence (,. By Lemma 2.5.1,
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Co = (l;,%£l;) where [; is the sequence of an affine function in 7, . Thus,
(Cgs Cp) = (Cpys i) £ (s, ;) which implies that [((y, ()| < Pi + . By Lemma
2.2.1,d(g, ) = 2"—3((y, () = 2" — 1(P1+ P,). Since ¢ is arbitrary, the result

follows. O

The construction which was introduced by Meier and Staffelbach [29] as
a special case of Lemma 7.1.1 shows that highly nonlinear functions may be

obtained by concatenating bent sequences.

Corollary 7.1.2 Let n = 2k and fi, fo be bent functions in F,. Then, g

constructed as in Lemma 7.1.1 has nonlinearity N, > 2% — 2.

One can also get similar results by concatenating four functions instead of

two :

Lemma 7.1.3 Let f; be in F, with sequence (s, and suppose that ((y,, 1) < P,
holds for any affine sequence | of length 2™ where P;’s are positive integers for

1=0,1,2,3. Let g be in F,1o obtained by the concatenation of f;’s. In other
3

words, 9(2) = > Xa,(y)-fi(x) where z = (y,x) is in Voyo for y = (y1,2) in
=0

Vo, © = (21,29,...,2,) in V, and X,, is the characteristic function of o, in

Va. Then, N, > 2" — %(Po + P+ P+ P3). Asin Lemma 7.1.1, if n is even

and fi’s are bent functions for i =0,1,2,3, then N, > 2"l — 25+,

Proof. The proof is exactly the same with the proof of Lemma 7.1.1. Just note
that H,1o = Hy ® H,. It follows that the sequence (, of any affine function
(Y2 1S equal to (lz, li, li, lz> or (lz, —li, li7 _lz) or (lz, li, —ll‘, —lz) or (lz, —li, —lz‘, lz)

where [; is the sequence of some affine function in F,,. The rest is the same. O

Remark 7.1.4 (a) Lemma 7.1.3 can easily be generalized to the case where
2t functions are concatenated.
(b) In Lemma 7.1.1 and Lemma 7.1.3, one can obtain balanced functions by

using suitable functions. In Lemma 7.1.1, if fo and fi are both balanced or
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more generally if fo, f1 satisfy w(fo) + w(f1) = 2", then g is balanced. These

are also true for the function in Lemma 7.1.35.

Another way to obtain highly nonlinear balanced functions apart from con-

catenating bent functions is by splitting bent sequences.

Lemma 7.1.5 Let n = 2k and f(x1,9,...,2,) be a bent function. Define
two functions go, g1 i Fn_1 by go(za,x3,...,2,) = f(0,29,23,...,2,) and
g1(z2, 3, ..., xy) = f(1, 29,23, ..., 2,) with sequences (g, C,, respectively. For

any affine sequence | of length 2"~' and for i = 0,1, the following holds :
—28 < {0 1) < 2%

Proof. Note that f(z) = (1 + 1)go(22, x5, . .., n) + x101(T2, T3, . .., x,). Let
L be an affine sequence of length 2". Since H, = H; ® H,_1, L = (,1) or
L = (I, 1) for some affine sequence [ of length 2"~ 1.

Assume that —2% < ({,,,1) < 2% is not true. Without loss of generality,
let (Cy, 1) > 2%. We have, (Cf, L) = ((, 1) £ ({4, 1) according to L = (I,1) or
L=(,-1).

If (¢,,,0) > 0, then ((;,L) > 2% for L = (1,1) and if {,,l) < 0, then
(¢s, L) > 2% for L = (I, 1), both of which contradict the fact that (Cy, L) =
+2%. Thus, —2% < ((,,,1) < 2* holds for any affine sequence [ of length 2",

The fact —2F < ((,,,1) < 2" is proved exactly in the same way. O

Let n = 2k and f be a bent function. Then, by using Lemma 7.1.5 one
concludes that N, > 2%~2 — 21 for j =0, 1.

Note that the concatenation of two bent functions in F5;_o by using Corol-
lary 7.1.2 yields a function g with N, > 22¢=2 — 2k=1 " Thus concatenating
two bent functions in For_o and splitting a bent function in F5;, both result in
functions having nonlinearities bounded below by the same value.

We have seen that concatenating two bent functions properly yields a bal-
anced function. Similarly, one can also obtain a balanced function by splitting

a bent function. For this, the result obtained by Adams and Tavares [2] will
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be used. It states that the concatenation of the rows lg, [y, ..., lox_; of Hy is a
bent sequence of length 22*. Denote the resulting function by f(x1, za, . .., Tap).
Since f(z) = (x1 + 1)go(xe, 3, ..., Tox) + T101 (22, T3, . .., XT9x), Where gy and
gy are as in Lemma 7.1.5, the second half of the sequence of f is the sequence
of g1(xq, x3, ..., x9;). This sequence is equal to (5, = (lor—1, lor—141, ..., lox_1).
Since all rows of Hj, except the all-one sequence [ is balanced, g, is a balanced
function with nonlinearity N, > 222 — 2k=1,

By permuting the /;’s appearing in the sequence of g; for 281 <4 < 2F —1,
one obtains a different balanced sequence (5, = (i, . liy -+ -5y, ) Where
{igk—1,9k-141, ..., d9k_q } is any permutation of {2571 28=14+1 .. 28 —1}. The
function corresponding to ¢} has also the same nonlinearity as the function cor-
responding to (,,. Thus, (* = (age—1.li,_,, a2k71+1.li2k71+1, ooy agr gy, ) are
balanced sequences with the same nonlinearity as (,, where a; € {+1,—1} for
2k—1 < § < 2 — 1. Hence, there are 22k_1.(2k_1!) different balanced sequences
with this nonlinearity which are obtained by permuting /;’s and changing the
signs of a;’s for i = 2F=1 21 11, ... 2F — 1.

Now, bent sequences of length 22* obtained by concatenating the rows of the
Sylvester-Hadamard matrices will be modified so that the resulting functions
on V5 are balanced and have a much higher nonlinearity than those which are
obtained by concatenating four bent sequences. This result with the sequences
in [35] will lead to the construction of balanced functions on Va4 for k > 14.
These functions have higher nonlinearities than those which are obtained by
concatenating or splitting bent sequences . These results bring significant
improvements to the previously known construction methods. Even and odd
dimensional cases will be considered separately.

(a) On Vy, :

Lemma 7.1.6 For any integer t > 1, there exists
1) a balanced function f on Vi such that Ny > 24—1 — 22t=1 _ ot
() f

(it) a balanced function f on Vo such that Ny > 24+t — 22t — 9t

Proof. First of all, note that an even number n > 4 can be expressed as
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n =4t or n = 4t + 2 where t > 1.

(i) The concatenation of all [;’s is a bent sequence of length 2% where [,
is the i-th row of Hy, for ¢ = 0,1,...,2% — 1. Since all rows of Hy; except
ly are balanced, replacing [, with a balanced sequence of length 2% makes
¢ = (lo,ly,...,lp2e_1) a balanced sequence. Thus, the crucial point here is a
replacement which makes the function balanced while making the function as
nonlinear as possible.

Denote the rows of H, by e, e1,...,es_1. Set ly = (e1,e1,69,€3,... €2t 1)
which is a balanced sequence of length 2%. Hence, ¢ = (lol, li,... 02 1) is a
balanced sequence. Now, a lower bound for the nonlinearity of the function f
with sequence ¢ will be given.

Let ¢ be an affine function in Fy; with sequence ¢, which is a row of £Hy.
Since Hy = Hy ® Hy, we get that ¢, = £1; ® [; where [; and [ are rows of
Hy. Denote l; = (hip, hig, ..., hige). Then, ¢, = £(hi1.lj, hiolj, ..., hig2e.l;).
It follows that |[(¢', )| < (o, 1) + [, ;)] = [{o', ;)| + 2% since any two
distinct rows of Hy; are orthogonal.

As Hyy = H;® Hy, | = e, ® e; where [ is a row of Hy, and ey, ; are rows of
H;. Denote ey by (a1,az,...,as). Then, l; = (ai.e;, az.€,...,as.¢;). Hence,

one obtains that

(', 1)1 < Ken, e + [{ex, e + [(ea, e + -+ + |{ear—1, )]
oL i [ =1,
= {2t if (=23, 21,
0 if I[=0.

Thus, [(¢, ¢V < [{lo,1;)] + 2% < 2041 4 2% By using Lemma 2.2.1, one
can conclude that d(f,¢) > 2471 — 1(¢',¢,) > 2471 —22=1 — 2!, Since ¢ is
arbitrary, Ny > 24-1 — 2%~1 _ 9t

(ii) Consider this time Hyyq. The concatenation ¢ = (lo, 1y, ..., lo2e+1_1)
of the rows of Hs 1 is a bent sequence. As in part (i), replace [y by the

!
balanced sequence ly = (eat, €9t 11, ..., ext+1_1) where ¢;’s are the rows of Hyyq

for 2 <4 < 2t+1 — 1 with length 2071, Also, let ¢ = (Iy , Iy, ..., lot+1_1).
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Let ¢ be an affine function in Fy;1o with sequence (,. It is equal to ¢, =

+1; ® I; where [;,1; are rows of Hyyq. Thus, [(¢', )| < [{o ;)| + 221

Since I, = (e9t,€9t41, ..., €041 1) is the sequence of the function
91(962, T3, .., Tory2)
and obtained from the bent sequence (eq,eq,...,eq+1_1) by splitting as in

Lemma 7.1.5, |(Iy,1;)] < 2*'. Hence, (¢, ()] < 271 4 2241 which yields
that Ny > 24+ — 22t _ 2t [

By using Lemma 7.1.6 and applying it iteratively, the nonlinearity of a

balanced function can be further improved as the following theorem suggests.

Theorem 7.1.7 For any even number n > 4, there exists a balanced function

f with nonlinearity Ny satisfying

22m_1 o %(22m71 _'_ 22m72 + . + 222 + 221) Zf n = 2771,
Ny > 92°(2t+1)-1 _ %(225*1(2754—1) 4925722+ Ly if n=2%(2t+1).
22(2t+1) | 9(2t+1) 2t+1)

Proof. First of all, observe that an even number n > 4 can be expressed as
n=2"form>2orn=2%2t+1) for s >1and t > 1.

Case 1 : n=2" for m > 2.

Consider Hom-1. The concatenation of the rows of Hym—1 is a bent sequence
which contains 22" sequences of length 221 Replace the first all-one se-
quence with a bent sequence of the same length 22" '. The bent sequence
of length 22" needed is obtained through the concatenation of the rows of
Hym—» which are of length 22" *. The first all-one row of Hym—2 appears now
in the new sequence. We replace this all-one sequence by a bent sequence
of the same length. We continue this process until the length of the all-one
leading sequence becomes 22 = 4. Finally, the all-one sequence of length four
is replaced with the sequence (+1,—1,+1, —1). By means of all these replace-

ments, the resulting sequence turns out to be a balanced sequence. It can be

79



proved by induction that the nonlinearity of the final function satisfies
m 1, gm- -
Ny > 27"t = (27 R I o )

Case 2: n=2°2t+1)fors>1andt>1.

In this case, the replacing process continues until the length of the leading

22t+1  The final leading all-one sequence is replaced by

all-one sequence is
i = (€at,€9t41,...,eq+1_1) where e;’s are the rows of Hyyy for i = 28 2! +
1,...,271 — 1. Note that I, is the second half of the sequence of the bent
function obtained by the concatenation of the rows of H;y;. It can be shown
by induction that the nonlinearity of the function obtained satisfies

Nf > 92°(2+1)—-1 1(223—1(2t+1) + 228—2(2t+1) 4t 92(2t+1) + 9(2t+1) + 2t+1)
P 2 .

Let ¢ = (o,Ci,...,Cr_q) be a sequence of length 22* which is obtained
from a bent sequence by modifying the leading all-one sequence as in Theorem
7.1.7. By permuting (;’s and by changing their signs for i = 0,1,...,2¥ — 1 as
it is done in splitting a bent sequence, one obtains 22k.(2k!) different balanced

22k all of which have the same nonlinearity. In fact, note

sequences of length
that the final leading sequence (y has the same structure as the large sequence

(. Thus, permuting and changing signs can also be applied to (.

In the following table, entries in the first row are the upper bounds on the
nonlinearities of balanced functions in JF,, given by the bound in Corollary 2.5.6
where n = 4,6,8,10,12,14. Entries in the second row are the lower bounds
obtained by Theorem 7.1.7 on the nonlinearities of balanced functions. The
third row contains the lower bounds on the nonlinearities of balanced functions

due to Lemma 7.1.3.
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Vector Spaces Vil Vsl Vs | Vip | Via Via
Lemma 2.5.6, Ny < 4 26 | 118 | 494 | 2014 | 8126

Theorem 7.1.7, Ny > |4 |26 | 116 | 492 | 2010 | 8120

Lemma 7.1.3, Ny > |4 |24 | 112|480 | 1984 | 8064

(b) On Vagyy :

The proof of the following lemma can be made easily.

Lemma 7.1.8 Let f be defined in Frim as f(z) = fi(z) + foly) where z =
(x,y) is in Vi forx inVy, yin Vi, © = (21,22, ..., 20), Y = (Y1, Y2, - - -, Ym) -
Then, the following hold :

(i) fis balanced if and only if fi or fo is balanced.

(i) The sequence s of f is equal to Cf = (y, ® (p, where (y, is the sequence

of fi fori=1,2.

Lemma 7.1.9 Let f in F, 1, be defined as in Lemma 7.1.8 from fi; in F,
and fy in Fp,. Assume that ((r,,l1) < Pi and ((p,, 1) < Py hold for any
affine sequence lq,ly of length 2" and 2™, respectively where Py, Py are positive

integers. Then, Ny > 2"t —1p p).

Proof. Let ¢ be an affine function in F,,,, with sequence (,. Then, (, =
+l; ® Iy where [ is a row of H, and [l is a row of H,,. It follows that,
(€ Co) = (€ @ (o £ @ 12) = £(Cpis h) (Cpas l2) Dy (3) of Lemma 2.4.2, giv-
ing that [((r, (o) = [{(Cpsli)]-|(Cpay l2)| < PiPs. Since ¢ is arbitrary, Lemma
2.2.1 implies that N, > 2ntm=1 — %PlPQ. O

By using Lemma 7.1.9 and a result of [35], one can obtain a function in
Forr1s with nonlinearity greater than all those obtained by concatenating or
splitting bent sequences for all £ > 7 as follows :

Let (; be a balanced sequence of length 22%

which is obtained by using the
method in the proof of Theorem 7.1.7 for k£ > 2. Let (5 be a sequence of length
2% obtained by [35]. The nonlinearity of the function with sequence (s is 16276

and there are 13021 such sequences. Denote the functions corresponding to
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(1,Co by fi1, fo respectively. Using these two functions in Lemma 7.1.8, one
gets a function f in Fory15 defined as f(xq, 2o, ..., Tog, Tokt1, - - - Topr1s) =
fl(.l’l, To, ... ,$2k)+f2($2k+1, Lok42y - - - ,I2k+15). By Theorem 7.1.7 and Lemma

2.2.1, it is known that

2m72

22" 2T L 4 92 4 92 if 2k = 2™,
<C17 l1> < 22s—1(2t+1) + 225—2(2t+1) N if 9k = 25(2t + 1)
92(2t+1) 4 9241 4 ot+1

and ((y, 1) < 2(21 — 16276) = 216 where [; is an affine sequence of length
22k and [, is an affine sequence of length 2'. Then, the following theorem is

obtained by using Lemma 7.1.9.

Theorem 7.1.10 Let f be a function in Fory15 defined by fi and fo as above
for k > 2. Then, the nonlinearity Ny of f satisfies

92 _108(22" T 42277 4 422 427 if 2k =2m,
Ny > ¢ 22D+ _10g(22 " (20H]) 4 9272041 oy gf 9k = 25(2t 4 1).
22(2t+1) 4 2(2t+1) 4 2t+1>

7.2 Constructing Highly Nonlinear Balanced Functions
Satisfying Strict Avalanche Criterion

In this section, methods for constructing highly nonlinear balanced functions
satisfying strict avalanche criterion will be presented.

(a) On Vopy -

Let n = 2k for £ > 1, f be a bent function and g be a nonconstant affine
function both of which are in F,,. By (c) of Lemma 6.1.1, it is clear that the
function f(z)+ g(z) is also bent. Thus, the weight of f + g is 2"! +£22~! by
(e) of the same lemma. Since f is bent, the weight of f is also 271 £2271,
It follows that after fixing a bent function f, one can always find an affine
function ¢ such that the weight of f is different from the weight of f + ¢. In
other words, if w(f) = w(f + g) for any bent function f and for any affine

function g, then g, the complement of g, is the desired function. By using
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those properly chosen f and g, define the function A in F,; as follows :

h(z) = (y + 1) f(z1, 20, 20) +y(f(21, 22,0 02) + g1, 22, ., T21))

where z = (y,z) is in V41 for y in GF(2) and z = (21,29, ...,29) in V.
Thus, h is the concatenation of the bent functions f and f + g. It is easy to

see that the function A is in fact equal to

hy, z1, o, ..., xo) = f(x1, 2o, ..., Tox) + yg(xy, Tay . .., Top).
The properties of this construction are as follows :

Theorem 7.2.1 The function h in F, 1 defined as above is a balanced func-

k satisfying strict avalanche criterion.

tion with nonlinearity N, > 2% — 2
Moreover, the degree of h is equal to the degree of the bent function used in
the construction of h. Additionally, the number of vectors in V.1 such that
h satisfies the propagation criterion is 2%% + 22=1 In other words, h satisfies

the propagation criterion with respect to 75% of all vectors in V1.

Proof. h is balanced since w(h) = w(f) + w(f + g) = 2%.

By using Corollary 7.1.2, N, > 22k — 2% ] satisfies the strict avalanche
criterion since :

Let a = (u, vy, v, ...,v9) be a vector in V1 with w(a) = 1. It is enough
to show that the directional derivative of A in the direction of « is a balanced
function. There are two cases :

(i) w = 0. Since w(a) = 1, this implies that w(f) = 1 where g =
(v1,v2,...,v9) in V. Then, h*(z) = h(z) + h(z + o) = f(z) + f(z + B) +
y(g(x)+g(x+B)). Since ¢ is affine, g(z) + g(z + ) is constant, say equal to 6
in GF(2). Thus, h*(z) = f?(x)+0y. As f is bent, f* is balanced by Theorem
6.1.5 since (3 is nonzero in V,,. By using Lemma 7.1.8, h* is balanced.

(ii) v = 1. Since w(a) = 1, this implies that w(5) = 0, i.e. v; is zero
for all i = 1,2,...,2k. Then, h*(z) = h(2) + h(z + o) = g(x). Since g is a
nonconstant affine function, by Lemma 2.1.6, ¢ is balanced implying that h®

is balanced.
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Thus, h satisfies the strict avalanche criterion.

Since g is a nonconstant affine function, the degree of g is one. By Propo-
sition 6.1.7, the degree of f satisfies 1 < deg(f) < k. From the construction
of h, the degree of h is equal to the degree of f.

In order to prove the propagation characteristics of h, the number of o =
(w, vy, Vg, ..., v9)’s in V41 for which h satisfies the propagation criterion will

be counted. Let 5 = (v1,vs,...,v9). Now,

h*(z) = h(z)+h(z+ «)

= f(@)+ flz+8) +ylg(z) + g(x + B)) +ug(z + 5). (7.2)

There are three cases in (7.2). These are (i) v = 0, 8 # 0; (ii) u # 0,
B =0 and (iii) u # 0, 5 # 0.

(i) u=0, 8 # 0. Then, h*(z) = fP(z) + y0 where ¢°(z) is constant, say
equal to 0 in GF(2), since g is affine. As f is bent and 3 # 0, f° is balanced.
The number of vectors a = (0,3) in V,,1; where 8 # 0 and h satisfies the
propagation criterion is 2% — 1.

(ii) uw # 0, 3 = 0. Then, h%(z) = g(z) giving that w(h®) = 2.22*7! since
w(g) = 2271, Hence, h® is balanced. In other words, for o = (1,0,0,...,0),

the function h® is balanced.

(iii) u # 0, 8 # 0. Now,
h*(z) = f(z) + f(z + B) + y(9(x) + g(x + 3)) + g(x + 3)

where o = (1,0) is in V41 and 8 = (vq,vg,...,09) is in V,. Since ¢ is
affine, ¢°(z) = g(z) + g(z + f3) is constant, say equal to § in GF(2). Hence,
h*(z) = f(x) + f(x 4+ B) + g(x + B) + Oy. There are two cases :
(1) ¢ =1: We have h*(z) = f(z) + f(z + ) + g(x + ) + y. By Lemma
7.1.8, h*(z) is balanced. There are 22*~! vectors 3 in V,, satisfying ¢°(z) = 1.
(2) 0. =0: We have h*(z) = f%(z) + g(x) since § = ¢g°(x) = 0 implies that
g(x + B) = g(x). By using (2.4), we get that

w(h®) = |Supp(f?)| + [Supp(g)| — 2|Supp(f?) N Supp(g)|.
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Since f is bent and 3 # 0, we get that f° is a balanced function. Hence,
|Supp(fP)| = 22*=1. Also, since g is a nonconstant affine function, |Supp(g)| =
22k=1 " Thus, w(h®) = 2% — 2|Supp(f?) N Supp(g)]. In order for h%(z) to
be balanced, Supp(f?) N Supp(g) must be the empty set. However, this is
impossible implying that h*(z) is not balanced.

Thus, the number of vectors for which h satisfies the propagation criterion

is (22F — 1) + 1 4 2%k-1 = 22k 4 921 [

(b) On Vi

Let £ > 2, n =2k —2 and f be a bent function in F,,. Also let g1, g2 and g3
be three nonconstant affine functions in F,, such that g; + g; is nonconstant for
any 1 <7 < j < 3. It is clear that for k£ > 2, such affine functions exist in F,.
It is possible to choose g1, g2 and g3 in such a way that w(f) = w(f +¢1) =
22k=3 1 2k=2 and w(f + g2) = w(f + g3) = 22673 — 282 since f and f + g;’s are
all bent functions for ¢« = 1,2,3. By using these functions, define the function

hin F, o as

h(z) = h(y,z) = Z Xa: () hi(z)

where z = (y,z) is in V,, 1o for y = (y1,¥2) in V5 and x = (21, x9,...,To,_2) in
V,.. The function x,, is the characteristic function of «; in V4, and the functions
h;’s are defined as ho(z) = f(z), hi(x) = (f + g1)(x), hao(z) = (f + g2)(x) and
hs(x) = (f + g3)(x). Thus, it is clear that the function A is the concatenation
of four bent functions each of which differs from another by a suitably chosen
affine function in F,,. By using the definitions of A;’s in the algebraic normal

form of h, one obtains that h is in fact equal to
h(z) = h(y,z) = f(z) + y2g1(x) + y192(7) + 1192(g1 () + ga(2) + g3(7))

where z = (y,2), y = (y1,92) and = = (21,29, ..., Top_2).

The properties of this construction are as follows :

Theorem 7.2.2 The function h in F, 1o defined as above is a balanced func-

tion with nonlinearity N, > 22~ — 2% satisfying strict avalanche criterion.
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Moreover, the degree of h is equal to the degree of the bent function f used
in the construction and the number of vectors in V.o for which h satisfies
the propagation criterion is at least 2272 4+ 1. In other words, h satisfies the
propagation criterion with respect to at least 25% of all vectors in V,, 5.

Proof. Since h is the concatenation of h;’s for i = 0,1, 2,3, it follows that
3

w(h) = Zw(hi). However, the functions g1, g2, g3 are chosen according to
f in sucﬁ:; way that w(hg) = w(hy) = 2273 + 282 and w(hy) = w(hs) =
22k=3 _ 9k=2 where hg, h1, hy and hs are defined as in the construction above.
Hence, w(f) = 2%~! implying that h is balanced.

By using Lemma 7.1.3, the nonlinearity N, of h satisfies N, > 22k—1 — 2k
h satisfies the strict avalanche criterion since :

Let o = (u,t,v1,09,...,U2_2) be a vector in V,,,5 with w(a) = 1. There
are three cases :

(i) w = 1. Then, t = 0 and w(B) = 0 for § = (vi,v9,...,V2_2) in
Voo Now, h*(2) = g2(x) + y2(g1(x) + g2(x) + g3(x)). Equivalently, h*(z) =
Y201(x) + (32 + 1)g2(2) 4 yags(x). If yo = 0, then h*(z) = go(x) and if yo = 1,
then h®(2) = g1(x) +gs(z). Hence, w(h®) = 2w(gs) +2w (g1 +g3) = 2%~ since
g2 and gy + g3 are nonconstant affine functions by the choices of g;, go and g3.
This gives that h® is balanced.

(ii) t = 1. Then, u = 0 and w(B) = 0. Now, h*(2) = (y1 + D)gi(z) +
y192(x) + y1g3(x). If y3 = 0, then h%(z) = g1(x) and if y; = 1, then h*(2) =
go(r) + g3(z). Similar to part (i), one gets that w(h®) = 22*~1 giving that h®
is balanced.

(iii) u = 0,# = 0. Then, w(B) = 1. Now, h%(z) = h(y1, v, 2) = f°(x) +
a1ys + agyr + (a1 + as + az)yi1ys where a; = g;(z) + g;(z + 3) is a constant in
GF(2) since g; is an affine function for i = 1,2,3. As 8 # 0 and f is bent, f”
is balanced. By Lemma 7.1.8, h* is balanced.

Thus, h satisfies the strict avalanche criterion.

As proved in Theorem 7.2.1 the degree of h is equal to the degree of f.

The proof showing that h satisfies the propagation criterion for at least
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22k=2 4 1 vectors in Vo is similar to the proof done in detail in Theorem

7.2.1. O

Remark 7.2.3 An important note is that by using bent functions which have
degrees 2,3,...,k and Theorem 7.2.1, one can obtain new functions having
degrees 2,3, ... k. Similarly, using bent functions with degrees 2,3,...,k in
Theorem 7.2.2, one obtains functions with degrees 2,3, ...,k — 1. Recall that
a simple way to obtain bent functions with all possible degrees (2,3,...,k) is

to use Theorem 6.1.15.

7.3 Constructing Highly Nonlinear Balanced Functions
With Good Propagation Characteristics

In this section, methods of constructing highly nonlinear balanced functions
with good propagation characteristics will be given. Recall from Theorem 6.1.5
that bent functions are the only class of functions in Fy to satisfy PC/(2k).
However, bent functions are not balanced. Thus, if a function is to meet several
cryptological properties including balance, nonlinearity and the propagation
criterion, then it is clear that no function can satisfy most of these properties
completely. Thus, to construct highly nonlinear, balanced functions which do
not satisfy PC(n) but satisfy the propagation criterion for almost all vectors
in V,, is an important problem in cryptology.

Moreover, it will be shown in this section that there are some functions
which satisfy only PC(0) although they satisfy the propagation criterion for
almost all vectors in V,,. This is due to the fact that those functions sat-
isfy the propagation criterion for almost all vectors except for some vectors
a with weight one. However, recall from Theorem 3.4.2 that for any func-
tion f, the balance, the degree, the nonlinearity and the number of vectors
for which f satisfies the propagation criterion are invariant under nonsingular
affine transformations on the input coordinates. Hence, by a suitable affine

transformation, the vectors for which f does not satisfy the propagation crite-
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rion can be transformed into vectors with larger weights. This new obtained
function satisfies the propagation criterion of a higher degree having the same
degree, weight and nonlinearity with the starting function. This is the main
technique employed in this section. The two cases are considered separately :
(a) On Vogyq ¢
Let n = 2k and f be a bent function in F,,. Define the function g in F,

by using f as follows :

9(z) =g(y,z) = (y+1)f(z)+yf(z)
= y+ f(x1,22,..., Tok)
where z = (y,z) is in V41 for y in GF(2) and z = (21,22, ...,29) in V.

In other words, g is the concatenation of f and f. Rewriting the variables

{y, 21,29, ..., 291} as {x1, T2, ..., o1}, g 18 in fact equal to

g(x1, @9, ... opt1) = 1 + f(T2, T3, ., Topy1)-

Theorem 7.3.1 The function g in F,.1 defined as above is a balanced func-
tion with Ny > 22k _ 9k satisfying the propagation criterion with respect to

all nonzero vectors a in V,.1 except for a« = (1,0,0,...,0). Furthermore,

by a linear transformation on the input coordinates, the function g*(x)

g (21,29, ..., opp1) = g(xA) is a balanced function with nonlinearity Ny >
22k _ 9k and it satisfies the propagation criterion with respect to all nonzero
vectors « in Vyyq except for « = (1,1,...,1). In other words, g* satisfies
PC(n).

Proof. It is easy to see that ¢ is balanced and N, > 2% — 2%, Moreover, as in
the proof of Theorem 7.2.1, it can be shown that g satisfies the propagation cri-
terion with respect to all nonzero vectors o in V,, 1 except for a = (1, 1,...,1).

Now, the last part of the theorem will be proved. Let (31, 3> be subsets of
Vpi1 such that 61 = {a,es,... 69141} and 1 = {ey, €a,. .., e9p11} Where ¢; is
the vector in V,,;; whose all coordinates are 0 except the i-th one. It is clear

that ) and (3, are bases of V,,;1 over GF'(2). From linear algebra, there exists
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a unique linear transformation 6 : V,,; — V11 such that (a) = e; and
O(e;) = e; for i = 2,3,...,2k + 1. This linear transformation can be written

as 0(x) = xA where A is nonsingular matrix of order n + 1 given by

11 -+ 11

01 00
A=

0 0 01

Now, consider the function ¢g* in F,, 1 defined as

g (x) = g"(z1, 29, ..., Topy1) = g(xA).
g* is also a balanced function with N« > 22¢ — 2% Explicitly, ¢g* is equal to

g (1,29, ..., Xopt1) = g(x1, 21+ T, ..., X1 + Togi1)

= z+ f(r1+ 22,21 + T3, ..., X1 + Topt1).

It is easy to see that g* satisfies the propagation criterion with respect to all
nonzero vectors « in V,,4q except for @« = (1,1,...,1). In other words, g*

satisfies PC'(n). O

(b) OH V'Qk :
Let n =2k — 2 and f be a bent function in F,,. The function g in F,, 5 is
defined as

9(z) = g(y,x) = Zxai(y)fi(:v)

where z = (y,z) is in V40 for y = (y1,92) in Vo and © = (21,29, . .., Top_2)
in V,, and 4, is the characteristic function of «; in V5. The functions f;’s are

defined as fo = f, fi = f, fo = f and f; = f. Hence, g is the concatenation

of four bent functions. Rewriting the variables {yi,vs, 1,2, ..., Zor_2} as
{x1,x9,..., v} and simplifying the above summation, ¢ is in fact equal to
g(asl,arg, . ,QTQk;) =T + i) + f($3,$4, e ,ZEQk).
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Theorem 7.3.2 The function g in F,.o defined as above is a balanced func-
tion with Ny > 22k=1 _ 9F satisfying the propagation criterion with respect to
all nonzero vectors « in Vo except for a = (1,0,0,...,0), 5 = (0,1,...,0)
and a+ (3 = (1,1,0,...,0). Furthermore, by a linear transformation on the in-
put coordinates, the function g*(x) = g*(x1, X2, ..., Ty) = g(xA) is a balanced
function with nonlinearity Ny« > 2%71 — 2% and it satisfies the propagation

criterion of degree at most %k:.

22k=1 _ 9k The propa-

Proof. It is easy to see that g is balanced and N, >
gation characteristics of g can be shown as in the proof of Theorem 7.2.1.

Let (31, B2 be two bases of V4o such that §; = {a1*, as*,ds3,..., 09} and
Bo = {e1,€2,73,...,7k} Where a;*, as* are two nonzero, distinct (hence lin-
early independent) vectors in V}, o, €;’s are as in Theorem 7.3.1 for i = 1,2 and
0;,v;’s are arbitrary vectors which make (31, 35 bases of V,, 15 fori = 3,4, ..., 2k.
Let A denote the matrix of the linear transformation sending (3; to (35 in that
order. Then, the function g*(z) = g¢*(x1,22,...,29,) = g(xA) satisfies the
propagation criterion with respect to all but the vectors a1, an* and a;* + a*.
Choosing 1™ and ay* properly, it will be shown that ¢g* satisfies the propaga-
tion criterion of degree at most %k‘.

Note that 2k can be written as 3t + ¢ where ¢ is an integer and ¢ = 0,1 or

2. Let ag* = (v1,v9, ..., U3t4¢) and ao* = (ug, Ug, . .., Ussye) Where

1 fori=1,2,...,2t+ ¢,

V; =
0 fori=2t+c1+1,2t+c1+2,...,3t+c.
and
0 fore=1,2,...,t+c,
U; =
1 fori=t+c+1,t+c+2,...,3t+ec.
0 ife=1, 1 ife=1,
for ¢ = and cp = )
5 otherwise. 5 otherwise.

Note that w(a;*) = 2t+c1, w(ag*) = 2t+co and w(oy*+a*) = 2t+c. Since

a1* has the minimum weight among a1*, ax* and a;* + ax*, for any nonzero
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a in V,io with w(a) < 2t 4+ ¢; — 1 it is clear that a # a1, ax*, a1 + as*.
Hence, ¢* satisfies the propagation criterion of degree 2t + ¢; — 1. By using
the definition of ¢y, if ¢ = 0 or 1, then g* satisfies the propagation criterion of

degree 2t — 1 and if ¢ = 2, then g* satisfies the propagation criterion of degree

2t. O

Remark 7.3.3 Note that the constructions in Theorems 7.2.1 and 7.3.1 dif-
fer only in the selection of the affine functions used. Theorem 7.2.1 uses a
nonconstant affine function while Theorem 7.3.1 uses the constant function 1.

This is also true for the constructions in Theorems 7.2.2 and 7.3.2.
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