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ABSTRACT 
 

 

SOFTWARE DEVELOPMENT FOR MAN-MACHINE INTERFACE 

FOR AN INDUSTRIAL ROBOT 

 

 

CENG�Z, Mahir Cihan 

 M.S.,  Department of Mechanical Engineering 

Supervisor: Prof. Dr. Bilgin KAFTANO�LU 

 

December 2003, 104 Pages 

 

 

In this study, a robotic software, which controls the robot, is developed. 

The robot considered is a six degree of freedom robot and it is designed and 

manufactured in METU. User can send the robot anywhere in space within its 

workspace, in any orientation. Forward and inverse kinamatics can be executed 

according to the needs. 

Simulation framework is embedded into the software for the 3D 

visualisation of the robot. Any movements can be simulated on the screen. 

Software also generates the path for the given points. Then generated path 

is simulated on the screen. All position, velocity and acceleration graphics of 

joints can be examined for the generated path. 

 

 

Keywords: Industrial robot, kinematic analyses, 3D simulation, path generation. 
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ÖZ 
 

 

ENDÜSTR�YEL B�R ROBOT �Ç�N �NSAN-MAK�NA 

ARAYÜZ PROGRAMININ GEL��T�R�LMES� 

 

CENG�Z, Mahir Cihan 

Yüksek Lisans, Makina Mühendisli�i Bölümü 

Tez Yöneticisi: Prof. Dr. Bilgin KAFTANO�LU 

 

Aralık 2003, 104 Sayfa 

 

Bu tez çalı�masında, endüstriyel bir robotu kontrol eden bir yazılım 

geli�tirilmi�tir. Bahsi geçen robot altı serbestlik dereceli olup ODTÜ’de 

tasarlanmı� ve imal edilmi�tir. Kullanıcı, bu programla, robot kolunu çalı�ma 

hacmi içinde istedi�i pozisyon ve yönelime gönderebilir. Pozisyon kontrolleri için 

ileri ve geri kinematik analizler yapılmı�tır. 

Robotun üç boyutlu görünümünü sa�lamak için programa simulasyon 

iskeleti gömülmü�tür. Bu sayede robotun her hareketi ekranda simüle 

edilebilmektedir. 

Program ayrıca verilen noktalar için rota olu�turabilmektedir. Bu rota 

ekranda izlenebilmektedir. Ayrıca, rota içinde eksenlerin pozisyon, hız ve ivme 

grafikleri de izlenebilmektedir. 

 

Anahtar Kelimeler: Endüstriyel robot, kinamatik analiz, 3 boyutlu simulasyon, 

yörünge olu�turma. 



vi 

 

 

 

TABLE OF CONTENTS 

 
Abstract ........................................................................................................ iii 

Öz ................................................................................................................. iv 

Table of Contents ......................................................................................... vi 

List of Tables ............................................................................................... x 

List of Figures .............................................................................................. xi 

Nomenclature ............................................................................................... xiii 

 

Chapter  

1. Introduction 
1.1 Introduction ............................................................................................ 1 

1.2 What is Robot? ....................................................................................... 1 

1.3 History of Robots ................................................................................... 3 

1.3.1 Robots created by humans ........................................................... 3 

1.3.2 Mechanical robots up to 1922 ...................................................... 4 

1.4 Types of Industrial Robots ..................................................................... 5 

1.5 Driving Motors of Robot ....................................................................... 8 

1.6 End Effector of Robot ............................................................................ 8 

1.7 Programming of Robots ......................................................................... 9 

1.8 Object of Present Investigation .............................................................. 10 

1.9 Literature Survey ................................................................................... 10 

1.9.1 Projects with the MetuRobot ....................................................... 10 

1.9.2 Other Studies Related to the Topics in the Thesis .......................12 

1.10 Thesis Outline ...................................................................................... 13 



vii 

 

2. Kinematic Analyses 
2.1 Introduction ............................................................................................ 15 

2.2 Hartenberg-Denavit (HD) Convention .................................................. 16 

2.3 HD PARAMETERS .............................................................................. 19 

2.4 Position Analyses ...................................................................................22 

2.4.1 Forward Position Analysis ...........................................................22 

2.4.1.1 Orientation of the End-Effector ........................................... 22 

2.4.1.2 Position of the Tip Point ...................................................... 24 

2.4.2 Inverse Position Analysis ............................................................ 25 

 2.4.2.1 Introduction  .........................................................................25 

 2.4.2.2 Formulation .......................................................................... 27 

 2.4.2.3 Inverse Interpolation ............................................................ 30 

 2.4.2.4 Configuration selection and singular points ........................ 31 

2.5 Velocity and Acceleration Analyses ...................................................... 32 

2.5.1 Jacobian Matrices ........................................................................ 32 

2.5.2 Forward and Inverse Velocity Analyses ...................................... 34 

2.5.3 Forward and Inverse Acceleration Analyses ............................... 35 

 

3. Trajectory Planning 
3.1 Introduction ............................................................................................ 36 

3.2 General Considerations .......................................................................... 37 

3.3 4-3-4 Trajectory ..................................................................................... 38 

3.4 Implementation ...................................................................................... 41 

3.5 Application to the Thesis ....................................................................... 44 

3.6 Conclusion ............................................................................................. 44 

 

 

 



viii 

 

4. Simulation Framework 
4.1 Introduction ............................................................................................ 46 

4.2 OpenGL ..................................................................................................46 

4.3 Using OpenGL in Programming Languages ..........................................47 

4.3.1 Libraries used for OpenGL .......................................................... 47 

4.3.2 Panel for OpenGL ........................................................................48 

4.3.3 Importing Models ........................................................................ 48 

4.3.4 Viewing Properties ...................................................................... 49 

4.4 Implementation of OpenGLAPPanel in MMI ....................................... 49 

4.5 Conclusion ............................................................................................. 53 

 

5. Motion Control 
5.1 Introduction ............................................................................................ 55 

5.2 Using Motion Control Card ................................................................... 56 

5.3 Accessing Motion Control Card from Computer Program .................... 57 

5.4 Implementation ...................................................................................... 59 

5.5 Conclusion & Future Work .................................................................... 60 

 

6. Computer Program 
6.1 Introduction ............................................................................................ 62 

6.2 MMI Software ........................................................................................ 62 

6.3 Interface of the Software ........................................................................ 63 

6.3.1 Controls on the Main Screen ....................................................... 64 

6.3.2 Menu Items .................................................................................. 67 

6.4 Subroutines used in Software ................................................................ 70 

6.5 User Guide of Software ......................................................................... 71 

6.6 Some Remarks About the Software ...................................................... 73 

6.7 Conclusion ............................................................................................ 74 



ix 

 

7. Error Analyses 
7.1 Introduction ............................................................................................ 75 

7.2 Errors due to the Construction of the Robot .......................................... 75 

7.3 Errors due to the Inverse Position Analysis ........................................... 76 

7.4 Errors due to the Motion Control ........................................................... 78 

7.5 Error Analysis, Accuracy and Repeatability of the METUROBOT ...... 80 

7.6 Conclusion ............................................................................................. 81 

 

8. Conclusion 
8.1 Discussion & Conclusion ....................................................................... 83 

8.2 Future Work ........................................................................................... 84 

 

References ................................................................................................ 85 
 

Appendices 
A- Functions Developed and Used in the Software .................................... 88 

B- Jacobian Matrix and its Derivative ........................................................ 93 

C- Users Manual for the METUROBOT System using Developed MMI .. 97 

 

 

 

 

 

 

 

 

 

 



x 

 

 

 

List of Tables 

 
Table          Page 
1.1 Chronology of Alleged Creations .................................................... 3 

1.2 Chronology of Real Robots ............................................................. 5 

2.1 HD Parameters of the Robot ............................................................ 20 

3.1 Example Data for Trajectory Planning ............................................ 42 

7.1 Example 1 for Inverse Position Analysis ......................................... 77 

7.2 Example 2 for Inverse Position Analysis ......................................... 77 

7.3 Error analysis of motor #1 ............................................................... 78 

7.4 Error analysis of motor #2 ............................................................... 78 

7.5 Error analysis of motor #3 ............................................................... 79 

7.6 Error analysis of motor #4 ............................................................... 79 

7.7 Error analysis of motor #5 ............................................................... 79 

7.8 Error analysis of motor #6 ............................................................... 79 

C.1 Link Lengths .................................................................................... 99 

C.2 Limits of the Motors ........................................................................ 100 



xi 

 

 

 

 

List of Figures 

 
Figure         Page 
1.1 Welding Robot ................................................................................. 2 

1.2 Cartesian Robot ............................................................................... 7 

1.3 Cylindrical Robot ............................................................................. 7 

1.4 Spherical Robot ................................................................................ 7 

1.5 Articulated Robot ............................................................................. 7 

2.1 HD Convention Parameters ............................................................. 17 

2.2 Model of METUROBOT ................................................................. 19 

3.1 Path generation for 3 points ............................................................. 37 

3.2 Path generation for 2 points ............................................................. 41 

3.2 Graphs of position, velocity and acceleration of the trajectory 

for example data ............................................................................... 43 

4.1 OpenGL initialisation code .............................................................. 50 

4.2 Code of translation, rotation and colouring of links ........................ 51 

4.3 Code of importing links from raw file and drawing to the panel ..... 52 

4.4 Some portion of the Base.raw file .................................................... 53 

5.1 Example program for motor control ................................................ 57 

5.2 Some portion of Pmac.def definition file ......................................... 58 

5.3 Example code for extracting functions from dll .............................. 58 

5.4 Example function call ...................................................................... 59 

5.5 Example function call taken from the software 

(Sending robot to home position) .................................................... 60 

 



xii 

 

5.6 Example function call taken from the software 

(Sending robot to position using function from dll) ........................ 60 

6.1 Screen view of main form ................................................................ 64 

6.2 Menu Items ...................................................................................... 67 

6.3 Joint Limits Window ....................................................................... 68 

6.4 Start & End Point conditions window ............................................. 68 

6.5 Example window of Graphics tab .................................................... 69 

6.6 Interface of the software .................................................................. 71 

7.1 Setup for the measurement of error ................................................. 80 

7.2 Start of the experiment ..................................................................... 81 

7.3 End of the experiment  ..................................................................... 81 

C.1 METUROBOT ................................................................................. 98 

C.2 Schematic View of the METUROBOT ........................................... 98 

C.3 Screen View of the MMI Software .................................................. 101 

C.4 Buttons in the Cabinet ..................................................................... 102 



xiii 

 

 

 

 

Nomenclature 
 

 

ai+1  Length of link i+1, distance between u3
i and u3

i+1 along u1
i. 

a2, a3  Constant link lengths. 

αi+1  Twist of link i+1, angle from u3
i to u3

i+1 about u1
i+1. 

C  Rotation matrix of the orientation of end-effector. 

Ci-1
i, C(i-1)(i) Rotation matrix of link i with respect to link (i-1). 

cij  elements of the C matrix. (i=1,2,3 & j=1,2,3). 

Cf  Coefficient matrix of the trajectories. 

di+1 Offset of link i+1, distance from the origin of frame i to u1
i+1 along 

u3
i. 

d4, d5 Constant link offsets. 

dP Length of the end-effector. 

Fn(x) The functions of the trajectories planned in the via points. 

JP Jacobian matrix. 

JPX, JAX Submatrices of the JP. 

M Transformation matrix in the trajectory planning. 

P Position vector of the tip point w.r.t. the base. 

P1, P2, P3 elements of the P vector. 

Q Angular position vector. 

R Position vector of the wrist point w.r.t. the O0. 

R1, R2, R3 elements of the R vector. 

Rx, Ry, Rz Rotation matrices about the principal axes. 
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θi+1 Angle of joint i+1, angle between u1
i and u1

i+1 about u3
i. 

θ, ϕ, φ Euler angles to determine the rotation matrices. 

V Matrix of the positions, velocities and accelerations of the points in 

the trajectory planning 

VP Linear velocity vector of the tip point. 

ωP Angular velocity vector of the tip point. 

Xn, u1
n Unit vector of frame n in the direction of x-axis. 

Yn, u2
n Unit vector of frame n in the direction of y-axis. 

Zn, u3
n Unit vector of frame n in the direction of y-axis. 

 



1 

 

 

CHAPTER 1 

INTRODUCTION 

 

1.1 Introduction 
 

In today’s world, the need for speed and accuracy in production has 

become more and more important. Especially, in industry, the productivity and 

having good quality is very important. Therefore, computer controlled machines 

have been used for years. More and more of the loading/unloading tasks have 

been executed by the robots in recent years. In other words, industrial robots are 

beginning to revolutionise the industry. Robots are now useful in a wide variety of 

industrial applications, such as material handling, painting, welding, etc. In most 

of these applications, the operation of the robots are cheaper, faster and less 

dangerous. 

 

1.2 What is Robot? 

 

The term robot comes from Czech and means “forced labour”. The term in 

its present interpretation was invented by the Czech writer Karel Capek in his 

satirical play R.U.R. “Rossum’s Universal Robots”. He depicted robots as 

machines, which resembled people but worked tirelessly [7]. Robot is defined in 

dictionaries as “an automatic device that performs functions ordinarily ascribed to 

human beings”. This definition is true but not sufficient. 

A robot can have both an automation and intelligence. It has automation 

that it is a machine that can control, in some degree or other, its own actions. It is 
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a general manipulator in the sense that it is a machine built with the capacity to do 

many different things, perform many different intelligent actions. Robotics is a 

field of interest that combines theory and application, ideas with actual practical 

machine [5]. 

More explanatory definition for the industrial robot is given by the Robot 

Institute of America, “A robot is a reprogrammable multi-functional manipulator 

designed to move material, parts, tools or specialised devices, through variable 

programmed motions for the performance of a variety of tasks.” An industrial 

robot is a general-purpose manipulator consisting of several rigid links connected 

in series by revolute or prismatic joints. One end of the chain is attached to a 

supporting base, while the other end is free and attached with a tool to manipulate 

objects or perform assembly tasks. The motion of the joints result in the relative 

motion of the links. 

The motion of the end-effector is generated by controlling the position and 

velocity of the robot’s axes of motion. Basically the robot needs six axes of 

motion (or degrees of freedom) to reach an arbitrary point with a specific 

orientation in space. A different orientation might completely change the position 

of the robot arm. For example, to place a weld on the top side of the beam below 

requires completely different orientation from that required to place a weld at 

almost the same point but on the bottom side of the beam (Figure 1.1).   

 

 
 
 
 
 
 
 
Figure 1.1 Welding Robot 
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1.3 History of Robots 

 

1.3.1 Robots created by humans 

 

Until a mechanical device with reprogrammable and multifunction 

capabilities emerged as an idea (in the 1920s), there was no conscious history of 

robotics. But, we can track the idea of robots, as we are using the term, in myths 

and continuing up to recent times. 

In this part, we will consider real human beings that created mythical 

beings in the sense that there is no evidence that these “real” people did in fact 

create workable robots. Empedocles, a philosopher living in the 5th century BC, is 

the first human being to be credited with having made an isomorph, an animated 

statue. The next example comes from sometime in 12th century AD. Albartus 

Magnus, a priest, was said to have spent over 20 years constructing a robot made 

of wood, metal, wax and leather that was fully mobile and could welcome visitors 

at his door and speak to them. According to the legend, the fellow who is now 

Saint Thomas Aquinas is said to have destroyed Magnus’ robot on the grounds it 

was the work of devil. Table below summarises the chronology of these and other 

alleged creations. (Table 1.1) 

 

 

Table 1.1 Chronology of Alleged Creations 

CHRONOLOG

Y 

REAL HUMANS MYTHICAL CREATIONS 

5th C. BC Empedocles Animated statue 

12th C. Albartus Magnus Servant girl 

13th C. Bacon Talking head 
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16th C. Loew (used a formula to 

bring a clay robot to life) 

Golem (animated clay robot) 

16th C. Paracelsus Little man 

17th C. Goethe Robot 

19th C. Anderson Mechanical birds 

 

 

 

1.3.2 Mechanical robots up to 1922 

 

Around 1500 BC, Egyptian water clocks supposedly used human figurines 

to strike hour bells. The third century BC in Hellenic Egypt was a time of the 

development of many automated machines. All over the place there were statues, 

which were said to be able to speak, gesture and prophesy. In the second century 

BC, Philo is said to have made an even more elaborate theater that could go 

through five whole acts of a play from beginning to end. 

In the first century, Petronius Arbiter created a doll that could move like 

human being. In 1557, Giovanni Torriani made a wooden robot for an Emperor 

that could fetch his daily bread from the store. 

Vaucanson (1709-1782) created in 1738 a mechanical duck that could eat, 

excrete passable iso-olfactoric excrement, walk, quack, and do various things 

except fly. Later on, Vaucanson constructed a flute player that could play many 

different pieces of music. Another example like that is the writer created by Droz 

(1721-1790) that could write a one-page letter and then signs its name at the end. 

The most elaborate mechanism of the 19th century is created in 1875. It is 

J.N. Maskelyne’s Psycho. This was a mechanical “half-man” sitting on the desk, 

which could nod his head and perform mathematical operations. Psycho could 
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also do some low-level conjuring tricks, and could play whist1. The table below 

lists the real robots created from the birth of Christ. (Table 1.2) 

 

 

Table 1.2 Chronology of Real Robots 

TIME CREATOR ROBOT 

1st C. Petronius Arbiter Moving Doll 

16th C. Leonardo Mechanical man 

16th C. Giovanni Torriani Walking robot 

18th C. Vaucanson Flute player, Mechanical duck 

18th C. Droz Writer robot 

19th C. Edison Talking Doll 

19th C. Maskelyne Psycho 

 

 

 

1.4 Types of Industrial Robots 
 

Industrial robots are widely used in manufacturing and assembly tasks 

such as simple material handling, spot/arc welding, parts assembly, and spray 

painting. They are used in space and undersea applications, and in hazardous 

applications. The manipulator is composed of the main frame (the arm) and the 

wrist, each having three degrees of freedom, or axes of motion. Structurally, the 

robots can be classified according to the coordinate system of the main frame: 

 

• Cartesian:   Three linear axes. 

The main frame of cartesian coordinate robots consists of three orthogonal 

linear axes. An important feature of cartesian robots is equal and constant spatial 

                                                           
1 A card game, similar to bridge, that involves probabilities and strategic skills 
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resolution, that is, the resolution is fixed in all axes of motion and throughout the 

work volume of the robot arm, but the robot lacks mechanical flexibility; it cannot 

reach objects on the floor or reach points invisible from its base. (Figure 1.2) 

 

• Cylindrical:   Two linear and one rotary axis. 

The main frame of cylindrical coordinate robots consists of a horizontal 

arm mounted on a vertical column which, in turn, is mounted on a rotary base. 

The resolution of the cylindrical robot is not constant and depends on the distance 

between the column and the gripper along the horizontal arm. (Figure 1.3) 

 

• Spherical:   One linear and two rotary axes. 

The kinematic configuration of spherical, or polar, coordinate robot arm is 

similar to the turret of a tank. It consists of a rotary base, an elevated pivot, and a 

telescoping arm, which moves in and out. The disadvantage of spherical robots 

compared with their cartesian counterparts, is that there are two axes with 

relatively low resolution that varies with the arm length. (Figure 1.4) 

 

• Articulated or Jointed:   Three rotary axes. 

 Articulated robots consist of three rigid members connected by two 

revolute joints and mounted on a rotary base. This kinematic arrangement closely 

resembles that of a human arm. Since the articulated robot has three rotary axes, 

its spatial resolution depends entirely on the arm position. The accuracy of an 

articulated robot is poor since the joint errors are accumulated at the end of the 

arm. On the other hand, it can move at high speeds and has excellent mechanical 

flexibility, which make it the most common small- and medium-sized robot. 

(Figure 1.5) 

 

 

 



7 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 Cartesian Robot   Figure 1.3 Cylindrical Robot 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 1.4 Spherical Robot   Figure 1.5 Articulated Robot 
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1.5 Driving Motors of Robot 

 
The manipulator joints can be driven directly or indirectly. With direct 

drive, the joint shaft is coupled to the rotor of the drive motor. With indirect drive, 

the joint is connected to the drive motor through a transmission mechanism. 

Direct drive might provide better positioning accuracy since the intermediate 

gearing is eliminated and consequently the mechanism is free of backlash and 

hysteresis. But the main drawback of direct drive manipulators is that the motors, 

which drive the joints, are themselves a load for the motors at the lower joints (i.e. 

joints closer to the base). The leadscrew mechanism is used in most of the robots 

in recent years. Comparing this to other gearing systems, such as worm gear or 

harmonic drive, the leadscrew mechanism provides a zero backlash and stiffer 

driving system. 

 

1.6 End Effector of Robot 
The end effector is connected to the main frame of the robot through the 

wrist. A typical wrist including three rotary axes allowing roll, pitch and yaw. 

Although most wrists use three rotary axes, there are applications, which require 

only two axes of motion. The wrist should be designed to be as light as possible. 

Reductions of weight at the wrist increases the maximum allowable load and 

reduce the moment of inertia, which improves the dynamic performance of the 

robot arm. 

End effectors fall into two categories: grippers and tools for process 

applications, such as welding torches, painting guns, drills, and grinders. Grippers 

are used in handling, machine loading, and assembly applications. In most 

grippers the mechanism is actuated by a pneumatic piston, which moves the 
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gripper fingers. When the robot is handling glass products or parts with highly 

polished surfaces, a vacuum type gripper can be used. 

 

1.7 Programming of Robots 

 
To state an algorithm, it is necessary, of course, to be able to write it down 

and express it logically, but it is also necessary, if it is to be executed by a 

machine, to state the algorithm in terms of some programming language. There 

are three methods used in the development of software for industrial or personal 

robots.  

First method is the teaching method. This method consists in showing a 

robot what to do, with an accessory called “teaching pendant”. 

The second method of programming a robot is the comprehensive method. 

This method is known in the industry as “world modelling” method. Instead of 

showing a robot what to do, this method simulates a robot procedure using three-

dimensional geometric models. By simulating robot actions on a screen using 

geometry based on cartesian coordinates, each step can be indicated by using the 

model. The problem with this method is that it assumes that the robot will operate 

the way the model operates. 

The third method consists of a robot and computer programming language. 

In most cases, a high-level programming language is used along with a suitable 

subset of motion and manipulation commands. The focus of this method is on the 

end-effector or manipulator, and on the instructions of what the end-effector is to 

do in each step of the way. There are various kinds of programming languages 

used in robotics. 
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1.8 Object of Present Investigation 

 
The object of this investigation is to develop robotic software, which 

controls a 6 degree-of-freedom robotic manipulator, which has been designed and 

manufactured at the CAD/CAM/ROBOTICS centre of METU. 

 Motors of the robot will be controlled by the motion control (DELTA 

TAU) card. 8 motors can be controlled simultaneously with PC. 

There are 6 revolute joint controlled by 6 servomotors. Generally the user 

specifies a path to describe the required motion of the robot in space coordinates. 

This information in space coordinates must be converted to joint variables. A 

theory must be developed to achieve this conversion and the best technique is to 

be chosen among the alternatives. 

A graphics program will be developed to simulate this motion considering 

the limits on displacement, velocity and acceleration. Once a satisfactory solution 

is found, then the necessary information will be sent to the motion control card. 

The robot will then be expected to execute this motion. 

The movements must be smooth, because robot can do sensitive jobs, e.g. 

welding or painting. In order to get the smoothness, the path must be optimized 

and the speed and acceleration of the motors and hand must be limited. This will 

be guaranteed with the software. 

 

1.9 LITERATURE SURVEY 

 

1.9.1 Projects with the METUROBOT 
 

METUROBOT is the first industrial robot designed and manufactured in 

CAD/CAM/ROBOTICS Centre in Mechanical Engineering Department of 
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METU. There are 4 thesis studies completed on this robot. These theses are all 

supervised by Prof. Dr. Bilgin Kaftano�lu. 

The initial design of the METUROBOT was started with the thesis study 

“Computer Aided Design of an Industrial Robot Arm” (1994) submitted by 

Erdal Ça�layan [3]. In this study, an interactive algorithm through the use of 

integrated solid model, kinematic, dynamic and finite element analysis is 

developed. The graphical method, for visualising the dynamic performance of the 

designed arm, is introduced. The assembly relations of the robot are handled 

through a hierarchical data structure. In the study, kinematic simulation is also 

combined with the solid model of the complete robot assembly. The mechanical 

design of the transmission elements is held according to the well-known classical 

machine elements design procedures. In summary, this study illustrates a CAD 

algorithm, using advanced graphics and analysis software available, for an 

optimal robot arm, which can be applied to any type of robot arm by modifying 

the presented computer program. 

The following thesis study is “The Computer Aided Design of an 

Industrial Robot” (1997) submitted by Tolga Ünver [17]. In this thesis, the 

preliminary design of METUROBOT is performed. In order to actuate, motors 

and drive systems are chosen. Taking some criteria into account, several 

alternatives are designed and modelled using the software Pro-Engineer. Using 

program facility, a simulation is performed and arm structures are modified to 

optimise the work envelop. Then, considering the dynamic performance of 

transmission systems, work envelopes obtained, and manufacturing and assembly 

operations, the alternatives are discussed and a final decision was made. 

Next thesis study is “Virtual Modelling, Planning and Production of 

Parts of an Industrial Robot” (1999) submitted by �ükrü Bülent Toker [16]. 

The aim of this thesis is to construct a 6 degrees of freedom robot designed 

previously. The aim is to produce a stiff and no backlash robotic system. In the 

thesis, production of parts, assembly and initial operation of METUROBOT is 
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performed. 3D solid modelling and virtual assembly techniques are used to 

minimise the problems encountered in the assembly stage. Next, some parts are 

modified and then, productions of parts are started. The parts are manufactured 

mainly using the capabilities of METU CAD/CAM/ROBOTICS Centre. Some 

sponsors are found for some of the components to be purchased and 

manufacturing in several companies. However, the production of some parts and 

the assembly of the robot are not completed. 

Last thesis study completed with the METUROBOT is “Production, 

Assembly and Application of an Industrial Robot” (2001), submitted by 

Oykun Eren [4]. Parts of this thesis are; checking of initial design and 

accomplishment of the design modifications where necessary, finishing of the 

production of parts, physical assembly to its final stage including the painting, the 

electrical and electronical assembly of motors with servo drives and control 

circuitry together with the design and construction of a control box, and finally, 

initial testing using joint variables.  

 

1.9.2 Other Studies Related to the Topics in the Thesis 

 

 E. �lhan Konukseven [6] completed a thesis on graphical simulation and 

programming of robots, “Graphical Simulation and Programming of Robots” 

(1989). In his study, he constructed a 3D graphical model of Puma type 

manipulator. He solved forward and inverse kinematics of the robot and generated 

path. The representation of the robot is wire-frame and animation is included in 

the thesis. 

 Anas Abidi [1] completed the thesis “Man-Machine Interface Software 

Development for an Industrial Robot”(2002). He developed a graphical user 

interface “GUI” for ABB-IRB 2000 in the CAD/CAM/ROBOTICS centre. He 

used solid models of the robot in the animation part of the software and he wrote 

off-line programs to debug on the graphical simulation and execute on the robot. 
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He also developed a collision detection algorithm for the parts of the robot and 

robot-object. 

 

 

1.10 Thesis Outline 

 

Chapter 2: Kinematic Analyses 

 

 This chapter includes basic concepts of robot kinematics. Forward and 

inverse kinematic analyses, i.e. position, velocity and acceleration analyses are 

derived. Implementations of these analyses to the computer program is also 

discussed. 

 

Chapter 3: Trajectory Planning 

 

 In the trajectory planning chapter, path planning of the tip point of the 

METUROBOT is explained. Path optimisation, i.e. movement in minimum time, 

is also discussed in this chapter. 

 

Chapter 4: Simulation Framework 

 

 In this chapter, the simulation framework system of the METUROBOT 

software is explained. 

 

Chapter 5: Motion Control 

 

 This chapter explains how the METUROBOT is controlled through a PC 

and how it can be implemented in the thesis work. 
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Chapter 6: Software of “MMI of METUROBOT” 

 

 In this chapter, software of “Man-Machine Interface (MMI) of 

METUROBOT” is explained. 

 

Chapter 7: Discussion & Conclusion 

 

 This chapter concludes the thesis by summarizing the work done and 

discussing possible future work. 
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Chapter 2 

KINEMATIC ANALYSES 

 

2.1 Introduction 

 

Kinematics is the science of motion. Robot is considered as a series of 

links connected by joints. Joints of robots have one degrees of freedom. There are 

two types of joints. Revolute (or rotationary) joints provide one degree of rotation 

and prismatic joints provide one degrees of translation. 

The robot user/programmer is interested in the position and orientation 

(pose) of the end-effector. However, the robot is controlled by the joint actuators 

and actuators controls the joints in terms of angles.  

There are two main parts of these analyses, forward and inverse. In 

forward analyses, one knows the angular position, velocity and acceleration of 

each motor and wants to know position, velocity and acceleration of the end-

effector. In inverse analyses, features of the end-effector are known and one wants 

to know the features of each motor. In robot programming applications, inverse 

kinematic analyses are useful, because programmer wants to manipulate the end-

effector of the robot. 

In the kinematic analyses, the translational and rotational relations 

between adjacent links must be described. Hartenberg & Denavit proposed a 

matrix method for this purpose. First HD convention parameters will be expressed 

and position analyses will be done accordingly.  
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After the position analyses, velocity and accelerations will be done. In 

these analyses, a special matrix, Jacobian matrix will be formed and velocity & 

acceleration analyses will be done. 

 

2.2 Hartenberg-Denavit (HD) Convention 

 

A systematic technique for establishing the displacement matrix for each 

two adjacent links of a mechanism was proposed by Hartenberg and Denavit in 

1955. This convention will be used in this investigation [10]. 

 

The HD convention is mainly implemented in robot manipulators, which 

consist of an open kinematic chain in which each joint contains one degree 

of freedom and the joint is either revolute or prismatic. The HD 

convention is implemented through the following steps (Figure 2.1): 

1. Number the links and joints, starting at the base. The stationary base is 

denoted as link 0 and the end effector is link n, as demonstrated in 

figure. Link i moves in respect to link i-1 around (for revolute) or 

along (for prismatic) joint i. 

2. Establish links’ coordinate system for each of the joints according to 

the following rules: 

a) The Zn axis is chosen along the axis of motion of joint n+1. For a 

revolute joint, link n+1 rotates in respect to link n around the +Zn 

axis in the amount of +�n+1; for a prismatic joint, link n+1 is 

displaced relative to link n along the +Zn axis in the amount of 

+dn+1. 

b) The Xn+1 axis is chosen perpendicular to the Zn axis (i.e. it is 

perpendicular to both Zn and Zn+1). If Zn+1 and Zn do not intersect, 

then the Xn+1 axis is along the common normal to Zn+1 and Zn and 
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its direction is defined from Zn toward the Zn+1 axis. If, however, 

Zn and Zn+1 do intersect, the direction of Xn+1 axis is not defined 

and it can be chosen in either of the two possible directions. In 

addition, if the Zn and Zn+1 axes are collinear, the Xn+1 axis can be 

chosen anywhere in the plane perpendicular to them. 

c) The Yn+1 axis is chosen to complete a right-handed coordinate 

system. 

Note that the assignment of coordinate system is not unique. For 

example, there are several possibilities for the selection of the direction 

of the Xn+1 axis. 

 

 

 

 

 

 

 

 

 

 

 

 Figure 2.1 HD Convention Parameters 

 

 

3. Define the joint parameters, which are the four geometric 

quantities �n+1, dn+1, an+1, �n+1. 
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�n+1 is the angle between the Xn and the Xn+1 axis, obtained by 

rotating Xn into Xn+1 around the Zn axis. For a revolute joint, �n+1 is a 

variable and for a prismatic joint �n+1 is a constant parameter. 

dn+1 is the coordinate of the origin of On+1 frame on the Zn axis i.e., 

the distance between the origin of On frame to the intersection of the 

Zn axis with the Xn+1 axis. For a prismatic joint dn+1 is a variable, and 

for a revolute joint dn+1 is a constant parameter. 

an+1 is the distance between Zn and Zn+1 axis measured along the 

negative direction of Xn+1 from its origin to where it intersects the Zn 

axis (a constant parameter). 

�n+1 is the angle between the Zn axis and the Zn+1 axis, obtained by 

rotating Zn into Zn+1 around the Xn+1 axis (a constant parameter). 

 

Using these parameters, the orientation matrix Ci
i-1 of link i with respect to 

link i-1 is given by (Eq 2.1): 

 

 

 

 

         (2.1) 
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2.3 HD PARAMETERS: 
 

To find HD parameters of the robot, the wire-frame model of the robot 

must be drawn (Figure 2.2): 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 2.2 Model of METUROBOT 

 

 

 According to the robot link and distance definitions, the HD parameters of 

this robot are (Table 2.1): 

 

 

 

 

 

 

 

 



20 

 

Table 2.1 HD Parameters of the robot 

Joint Number a d α θ 

1 0 0 π/2 j.v.(Joint Variable) 

2 a2 0 0 j.v. 

3 a3 0 -π/2 j.v. 

4 0 d4 -π/2 j.v. 

5 0 d5 π/2 j.v. 

6 0 0 0 j.v. 

   

 

By using these parameters, the following rotation matrices can be formed 

between links. C(i-1)(i) is the rotation matrix between link (i-1) and link (i). The 

closed form of C(i-1)(i) is; 

 

 

          (2.2) 

 

where, 

 

therefore, 
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(2.3)&(2.4) 

 

 

 According to the (Eq. 2.2), the rotation matrices can be formed as; 

 

 

          (2.5) 

 

 

 

          (2.6) 

 

 

 

          (2.7) 

 

 

          (2.8) 

      

 

 

          (2.9) 

 
 
 

          (2.10) 
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2.4 Position Analyses 

 

2.4.1 Forward Position Analysis 

 

The position and orientation of the end-effector is determined using joint 

angles. This is named as forward position analysis. This analysis is done 

symbolically. Found position and orientation elements are used in other kinematic 

analyses. In robotic applications, generally inverse kinematic analyses are used, 

because, generally the pose (position & orientation) of end-effector is known 

values but joint angles are unknown values. The orientation can be found first, 

because, part of the position is found using orientation.  

 

2.4.1.1 Orientation of the End-Effector 

 

Orientation of the end-effector is found by multiplying all rotation 

matrices, because, the lengths of the links and offsets cannot affect the orientation. 

The orientation matrix is then; 

 

         (2.11) 

 

In the general rotation matrices, not all the elements are independent. We 

can express rotation matrices with 3 independent elements. These are called Euler 

angles. In this thesis, Euler angles with 123 (yaw, pitch, raw) sequence will be 

used. Before converting this rotation matrix to the Euler angles we must define 

rotation matrix with yaw, pitch and roll angles. First, rotation matrices about the 

principal axes are evaluated.  

 

A rotation of ψ radians about the x-axis is: 

 

C C 01 C 12⋅ C 23⋅ C 34⋅ C 45⋅ C 56⋅
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         (2.12) 

 

 

A rotation of θ radians about the y axis is: 

 

 

         (2.13) 

 

 

and, a rotation of φ radians about the y axis is: 

 

 

         (2.14) 

 

 

 

For Euler 123 angle sequence the final rotation is the multiplication of the 

above matrices in the following way: 

 

 

 

         (2.15) 

           

  

        

 

 

ψ, θ and φ can be calculated using rotation matrix expressed above: 

R x

1

0

0

0

cos ψ( )
sin ψ( )

0

sin ψ( )−

cos ψ( )

�
�
�
�

�
�
�
�

Ry

cos θ( )
0

sin θ( )−

0

1

0

sin θ( )
0

cos θ( )

�
�
�
�

�
�
�
�

R z

cos φ( )
sin φ( )

0

sin φ( )−

cos φ( )
0

0

0

1

�
�
�
�

�
�
�
�

C

1

0

0

0

cos φ( )
sin φ( )

0

sin φ( )−

cos φ( )

�
�
�
�

�
�
�
�

cos θ( )
0

sin θ( )−

0

1

0

sin θ( )
0

cos θ( )

�
�
�
�

�
�
�
�

⋅

cos ψ( )
sin ψ( )

0

sin ψ( )−

cos ψ( )
0

0

0

1

�
�
�
�

�
�
�
�

⋅

C

cos θ( ) cos ψ( )⋅

sin φ( ) sin θ( )⋅ cos ψ( )⋅ cos φ( ) sin ψ( )⋅+

cos φ( )− sin θ( )⋅ cos ψ( )⋅ sin φ( ) sin ψ( )⋅+

cos θ( )− sin ψ( )⋅

sin φ( )− sin θ( )⋅ sin ψ( )⋅ cos φ( ) cos ψ( )⋅+

cos φ( ) sin θ( )⋅ sin ψ( )⋅ sin φ( ) cos ψ( )⋅+

sin θ( )
sin φ( )− cos θ( )⋅

cos φ( ) cos θ( )⋅

�
�
�
�

�
�
�
�
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         (2.16) 

 

         (2.17) 

 

          (2.18) 

 

 There are two possibilities for the selection of the sign of θ, but, the sign 

selection is not important. The sign is selected positive in this study. 

 

2.4.1.2 Position of the Tip Point 

 

According to the figure 2.2, the equation of the tip point position is; 

 

         (2.19) 

 

where, 

1201 is the constant distance between base and O0. 

u1 is the unit vector in the direction of x, on base frame 

u3 is the unit vector in the direction of z, on base frame 

and, 

u1
(x) is the unit vector in the direction of x, on xth frame 

 

u1
(x) is expressed in the base frame as; 

  

         (2.20) 

The position of O5 with respect to O0 is defined here as R so that; 

 

        (2.21) 

 

u1
X( )

C0X u1⋅

θ asin C13( )

ψ atan2 C11 C12−,( )

φ atan2 C33 C23−,( )

P 1201 u 3⋅ R+ d p C 06⋅ u 3⋅+
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where elements of R is; 

 

         (2.22) 

         (2.23) 

         (2.24) 

 

 

Then, the elements of the P matrix are; 

 

         (2.25) 

         (2.26) 

         (2.27) 

 

where, c13, c23, c33 are the elements of C06 matrix. 

 

 

2.4.2 Inverse Position Analysis 

 

2.4.2.1 Introduction 

 

Inverse position analysis is to find joint angles from given pose of the end-

effector. First we must determine rotation & translation matrices with given 

position and orientation. For the simplicity, we convert position of tip point with 

respect to the base, to position of wrist point with respect to O0. Then the inverse 

position analysis is done using the wrist point position. 

After the matrices are formed, using the detailed expressions of the 

elements, we can find the joint variables of the robot. The elements in the position 

matrix are independent, but in rotation matrix, only 3 of 9 elements are 

R1 a3 cos θ23( )⋅ d4 sin θ23( )⋅− d5 cos θ23( )⋅ sin θ4( )⋅− a2 cos θ2( )⋅+( ) cos θ1( )⋅ sin θ1( ) d5⋅ cos θ4( )⋅−

R2 a3 cos θ23( )⋅ d4 sin θ23( )⋅− d5 cos θ23( )⋅ sin θ4( )⋅− a2 cos θ2( )⋅+( ) sin θ1( )⋅ cos θ1( ) d5⋅ cos θ4( )⋅+

R3 a2 sin θ2( )⋅ a3 sin θ23( )⋅+ d4 cos θ23( )⋅+ d5 sin θ23( )⋅ sin θ4( )⋅−

P1 R1 c13 dp⋅+

P2 R2 c23 dp⋅+

P3 1201 R2+ c33 dp⋅+
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independent. This means, there are 6 independent equation for 6 unknown joint 

variables. 

Generally, the inverse position analysis is solved with fully analytical 

method, because, generally translational elements are consisting 3 joint variables. 

With 3 equation and 3 unknowns, joint variables can be solved. However, 

METUROBOT has special design and the translation matrix, that is, Rx, Ry and 

Rz are functions of 4 joint variables. Rotation matrix is a function of all joint 

variables. Because of this, the semi-analytical method is used. In this method, we 

treat one of the joint variables (θ1) as if it is known. Then we solve θ2, θ3, θ4, 

depending on θ1, using translation matrix equations. Then, there is more than one 

approach to proceed from this point on. One approach is to find θ4, θ5, θ6 also in 

terms of θ1, using rotational part of equations, in addition to the previously found 

θ2, θ3 and θ4. Now, there are two different θ4 expressions in terms of θ1. The 

last step is to equate these two expressions of θ4 in order to extract θ1 out of them 

[10]. 

The second way of solution is to find θ1 using one element of the rotation 

matrix, which is dependent only on the first four joint variables. This procedure is 

taken from the paper written by Balkan, Özgören, Arıkan and Baykurt [2]. Its 

details are explained in section 2.4.2.2. 

In the first approach, all three sign ambiguities appear explicitly, but only 

two of them appear explicitly in the second one. In other words, the first approach 

gives all multiple solutions, whereas the second approach gives only two of the 

solutions. Therefore, in the second approach, all of the singular and multiple 

configurations may not be seen clearly. However, due to a bug in programming 

the first approach, it hasn’t been so far possible to use it effectively. Therefore, the 

second approach is preferred in this thesis. 
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2.4.2.2 Formulation 

 

The first thing to do is to convert tip point position to wrist point position. 

From (Eqs 2.25-2.27); 

 

          (2.28) 

          (2.29) 

          (2.30) 

 

 

We start with 3 translational elements of wrist point position and treating 

as if θ1 is known (from eqs 2.22-2.24), 

 

 

 

          (2.31) 

          (2.32) 

 

 

          (2.33) 

          (2.34) 

 

 

From the equations (2.31 & 2.32), we get; 

 

          (2.35) 

          (2.36) 

 

θ4 can be found from eq. (2.34); 

R1 A1 cos θ1( )⋅ A2 sin θ1( )⋅−

R2 A1 sin θ1( )⋅ A2 cos θ1( )⋅+

where,

A1 a3 cos θ23( )⋅ d4 sin θ23( )⋅− d5 cos θ23( )⋅ sin θ4( )⋅− a2 cos θ2( )⋅+

A2 d5 cos θ4( )⋅

R1 P1 c13 dp⋅−

R2 P2 c23 dp⋅−

R3 P3 c33 dp⋅− 1201−

A1 R1 cos θ1( )⋅ R2 sin θ1( )⋅+

A2 R2 cos θ1( )⋅ R1 sin θ1( )⋅−
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    σ4 is either (-) or (+)  (2.37) 

 

 

In the home position, the initial value of θ4 is –90 degrees. When the robot 

is requested to be in right armed configuration, θ4 must be small angle, and σ4 is 

selected positive, otherwise, σ4 is selected negative. For details, see 2.4.2.4 

 

from the equations (2.24 & 2.33); 

     

          (2.38) 

 

and, 

 

          (2.39) 

 

also there is an equation, 

 

          (2.40) 

 

all these three equations combined and result is, 

          (2.41) 

 

 

 
          (2.42) 

          (2.43) 

          (2.44) 

θ4 σ4 acos
A2

d5

�
�
�

�
�
�

⋅

cos θ 2( )
A 1 a 3 cos θ 23( )⋅ d 4 sin θ 23( )⋅− d 5 cos θ 23( )⋅ sin θ 4( )⋅−( )−

a 2

sin θ 2( )
R 3 a 3 sin θ 23( )⋅ d 4 cos θ 23( )⋅+ d 5 sin θ 23( )⋅ sin θ 4( )⋅−( )−

a 2

cos θ 2( )2
sin θ 2( )2

+ 1

0 B2 sin θ23( )⋅ A2 cos θ23( )⋅+ C2+

where,

A2 2 A1⋅ d5⋅ sin θ4( )⋅ 2 R3⋅ d4⋅− 2 A1⋅ a3⋅−

B2 2 A1⋅ d4⋅ 2 R3⋅ d5⋅ sin θ4( )⋅+ 2 R3⋅ a3⋅−

C2 A1
2

R3
2+ d5

2
cos θ4( )2

⋅− d5
2+ d4

2+ a3
2+ a2

2− 2 a3⋅ d5⋅ sin θ4( )⋅−
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the solution of this equation is,   

       

          (2.45) 
 

      

 

     σ2 is either (-) or (+)   (2.46) 

 

 

When σ2 is positive, the robot is in elbow up configuration, when σ2 is negative, 

the robot is in elbow down configuration. For details, see 2.4.2.4. 

 

We found θ23, which is θ2 + θ3. We can find θ2 from the above equations (2.38 & 

2.39) as, 

 

          (2.47) 

 

Now, θ2, θ3, θ4 is found in terms of θ1. To find true θ1, the rotation matrix 

C must be used. From the (Eq. 2.11),  

 

         (2.48) 

 

 

When we manipulate the matrix calculations and we equate the last 

elements, the equality is; 

 

 

 

 

θ23 2 atan t( )⋅

where,

t
B2 σ2 B2

2
A2

2+ C2
2−+

A2 C2+

θ 2 atan2 cos θ 2( ) sin θ 2( ),( )

C01 C12⋅ C23⋅ C34⋅( ) 1−
C⋅ C45 C56⋅ B
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         (2.49) 

The joint variables found before are the functions of θ1, then above 

equation becomes the function of θ1. The true θ1 can be found by searching it 

through the range. In this search algorithm, inverse interpolation method is used. 

This method is explained in the following section. After finding true θ1 to θ4, we 

can find θ5 and θ6 from equality of other elements of eq.2.49. 

 

         (2.50) 

         (2.51) 

 
 
         (2.52) 

         (2.53) 

 

then, 

 

         (2.54) 

         (2.55) 

 

 

2.4.2.3 Inverse Interpolation 

 

When the function known at discrete points, the function values of the 

interior points can be found by interpolation. Finding the argument value for the 

given value of the function is known as inverse interpolation. Therefore, the roots 

of the given function known at discrete points can be found with inverse 

interpolation. 

c13− c θ4( )⋅ c23 s θ4( )⋅ c θ23( )⋅−( ) s θ1( )⋅ c23 c θ4( )⋅ c13 s θ4( )⋅ c θ23( )⋅−( ) c θ1( )⋅+ s θ4( )− s θ23( )⋅ c33⋅( )+ 0

sin θ5( ) b13

cos θ5( )− b23

sin θ6( ) b31

cos θ6( ) b32

θ5 atan2 b23− b13,( )

θ6 atan2 b32 b31,( )
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When the given discrete points of the function are; 

 

 

 The desired value of the function is y ( y0<y<y2 ), the argument for the 

desired value (the x value for the desired y) can be calculated as; 

 

 

          (2.56) 

 

 

There is an example for the inverse interpolation below; 

The values of the discrete function are; 

 

 When we want to find the approximate root of the function ( f(x) = 0 , i.e. 

y = 0 ), the calculation gives, x = 8.852. 

 

2.4.2.4 Configuration Selection and Singular Points 

 

There are multiple configurations due to the sign ambiguities in the 

solution of the inverse position. There are three different sign ambiguities and 

these ambiguities cause three configurations to select. These are; 

f x0( ) y0

f x1( ) y1

f x2( ) y2

x
y y 1−( ) y y 2−( )⋅

y 0 y 1−( ) y 0 y 2−( )⋅
x0⋅

y y 0−( ) y y 2−( )⋅

y 1 y 0−( ) y 1 y 2−( )⋅
x1⋅+

y y 0−( ) y y 1−( )⋅

y 2 y 0−( ) y 2 y 1−( )⋅
x2⋅+

f 0( ) 30−

f 5( ) 15−

f 10( ) 80
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• Elbow up/down configuration, 

• Wrist up/down configuration, and 

• Right/left armed configuration. 

The selection of right/left armed configuration is allowed by the MMI 

software. This ambiguity (sign selection of σ4) is shown in the eq. 2.37. The other 

configurations are defined by the designer of the METUROBOT. Due to the 

construction and physical limits, elbow up and wrist up configurations are used in 

the system. By selecting σ2 positive, the elbow up configuration is chosen. (eq. 

2.46). There is no wrist configuration selection in the equations, the wrist up 

configuration is selected with elbow up configuration and selected arm 

configuration. 

There are also some singular points in the system. First singular 

configuration is observed when the point O6 is on the axis of first joint Z0. In this 

configuration, θ1 can have arbitrary value. The second singular configuration is 

observed when O6 is coincident with O1. When this occurs, the θ32 become 

arbitrary. This two type of singularity cannot be encountered in the real cases, 

because these configurations cannot be reached by the real robot. 

The last and most important type of singularity in the METUROBOT is 

the singularity in the wrist. When θ5=0 or θ5=±180 degrees, the θ4 and θ5 cannot 

be solved separately, but the value of θ4+θ5 can be determined. 
 

2.5 VELOCITY AND ACCELERATION ANALYSES 

 
2.5.1 JACOBIAN MATRICES: 

 

Before doing velocity analyses, jacobian matrix must be clarified. Mainly 

it is the matrix is the matrix between task space velocities and joint space 

velocities. 
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We can find JP and JA vectors by using C (rotation) matrix found in 

forward position analysis. P matrix is the tip point position matrix. When the 

Jacobian matrix is found, it is used for both velocity and acceleration 

analyses.[11] 

 

 

 

         (2.57) 

 

 

 

 

 

 

The Jacobian matrix can be found for wrist point too, but user wants to 

control the movement of end-effector, then we must construct the tip point 

Jacobian matrix. The position matrix of the tip point was: 

 

 

 

      

 

 

P1, P2, P3 and C13, C23, C33 are defined in the forward position analyses. 

 

Full Jacobian matrix is very large but its construction is straightforward. 

The usage of Jacobian method is time consuming when doing by hand, but its 

P

R 1 C 13 d p⋅+

R 2 C 23 d p⋅+

R 3 C 33 d p⋅+ 1201+

�
�
�
�
�

�
�
�
�
�
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time saving method when doing with a computer program. The elements of the 

Jacobian matrix and its derivative are on the Appendix B. 

 
2.5.2 FORWARD and INVERSE VELOCITY ANALYSES 

 

For the given angular position and velocities of the joints, i.e. motors, the 

velocity of the wrist and tip point can be calculated easily with the help of 

jacobian matrices. The inverse of this is also very simple, when this matrix is 

constructed. 

Elements of jacobian matrix are quite lengthy, but a computer programmer 

can write a function to calculate a jacobian matrix, and its inverse, with an input 

of angular position of the motors. When this matrix is calculated, one can easily 

evaluate tip point velocity using motor angular velocities or vice versa. 

 

 

 

 

         (2.58) 

 

 

 

 

 

 

 

Jp is a 6x6 jacobian matrix, whose elements are dependent on joint 

variables, forward and inverse velocity analyses can be done using normal and 

inverse of Jp. 
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         (2.59) 

         (2.60) 

 
 
2.5.3 FORWARD and INVERSE ACCELERATION ANALYSES 

 

For the given angular position, velocity, and acceleration values of the 

joints, the acceleration of the tip point can be calculated. For this, partial 

derivative of the jacobian matrix, with respect to the joint variables, is used.  

 

Main acceleration equation is; 

 

         (2.61) 

 

then,  

 

         (2.62) 

 

 

Q, JP and JP are found from the velocity analyses and used for forward or 

inverse acceleration analyses. 
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CHAPTER 3 

TRAJECTORY PLANNING 

 
 

3.1 Introduction 
 

In most of the robotic applications, it is necessary for the manipulator to 

follow the planned path. In some applications, such as, painting and welding, the 

tip point of the robot, that is hand of the robot, needs to be more sensitive in 

motion. In all applications, there are via points to touch or to pass. Sometimes it is 

necessary for the operation, or sometimes they are via points for avoiding 

obstacles. 

These via points, starting point and ending point are specified in general 

task space coordinates. But, how the robot will move between these points, is the 

problem of trajectory planning. For example, the operator gives two points in the 

task space. There are 2 choices in general, trajectory planning in the task space or 

planning in the joint space. Planning in the task space can be seen more smooth. 

But, for the robot, to go on a circular path is much easier than to go on a straight 

line, because, the robot has revolute joints. And also the joint trajectories are 

easier to plan. 

The other decision, which must be made, is whether the trajectory 

planning should take place on-line or off-line. The on-line method has the 

advantage of allowing the robot to respond external effects, which may cause it to 

modify its path. But, the curve-fitting calculations are lengthy and it limits the 

number of via points and decreases the accuracy of the trajectory. 
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The off-line method allows more way points and they can be specified 

more closely in time. Since most robotic applications involve repetitive 

operations, this method reduces the amount of computing time of trajectory 

planning. All the data for an application is calculated at once. 

 

3.2 General Considerations 
 

For the trajectory planning in the joint space, the time history of all joint 

variables and their first two derivatives are planned to describe the motion. In 

general approach, the trajectory function is updated for every interval. The 

function must be smooth. To guarantee this, first and second time derivative of the 

trajectory function must be continuos over the whole path. This method is mainly 

taken from the study of Dr. Konukseven [6] 

If there are (n+1) points to generate trajectory, there must be (n) functions.  

 

 

 

 

 

 

Figure 3.1 Path generation for 3 point 

 

 

User wants to specify position, velocity and acceleration of the start and 

end points. This means 3 condition for start and 3 conditions for end points. For 

the intermediate points, generally the position is enough. The function values 

must be equal to the given condition. This gives extra (2n-2) conditions. First and 

second derivatives of the function at the interior nodes are equal, this also gives 



38 

 

(n-1)+(n-1) conditions. There are 6+2n-2+2n-2=4n+2 conditions total. For 

example, if there are 4 points (n=3), there are 3 functions and 14 conditions. We 

can fit 4th degree polynomial for f1, 3rd degree for f2 and 4th degree for f3. (4-3-4). 

Total of 5+4+5=14 constants. Or we can fit two cubic and one quantic (3-5-3). 

If the number of interval increases, again there are 4n+2 conditions. To 

formulate this trajectory easily and independent of number of intervals, we must 

use (4-3-4) trajectory. If we increase the number of points, every extra interval 

gives +4 condition, and a function. When we add extra cubic polynomial for this 

extra interval, there will be no problem. (4+3+...+3+4 trajectory) 

If the number of points is only two, the spline to be fitted is 5th order 

polynomial and it is not used in robotics generally. 

 

3.3 4-3-4 Trajectory 
 

When we generate a path for the robot, we generate a trajectory for each of 

the joints of the robot. Before generating a path, we must calculate position, 

velocity and accelerations of the starting and ending points, and positions of via 

points. 

Suppose there are n points to be passed. The equation of the spline 

between first and second point, i.e. P0 and P1, is 4th order polynomial. This is: 

 

F1(t)=A1 + A2x + A3 x2 + A4x3 + A5x4     (3.1) 

 

The equation between last and previous points, Pn-1 and Pn, is 4th order as 

well. 

 

Fn-1(t)=Z1 + Z2x + Z3 x2 + Z4x3 + Z5x4      (3.2) 
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The equation of the spline between two intermediate points, Pk and Pk+1, 

is: 

 

Fk(t)=B1 + B2x + B3 x2 + B4x3       (3.3) 

  

Suppose end of time for 1st interval is t1, the conditions are: 

 

Positions are given: 

  

F1(0)=P1,         (3.4) 

F1(t1)=P2,         (3.5) 

F2(0)=P2,         (3.6) 

…    

Fn-1(tn-1)=Pn         (3.7) 

 

Velocities and accelerations given in the end points and equal for both 

interval at the intermediate points: 

 

F1’(0)=P1’         (3.8) 

F1’’(0)=P1’’         (3.9) 

Fn-1’(tn)=Pn’         (3.10) 

Fn-1’’(tn)=Pn’’         (3.11) 

 

and, 

 

F1
’(t1)=F2

’(0)         (3.12) 

F1
’’(t1)=F2

’’(0),         (3.13) 

…   



40 

 

F’
n-2(tn-2)=F’

n-1(tn-1)        (3.14) 

F’’
n-2(tn-2)=F’’

n-1(tn-1).        (3.15) 

 

When we equate the equations (3.1) and (3.4), 

 

P1=A1           (3.16) 

 

similarly, 

 

P1’=A2      from (3.1) and (3.8)  (3.17) 

P1’’=2.A3     from (3.1) and (3.9)  (3.18) 

  

P2=B1      from (3.3) and (3.6)  (3.19) 

P2=A5.t1
4+A4.t1

3+A3.t1
2+A2.t1+A1  from (3.1) and (3.5)  (3.20) 

4.A5.t1
3+3.A4.t1

2+2.A3.t1+A2=B2  from (3.12)   (3.21) 

 

and, 

 

12.A5.t1
2+6.A4.t1+2.A3 =2.B3   from (3.13)   (3.22) 

... 

when we continue to the end, the following matrix is come out: 

 

M x Cf = V 

 

Where, M is the transformation matrix, Cf is the coefficient matrix, and V 

is the desired values matrix. M is (3n+1)x(3n+1) matrix, where n is the number of 

points. 
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3.4 Implementation 
 

For the 3 point (2 interval) path generation (Figure 3.2) the size of M 

matrix is 10x10. the points and positions with the times are shown below. Using 

the above (3.16 to 3.22) equations, the M x Cf = V matrices (3.23) are as 

following; 

 

 

 

 

 

 

Figure 3.2 Path generation for 2 point 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Eq 3.23 MxCf=V matrices for 3 point trajectory planning 
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The elements of M and V are known, then when we take inverse of the M 

matrix and multiply it with V matrix, the Cf matrix came out. The elements of Cf 

matrix are the constants of the 2 polynomials between P0 & P1 and P1 & P2. 

 There is an example for the trajectory planning for the given data. There 

are 5 points on the path, and end point velocity of the given joint is not zero, but 

“-4” degrees per second. Starting point velocity, starting and end point 

accelerations are all zero. The desired values of the positions with time are given 

below. 

 

 

 Table 3.1 Example Data for Trajectory Planning 

t (sec) angle(degree) 

0 20,336 

3 11,038 

5 14,208 

11 7,585 

14 4,014 

 

  

There are 5 points on the path and 4 polynomials must be fitted. We 

named these polynomials as F1(x), F2(x), F3(x), F4(x). Two exterior polynomials 

are 4th degree and two interior ones are 3rd degree. After matrix operations, these 

polynomials are calculated as, 

 

 

 

 

 

 

 

F1 x( ) 0.35493 0.0193x
3⋅− 0.00442x

4⋅+:=

F2 x( ) 0.19265 0.04329x⋅− 0.06524x
2⋅+ 0.01488x

3⋅−:=

F3 x( ) 0.24798 0.03909x⋅+ 0.02405x
2⋅− 0.00238x

3⋅+:=

F4 x( ) 0.13238 0.008 x⋅+ 0.01892x
2⋅+ 0.01697x

3⋅− 0.00247x
4⋅+:=
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 These polynomials are combined properly, and the trajectory is found. The 

expression for combining the parts of the trajectories is, 

 

 

 

 

 

 

 

 The graphs of the F(x) function and its derivatives are in the following. 

The first derivative is the velocity graph for the joint and the second derivative is 

the acceleration of the joint. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Graphs of position, velocity and acceleration of the trajectory for the example data. 
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3.5 Application to the Thesis 
 

Path planning of the robot means, arrange velocities and accelerations of 

the joint variables such that the tip point of the robot passes from the desired 

points. To do this, first we calculate the inverse position analyses of the start, end 

desired positions of the tip point. This gives us the desired joint variables along 

the path. 

Trajectory of each joint is calculated with the formulation above. Using 

the boundaries for joint velocities and accelerations for each joint, the time 

required to do the movement is calculated. With this, the trajectory will be found. 

The trajectory will be smooth enough, because, we guarantee the smoothness of 

all the joints. 

 

3.6 Conclusion 
 

In the trajectory planning, the most important thing is the smoothness of 

the path, because, if the path of the robot makes robot tilt or crash, or if the robot 

makes dangerous movements, there is no meaning to make trajectory planning or 

path generation. In the method used, the smoothness is the key point.  

The optimisation is not considered in the trajectory planning. In fact, some 

optimisation criteria may be considered, such as, minimum time or minimum 

energy. But in the thesis, besides starting and ending points, via points are 

determined and the robot has to be passed from these points. This criterion avoids 

us to apply minimum energy optimisation. In this trajectory planning method, 

time must be given as the input. To optimise it, the iterative method must be used. 

Time optimisation in this method is also very lengthy subject for this trajectory 

planning method and it can be the future work of this software. 

If there are two points, above formulation does not work. Because, in this 

case, 5th order polynomial must be fitted. Because there are 6 variables (position, 



45 

 

velocity & acceleration of both points) to be fitted. The stability of the polynomial 

decreases when the value of degree of the polynomial increases. For this purpose, 

when two points given, software determines one via point for the path, and fits 4-4 

polynomial to these 3 points. 
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Chapter 4 

SIMULATION FRAMEWORK 

 

 

4.1 Introduction 
 

In this chapter, the graphical simulation framework of the computer 

program will be described. This simulation framework will be used in any 

particular simulation of the robot and its environment. 

This chapter includes the theory of OpenGL and its implementation to the 

computer program of Robot Control. 

 

4.2 OpenGL 
 

OpenGL is the abbreviation of the Open Graphics Library for the C++. It 

is the Application Programming Interface (API) for graphical applications. It was 

created in 1992 by Silicon Graphics (SGI). This interface consists of about 150 

distinct commands that user can use to specify the objects and operations needed 

to produce interactive 3D applications. [8] 

However, OpenGL doesn’t provide high-level commands for describing 

models of 3D objects. The geometry of OpenGL is based on vertices. The 

programmer inputs a command, and OpenGL draws a primitive (point, line or 

polygon) defined by vertices appropriate to the command. OpenGL internalises 
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the data and functions necessary to draw the figure, rather than the programmer 

having to do it manually. 

OpenGL routines simplify the development of graphics software, from 

rendering a simple geometric point, line, or filled polygon to the creation of the 

most complex lighted and texture-mapped curved surface. OpenGL gives access 

to geometric and image primitives, display lists, modeling transformations, 

lighting and texturing, blending and many other features. OpenGL simplifies the 

math needed for graphics, allowing focus on design rather than implementation. 

Besides, OpenGL is easy to learn, powerful and well-documented. For these 

reasons, OpenGL was chosen to be the building block of the visual simulation 

framework. 

 

4.3 Using OpenGL in Programming Languages 
 

To use OpenGL functions in one of the programming languages, some 

special libraries must be included into the code. OpenGL is developed mainly for 

C++ based languages. But OpenGL can be modified to the other languages. Anas 

Abidi [1] used OpenGL in the Visual Basic. [15] 

 

4.3.1 Libraries used for OpenGL 

 

Libraries and files are different for different versions of programming 

languages. But, the common things in implementing OpenGL are, initialising a 

window for 3D objects, initialising lighting, colour and surround, importing 

models into the window. After these, rotating and translating objects and adjusting 

viewing properties are done. 

 

For using OpenGL, the libraries “gl.h” (Graphichs Library), “glu.h” 

(Graphics Library Utility) and “glut.h” (Graphics Library Utility Toolkit) must be 
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included in the code. The libraries can be changed for the different versions of the 

programming languages, but they are free libraries and they can be found in the 

websites of the producer’s. 

 

4.3.2 Panel for OpenGL 

 

For C and C++, a function is enough to initialise a window for 3D models. 

But, in a visual programming languages, such as Visual C++ or Borland C++ 

Builder, an activex control must be used. There are many GL panels on the web, 

and they are free to use. They are installed external packages and they are 

different from each other. After installing one of the panel components, the 

initialisation can be done. In all of the OpenGL panel components, there is an 

initialisation event. In this project, panel named “OpenGLAPPanel” is used. [9] 

After window initialisation, the adjustment of lighting, and viewing 

properties are common for all panels. The commands of the initialisation used in 

the software of METUROBOT are in the “Implementation” section. 

 

4.3.3 Importing Models 

 

In the following step, the 3D models must be imported into the panel. For 

importing, first, we must have solid models of the parts. These solid models are 

not only 3D drawings of the links and objects, but they are real 3D models and 

they have to be prepared in AutoCAD or ProEngineer. The .stl (StereoLitography) 

format is very convenient because in this format, solid models are defined with 

triangles and triangles are easy to implement in OpenGL. But the .stl file cannot 

be used directly. The .stl format must be converted to .raw file format, which can 

be opened like .txt files and the constructing of OpenGL drawings will be very 

easy. After reading these vertices of the triangles, i.e. the model, the translation 
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and rotation is applied to the model. Then, the model is ready to drawn. The 

example code is in the “Implementation” section. 

 

4.3.4 Viewing Properties 

 

The viewing properties of the window, i.e. rotate, zoom or pan of the 

viewport can be adjusted whenever the user wants. These are also very simple 

commands. All these functions are common in all OpenGL environment. There is 

a book called “OpenGL Programming Guide”, which is known as “Red Book” of 

OpenGL, and this reference contains all of the information about OpenGl 

drawings and applications. The .pdf format of this book can be found in websites 

also. 

 

4.4 Implementation of OpenGLAPPanel in MMI 
 

In this study, an activex control named “OpenGLAPPanel” is used. This is 

an activex control written for Borland C++ 4.0 and 5.0. The panel component and 

some examples are downloaded from internet and its free of charge. 

After installing panel component, we put it on the main frame. For the 

initialisation the following code is written on the “paint” event of the panel; 

 

 

  GLfloat Ambient[] = { 0.2f, 0.2f, 0.2f, 1.0f }; 

  GLfloat Diffuse[] = { 0.8f, 0.8f, 0.8f, 1.0f }; 

  GLfloat Specular[] = { 0.2f, 0.2f, 0.2f, 1.0f }; 

  GLfloat SpecularExp[] = { 50 }; 

  GLfloat Emission[] = { 0.1f, 0.1f, 0.1f, 1.0f }; 

  glMaterialfv(GL_FRONT, GL_AMBIENT, Ambient); 

  glMaterialfv(GL_FRONT, GL_DIFFUSE, Diffuse); 

  glMaterialfv(GL_FRONT, GL_SPECULAR, Specular); 
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  glMaterialfv(GL_FRONT, GL_SHININESS, SpecularExp); 

  glMaterialfv(GL_FRONT, GL_EMISSION, Emission); 

  glMaterialfv(GL_BACK, GL_AMBIENT, Ambient); 

  glMaterialfv(GL_BACK, GL_DIFFUSE, Diffuse); 

  glMaterialfv(GL_BACK, GL_SPECULAR, Specular); 

  glMaterialfv(GL_BACK, GL_SHININESS, SpecularExp); 

  glMaterialfv(GL_BACK, GL_EMISSION, Emission); 

  glColorMaterial(GL_FRONT_AND_BACK, GL_DIFFUSE); 

  glEnable(GL_COLOR_MATERIAL); 

  GLfloat light_position[] = { 1.0, 1.0, 1.0, 0.0 }; 

  glLightfv(GL_LIGHT0, GL_POSITION, light_position); 

  glEnable(GL_LIGHT0); 

  glEnable(GL_LIGHTING); 

  glLightModeli(GL_LIGHT_MODEL_TWO_SIDE, GL_TRUE); 

  glDepthFunc(GL_LEQUAL); 

  glEnable(GL_DEPTH_TEST); 

  glShadeModel(GL_SMOOTH); 

  glClearColor(0,0,0.5,0); 

  glClearColor(0.4392, 0.5020, 0.5647,1.0); 

  glEnable(GL_CULL_FACE); 

  glCullFace(GL_BACK); 

  glEnable(GL_NORMALIZE); 

  glHint(GL_PERSPECTIVE_CORRECTION_HINT,GL_NICEST); 

  glMatrixMode(GL_PROJECTION); 

  glLoadIdentity(); 

  glFrustum(-0.004,0.004,-0.004,0.004,.01,100.0); 

  glMatrixMode(GL_MODELVIEW); 

  Draw_Robot(); 

Figure 4.1 OpenGL initialisation code 

 

 

Draw_Robot() is the function for importing robot links and rotating links 

as wanted. The part of the software, which rotates and translates links are in the 

following. These lines are in the function Draw_Robot(). 
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  double oglm[16]; 

  glTranslatef(x_move, y_move, 0); 

  //Color, rotation and translation parameters for Floor 

  glColor3d(0.2745, 0.5098,0.70588); 

  glRotatef(90,1,0,0); 

  glPushMatrix(); 

  Draw_Link("links//floor.raw",1); 

  glGetDoublev(GL_MODELVIEW_MATRIX,oglm); 

  //OGLtoMV(Rfloor,Tfloor,oglm); 

  glPopMatrix(); 

  glRotatef(-90,1,0,0); 

  //Color, rotation and translation parameters for Base part of the robot 

  glColor3d(0.9411764,1.0,1.0); 

  glRotatef(90,0,0,1); 

  glPushMatrix(); 

  Draw_Link("links//base.raw",2); 

  glGetDoublev(GL_MODELVIEW_MATRIX,oglm); 

  glPopMatrix(); 

  glRotatef(-90,0,0,1); 

  //Color, rotation and translation parameters for Link1 

  glTranslatef(0,0.765,0); 

  glRotatef(90,0,0,1); 

  glRotatef(teta1,1,0,0); 

  glPushMatrix(); 

  Draw_Link("links//link1.raw",3); 

  glGetDoublev(GL_MODELVIEW_MATRIX,oglm); 

  glPopMatrix(); 

Figure 4.2 Code of translation, rotation and colouring of links  
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This code rotates, translates the links and sets the colour of the links. 

�mporting links are done by the function Draw_Link(). This is another function.  

 

 

FILE *fp = fopen(rawfile,"r"); 

  if (fp == NULL) 

  { 

    fprintf(stderr,"Model Constructor: Couldn't open %s\n",rawfile); 

    exit(-1); 

  } 

 

  ntris[n]=0; 

  double tmp; 

  while ((fscanf(fp,"%lf %lf %lf %lf %lf %lf %lf %lf %lf \n", &tmp, &tmp, &tmp, &tmp, 

       &tmp, &tmp,&tmp,&tmp,&tmp)==9)) 

  { 

   ntris[n]++; 

  } 

  fclose(fp); 

.................................. 

  glBegin(GL_TRIANGLES); 

    for (int i = 0; i < ntris[n]; i++) 

    { 

      glNormal3dv(tri[n][i][0]); 

      glVertex3dv(tri[n][i][1]); 

      glVertex3dv(tri[n][i][2]); 

      glVertex3dv(tri[n][i][3]); 

    } 

  glEnd(); 

Figure 4.3 Code of importing links from raw file and drawing to the panel 
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Above code reads the triangles from the .raw files and draws the links to 

the panel. As mentioned before, all solid 3D models can be converted to triangles. 

For example, for the base of the robot, there are about 1500 triangles, i.e. the base 

is composed of 1500 triangles. All these trianlges are grouped together and drawn 

to the panel as one object. Therefore, translation and rotation of “objects” can be 

done very easily. 

Data files, i.e. raw files are easy to handle, below, some portion of 

base.raw data file. In every line there are nine numbers, they are x, y and z 

components of three vertices of the triangles. The number of lines is the number 

of triangles. 

 

 

... 

0 -333.098 35.6379  0 333.098 35.6379  0 334.519 17.8835 

40 334.519 17.8835  0 334.519 17.8835  0 333.098 35.6379 

0 -334.519 17.8835  0 -333.098 35.6379  0 334.519 17.8835 

40 334.519 17.8835  40 335 0  0 334.519 17.8835 

0 -330.736 53.273  0 330.736 53.273  0 333.098 35.6379 

40 333.098 35.6379  0 333.098 35.6379  0 330.736 53.273 

... 

Figure 4.4 Some portion of the base.raw file 

 

 

4.5 Conclusion 
 

Simulation framework is the one of the main parts of the thesis, because 

the robot and its environment is seen by the simulation. If there is an error in the 

generation of the path, or something else, it does not make big problem. 

OpenGL is very suitable for applications like in this thesis, because it is 

easy to apply. For 3D solid models, its even simpler, because, 3D models in 
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Autocad or ProEngineer can easily be converted to .stl format, and the drawing of 

triangles in OpenGL is simpler than drawing its wireframe model, or even 

showing its picture. 
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Chapter 5 

MOTION CONTROL 
 

 

5.1 Introduction 
 

There are six motors of the robot, as mentioned before. These motors are 

AC servomotors and they are large motors. To drive these motors, there is a 

electric box with transformer, servo drives and input to this electrical system is 

380V. There is a motion control card between this electric box and the computer. 

This card is Delta-Tau motion control card. 

This card is Programmable Multi Axis Controller 2, (PMAC2). This is the 

high performance servo motion controller, capable of commanding up to eight 

axis of motion simultaneously with a high level of sophistication. Pmac2 may also 

run as standalone controller, but in this project, it will be commanded by a 

computer. 

The eight axes can be all associated together for completely coordinated 

motion or they can be put in its own coordinate system for eight completely 

independent operations. 

There is a user-friendly windows program of the motion control card. 

From this program, all movements, velocities and accelerations can be followed 

as well as commanding the motors individually or whole robot at a time. [13] 
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5.2 Using Motion Control Card 
 

Before using motion control card for running motors, there are some 

parameters to set for each motor. These parameters are for pre-loading and quality 

of control of motor. There are proportional, integral and derivative control 

parameters for its control algorithm. And also there are limits for velocity and 

acceleration of all the motors individually. After setting all these parameters for 

the safety and smooth operation, robot is ready for the running. [14] 

The parameters were classified in the software for its purpose. I-Variables 

are initialization and setup parameters, P-Variables are general-purpose user 

variables, which have global access, Q-Variables are general-purpose user 

variables that are coordinate specific, and M-Variables are memory access 

variables. 

The user can give line commands for individual motor from the screen, or 

writes a code in a text file and compile it in the software. Also user can create its 

own coordinates and commands the motors accordingly. 

Every command for each motor is defined previously. Setting I100 

variable to 1 means activating the first motor. The velocities and accelerations of 

the motors can be set from the variable menu or from the program. I116 is the 

maximum permitted velocity and I117 is the maximum permitted acceleration for 

the first motor. 

Writing motion programs are much easier than writing a computer code in 

any of the computer languages. There is a motion program example below, and 

explanations of the lines are at the right sides of the lines: 
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OPEN PROG 1  ; Open buffer for program entry, Program #1 

CLEAR  ; Erase existing contents of buffer 

LINEAR  ; Blended linear interpolation move mode 

ABS   ; Absolute mode - moves specified by position 

TA500   ; Set 1/2 sec (500 msec) acceleration time 

TS0   ; Set no S-curve acceleration time 

F5000   ; Set feedrate (speed) of 5000 units(cts) / sec 

X10000   ; Move X-axis to position 10000 

DWELL500  ; Stay in position for 1/2 sec (500 msec) 

X0   ; Move X-axis to position 0 

CLOSE   ; Close buffer - end of program 

 Figure 5.1 Example program for motor control 

 

 

 The position values are the values taken from the encoders of the motors. 

Approximately 1000 count is equal to 1 degree for METUROBOT’s motors. 

 

5.3 Accessing Motion Control Card from Computer Program 
 

To access Delta Tau motion control card from high-level computer 

language, i.e. Visual Basic or C++, there is a DLL (Dynamic Link Library) file. A 

dll is a library of functions, data and resources whose references are resolved at 

run time of the program. Pmac.dll library contains about 800 functions of the 

control card. These functions include opening and closing channel for the devise, 

driving motor, downloading motion program or changing variables from the 

computer code. These functions can be extracted from the Pmac.dll with creating 

Pmac.def (definition) file of the dll. First portion of this Pmac.def file is shown 

below. [12][18] 
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LIBRARY     PMAC.DLL 

 

EXPORTS 

    AddErrRecord                   @1    

    AddErrRecordEx                 @2    

    AutoSetToolOffset              @3    

    AutoSetWorkOffset              @4    

    AxisToSpindle                  @5    

    BackupLinkList                 @6    
    CalcCoordSys                   @7    

    CalculateStepStatistics        @8    

    CaptureErrors                  @9    

    ClearErrLogFile                @10   

... 

    OpenPmacDevice                 @248  

    OpenTextFile                   @249  

... 

 Figure 5.2 Some portion of Pmac.def definition file 

 

 

Before using these functions, they must be imported from the dll library. 

To do this in c++ code, these lines must be added to the start of the program. In 

this example, dll file is “Pmac.dll”, function is “OpenPmacDevice(dwnum)”, 

“dwnum” is device number and first device number is “0”. Note that, Pmac.dll 

must be located in the system directory. 

 

 

HINSTANCE hinstDLL = LoadLibrary ("PMAC.DLL"); 

void (FAR *lpfnOpenPmacDevice)(DWORD dwDevice); 

FARPROC)lpfnOpenPmacDevice=GetProcAddress(hinstDLL,"OpenPmacDevice

"); 

 Figure 5.3 Example code for extracting functions from dll 



59 

 

 After writing these lines at the beginning, the function, now, can be used 

in the code: 

 

 

LpfnOpenPmacDevice(0); 

 Figure 5.4 Example function call 

 

 

This code opens a channel to a Pmac motion control card. 

 

5.4 Implementation 
 

In the thesis, there are 2 types of motion commands, “point to point” type 

and “generated path” type. For point to point type, one line command is sufficient. 

Therefore, the function “SendLine” is used for these. In path type movements, a 

command listing is prepared as a text file and sent to the card at once. 

In all these commands, the angular positions of joints are used. The 

angular position is expressed as the counts of encoders on the motors. For 

example, for motor #1, a full rotation is about 360.000 counts. That is, if the 

required rotation of motor #1 is 7 degrees, 7000 cts is used in the code. 

In the point to point type movements, the time of movement is not 

important and starting point as well. The only aim is moving its current position to 

the end point. For example when the user presses home button, the compiler sends 

a command line “cc” to the control card. 
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The line in the code 

 

 

cc=String("#1j=0 #2j=0 #3j=0 #4j=0 #5j=0 #6j=0"); 

SendLineToRobot(cc); 

 Figure 5.5 Example function call taken from the software (Sending robot to home 

position) 

 

 

and, the function of sending line to the card 

 

 

void SendLineToRobot(String strng) 

{ 

 void (FAR *fPmacSendLineA)(DWORD dwDevice,String command); 

 (FARPROC)fPmacSendLineA=GetProcAddress(hinstDLL,"PmacSendLineA); 

 fPmacSendLineA(0,strng); 

}; 

 Figure 5.6 Example Function (Sending robot to position using function from dll) 

 

 

5.6 Conclusion & Future Work 
 

Motion control is sensitive part of this study. After position analyses are 

done theoretically, the robot must be controlled accurately. Not only the 

movement, but also the synchronisation is important. 

The control card used is Delta Tau multi-axis controller. This control card 

is very powerful in controlling motors. One card can control up to 8 axis, and 16 

card can be used simultaneously with one PC. 

The position control is done in the motors. There are very accurate 

encoders in the motors, and control system of the card is very reliable. The 
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position errors of the motors are about 4-5 counts, it means below 1 percent of the 

degree. 

There are two main drawbacks in the motion control. First of them is the 

problem with the buffer. When the software of motion control card, “Pewin32”, is 

not running, the MMI software is getting stuck in some time later. This drawback 

is about the memory of motion control card. To avoid this problem, MMI 

software is executed after pewin32. 

Other drawback is about getting responses. The commands are sent to the 

robot very easily, as mentioned before, but MMI cannot get response from the 

pewin32. This drawback is not creating a big problem right now, because the 

control system works perfectly. But this can create problems when the robot will 

be programmed on-line. 
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Chapter 6 

Computer Program 

 
 

6.1 Introduction 
 

In this chapter, the design, implementation and use of the computer 

program developed, is described. The MMI (Man Machine Interface) is the most 

important part of this thesis, because, user controls the robot with this software. 

The software handles the visual simulation and control of the robot and allows the 

user to control the move of the robot, point to point or path based. [19] 

The software has user interface and some menu items. More important 

parts of the software, i.e. the items must be controlled by the user are on the 

screen, and other items, such as joint limits or velocity graphics are under menu 

items. 

There are 4 main parts of the software, robot control, free robot movement 

control, path generation & execution and simulation panel. 

 

 

6.2 MMI Software 
 

The main function of the software is to control the robot. Robot can be 

controlled by giving directly the joint angles or giving the pose of the end-

effector. Controlling robot with directly joint angles is the first mission of the 

software (Forward Control). In this type of control, robot can be moved on-line. 
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As user changes joint angles, the robot in the screen moves. If user wants to move 

the real robot, he can choose “move with robot” option, and moves the real robot 

with the simulation. Also the software saves the position of the robot. then, when 

the robot is not at the home position at the beginning, the software knows the real 

position of the robot. 

The second thing user can do is controlling the robot by giving position & 

orientation of the tip point of the robot (Inverse Control). But inverse control is 

not fast as forward control. The inverse position analysis is done with iterative 

method, as explained in chapter 2, and it takes some time. Because of this delay, 

inverse movement cannot be done on-line, but it can be done point by point. 

The third thing can be done is path generation. User gives points in space 

coordinates, with the times of passing, and software generates a path for these 

points. User can define more than one path, one after the other and also define the 

waiting time between these paths. This property can be used as used in production 

lines. After path generation, user can see the position, velocity and acceleration 

graphics of each joint and tip point. Also, the simulation of robot movement can 

be seen on the screen and after all steps, movement sent to robot. 

There are auxiliary parts of the software, such as robot control and vision 

properties parts. In robot control section, opening, homing and closing robot 

buttons exist. User can see the robots status from this part of the screen. The 

rotation, pan and zooming options are existing for the simulation panel, below the 

simulation. The last part of the screen is reserved for the information of the pose 

of the tip point. With the movement of the simulated robot, the values for pose of 

the tip point changes, for information. 

 

6.3 Interface of the Software 
 

The screenshot of the software is in figure 6.1. There are 5 sections on the 

main form and there are 5 different menu items. 



64 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 6.1 Screen view of main form 

 

 

 

6.3.1 Controls on the Main Screen 

 

Among controls of the MMI, some of them are on the main form. These 

are the controls, which have higher priority. The main screen of the software can 

be divided into 5 parts: 

1-2) Point Control Sections: In this part of the software, points in the 

path are defined. Points are defined in section 1 and shown in section 2. Points are 

defined in space or coordinates, in either global or local coordinate systems. But 

points are shown in global coordinate system. X, Y and Z are the elements of the 

position vector of the tip point. e1, e2 and e3 are euler angles in 123 sequence. In 

this part, user can add, insert, modify or delete one or more points to the point 
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database. Points in the table can be imported from data file, or exported to the data 

file. 

After filling the table, user must verify all points, i.e. workspace check. If 

all points are verified, user can see the robot movement on the screen by double-

clicking to the relevant line, or send to the real robot by pressing “Goto Selected 

Point” button. 

Path generation is also done in this section. By pressing “Generate Path” 

button, user generates a path passing these points. If there is no problem, the 

“Execute Path” button is enabled and by pressing it, user can activate robot. 

 

3) Robot Control: The second part of the software is robot control 

section. There are 4 buttons in this section. “Open Robot” opens the channel and 

starts the communication with the robot. “Home” button sends the robot to the 

home position. “Kill Motors” button kills the robots, that is stopping close-loop 

control. In every step of control, close-loop control is applied, but before 

switching the power on, the motors must be killed. Because, if the power is 

switched on in close-loop controlled motors, the robot jolted. the last button is 

“Close Robot” button. This closes only the communication to the robot but not 

closes the robot physically. 

The status of the robot can be seen from the text under the “Close Robot” 

button. 

 

4) Pose of the Tip Point: This box is for only information. Here shown 

the position and orientation of the tip point. This part works with the simulation 

panel and shows position values in space coordinates. Units of first three row is 

mm. Orientation of the tip point is shown by euler angles. It is shown in 1-2-3 

sequence and unit is in degrees. 

By pressing “Request Status” button on this box, the actual position of the 

robot can be taken. 
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5) Coordinate Selection: In this section, user can select either global or 

local coordinate system. Local zero is defined with pressing “Local Coordinates” 

radio button. User can also defines its own zero by pressing “Set Local Zero” 

button. 

 

6) Simulation Panel: Here shows the 3D model of the robot. The 

movements of the robot can be seen from this window. This window is updated 

either forward or inverse control of the robot. In forward control, it is updated 

automatically, in inverse control, after the points are verified, double-clicking 

point table will update the simulation. When the path is generated the menu 

“Simulate” enabled and by pressing this menu item, path is simulated in this 

window. 

There are vision properties at the bottom of the panel. User can change 

viewing direction and zoom to the robot. The “Reset View” button resets the 

viewing parameters if it is needed. 

 

7) Free Robot Control: In this section, forward robot control is 

processed. With the help of the slide bars, user can control each joint separately. 

Changing any joint variable updates the simulation panel and pose of the tip point 

section. If the robot is open and the check “Move with Robot” is checked, real 

robot can be controlled on-line. 

With the “Add Point” button, the position of the robot can be added to the 

point list on the second box. 

 

 

 

 

 



67 

 

 

6.3.2 Menu Items 

 

The controls which are not very important, constants or variables like joint 

limits are buried into the menu items. There are 5 headings in the menu. It is 

shown in figure 6.2. 

 

 

 

 

Figure 6.2 Menu Items 

 

 

1) File: In this menu, open data file, close data file and exit is exist. Data 

files are points and these are in txt format. 

 

2) Robot Parameters: Robot link-lengths and configuration can be 

controlled from this tab. Also the length of end effector can be adjusted from the 

robot link-length section. 

 

3) Joint Limits: When this menu is pressed, the window came on to the 

screen, involving position, velocity and acceleration limits of the joints. An 

example of the window is below, figure 6.3. User can change whichever he wants. 

Position limits are used in inverse kinematics analyses, all are used in path 

generation as well. When joint limits are updated, points must be verified and path 

must be generated from the beginning. 
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 Figure 6.3 Joint Limits Window 

 

 

4) Start & End Point Conditions: This tab is for path generation only. If 

start & end point is not stationary, but they have velocities or accelerations or 

both, these velocities and accelerations are defined here. End point with 

acceleration has no sense in robotics, but velocity in end points can be used in 

conveyor systems. The example window is below, figure 6.4. 
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Figure 6.4 Start & End Point Conditions window 

5) Graphics: This tab is enabled when the path is generated. There exist 

position, velocity and acceleration graphic of all joints are exist. These are all in 

joint coordinates. The values of positions, velocities and accelerations of the joints 

can be seen with the limits in the same window. As an example, graph of position 

of joint #3 with the limits is shown in the window below, figure 6.5. 

Also the position & velocity graphics of tip point in space coordinates are 

also exist. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5 Example window of Graphics tab. 

 

6) Simulation: This tab is enabled when the path is generated and joint 

limits are checked. This is the last step before sending path to the robot. When this 

button is pressed, the simulation of path starts in the simulation panel. If there is 

no problem in simulation on the screen, path can be sent to the real robot with the 

help of appropriate button. 



70 

 

 

6.4 Subroutines used in Software 
 

There are number of subroutines in the software. Some of them are used 

alone directly and some of them are used in cooperated. These are classified as 

functions for kinematic analyses, functions for trajectory planning, functions for 

controlling robot and functions for OpenGL simulation. There are brief 

explanations of the functions below. The usages of the functions are in the 

appendix.  

There are number of functions used for kinematic analyses. Inverse 

position analysis is done in the function “Inverse”. Forward position analysis is 

done in “Draw” function. While drawing to the screen, the position and 

orientation is calculated. There are “Jacobian” and “dJacobian” functions to 

calculate the jacobian matrices and its derivative. 

For the robot control, the main function is “SendLineToRobot” function. It 

sends a command line to the robot. “OpenPmacDevice”, “ClosePmacDevice” and 

“DownloadFile” are the other commands used in the software.  

The main subroutine used for the trajectory is under the button “Generate 

Path”. There is no independent function, but there are auxiliary functions for this 

code. For matrix operation, “Jacobian” and “dJacobian” functions creates the 

Jacobian matrices and “Mat_Inv” inverses 6x6 matrix. “Mult_Mat” is the function 

for multiplying matrices. These functions are designed for only the trajectory 

planning, except Mat_Inv. This is the function for inversion of all matrices. After 

path is generated, limits are checked with “Check_Limits_X” function. X denotes 

the number of degree of the polynomial fitted, either 3 or 4. 

The only function user must know about is “Draw” function for visual 

simulation. But there are many functions used for initializing, importing and 

drawing robot. “InitWindow” is used for initialization. “Begin_Draw”, 

“End_Draw” and “Draw_Robot” are used for drawing robot into the window. 
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“Draw_Link” subroutine import links of the robot. There are 3 more functions for 

the drawing of robot. “VmV”, “VcrossV” and “Vnormalize”. These are auxiliary 

functions for OpenGL. Some of the functions for visual simulation are taken from 

the thesis of Anas Abidi [1]. 

 

6.5 User Guide of Software 
 

Using MMI of METUROBOT is not so complicated, therefore there is no 

need to explain it in independent chapter. The main idea of software is controlling 

the robot. After opening communications with robot, user can control the robot in 

3 ways. Free robot control, point to point control and path control. 

The interface of the software is shown below (Figure 6.6): 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6 Interface of software. 

 

• Opening Robot: Before giving power to the control unit of the robot, 

software must be executed. Then, by pressing “Open Robot” button on 
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the robot control tab, communications are opened. Then with the “Kill 

Motors” button, the motors must be released. After these, power can be 

supplied to the control unit of the robot. 

 

• Free Move: For the free movement of the robot, the sliders on the 

right hand side of the screen are used. In this type of control, each joint 

is controlled separately. If the checkbox “Move with Robot” is 

checked, real robot will move simultaneously with the simulation on 

screen. In any type of movement, the position & orientation of the tip 

point is updated. 

 

• Point to Point Control: Before sending robot to any position, points 

must be defined and verified. There is a “Points Table” on the screen. 

User can import points from the file, or inputs point by point from the 

buttons above the table. After all the points are written on the table, 

points must be verified with the button “Verify Points”. If all the points 

are verified, “Go to Selected Point” button is enabled. Pressing this 

button commands robot to go to this point. If user wants to check the 

position of the point before execution, he can see the position of the 

robot of the screen by double-clicking the point on the table. 

 

• Path Control: If the user wants to execute the robot on the path, first, 

points on the path must be entered to the table. After verifying points, 

user can generate path with the button “Generate Path”. For this step, 

the times of pass must be entered on the table. If the path is generated 

without any problem, the tabs “Graphics” and “Simulation” are 

enabled. In the graphics tab, the user can examine the position, 

velocity and accelerations of the each joint. With the simulation tab, 

user can see the planned path on the screen. If the user verifies the 
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path, “Execute Path” button sends this path to the robot, and robots 

starts to move along this path. 

 

• Request Status: To inquire the robots actual position, the “Request 

Status” button is used. This button can be used anytime, when the 

robot is open. 

 

• Closing Robot: After all processes, the robot must be closed. Before 

unplugging the robot. The robot must be sent to home-position by 

pressing the “Home” button on the screen and close the robot with 

“Close Robot” button. Then it is safe to unplug the Robot. 

 

6.6 Some Remarks About the Software 
 

There are some “rules” to obey, when the program is running. These rules 

must be obeyed in case of any bad luck of the robot. Some of the rules can be 

eliminated by developing software further. The “rules” of the robot to be paid 

attention are in below. 

 

• Run “PeWin32” software before executing the MMI software, 

• Kill motors before switching the robot on, 

• Check the position of the point, or generated path before send 

command to the robot. 

• Do not give fast commands while running in “Free Control” mode. 

• “Home” the robot before shutting down the computer for the safety. 
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6.7 Conclusion 

 

In this chapter, the MMI software is explained. The subject of the thesis is 

mainly developing this software. The software developed is user-friendly and 

windows based. The simulation on the screen is successful and the software works 

without any errors. There are some incomplete parts, but in general, the software 

is sufficient for the main purposes. The suggestions for the additions to the 

software are discussed in the last chapter, but with the existing form of the 

executable file, it avoids the unwanted movements or accidents with the robot.  



75 

 

 

Chapter 7 

Error Analyses 

 
 

7.1 Introduction 
 

 In this chapter, the error sources in the software and robot system will be 

investigated. The errors in the whole system can be explained in three main 

categories; 

 

• errors due to the construction of the robot, 

• errors due to the method used in inverse position analyses, 

• and, errors due to the motion control. 

 

7.2 Errors due to the Construction of the Robot 
 

The robot concerned (METUROBOT) is designed and manufactured in 

METU CAD/CAM Centre. There can be some production and assembly errors 

and misalignments. This can cause some error in positioning in global coordinate 

system. These errors are constant errors but the error in the parts of assembly 

cannot be measured accurately. Without disassembling the robot. These are not 

creating big errors, but this is the part of the error of the system. 

The foundation of the robot has some tilt. This causes also some 

positioning errors. The links are bending a little under loading conditions and 
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under its own weight, when there is a tilt. This is not a constant error, because, 

when there are more loads or when the robot is trying to reach the position far 

from home position, the error increases. 

 

7.3 Errors due to the Inverse Position Analyses 
 

Some error occurs in the inverse position analysis. This error is due to the 

search algorithm. The angles, θ2 to θ6 are determined in terms of θ1. Then θ1 is 

found by search algorithm. To determine true θ1 we must search in the range 0 to 

360 degrees. The inverse interpolation method is used in this search algorithm. 

This method is very accurate, but it causes a little error. 

The second error is mathematical error. In the algorithm, there are lots of 

calculations, squares, square roots, sine, cosine and atan2 functions. These 

functions all generate some calculation errors. 

Below, there are some outputs of inverse position analysis (Table 

7.1&7.2). First step of the test is inverse position analysis and then we make 

forward position analysis to verify this points. The error is calculated in mm for 

positions and degrees for orientation. 
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Table 7.1 Example 1 for Inverse Position Analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7.2 Example 2 for Inverse Position Analysis 
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7.4 Errors due to the Motion Control 

 
There are some errors on the motion control, i.e. commanded and actual 

positions are not the same. But the control system of Delta-Tau motion control 

card is powerful and the error due to motor control is very little. 

To determine the value of motor control, an experiment is done. Motors 

are commanded to some positions in their range, and error is examined on the 

counter indicators of the Pewin32 software. The results of the experiment are in 

below. Each box represents each motor. (Tables 7.3-7.8). In each box, the position 

limits of the motors, the revolution distance, commanded positions and examined 

errors are existing. 

 

 

Table 7.3 Error analysis of motor #1   Table 7.4 Error analysis of motor #2 
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Table 7.5 Error analysis of motor #3   Table 7.6 Error analysis of motor #4 

 

 

 

 

 

 

 

 

 

 
 
 

Table 7.7 Error analysis of motor #5  Table 7.8 Error analysis of motor #6 
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According to these results, errors are very little. The maximum error on 

the experiments are 6 counts, this is about 4/1000 of a degree. These errors may 

be made even smaller by improving the control system of motion control card. 

 

7.5 Error Analysis, Accuracy and Repeatability of the 

METUROBOT 

 
Accuracy and repeatability of the robot is in terms of micrometers, 

because the encoders in the motors are highly sensitive. But there are error 

sources in the system. Error of the robot is determined with the measurement. For 

this purpose, the steel ruler is used. The steel string is attached to the tip point of 

the robot as a pointer and the position of the tip point is commanded to one 

position to the other. The setup is shown in figure 7.1, below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1 Setup for the measurement of error. 
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The thickness of the steel string is 1 mm, and the scale of the steel ruler is 

1 mm, therefore we can observe the errors in mm. 

In the experiment, the tip point of the robot is brought to the starting point, 

which is 200-mm. line in the ruler. Then the command is to go 40 mm from this 

point in the direction of the ruler. The observed error is below 1 mm. Two 

positions of the robot are shown in the following figures, figure 7.2 and 7.3. As a 

result, the error in the system is much higher than the accuracy and repeatability. 

 

 

 

 

 

 

 

 

 

Figure 7.2 Start of the experiment   Figure 7.3 End of the experiment 

 

 

 

7.6 Conclusion 

 

The error comes out in all robotic systems. In fact, there are errors in all 

mechanical systems. These errors are generally due to the production and wear. 

The METUROBOT has also some errors due to production, assembly and wear. 

User cannot use METUROBOT as a high precision machine, but the error is not 

big, so the robot can be used in pick and place works. 
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The major part of the error is constant. Therefore, repeatability of the robot 

is very good. If these errors can be avoided, METUROBOT can be used as a high 

precision robot. 

 

 

 



83 

 

 

Chapter 8 

Conclusion 

 

8.1 Discussion & Conclusion 
 

In this thesis project, Man-Machine-Interface of an industrial robot is 

developed. The thesis has mainly three parts, the kinematics theory of the robot, 

motion control and software. The robot considered is designed and manufactured 

in METU. For this reason, kinematic analyses are done first time. In addition to 

this, inverse position analysis cannot be solved by fully analytical methods, and an 

iterative method, semi-analytical method had to be used. This part can be 

reconsidered later. Also path generation is examined and applied in the thesis, but 

path optimisation is not considered. 

Motion control of the robot is discussed in chapter 5. The control system 

of robot is very powerful, but control from the C++ compiler is not that much 

powerful. Using set of these cards, one can control up to 128 motors, but card is 

rather old. Windows95/98 cannot recognise the card and the risk of coincide with 

other hardware exists. There are more than 800 functions available to use, but in 

this thesis, only few of them are used. For other applications, more of them can be 

used. 

Details of the software are explained in chapter 6. It is easy to use and its 

interface is explanatory. But the code has no certain start or end point, because the 

code is object-oriented. Therefore, user must know robotics to use the program, 

especially controlling real robot parts. The C++ is object oriented and functions 
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are used in the code. The code can be developed further easily with this 

construction. 

 

8.2 Future Work 
 

In this part, some suggestions for the future work on the theory & software 

is listed. 

 

• In the thesis, path optimisation is not considered. It can be considered 

as a future work of the system. 

• Energy optimisation can be applied to the path planning. 

• Collusion detection is not considered. Collusion detection and 

avoidance can be applied to the thesis. 
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Appendix A 

 

Functions Developed and Used in the Software 

 

A.1 Introduction 
 

Here are the functions used in the software. These can be classified as 

robot control functions, kinematic analysis functions, path generation functions 

and functions for simulation framework. The function can return one value at a 

time, therefore, some functions return nothing, but stores result in the global 

variables. 

 

A.2 Robot Control Functions 
 

These functions are for the robot control. Robot is controlled by 

controlling each motor separately. These functions are global functions and they 

can be used in any code for this robot. But when using in the other software, 

functions must be imported from the Pmac.dll file. This procedure is explained in 

chapter 5.3. 

 

• fOpenPmacDevice(int dw); is the function for opening robot & 

initialisation. It is extracted from Pmac.dll file and used directly in the 

program. dw is the device number, and it is always 0 for this thesis. 
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• fClosePmacDevice(int dw); is the function for closing communication 

with the robot. This function is also directly called from the Pmac.dll 

file. 

 

• fPmacDownloadFile(int dw, string cc); is the function for 

downloading file to the motion control card. This function is used for 

downloading gains before controlling motors and downloading motion 

programs for path execution. cc is the path of the file to be 

downloaded. 

 

A.3 Kinematic Analysis Functions 
 

There are kinematic analysis functions in this part. These functions are the 

main parts of this study. The inverse position analysis function can be improved 

later. 

 

• Inverse(double Px, double Py, double Pz, double e1, double e2, 

double e3); is the function for inverse position analysis. Px, Py & Pz 

are the tip point positions and e1, e2 & e3 are the euler angles for the 

tip point orientation. The sequence is 1-2-3 sequence. When this 

function called, the resultant joint angles are stored in t1_f, t2_f, t3_f, 

t4_f, t5_f & t6_f variables. Px, Py & Pz are in mm, and e1, e2 & e3 are 

in degrees. 

 

• Draw(double ang1, double ang2, double ang3, double ang4, double 

ang5, double ang6); is the function for forward position analyses & 

drawing robot to the screen. angX variables are the joint variables in 

radians. 
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• Jacobian(double t1, double t2, double t3, double t4, double t5, double 

t6); is the function for finding jacobian matrix. tX’s arejoint variables 

in radians and jacobian matrix is stored in matrix variable Jacob[][]. 

 

• dJacobian(double t1, double dt1, double t2, double dt2, double t3, 

double dt3, double t4, double dt4, double t5, double dt5, double t6, 

double dt6); is the function for finding derivative of jacobian matrix. 

tX’s are joint varianles in radians and dtX’s are derivative of joint 

variables, i.e. velocities of joints at that moment. Derivative of 

jacobian matrix is stored at dJacob[][] matrix. 

 

 

A.4 Path Generation Functions 
 

There is no independent function for path generation. The path generation 

is under the click event of the “Generate Path” button. In this event, there are 

some functions, such as matrix inversion, multiplication or joint limit check. 

 

• Mat_Inv(int n, double A[100][100]); is the function for matrix 

inversion. n is the size of the matrix, and A[][] is the input matrix. The 

inverse of the matrix is stored at global InMat[][] matrix. This code 

can be used other than this study. 

 

• MultMat(int k,double A_carp[100][100],double B_carp[100]; is the 

function for multiplying (k x k) matrix with kx1 matrix. This type of 

operation is needed for path generation. 

 

• Check_Limits_4(int count, double ee, double dd, double cc, double 

bb, double aa, int timedur); is the function for the joint limit check of 
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the generated path. This function is used for 4th order polynomials. The 

“count” variable is the joint number. “ee” to “aa” are the constants of 

the 4th order polynomial fitted to the interval and “timedur” is the 

duration of the interval. 

 

• Check_Limits_3(int count, double dd, double cc, double bb, double 

aa, int timedur); is the same function as above. The only difference is 

that, this function is 3rd order polynomials. 

 

 

A.5 Functions for Simulation Framework 
 

The main function for the simulation part is the Draw function. It is 

explained in the part A.3, because it includes forward position analysis also. The 

only function user must know is this function. But inside the Draw function, there 

are functions for importing models, drawing to the panel, etc. These functions can 

be classified as advanced functions. For one, who will improve the simulation 

framework, there are explanations of these functions. 

The functions are interconnected to each other. Therefore, while 

modifying the simulation framework part of this study, the operator must be very 

careful. All these functions must be carried together. 

 

• InitWindow(); function initialises the window for OpenGL. It is 

copied to the onPaint event of the Panel. The position of light and base 

colour of the objects are designated here. 

 

• BeginDraw(); function clears buffers and prepares the panel to the 

drawing. 
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• EndDraw(); function finishes the drawing and again clears the 

temporary used buffers. 

 

• VmV(), VcrossV(), Vnormalize(); are the functions for finding normal 

of the surfaces. As explained before, all objects are made up of 

triangles and for all triangles, the colour variation is determined by 

using this normal of the surface and position of the light determined. 

 

• Draw_Link(char *rawfile, int n); is the function for importing links. 

*rawfile is the path of the .raw file for link & n is the link number. 

This function open the data file, extract the triangles and draws it to the 

screen. 

 

• Rotate_Link(int n); is the same as the Draw_Link, but it only updates 

the view for new position.  

 

• Draw_Robot(); is the main function of drawing robot to the panel. 

This function calls the other functions for drawing robot to the panel. 
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Appendix B 
 

Jacobian Matrix and its Derivative 

 

B.1 Introduction 
 

For the velocity and acceleration analyses, jacobian matrix and its 

derivative are used. The jacobian matrix is the matrix in terms of joint angles and 

its derivative is in terms of joint angles and its derivative, i.e. the angular position 

and velocities of the joints. 

 

B.2 Jacobian Matrix 
 

 The definition of jacobian matrix is; 
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This was equation (2.56). the JPn and JAn are the sub-matrices of size 1x3. 

P and C matrices are defined in (eqs 2.11-2.19). When we carry out the 

calculations, the results are, 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and, 
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B.3 Derivative of Jacobian Matrix 
 

Jacobian matrix is the function of all joint variables.  
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The derivative of jacobian matrix is the partial derivative of jacobian 

matrix for all of the variables. The elements of dJ matrix are very long, but how to 

derive is easy.  

 

 

 

 

As an example, the derivative of JA4 can be calculated as; 

 

 

 

 

 

Using the formula; 

 

 

 

 

The result is; 
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Appendix C 

 

Users Manual for the METUROBOT System using 

Developed MMI 
 

 

C.1 Introduction 
 

In this manual, it is intended to give a detailed and step-by-step 

explanation of how to operate METUROBOT, using developed MMI software. 

The manual is divided into 4 sections; 

 

• Describing the METUROBOT, 

• Starting system for operating the METUROBOT. 

• Operating robot with controlling joints, 

and, 

• Operating robot with controlling the position of the tip point of the robot. 

 

C.2 The METUROBOT 
 

METUROBOT is a 6 degree-of-freedom industrial robot in 

CAD/CAM/ROBOTICS centre. It is designed and manufactured by the thesis 

students of Prof. Dr. Bilgin Kaftano�lu. The robot is shown in figure C.1. 
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Figure C.1 METUROBOT 

 

 

The robot has 6 AC servomotors and they are controlled by Delta-Tau 

motion control card. The schematic view of the robot is shown below (Figure 

C.2); 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure C.2 Schematic View of the METUROBOT 
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P is the tip point of the robot. The length of the distance dP can be adjusted 

for the end-effector used. In the MMI software, there is a menu for adjusting the 

values of the link lengths. The link lengths are in the following table (Table C.1): 

 

 

 Table C.1 Link Lengths 

Link Length (mm) 

Base to O0 1201 

a2 800 

a3 152,5 

d4 895 

d5 164,8 

dP 250 

 

 

There are 6 joints and all these joints are revolute. In order to operate the 

robot in safely, there are limit switches on the joints to define the limits. It is not 

recommended to use the robot near the joint limits. Limits of the motors in terms 

of angles are in the following table, (Table C.2). Angle values are from the home 

position. Motors are controlled by motion control card. Position feedback is taken 

from the incremental encoders. Last column shows the encoder counts per 

revolution, i.e. 360 degrees is equal to 360,000 counts for encoder of motor 1, etc. 
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 Table C.2 Limits of the Motors 

Motor # Min. Angle (deg) Max. Angle (deg) Encoder Counts  

   per Revolution 

1 -180 180 360.000 

2 -10 10 585.000 

3 -20 20 510.000 

4 -160 160 510.000 

5 -110 110 470.000 

6 -180 180 360.000 

 

 

These limits restrict the movement of the robot, but it has a sufficient 

workspace around the robot 

 

C.3 Starting the System 
 

In this part, starting the whole system, robot and the software will be 

explained. More detailed users manual for installing the motion card, motion 

software and tuning the motors, can be found on the thesis of Oykun Eren. 

 

The steps for starting the system are listed below; 

1. Turn on the computer, 

2. Run “Pewin32.exe” program and “MMI of METUROBOT” softwares, the 

screen view of the MMI software is shown below (Figure C.3). the shortcuts 

of these programs are on the desktop of the computer. 
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 Figure C.3 Screen View of the MMI Software 

 

 

3. Press the “Open Robot” button located in the “Robot Control” section of the 

software, 

4. Press the “Kill Motors” button under the “Open Robot” button, 

5. Then, plug the main socket (3-phase plug of the control cabinet) into the 

socket in the electric box on the wall and turn on the main power switch inside 

the box, 

6. Check the workspace of the robot is clear of objects and personnel, 

7. Turn on the “main switch” inside the cabinet, 

8. Press the “start” button in the cabinet, 

9. Press the “run” button, 

 

The buttons to control the robot in the cabinet are shown below (Figure 

C.4). 

 

 



102 

 

 

 

 

 

 

 Figure C.4 Buttons in the Cabinet 

 

10. Press the “Home” button on the software to hold the robot on home position. 

The robot is now ready to operate. 

 

C.4 Operating Robot with Controlling the Joints 
 

The right side of the software is reserved for the joint control of the robot. 

When controlling joints from software, do not make big changes in a short time. 

When the user changes the values of the joint angles from the slide bars, 

the robot view in the simulation window will move. If the user wants to move the 

METUROBOT, then checks the checkbox “Move with Robot” on the right 

bottom side of the software, and changes the values of the angles from the slide 

bars of the joints. The robot will move simultaneously with the simulation. 

The important notice is that, if the robot simulation and METUROBOT 

are in different positions, the METUROBOT will suddenly move the position 

shown in the screen, when the checkbox is checked. 

 

C.5 Operating Robot with Controlling the Pose of the End-

Effector 
 

The main aim of the MMI software is the controlling the pose of the end-

effector of the robot. There is a list of the points on the left of the simulation 
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window. User fills the list from “Add” (add point) button located on the top of the 

list. User can also modify or delete a point using the buttons. The points are 

inserted to the list with 7 parameters, x-y-z values on the space coordinates, e1-

e2-e3 euler angles and time. Time is used for the path planning. 

After filling the table, points are verified with the “Verify Points” button. 

If there is a point out of the workspace, the points are not verified. If all the points 

are verified, the point is shown on the simulation window by clicking the point 

row on the list. To move the METUROBOT to the point, press “Go To Selected 

Point” button when the point is selected from the list. 

 

C.6 Path Generation with MMI software 
 

If the user wants to move the METUROBOT on the path, he lists the 

points on the path and presses the “Generate Path” button after verification of all 

the points. After the path is generated, joint limits (position, velocity and 

acceleration) checked, “graphics” and “simulation” menu items are enabled. User 

can observe the planned trajectory by pressing the “Simulate” menu. Example 

point listing for one path is in figure C.5. In this example, end-effector of the 

robot move from point 1 to point 4, in 20 seconds and touches the intermediate 

points at given times. 

 

 

 

 

 

 

 

 Figure C.5 Example points for the single path 
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The user can define more than one path, one after the other. In this case, 

user can put a waiting line and inputs the waiting time in the time section. 

Example points for 2 paths are in figure C.6 

 

 

 

 

 

 

 

 

 

 Figure C.6 Example points for the multi-path 

 

 

When these points are entered, robot goes point 1 to point 3 in 5 seconds, 

then waits in the point 3 for 10 seconde and continues to the path. The end point is 

the point 6 and the total time of travel is 30 seconds with pause. 


