

SOFTWARE DEVELOPMENT FOR MAN-MACHINE INTERFACE

FOR AN INDUSTRIAL ROBOT

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

MAH�R C�HAN CENG�Z

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

THE DEPARTMENT OF MECHANICAL ENGINEERING

DECEMBER 2003

Approval of the Graduate School of Nature and Applied Sciences

Prof. Dr. Canan Özgen

Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of

Master of Science.

Prof. Dr. Kemal �der

Head of Department

This is to certify that we have read this thesis and in our opinion it is fully adequate,

in scope and quality, as a thesis for the degree of Master of Science.

Examining Committee Members:

Prof. Dr. Bilgin Kaftano�lu

Supervisor

Prof. Dr. Kemal Özgören

Prof. Dr. Bilgin Kaftano�lu

Prof. Dr. Tuna Balkan

Assist. Prof Dr. �lhan Konukseven

Prof. Dr. �smet Erkmen

iii

ABSTRACT

SOFTWARE DEVELOPMENT FOR MAN-MACHINE INTERFACE

FOR AN INDUSTRIAL ROBOT

CENG�Z, Mahir Cihan

 M.S., Department of Mechanical Engineering

Supervisor: Prof. Dr. Bilgin KAFTANO�LU

December 2003, 104 Pages

In this study, a robotic software, which controls the robot, is developed.

The robot considered is a six degree of freedom robot and it is designed and

manufactured in METU. User can send the robot anywhere in space within its

workspace, in any orientation. Forward and inverse kinamatics can be executed

according to the needs.

Simulation framework is embedded into the software for the 3D

visualisation of the robot. Any movements can be simulated on the screen.

Software also generates the path for the given points. Then generated path

is simulated on the screen. All position, velocity and acceleration graphics of

joints can be examined for the generated path.

Keywords: Industrial robot, kinematic analyses, 3D simulation, path generation.

iv

ÖZ

ENDÜSTR�YEL B�R ROBOT �Ç�N �NSAN-MAK�NA

ARAYÜZ PROGRAMININ GEL��T�R�LMES�

CENG�Z, Mahir Cihan

Yüksek Lisans, Makina Mühendisli�i Bölümü

Tez Yöneticisi: Prof. Dr. Bilgin KAFTANO�LU

Aralık 2003, 104 Sayfa

Bu tez çalı�masında, endüstriyel bir robotu kontrol eden bir yazılım

geli�tirilmi�tir. Bahsi geçen robot altı serbestlik dereceli olup ODTÜ’de

tasarlanmı� ve imal edilmi�tir. Kullanıcı, bu programla, robot kolunu çalı�ma

hacmi içinde istedi�i pozisyon ve yönelime gönderebilir. Pozisyon kontrolleri için

ileri ve geri kinematik analizler yapılmı�tır.

Robotun üç boyutlu görünümünü sa�lamak için programa simulasyon

iskeleti gömülmü�tür. Bu sayede robotun her hareketi ekranda simüle

edilebilmektedir.

Program ayrıca verilen noktalar için rota olu�turabilmektedir. Bu rota

ekranda izlenebilmektedir. Ayrıca, rota içinde eksenlerin pozisyon, hız ve ivme

grafikleri de izlenebilmektedir.

Anahtar Kelimeler: Endüstriyel robot, kinamatik analiz, 3 boyutlu simulasyon,

yörünge olu�turma.

vi

TABLE OF CONTENTS

Abstract .. iii

Öz ... iv

Table of Contents ... vi

List of Tables ... x

List of Figures .. xi

Nomenclature ... xiii

Chapter

1. Introduction
1.1 Introduction .. 1

1.2 What is Robot? ... 1

1.3 History of Robots ... 3

1.3.1 Robots created by humans ... 3

1.3.2 Mechanical robots up to 1922 .. 4

1.4 Types of Industrial Robots ... 5

1.5 Driving Motors of Robot ... 8

1.6 End Effector of Robot .. 8

1.7 Programming of Robots ... 9

1.8 Object of Present Investigation .. 10

1.9 Literature Survey ... 10

1.9.1 Projects with the MetuRobot ... 10

1.9.2 Other Studies Related to the Topics in the Thesis12

1.10 Thesis Outline .. 13

vii

2. Kinematic Analyses
2.1 Introduction .. 15

2.2 Hartenberg-Denavit (HD) Convention .. 16

2.3 HD PARAMETERS .. 19

2.4 Position Analyses ...22

2.4.1 Forward Position Analysis ...22

2.4.1.1 Orientation of the End-Effector ... 22

2.4.1.2 Position of the Tip Point .. 24

2.4.2 Inverse Position Analysis .. 25

 2.4.2.1 Introduction ...25

 2.4.2.2 Formulation .. 27

 2.4.2.3 Inverse Interpolation .. 30

 2.4.2.4 Configuration selection and singular points 31

2.5 Velocity and Acceleration Analyses .. 32

2.5.1 Jacobian Matrices .. 32

2.5.2 Forward and Inverse Velocity Analyses 34

2.5.3 Forward and Inverse Acceleration Analyses 35

3. Trajectory Planning
3.1 Introduction .. 36

3.2 General Considerations .. 37

3.3 4-3-4 Trajectory ... 38

3.4 Implementation .. 41

3.5 Application to the Thesis ... 44

3.6 Conclusion ... 44

viii

4. Simulation Framework
4.1 Introduction .. 46

4.2 OpenGL ..46

4.3 Using OpenGL in Programming Languages ..47

4.3.1 Libraries used for OpenGL .. 47

4.3.2 Panel for OpenGL ..48

4.3.3 Importing Models .. 48

4.3.4 Viewing Properties .. 49

4.4 Implementation of OpenGLAPPanel in MMI 49

4.5 Conclusion ... 53

5. Motion Control
5.1 Introduction .. 55

5.2 Using Motion Control Card ... 56

5.3 Accessing Motion Control Card from Computer Program 57

5.4 Implementation .. 59

5.5 Conclusion & Future Work .. 60

6. Computer Program
6.1 Introduction .. 62

6.2 MMI Software .. 62

6.3 Interface of the Software .. 63

6.3.1 Controls on the Main Screen ... 64

6.3.2 Menu Items .. 67

6.4 Subroutines used in Software .. 70

6.5 User Guide of Software ... 71

6.6 Some Remarks About the Software .. 73

6.7 Conclusion .. 74

ix

7. Error Analyses
7.1 Introduction .. 75

7.2 Errors due to the Construction of the Robot .. 75

7.3 Errors due to the Inverse Position Analysis ... 76

7.4 Errors due to the Motion Control ... 78

7.5 Error Analysis, Accuracy and Repeatability of the METUROBOT 80

7.6 Conclusion ... 81

8. Conclusion
8.1 Discussion & Conclusion ... 83

8.2 Future Work ... 84

References .. 85

Appendices
A- Functions Developed and Used in the Software 88

B- Jacobian Matrix and its Derivative .. 93

C- Users Manual for the METUROBOT System using Developed MMI .. 97

x

List of Tables

Table Page
1.1 Chronology of Alleged Creations .. 3

1.2 Chronology of Real Robots ... 5

2.1 HD Parameters of the Robot .. 20

3.1 Example Data for Trajectory Planning .. 42

7.1 Example 1 for Inverse Position Analysis ... 77

7.2 Example 2 for Inverse Position Analysis ... 77

7.3 Error analysis of motor #1 ... 78

7.4 Error analysis of motor #2 ... 78

7.5 Error analysis of motor #3 ... 79

7.6 Error analysis of motor #4 ... 79

7.7 Error analysis of motor #5 ... 79

7.8 Error analysis of motor #6 ... 79

C.1 Link Lengths .. 99

C.2 Limits of the Motors .. 100

xi

List of Figures

Figure Page
1.1 Welding Robot ... 2

1.2 Cartesian Robot ... 7

1.3 Cylindrical Robot ... 7

1.4 Spherical Robot .. 7

1.5 Articulated Robot ... 7

2.1 HD Convention Parameters ... 17

2.2 Model of METUROBOT ... 19

3.1 Path generation for 3 points ... 37

3.2 Path generation for 2 points ... 41

3.2 Graphs of position, velocity and acceleration of the trajectory

for example data ... 43

4.1 OpenGL initialisation code .. 50

4.2 Code of translation, rotation and colouring of links 51

4.3 Code of importing links from raw file and drawing to the panel 52

4.4 Some portion of the Base.raw file .. 53

5.1 Example program for motor control .. 57

5.2 Some portion of Pmac.def definition file ... 58

5.3 Example code for extracting functions from dll 58

5.4 Example function call .. 59

5.5 Example function call taken from the software

(Sending robot to home position) .. 60

xii

5.6 Example function call taken from the software

(Sending robot to position using function from dll) 60

6.1 Screen view of main form .. 64

6.2 Menu Items .. 67

6.3 Joint Limits Window ... 68

6.4 Start & End Point conditions window ... 68

6.5 Example window of Graphics tab .. 69

6.6 Interface of the software .. 71

7.1 Setup for the measurement of error ... 80

7.2 Start of the experiment ... 81

7.3 End of the experiment ... 81

C.1 METUROBOT ... 98

C.2 Schematic View of the METUROBOT ... 98

C.3 Screen View of the MMI Software .. 101

C.4 Buttons in the Cabinet ... 102

xiii

Nomenclature

ai+1 Length of link i+1, distance between u3
i and u3

i+1 along u1
i.

a2, a3 Constant link lengths.

αi+1 Twist of link i+1, angle from u3
i to u3

i+1 about u1
i+1.

C Rotation matrix of the orientation of end-effector.

Ci-1
i, C(i-1)(i) Rotation matrix of link i with respect to link (i-1).

cij elements of the C matrix. (i=1,2,3 & j=1,2,3).

Cf Coefficient matrix of the trajectories.

di+1 Offset of link i+1, distance from the origin of frame i to u1
i+1 along

u3
i.

d4, d5 Constant link offsets.

dP Length of the end-effector.

Fn(x) The functions of the trajectories planned in the via points.

JP Jacobian matrix.

JPX, JAX Submatrices of the JP.

M Transformation matrix in the trajectory planning.

P Position vector of the tip point w.r.t. the base.

P1, P2, P3 elements of the P vector.

Q Angular position vector.

R Position vector of the wrist point w.r.t. the O0.

R1, R2, R3 elements of the R vector.

Rx, Ry, Rz Rotation matrices about the principal axes.

xiv

θi+1 Angle of joint i+1, angle between u1
i and u1

i+1 about u3
i.

θ, ϕ, φ Euler angles to determine the rotation matrices.

V Matrix of the positions, velocities and accelerations of the points in

the trajectory planning

VP Linear velocity vector of the tip point.

ωP Angular velocity vector of the tip point.

Xn, u1
n Unit vector of frame n in the direction of x-axis.

Yn, u2
n Unit vector of frame n in the direction of y-axis.

Zn, u3
n Unit vector of frame n in the direction of y-axis.

1

CHAPTER 1

INTRODUCTION

1.1 Introduction

In today’s world, the need for speed and accuracy in production has

become more and more important. Especially, in industry, the productivity and

having good quality is very important. Therefore, computer controlled machines

have been used for years. More and more of the loading/unloading tasks have

been executed by the robots in recent years. In other words, industrial robots are

beginning to revolutionise the industry. Robots are now useful in a wide variety of

industrial applications, such as material handling, painting, welding, etc. In most

of these applications, the operation of the robots are cheaper, faster and less

dangerous.

1.2 What is Robot?

The term robot comes from Czech and means “forced labour”. The term in

its present interpretation was invented by the Czech writer Karel Capek in his

satirical play R.U.R. “Rossum’s Universal Robots”. He depicted robots as

machines, which resembled people but worked tirelessly [7]. Robot is defined in

dictionaries as “an automatic device that performs functions ordinarily ascribed to

human beings”. This definition is true but not sufficient.

A robot can have both an automation and intelligence. It has automation

that it is a machine that can control, in some degree or other, its own actions. It is

2

a general manipulator in the sense that it is a machine built with the capacity to do

many different things, perform many different intelligent actions. Robotics is a

field of interest that combines theory and application, ideas with actual practical

machine [5].

More explanatory definition for the industrial robot is given by the Robot

Institute of America, “A robot is a reprogrammable multi-functional manipulator

designed to move material, parts, tools or specialised devices, through variable

programmed motions for the performance of a variety of tasks.” An industrial

robot is a general-purpose manipulator consisting of several rigid links connected

in series by revolute or prismatic joints. One end of the chain is attached to a

supporting base, while the other end is free and attached with a tool to manipulate

objects or perform assembly tasks. The motion of the joints result in the relative

motion of the links.

The motion of the end-effector is generated by controlling the position and

velocity of the robot’s axes of motion. Basically the robot needs six axes of

motion (or degrees of freedom) to reach an arbitrary point with a specific

orientation in space. A different orientation might completely change the position

of the robot arm. For example, to place a weld on the top side of the beam below

requires completely different orientation from that required to place a weld at

almost the same point but on the bottom side of the beam (Figure 1.1).

Figure 1.1 Welding Robot

3

1.3 History of Robots

1.3.1 Robots created by humans

Until a mechanical device with reprogrammable and multifunction

capabilities emerged as an idea (in the 1920s), there was no conscious history of

robotics. But, we can track the idea of robots, as we are using the term, in myths

and continuing up to recent times.

In this part, we will consider real human beings that created mythical

beings in the sense that there is no evidence that these “real” people did in fact

create workable robots. Empedocles, a philosopher living in the 5th century BC, is

the first human being to be credited with having made an isomorph, an animated

statue. The next example comes from sometime in 12th century AD. Albartus

Magnus, a priest, was said to have spent over 20 years constructing a robot made

of wood, metal, wax and leather that was fully mobile and could welcome visitors

at his door and speak to them. According to the legend, the fellow who is now

Saint Thomas Aquinas is said to have destroyed Magnus’ robot on the grounds it

was the work of devil. Table below summarises the chronology of these and other

alleged creations. (Table 1.1)

Table 1.1 Chronology of Alleged Creations

CHRONOLOG

Y

REAL HUMANS MYTHICAL CREATIONS

5th C. BC Empedocles Animated statue

12th C. Albartus Magnus Servant girl

13th C. Bacon Talking head

4

16th C. Loew (used a formula to

bring a clay robot to life)

Golem (animated clay robot)

16th C. Paracelsus Little man

17th C. Goethe Robot

19th C. Anderson Mechanical birds

1.3.2 Mechanical robots up to 1922

Around 1500 BC, Egyptian water clocks supposedly used human figurines

to strike hour bells. The third century BC in Hellenic Egypt was a time of the

development of many automated machines. All over the place there were statues,

which were said to be able to speak, gesture and prophesy. In the second century

BC, Philo is said to have made an even more elaborate theater that could go

through five whole acts of a play from beginning to end.

In the first century, Petronius Arbiter created a doll that could move like

human being. In 1557, Giovanni Torriani made a wooden robot for an Emperor

that could fetch his daily bread from the store.

Vaucanson (1709-1782) created in 1738 a mechanical duck that could eat,

excrete passable iso-olfactoric excrement, walk, quack, and do various things

except fly. Later on, Vaucanson constructed a flute player that could play many

different pieces of music. Another example like that is the writer created by Droz

(1721-1790) that could write a one-page letter and then signs its name at the end.

The most elaborate mechanism of the 19th century is created in 1875. It is

J.N. Maskelyne’s Psycho. This was a mechanical “half-man” sitting on the desk,

which could nod his head and perform mathematical operations. Psycho could

5

also do some low-level conjuring tricks, and could play whist1. The table below

lists the real robots created from the birth of Christ. (Table 1.2)

Table 1.2 Chronology of Real Robots

TIME CREATOR ROBOT

1st C. Petronius Arbiter Moving Doll

16th C. Leonardo Mechanical man

16th C. Giovanni Torriani Walking robot

18th C. Vaucanson Flute player, Mechanical duck

18th C. Droz Writer robot

19th C. Edison Talking Doll

19th C. Maskelyne Psycho

1.4 Types of Industrial Robots

Industrial robots are widely used in manufacturing and assembly tasks

such as simple material handling, spot/arc welding, parts assembly, and spray

painting. They are used in space and undersea applications, and in hazardous

applications. The manipulator is composed of the main frame (the arm) and the

wrist, each having three degrees of freedom, or axes of motion. Structurally, the

robots can be classified according to the coordinate system of the main frame:

• Cartesian: Three linear axes.

The main frame of cartesian coordinate robots consists of three orthogonal

linear axes. An important feature of cartesian robots is equal and constant spatial

1 A card game, similar to bridge, that involves probabilities and strategic skills

6

resolution, that is, the resolution is fixed in all axes of motion and throughout the

work volume of the robot arm, but the robot lacks mechanical flexibility; it cannot

reach objects on the floor or reach points invisible from its base. (Figure 1.2)

• Cylindrical: Two linear and one rotary axis.

The main frame of cylindrical coordinate robots consists of a horizontal

arm mounted on a vertical column which, in turn, is mounted on a rotary base.

The resolution of the cylindrical robot is not constant and depends on the distance

between the column and the gripper along the horizontal arm. (Figure 1.3)

• Spherical: One linear and two rotary axes.

The kinematic configuration of spherical, or polar, coordinate robot arm is

similar to the turret of a tank. It consists of a rotary base, an elevated pivot, and a

telescoping arm, which moves in and out. The disadvantage of spherical robots

compared with their cartesian counterparts, is that there are two axes with

relatively low resolution that varies with the arm length. (Figure 1.4)

• Articulated or Jointed: Three rotary axes.

 Articulated robots consist of three rigid members connected by two

revolute joints and mounted on a rotary base. This kinematic arrangement closely

resembles that of a human arm. Since the articulated robot has three rotary axes,

its spatial resolution depends entirely on the arm position. The accuracy of an

articulated robot is poor since the joint errors are accumulated at the end of the

arm. On the other hand, it can move at high speeds and has excellent mechanical

flexibility, which make it the most common small- and medium-sized robot.

(Figure 1.5)

7

Figure 1.2 Cartesian Robot Figure 1.3 Cylindrical Robot

Figure 1.4 Spherical Robot Figure 1.5 Articulated Robot

8

1.5 Driving Motors of Robot

The manipulator joints can be driven directly or indirectly. With direct

drive, the joint shaft is coupled to the rotor of the drive motor. With indirect drive,

the joint is connected to the drive motor through a transmission mechanism.

Direct drive might provide better positioning accuracy since the intermediate

gearing is eliminated and consequently the mechanism is free of backlash and

hysteresis. But the main drawback of direct drive manipulators is that the motors,

which drive the joints, are themselves a load for the motors at the lower joints (i.e.

joints closer to the base). The leadscrew mechanism is used in most of the robots

in recent years. Comparing this to other gearing systems, such as worm gear or

harmonic drive, the leadscrew mechanism provides a zero backlash and stiffer

driving system.

1.6 End Effector of Robot
The end effector is connected to the main frame of the robot through the

wrist. A typical wrist including three rotary axes allowing roll, pitch and yaw.

Although most wrists use three rotary axes, there are applications, which require

only two axes of motion. The wrist should be designed to be as light as possible.

Reductions of weight at the wrist increases the maximum allowable load and

reduce the moment of inertia, which improves the dynamic performance of the

robot arm.

End effectors fall into two categories: grippers and tools for process

applications, such as welding torches, painting guns, drills, and grinders. Grippers

are used in handling, machine loading, and assembly applications. In most

grippers the mechanism is actuated by a pneumatic piston, which moves the

9

gripper fingers. When the robot is handling glass products or parts with highly

polished surfaces, a vacuum type gripper can be used.

1.7 Programming of Robots

To state an algorithm, it is necessary, of course, to be able to write it down

and express it logically, but it is also necessary, if it is to be executed by a

machine, to state the algorithm in terms of some programming language. There

are three methods used in the development of software for industrial or personal

robots.

First method is the teaching method. This method consists in showing a

robot what to do, with an accessory called “teaching pendant”.

The second method of programming a robot is the comprehensive method.

This method is known in the industry as “world modelling” method. Instead of

showing a robot what to do, this method simulates a robot procedure using three-

dimensional geometric models. By simulating robot actions on a screen using

geometry based on cartesian coordinates, each step can be indicated by using the

model. The problem with this method is that it assumes that the robot will operate

the way the model operates.

The third method consists of a robot and computer programming language.

In most cases, a high-level programming language is used along with a suitable

subset of motion and manipulation commands. The focus of this method is on the

end-effector or manipulator, and on the instructions of what the end-effector is to

do in each step of the way. There are various kinds of programming languages

used in robotics.

10

1.8 Object of Present Investigation

The object of this investigation is to develop robotic software, which

controls a 6 degree-of-freedom robotic manipulator, which has been designed and

manufactured at the CAD/CAM/ROBOTICS centre of METU.

 Motors of the robot will be controlled by the motion control (DELTA

TAU) card. 8 motors can be controlled simultaneously with PC.

There are 6 revolute joint controlled by 6 servomotors. Generally the user

specifies a path to describe the required motion of the robot in space coordinates.

This information in space coordinates must be converted to joint variables. A

theory must be developed to achieve this conversion and the best technique is to

be chosen among the alternatives.

A graphics program will be developed to simulate this motion considering

the limits on displacement, velocity and acceleration. Once a satisfactory solution

is found, then the necessary information will be sent to the motion control card.

The robot will then be expected to execute this motion.

The movements must be smooth, because robot can do sensitive jobs, e.g.

welding or painting. In order to get the smoothness, the path must be optimized

and the speed and acceleration of the motors and hand must be limited. This will

be guaranteed with the software.

1.9 LITERATURE SURVEY

1.9.1 Projects with the METUROBOT

METUROBOT is the first industrial robot designed and manufactured in

CAD/CAM/ROBOTICS Centre in Mechanical Engineering Department of

11

METU. There are 4 thesis studies completed on this robot. These theses are all

supervised by Prof. Dr. Bilgin Kaftano�lu.

The initial design of the METUROBOT was started with the thesis study

“Computer Aided Design of an Industrial Robot Arm” (1994) submitted by

Erdal Ça�layan [3]. In this study, an interactive algorithm through the use of

integrated solid model, kinematic, dynamic and finite element analysis is

developed. The graphical method, for visualising the dynamic performance of the

designed arm, is introduced. The assembly relations of the robot are handled

through a hierarchical data structure. In the study, kinematic simulation is also

combined with the solid model of the complete robot assembly. The mechanical

design of the transmission elements is held according to the well-known classical

machine elements design procedures. In summary, this study illustrates a CAD

algorithm, using advanced graphics and analysis software available, for an

optimal robot arm, which can be applied to any type of robot arm by modifying

the presented computer program.

The following thesis study is “The Computer Aided Design of an

Industrial Robot” (1997) submitted by Tolga Ünver [17]. In this thesis, the

preliminary design of METUROBOT is performed. In order to actuate, motors

and drive systems are chosen. Taking some criteria into account, several

alternatives are designed and modelled using the software Pro-Engineer. Using

program facility, a simulation is performed and arm structures are modified to

optimise the work envelop. Then, considering the dynamic performance of

transmission systems, work envelopes obtained, and manufacturing and assembly

operations, the alternatives are discussed and a final decision was made.

Next thesis study is “Virtual Modelling, Planning and Production of

Parts of an Industrial Robot” (1999) submitted by �ükrü Bülent Toker [16].

The aim of this thesis is to construct a 6 degrees of freedom robot designed

previously. The aim is to produce a stiff and no backlash robotic system. In the

thesis, production of parts, assembly and initial operation of METUROBOT is

12

performed. 3D solid modelling and virtual assembly techniques are used to

minimise the problems encountered in the assembly stage. Next, some parts are

modified and then, productions of parts are started. The parts are manufactured

mainly using the capabilities of METU CAD/CAM/ROBOTICS Centre. Some

sponsors are found for some of the components to be purchased and

manufacturing in several companies. However, the production of some parts and

the assembly of the robot are not completed.

Last thesis study completed with the METUROBOT is “Production,

Assembly and Application of an Industrial Robot” (2001), submitted by

Oykun Eren [4]. Parts of this thesis are; checking of initial design and

accomplishment of the design modifications where necessary, finishing of the

production of parts, physical assembly to its final stage including the painting, the

electrical and electronical assembly of motors with servo drives and control

circuitry together with the design and construction of a control box, and finally,

initial testing using joint variables.

1.9.2 Other Studies Related to the Topics in the Thesis

 E. �lhan Konukseven [6] completed a thesis on graphical simulation and

programming of robots, “Graphical Simulation and Programming of Robots”

(1989). In his study, he constructed a 3D graphical model of Puma type

manipulator. He solved forward and inverse kinematics of the robot and generated

path. The representation of the robot is wire-frame and animation is included in

the thesis.

 Anas Abidi [1] completed the thesis “Man-Machine Interface Software

Development for an Industrial Robot”(2002). He developed a graphical user

interface “GUI” for ABB-IRB 2000 in the CAD/CAM/ROBOTICS centre. He

used solid models of the robot in the animation part of the software and he wrote

off-line programs to debug on the graphical simulation and execute on the robot.

13

He also developed a collision detection algorithm for the parts of the robot and

robot-object.

1.10 Thesis Outline

Chapter 2: Kinematic Analyses

 This chapter includes basic concepts of robot kinematics. Forward and

inverse kinematic analyses, i.e. position, velocity and acceleration analyses are

derived. Implementations of these analyses to the computer program is also

discussed.

Chapter 3: Trajectory Planning

 In the trajectory planning chapter, path planning of the tip point of the

METUROBOT is explained. Path optimisation, i.e. movement in minimum time,

is also discussed in this chapter.

Chapter 4: Simulation Framework

 In this chapter, the simulation framework system of the METUROBOT

software is explained.

Chapter 5: Motion Control

 This chapter explains how the METUROBOT is controlled through a PC

and how it can be implemented in the thesis work.

14

Chapter 6: Software of “MMI of METUROBOT”

 In this chapter, software of “Man-Machine Interface (MMI) of

METUROBOT” is explained.

Chapter 7: Discussion & Conclusion

 This chapter concludes the thesis by summarizing the work done and

discussing possible future work.

15

Chapter 2

KINEMATIC ANALYSES

2.1 Introduction

Kinematics is the science of motion. Robot is considered as a series of

links connected by joints. Joints of robots have one degrees of freedom. There are

two types of joints. Revolute (or rotationary) joints provide one degree of rotation

and prismatic joints provide one degrees of translation.

The robot user/programmer is interested in the position and orientation

(pose) of the end-effector. However, the robot is controlled by the joint actuators

and actuators controls the joints in terms of angles.

There are two main parts of these analyses, forward and inverse. In

forward analyses, one knows the angular position, velocity and acceleration of

each motor and wants to know position, velocity and acceleration of the end-

effector. In inverse analyses, features of the end-effector are known and one wants

to know the features of each motor. In robot programming applications, inverse

kinematic analyses are useful, because programmer wants to manipulate the end-

effector of the robot.

In the kinematic analyses, the translational and rotational relations

between adjacent links must be described. Hartenberg & Denavit proposed a

matrix method for this purpose. First HD convention parameters will be expressed

and position analyses will be done accordingly.

16

After the position analyses, velocity and accelerations will be done. In

these analyses, a special matrix, Jacobian matrix will be formed and velocity &

acceleration analyses will be done.

2.2 Hartenberg-Denavit (HD) Convention

A systematic technique for establishing the displacement matrix for each

two adjacent links of a mechanism was proposed by Hartenberg and Denavit in

1955. This convention will be used in this investigation [10].

The HD convention is mainly implemented in robot manipulators, which

consist of an open kinematic chain in which each joint contains one degree

of freedom and the joint is either revolute or prismatic. The HD

convention is implemented through the following steps (Figure 2.1):

1. Number the links and joints, starting at the base. The stationary base is

denoted as link 0 and the end effector is link n, as demonstrated in

figure. Link i moves in respect to link i-1 around (for revolute) or

along (for prismatic) joint i.

2. Establish links’ coordinate system for each of the joints according to

the following rules:

a) The Zn axis is chosen along the axis of motion of joint n+1. For a

revolute joint, link n+1 rotates in respect to link n around the +Zn

axis in the amount of +�n+1; for a prismatic joint, link n+1 is

displaced relative to link n along the +Zn axis in the amount of

+dn+1.

b) The Xn+1 axis is chosen perpendicular to the Zn axis (i.e. it is

perpendicular to both Zn and Zn+1). If Zn+1 and Zn do not intersect,

then the Xn+1 axis is along the common normal to Zn+1 and Zn and

17

its direction is defined from Zn toward the Zn+1 axis. If, however,

Zn and Zn+1 do intersect, the direction of Xn+1 axis is not defined

and it can be chosen in either of the two possible directions. In

addition, if the Zn and Zn+1 axes are collinear, the Xn+1 axis can be

chosen anywhere in the plane perpendicular to them.

c) The Yn+1 axis is chosen to complete a right-handed coordinate

system.

Note that the assignment of coordinate system is not unique. For

example, there are several possibilities for the selection of the direction

of the Xn+1 axis.

 Figure 2.1 HD Convention Parameters

3. Define the joint parameters, which are the four geometric

quantities �n+1, dn+1, an+1, �n+1.

18

�n+1 is the angle between the Xn and the Xn+1 axis, obtained by

rotating Xn into Xn+1 around the Zn axis. For a revolute joint, �n+1 is a

variable and for a prismatic joint �n+1 is a constant parameter.

dn+1 is the coordinate of the origin of On+1 frame on the Zn axis i.e.,

the distance between the origin of On frame to the intersection of the

Zn axis with the Xn+1 axis. For a prismatic joint dn+1 is a variable, and

for a revolute joint dn+1 is a constant parameter.

an+1 is the distance between Zn and Zn+1 axis measured along the

negative direction of Xn+1 from its origin to where it intersects the Zn

axis (a constant parameter).

�n+1 is the angle between the Zn axis and the Zn+1 axis, obtained by

rotating Zn into Zn+1 around the Xn+1 axis (a constant parameter).

Using these parameters, the orientation matrix Ci
i-1 of link i with respect to

link i-1 is given by (Eq 2.1):

 (2.1)

19

2.3 HD PARAMETERS:

To find HD parameters of the robot, the wire-frame model of the robot

must be drawn (Figure 2.2):

 Figure 2.2 Model of METUROBOT

 According to the robot link and distance definitions, the HD parameters of

this robot are (Table 2.1):

20

Table 2.1 HD Parameters of the robot

Joint Number a d α θ

1 0 0 π/2 j.v.(Joint Variable)

2 a2 0 0 j.v.

3 a3 0 -π/2 j.v.

4 0 d4 -π/2 j.v.

5 0 d5 π/2 j.v.

6 0 0 0 j.v.

By using these parameters, the following rotation matrices can be formed

between links. C(i-1)(i) is the rotation matrix between link (i-1) and link (i). The

closed form of C(i-1)(i) is;

 (2.2)

where,

therefore,

21

(2.3)&(2.4)

 According to the (Eq. 2.2), the rotation matrices can be formed as;

 (2.5)

 (2.6)

 (2.7)

 (2.8)

 (2.9)

 (2.10)

22

2.4 Position Analyses

2.4.1 Forward Position Analysis

The position and orientation of the end-effector is determined using joint

angles. This is named as forward position analysis. This analysis is done

symbolically. Found position and orientation elements are used in other kinematic

analyses. In robotic applications, generally inverse kinematic analyses are used,

because, generally the pose (position & orientation) of end-effector is known

values but joint angles are unknown values. The orientation can be found first,

because, part of the position is found using orientation.

2.4.1.1 Orientation of the End-Effector

Orientation of the end-effector is found by multiplying all rotation

matrices, because, the lengths of the links and offsets cannot affect the orientation.

The orientation matrix is then;

 (2.11)

In the general rotation matrices, not all the elements are independent. We

can express rotation matrices with 3 independent elements. These are called Euler

angles. In this thesis, Euler angles with 123 (yaw, pitch, raw) sequence will be

used. Before converting this rotation matrix to the Euler angles we must define

rotation matrix with yaw, pitch and roll angles. First, rotation matrices about the

principal axes are evaluated.

A rotation of ψ radians about the x-axis is:

C C 01 C 12⋅ C 23⋅ C 34⋅ C 45⋅ C 56⋅

23

 (2.12)

A rotation of θ radians about the y axis is:

 (2.13)

and, a rotation of φ radians about the y axis is:

 (2.14)

For Euler 123 angle sequence the final rotation is the multiplication of the

above matrices in the following way:

 (2.15)

ψ, θ and φ can be calculated using rotation matrix expressed above:

R x

1

0

0

0

cos ψ()
sin ψ()

0

sin ψ()−

cos ψ()

�
�
�
�

�
�
�
�

Ry

cos θ()
0

sin θ()−

0

1

0

sin θ()
0

cos θ()

�
�
�
�

�
�
�
�

R z

cos φ()
sin φ()

0

sin φ()−

cos φ()
0

0

0

1

�
�
�
�

�
�
�
�

C

1

0

0

0

cos φ()
sin φ()

0

sin φ()−

cos φ()

�
�
�
�

�
�
�
�

cos θ()
0

sin θ()−

0

1

0

sin θ()
0

cos θ()

�
�
�
�

�
�
�
�

⋅

cos ψ()
sin ψ()

0

sin ψ()−

cos ψ()
0

0

0

1

�
�
�
�

�
�
�
�

⋅

C

cos θ() cos ψ()⋅

sin φ() sin θ()⋅ cos ψ()⋅ cos φ() sin ψ()⋅+

cos φ()− sin θ()⋅ cos ψ()⋅ sin φ() sin ψ()⋅+

cos θ()− sin ψ()⋅

sin φ()− sin θ()⋅ sin ψ()⋅ cos φ() cos ψ()⋅+

cos φ() sin θ()⋅ sin ψ()⋅ sin φ() cos ψ()⋅+

sin θ()
sin φ()− cos θ()⋅

cos φ() cos θ()⋅

�
�
�
�

�
�
�
�

24

 (2.16)

 (2.17)

 (2.18)

 There are two possibilities for the selection of the sign of θ, but, the sign

selection is not important. The sign is selected positive in this study.

2.4.1.2 Position of the Tip Point

According to the figure 2.2, the equation of the tip point position is;

 (2.19)

where,

1201 is the constant distance between base and O0.

u1 is the unit vector in the direction of x, on base frame

u3 is the unit vector in the direction of z, on base frame

and,

u1
(x) is the unit vector in the direction of x, on xth frame

u1
(x) is expressed in the base frame as;

 (2.20)

The position of O5 with respect to O0 is defined here as R so that;

 (2.21)

u1
X()

C0X u1⋅

θ asin C13()

ψ atan2 C11 C12−,()

φ atan2 C33 C23−,()

P 1201 u 3⋅ R+ d p C 06⋅ u 3⋅+

25

where elements of R is;

 (2.22)

 (2.23)

 (2.24)

Then, the elements of the P matrix are;

 (2.25)

 (2.26)

 (2.27)

where, c13, c23, c33 are the elements of C06 matrix.

2.4.2 Inverse Position Analysis

2.4.2.1 Introduction

Inverse position analysis is to find joint angles from given pose of the end-

effector. First we must determine rotation & translation matrices with given

position and orientation. For the simplicity, we convert position of tip point with

respect to the base, to position of wrist point with respect to O0. Then the inverse

position analysis is done using the wrist point position.

After the matrices are formed, using the detailed expressions of the

elements, we can find the joint variables of the robot. The elements in the position

matrix are independent, but in rotation matrix, only 3 of 9 elements are

R1 a3 cos θ23()⋅ d4 sin θ23()⋅− d5 cos θ23()⋅ sin θ4()⋅− a2 cos θ2()⋅+() cos θ1()⋅ sin θ1() d5⋅ cos θ4()⋅−

R2 a3 cos θ23()⋅ d4 sin θ23()⋅− d5 cos θ23()⋅ sin θ4()⋅− a2 cos θ2()⋅+() sin θ1()⋅ cos θ1() d5⋅ cos θ4()⋅+

R3 a2 sin θ2()⋅ a3 sin θ23()⋅+ d4 cos θ23()⋅+ d5 sin θ23()⋅ sin θ4()⋅−

P1 R1 c13 dp⋅+

P2 R2 c23 dp⋅+

P3 1201 R2+ c33 dp⋅+

26

independent. This means, there are 6 independent equation for 6 unknown joint

variables.

Generally, the inverse position analysis is solved with fully analytical

method, because, generally translational elements are consisting 3 joint variables.

With 3 equation and 3 unknowns, joint variables can be solved. However,

METUROBOT has special design and the translation matrix, that is, Rx, Ry and

Rz are functions of 4 joint variables. Rotation matrix is a function of all joint

variables. Because of this, the semi-analytical method is used. In this method, we

treat one of the joint variables (θ1) as if it is known. Then we solve θ2, θ3, θ4,

depending on θ1, using translation matrix equations. Then, there is more than one

approach to proceed from this point on. One approach is to find θ4, θ5, θ6 also in

terms of θ1, using rotational part of equations, in addition to the previously found

θ2, θ3 and θ4. Now, there are two different θ4 expressions in terms of θ1. The

last step is to equate these two expressions of θ4 in order to extract θ1 out of them

[10].

The second way of solution is to find θ1 using one element of the rotation

matrix, which is dependent only on the first four joint variables. This procedure is

taken from the paper written by Balkan, Özgören, Arıkan and Baykurt [2]. Its

details are explained in section 2.4.2.2.

In the first approach, all three sign ambiguities appear explicitly, but only

two of them appear explicitly in the second one. In other words, the first approach

gives all multiple solutions, whereas the second approach gives only two of the

solutions. Therefore, in the second approach, all of the singular and multiple

configurations may not be seen clearly. However, due to a bug in programming

the first approach, it hasn’t been so far possible to use it effectively. Therefore, the

second approach is preferred in this thesis.

27

2.4.2.2 Formulation

The first thing to do is to convert tip point position to wrist point position.

From (Eqs 2.25-2.27);

 (2.28)

 (2.29)

 (2.30)

We start with 3 translational elements of wrist point position and treating

as if θ1 is known (from eqs 2.22-2.24),

 (2.31)

 (2.32)

 (2.33)

 (2.34)

From the equations (2.31 & 2.32), we get;

 (2.35)

 (2.36)

θ4 can be found from eq. (2.34);

R1 A1 cos θ1()⋅ A2 sin θ1()⋅−

R2 A1 sin θ1()⋅ A2 cos θ1()⋅+

where,

A1 a3 cos θ23()⋅ d4 sin θ23()⋅− d5 cos θ23()⋅ sin θ4()⋅− a2 cos θ2()⋅+

A2 d5 cos θ4()⋅

R1 P1 c13 dp⋅−

R2 P2 c23 dp⋅−

R3 P3 c33 dp⋅− 1201−

A1 R1 cos θ1()⋅ R2 sin θ1()⋅+

A2 R2 cos θ1()⋅ R1 sin θ1()⋅−

28

 σ4 is either (-) or (+) (2.37)

In the home position, the initial value of θ4 is –90 degrees. When the robot

is requested to be in right armed configuration, θ4 must be small angle, and σ4 is

selected positive, otherwise, σ4 is selected negative. For details, see 2.4.2.4

from the equations (2.24 & 2.33);

 (2.38)

and,

 (2.39)

also there is an equation,

 (2.40)

all these three equations combined and result is,

 (2.41)

 (2.42)

 (2.43)

 (2.44)

θ4 σ4 acos
A2

d5

�
�
�

�
�
�

⋅

cos θ 2()
A 1 a 3 cos θ 23()⋅ d 4 sin θ 23()⋅− d 5 cos θ 23()⋅ sin θ 4()⋅−()−

a 2

sin θ 2()
R 3 a 3 sin θ 23()⋅ d 4 cos θ 23()⋅+ d 5 sin θ 23()⋅ sin θ 4()⋅−()−

a 2

cos θ 2()2
sin θ 2()2

+ 1

0 B2 sin θ23()⋅ A2 cos θ23()⋅+ C2+

where,

A2 2 A1⋅ d5⋅ sin θ4()⋅ 2 R3⋅ d4⋅− 2 A1⋅ a3⋅−

B2 2 A1⋅ d4⋅ 2 R3⋅ d5⋅ sin θ4()⋅+ 2 R3⋅ a3⋅−

C2 A1
2

R3
2+ d5

2
cos θ4()2

⋅− d5
2+ d4

2+ a3
2+ a2

2− 2 a3⋅ d5⋅ sin θ4()⋅−

29

the solution of this equation is,

 (2.45)

 σ2 is either (-) or (+) (2.46)

When σ2 is positive, the robot is in elbow up configuration, when σ2 is negative,

the robot is in elbow down configuration. For details, see 2.4.2.4.

We found θ23, which is θ2 + θ3. We can find θ2 from the above equations (2.38 &

2.39) as,

 (2.47)

Now, θ2, θ3, θ4 is found in terms of θ1. To find true θ1, the rotation matrix

C must be used. From the (Eq. 2.11),

 (2.48)

When we manipulate the matrix calculations and we equate the last

elements, the equality is;

θ23 2 atan t()⋅

where,

t
B2 σ2 B2

2
A2

2+ C2
2−+

A2 C2+

θ 2 atan2 cos θ 2() sin θ 2(),()

C01 C12⋅ C23⋅ C34⋅() 1−
C⋅ C45 C56⋅ B

30

 (2.49)

The joint variables found before are the functions of θ1, then above

equation becomes the function of θ1. The true θ1 can be found by searching it

through the range. In this search algorithm, inverse interpolation method is used.

This method is explained in the following section. After finding true θ1 to θ4, we

can find θ5 and θ6 from equality of other elements of eq.2.49.

 (2.50)

 (2.51)

 (2.52)

 (2.53)

then,

 (2.54)

 (2.55)

2.4.2.3 Inverse Interpolation

When the function known at discrete points, the function values of the

interior points can be found by interpolation. Finding the argument value for the

given value of the function is known as inverse interpolation. Therefore, the roots

of the given function known at discrete points can be found with inverse

interpolation.

c13− c θ4()⋅ c23 s θ4()⋅ c θ23()⋅−() s θ1()⋅ c23 c θ4()⋅ c13 s θ4()⋅ c θ23()⋅−() c θ1()⋅+ s θ4()− s θ23()⋅ c33⋅()+ 0

sin θ5() b13

cos θ5()− b23

sin θ6() b31

cos θ6() b32

θ5 atan2 b23− b13,()

θ6 atan2 b32 b31,()

31

When the given discrete points of the function are;

 The desired value of the function is y (y0<y<y2), the argument for the

desired value (the x value for the desired y) can be calculated as;

 (2.56)

There is an example for the inverse interpolation below;

The values of the discrete function are;

 When we want to find the approximate root of the function (f(x) = 0 , i.e.

y = 0), the calculation gives, x = 8.852.

2.4.2.4 Configuration Selection and Singular Points

There are multiple configurations due to the sign ambiguities in the

solution of the inverse position. There are three different sign ambiguities and

these ambiguities cause three configurations to select. These are;

f x0() y0

f x1() y1

f x2() y2

x
y y 1−() y y 2−()⋅

y 0 y 1−() y 0 y 2−()⋅
x0⋅

y y 0−() y y 2−()⋅

y 1 y 0−() y 1 y 2−()⋅
x1⋅+

y y 0−() y y 1−()⋅

y 2 y 0−() y 2 y 1−()⋅
x2⋅+

f 0() 30−

f 5() 15−

f 10() 80

32

• Elbow up/down configuration,

• Wrist up/down configuration, and

• Right/left armed configuration.

The selection of right/left armed configuration is allowed by the MMI

software. This ambiguity (sign selection of σ4) is shown in the eq. 2.37. The other

configurations are defined by the designer of the METUROBOT. Due to the

construction and physical limits, elbow up and wrist up configurations are used in

the system. By selecting σ2 positive, the elbow up configuration is chosen. (eq.

2.46). There is no wrist configuration selection in the equations, the wrist up

configuration is selected with elbow up configuration and selected arm

configuration.

There are also some singular points in the system. First singular

configuration is observed when the point O6 is on the axis of first joint Z0. In this

configuration, θ1 can have arbitrary value. The second singular configuration is

observed when O6 is coincident with O1. When this occurs, the θ32 become

arbitrary. This two type of singularity cannot be encountered in the real cases,

because these configurations cannot be reached by the real robot.

The last and most important type of singularity in the METUROBOT is

the singularity in the wrist. When θ5=0 or θ5=±180 degrees, the θ4 and θ5 cannot

be solved separately, but the value of θ4+θ5 can be determined.

2.5 VELOCITY AND ACCELERATION ANALYSES

2.5.1 JACOBIAN MATRICES:

Before doing velocity analyses, jacobian matrix must be clarified. Mainly

it is the matrix is the matrix between task space velocities and joint space

velocities.

33

We can find JP and JA vectors by using C (rotation) matrix found in

forward position analysis. P matrix is the tip point position matrix. When the

Jacobian matrix is found, it is used for both velocity and acceleration

analyses.[11]

 (2.57)

The Jacobian matrix can be found for wrist point too, but user wants to

control the movement of end-effector, then we must construct the tip point

Jacobian matrix. The position matrix of the tip point was:

P1, P2, P3 and C13, C23, C33 are defined in the forward position analyses.

Full Jacobian matrix is very large but its construction is straightforward.

The usage of Jacobian method is time consuming when doing by hand, but its

P

R 1 C 13 d p⋅+

R 2 C 23 d p⋅+

R 3 C 33 d p⋅+ 1201+

�
�
�
�
�

�
�
�
�
�

34

time saving method when doing with a computer program. The elements of the

Jacobian matrix and its derivative are on the Appendix B.

2.5.2 FORWARD and INVERSE VELOCITY ANALYSES

For the given angular position and velocities of the joints, i.e. motors, the

velocity of the wrist and tip point can be calculated easily with the help of

jacobian matrices. The inverse of this is also very simple, when this matrix is

constructed.

Elements of jacobian matrix are quite lengthy, but a computer programmer

can write a function to calculate a jacobian matrix, and its inverse, with an input

of angular position of the motors. When this matrix is calculated, one can easily

evaluate tip point velocity using motor angular velocities or vice versa.

 (2.58)

Jp is a 6x6 jacobian matrix, whose elements are dependent on joint

variables, forward and inverse velocity analyses can be done using normal and

inverse of Jp.

35

 (2.59)

 (2.60)

2.5.3 FORWARD and INVERSE ACCELERATION ANALYSES

For the given angular position, velocity, and acceleration values of the

joints, the acceleration of the tip point can be calculated. For this, partial

derivative of the jacobian matrix, with respect to the joint variables, is used.

Main acceleration equation is;

 (2.61)

then,

 (2.62)

Q, JP and JP are found from the velocity analyses and used for forward or

inverse acceleration analyses.

36

CHAPTER 3

TRAJECTORY PLANNING

3.1 Introduction

In most of the robotic applications, it is necessary for the manipulator to

follow the planned path. In some applications, such as, painting and welding, the

tip point of the robot, that is hand of the robot, needs to be more sensitive in

motion. In all applications, there are via points to touch or to pass. Sometimes it is

necessary for the operation, or sometimes they are via points for avoiding

obstacles.

These via points, starting point and ending point are specified in general

task space coordinates. But, how the robot will move between these points, is the

problem of trajectory planning. For example, the operator gives two points in the

task space. There are 2 choices in general, trajectory planning in the task space or

planning in the joint space. Planning in the task space can be seen more smooth.

But, for the robot, to go on a circular path is much easier than to go on a straight

line, because, the robot has revolute joints. And also the joint trajectories are

easier to plan.

The other decision, which must be made, is whether the trajectory

planning should take place on-line or off-line. The on-line method has the

advantage of allowing the robot to respond external effects, which may cause it to

modify its path. But, the curve-fitting calculations are lengthy and it limits the

number of via points and decreases the accuracy of the trajectory.

37

The off-line method allows more way points and they can be specified

more closely in time. Since most robotic applications involve repetitive

operations, this method reduces the amount of computing time of trajectory

planning. All the data for an application is calculated at once.

3.2 General Considerations

For the trajectory planning in the joint space, the time history of all joint

variables and their first two derivatives are planned to describe the motion. In

general approach, the trajectory function is updated for every interval. The

function must be smooth. To guarantee this, first and second time derivative of the

trajectory function must be continuos over the whole path. This method is mainly

taken from the study of Dr. Konukseven [6]

If there are (n+1) points to generate trajectory, there must be (n) functions.

Figure 3.1 Path generation for 3 point

User wants to specify position, velocity and acceleration of the start and

end points. This means 3 condition for start and 3 conditions for end points. For

the intermediate points, generally the position is enough. The function values

must be equal to the given condition. This gives extra (2n-2) conditions. First and

second derivatives of the function at the interior nodes are equal, this also gives

38

(n-1)+(n-1) conditions. There are 6+2n-2+2n-2=4n+2 conditions total. For

example, if there are 4 points (n=3), there are 3 functions and 14 conditions. We

can fit 4th degree polynomial for f1, 3rd degree for f2 and 4th degree for f3. (4-3-4).

Total of 5+4+5=14 constants. Or we can fit two cubic and one quantic (3-5-3).

If the number of interval increases, again there are 4n+2 conditions. To

formulate this trajectory easily and independent of number of intervals, we must

use (4-3-4) trajectory. If we increase the number of points, every extra interval

gives +4 condition, and a function. When we add extra cubic polynomial for this

extra interval, there will be no problem. (4+3+...+3+4 trajectory)

If the number of points is only two, the spline to be fitted is 5th order

polynomial and it is not used in robotics generally.

3.3 4-3-4 Trajectory

When we generate a path for the robot, we generate a trajectory for each of

the joints of the robot. Before generating a path, we must calculate position,

velocity and accelerations of the starting and ending points, and positions of via

points.

Suppose there are n points to be passed. The equation of the spline

between first and second point, i.e. P0 and P1, is 4th order polynomial. This is:

F1(t)=A1 + A2x + A3 x2 + A4x3 + A5x4 (3.1)

The equation between last and previous points, Pn-1 and Pn, is 4th order as

well.

Fn-1(t)=Z1 + Z2x + Z3 x2 + Z4x3 + Z5x4 (3.2)

39

The equation of the spline between two intermediate points, Pk and Pk+1,

is:

Fk(t)=B1 + B2x + B3 x2 + B4x3 (3.3)

Suppose end of time for 1st interval is t1, the conditions are:

Positions are given:

F1(0)=P1, (3.4)

F1(t1)=P2, (3.5)

F2(0)=P2, (3.6)

…

Fn-1(tn-1)=Pn (3.7)

Velocities and accelerations given in the end points and equal for both

interval at the intermediate points:

F1’(0)=P1’ (3.8)

F1’’(0)=P1’’ (3.9)

Fn-1’(tn)=Pn’ (3.10)

Fn-1’’(tn)=Pn’’ (3.11)

and,

F1
’(t1)=F2

’(0) (3.12)

F1
’’(t1)=F2

’’(0), (3.13)

…

40

F’
n-2(tn-2)=F’

n-1(tn-1) (3.14)

F’’
n-2(tn-2)=F’’

n-1(tn-1). (3.15)

When we equate the equations (3.1) and (3.4),

P1=A1 (3.16)

similarly,

P1’=A2 from (3.1) and (3.8) (3.17)

P1’’=2.A3 from (3.1) and (3.9) (3.18)

P2=B1 from (3.3) and (3.6) (3.19)

P2=A5.t1
4+A4.t1

3+A3.t1
2+A2.t1+A1 from (3.1) and (3.5) (3.20)

4.A5.t1
3+3.A4.t1

2+2.A3.t1+A2=B2 from (3.12) (3.21)

and,

12.A5.t1
2+6.A4.t1+2.A3 =2.B3 from (3.13) (3.22)

...

when we continue to the end, the following matrix is come out:

M x Cf = V

Where, M is the transformation matrix, Cf is the coefficient matrix, and V

is the desired values matrix. M is (3n+1)x(3n+1) matrix, where n is the number of

points.

41

3.4 Implementation

For the 3 point (2 interval) path generation (Figure 3.2) the size of M

matrix is 10x10. the points and positions with the times are shown below. Using

the above (3.16 to 3.22) equations, the M x Cf = V matrices (3.23) are as

following;

Figure 3.2 Path generation for 2 point

Eq 3.23 MxCf=V matrices for 3 point trajectory planning

1

0

0

1

0

0

0

0

0

0

0

1

0

t1

1

0

0

0

0

0

0

0

2

t1
2

2 t1⋅

2

0

0

0

0

0

0

0

t1
3

3 t1
2⋅

6 t1⋅

0

0

0

0

0

0

0

t1
4

4 t1
3⋅

12 t1
2⋅

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

1−

0

0

t2

1

0

0

0

0

0

0

2−

0

t2
2

2 t2⋅

2

0

0

0

0

0

0

0

t2
3

3 t2
2⋅

6 t2⋅

0

0

0

0

0

0

0

t2
4

4 t2
3⋅

12 t2
2⋅

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

A1

A2

A3

A4

A5

B1

B2

B3

B4

B5

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

⋅

P1

P1

P1

P2

0

0

P2

P3

P3

P3

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

42

The elements of M and V are known, then when we take inverse of the M

matrix and multiply it with V matrix, the Cf matrix came out. The elements of Cf

matrix are the constants of the 2 polynomials between P0 & P1 and P1 & P2.

 There is an example for the trajectory planning for the given data. There

are 5 points on the path, and end point velocity of the given joint is not zero, but

“-4” degrees per second. Starting point velocity, starting and end point

accelerations are all zero. The desired values of the positions with time are given

below.

 Table 3.1 Example Data for Trajectory Planning

t (sec) angle(degree)

0 20,336

3 11,038

5 14,208

11 7,585

14 4,014

There are 5 points on the path and 4 polynomials must be fitted. We

named these polynomials as F1(x), F2(x), F3(x), F4(x). Two exterior polynomials

are 4th degree and two interior ones are 3rd degree. After matrix operations, these

polynomials are calculated as,

F1 x() 0.35493 0.0193x
3⋅− 0.00442x

4⋅+:=

F2 x() 0.19265 0.04329x⋅− 0.06524x
2⋅+ 0.01488x

3⋅−:=

F3 x() 0.24798 0.03909x⋅+ 0.02405x
2⋅− 0.00238x

3⋅+:=

F4 x() 0.13238 0.008 x⋅+ 0.01892x
2⋅+ 0.01697x

3⋅− 0.00247x
4⋅+:=

43

 These polynomials are combined properly, and the trajectory is found. The

expression for combining the parts of the trajectories is,

 The graphs of the F(x) function and its derivatives are in the following.

The first derivative is the velocity graph for the joint and the second derivative is

the acceleration of the joint.

Figure 3.3 Graphs of position, velocity and acceleration of the trajectory for the example data.

F x() F 1 x() x 0>() x 3<()⋅if

F 2 x 3−() x 3>() x 5<()⋅if

F 3 x 5−() x 5>() x 11<()⋅if

F 4 x 11−() x 11>() x 14<()⋅if

:=

0 2 4 6 8 10 12 14
0

10

20

30

F x()

deg

x

0 2 4 6 8 10 12 14
10

5

0

5

dF x()

deg

x

0 2 4 6 8 10 12 14
5

0

5

10

ddF x()

deg

x

44

3.5 Application to the Thesis

Path planning of the robot means, arrange velocities and accelerations of

the joint variables such that the tip point of the robot passes from the desired

points. To do this, first we calculate the inverse position analyses of the start, end

desired positions of the tip point. This gives us the desired joint variables along

the path.

Trajectory of each joint is calculated with the formulation above. Using

the boundaries for joint velocities and accelerations for each joint, the time

required to do the movement is calculated. With this, the trajectory will be found.

The trajectory will be smooth enough, because, we guarantee the smoothness of

all the joints.

3.6 Conclusion

In the trajectory planning, the most important thing is the smoothness of

the path, because, if the path of the robot makes robot tilt or crash, or if the robot

makes dangerous movements, there is no meaning to make trajectory planning or

path generation. In the method used, the smoothness is the key point.

The optimisation is not considered in the trajectory planning. In fact, some

optimisation criteria may be considered, such as, minimum time or minimum

energy. But in the thesis, besides starting and ending points, via points are

determined and the robot has to be passed from these points. This criterion avoids

us to apply minimum energy optimisation. In this trajectory planning method,

time must be given as the input. To optimise it, the iterative method must be used.

Time optimisation in this method is also very lengthy subject for this trajectory

planning method and it can be the future work of this software.

If there are two points, above formulation does not work. Because, in this

case, 5th order polynomial must be fitted. Because there are 6 variables (position,

45

velocity & acceleration of both points) to be fitted. The stability of the polynomial

decreases when the value of degree of the polynomial increases. For this purpose,

when two points given, software determines one via point for the path, and fits 4-4

polynomial to these 3 points.

46

Chapter 4

SIMULATION FRAMEWORK

4.1 Introduction

In this chapter, the graphical simulation framework of the computer

program will be described. This simulation framework will be used in any

particular simulation of the robot and its environment.

This chapter includes the theory of OpenGL and its implementation to the

computer program of Robot Control.

4.2 OpenGL

OpenGL is the abbreviation of the Open Graphics Library for the C++. It

is the Application Programming Interface (API) for graphical applications. It was

created in 1992 by Silicon Graphics (SGI). This interface consists of about 150

distinct commands that user can use to specify the objects and operations needed

to produce interactive 3D applications. [8]

However, OpenGL doesn’t provide high-level commands for describing

models of 3D objects. The geometry of OpenGL is based on vertices. The

programmer inputs a command, and OpenGL draws a primitive (point, line or

polygon) defined by vertices appropriate to the command. OpenGL internalises

47

the data and functions necessary to draw the figure, rather than the programmer

having to do it manually.

OpenGL routines simplify the development of graphics software, from

rendering a simple geometric point, line, or filled polygon to the creation of the

most complex lighted and texture-mapped curved surface. OpenGL gives access

to geometric and image primitives, display lists, modeling transformations,

lighting and texturing, blending and many other features. OpenGL simplifies the

math needed for graphics, allowing focus on design rather than implementation.

Besides, OpenGL is easy to learn, powerful and well-documented. For these

reasons, OpenGL was chosen to be the building block of the visual simulation

framework.

4.3 Using OpenGL in Programming Languages

To use OpenGL functions in one of the programming languages, some

special libraries must be included into the code. OpenGL is developed mainly for

C++ based languages. But OpenGL can be modified to the other languages. Anas

Abidi [1] used OpenGL in the Visual Basic. [15]

4.3.1 Libraries used for OpenGL

Libraries and files are different for different versions of programming

languages. But, the common things in implementing OpenGL are, initialising a

window for 3D objects, initialising lighting, colour and surround, importing

models into the window. After these, rotating and translating objects and adjusting

viewing properties are done.

For using OpenGL, the libraries “gl.h” (Graphichs Library), “glu.h”

(Graphics Library Utility) and “glut.h” (Graphics Library Utility Toolkit) must be

48

included in the code. The libraries can be changed for the different versions of the

programming languages, but they are free libraries and they can be found in the

websites of the producer’s.

4.3.2 Panel for OpenGL

For C and C++, a function is enough to initialise a window for 3D models.

But, in a visual programming languages, such as Visual C++ or Borland C++

Builder, an activex control must be used. There are many GL panels on the web,

and they are free to use. They are installed external packages and they are

different from each other. After installing one of the panel components, the

initialisation can be done. In all of the OpenGL panel components, there is an

initialisation event. In this project, panel named “OpenGLAPPanel” is used. [9]

After window initialisation, the adjustment of lighting, and viewing

properties are common for all panels. The commands of the initialisation used in

the software of METUROBOT are in the “Implementation” section.

4.3.3 Importing Models

In the following step, the 3D models must be imported into the panel. For

importing, first, we must have solid models of the parts. These solid models are

not only 3D drawings of the links and objects, but they are real 3D models and

they have to be prepared in AutoCAD or ProEngineer. The .stl (StereoLitography)

format is very convenient because in this format, solid models are defined with

triangles and triangles are easy to implement in OpenGL. But the .stl file cannot

be used directly. The .stl format must be converted to .raw file format, which can

be opened like .txt files and the constructing of OpenGL drawings will be very

easy. After reading these vertices of the triangles, i.e. the model, the translation

49

and rotation is applied to the model. Then, the model is ready to drawn. The

example code is in the “Implementation” section.

4.3.4 Viewing Properties

The viewing properties of the window, i.e. rotate, zoom or pan of the

viewport can be adjusted whenever the user wants. These are also very simple

commands. All these functions are common in all OpenGL environment. There is

a book called “OpenGL Programming Guide”, which is known as “Red Book” of

OpenGL, and this reference contains all of the information about OpenGl

drawings and applications. The .pdf format of this book can be found in websites

also.

4.4 Implementation of OpenGLAPPanel in MMI

In this study, an activex control named “OpenGLAPPanel” is used. This is

an activex control written for Borland C++ 4.0 and 5.0. The panel component and

some examples are downloaded from internet and its free of charge.

After installing panel component, we put it on the main frame. For the

initialisation the following code is written on the “paint” event of the panel;

 GLfloat Ambient[] = { 0.2f, 0.2f, 0.2f, 1.0f };

 GLfloat Diffuse[] = { 0.8f, 0.8f, 0.8f, 1.0f };

 GLfloat Specular[] = { 0.2f, 0.2f, 0.2f, 1.0f };

 GLfloat SpecularExp[] = { 50 };

 GLfloat Emission[] = { 0.1f, 0.1f, 0.1f, 1.0f };

 glMaterialfv(GL_FRONT, GL_AMBIENT, Ambient);

 glMaterialfv(GL_FRONT, GL_DIFFUSE, Diffuse);

 glMaterialfv(GL_FRONT, GL_SPECULAR, Specular);

50

 glMaterialfv(GL_FRONT, GL_SHININESS, SpecularExp);

 glMaterialfv(GL_FRONT, GL_EMISSION, Emission);

 glMaterialfv(GL_BACK, GL_AMBIENT, Ambient);

 glMaterialfv(GL_BACK, GL_DIFFUSE, Diffuse);

 glMaterialfv(GL_BACK, GL_SPECULAR, Specular);

 glMaterialfv(GL_BACK, GL_SHININESS, SpecularExp);

 glMaterialfv(GL_BACK, GL_EMISSION, Emission);

 glColorMaterial(GL_FRONT_AND_BACK, GL_DIFFUSE);

 glEnable(GL_COLOR_MATERIAL);

 GLfloat light_position[] = { 1.0, 1.0, 1.0, 0.0 };

 glLightfv(GL_LIGHT0, GL_POSITION, light_position);

 glEnable(GL_LIGHT0);

 glEnable(GL_LIGHTING);

 glLightModeli(GL_LIGHT_MODEL_TWO_SIDE, GL_TRUE);

 glDepthFunc(GL_LEQUAL);

 glEnable(GL_DEPTH_TEST);

 glShadeModel(GL_SMOOTH);

 glClearColor(0,0,0.5,0);

 glClearColor(0.4392, 0.5020, 0.5647,1.0);

 glEnable(GL_CULL_FACE);

 glCullFace(GL_BACK);

 glEnable(GL_NORMALIZE);

 glHint(GL_PERSPECTIVE_CORRECTION_HINT,GL_NICEST);

 glMatrixMode(GL_PROJECTION);

 glLoadIdentity();

 glFrustum(-0.004,0.004,-0.004,0.004,.01,100.0);

 glMatrixMode(GL_MODELVIEW);

 Draw_Robot();

Figure 4.1 OpenGL initialisation code

Draw_Robot() is the function for importing robot links and rotating links

as wanted. The part of the software, which rotates and translates links are in the

following. These lines are in the function Draw_Robot().

51

 double oglm[16];

 glTranslatef(x_move, y_move, 0);

 //Color, rotation and translation parameters for Floor

 glColor3d(0.2745, 0.5098,0.70588);

 glRotatef(90,1,0,0);

 glPushMatrix();

 Draw_Link("links//floor.raw",1);

 glGetDoublev(GL_MODELVIEW_MATRIX,oglm);

 //OGLtoMV(Rfloor,Tfloor,oglm);

 glPopMatrix();

 glRotatef(-90,1,0,0);

 //Color, rotation and translation parameters for Base part of the robot

 glColor3d(0.9411764,1.0,1.0);

 glRotatef(90,0,0,1);

 glPushMatrix();

 Draw_Link("links//base.raw",2);

 glGetDoublev(GL_MODELVIEW_MATRIX,oglm);

 glPopMatrix();

 glRotatef(-90,0,0,1);

 //Color, rotation and translation parameters for Link1

 glTranslatef(0,0.765,0);

 glRotatef(90,0,0,1);

 glRotatef(teta1,1,0,0);

 glPushMatrix();

 Draw_Link("links//link1.raw",3);

 glGetDoublev(GL_MODELVIEW_MATRIX,oglm);

 glPopMatrix();

Figure 4.2 Code of translation, rotation and colouring of links

52

This code rotates, translates the links and sets the colour of the links.

�mporting links are done by the function Draw_Link(). This is another function.

FILE *fp = fopen(rawfile,"r");

 if (fp == NULL)

 {

 fprintf(stderr,"Model Constructor: Couldn't open %s\n",rawfile);

 exit(-1);

 }

 ntris[n]=0;

 double tmp;

 while ((fscanf(fp,"%lf %lf %lf %lf %lf %lf %lf %lf %lf \n", &tmp, &tmp, &tmp, &tmp,

 &tmp, &tmp,&tmp,&tmp,&tmp)==9))

 {

 ntris[n]++;

 }

 fclose(fp);

..................................

 glBegin(GL_TRIANGLES);

 for (int i = 0; i < ntris[n]; i++)

 {

 glNormal3dv(tri[n][i][0]);

 glVertex3dv(tri[n][i][1]);

 glVertex3dv(tri[n][i][2]);

 glVertex3dv(tri[n][i][3]);

 }

 glEnd();

Figure 4.3 Code of importing links from raw file and drawing to the panel

53

Above code reads the triangles from the .raw files and draws the links to

the panel. As mentioned before, all solid 3D models can be converted to triangles.

For example, for the base of the robot, there are about 1500 triangles, i.e. the base

is composed of 1500 triangles. All these trianlges are grouped together and drawn

to the panel as one object. Therefore, translation and rotation of “objects” can be

done very easily.

Data files, i.e. raw files are easy to handle, below, some portion of

base.raw data file. In every line there are nine numbers, they are x, y and z

components of three vertices of the triangles. The number of lines is the number

of triangles.

...

0 -333.098 35.6379 0 333.098 35.6379 0 334.519 17.8835

40 334.519 17.8835 0 334.519 17.8835 0 333.098 35.6379

0 -334.519 17.8835 0 -333.098 35.6379 0 334.519 17.8835

40 334.519 17.8835 40 335 0 0 334.519 17.8835

0 -330.736 53.273 0 330.736 53.273 0 333.098 35.6379

40 333.098 35.6379 0 333.098 35.6379 0 330.736 53.273

...

Figure 4.4 Some portion of the base.raw file

4.5 Conclusion

Simulation framework is the one of the main parts of the thesis, because

the robot and its environment is seen by the simulation. If there is an error in the

generation of the path, or something else, it does not make big problem.

OpenGL is very suitable for applications like in this thesis, because it is

easy to apply. For 3D solid models, its even simpler, because, 3D models in

54

Autocad or ProEngineer can easily be converted to .stl format, and the drawing of

triangles in OpenGL is simpler than drawing its wireframe model, or even

showing its picture.

55

Chapter 5

MOTION CONTROL

5.1 Introduction

There are six motors of the robot, as mentioned before. These motors are

AC servomotors and they are large motors. To drive these motors, there is a

electric box with transformer, servo drives and input to this electrical system is

380V. There is a motion control card between this electric box and the computer.

This card is Delta-Tau motion control card.

This card is Programmable Multi Axis Controller 2, (PMAC2). This is the

high performance servo motion controller, capable of commanding up to eight

axis of motion simultaneously with a high level of sophistication. Pmac2 may also

run as standalone controller, but in this project, it will be commanded by a

computer.

The eight axes can be all associated together for completely coordinated

motion or they can be put in its own coordinate system for eight completely

independent operations.

There is a user-friendly windows program of the motion control card.

From this program, all movements, velocities and accelerations can be followed

as well as commanding the motors individually or whole robot at a time. [13]

56

5.2 Using Motion Control Card

Before using motion control card for running motors, there are some

parameters to set for each motor. These parameters are for pre-loading and quality

of control of motor. There are proportional, integral and derivative control

parameters for its control algorithm. And also there are limits for velocity and

acceleration of all the motors individually. After setting all these parameters for

the safety and smooth operation, robot is ready for the running. [14]

The parameters were classified in the software for its purpose. I-Variables

are initialization and setup parameters, P-Variables are general-purpose user

variables, which have global access, Q-Variables are general-purpose user

variables that are coordinate specific, and M-Variables are memory access

variables.

The user can give line commands for individual motor from the screen, or

writes a code in a text file and compile it in the software. Also user can create its

own coordinates and commands the motors accordingly.

Every command for each motor is defined previously. Setting I100

variable to 1 means activating the first motor. The velocities and accelerations of

the motors can be set from the variable menu or from the program. I116 is the

maximum permitted velocity and I117 is the maximum permitted acceleration for

the first motor.

Writing motion programs are much easier than writing a computer code in

any of the computer languages. There is a motion program example below, and

explanations of the lines are at the right sides of the lines:

57

OPEN PROG 1 ; Open buffer for program entry, Program #1

CLEAR ; Erase existing contents of buffer

LINEAR ; Blended linear interpolation move mode

ABS ; Absolute mode - moves specified by position

TA500 ; Set 1/2 sec (500 msec) acceleration time

TS0 ; Set no S-curve acceleration time

F5000 ; Set feedrate (speed) of 5000 units(cts) / sec

X10000 ; Move X-axis to position 10000

DWELL500 ; Stay in position for 1/2 sec (500 msec)

X0 ; Move X-axis to position 0

CLOSE ; Close buffer - end of program

 Figure 5.1 Example program for motor control

 The position values are the values taken from the encoders of the motors.

Approximately 1000 count is equal to 1 degree for METUROBOT’s motors.

5.3 Accessing Motion Control Card from Computer Program

To access Delta Tau motion control card from high-level computer

language, i.e. Visual Basic or C++, there is a DLL (Dynamic Link Library) file. A

dll is a library of functions, data and resources whose references are resolved at

run time of the program. Pmac.dll library contains about 800 functions of the

control card. These functions include opening and closing channel for the devise,

driving motor, downloading motion program or changing variables from the

computer code. These functions can be extracted from the Pmac.dll with creating

Pmac.def (definition) file of the dll. First portion of this Pmac.def file is shown

below. [12][18]

58

LIBRARY PMAC.DLL

EXPORTS

 AddErrRecord @1

 AddErrRecordEx @2

 AutoSetToolOffset @3

 AutoSetWorkOffset @4

 AxisToSpindle @5

 BackupLinkList @6
 CalcCoordSys @7

 CalculateStepStatistics @8

 CaptureErrors @9

 ClearErrLogFile @10

...

 OpenPmacDevice @248

 OpenTextFile @249

...

 Figure 5.2 Some portion of Pmac.def definition file

Before using these functions, they must be imported from the dll library.

To do this in c++ code, these lines must be added to the start of the program. In

this example, dll file is “Pmac.dll”, function is “OpenPmacDevice(dwnum)”,

“dwnum” is device number and first device number is “0”. Note that, Pmac.dll

must be located in the system directory.

HINSTANCE hinstDLL = LoadLibrary ("PMAC.DLL");

void (FAR *lpfnOpenPmacDevice)(DWORD dwDevice);

FARPROC)lpfnOpenPmacDevice=GetProcAddress(hinstDLL,"OpenPmacDevice

");

 Figure 5.3 Example code for extracting functions from dll

59

 After writing these lines at the beginning, the function, now, can be used

in the code:

LpfnOpenPmacDevice(0);

 Figure 5.4 Example function call

This code opens a channel to a Pmac motion control card.

5.4 Implementation

In the thesis, there are 2 types of motion commands, “point to point” type

and “generated path” type. For point to point type, one line command is sufficient.

Therefore, the function “SendLine” is used for these. In path type movements, a

command listing is prepared as a text file and sent to the card at once.

In all these commands, the angular positions of joints are used. The

angular position is expressed as the counts of encoders on the motors. For

example, for motor #1, a full rotation is about 360.000 counts. That is, if the

required rotation of motor #1 is 7 degrees, 7000 cts is used in the code.

In the point to point type movements, the time of movement is not

important and starting point as well. The only aim is moving its current position to

the end point. For example when the user presses home button, the compiler sends

a command line “cc” to the control card.

60

The line in the code

cc=String("#1j=0 #2j=0 #3j=0 #4j=0 #5j=0 #6j=0");

SendLineToRobot(cc);

 Figure 5.5 Example function call taken from the software (Sending robot to home

position)

and, the function of sending line to the card

void SendLineToRobot(String strng)

{

 void (FAR *fPmacSendLineA)(DWORD dwDevice,String command);

 (FARPROC)fPmacSendLineA=GetProcAddress(hinstDLL,"PmacSendLineA);

 fPmacSendLineA(0,strng);

};

 Figure 5.6 Example Function (Sending robot to position using function from dll)

5.6 Conclusion & Future Work

Motion control is sensitive part of this study. After position analyses are

done theoretically, the robot must be controlled accurately. Not only the

movement, but also the synchronisation is important.

The control card used is Delta Tau multi-axis controller. This control card

is very powerful in controlling motors. One card can control up to 8 axis, and 16

card can be used simultaneously with one PC.

The position control is done in the motors. There are very accurate

encoders in the motors, and control system of the card is very reliable. The

61

position errors of the motors are about 4-5 counts, it means below 1 percent of the

degree.

There are two main drawbacks in the motion control. First of them is the

problem with the buffer. When the software of motion control card, “Pewin32”, is

not running, the MMI software is getting stuck in some time later. This drawback

is about the memory of motion control card. To avoid this problem, MMI

software is executed after pewin32.

Other drawback is about getting responses. The commands are sent to the

robot very easily, as mentioned before, but MMI cannot get response from the

pewin32. This drawback is not creating a big problem right now, because the

control system works perfectly. But this can create problems when the robot will

be programmed on-line.

62

Chapter 6

Computer Program

6.1 Introduction

In this chapter, the design, implementation and use of the computer

program developed, is described. The MMI (Man Machine Interface) is the most

important part of this thesis, because, user controls the robot with this software.

The software handles the visual simulation and control of the robot and allows the

user to control the move of the robot, point to point or path based. [19]

The software has user interface and some menu items. More important

parts of the software, i.e. the items must be controlled by the user are on the

screen, and other items, such as joint limits or velocity graphics are under menu

items.

There are 4 main parts of the software, robot control, free robot movement

control, path generation & execution and simulation panel.

6.2 MMI Software

The main function of the software is to control the robot. Robot can be

controlled by giving directly the joint angles or giving the pose of the end-

effector. Controlling robot with directly joint angles is the first mission of the

software (Forward Control). In this type of control, robot can be moved on-line.

63

As user changes joint angles, the robot in the screen moves. If user wants to move

the real robot, he can choose “move with robot” option, and moves the real robot

with the simulation. Also the software saves the position of the robot. then, when

the robot is not at the home position at the beginning, the software knows the real

position of the robot.

The second thing user can do is controlling the robot by giving position &

orientation of the tip point of the robot (Inverse Control). But inverse control is

not fast as forward control. The inverse position analysis is done with iterative

method, as explained in chapter 2, and it takes some time. Because of this delay,

inverse movement cannot be done on-line, but it can be done point by point.

The third thing can be done is path generation. User gives points in space

coordinates, with the times of passing, and software generates a path for these

points. User can define more than one path, one after the other and also define the

waiting time between these paths. This property can be used as used in production

lines. After path generation, user can see the position, velocity and acceleration

graphics of each joint and tip point. Also, the simulation of robot movement can

be seen on the screen and after all steps, movement sent to robot.

There are auxiliary parts of the software, such as robot control and vision

properties parts. In robot control section, opening, homing and closing robot

buttons exist. User can see the robots status from this part of the screen. The

rotation, pan and zooming options are existing for the simulation panel, below the

simulation. The last part of the screen is reserved for the information of the pose

of the tip point. With the movement of the simulated robot, the values for pose of

the tip point changes, for information.

6.3 Interface of the Software

The screenshot of the software is in figure 6.1. There are 5 sections on the

main form and there are 5 different menu items.

64

 Figure 6.1 Screen view of main form

6.3.1 Controls on the Main Screen

Among controls of the MMI, some of them are on the main form. These

are the controls, which have higher priority. The main screen of the software can

be divided into 5 parts:

1-2) Point Control Sections: In this part of the software, points in the

path are defined. Points are defined in section 1 and shown in section 2. Points are

defined in space or coordinates, in either global or local coordinate systems. But

points are shown in global coordinate system. X, Y and Z are the elements of the

position vector of the tip point. e1, e2 and e3 are euler angles in 123 sequence. In

this part, user can add, insert, modify or delete one or more points to the point

65

database. Points in the table can be imported from data file, or exported to the data

file.

After filling the table, user must verify all points, i.e. workspace check. If

all points are verified, user can see the robot movement on the screen by double-

clicking to the relevant line, or send to the real robot by pressing “Goto Selected

Point” button.

Path generation is also done in this section. By pressing “Generate Path”

button, user generates a path passing these points. If there is no problem, the

“Execute Path” button is enabled and by pressing it, user can activate robot.

3) Robot Control: The second part of the software is robot control

section. There are 4 buttons in this section. “Open Robot” opens the channel and

starts the communication with the robot. “Home” button sends the robot to the

home position. “Kill Motors” button kills the robots, that is stopping close-loop

control. In every step of control, close-loop control is applied, but before

switching the power on, the motors must be killed. Because, if the power is

switched on in close-loop controlled motors, the robot jolted. the last button is

“Close Robot” button. This closes only the communication to the robot but not

closes the robot physically.

The status of the robot can be seen from the text under the “Close Robot”

button.

4) Pose of the Tip Point: This box is for only information. Here shown

the position and orientation of the tip point. This part works with the simulation

panel and shows position values in space coordinates. Units of first three row is

mm. Orientation of the tip point is shown by euler angles. It is shown in 1-2-3

sequence and unit is in degrees.

By pressing “Request Status” button on this box, the actual position of the

robot can be taken.

66

5) Coordinate Selection: In this section, user can select either global or

local coordinate system. Local zero is defined with pressing “Local Coordinates”

radio button. User can also defines its own zero by pressing “Set Local Zero”

button.

6) Simulation Panel: Here shows the 3D model of the robot. The

movements of the robot can be seen from this window. This window is updated

either forward or inverse control of the robot. In forward control, it is updated

automatically, in inverse control, after the points are verified, double-clicking

point table will update the simulation. When the path is generated the menu

“Simulate” enabled and by pressing this menu item, path is simulated in this

window.

There are vision properties at the bottom of the panel. User can change

viewing direction and zoom to the robot. The “Reset View” button resets the

viewing parameters if it is needed.

7) Free Robot Control: In this section, forward robot control is

processed. With the help of the slide bars, user can control each joint separately.

Changing any joint variable updates the simulation panel and pose of the tip point

section. If the robot is open and the check “Move with Robot” is checked, real

robot can be controlled on-line.

With the “Add Point” button, the position of the robot can be added to the

point list on the second box.

67

6.3.2 Menu Items

The controls which are not very important, constants or variables like joint

limits are buried into the menu items. There are 5 headings in the menu. It is

shown in figure 6.2.

Figure 6.2 Menu Items

1) File: In this menu, open data file, close data file and exit is exist. Data

files are points and these are in txt format.

2) Robot Parameters: Robot link-lengths and configuration can be

controlled from this tab. Also the length of end effector can be adjusted from the

robot link-length section.

3) Joint Limits: When this menu is pressed, the window came on to the

screen, involving position, velocity and acceleration limits of the joints. An

example of the window is below, figure 6.3. User can change whichever he wants.

Position limits are used in inverse kinematics analyses, all are used in path

generation as well. When joint limits are updated, points must be verified and path

must be generated from the beginning.

68

 Figure 6.3 Joint Limits Window

4) Start & End Point Conditions: This tab is for path generation only. If

start & end point is not stationary, but they have velocities or accelerations or

both, these velocities and accelerations are defined here. End point with

acceleration has no sense in robotics, but velocity in end points can be used in

conveyor systems. The example window is below, figure 6.4.

69

Figure 6.4 Start & End Point Conditions window

5) Graphics: This tab is enabled when the path is generated. There exist

position, velocity and acceleration graphic of all joints are exist. These are all in

joint coordinates. The values of positions, velocities and accelerations of the joints

can be seen with the limits in the same window. As an example, graph of position

of joint #3 with the limits is shown in the window below, figure 6.5.

Also the position & velocity graphics of tip point in space coordinates are

also exist.

Figure 6.5 Example window of Graphics tab.

6) Simulation: This tab is enabled when the path is generated and joint

limits are checked. This is the last step before sending path to the robot. When this

button is pressed, the simulation of path starts in the simulation panel. If there is

no problem in simulation on the screen, path can be sent to the real robot with the

help of appropriate button.

70

6.4 Subroutines used in Software

There are number of subroutines in the software. Some of them are used

alone directly and some of them are used in cooperated. These are classified as

functions for kinematic analyses, functions for trajectory planning, functions for

controlling robot and functions for OpenGL simulation. There are brief

explanations of the functions below. The usages of the functions are in the

appendix.

There are number of functions used for kinematic analyses. Inverse

position analysis is done in the function “Inverse”. Forward position analysis is

done in “Draw” function. While drawing to the screen, the position and

orientation is calculated. There are “Jacobian” and “dJacobian” functions to

calculate the jacobian matrices and its derivative.

For the robot control, the main function is “SendLineToRobot” function. It

sends a command line to the robot. “OpenPmacDevice”, “ClosePmacDevice” and

“DownloadFile” are the other commands used in the software.

The main subroutine used for the trajectory is under the button “Generate

Path”. There is no independent function, but there are auxiliary functions for this

code. For matrix operation, “Jacobian” and “dJacobian” functions creates the

Jacobian matrices and “Mat_Inv” inverses 6x6 matrix. “Mult_Mat” is the function

for multiplying matrices. These functions are designed for only the trajectory

planning, except Mat_Inv. This is the function for inversion of all matrices. After

path is generated, limits are checked with “Check_Limits_X” function. X denotes

the number of degree of the polynomial fitted, either 3 or 4.

The only function user must know about is “Draw” function for visual

simulation. But there are many functions used for initializing, importing and

drawing robot. “InitWindow” is used for initialization. “Begin_Draw”,

“End_Draw” and “Draw_Robot” are used for drawing robot into the window.

71

“Draw_Link” subroutine import links of the robot. There are 3 more functions for

the drawing of robot. “VmV”, “VcrossV” and “Vnormalize”. These are auxiliary

functions for OpenGL. Some of the functions for visual simulation are taken from

the thesis of Anas Abidi [1].

6.5 User Guide of Software

Using MMI of METUROBOT is not so complicated, therefore there is no

need to explain it in independent chapter. The main idea of software is controlling

the robot. After opening communications with robot, user can control the robot in

3 ways. Free robot control, point to point control and path control.

The interface of the software is shown below (Figure 6.6):

Figure 6.6 Interface of software.

• Opening Robot: Before giving power to the control unit of the robot,

software must be executed. Then, by pressing “Open Robot” button on

72

the robot control tab, communications are opened. Then with the “Kill

Motors” button, the motors must be released. After these, power can be

supplied to the control unit of the robot.

• Free Move: For the free movement of the robot, the sliders on the

right hand side of the screen are used. In this type of control, each joint

is controlled separately. If the checkbox “Move with Robot” is

checked, real robot will move simultaneously with the simulation on

screen. In any type of movement, the position & orientation of the tip

point is updated.

• Point to Point Control: Before sending robot to any position, points

must be defined and verified. There is a “Points Table” on the screen.

User can import points from the file, or inputs point by point from the

buttons above the table. After all the points are written on the table,

points must be verified with the button “Verify Points”. If all the points

are verified, “Go to Selected Point” button is enabled. Pressing this

button commands robot to go to this point. If user wants to check the

position of the point before execution, he can see the position of the

robot of the screen by double-clicking the point on the table.

• Path Control: If the user wants to execute the robot on the path, first,

points on the path must be entered to the table. After verifying points,

user can generate path with the button “Generate Path”. For this step,

the times of pass must be entered on the table. If the path is generated

without any problem, the tabs “Graphics” and “Simulation” are

enabled. In the graphics tab, the user can examine the position,

velocity and accelerations of the each joint. With the simulation tab,

user can see the planned path on the screen. If the user verifies the

73

path, “Execute Path” button sends this path to the robot, and robots

starts to move along this path.

• Request Status: To inquire the robots actual position, the “Request

Status” button is used. This button can be used anytime, when the

robot is open.

• Closing Robot: After all processes, the robot must be closed. Before

unplugging the robot. The robot must be sent to home-position by

pressing the “Home” button on the screen and close the robot with

“Close Robot” button. Then it is safe to unplug the Robot.

6.6 Some Remarks About the Software

There are some “rules” to obey, when the program is running. These rules

must be obeyed in case of any bad luck of the robot. Some of the rules can be

eliminated by developing software further. The “rules” of the robot to be paid

attention are in below.

• Run “PeWin32” software before executing the MMI software,

• Kill motors before switching the robot on,

• Check the position of the point, or generated path before send

command to the robot.

• Do not give fast commands while running in “Free Control” mode.

• “Home” the robot before shutting down the computer for the safety.

74

6.7 Conclusion

In this chapter, the MMI software is explained. The subject of the thesis is

mainly developing this software. The software developed is user-friendly and

windows based. The simulation on the screen is successful and the software works

without any errors. There are some incomplete parts, but in general, the software

is sufficient for the main purposes. The suggestions for the additions to the

software are discussed in the last chapter, but with the existing form of the

executable file, it avoids the unwanted movements or accidents with the robot.

75

Chapter 7

Error Analyses

7.1 Introduction

 In this chapter, the error sources in the software and robot system will be

investigated. The errors in the whole system can be explained in three main

categories;

• errors due to the construction of the robot,

• errors due to the method used in inverse position analyses,

• and, errors due to the motion control.

7.2 Errors due to the Construction of the Robot

The robot concerned (METUROBOT) is designed and manufactured in

METU CAD/CAM Centre. There can be some production and assembly errors

and misalignments. This can cause some error in positioning in global coordinate

system. These errors are constant errors but the error in the parts of assembly

cannot be measured accurately. Without disassembling the robot. These are not

creating big errors, but this is the part of the error of the system.

The foundation of the robot has some tilt. This causes also some

positioning errors. The links are bending a little under loading conditions and

76

under its own weight, when there is a tilt. This is not a constant error, because,

when there are more loads or when the robot is trying to reach the position far

from home position, the error increases.

7.3 Errors due to the Inverse Position Analyses

Some error occurs in the inverse position analysis. This error is due to the

search algorithm. The angles, θ2 to θ6 are determined in terms of θ1. Then θ1 is

found by search algorithm. To determine true θ1 we must search in the range 0 to

360 degrees. The inverse interpolation method is used in this search algorithm.

This method is very accurate, but it causes a little error.

The second error is mathematical error. In the algorithm, there are lots of

calculations, squares, square roots, sine, cosine and atan2 functions. These

functions all generate some calculation errors.

Below, there are some outputs of inverse position analysis (Table

7.1&7.2). First step of the test is inverse position analysis and then we make

forward position analysis to verify this points. The error is calculated in mm for

positions and degrees for orientation.

77

Table 7.1 Example 1 for Inverse Position Analysis

Table 7.2 Example 2 for Inverse Position Analysis

78

7.4 Errors due to the Motion Control

There are some errors on the motion control, i.e. commanded and actual

positions are not the same. But the control system of Delta-Tau motion control

card is powerful and the error due to motor control is very little.

To determine the value of motor control, an experiment is done. Motors

are commanded to some positions in their range, and error is examined on the

counter indicators of the Pewin32 software. The results of the experiment are in

below. Each box represents each motor. (Tables 7.3-7.8). In each box, the position

limits of the motors, the revolution distance, commanded positions and examined

errors are existing.

Table 7.3 Error analysis of motor #1 Table 7.4 Error analysis of motor #2

79

Table 7.5 Error analysis of motor #3 Table 7.6 Error analysis of motor #4

Table 7.7 Error analysis of motor #5 Table 7.8 Error analysis of motor #6

80

According to these results, errors are very little. The maximum error on

the experiments are 6 counts, this is about 4/1000 of a degree. These errors may

be made even smaller by improving the control system of motion control card.

7.5 Error Analysis, Accuracy and Repeatability of the

METUROBOT

Accuracy and repeatability of the robot is in terms of micrometers,

because the encoders in the motors are highly sensitive. But there are error

sources in the system. Error of the robot is determined with the measurement. For

this purpose, the steel ruler is used. The steel string is attached to the tip point of

the robot as a pointer and the position of the tip point is commanded to one

position to the other. The setup is shown in figure 7.1, below.

Figure 7.1 Setup for the measurement of error.

81

The thickness of the steel string is 1 mm, and the scale of the steel ruler is

1 mm, therefore we can observe the errors in mm.

In the experiment, the tip point of the robot is brought to the starting point,

which is 200-mm. line in the ruler. Then the command is to go 40 mm from this

point in the direction of the ruler. The observed error is below 1 mm. Two

positions of the robot are shown in the following figures, figure 7.2 and 7.3. As a

result, the error in the system is much higher than the accuracy and repeatability.

Figure 7.2 Start of the experiment Figure 7.3 End of the experiment

7.6 Conclusion

The error comes out in all robotic systems. In fact, there are errors in all

mechanical systems. These errors are generally due to the production and wear.

The METUROBOT has also some errors due to production, assembly and wear.

User cannot use METUROBOT as a high precision machine, but the error is not

big, so the robot can be used in pick and place works.

82

The major part of the error is constant. Therefore, repeatability of the robot

is very good. If these errors can be avoided, METUROBOT can be used as a high

precision robot.

83

Chapter 8

Conclusion

8.1 Discussion & Conclusion

In this thesis project, Man-Machine-Interface of an industrial robot is

developed. The thesis has mainly three parts, the kinematics theory of the robot,

motion control and software. The robot considered is designed and manufactured

in METU. For this reason, kinematic analyses are done first time. In addition to

this, inverse position analysis cannot be solved by fully analytical methods, and an

iterative method, semi-analytical method had to be used. This part can be

reconsidered later. Also path generation is examined and applied in the thesis, but

path optimisation is not considered.

Motion control of the robot is discussed in chapter 5. The control system

of robot is very powerful, but control from the C++ compiler is not that much

powerful. Using set of these cards, one can control up to 128 motors, but card is

rather old. Windows95/98 cannot recognise the card and the risk of coincide with

other hardware exists. There are more than 800 functions available to use, but in

this thesis, only few of them are used. For other applications, more of them can be

used.

Details of the software are explained in chapter 6. It is easy to use and its

interface is explanatory. But the code has no certain start or end point, because the

code is object-oriented. Therefore, user must know robotics to use the program,

especially controlling real robot parts. The C++ is object oriented and functions

84

are used in the code. The code can be developed further easily with this

construction.

8.2 Future Work

In this part, some suggestions for the future work on the theory & software

is listed.

• In the thesis, path optimisation is not considered. It can be considered

as a future work of the system.

• Energy optimisation can be applied to the path planning.

• Collusion detection is not considered. Collusion detection and

avoidance can be applied to the thesis.

85

REFERENCES

1. ABIDI Anas, “Man-Machine Interface Software Development for an

Industrial Robot”, METU Mechanical Engineering Master of Science

Thesis, 2002.

2. Balkan T., Özgören M. K., Arıkan M. A. S., Baykurt H. M., “A Method of

Inverse Kinematics Solution Including Singular and Multiple

Configurations for a Class of Robotic Manipulators”, Mechanism and

Machine Theory, pp.1221-1237, 2000.

3. Ça�layan M. Erdal, “Computer Aided Design of an Industrial Robot Arm”,

METU Mechanical Engineering Master of Science Thesis, 1994.

4. Eren Oykun, “Production, Assembly and Application of an Industrial

Robot”, METU Mechanical Engineering Master of Science Thesis, 2001.

5. Kelly Derek, “A Layman’s Introduction To Robotics”, Petrocelli Books,

1986.

6. Konukseven E. �lhan, “Graphical Simulation and Programming of Robots”,

METU Mechanical Engineering Master of Science Thesis, 1989.

7. Koren Yoram, “Robotics For Engineers”, McGraw-Hill Book Company,

1985.

86

8. Neider J., Davis T., Woo M., “OpenGL Programming Guide”, Addison-

Wesley Publishing Company, 1994.

9. OpenGL Panel Download & Examples, http://www.allanpetersen.com/opengl.htm

10. Özgören M. Kemal, “ME 522 Lecture Notes on Principle of Robotics”,

METU, unpublished 2001.

11. Özgören M. Kemal, “Topological Analysis of 6-joint Serial Manipulators

and Their Inverse Kinematic Solutions”, Mechanism and Machine Theory,

vol.37, No.5, ppç511-548, 2002.

12. “Pcomm32, PMAC 32 Bit Driver” manual, Delta Tau Systems, 2000

13. “Pewin32, PMAC Executive for Windows” manual, Delta Tau Stayems,

1995.

14. “PMAC Users Manual”, Delta Tau Systems Inc, 1991.

15. Schildt, H., “Borland C++ : the complete reference”, McGraw Hill, 1997.

16. Toker �. Bülent, “Virtual Modelling, Planning and Production of Parts of an

Industrial Robot”, METU Mechanical Engineering Master of Science

Thesis, 1999.

17. Ünver Tolga, “The Computer Aided Design of an Industrial Robot”, METU

Mechanical Engineering Master of Science Thesis, 1997.

87

18. Valley, S., “ObjectWindows : Programming Guide”, Borland Inrenational,

1992.

19. Zomaya A.Y., “Modelling and Simulation of Robot Manipulators”, World

Scientific, 1992.

88

Appendix A

Functions Developed and Used in the Software

A.1 Introduction

Here are the functions used in the software. These can be classified as

robot control functions, kinematic analysis functions, path generation functions

and functions for simulation framework. The function can return one value at a

time, therefore, some functions return nothing, but stores result in the global

variables.

A.2 Robot Control Functions

These functions are for the robot control. Robot is controlled by

controlling each motor separately. These functions are global functions and they

can be used in any code for this robot. But when using in the other software,

functions must be imported from the Pmac.dll file. This procedure is explained in

chapter 5.3.

• fOpenPmacDevice(int dw); is the function for opening robot &

initialisation. It is extracted from Pmac.dll file and used directly in the

program. dw is the device number, and it is always 0 for this thesis.

89

• fClosePmacDevice(int dw); is the function for closing communication

with the robot. This function is also directly called from the Pmac.dll

file.

• fPmacDownloadFile(int dw, string cc); is the function for

downloading file to the motion control card. This function is used for

downloading gains before controlling motors and downloading motion

programs for path execution. cc is the path of the file to be

downloaded.

A.3 Kinematic Analysis Functions

There are kinematic analysis functions in this part. These functions are the

main parts of this study. The inverse position analysis function can be improved

later.

• Inverse(double Px, double Py, double Pz, double e1, double e2,

double e3); is the function for inverse position analysis. Px, Py & Pz

are the tip point positions and e1, e2 & e3 are the euler angles for the

tip point orientation. The sequence is 1-2-3 sequence. When this

function called, the resultant joint angles are stored in t1_f, t2_f, t3_f,

t4_f, t5_f & t6_f variables. Px, Py & Pz are in mm, and e1, e2 & e3 are

in degrees.

• Draw(double ang1, double ang2, double ang3, double ang4, double

ang5, double ang6); is the function for forward position analyses &

drawing robot to the screen. angX variables are the joint variables in

radians.

90

• Jacobian(double t1, double t2, double t3, double t4, double t5, double

t6); is the function for finding jacobian matrix. tX’s arejoint variables

in radians and jacobian matrix is stored in matrix variable Jacob[][].

• dJacobian(double t1, double dt1, double t2, double dt2, double t3,

double dt3, double t4, double dt4, double t5, double dt5, double t6,

double dt6); is the function for finding derivative of jacobian matrix.

tX’s are joint varianles in radians and dtX’s are derivative of joint

variables, i.e. velocities of joints at that moment. Derivative of

jacobian matrix is stored at dJacob[][] matrix.

A.4 Path Generation Functions

There is no independent function for path generation. The path generation

is under the click event of the “Generate Path” button. In this event, there are

some functions, such as matrix inversion, multiplication or joint limit check.

• Mat_Inv(int n, double A[100][100]); is the function for matrix

inversion. n is the size of the matrix, and A[][] is the input matrix. The

inverse of the matrix is stored at global InMat[][] matrix. This code

can be used other than this study.

• MultMat(int k,double A_carp[100][100],double B_carp[100]; is the

function for multiplying (k x k) matrix with kx1 matrix. This type of

operation is needed for path generation.

• Check_Limits_4(int count, double ee, double dd, double cc, double

bb, double aa, int timedur); is the function for the joint limit check of

91

the generated path. This function is used for 4th order polynomials. The

“count” variable is the joint number. “ee” to “aa” are the constants of

the 4th order polynomial fitted to the interval and “timedur” is the

duration of the interval.

• Check_Limits_3(int count, double dd, double cc, double bb, double

aa, int timedur); is the same function as above. The only difference is

that, this function is 3rd order polynomials.

A.5 Functions for Simulation Framework

The main function for the simulation part is the Draw function. It is

explained in the part A.3, because it includes forward position analysis also. The

only function user must know is this function. But inside the Draw function, there

are functions for importing models, drawing to the panel, etc. These functions can

be classified as advanced functions. For one, who will improve the simulation

framework, there are explanations of these functions.

The functions are interconnected to each other. Therefore, while

modifying the simulation framework part of this study, the operator must be very

careful. All these functions must be carried together.

• InitWindow(); function initialises the window for OpenGL. It is

copied to the onPaint event of the Panel. The position of light and base

colour of the objects are designated here.

• BeginDraw(); function clears buffers and prepares the panel to the

drawing.

92

• EndDraw(); function finishes the drawing and again clears the

temporary used buffers.

• VmV(), VcrossV(), Vnormalize(); are the functions for finding normal

of the surfaces. As explained before, all objects are made up of

triangles and for all triangles, the colour variation is determined by

using this normal of the surface and position of the light determined.

• Draw_Link(char *rawfile, int n); is the function for importing links.

*rawfile is the path of the .raw file for link & n is the link number.

This function open the data file, extract the triangles and draws it to the

screen.

• Rotate_Link(int n); is the same as the Draw_Link, but it only updates

the view for new position.

• Draw_Robot(); is the main function of drawing robot to the panel.

This function calls the other functions for drawing robot to the panel.

93

Appendix B

Jacobian Matrix and its Derivative

B.1 Introduction

For the velocity and acceleration analyses, jacobian matrix and its

derivative are used. The jacobian matrix is the matrix in terms of joint angles and

its derivative is in terms of joint angles and its derivative, i.e. the angular position

and velocities of the joints.

B.2 Jacobian Matrix

 The definition of jacobian matrix is;

94

This was equation (2.56). the JPn and JAn are the sub-matrices of size 1x3.

P and C matrices are defined in (eqs 2.11-2.19). When we carry out the

calculations, the results are,

and,

J A1

0

0

1

�
�
�
�

�
�
�
�

J A2

sθ 1

cθ 1−

0

�
�
�
�
�

�
�
�
�
�

J A3

sθ 1

cθ 1−

0

�
�
�
�
�

�
�
�
�
�

J A4

cθ 1 sθ 23⋅

sθ 1 sθ 23⋅

cθ 23−

�
�
�
�
�

�
�
�
�
�

J A5

cθ 1 sθ 4⋅ cθ 23⋅ sθ 1 cθ 4⋅−

sθ 1 sθ 4⋅ cθ 23⋅ cθ 1 cθ 4⋅+

sθ 23 sθ 4⋅

�
�
�
�
�

�
�
�
�
�

J A6

cθ 1− cθ 4 sθ 5⋅ cθ 23⋅ cθ 5 sθ 23⋅−()⋅ sθ 1 sθ 4⋅ sθ 5⋅−

sθ 1− cθ 4 sθ 5⋅ cθ 23⋅ cθ 5 sθ 23⋅−()⋅ cθ 1 sθ 4⋅ sθ 5⋅+

cθ 4− sθ 23⋅ sθ 5⋅ cθ 23 cθ 5⋅−

�
�
�
�
	

�
�
�
�

95

B.3 Derivative of Jacobian Matrix

Jacobian matrix is the function of all joint variables.

J P1

a 2− sθ 1⋅ cθ 2⋅ d 3 sθ 1⋅ sθ 23⋅− d 4 sθ 1 cθ 23⋅ sθ 4⋅ cθ 1 cθ 4⋅+()⋅− d p sθ 1 cθ 23⋅ cθ 4⋅ sθ 5⋅ cθ 1 sθ 4⋅ sθ 5⋅− sθ 1 sθ 23⋅ cθ 5⋅−()⋅+

a 2 cθ 1⋅ cθ 2⋅ d 3 cθ 1⋅ sθ 23⋅+ d 4 cθ 1 cθ 23⋅ sθ 4⋅ sθ 1 cθ 4⋅−()⋅+ d p cθ 1 cθ 23⋅ cθ 4⋅ sθ 5⋅ sθ 1 sθ 4⋅ sθ 5⋅+ cθ 1 sθ 23⋅ cθ 5⋅−()⋅−

0

�
�
�
�
	

�
�
�
�

J P2

a 2− cθ 1⋅ sθ 2⋅ d 3 cθ 1⋅ cθ 23⋅+ d 4 cθ 1⋅ sθ 4⋅ sθ 23⋅− d p cθ 1⋅ cθ 4 sθ 5⋅ sθ 23⋅ cθ 5 cθ 23⋅+()⋅+

a 2− sθ 1⋅ sθ 2⋅ d 3 sθ 1⋅ cθ 23⋅+ d 4 sθ 1⋅ sθ 4⋅ sθ 23⋅− d p sθ 1⋅ cθ 4 sθ 5⋅ sθ 23⋅ cθ 5 θ 23⋅+()⋅+

a 2 cθ 2⋅ d 3 sθ 23⋅+ d 4 cθ 23⋅ sθ 4⋅+ d p cθ 4 sθ 5⋅ cθ 23⋅ cθ 5 sθ 23⋅+()⋅+

�
�
�
�
	

�
�
�
�

J P3

d 3 cθ 1⋅ cθ 23⋅ d 4 sθ 4⋅ cθ 1⋅ sθ 23⋅− d p cθ 1⋅ sθ 2 cθ 3⋅ cθ 4⋅ sθ 5⋅ cθ 5 cθ 23⋅+()⋅+

d 3 sθ 1⋅ cθ 23⋅ d 4 sθ 4⋅ sθ 1⋅ sθ 23⋅− d p sθ 1⋅ sθ 2 cθ 3⋅ cθ 4⋅ sθ 5⋅ cθ 5 cθ 23⋅+()⋅+

d 3 sθ 23⋅ d 4 cθ 23⋅ sθ 4⋅+ d p cθ 5⋅ cθ 2 cθ 3⋅ sθ 4⋅ sθ 23−()⋅−

�
�
�
�
	

�
�
�
�

J P4

d 4 cθ 1 cθ 23⋅ cθ 4⋅ sθ 1 sθ 4⋅+()⋅ d p cθ 1 cθ 23⋅ sθ 4⋅ sθ 5⋅ sθ 1 cθ 4⋅ sθ 5⋅−()⋅+

d 4 sθ 1 cθ 23⋅ cθ 4⋅ cθ 1 sθ 4⋅−()⋅ d p sθ 1 cθ 23⋅ sθ 4⋅ sθ 5⋅ cθ 1 cθ 4⋅ sθ 5⋅+()⋅+

d 4 sθ 23⋅ cθ 4⋅ d p sθ 23⋅ sθ 4⋅ sθ 5⋅+

�
�
�
�
	

�
�
�
�

J P5

d p− cθ 1 cθ 23⋅ cθ 4⋅ cθ 5⋅ sθ 1 sθ 4⋅ cθ 5⋅+ cθ 1 sθ 23⋅ sθ 5⋅+()⋅

d p− sθ 1 cθ 23⋅ cθ 4⋅ cθ 5⋅ cθ 1 sθ 4⋅ cθ 5⋅− sθ 1 sθ 23⋅ sθ 5⋅+()⋅

d p− sθ 23 cθ 4⋅ cθ 5⋅ cθ 23 sθ 5⋅−(⋅

�
�
�
�
	

�
�
�
�

J P6

0

0

0

�
�
�
�

�
�
�
�

dJ P
dJ P1

dJ A1

dJ P2

dJ A2

dJ P3

dJ A3

dJ P4

dJ A4

dJ P5

dJ A5

dJ P6

dJ A6

�
�
�

�
�
�

96

The derivative of jacobian matrix is the partial derivative of jacobian

matrix for all of the variables. The elements of dJ matrix are very long, but how to

derive is easy.

As an example, the derivative of JA4 can be calculated as;

Using the formula;

The result is;

J A4

cθ 1 sθ 23⋅

sθ 1 sθ 23⋅

cθ 23−

�
�
�
�
�

�
�
�
�
�

97

Appendix C

Users Manual for the METUROBOT System using

Developed MMI

C.1 Introduction

In this manual, it is intended to give a detailed and step-by-step

explanation of how to operate METUROBOT, using developed MMI software.

The manual is divided into 4 sections;

• Describing the METUROBOT,

• Starting system for operating the METUROBOT.

• Operating robot with controlling joints,

and,

• Operating robot with controlling the position of the tip point of the robot.

C.2 The METUROBOT

METUROBOT is a 6 degree-of-freedom industrial robot in

CAD/CAM/ROBOTICS centre. It is designed and manufactured by the thesis

students of Prof. Dr. Bilgin Kaftano�lu. The robot is shown in figure C.1.

98

Figure C.1 METUROBOT

The robot has 6 AC servomotors and they are controlled by Delta-Tau

motion control card. The schematic view of the robot is shown below (Figure

C.2);

 Figure C.2 Schematic View of the METUROBOT

99

P is the tip point of the robot. The length of the distance dP can be adjusted

for the end-effector used. In the MMI software, there is a menu for adjusting the

values of the link lengths. The link lengths are in the following table (Table C.1):

 Table C.1 Link Lengths

Link Length (mm)

Base to O0 1201

a2 800

a3 152,5

d4 895

d5 164,8

dP 250

There are 6 joints and all these joints are revolute. In order to operate the

robot in safely, there are limit switches on the joints to define the limits. It is not

recommended to use the robot near the joint limits. Limits of the motors in terms

of angles are in the following table, (Table C.2). Angle values are from the home

position. Motors are controlled by motion control card. Position feedback is taken

from the incremental encoders. Last column shows the encoder counts per

revolution, i.e. 360 degrees is equal to 360,000 counts for encoder of motor 1, etc.

100

 Table C.2 Limits of the Motors

Motor # Min. Angle (deg) Max. Angle (deg) Encoder Counts

 per Revolution

1 -180 180 360.000

2 -10 10 585.000

3 -20 20 510.000

4 -160 160 510.000

5 -110 110 470.000

6 -180 180 360.000

These limits restrict the movement of the robot, but it has a sufficient

workspace around the robot

C.3 Starting the System

In this part, starting the whole system, robot and the software will be

explained. More detailed users manual for installing the motion card, motion

software and tuning the motors, can be found on the thesis of Oykun Eren.

The steps for starting the system are listed below;

1. Turn on the computer,

2. Run “Pewin32.exe” program and “MMI of METUROBOT” softwares, the

screen view of the MMI software is shown below (Figure C.3). the shortcuts

of these programs are on the desktop of the computer.

101

 Figure C.3 Screen View of the MMI Software

3. Press the “Open Robot” button located in the “Robot Control” section of the

software,

4. Press the “Kill Motors” button under the “Open Robot” button,

5. Then, plug the main socket (3-phase plug of the control cabinet) into the

socket in the electric box on the wall and turn on the main power switch inside

the box,

6. Check the workspace of the robot is clear of objects and personnel,

7. Turn on the “main switch” inside the cabinet,

8. Press the “start” button in the cabinet,

9. Press the “run” button,

The buttons to control the robot in the cabinet are shown below (Figure

C.4).

102

 Figure C.4 Buttons in the Cabinet

10. Press the “Home” button on the software to hold the robot on home position.

The robot is now ready to operate.

C.4 Operating Robot with Controlling the Joints

The right side of the software is reserved for the joint control of the robot.

When controlling joints from software, do not make big changes in a short time.

When the user changes the values of the joint angles from the slide bars,

the robot view in the simulation window will move. If the user wants to move the

METUROBOT, then checks the checkbox “Move with Robot” on the right

bottom side of the software, and changes the values of the angles from the slide

bars of the joints. The robot will move simultaneously with the simulation.

The important notice is that, if the robot simulation and METUROBOT

are in different positions, the METUROBOT will suddenly move the position

shown in the screen, when the checkbox is checked.

C.5 Operating Robot with Controlling the Pose of the End-

Effector

The main aim of the MMI software is the controlling the pose of the end-

effector of the robot. There is a list of the points on the left of the simulation

103

window. User fills the list from “Add” (add point) button located on the top of the

list. User can also modify or delete a point using the buttons. The points are

inserted to the list with 7 parameters, x-y-z values on the space coordinates, e1-

e2-e3 euler angles and time. Time is used for the path planning.

After filling the table, points are verified with the “Verify Points” button.

If there is a point out of the workspace, the points are not verified. If all the points

are verified, the point is shown on the simulation window by clicking the point

row on the list. To move the METUROBOT to the point, press “Go To Selected

Point” button when the point is selected from the list.

C.6 Path Generation with MMI software

If the user wants to move the METUROBOT on the path, he lists the

points on the path and presses the “Generate Path” button after verification of all

the points. After the path is generated, joint limits (position, velocity and

acceleration) checked, “graphics” and “simulation” menu items are enabled. User

can observe the planned trajectory by pressing the “Simulate” menu. Example

point listing for one path is in figure C.5. In this example, end-effector of the

robot move from point 1 to point 4, in 20 seconds and touches the intermediate

points at given times.

 Figure C.5 Example points for the single path

104

The user can define more than one path, one after the other. In this case,

user can put a waiting line and inputs the waiting time in the time section.

Example points for 2 paths are in figure C.6

 Figure C.6 Example points for the multi-path

When these points are entered, robot goes point 1 to point 3 in 5 seconds,

then waits in the point 3 for 10 seconde and continues to the path. The end point is

the point 6 and the total time of travel is 30 seconds with pause.

